WO2020024601A1 - 一种松香基咪唑啉衍生物缓蚀剂的合成方法及其应用 - Google Patents

一种松香基咪唑啉衍生物缓蚀剂的合成方法及其应用 Download PDF

Info

Publication number
WO2020024601A1
WO2020024601A1 PCT/CN2019/080276 CN2019080276W WO2020024601A1 WO 2020024601 A1 WO2020024601 A1 WO 2020024601A1 CN 2019080276 W CN2019080276 W CN 2019080276W WO 2020024601 A1 WO2020024601 A1 WO 2020024601A1
Authority
WO
WIPO (PCT)
Prior art keywords
rosin
corrosion inhibitor
imidazoline derivative
based imidazoline
corrosion
Prior art date
Application number
PCT/CN2019/080276
Other languages
English (en)
French (fr)
Inventor
程丽华
郭文姝
王慧
朱华平
黄敏
许江兵
谭达刚
Original Assignee
广东石油化工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东石油化工学院 filed Critical 广东石油化工学院
Publication of WO2020024601A1 publication Critical patent/WO2020024601A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/04Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in markedly acid liquids

Definitions

  • the invention relates to the technical field of compound synthesis, and more particularly, to a method for synthesizing a rosin-based imidazoline derivative inhibitor and its application.
  • corrosion inhibitor protection is a kind of anti-corrosion method with good effect, simple method, low cost and strong applicability. It has been widely used in petroleum, chemical industry, metallurgy and other industries. At present, the corrosion inhibitors used in oil and gas fields and petrochemical industries at home and abroad are mainly organic compounds such as propynols, organic amines, imidazolines, and quaternary ammonium salts. Due to the toxicity of propynols and aromatic amines, Therefore, low-toxic, environmentally friendly imidazoline corrosion inhibitors are widely used.
  • Imidazoline corrosion inhibitor is an imidazoline derivative obtained by modifying imidazoline as an intermediate. It has low toxicity, good thermal stability, and does not have a particularly irritating odor. It can be changed when an acidic medium is in contact with a metal. The oxidation-reduction potential of hydrogen causes an electrochemical reaction on the metal surface to form a single-molecule adsorption protective film. It can also cause some oxidants in the solution to react and reduce the equipment's corrosion by reducing its electrode potential. Imidazolines are usually synthesized by reacting long-chain fatty acids or fatty acid methyl esters with polyamines to form a five-membered ring by dehydration. The synthesis process is complex, consumes more energy, and has a limited release of corrosion inhibitors.
  • the present invention provides a rosin-based imidazoline derivative inhibitor and its synthesis method and application.
  • the injected corrosion inhibitor is modified by Mannich reaction with low energy consumption and energy to obtain a rosin-based imidazoline derivative corrosion inhibitor with excellent corrosion inhibition performance.
  • a rosin-based imidazoline derivative inhibitor has a structural formula as follows:
  • a method for synthesizing rosin-based imidazoline derivative corrosion inhibitor includes the following steps:
  • triethylenetetramine in triethylenetetramine, diethylenetriamine, or other polyethylenepolyamines, after research, it is found that only triethylenetetramine can make the synthetic corrosion inhibitor not only ensure higher adsorption strength of the polar chain, but also make the Corrosion inhibitors have moderate oil solubility and high dispersibility in corrosive media, so triethylenetetramine was selected as the reactant for the chemical reaction.
  • the preparation of the inhibitor intermediate IMDO specifically includes the following steps:
  • Dehydroabietic acid is added to a dry four-necked bottle equipped with a water separator, the temperature is raised to 220-240 ° C, and triethylenetetramine and xylene are slowly added dropwise as a water-carrying agent, and the reaction is performed for 3-6 hours;
  • xylene is selected as a water-carrying agent, and water is azeotropically mixed with water to remove water from the reaction container. Carry it out, thereby promoting the dehydration reaction.
  • the reaction with gradually increasing temperature is relatively mild, and the reaction proceeds completely and fully. If the reaction is not performed below the set temperature, the corrosion inhibitor yield is low. Above the temperature, not only the energy consumption is high, but the effective product is decomposed. Or higher than the set temperature will reduce the corrosion inhibition effect.
  • the Mannich reaction specifically includes the following steps:
  • step a if the heating and reflux temperature is lower than 100 ° C, the reaction cannot be carried out completely, the yield is low, and the slow-release effect is reduced. Will cause a slow-release effect.
  • the molar ratio of dehydroabietic acid, triethylenetetramine and xylene is 1: 1.1-1.3: 0.8-1.1.
  • the molar ratio of dehydroabietic acid, triethylenetetramine and xylene is 1: 1.1: 0.8.
  • the molar ratio of the rosin-based imidazoline derivative inhibitor intermediate, phosphorous acid, and formaldehyde is 1: 1: 1.5-3.
  • the molar ratio of the rosin-based imidazoline derivative inhibitor intermediate, phosphorous acid, and formaldehyde is 1: 1: 2.
  • the reactants involved in the reaction synthesis of the effective proportion of the inhibitors in the above-mentioned proportions have high yields, better corrosion inhibition properties, and lower or higher corrosion inhibition performance than the above proportions.
  • the reactant raw materials involved are all analytically pure, and products with higher sustained-release properties can be obtained by analyzing pure-grade chemicals. If superior purity is selected, the product performance will not be significantly improved. In order to avoid waste of materials, the present invention preferentially selects pure analytical raw materials.
  • triethylenetetramine and xylene are added dropwise at the same time or xylene and triethylenetetramine are sequentially added dropwise. Due to the lower boiling point of xylene, When the temperature is increased, the amount of xylene actually participating in the reaction will be reduced, and the reaction effect will be poor. Therefore, the order of adding xylene cannot be after triethylenetetramine.
  • the saturated brine and ethyl acetate used in the separation and extraction process can be recovered and recycled.
  • the acidic catalytic environment is a dilute hydrochloric acid solution prepared by analyzing pure hydrochloric acid and deionized water in a volume ratio of 1: 1.
  • the invention also provides an application of a rosin-based imidazoline derivative corrosion inhibitor, and the use concentration of the rosin-based imidazoline derivative corrosion inhibitor is 1-4 g / L.
  • the use concentration of the rosin-based imidazoline derivative inhibitor is 3 g / L.
  • the present disclosure provides a rosin-based imidazoline derivative corrosion inhibitor intermediate IMDO and a rosin-based imidazoline derivative corrosion inhibitor IMDOM, both of which are anodes.
  • Type corrosion inhibitor the addition of corrosion inhibitor reduces the corrosion current density, reduces the corrosion rate, the corrosion inhibitor replaces water molecules and other corrosive substances on the metal surface to form a film;
  • the rosin-based imidazoline derivative of the present invention is used alone Corrosion inhibitor, when the amount of corrosion inhibitor is 3g / L, the IMDOM corrosion inhibition rate is 90.87%, the IMDO corrosion inhibition rate is 84.85%, and the degree of pitting corrosion is greatly reduced; and the preparation method of the invention is simple and the energy consumption is low , More suitable for industrial production.
  • FIG. 1 is an infrared spectrum of the rosin-based imidazoline corrosion inhibitor intermediate IMDO of the present invention
  • Figure 2 is an infrared spectrum of a rosin-based imidazoline corrosion inhibitor IMDOM according to the present invention
  • Figure 3 is the polarization curve of the sample in the experimental medium with different corrosion inhibitors
  • FIG. 4 is a diagram showing an equivalent circuit of an electrochemical impedance spectrum of a working electrode in an experimental medium
  • Figure 5 is a graph showing the electrochemical impedance spectrum of an electrode at 60 ° C in a solution with a different content of corrosion inhibitor
  • Figure 6 is the average corrosion rate of the sample after immersion in the test solution containing different corrosion inhibitors at 60 ° C for 4h;
  • FIG. 7 is a SEM morphology of the sample after being immersed in a blank solution at 60 ° C. for 4 hours;
  • FIG. 8 is a SEM morphology of the sample after being immersed in an experimental solution of 3 g / L IMDO for 4 h at 60 ° C;
  • FIG. 10 is a graph showing the energy spectrum of the adsorption film on the surface of the test piece after 4 h in the corrosive medium before and after adding 3 g / L corrosion inhibitors IMDO and IMDOM at 60 ° C;
  • FIG. 11 is a C ⁇ ⁇ -1 versus C diagram of 10 # steel in a 36% hydrochloric acid solution with different corrosion inhibitors.
  • the invention discloses a rosin-based imidazoline derivative corrosion inhibitor, and a specific embodiment of a method for synthesizing the corrosion inhibitor is as follows:
  • dehydroabietic acid, triethylenetetramine and xylene in a molar ratio of 1: 1.1: 0.8 first add dehydroabietic acid to a dry four-necked bottle equipped with a water separator, and heat up to 220-240 ° C. Slowly add triethylenetetramine and xylene as water-carrying agents and react for 3-6h; then continue to warm to 270-280 ° C and reflux the cyclization reaction for 3-6h, and use a water separator to separate water; finally, distill off under reduced pressure Xylene to obtain rosin-based imidazoline derivative corrosion inhibitor intermediate IMDO;
  • intermediate IMDO and formaldehyde are added in a molar ratio of 1: 1: 2.
  • the intermediate IMDO and phosphorous acid are first added and heated under reflux at 100-110 ° C for 1.5-2.5h, and then a constant pressure funnel is used.
  • Add formaldehyde slowly and react at reflux for 1-2 hours. After the reaction, cool to room temperature and add a certain amount of saturated brine to wash and separate.
  • dehydroabietic acid, triethylenetetramine and xylene in a molar ratio of 1: 1.3: 1.1 first add dehydroabietic acid into a dry four-necked bottle equipped with a water separator, and raise the temperature to 220-240 ° C. Slowly add triethylenetetramine and xylene as water-carrying agents and react for 3-6h; then continue to warm to 270-280 ° C and reflux the cyclization reaction for 3-6h, and use a water separator to separate water; finally, distill off under reduced pressure Xylene to obtain rosin-based imidazoline derivative corrosion inhibitor intermediate IMDO;
  • intermediate IMDO and formaldehyde are added in a molar ratio of 1: 1: 2.
  • the intermediate IMDO and phosphorous acid are first added and heated under reflux at 100-110 ° C for 1.5-2.5h, and then a constant pressure funnel is used.
  • Add formaldehyde slowly and react at reflux for 1-2 hours. After the reaction, cool to room temperature and add a certain amount of saturated saline to wash and separate.
  • Inhibitor product IMDOM is a molar ratio of 1: 1: 2.
  • Dehydroabietic acid, triethylenetetramine and xylene are added in a molar ratio of 1: 1.2: 0.9.
  • Dehydroabietic acid is first added to a dry four-necked bottle equipped with a water separator, and the temperature is raised to 220-240 ° C.
  • intermediate IMDO and formaldehyde are added in a molar ratio of 1: 1: 2.
  • the intermediate IMDO and phosphorous acid are first added and heated under reflux at 100-110 ° C for 1.5-2.5h, and then a constant pressure funnel is used.
  • Add formaldehyde slowly and react at reflux for 1-2 hours. After the reaction, cool to room temperature and add a certain amount of saturated saline to wash and separate.
  • Inhibitor product IMDOM is a molar ratio of 1: 1: 2.
  • dehydroabietic acid, triethylenetetramine and xylene in a molar ratio of 1: 1.1: 0.8 first add dehydroabietic acid to a dry four-necked bottle equipped with a water separator, and raise the temperature to 220-240 ° C. Slowly add triethylenetetramine and xylene as water-carrying agents and react for 3-6h; then continue to warm to 270-280 ° C and reflux the cyclization reaction for 3-6h, and use a water separator to separate water; finally, distill off under reduced pressure Xylene to obtain rosin-based imidazoline derivative corrosion inhibitor intermediate IMDO;
  • intermediate IMDO and formaldehyde are added in a molar ratio of 1: 1: 1.5.
  • the intermediate IMDO and phosphorous acid are first added and heated to reflux at 100-110 ° C for 1.5-2.5h, and then a constant pressure funnel is used.
  • Add formaldehyde slowly and react at reflux for 1-2 hours. After the reaction, cool to room temperature and add a certain amount of saturated saline to wash and separate.
  • Inhibitor product IMDOM is a molar ratio of 1: 1: 1.5.
  • dehydroabietic acid, triethylenetetramine and xylene in a molar ratio of 1: 1.1: 0.8 first add dehydroabietic acid to a dry four-necked bottle equipped with a water separator, and raise the temperature to 220-240 ° C. Slowly add triethylenetetramine and xylene as water-carrying agents and react for 3-6h; then continue to warm to 270-280 ° C and reflux the cyclization reaction for 3-6h, and use a water separator to separate water; finally, distill off under reduced pressure Xylene to obtain rosin-based imidazoline derivative corrosion inhibitor intermediate IMDO;
  • intermediate IMDO and formaldehyde are added in a molar ratio of 1: 1: 3.
  • the intermediate IMDO and phosphorous acid are first added and heated under reflux at 100-110 ° C for 1.5-2.5h, and then a constant pressure funnel is used.
  • Add formaldehyde slowly and react at reflux for 1-2 hours. After the reaction, cool to room temperature and add a certain amount of saturated saline to wash and separate.
  • Inhibitor product IMDOM is a molar ratio of 1: 1: 3.
  • the action mechanism of the corrosion inhibitor of the present invention is as follows:
  • the structure of the corrosion inhibitor has a polar functional group that is hydrophilic and oleophobic and a non-polar functional group that is lipophilic and hydrophobic, or there is an unsaturated bond in the structure.
  • the polar groups are directionally adsorbed on the metal surface, replacing the original corrosive particles, thereby achieving the effect of anti-corrosion; and the adsorption energy and coverage are the two main aspects to measure the corrosion inhibition performance. Because the hydrophilic group of the inhibitor molecule is bonded to the metal surface, the inhibitor is strongly adsorbed, so the surface properties and charge distribution of the metal are changed.
  • the activation energy of the corrosion reaction is increased, and the metal The surface energy decreases and the energy tends to be stable.
  • the increase of the Gibbs free energy of the corrosion reaction can prove that the metal's corrosion rate decreases; the hydrophobic groups are arranged outside the corrosive material, forming a hydrophobic protective film between the metal and the corrosive medium. , To avoid direct contact between the corrosive medium and the material, thereby achieving the purpose of corrosion inhibition.
  • a coordination or covalent bond is formed with a metal atom having an unoccupied empty orbital, and polymerization (polycondensation) And chelation to form a film, reducing the metal surface activity.
  • Dehydroabietic acid contains a benzene ring ⁇ bond, which changes the state of charge on the metal surface.
  • the adsorption of electrons on the benzene ring or unsaturated bond also belongs to the electron donor type, and the adsorption energy and coverage are a measure of corrosion inhibition performance. The main two aspects.
  • the adsorption of the electrons on the benzene ring also belongs to the adsorption of the electron donor type single layer, which has strong adsorption force, high adsorption heat, adsorption irreversibility, changes in metal surface potential, and adsorption selectivity.
  • the negatively and positively charged metal surface of the benzene ring is adsorbed.
  • the imidazoline corrosion inhibitor attracts the positively charged imidazoline ring and the negatively charged corrosion ions on the metal surface through the electrostatic attraction Finally, the corrosion inhibitor is adsorbed on the steel.
  • the following is the characterization, analysis and evaluation of the sustained-release performance of the rosin-based imidazoline derivative inhibitor IMDO and the rosin-based imidazoline derivative inhibitor IMDOM.
  • FIG. 1 The IR spectra of IMDO and IMDOM prepared in Examples 1-4 are shown in Figures 1 and 2.
  • the absorption peak, the stretching vibration peak of -NH- in the branch chain is at 1524.02 cm -1 , indicating that IMDO has been synthesized;
  • the stretching vibration peak of CN appears at 1119.63 cm -1
  • the stretching vibration absorption peak of NH bond is at 3375.30 cm -1
  • the in-plane variable angle absorption peak is at 1454.68 cm -1
  • the stretching vibration peak of -NH- in the branch chain appears at 1531.58 cm -1 .
  • PH 2 O 3 is at 900-1200 cm -1
  • Example 1 As can be seen from FIG. 3 and Table 1, in Example 1, with the increase of the corrosion inhibitor in the medium, the corrosion current density decreases and the corrosion inhibition rate increases. When the amount of the corrosion inhibitor reaches 3g / L, the corrosion inhibition rate It reaches the maximum. Although both the cathode and anode corrosion currents are reduced and the polarization process is suppressed, the corrosion potential E corr moves forward and the anodic polarization increases significantly, indicating that it has a strong inhibitory effect on the anode reaction.
  • Corrosion inhibitor is a mixed type corrosion inhibitor mainly suppressing anode.
  • the corrosion inhibition effect of IMDOM is worse than that of IMDO, because IMDO has a stronger charge effect, uneven charge distribution, and unstable energy, so the protective film it forms is not as dense and strong as the protective film formed by IMDOM.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 IMDO 78.75% 70.43% 83.16% 80.40% 78.56% IMDOM 90.95% 85.02% 88.25% 87.64% 86.15%
  • the electrochemical resistance of the film was evaluated by electrochemical AC impedance technology, and the electrochemical behavior of the film and the metal surface was obtained by analysis.
  • the information of the film layer is usually concentrated in the capacitive impedance arc in the high frequency region, which mainly expresses the shielding performance and dielectric properties of the film.
  • the interface information between the medium and the metal is reflected in the change of the capacitive impedance arc in the low frequency region. Charge transfer in the electrochemical corrosion of metals.
  • R f is the adsorption resistance
  • R ct is a charge transfer resistance
  • R S is a solution resistance
  • C f is the membrane capacitance
  • C dl an electric double layer capacitor
  • electrochemical impedance spectra of FIG 5 Table 3 shows the fitting parameters of Example 1. Due to the dispersion effect, electric double-layer capacitors are not equivalent to ideal capacitors, so when fitting impedance values, replace the capacitor with a constant phase angle element (CPE) to make the fitting more accurate.
  • CPE constant phase angle element
  • the corrosion inhibition The rate reaches a maximum value, indicating that the polar groups of the inhibitor molecules are adsorbed on the metal, and the non-polar group extends to the corrosive medium to form a denser corrosion inhibitor layer on the metal surface to cover the metal surface, blocking the charge with the corrosive medium. Transfer and material exchange.
  • the corrosion inhibitor is continuously added, the corrosion inhibitor desorbs on the metal surface, and the corrosion inhibition rate decreases.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 IMDO 74.85% 82.41% 80.13% 76.26% 78.48%
  • IMDOM 96.89% 88.49% 92.64% 92.04% 87.32%
  • the average corrosion rate of the test piece can be as high as 19.26g ⁇ (m 2 ⁇ h) -1 in the corrosive medium without the inhibitor at 60 ° C and 500 rpm.
  • the surface of the test piece was severely corroded by the corrosive medium, and a large number of bubbles continued to be generated.
  • the rate of bubble generation on the surface of the sample was significantly reduced.
  • the average corrosion rate of the wafer in the IMDO corrosion inhibitor has decreased to 1.96 g ⁇ (m 2 ⁇ h) -1 , and its corrosion inhibition rate has reached 84.85%; the average corrosion rate of the test wafer in the IMDOM inhibitor has dropped to 1.76 g. ⁇ (M 2 ⁇ h) -1 , its corrosion inhibition rate has reached 90.87%, and the most suitable amount of corrosion inhibitor is 3g / L. This is consistent with the changing trend of the electrochemical test results.
  • the average sustained release rate g ⁇ (m 2 ⁇ h) -1 and the sustained release rate% of the IMDO and IMDOM obtained in the above Examples 1-4 of the present invention refer to table 5:
  • the corrosion morphology of the test piece without the pre-film treatment in the dynamic weightlessness experiment is shown in Figure 7-9. It can be seen that, because the test piece was scratched with sandpaper before the experiment, the experimental test with the addition of a corrosion inhibitor can be seen. The film had obvious scratches. In the blank group (Picture Black), the test piece of the experimental group without adding corrosion inhibitors could not find obvious scratches. Only the uneven corroded surface. The sample surface had a lot of relatively serious uniform corrosion and pitting. The phenomenon is also obvious, which indicates that the corrosion is serious; after adding the corrosion inhibitor, the overall corrosion situation is improved, and only some corrugated and porous structures appear.
  • the proportion of Fe, O, and P is greatly increased after the inhibitor is added, and the inhibitor contains O and P.
  • the film protects the metal substrate, which also proves that a large amount of chemical adsorption of the corrosion inhibitor occurs on the metal surface, while the blank group without the corrosion inhibitor has more corrosive chloride on the surface, so the corrosion inhibitor is effective for the metal protection of.
  • Organic corrosion inhibitors can generate two adsorption modes, chemisorption and physisorption, and are affected by the electrical, temperature and corrosive media of the material.
  • adsorption law of corrosion inhibitors an isothermal adsorption equation was established to simulate the adsorption results.
  • C is the inhibitor concentration
  • is the surface coverage of the inhibitor
  • K is the adsorption equilibrium constant.
  • the present invention synthesizes the intermediate IMDO by using dehydroabietic acid and triethylenetetramine, and then synthesizes IMDOM by Mannich reaction; the most suitable addition amount of the corrosion inhibitor is 3g / L.
  • the corrosion inhibitor is 3g / L.
  • 10 # carbon steel In 36% hydrochloric acid medium at 60 °C, it has good corrosion inhibition effect.
  • the characteristic elements contained in the inhibitor are found on the metal surface where the inhibitor is added, indicating that the inhibitor is densely attached to the metal surface and has a strong Adsorption, which effectively shields the liquid corrosion medium, reduces the material transfer and charge exchange between the metal surface and the corrosion medium, and reduces the corrosion reaction rate; and they are all anodic corrosion inhibitors; the adsorption follows the Langmiuir isothermal adsorption equation on the metal surface Chemisorption occurs.
  • the imidazoline derivative is composed of a polar functional group having a negative charge of O, S, N and the like, and a non-polar functional group having a C, H as a center.
  • a polar functional group having a negative charge of O, S, N and the like and a non-polar functional group having a C, H as a center.
  • non-polar functional groups will be arranged on the surface of the metal to form a hydrophobic dynamic adsorption layer, thereby avoiding corrosion
  • the charge transfer of the medium suppresses corrosion.
  • imidazoline derivatives are mainly chemically adsorbed on the metal surface.
  • the electrons on the large ⁇ bond on the imidazoline ring will enter the empty d orbit of Fe, and the anti-n orbit ( ⁇ * The electrons in the d orbitals that accept Fe form a feedback bond, thus forming a polycentric chemisorption.
  • ⁇ * The electrons in the d orbitals that accept Fe form a feedback bond, thus forming a polycentric chemisorption.
  • N and S atoms Under the field, it is easy to accept lone pair electrons provided by N and S atoms to form covalent coordination bonds.
  • This type of chemisorption is a multi-adsorption center.
  • the five-membered heterocyclic ring of imidazoline contains two N atoms that can interact with the eroded surface. Three of the active sites are combined to form a bond.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

本发明涉及用于金属防腐蚀化合物的合成于应用,具体公开了一种松香基咪唑啉衍生物缓蚀剂的合成方法及其应用,在合成过程中以三乙烯四胺与脱氢松香酸为原料制得松香基咪唑啉衍生物缓蚀剂中间体,再以亚磷酸对其进行曼尼希反应改性,制得一种松香基咪唑啉衍生物缓蚀剂,利用红外光谱对其结构进行表征,以电化学法、动态失重法、能谱分析和扫描电子显微镜等方法分析发现,缓蚀剂对金属具有很好地缓蚀作用,同时缓蚀剂的添加能够降低腐蚀电流密度,使腐蚀速率减小。

Description

一种松香基咪唑啉衍生物缓蚀剂的合成方法及其应用 技术领域
本发明涉及化合物合成技术领域,更具体的说是涉及一种松香基咪唑啉衍生物缓蚀剂的合成方法及其应用。
背景技术
随着原油重质化程度的日益增加,高酸原油年产量占地球原油总量5%左右,且以年0.3%增长率增长,我国高酸原油的产量约占原油总产量的40%,因此原油开采过程中油井、储罐和管道的腐蚀,原油加工过程中炼制设备的腐蚀尤为严重,据统计腐蚀导致的经济损失占国民经济总产值的6%,对石化行业损失尤为严重。
从20世纪开始,人们不断地对金属腐蚀开展研究,寻找各种有效防止金属腐蚀的方法。在研制的各种防腐蚀方法中,缓蚀剂防护是效果较好、方法简便、成本低廉、适用性强的一种防腐蚀方法,它已广泛应用于石油、化工、冶金等行业。目前在国内外油气田及石化行业所使用的缓蚀剂主要是丙炔醇类、有机胺类、咪唑啉类和季铵盐类等有机化合物,由于丙炔醇类和芳香胺类毒性较大,因此低毒、环保型的咪唑啉类缓蚀剂得到广泛使用。
咪唑啉类缓蚀剂是以咪唑啉为中间体经过改性而得到的咪唑啉类衍生物,其毒性低,热稳定性好,没有特别刺激性气味,在酸性介质与金属接触时,可以改变氢的氧化还原电位,在金属表面发生电化 学反应形成单分子吸附保护膜,也可使溶液中的某些氧化剂发生反应,通过降低其电极电位来减缓设备的腐蚀。咪唑啉通常都是由长链脂肪酸或脂肪酸甲酯与多胺反应脱水形成五元环合成的,合成过程复杂、消耗较多能量并且缓蚀剂缓释性能有限。
因此,如何提供一种低耗节能、合成过程简单,并且具有较高缓释性能的咪唑啉衍生物缓蚀剂是本领域技术人员亟需解决的问题。
发明内容
为减少石油炼制过程中高酸原油对设备的腐蚀,不断优化加注缓蚀剂的缓蚀性能,本发明提供了一种松香基咪唑啉衍生物缓蚀剂及其合成方法和应用,成功的通过低耗节能的曼尼希反应对加注的缓蚀剂进行改性,获得缓蚀性能优良的松香基咪唑啉衍生物缓蚀剂。
为了达到上述目的,本发明采用如下技术方案:
一种松香基咪唑啉衍生物缓蚀剂,所述松香基咪唑啉衍生物缓蚀剂的结构式如下:
Figure PCTCN2019080276-appb-000001
一种松香基咪唑啉衍生物缓蚀剂的合成方法,包括如下步骤:
(1)缓蚀剂中间体的制备:脱氢松香酸、三乙烯四胺和二甲苯在升温条件下反应,反应完全后进行减压蒸馏操作,得到松香基咪唑啉衍生物缓蚀剂中间体IMDO,反应式如下:
Figure PCTCN2019080276-appb-000002
(2)曼尼希反应:松香基咪唑啉衍生物缓蚀剂中间体IMDO、亚磷酸和甲醛在酸性催化环境下回流反应,反应结束后萃取分液得到松香基咪唑啉衍生物缓蚀剂IMDOM,反应式如下:
Figure PCTCN2019080276-appb-000003
本发明在三乙烯四胺、二乙烯三胺或者其他多乙烯多胺中,经过研究发现,只有三乙烯四胺可以使得合成的缓蚀剂既能保证极性链具有较高吸附强度,又使得缓蚀剂的油溶性适中,在腐蚀介质中分散性较高,因此选择三乙烯四胺作为化学反应的反应物。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的合成方法中,缓蚀剂中间体IMDO的制备具体包括如下步骤:
a.将脱氢松香酸加入装有分水器的干燥四口瓶中,升温至220-240℃,缓慢滴加三乙烯四胺和二甲苯作为携水剂,反应3-6h;
b.继续升温至270-280℃,回流环化反应3-6h,并利用分水器分水;
c.减压蒸馏出二甲苯,得到松香基咪唑啉衍生物缓蚀剂中间体。
通过实验研究发现,在本发明所涉及到的化学反应中,只有二甲苯和水具有共沸效应,因此选择二甲苯作为携水剂,通过携水剂与水共沸,将水从反应容器中带出,从而推动脱水反应进行。
而且逐渐升温的反应较为温和,反应进行的彻底而充分,若低于设定温度反应不能彻底进行,导致缓蚀剂产率低,高于温度不仅耗能高,而且有效产物分解,因此低于或高于设定温度都会使缓蚀效果下降。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的合成方法中,曼尼希反应具体包括如下步骤:
a.在酸性催化环境下,加入松香基咪唑啉衍生物缓蚀剂中间体IMDO和亚磷酸于100-110℃加热回流1.5-2.5h;
b.用恒压漏斗缓慢滴加甲醛,回流反应1-2h;
c.反应结束后冷却至室温,加入一定量饱和食盐水进行洗涤分液,将分离出的粗产物加入一定量乙酸乙酯萃取分液,得到松香基咪唑啉衍生物缓蚀剂IMDOM。
在上述步骤a中,若加热回流温度低于100℃反应不能彻底进行,产率低,缓释效果下降;若加热温度高于110℃,会导致有效产物分解,并且耗能较多,同时也会导致缓释效果下降。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的合成方法中,脱氢松香酸、三乙烯四胺和二甲苯的摩尔比为1:1.1-1.3:0.8-1.1。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的合成方法中,脱氢松香酸、三乙烯四胺和二甲苯的摩尔比为1:1.1:0.8。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的合成方法中,松香基咪唑啉衍生物缓蚀剂中间体、亚磷酸、甲醛的摩尔比为1:1:1.5-3。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的合成方法中, 松香基咪唑啉衍生物缓蚀剂中间体、亚磷酸、甲醛的摩尔比为1:1:2。
经过实验研究,反应物按照上述比例参与反应合成的缓蚀剂有效成份产率高,缓蚀性性更佳,低于或高于上述比例缓蚀性能降低。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的合成方法中,所涉及到的反应物原料均为分析纯,分析纯级别的化学物质就可得到缓释性能较高的产物,若选择优级纯,产物性能并不会有明显的提高,为避免物料的浪费,本发明优先选择分析纯的原料。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的合成方法中,三乙烯四胺和二甲苯同时滴加或者依次滴加二甲苯、三乙烯四胺,由于二甲苯沸点较低,当温度升高后滴加会使二甲苯实际参与反应量降低,反应效果变差,所以二甲苯的加入顺序不能在三乙烯四胺之后。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的合成方法中,分离提取过程所用到的饱和食盐水和乙酸乙酯可进行回收循环使用。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的合成方法中,酸性催化环境为分析纯盐酸与去离子水体积比1:1配成的稀盐酸溶液。
本发明还提供了一种松香基咪唑啉衍生物缓蚀剂的应用,所述松香基咪唑啉衍生物缓蚀剂的使用浓度为1-4g/L。
优选的,在上述一种松香基咪唑啉衍生物缓蚀剂的应用中,所述松香基咪唑啉衍生物缓蚀剂的使用浓度为3g/L。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种松香基咪唑啉衍生物缓蚀剂中间体IMDO和松香基咪唑啉衍生物缓蚀剂IMDOM,二者均为阳极型缓蚀剂,缓蚀剂的添加降低了腐蚀电流密度,使腐蚀速率减小,缓蚀剂取代水分子及其他腐蚀物质吸附于金属表面成膜;单独使用本发明所述松香基咪唑啉衍生物缓蚀剂,当缓蚀剂添加量为3g/L时,IMDOM的缓蚀率为90.87%,IMDO缓蚀率为84.85%,点蚀程度大大降低;并且本发明制备方法简单,能耗低,更加适合工业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明松香基咪唑啉缓蚀剂中间体IMDO的红外谱图;
图2附图为本发明松香基咪唑啉缓蚀剂IMDOM的红外谱图;
图3附图为添加不同缓蚀剂的实验介质中试样的极化曲线;
图4附图为工作电极在实验介质中的电化学阻抗谱等效电路图;
图5附图为电极于60℃在不同含量缓蚀剂的溶液中的电化学阻抗谱;
图6附图为试样在含不同缓蚀剂的实验溶液中60℃浸泡4h后的平均腐蚀速率;
图7附图为试样在空白溶液中于60℃浸泡4h后的SEM形貌;
图8附图为试样在添加3g/L的IMDO的实验溶液中于60℃浸泡4h后的SEM形貌;
图9附图为试样在添加3g/L的IMDOM的实验溶液中于60℃浸泡4h后的SEM形貌;
图10附图为60℃分别加3g/L缓蚀剂IMDO和IMDOM前后的腐蚀介质中4h后试片表面吸附膜的能谱;
图11附图为10#钢在不同缓蚀剂的36%盐酸溶液中C·θ -1对C图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普 通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明公开了一种松香基咪唑啉衍生物缓蚀剂,缓蚀剂合成方法的具体实施例如下:
实施例1
(1)缓蚀剂中间体的制备
将脱氢松香酸,三乙烯四胺和二甲苯添加摩尔比为1:1.1:0.8,先将脱氢松香酸加入装有分水器的干燥的四口瓶中,升温至220-240℃,缓慢滴加三乙烯四胺和二甲苯作为携水剂,反应3-6h;然后继续升温至270-280℃,回流环化反应3-6h,并利用分水器分水;最后减压蒸馏出二甲苯,得到松香基咪唑啉衍生物缓蚀剂中间体IMDO;
(2)曼尼希反应
H 3PO 3、中间体IMDO和甲醛添加摩尔比为1:1:2在酸性催化环境下,先加中间体IMDO和亚磷酸于100-110℃加热回流1.5-2.5h,之后用恒压漏斗缓慢滴加甲醛,回流反应1-2h,反应结束后冷却至室温加入一定量饱和食盐水进行洗涤分液,将分离出的粗产物加入一定量乙酸乙酯进行萃取分液得到松香基咪唑啉衍生物缓蚀剂产物IMDOM。
实施例2
(1)缓蚀剂中间体的制备
将脱氢松香酸,三乙烯四胺和二甲苯添加摩尔比为1:1.3:1.1,先将脱氢松香酸加入装有分水器的干燥的四口瓶中,升温至220-240℃,缓慢滴加三乙烯四胺和二甲苯作为携水剂,反应3-6h;然后继续升温至270-280℃,回流环化反应3-6h,并利用分水器分水;最后减压蒸馏出二甲苯,得到松香基咪唑啉衍生物缓蚀剂中间体IMDO;
(2)曼尼希反应
H 3PO 3、中间体IMDO和甲醛添加摩尔比为1:1:2在酸性催化环境下,先加中间体IMDO和亚磷酸于100-110℃加热回流1.5-2.5h,之 后用恒压漏斗缓慢滴加甲醛,回流反应1-2h,反应结束后冷却至室温加入一定量饱和食盐水进行洗涤分液,将分离出的粗产物加入一定量乙酸乙酯进行萃取分液得到松香基咪唑啉衍生物缓蚀剂产物IMDOM。
实施例3
(1)缓蚀剂中间体的制备
将脱氢松香酸,三乙烯四胺和二甲苯添加摩尔比为1:1.2:0.9,先将脱氢松香酸加入装有分水器的干燥的四口瓶中,升温至220-240℃,缓慢滴加三乙烯四胺和二甲苯作为携水剂,反应3-6h;然后继续升温至270-280℃,回流环化反应3-6h,并利用分水器分水;最后减压蒸馏出二甲苯,得到松香基咪唑啉衍生物缓蚀剂中间体IMDO;
(2)曼尼希反应
H 3PO 3、中间体IMDO和甲醛添加摩尔比为1:1:2在酸性催化环境下,先加中间体IMDO和亚磷酸于100-110℃加热回流1.5-2.5h,之后用恒压漏斗缓慢滴加甲醛,回流反应1-2h,反应结束后冷却至室温加入一定量饱和食盐水进行洗涤分液,将分离出的粗产物加入一定量乙酸乙酯进行萃取分液得到松香基咪唑啉衍生物缓蚀剂产物IMDOM。
实施例4
(1)缓蚀剂中间体的制备
将脱氢松香酸,三乙烯四胺和二甲苯添加摩尔比为1:1.1:0.8,先将脱氢松香酸加入装有分水器的干燥的四口瓶中,升温至220-240℃,缓慢滴加三乙烯四胺和二甲苯作为携水剂,反应3-6h;然后继续升温至270-280℃,回流环化反应3-6h,并利用分水器分水;最后减压蒸馏出二甲苯,得到松香基咪唑啉衍生物缓蚀剂中间体IMDO;
(2)曼尼希反应
H 3PO 3、中间体IMDO和甲醛添加摩尔比为1:1:1.5在酸性催化环境下,先加中间体IMDO和亚磷酸于100-110℃加热回流1.5-2.5h, 之后用恒压漏斗缓慢滴加甲醛,回流反应1-2h,反应结束后冷却至室温加入一定量饱和食盐水进行洗涤分液,将分离出的粗产物加入一定量乙酸乙酯进行萃取分液得到松香基咪唑啉衍生物缓蚀剂产物IMDOM。
实施例5
(1)缓蚀剂中间体的制备
将脱氢松香酸,三乙烯四胺和二甲苯添加摩尔比为1:1.1:0.8,先将脱氢松香酸加入装有分水器的干燥的四口瓶中,升温至220-240℃,缓慢滴加三乙烯四胺和二甲苯作为携水剂,反应3-6h;然后继续升温至270-280℃,回流环化反应3-6h,并利用分水器分水;最后减压蒸馏出二甲苯,得到松香基咪唑啉衍生物缓蚀剂中间体IMDO;
(2)曼尼希反应
H 3PO 3、中间体IMDO和甲醛添加摩尔比为1:1:3在酸性催化环境下,先加中间体IMDO和亚磷酸于100-110℃加热回流1.5-2.5h,之后用恒压漏斗缓慢滴加甲醛,回流反应1-2h,反应结束后冷却至室温加入一定量饱和食盐水进行洗涤分液,将分离出的粗产物加入一定量乙酸乙酯进行萃取分液得到松香基咪唑啉衍生物缓蚀剂产物IMDOM。
其中,形成磷酸酯基团过程中电子运动情况解释图如下:
Figure PCTCN2019080276-appb-000004
本发明缓蚀剂的作用机理如下:
缓蚀剂结构中具亲水疏油的极性官能团和亲油疏水的非极性官能团,或者结构中存在不饱和键和。在腐蚀介质中,极性基团定向吸附在金属表面,取代原有的腐蚀性粒子,从而起到防腐蚀的效果;而吸附能和覆盖度是衡量缓蚀性能的主要两方面。由于缓蚀剂分子的亲水性基团和金属表面成键而使得缓蚀剂牢固吸附,因此改变了金属表面性质及电荷分布,由于吸附膜的保护作用,提高了腐蚀反应活化能, 使金属表面活性降低能量趋于稳定,从腐蚀反应的Gibbs自由能的增加情况就可证明金属的腐蚀速率下降;疏水性基团则排列于腐蚀材料外侧,在金属与腐蚀介质之间形成憎水性保护膜,避免了腐蚀介质同材料的直接接触,进而实现缓蚀的目的。
缓蚀剂分子中具有未共用的孤对电子的电负性高的元素的极性基团时,同具有未占据的空轨道的金属原子形成配位键或共价键,通过聚合(缩聚)、鳌合等作用成膜,降低了金属表面活性。脱氢松香酸中含有苯环π键,使金属表面电荷状态发生改变,由于苯环或不饱和键上的电子进行的吸附作用也属于供电子型,而吸附能和覆盖度是衡量缓蚀性能的主要两方面。苯环上的的电子进行的吸附作用也属于供电子型单层的吸附,吸附力强,吸附热高,吸附不可逆性,改变金属表面电位,并存在吸附选择性。一方面苯环带负电与正电性的金属表面发生吸附,另一方面咪唑啉缓蚀剂通过静电引力的作用使带正电的咪唑啉环和介质中带负电的腐蚀离子在金属表面相吸引,最终缓蚀剂吸附到钢材上。实验发现咪唑啉衍生物缓蚀剂的添加使金属表面的活化能整体降低,这也间接证明了咪唑啉衍生物缓蚀剂在金属表面发生了化学吸附。
较强的极性基团,可以牢固吸附,缓蚀效果就越好,因为这类化合物的极性基团的极性大,吸附能越大,在油/金属界面上吸附得越牢靠,但极性过强时,油溶性就会变差,在油性腐蚀介质中溶解性降低,所以选择三乙烯四胺使得合成的缓蚀剂又能保证极性链具有较高吸附强度,又使得缓蚀剂的油溶性适中,在腐蚀介质中分散性较高。
以下是对本发明实施例中松香基咪唑啉衍生物缓蚀剂中间体IMDO及松香基咪唑啉衍生物缓蚀剂IMDOM的缓释性能表征及分析评价。
1、红外光谱
实施例1-4制备的IMDO和IMDOM的红外谱图见图1和图2,由图1可看出,1636.26cm -1处为IMDO的C=N的特征伸缩振动吸收峰,此为咪唑啉环的特有结构,咪唑啉环上C-N的伸缩振动峰出现在1226.33cm -1处,N-H键的伸缩振动吸收峰出现于3355.12cm -1, 1461.29cm -1是-CH 2-的面内变角吸收峰,支链中-NH-的伸缩振动峰处在1524.02cm -1,说明IMDO已合成;
图2中C=N的伸缩振动吸收峰位置处在1610.21cm -1,C-N的伸缩振动峰出现在1195.63cm -1,N-H键的伸缩振动吸收峰处在3375.30cm -1,-CH 2-的面内变角吸收峰处在1454.68cm -1,支链中-NH-的伸缩振动峰出现在1531.58cm -1,对于IMDOM化合物的特征官能团-PH 2O 3则是在900~1200cm -1这一范围波段内的峰,主要有P=O和P-OH这两部分构成,说明IMDO成功发生曼尼希反应。
2、电化学方法
2.1极化曲线法
通过图3和表1可看出,实施例1中随着介质中缓蚀剂的增加,腐蚀电流密度减小,缓蚀率增加,当缓蚀剂添加量达到3g/L时,缓蚀率达到最大,虽然阴极和阳极腐蚀电流均减小,极化过程均受到抑制,但腐蚀电位E corr正移,阳极极化率增大较明显,则说明对阳极反应有较强的抑制作用,因此缓蚀剂是抑制阳极为主的混合型缓蚀剂。而IMDOM的缓蚀作用较IMDO好,是由于IMDO具有更强的电荷效用,电荷分布不均,能量不稳定,所以它所形成的保护膜不如IMDOM形成的保护膜致密和吸附力强。
表1 极化曲线相关电化学参数
Figure PCTCN2019080276-appb-000005
表中:R p为极化电阻,Ω;β a为阳极塔菲尔曲线的斜率;β c为 阴极塔菲尔曲线的斜率;J corr为电流密度,mA.cm -2
具体的,当缓蚀剂添加量为3g/L时,本发明以上实施例所得到的IMDO和IMDOM的缓释率参见表2:
表2
  实施例1 实施例2 实施例3 实施例4 实施例5
IMDO 78.75% 70.43% 83.16% 80.40% 78.56%
IMDOM 90.95% 85.02% 88.25% 87.64% 86.15%
2.2电化学阻抗谱
通过电化学交流阻抗技术对膜层的耐蚀性进行评价,分析获得膜层与金属表面的电化学行为。膜层信息通常集中于高频区容抗弧中反映,主要表达膜的屏蔽性能与介电性能这两方面;而介质与金属的界面信息则是体现在低频区容抗弧的变化中,对金属电化学腐蚀的电荷转移情况。图4为等效电路图,其中R f为吸附电阻,R ct为电荷转移电阻,R S为溶液电阻,C f为膜电容,C dl为双电层电容,图5为电化学阻抗谱图,表3为实施例1的拟合参数。由于弥散效应,双电层电容并不等效于理想电容,所以当拟合阻抗值时,用常相位角原件(CPE)替代电容,使得拟合更准确。
由图5和表3可看出,添加缓蚀剂后高频区的膜吸附电阻R f增加,膜电容C f减小,证明金属表面与腐蚀介质的界面层的原来吸附的水分子,被缓蚀剂分子取代并在金属表面发生吸附,因此产生了屏蔽效应,达到保护效果。而低频区容抗弧半径增大,电荷转移电阻值R ct的增加,C dl的减小,这些都证明了缓蚀效率的提高,且当缓蚀剂添加量达到3g/L时,缓蚀率达到极大值,说明缓蚀剂分子极性基团吸附于金属,非极性集团伸向腐蚀介质在金属表面形成更加致密的缓蚀膜层覆盖在金属表面,阻隔了与腐蚀介质的电荷转移和物质交换,当继续添加缓蚀剂时,缓蚀剂在金属表面发生脱附,缓蚀率下降。
表3 拟合所得各参数值
Figure PCTCN2019080276-appb-000006
Figure PCTCN2019080276-appb-000007
具体的,当缓蚀剂添加量为3g/L时,本发明以上实施例1-4所得到的IMDO和IMDOM的参数IE值参见表4:
表4
  实施例1 实施例2 实施例3 实施例4 实施例5
IMDO 74.85% 82.41% 80.13% 76.26% 78.48%
IMDOM 96.89% 88.49% 92.64% 92.04% 87.32%
3、动态失重法
在图6中,在60℃,500转/分流速下,未加入缓蚀剂的腐蚀介质中,试片的平均腐蚀速率可高达19.26g·(m 2·h) -1,且在整个动态浸泡过程中,试片表面被腐蚀介质严重腐蚀,并不断有大量气泡产生;当加入缓蚀剂时,试样表面气泡的产生速率显著下降,当缓蚀剂添加量为3g/L时,试片在IMDO缓蚀剂中的平均腐蚀速率降至1.96g·(m 2·h) -1,其缓蚀率已达到84.85%;试片在IMDOM缓蚀剂中的平均腐蚀速率降至1.76g·(m 2·h) -1,其缓蚀率已达到90.87%,缓蚀剂最适宜的加入量为3g/L。这与电化学测试结果的变化趋势一致。
具体的,当缓蚀剂添加量为3g/L时,本发明以上实施例1-4所得到的IMDO和IMDOM的平均缓释速率g·(m 2·h) -1和缓释率%参见表5:
表5
Figure PCTCN2019080276-appb-000008
4、表面形貌的观察
利用扫描电子显微镜(SEM)进行动态失重实验后实施例1-4的试片表面形貌分析。
未经预膜处理的动态失重实验的试片腐蚀形貌图见图7-9,从中可看出,由于试片实验前用砂纸打磨有划痕,所以可以看到添加缓蚀剂的实验试片有明显刮痕,在空白组(图Black)未添加缓蚀剂的实验组试片未能发现明显刮痕,只有凹凸不平的腐蚀表面,试样表面存在大量较为严重的均匀腐蚀,点蚀现象也较明显,说明腐蚀严重;而添加缓蚀剂后,整体腐蚀情况得到改善,仅出现一些酥松孔状的腐蚀结构。相比于IMDO,IMDOM对腐蚀的控制效果更为突出,点蚀结构减少程度较大,试样表面更为平整,腐蚀得到了有效控制。这说明所制备的缓蚀剂对10#碳钢有明显的缓蚀作用,并且IMDOM的缓蚀效果好于IMDO。
5、表面能谱分析
由图10可知,相比于空白实验组,添加缓蚀剂后Fe、O和P的比例大大增加,而缓蚀剂中含O、P这表明缓蚀剂与金属表面相结合形成抗腐蚀保护膜对金属基体进行保护,这也证明了缓蚀剂在金属表面大量发生化学吸附,而未加缓蚀剂的空白组中表面有更多的腐蚀氯化物,因此缓蚀剂对金属产生了有效的保护。
6、吸附热力学
有机缓蚀剂可以产生化学吸附和物理吸附这两种吸附模式,并受到物质的电性、温度和腐蚀介质多因素的影响。为探究缓蚀剂的吸附规律,建立出等温吸附方程来模拟吸附结果。针对这一实验中的缓蚀剂吸附模式可以首先假设其吸附规律符合Langmiuir吸附等温式,则应有:
Figure PCTCN2019080276-appb-000009
式中:C为缓蚀剂浓度;θ为缓蚀剂表面覆盖度;K为吸附平衡常数。
表面覆盖度θ可由上式得:
θ=(R ct-R ct 0)/R ct
通过上式以C.θ -1对C作图,结果见图11,由图11可得,C·θ -1与C线性相关,相关系数γ趋近于1,这说明该缓蚀剂在10#碳钢表面的吸附规律符合Langmiuir等温吸附方程,经计算知ΔG 0为负值,说明缓蚀剂在金属表面进行自发吸附,属于化学吸附过程。
综上所述,本发明利用脱氢松香酸与三乙烯四胺合成了中间体IMDO,再经曼尼希反应合成了IMDOM;缓蚀剂最适宜添加量为3g/L,对10#碳钢在36%盐酸介质中于60℃动态下具有较好的缓蚀效果;添加缓蚀剂的金属表面发现缓蚀剂含有的特征元素,说明缓蚀剂致密的附着于金属表面,具有较强的吸附作用,有效屏蔽液相腐蚀介质,降低金属表面与腐蚀介质之间的物质传递和电荷交换,降低腐蚀反应速率;且它们均属于阳极型缓蚀剂;吸附遵循Langmiuir等温吸附方程式,在金属表面发生化学吸附。
需要进一步说明的是,咪唑啉衍生物由具有负电性的O,S,N等为中心的极性官能团,和以C,H为中心的非极性官能团组成的,一方面,通过改变金属表面性质和电荷分布,使金属表面能量趋于稳定,增大腐蚀反应活化能,以降低腐蚀速率;另一方面,非极性官能团会排列在金属表面,形成疏水性动态吸附层,从而避免与腐蚀介质的电荷传递,使腐蚀受到抑制。
多数咪唑啉衍生物在金属表面主要发生化学吸附,当缓蚀剂的分子接近金属表面的时候,咪唑啉环上大π键上的电子就会进入Fe的空d轨道,反n轨道(π*)又接受Fe的d轨道上的电子形成反馈键,因此形成了多中心的化学吸附。通过研究具有双亲特性的IMDOM存在两种吸附作用,一方面是以范德华力为主的物理吸附作用;另一个方面,由于晶格缺陷的影响,使铁原子的外层轨道处于较强的空余力场下,易于接受N,S原子提供的孤对电子,形成共价配位键,这类则是多吸附中心的化学吸附,咪唑啉的五元杂环含有两个N原子可以与被侵蚀表面的活性位点的三处结合成键。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

  1. 一种松香基咪唑啉衍生物缓蚀剂,其特征在于,所述松香基咪唑啉衍生物缓蚀剂的结构式如下:
    Figure PCTCN2019080276-appb-100001
  2. 一种根据权利要求1所述的松香基咪唑啉衍生物缓蚀剂的合成方法,其特征在于,包括如下步骤:
    (1)缓蚀剂中间体的制备:脱氢松香酸、三乙烯四胺和二甲苯在升温条件下反应,反应完全后进行减压蒸馏操作,得到松香基咪唑啉衍生物缓蚀剂中间体,反应式如下:
    Figure PCTCN2019080276-appb-100002
    (2)曼尼希反应:松香基咪唑啉衍生物缓蚀剂中间体、亚磷酸和甲醛在酸性催化环境下回流反应,反应结束后萃取分液得到松香基咪唑啉衍生物缓蚀剂,反应式如下:
    Figure PCTCN2019080276-appb-100003
  3. 根据权利要求2所述的松香基咪唑啉衍生物缓蚀剂的合成方法,其特征在于,缓蚀剂中间体的制备具体包括如下步骤:
    a.将脱氢松香酸加入装有分水器的干燥四口瓶中,升温至220-240℃,用恒压漏斗缓慢滴加三乙烯四胺和二甲苯,反应3-6h;
    b.继续升温至270-280℃,回流环化反应3-6h,并利用分水器分水;
    c.减压蒸馏出二甲苯,得到松香基咪唑啉衍生物缓蚀剂中间体。
  4. 根据权利要求2或3所述的松香基咪唑啉衍生物缓蚀剂的合成方法,其特征在于,脱氢松香酸、三乙烯四胺和二甲苯的摩尔比为1:1.1-1.3:0.8-1.1。
  5. 根据权利要求3所述的松香基咪唑啉衍生物缓蚀剂的合成方法,其特征在于,三乙烯四胺和二甲苯同时滴加,或者按照二甲苯、三乙烯四胺的顺序依次滴加。
  6. 根据权利要求2所述的松香基咪唑啉衍生物缓蚀剂的合成方法,其特征在于,曼尼希反应具体包括如下步骤:
    a.在酸性催化环境下,加入松香基咪唑啉衍生物缓蚀剂中间体和亚磷酸于100-110℃加热回流1.5-2.5h;
    b.用恒压漏斗缓慢滴加甲醛,回流反应1-2h;
    c.反应结束后冷却至室温,加入一定量饱和食盐水进行洗涤分液,将分离出的粗产物加入一定量乙酸乙酯萃取分液,得到松香基咪唑啉衍生物缓蚀剂。
  7. 根据权利要求2或6所述的松香基咪唑啉衍生物缓蚀剂的合成方法,其特征在于,松香基咪唑啉衍生物缓蚀剂中间体、亚磷酸、 甲醛的摩尔比为1:1:1.5-3。
  8. 一种根据权利要求1-7任一项所述的松香基咪唑啉衍生物缓蚀剂的应用,其特征在于,所述松香基咪唑啉衍生物缓蚀剂的使用浓度为1-4g/L。
  9. 根据权利要求8所述的松香基咪唑啉衍生物缓蚀剂的应用,其特征在于,所述松香基咪唑啉衍生物缓蚀剂的使用浓度为3g/L。
PCT/CN2019/080276 2018-07-30 2019-03-29 一种松香基咪唑啉衍生物缓蚀剂的合成方法及其应用 WO2020024601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810854353.6 2018-07-30
CN201810854353.6A CN108822148B (zh) 2018-07-30 2018-07-30 一种松香基咪唑啉衍生物缓蚀剂的合成方法及其应用

Publications (1)

Publication Number Publication Date
WO2020024601A1 true WO2020024601A1 (zh) 2020-02-06

Family

ID=64152343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/080276 WO2020024601A1 (zh) 2018-07-30 2019-03-29 一种松香基咪唑啉衍生物缓蚀剂的合成方法及其应用

Country Status (2)

Country Link
CN (1) CN108822148B (zh)
WO (1) WO2020024601A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549921A (zh) * 2021-06-24 2021-10-26 武汉钢铁有限公司 防止热轧酸洗钢表面发黑的缓蚀剂及其制备方法
CN114989903A (zh) * 2022-06-30 2022-09-02 福建省佑达环保材料有限公司 一种用于led芯片固体蜡清洗的组合物

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110344064A (zh) * 2019-08-27 2019-10-18 山东益丰生化环保股份有限公司 一种中和缓蚀剂
CN111171059B (zh) * 2020-02-09 2022-06-24 中国林业科学研究院林产化学工业研究所 一种脱氢枞酸及其衍生物基铕离子荧光配合物及其制备方法
CN111334273B (zh) * 2020-02-28 2022-07-05 中国石油天然气股份有限公司 一种火驱用缓蚀剂及其制备方法与应用
CN114890969B (zh) * 2022-06-07 2024-01-30 中原工学院 一种呋喃基羧酸盐化合物及其制备方法和应用
CN115449359B (zh) * 2022-09-06 2024-05-10 成都西油华巍科技有限公司 一种咪唑啉衍生物缓蚀剂及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660744A (zh) * 2012-04-20 2012-09-12 唐山冀油瑞丰化工有限公司 油田采出水处理用缓蚀剂及其制备方法
WO2017048204A2 (en) * 2015-09-18 2017-03-23 Turkiye Petrol Rafinerileri A. S. Tupras Method for synthesizing a corrosion inhibitor
CN108822418A (zh) * 2018-07-03 2018-11-16 安徽菲扬新材料有限公司 一种建筑门窗用密封胶条

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629104A (en) * 1967-06-29 1971-12-21 Texaco Inc Water soluble corrosion inhibitors for well fluids
CN104513991A (zh) * 2014-12-16 2015-04-15 中国石油天然气股份有限公司 一种咪唑啉类缓蚀剂、合成方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660744A (zh) * 2012-04-20 2012-09-12 唐山冀油瑞丰化工有限公司 油田采出水处理用缓蚀剂及其制备方法
WO2017048204A2 (en) * 2015-09-18 2017-03-23 Turkiye Petrol Rafinerileri A. S. Tupras Method for synthesizing a corrosion inhibitor
CN108822418A (zh) * 2018-07-03 2018-11-16 安徽菲扬新材料有限公司 一种建筑门窗用密封胶条

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549921A (zh) * 2021-06-24 2021-10-26 武汉钢铁有限公司 防止热轧酸洗钢表面发黑的缓蚀剂及其制备方法
CN113549921B (zh) * 2021-06-24 2022-11-29 武汉钢铁有限公司 防止热轧酸洗钢表面发黑的缓蚀剂及其制备方法
CN114989903A (zh) * 2022-06-30 2022-09-02 福建省佑达环保材料有限公司 一种用于led芯片固体蜡清洗的组合物
CN114989903B (zh) * 2022-06-30 2023-09-05 福建省佑达环保材料有限公司 一种用于led芯片固体蜡清洗的组合物

Also Published As

Publication number Publication date
CN108822148B (zh) 2020-08-21
CN108822148A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
WO2020024601A1 (zh) 一种松香基咪唑啉衍生物缓蚀剂的合成方法及其应用
Chen et al. Corrosion inhibition performance of coconut leaf extract as a green corrosion inhibitor for X65 steel in hydrochloric acid solution
Xu et al. Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution
Elmsellem et al. Theoretical approach to the corrosion inhibition efficiency of some pyrimidine derivatives using DFT method of mild steel in HCl solution
Hmamou et al. The inhibited effect of phenolphthalein towards the corrosion of C38 steel in hydrochloric acid
Benhiba et al. Combined electronic/atomic level computational, surface (SEM/EDS), chemical and electrochemical studies of the mild steel surface by quinoxalines derivatives anti-corrosion properties in 1 mol⋅ L-1 HCl solution
Li et al. Adsorption and inhibition effect of vanillin on cold rolled steel in 3.0 M H3PO4
Hegazy et al. Inhibition effect of novel nonionic surfactants on the corrosion of carbon steel in acidic medium
Touir et al. Sodium gluconate as corrosion and scale inhibitor of ordinary steel in simulated cooling water
Ghazoui et al. Comparative study of pyridine and pyrimidine derivatives as corrosion inhibitors of C38 steel in molar HCl
Elkadi et al. The inhibition action of 3, 6-bis (2-methoxyphenyl)-1, 2-dihydro-1, 2, 4, 5-tetrazine on the corrosion of mild steel in acidic media
Bentiss et al. Inhibitor effects of triazole derivatives on corrosion of mild steel in acidic media
Zarrok et al. A combined experimental and theoretical study on the corrosion inhibition and adsorption behaviour of quinoxaline derivative during carbon steel corrosion in hydrochloric acid
Zarrok et al. Adsorption and inhibition effect of 3-methyl-1-propargylquinoxalin-2 (1H)-one on carbon steel corrosion in hydrochloric acid
Zarrouk et al. Comparative study of new quinoxaline derivatives towards corrosion of copper in nitric acid
Laamari et al. Corrosion inhibition of carbon steel in hydrochloric acid 0.5 M by hexa methylene diamine tetramethyl-phosphonic acid
Shukla et al. Triazines: Efficient corrosion inhibitors for mild steel in hydrochloric acid solution
Elmsellem et al. Inhibition of mild steel corrosion in hydrochloric acid solution by new synthesized Schiff Base
Tan et al. Electrochemical and computational studies on the corrosion inhibition of mild steel by 1-hexadecyl-3-methylimidazolium bromide in HCl medium
Lv et al. Experimental and theoretical investigation of indole as a corrosion inhibitor for mild steel in sulfuric acid solution
Verma et al. 2-Amino-4-(2, 4-dihydroxyphenyl) quinoline-3-carbonitrile as sustainable corrosion inhibitor for SAE 1006 steel in 1 M HCl: Electrochemical and surface investigation
El-Hajjaji et al. Comparative study of novel N-substituted quinoxaline derivatives towards mild steel corrosion in hydrochloric acid: part 1
Aoun et al. Electrochemical impedance spectroscopy investigations of steel corrosion in acid media in the presence of thiophene derivatives
Belfilali et al. Synthesis and Application of 1, 7–bis (2-Hydroxy Benzamido)-4-Azaheptane an Corrosion Inhibitor of Mild Steel in Molar Hydrochloric Acid Medium
Yang et al. Amphiphilic carbon dots as high-efficiency corrosion inhibitor for N80 steel in HCl solution: Performance and mechanism investigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844352

Country of ref document: EP

Kind code of ref document: A1