WO2020024190A1 - 电子装置及其控制方法、计算机可读存储介质 - Google Patents

电子装置及其控制方法、计算机可读存储介质 Download PDF

Info

Publication number
WO2020024190A1
WO2020024190A1 PCT/CN2018/098136 CN2018098136W WO2020024190A1 WO 2020024190 A1 WO2020024190 A1 WO 2020024190A1 CN 2018098136 W CN2018098136 W CN 2018098136W WO 2020024190 A1 WO2020024190 A1 WO 2020024190A1
Authority
WO
WIPO (PCT)
Prior art keywords
intensity
external light
light
absorption layer
electrochromic
Prior art date
Application number
PCT/CN2018/098136
Other languages
English (en)
French (fr)
Inventor
毕广洪
张琨
施文杰
Original Assignee
深圳市柔宇科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市柔宇科技有限公司 filed Critical 深圳市柔宇科技有限公司
Priority to CN201880094128.5A priority Critical patent/CN112639589A/zh
Priority to PCT/CN2018/098136 priority patent/WO2020024190A1/zh
Publication of WO2020024190A1 publication Critical patent/WO2020024190A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the invention belongs to the field of display technology, and particularly relates to an electronic device, a control method thereof, and a computer-readable storage medium.
  • Organic electroluminescence displays have very good application prospects in various media, games, multimedia teaching, aircraft, and engineering vehicle operation control. Because organic electroluminescence displays have a certain reflectance, under strong light conditions (such as outdoor sunlight), there is strong reflected light on the front screen surface of the display, which causes the display to become white, blurred, and the contrast ratio reduced, which seriously affects the display. Read and identify the displayed content normally. Moreover, when the user changes from a strong light environment to a low light environment, the organic electroluminescent display cannot automatically switch the light emission brightness according to the weak light, which increases the power consumption of the display and has low energy efficiency.
  • strong light conditions such as outdoor sunlight
  • the present invention provides an electronic device capable of adjusting light transmittance and light emission brightness according to changes in external light intensity. Specific technical solutions are as follows.
  • An electronic device includes a display panel, a photosensitive device, and a processor.
  • the display panel includes an organic electroluminescent device and an electrochromic absorption layer, and the electrochromic absorption layer is disposed on the organic electroluminescence.
  • the photosensitive device is configured to sense the intensity of external light irradiated onto the display panel, and the processor adjusts the light transmittance of the electrochromic absorption layer and the Luminous intensity of an electroluminescent device.
  • the electronic device further includes a memory, and the memory stores a corresponding relationship between different external light intensities, light transmittance of the electrochromic absorption layer, and luminous intensity of the organic electroluminescent device.
  • the processor compares the first light intensity with the external light intensity stored in the memory, and when the first light intensity is stored with the memory When the first external light intensity in the external light intensity matches, the processor reads the first light transmittance of the electrochromic absorption layer corresponding to the first external light intensity and the first light emission intensity of the organic electroluminescent device. And adjusting the light transmittance of the electrochromic absorption layer to a first light transmittance, and adjusting the light emitting intensity of the organic electroluminescent device to a first light emitting intensity.
  • the processor sets the light transmittance of the electrochromic absorption layer to The first light transmittance, and the light emission intensity of the organic electroluminescent device is adjusted to be the first light emission intensity.
  • the corresponding relationship between different external light intensities in the memory and the light transmittance of the electrochromic absorbing layer is recorded as a first corresponding relationship, and the different external light intensities in the memory and the luminous intensity of the organic electroluminescent device are recorded.
  • the corresponding relationship is recorded as the second corresponding relationship;
  • the method for acquiring the first correspondence relationship includes:
  • the organic electroluminescence device is set to a black state, the light sensing device obtains external light intensity, and the processor adjusts the light transmittance of the electrochromic absorption layer to a preset light transmittance according to the external light intensity.
  • the method for acquiring the second correspondence relationship includes:
  • the organic electroluminescence device is set to a white state, and the processor adjusts the organic electroluminescence device according to an external light intensity obtained when the organic electroluminescence device is set to a black state.
  • the luminous intensity reaches a predetermined luminous intensity, and different external light intensities and the preset luminous intensity corresponding to it form a second corresponding relationship.
  • the processor obtains a frequency at which the external light intensity changes according to a change in the external light intensity sensed by the photosensitive device, and when the frequency of the external light intensity change is greater than a preset frequency, the processor maintains the current power The light transmittance of the color-changing absorption layer and the light emission intensity of current organic electroluminescent devices.
  • the processor maintains the current light transmittance of the electrochromic absorption layer, and the processor adjusts the organic electric quantity according to the electric quantity of the electronic device.
  • the light emitting intensity of the light emitting device is less than a preset value.
  • the display panel further includes a touch electrode layer, the touch electrode layer is provided on one side of the organic electroluminescent device, and the electrochromic absorption layer is provided on the touch electrode layer away from the touch electrode layer.
  • the surface of the organic electroluminescent device is provided on one side of the organic electroluminescent device.
  • the display panel further includes a cover layer, and the cover layer is disposed on a surface of the electrochromic absorption layer away from the touch electrode layer.
  • the display panel further includes a touch electrode layer, and the touch electrode layer is disposed on a surface of the electrochromic absorption layer away from the organic electroluminescent device.
  • the display panel further includes a cover layer, and the cover layer is disposed on a surface of the touch electrode layer away from the electrochromic absorption layer.
  • the display panel includes a display area and a non-display area
  • the display area includes sub-display areas distributed in an array
  • the organic electroluminescence device is disposed in the sub-display area
  • the organic electroluminescence device is further include:
  • a light-emitting layer which is disposed on a surface of the anode
  • a cathode disposed on a surface of the light-emitting layer remote from the anode and located in the sub-display area, and the electrochromic absorption layer provided on a side of the cathode remote from the light-emitting layer;
  • the cathode is configured to reflect external light incident from the electrochromic absorbing layer, and the cathode is patterned so that the area of the cathode occupies a preset ratio of the display area so that The reflectivity of the external light incident on the display area on the cathode is less than a preset value, and there is a gap between the cathodes in adjacent sub-display areas.
  • the invention also provides a method for controlling an electronic device.
  • the electronic device includes a display panel.
  • the display panel includes an organic electroluminescence device and an electrochromic absorption layer.
  • the electrochromic absorption layer is disposed on the organic electroluminescence device.
  • One side of the electroluminescent device, the control method of the electronic device includes:
  • the first light intensity on the display panel is a first light intensity
  • the first light intensity is compared with a pre-stored external light intensity, and when the first light intensity is in
  • the first light transmittance of the electrochromic absorption layer and the first light emission intensity of the organic electroluminescent device corresponding to the first external light intensity are read, and the The light transmittance is a first light transmittance, and the light emission intensity of the organic electroluminescent device is adjusted to a first light emission intensity.
  • the difference between the external light intensity and the first light intensity on the display panel is within a preset range, adjusting the light transmittance of the electrochromic absorption layer to a first light transmittance,
  • the light emission intensity of the organic electroluminescent device is adjusted to be a first light emission intensity.
  • a corresponding relationship between the first external light intensity and the first light transmittance of the electrochromic absorbing layer corresponding to the first external light intensity is recorded as a first corresponding relationship, and the first external light intensity
  • the correspondence relationship between the first emission intensity of the organic electroluminescent device corresponding to the first external light intensity is recorded as a second correspondence relationship;
  • the method for acquiring the first correspondence relationship includes:
  • the organic electroluminescence device is set to a black state, and the light transmittance of the electrochromic absorbing layer is adjusted to a preset light transmittance according to the external light intensity, and different external light intensity and the corresponding light intensity
  • the preset light transmittance forms a first correspondence relationship
  • the method for acquiring the second correspondence relationship includes:
  • the organic electroluminescence device is set to a white state, and the luminous intensity of the organic electroluminescence device is adjusted to a preset luminous intensity according to the external light intensity when the organic electroluminescence device is set to a black state.
  • the external light intensity and the preset luminous intensity corresponding to it form a second correspondence relationship.
  • the current transmittance of the current electrochromic absorption layer and the current light emitting intensity of the organic electroluminescent device are maintained.
  • the electric quantity of the electronic device is smaller than a preset electric quantity
  • the current light transmittance of the electrochromic absorption layer is maintained, and the luminous intensity of the organic electroluminescent device is adjusted to be smaller than a preset according to the electric quantity of the electronic device. value.
  • the present invention also provides a computer-readable storage medium storing a program for controlling an electronic device, wherein when the program is executed, the control method according to any one of the above is performed. .
  • the beneficial effect of the present invention can adjust the light transmittance of the electrochromic absorption layer according to the change of the external light intensity, thereby realizing that the electronic device has a higher contrast under different external light intensity conditions, and can replace the current
  • Some polarizers can also adjust the luminous intensity of organic electroluminescent devices, make electronic devices more energy efficient, and prolong the service life of the devices.
  • FIG. 1 is a schematic structural diagram of an electronic device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another electronic device according to a first embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an electronic device according to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of an electronic device according to a third embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an electronic device according to a fourth embodiment of the present invention.
  • FIG. 6 is a circuit diagram of external light in an electronic device provided by the present invention.
  • FIG. 7 is a flowchart of a control method for an electronic device provided by the present invention.
  • an embodiment herein means that a particular feature, structure, or characteristic described in connection with the embodiment may be included in at least one embodiment of the invention.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are they independent or alternative embodiments that are mutually exclusive with other embodiments. It is explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • a first embodiment of the present invention provides an electronic device 10.
  • the electronic device 10 includes a display panel 100, a photosensitive device 200, and a processor 300.
  • the display panel 100 includes an organic electroluminescent device 110 and an electroluminescent device.
  • the color-change absorbing layer 120 is provided on one side of the organic electroluminescent device 110.
  • the electrochromic absorbing layer 120 can change the transmittance of the electrochromic absorbing layer 120 after being applied with different voltages. Specifically, the electrochromic absorbing layer 120 can change its color after applying different voltages, thereby changing its transmittance.
  • the processor 300 is electrically connected to the organic electroluminescent device 110 and the electrochromic absorption layer 120.
  • the photosensitive device 200 can receive the irradiation of external light, and sense the intensity of the external light irradiated on the display panel 100, and send the intensity information to the processor 300.
  • the processor 300 adjusts according to the intensity of the external light irradiated on the display panel 100
  • the light transmittance of the electrochromic absorption layer 120 and the light emission intensity of the organic electroluminescent device 110 For example, when the light-sensing device 200 detects that the external light intensity is low, that is, when the electronic device 10 is in a dark environment, the light-sensing device 200 sends the information of the detected external light intensity to the processor 300 at this time.
  • the processor 300 increases the light transmittance of the electrochromic absorption layer 120 according to the external light intensity at this time, so the organic electroluminescent device 110 only needs a lower brightness to achieve high contrast. It can be understood that after the light transmittance of the electrochromic absorbing layer 120 is adjusted, the light emitting intensity of the organic electroluminescent device 110 can also be adjusted according to the display effect requirements of the display panel 100. For example, when the light transmittance of the electrochromic absorption layer 120 is adjusted to be larger, since it has a larger light transmittance, the light emitted by the organic electroluminescence device 110 also has a larger value when it is emitted from the electrochromic absorption layer 120. In a weak light environment, only a lower luminous brightness is required, so the luminous intensity of the organic electroluminescent device 110 can be reduced, thereby saving energy, and at the same time extending the life of the organic electroluminescent device 110.
  • the electronic device 10 provided by the present invention can adjust the light transmittance of the electrochromic absorbing layer according to the change of the external light intensity, thereby replacing the existing polarizer, and reducing the light emission of the organic electroluminescent device when the light is weak. Strength, reduce the energy consumption of electronic devices, and extend the service life of devices.
  • the electronic device 10 further includes a memory 400.
  • the memory 400 stores different external light intensities, light transmittance of the electrochromic absorption layer 120, and light emission intensity of the organic electroluminescent device 110. Corresponding relationship.
  • the memory 400 is electrically connected to the processor 300.
  • the processor 300 compares the first light intensity with the external light intensity stored in the memory 400.
  • the processor 300 reads the first light transmittance of the electrochromic absorption layer 120 corresponding to the first external light intensity and the organic light-emitting device 110 The first light emission intensity, and the light transmittance of the electrochromic absorption layer 120 is adjusted to the first light transmittance, and the light emission intensity of the organic electroluminescent device 110 is adjusted to the first light emission intensity.
  • the processor 300 when the sensing device 200 senses that the difference between the external light intensity and the first light intensity on the display panel 100 is within a preset range, the processor 300 changes the transmission of the electrochromic absorption layer 120
  • the light transmittance is set to a first light transmittance
  • the light emission intensity of the adjusted organic electroluminescent device 110 is set to a first light emission intensity. That is, when the external light intensity on the display panel 100 changes within a certain range, the processor 300 does not change the electrochromic absorption layer 120 and the organic electroluminescent device 110, so that the external light intensity can be avoided in a smaller range.
  • the processor 300 keeps responding to work, resulting in performance degradation or excessive power consumption of the electronic device 10.
  • the corresponding relationship between different external light intensities in the memory 400 and the light transmittance of the electrochromic absorption layer 120 is recorded as a first corresponding relationship, and different external light intensities in the memory 400 and the organic electroluminescent device
  • the correspondence relationship of the light emission intensity of 110 is recorded as a second correspondence relationship.
  • the method for acquiring the first correspondence relationship includes the following steps.
  • the organic electroluminescence device 110 is set to a black state, and the light sensing device 200 obtains the external light intensity.
  • the processor 300 adjusts the light transmittance of the electrochromic absorption layer 120 to a preset light transmittance according to the external light intensity, so that the reflection brightness reaches a predetermined value. Set a value, different external light intensities and a preset light transmittance corresponding thereto form a first correspondence relationship.
  • the black state refers to a state when the organic electroluminescent device 110 is not lit.
  • the organic electroluminescence device 110 When the organic electroluminescence device 110 is in a black state, external light is reflected when the organic electroluminescence device 110 is in a black state compared to other brightness, resulting in the lowest display contrast.
  • the preset light transmittance is used as a reference value for non- When the organic electroluminescence device 110 is in the black state, display contrast can be improved.
  • the method for acquiring the second correspondence relationship includes the following steps.
  • the organic electroluminescence device 110 is set to a white state, and the processor 300 adjusts the light emission intensity of the organic electroluminescence device 110 to a preset according to the external light intensity obtained when the organic electroluminescence device 110 is set to a black state.
  • the light emission intensity, the different intensity of the external light and the corresponding preset light emission intensity form a second corresponding relationship.
  • the white state refers to a state when the organic electroluminescent device 110 is lighted.
  • the light transmittance of the electrochromic layer is dynamically adjusted according to the intensity of the external light, so that the reflection brightness reaches a preset value, and then the light transmittance of the electrochromic absorption layer 120 is adjusted.
  • the brightness of the organic electroluminescent device 110 is changed so that a desired contrast is achieved. In a weak light environment, only a low light emission brightness is required. In this case, by adjusting the light emission intensity of the organic electroluminescent device 110 to a preset light emission intensity, reducing the light emission brightness can further save energy and extend the life of the device.
  • the processor 300 obtains the frequency of the change of the external light intensity according to the change of the external light intensity sensed by the photosensitive device 200. When the frequency of the change of the external light intensity is greater than a preset frequency, the processor 300 maintains the current The 120 light transmittance of the electrochromic absorbing layer and the light emission intensity of the current organic electroluminescent device 110.
  • the processor 300 When the electronic device 10 is at a high frequency of external light intensity change, if the processor 300 responds to switching the light transmittance of the electrochromic absorption layer 120 and the light emission of the organic electroluminescent device 110 according to the constantly changing external light intensity Intensity will cause the processor 300 to be overloaded, and the performance of the processor 300, the electrochromic absorption layer 120, and the organic electroluminescence device 110 may be reduced, and power may be consumed too quickly. Therefore, in this embodiment, when the frequency of the change in the external light intensity is greater than the preset frequency, the processor 300 maintains the current state, which is beneficial to avoid the processor 300, the electrochromic absorption layer 120, and the organic electroluminescent device 110. Reduced performance and energy savings.
  • the processor 300 when the power of the electronic device 10 is less than the preset power, the processor 300 maintains the current light transmittance of the electrochromic absorption layer 120, and the processor 300 adjusts the organic electroluminescence according to the power of the electronic device 10.
  • the light emission intensity of the device 110 is less than a preset value.
  • the processor 300 when the power of the electronic device 10 is low, if the processor 300 still responds to switching the light transmittance of the electrochromic absorption layer 120 and the light emitting intensity of the organic electroluminescent device 110 according to the change of the external light intensity, the electronic device 10 will cause The power is exhausted in advance, but not enough to maintain the displayed power, resulting in shorter display time. Therefore, in this embodiment, when the power of the electronic device 10 is less than the preset power, the processor 300 performs the above operation, which can save the power of the electronic device, thereby extending the display time of the electronic device 10.
  • a second embodiment of the present invention provides an electronic device 10a.
  • the display panel 100 further includes a touch electrode layer 130, and the touch electrode layer 130 is disposed on the electrochromic absorption layer 120 away from the On the surface of the electroluminescent device 110.
  • the touch electrode layer 130 is a transparent electrode layer.
  • the display panel 100 further includes a cover layer 140 disposed on a surface of the electrochromic absorption layer 110 away from the touch electrode layer 130.
  • the cover layer 140 is transparent.
  • light emitted from the organic electroluminescent device 110 is emitted from the cover layer 140.
  • External light is incident from a surface of the cover layer 140 away from the touch electrode layer 130.
  • a third embodiment of the present invention provides an electronic device 10b.
  • the touch electrode layer 130 in the display panel 100 is disposed on one side of the organic electroluminescent device 110, and the electrochromism is changed.
  • the absorption layer 120 is disposed on a surface of the touch electrode layer 130 away from the organic electroluminescent device 110.
  • the display panel 100 further includes a cover layer 140 disposed on a surface of the touch electrode layer 130 away from the electrochromic absorption layer 120.
  • light emitted by the organic electroluminescent device 110 is emitted from the cover layer 140, and external light is incident from the surface of the cover layer 140 away from the electrochromic absorption layer 120.
  • the electrochromic absorption layer 120 is disposed on the touch electrode layer 130 to absorb light reflected from the surface of the touch electrode layer 130 away from the organic electroluminescent device 110.
  • the electrochromic absorption layer 120 includes a first base layer 121, a first transparent conductive layer 122, an electrochromic layer 123, an electrolyte layer 124, an ion storage layer 125, and a second transparent layer in order from top to bottom.
  • the cover layer 140 is provided on the surface of the first base layer 121 away from the first transparent conductive layer 122.
  • the second base layer 127 is located on the touch electrode layer 130 away from the organic electroluminescent device. 110 on the surface.
  • the first base layer 12 and the second base layer 127 are preferably glass or transparent base layers.
  • the material of the cover layer 140 is the same as the material of the first base layer 121 or the material of the touch electrode layer 130 is the same as the material of the second base layer 127 to reduce the reflectance between the interfaces. Increase the contrast of the display.
  • the electrochromic absorbing layer 120 works, a certain voltage is applied between the first transparent conductive layer 122 and the second transparent conductive layer 126, and the electrochromic material in the electrochromic layer 123 undergoes a redox reaction under the action of voltage. The color changes.
  • the first transparent conductive layer 122 or the second transparent conductive layer 126 together constitute two transparent electrodes on the upper and lower sides of the electrochromic absorbing layer 120.
  • transparent indium tin oxide, an aluminum-doped zinc oxide film, and the like are used.
  • the ion storage layer 125 plays a role of storing corresponding counter ions when the electrochromic material in the electrochromic layer 123 undergoes a redox reaction, and maintains the charge balance of the entire system.
  • the ion storage layer 125 can also be a kind of layer opposite to the previous layer.
  • the electrochromic material in the electrochromic layer 123 is an electrochromic material with the opposite discoloration performance, which can play a role of color superimposition or complementarity.
  • the electrolyte layer 124 is used to provide the electrochromic layer 123 with compensation ions to balance the charge balance of the electrochromic layer 123.
  • electrochromic absorbing layer 120 in the third embodiment is also applicable to other embodiments.
  • the display panel 100 includes a display area 150 and a non-display area 160, and the display area 150 includes an array of sub display areas 151.
  • the organic electroluminescent device 110 is disposed in the sub-display area 151.
  • the organic electroluminescent device 110 further includes an anode 111, a light emitting layer 112, and a cathode 113.
  • the light emitting layer 112 is disposed on the surface of the anode 111, and the cathode 113 is disposed on the light emitting layer 112.
  • the electrochromic absorption layer 120 is disposed on a surface of the cathode 113 that is far from the light-emitting layer 112 on a surface remote from the anode 111 and in the sub-display region 151.
  • the cathode 113 is used to reflect external light incident from the electrochromic absorption layer 120.
  • the cathode 113 is patterned so that the area of the cathode 113 occupies a preset ratio of the display area 150 to make the display area corresponding to the self-chromic absorption layer 120.
  • the reflectance of the external light incident on 150 on the cathode 113 is smaller than a preset value, and there is a gap 114 between the cathodes 113 in adjacent sub-display areas 151.
  • FIG. 6 a circuit diagram of external light in the electronic device 10c.
  • the cathodes 113 there is a gap 114 between the cathodes 113 in adjacent sub-display areas 151, so that part of the external light (denoted as L1) is incident on the surface of the cathode 113 and reflected, and part of the external light (L2) is incident into the gap 114 without being Reflection, thereby reducing the reflectance of external light on the cathode 113, for example, the external light incident on the electrochromic absorption layer 120 is L, and the light incident on the surface of the cathode 113 and reflected by the cathode 113 is L1, and the intensity ratio of L1 to L For reflectivity, the smaller the external light being reflected, the lower the reflectivity. Therefore, the pattern contrast of the cathode 113 and the light transmittance adjustment of the electrochromic absorption layer 120 can be combined to further improve the display contrast of the electronic device 10c under different external light intensity conditions.
  • the cathode 113 in each sub-display area 151 can be patterned to further reduce the preset ratio of the area of the cathode 113 to the display area 150, and further reduce the reflectivity of the cathode 113.
  • the present invention further provides an embodiment of a control method for an electronic device 10.
  • the electronic device 10 includes a display panel 100, and the display panel 100 includes an organic electroluminescent device 110 and an electrochromic absorption layer 120.
  • the absorption layer 120 is disposed on one side of the organic electroluminescent device 110.
  • the control method of the electronic device 10 includes steps S100 and S200. The detailed steps are described below.
  • step S100 the intensity of external light irradiated onto the display panel 100 is detected. It can be understood that a light sensing device can be used to sense external light.
  • step S200 the light transmittance of the electrochromic absorption layer 120 and the light emission intensity of the organic electroluminescence device 110 are adjusted according to the intensity of external light irradiated onto the display panel 100.
  • the control method of the electronic device 10 provided by the present invention adjusts the light transmittance of the electrochromic absorption layer 120 and the light emitting intensity of the organic electroluminescent device 110 according to the change of the external light intensity, thereby realizing the electronic device 10 under different external light intensity conditions. Maintain high contrast, and at the same time can save energy and extend the life of the device.
  • the first light intensity on the display panel 100 is the first light intensity
  • the first light intensity is compared with a pre-stored external light intensity.
  • the first light transmittance of the electrochromic absorption layer 120 corresponding to the first external light intensity and the first light emission intensity of the organic electroluminescent device 110 are read, and the electrochromic absorption layer is adjusted.
  • the light transmittance of 120 is the first light transmittance
  • the light emission intensity of the organic electroluminescent device 110 is adjusted to be the first light emission intensity.
  • adjusting the light transmittance of the electrochromic absorption layer 120 to be the first light transmittance adjusting the light emission intensity of the organic electroluminescent device 110 is adjusted to be the first light emission intensity. It is beneficial to prevent the electrochromic absorption layer 120 and the organic electroluminescence device 110 from continuously adjusting when the intensity of the external light changes in a small range, resulting in performance degradation.
  • a correspondence relationship between the first external light intensity and the first light transmittance of the electrochromic absorbing layer corresponding to the first external light intensity is recorded as a first correspondence relationship
  • the first external light intensity and the first A corresponding relationship between the first light-emitting intensity of the organic electroluminescent device corresponding to an external light intensity is recorded as a second corresponding relationship.
  • the method for acquiring the first correspondence relationship includes the following steps.
  • the organic electroluminescence device 110 is set to a black state, and the light transmittance of the electrochromic absorption layer 120 is adjusted to a preset light transmittance according to the external light intensity, so that the reflection brightness reaches a predetermined value.
  • the corresponding preset light transmittance forms a first correspondence relationship.
  • When the organic electroluminescence device 110 is in the black state external light is reflected when the organic electroluminescence device 110 is in the black state compared to other brightness, resulting in the lowest display contrast. Therefore, the corresponding preset transmission is set in the black state.
  • the light ratio can not only improve the display contrast in the black state, but also can improve the display contrast when the preset light transmittance is used as a reference value for the organic electroluminescent device 110 in the non-black state.
  • the method for acquiring the second correspondence relationship includes the following steps. Set the organic electroluminescence device 110 to a white state, and adjust the light emission intensity of the organic electroluminescence device 110 to a preset light intensity according to the external light intensity when the organic electroluminescence device 110 is set to a black state, and different external light intensities A second corresponding relationship is formed with the preset luminous intensity corresponding thereto.
  • the light transmittance of the electrochromic absorption layer 120 is dynamically adjusted according to the intensity of external light, so that the reflection brightness reaches a preset value, and then according to the transmittance of the electrochromic absorption layer 120
  • the light ratio changes the brightness of the organic electroluminescent device 110 so that a desired contrast ratio is achieved.
  • a weak light environment only a low light emission brightness is required.
  • reducing the light emission brightness can further save energy and extend the life of the device.
  • the current transmittance of the current electrochromic absorption layer 120 and the current light emission intensity of the organic electroluminescent device 110 are maintained.
  • the electrochromic absorption layer 120 and the organic electroluminescent device 110 maintain the current state, which is beneficial to avoid the transmittance of the electrochromic absorption layer 120 and the organic electroluminescent device.
  • the light intensity of 110 continuously changes, resulting in performance degradation and energy saving.
  • the electric power of the electronic device when the electric power of the electronic device is less than a preset electric power, the light transmittance of the current electrochromic absorption layer 120 is maintained, and the light emitting intensity of the organic electroluminescent device 110 is adjusted to be less than the preset according to the electric power of the electronic device value.
  • the power of the electronic device 10 is less than the preset power, the above method can be used to save the power of the electronic device, thereby extending the display time of the electronic device 10.
  • the present invention also provides an embodiment of a computer-readable storage medium.
  • the computer-readable storage medium stores a program for controlling the electronic device 10, and when the program is executed, the control method of any one of the foregoing embodiments is performed.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种电子装置(10),所述电子装置(10)包括显示面板(100)、感光器件(200)及处理器(300),所述显示面板(10)包括有机电致发光器件(110)和电致变色吸收层(120),所述电致变色吸收层(120)设于所述有机电致发光器件(110)的一侧。所述感光器件(200)用于感测照射到所述显示面板(100)上的外界光线强度,所述处理器(300)根据照射到所述显示面板(100)上的外界光线强度调整所述电致变色吸收层(120)的透光率以及有机电致发光器件(110)的发光强度。还提供一种电子装置(10)的控制方法及一种计算机可读存储介质。该电子装置(10)根据外界光线强度变化来调整电致变色吸收层(120)的透光率,进而实现其在不同外界光线强度情况下具有较高的对比度,还能够调整有机电致发光器件(110)的发光强度,使电子装置(10)更节能,延长器件使用寿命。

Description

电子装置及其控制方法、计算机可读存储介质 技术领域
本发明属于显示技术领域,具体涉及一种电子装置及其控制方法、计算机可读存储介质。
背景技术
有机电致发光显示器在各种传媒、游戏、多媒体教学、飞机、工程车辆操作控制等具有非常好的应用前景。由于有机电致发光显示器具有一定反射率,在强光环境条件下(如户外阳光环境下)显示器的前屏表面存在很强的反射光,导致显示发白、模糊、对比率下降,严重影响了正常显示内容的阅读、识别。而且当使用者从强光环境改变到弱光环境中后,有机电致发光显示器不能根据弱光自动切换发光亮度,增加显示器的耗电量,能效较低。
发明内容
有鉴于此,本发明提供一种能够根据外界光线强度变化来调整透光率和发光亮度的电子装置。具体技术方案如下。
一种电子装置,所述电子装置包括显示面板、感光器件及处理器,所述显示面板包括有机电致发光器件和电致变色吸收层,所述电致变色吸收层设于所述有机电致发光器件的一侧;
所述感光器件用于感测照射到所述显示面板上的外界光线强度,所述处理器根据照射到所述显示面板上的外界光线强度调整所述电致变色吸收层的透光率以及有机电致发光器件的发光强度。
优选的,所述电子装置还包括存储器,所述存储器存储有不同的外界光线 强度与电致变色吸收层的透光率及有机电致发光器件的发光强度的对应关系,当所述感光器件感测到显示面板上的外界光线强度为第一光线强度时,所述处理器将所述第一光线强度与存储器里的存储的外界光线强度进行比较,当所述第一光线强度与存储器里存储的外界光线强度中的第一外界光线强度匹配时,所述处理器读取与第一外界光线强度对应的电致变色吸收层的第一透光率及有机电致发光器件的第一发光强度,并调整电致变色吸收层的透光率为第一透光率,且调整所述有机电致发光器件的发光强度为第一发光强度。
优选的,当感测器件感测到显示面板上的外界光线强度与所述第一光线强度的差值在预设范围内时,所述处理器将电致变色吸收层的透光率设为第一透光率,且调整所述有机电致发光器件的发光强度设为第一发光强度。
优选的,所述存储器中不同的外界光线强度与电致变色吸收层的透光率的对应关系记为第一对应关系,所述存储器中不同的外界光线强度与有机电致发光器件的发光强度的对应关系记为第二对应关系;
所述第一对应关系的获取方法包括:
将所述有机电致发光器件设为黑态,所述感光器件获取外界光线强度,所述处理器根据外界光线强度调整所述电致变色吸收层的透光率至预设透光率,不同的所述外界光线强度和与其相对应的所述预设透光率形成第一对应关系;
所述第二对应关系的获取方法包括:
将所述有机电致发光器件设为白态,所述处理器根据所述感光器件在所述有机电致发光器件设为黑态时所获取的外界光线强度调整所述有机电致发光器件的发光强度至预设发光光强,不同的所述外界光线强度和与其相对应的所述预设发光光强形成第二对应关系。
优选的,所述处理器根据所述感光器件感测到的外界光线强度的变化得到外界光线强度变化的频率,当外界光线强度的变化频率大于预设频率的时候, 所述处理器保持当前电致变色吸收层的透光率以及当前有机电致发光器件的发光强度。
优选的,当所述电子装置的电量小于预设电量时,所述处理器保持当前电致变色吸收层的透光率,且所述处理器根据所述电子装置的电量调整所述有机电致发光器件的发光强度小于预设值。
优选的,所述显示面板还包括触控电极层,所述触控电极层设于所述有机电致发光器件的一侧,所述电致变色吸收层设于所述触控电极层远离所述有机电致发光器件的表面上。
优选的,所述显示面板还包括覆盖层,所述覆盖层设于所述电致变色吸收层远离所述触控电极层的表面上。
优选的,所述显示面板还包括触控电极层,所述触控电极层设于所述电致变色吸收层远离所述有机电致发光器件的表面上。
优选的,所述显示面板还包括覆盖层,所述覆盖层设于所述触控电极层远离所述电致变色吸收层的表面上。
优选的,所述显示面板包括显示区和非显示区,所述显示区包括阵列分布的子显示区,所述有机电致发光器件设于所述子显示区,所述有机电致发光器件还包括:
阳极;
发光层,所述发光层设置在所述阳极的表面上;
阴极,所述阴极设置在所述发光层远离所述阳极的表面上且位于所述子显示区内,所述电致变色吸收层设于所述阴极远离所述发光层的一侧;所述阴极用于将自所述电致变色吸收层入射的外界光线反射,所述阴极图案化而使所述阴极的面积占所述显示区预设比例以使自所述电致变色吸收层对应的显示区内入射的所述外界光线在所述阴极上的反射率小于预设值,相邻的子显示区内 的阴极之间存在间隙。
本发明还提供一种电子装置的控制方法,所述电子装置包括显示面板,所述显示面板包括有机电致发光器件和电致变色吸收层,所述电致变色吸收层设于所述有机电致发光器件的一侧,所述电子装置的控制方法包括:
检测照射到所述显示面板上的外界光线强度;
根据照射到所述显示面板上的外界光线强度调整所述电致变色吸收层的透光率以及有机电致发光器件的发光强度。
优选的,当所述显示面板上的外界光线强度为第一光线强度时,将所述第一光线强度与预存的外界光线强度进行比较,当所述第一光线强度与预存的外界光线强度中的第一外界光线强度匹配时,读取与第一外界光线强度对应的电致变色吸收层的第一透光率及有机电致发光器件的第一发光强度,并调整电致变色吸收层的透光率为第一透光率,且调整所述有机电致发光器件的发光强度为第一发光强度。
优选的,当所述显示面板上的外界光线强度与所述第一光线强度的差值在预设范围内时,调整所述电致变色吸收层的透光率设为第一透光率,且调整所述有机电致发光器件的发光强度设为第一发光强度。
优选的,所述第一外界光线强度与所述第一外界光线强度对应的电致变色吸收层的第一透光率之间的对应关系记为第一对应关系,所述第一外界光线强度与所述第一外界光线强度对应的有机电致发光器件的第一发光强度之间的对应关系记为第二对应关系;
所述第一对应关系的获取方法包括:
将所述有机电致发光器件设为黑态,根据外界光线强度调整所述电致变色吸收层的透光率至预设透光率,不同的所述外界光线强度和与其相对应的所述预设透光率形成第一对应关系;
所述第二对应关系的获取方法包括:
将所述有机电致发光器件设为白态,根据所述有机电致发光器件设为黑态时的外界光线强度调整所述有机电致发光器件的发光强度至预设发光光强,不同的所述外界光线强度和与其相对应的所述预设发光光强形成第二对应关系。
优选的,当外界光线强度的变化频率大于预设频率的时候,保持当前电致变色吸收层的透光率以及当前有机电致发光器件的发光强度。
优选的,当所述电子装置的电量小于预设电量时,保持当前电致变色吸收层的透光率,且根据所述电子装置的电量调整所述有机电致发光器件的发光强度小于预设值。
本发明还提供一种计算机可读存储介质,所述计算机可读存储介质存储了用于电子装置的控制的程序,其中,所述程序被执行的时候执行如上述任意一项所述的控制方法。
本发明的有益效果:本发明提供的电子装置能够根据外界光线强度变化来调整电致变色吸收层的透光率,进而实现电子装置在不同外界光线强度情况下具有较高的对比度,可取代现有的偏光片,还能够调整有机电致发光器件的发光强度,使电子装置更节能,延长器件使用寿命。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明第一实施例提供的一种电子装置的结构示意图。
图2为本发明第一实施例提供的另一种电子装置的结构示意图。
图3为本发明第二实施例提供的一种电子装置的结构示意图。
图4为本发明第三实施例提供的一种电子装置的结构示意图。
图5为本发明第四实施例提供的一种电子装置的结构示意图。
图6为本发明提供的外界光线在电子装置中的线路图。
图7为本发明提供的一种电子装置的控制方法的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及所述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
请参阅图1,本发明第一实施例的提供一种电子装置10,电子装置10包括显示面板100、感光器件200及处理器300,所述显示面板100包括有机电 致发光器件110和电致变色吸收层120,电致变色吸收层120设于有机电致发光器件110的一侧。其中电致变色吸收层120能够在被施加不同的电压后改变其透光率的大小,具体的,可以是施加不同的电压后其颜色发生变化,进而改变其透光率。可以理解的是,显示面板100、感光器件200与处理器300之间电连接,其中处理器300与有机电致发光器件110、电致变色吸收层120电连接。
感光器件200能够接收外界光的照射,并且感测照射到显示面板100上的外界光线强度,并且将该强度信息发送至处理器300,处理器300根据照射到显示面板100上的外界光线强度调整电致变色吸收层120的透光率以及有机电致发光器件110的发光强度。例如,当感光器件200感测到外界光线强度较低时,也就是电子装置10处于外界光线较暗的环境中时,感光器件200将感测到此时的外界光线强度信息发送至处理器300,处理器300根据此时的外界光线强度,将电致变色吸收层120的透光率变大,因而有机电致发光器件110只需要更低的亮度即可实现高对比度。可以理解的是,当电致变色吸收层120的透光率调整后,还可以根据显示面板100的显示效果需求,调整有机电致发光器件110的发光强度。例如,当电致变色吸收层120的透光率调整变大后,由于其具有较大的透光率,有机电致发光器件110发出的光同样从电致变色吸收层120发出时具有较大的透光率,在光线较弱的环境中,仅需要更低的发光亮度,所以可以降低有机电致发光器件110的发光强度,进而更加节能,同时使有机电致发光器件110寿命得以延长。
本发明提供的电子装置10能够根据外界光线强度变化来调整电致变色吸收层的透光率,进而可取代现有的偏光片,且在光线较弱时,能够降低有机电致发光器件的发光强度,降低电子装置能耗,延长器件使用寿命。
请参阅图2,在进一步的实施例中,电子装置10还包括存储器400,存储 器400存储有不同的外界光线强度与电致变色吸收层120的透光率及有机电致发光器件110的发光强度的对应关系。其中存储器400与处理器300电连接。当感光器件200感测到显示面板100上的外界光线强度为第一光线强度时,处理器300将第一光线强度与存储器400里的存储的外界光线强度进行比较,当第一光线强度与存储器400里存储的外界光线强度中的第一外界光线强度匹配时,处理器300读取与第一外界光线强度对应的电致变色吸收层120的第一透光率及有机电致发光器件110的第一发光强度,并调整电致变色吸收层120的透光率为第一透光率,且调整有机电致发光器件110的发光强度为第一发光强度。
在进一步的实施例中,当感测器件200感测到显示面板100上的外界光线强度与第一光线强度的差值在预设范围内时,处理器300将电致变色吸收层120的透光率设为第一透光率,且调整有机电致发光器件110的发光强度设为第一发光强度。也就是说,显示面板100上的外界光线强度在一定范围内变化时,处理器300对电致变色吸收层120和有机电致发光器件110不作改变,这样可以避免外界光线强度在较小范围内改变时处理器300不停响应工作而导致性能下降或者过度消耗电子装置10的电量。
在进一步的实施例中,存储器400中不同的外界光线强度与电致变色吸收层120的透光率的对应关系记为第一对应关系,存储器400中不同的外界光线强度与有机电致发光器件110的发光强度的对应关系记为第二对应关系。
其中,第一对应关系的获取方法包括如下步骤。将有机电致发光器件110设为黑态,感光器件200获取外界光线强度,处理器300根据外界光线强度调整电致变色吸收层120的透光率至预设透光率,使得反射亮度达到预设值,不同的外界光线强度和与其相对应的预设透光率形成第一对应关系。其中黑态是指有机电致发光器件110没有被点亮时的状态。有机电致发光器件110为黑态 时,外界光线在有机电致发光器件110黑态时反射相较于其他亮度时反射,致使显示对比度最低,将该预设透光率作为参考值适用于非黑态时的有机电致发光器件110时,能够提高显示对比度。
其中,第二对应关系的获取方法包括如下步骤。将有机电致发光器件110设为白态,处理器300根据感光器件200在有机电致发光器件110设为黑态时所获取的外界光线强度调整有机电致发光器件110的发光强度至预设发光光强,不同的外界光线强度和与其相对应的预设发光光强形成第二对应关系。其中白态是指有机电致发光器件110被点亮时的状态。当有机电致发光器件110为白态时,根据外界光线的强弱,动态调整电致变色层的透光率,使反射亮度达到预设值,再根据电致变色吸收层120的透光率改变有机电致发光器件110的亮度,使得达到理想的对比度。光线较弱的环境中,只需要较低的发光亮度,在此情况下通过调整有机电致发光器件110的发光强度至预设发光光强,降低发光亮度,可进一步节能,延长器件寿命。
在进一步的实施例中,处理器300根据感光器件200感测到的外界光线强度的变化得到外界光线强度变化的频率,当外界光线强度的变化频率大于预设频率的时候,处理器300保持当前电致变色吸收层的120透光率以及当前有机电致发光器件110的发光强度。当电子装置10处于外界光线强度的变化频率较大时,如果处理器300根据不断变换的外界光线强度不停地响应切换电致变色吸收层120的透光率及有机电致发光器件110的发光强度,会导致处理器300工作负荷过重,且容易导致处理器300、电致变色吸收层120及有机电致发光器件110的性能下降,还容易过快消耗掉电量。因此,在该实施例中,当外界光线强度的变化频率大于预设频率的时候,处理器300保持当前状态,有利于避免处理器300、电致变色吸收层120及有机电致发光器件110的性能下降,还能节能。
在进一步的实施例中,当电子装置10的电量小于预设电量时,处理器300保持当前电致变色吸收层120的透光率,且处理器300根据电子装置10的电量调整有机电致发光器件110的发光强度小于预设值。当电子装置10的电量较低时,如果处理器300仍然根据外界光线强度变化来响应切换电致变色吸收层120的透光率及有机电致发光器件110的发光强度,会导致电子装置10的电量被提前消耗殆尽,而没有足够维持本身显示的电量,导致显示时间变短。因此,在该实施例中,当电子装置10的电量小于预设电量时,处理器300进行上述操作,可以节约电子装置的电量,进而延长电子装置10的显示时间。
请参阅图3,本发明第二实施例提供一种电子装置10a,在电子装置10a中,显示面板100还包括触控电极层130,触控电极层130设于电致变色吸收层120远离有机电致发光器件110的表面上。优选的,在该实施例中,触控电极层130是透明电极层。
在进一步的实施例中,显示面板100还包括覆盖层140,覆盖层140设于电致变色吸收层110远离触控电极层130的表面上。优选的,覆盖层140是透明的。在该实施例中,有机电致发光器件110发出的光自覆盖层140出射。外界光线自覆盖层140远离触控电极层130的表面入射。
请参阅图4,本发明第三实施例的提供一种电子装置10b,在电子装置10b中,显示面板100中的触控电极层130设于有机电致发光器件110的一侧,电致变色吸收层120设于触控电极层130远离有机电致发光器件110的表面上。
在进一步的实施例中,显示面板100还包括覆盖层140,覆盖层140设于触控电极层130远离电致变色吸收层120的表面上。在该实施例中,有机电致发光器件110发出的光自覆盖层140射出,外界光线自覆盖层140远离电致变色吸收层120的表面入射。将电致变色吸收层120设于触控电极层130之上,可以吸收自触控电极层130远离有机电致发光器件110的表面上反射的光线。
在进一步的实施例中,电致变色吸收层120从上至下依次包括第一基底层121、第一透明导电层122、电致变色层123、电解质层124、离子存储层125、第二透明导电层126及第二基底层127,其中覆盖层140设于第一基底层121远离第一透明导电层122的表面上,第二基底层127设于触控电极层130远离有机电致发光器件110的表面上。其中第一基底层12及第二基底层127优选为玻璃或透明基底层。在该实施例中,优选的,覆盖层140的材料与第一基底层121的材料相同,或者触控电极层130的材料与第二基底层127的材料相同,以降低界面间的反射率,提高显示画面的对比度。
电致变色吸收层120工作时,在第一透明导电层122及第二透明导电层126之间加上一定的电压,电致变色层123中的电致变色材料在电压作用下发生氧化还原反应,颜色发生变化。第一透明导电层122或者第二透明导电层126一起构成电致变色吸收层120上下两个透明电极,通常采用的透明氧化铟锡,掺铝氧化锌膜等。离子存储层125在电致变色层123中的电致变色材料发生氧化还原反应时起到储存相应的反离子,保持整个体系电荷平衡的作用,离子存储层125也可以为一种与前面一层电致变色层123中的电致变色材料变色性能相反的电致变色材料,这样可以起到颜色叠加或互补的作用。电解质层124用于提供电致变色层123补偿离子,以平衡电致变色层123电荷平衡。
可以理解的是,第三实施例中的电致变色吸收层120同样适用于其他实施例。
请参阅图5,本发明第四实施例提供的一种电子装置10c,在电子装置10c中,显示面板100包括显示区150和非显示区160,显示区150包括阵列分布的子显示区151,有机电致发光器件110设于子显示区151内,有机电致发光器件110还包括阳极111、发光层112及阴极113,发光层112设置在阳极111的表面上,阴极113设置在发光层112远离阳极111的表面上且位于子显示区 151内,电致变色吸收层120设于阴极113远离发光层112的一侧。阴极113用于将自电致变色吸收层120入射的外界光线反射,所述阴极113图案化而使阴极113的面积占显示区150预设比例以使自电致变色吸收层120对应的显示区150内入射的外界光线在阴极113上的反射率小于预设值,相邻的子显示区151内的阴极113之间存在间隙114。
请参阅图6外界光线在电子装置10c中的线路图。相邻的子显示区151内的阴极113之间存在间隙114,使得部分外界光线(记为L1)入射到阴极113表面上后被反射,部分外界光线(L2)入射到间隙114内而不被反射,从而降低外界光线在阴极113上的反射率,例如入射到电致变色吸收层120的外界光线为L,入射到阴极113表面被阴极113反射的光线为L1,L1与L的强度比值即为反射率,被反射的外界光线越小,反射率越低。因此,可以通过阴极113图案化与电致变色吸收层120的透光率调节相结合,进一步提高电子装置10c在不同外界光线强度情况下的显示对比度。
可以理解的是,在每个子显示区151内的阴极113可进行图案化设置,进一步减少阴极113的面积占显示区150的预设比例,进一步降低阴极113的反射率。
请参阅图7,本发明还提供一种电子装置10的控制方法的实施例,电子装置10包括显示面板100,显示面板100包括有机电致发光器件110和电致变色吸收层120,电致变色吸收层120设于有机电致发光器件110的一侧,电子装置10的控制方法包括步骤S100及步骤S200。详细步骤如下所述。
步骤S100,检测照射到显示面板100上的外界光线强度。可以理解的是,可以采用感光器件感测外界光线。
步骤S200,根据照射到显示面板100上的外界光线强度调整电致变色吸收层120的透光率以及有机电致发光器件110的发光强度。
本发明提供的电子装置10的控制方法根据外界光线强度变化来调整电致变色吸收层120的透光率以及有机电致发光器件110的发光强度,进而实现电子装置10在不同外界光线强度情况下保持较高的对比度,且同时能够节能,延长器件使用寿命。
在进一步的实施例中,当显示面板100上的外界光线强度为第一光线强度时,将第一光线强度与预存的外界光线强度进行比较,当第一光线强度与预存的外界光线强度中的第一外界光线强度匹配时,读取与第一外界光线强度对应的电致变色吸收层120的第一透光率及有机电致发光器件110的第一发光强度,并调整电致变色吸收层120的透光率为第一透光率,且调整有机电致发光器件110的发光强度为第一发光强度。
在进一步的实施例中,当显示面板100上的外界光线强度与第一光线强度的差值在预设范围内时,调整电致变色吸收层120的透光率设为第一透光率,且调整有机电致发光器件110的发光强度设为第一发光强度。有利于外界光线强度在较小范围内改变时,避免电致变色吸收层120及有机电致发光器件110不断调整而导致性能下降。
在进一步的实施例中,第一外界光线强度与第一外界光线强度对应的电致变色吸收层的第一透光率之间的对应关系记为第一对应关系,第一外界光线强度与第一外界光线强度对应的有机电致发光器件的第一发光强度之间的对应关系记为第二对应关系。
其中,第一对应关系的获取方法包括如下步骤。将有机电致发光器件110设为黑态,根据外界光线强度调整电致变色吸收层120的透光率至预设透光率,使得反射亮度达到预设值,不同的外界光线强度和与其相对应的预设透光率形成第一对应关系。有机电致发光器件110为黑态时,外界光线在有机电致发光器件110黑态时反射相较于其他亮度时反射,致使显示对比度最低,因此在黑 态下设置得到相对应的预设透光率不仅可以提高在黑态时的显示对比度,将该预设透光率作为参考值适用于非黑态时的有机电致发光器件110时,能够提高显示对比度。
其中,第二对应关系的获取方法包括如下步骤。将有机电致发光器件110设为白态,根据有机电致发光器件110设为黑态时的外界光线强度调整有机电致发光器件110的发光强度至预设发光光强,不同的外界光线强度和与其相对应的预设发光光强形成第二对应关系。当有机电致发光器件110为白态时,根据外界光线的强弱,动态调整电致变色吸收层120的透光率,使反射亮度达到预设值,再根据电致变色吸收层120的透光率改变有机电致发光器件110的亮度,使得达到理想的对比度。光线较弱的环境中,只需要较低的发光亮度,在此情况下通过调整有机电致发光器件110的发光强度至预设发光光强,降低发光亮度,可进一步节能,延长器件寿命。
在进一步的实施例中,当外界光线强度的变化频率大于预设频率的时候,保持当前电致变色吸收层120的透光率以及当前有机电致发光器件110的发光强度。当外界光线强度的变化频率大于预设频率的时候,电致变色吸收层120及有机电致发光器件110保持当前状态,有利于避免电致变色吸收层120的透过率及有机电致发光器件110的发光光强持续变化而导致性能下降,还能节能。
在进一步的实施例中,当电子装置的电量小于预设电量时,保持当前电致变色吸收层120的透光率,且根据电子装置的电量调整有机电致发光器件110的发光强度小于预设值。当电子装置10的电量小于预设电量时,采用上述方法,可以节约电子装置的电量,进而延长电子装置10的显示时间。
本发明还提供一种计算机可读存储介质的实施例,计算机可读存储介质存储了用于电子装置10的控制的程序,其中,程序被执行的时候执行上述任意一项实施例的控制方法。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种电子装置,其特征在于,所述电子装置包括显示面板、感光器件及处理器,所述显示面板包括有机电致发光器件和电致变色吸收层,所述电致变色吸收层设于所述有机电致发光器件的一侧;
    所述感光器件用于感测照射到所述显示面板上的外界光线强度,所述处理器根据照射到所述显示面板上的外界光线强度调整所述电致变色吸收层的透光率以及有机电致发光器件的发光强度。
  2. 如权利要求1所述的电子装置,其特征在于,所述电子装置还包括存储器,所述存储器存储有不同的外界光线强度与电致变色吸收层的透光率及有机电致发光器件的发光强度的对应关系,当所述感光器件感测到显示面板上的外界光线强度为第一光线强度时,所述处理器将所述第一光线强度与存储器里的存储的外界光线强度进行比较,当所述第一光线强度与存储器里存储的外界光线强度中的第一外界光线强度匹配时,所述处理器读取与第一外界光线强度对应的电致变色吸收层的第一透光率及有机电致发光器件的第一发光强度,并调整电致变色吸收层的透光率为第一透光率,且调整所述有机电致发光器件的发光强度为第一发光强度。
  3. 如权利要求2所述的电子装置,其特征在于,当感测器件感测到显示面板上的外界光线强度与所述第一光线强度的差值在预设范围内时,所述处理器将电致变色吸收层的透光率设为第一透光率,且调整所述有机电致发光器件的发光强度设为第一发光强度。
  4. 如权利要求2所述的电子装置,其特征在于,所述存储器中不同的外 界光线强度与电致变色吸收层的透光率的对应关系记为第一对应关系,所述存储器中不同的外界光线强度与有机电致发光器件的发光强度的对应关系记为第二对应关系;
    所述第一对应关系的获取方法包括:
    将所述有机电致发光器件设为黑态,所述感光器件获取外界光线强度,所述处理器根据外界光线强度调整所述电致变色吸收层的透光率至预设透光率,不同的所述外界光线强度和与其相对应的所述预设透光率形成第一对应关系;
    所述第二对应关系的获取方法包括:
    将所述有机电致发光器件设为白态,所述处理器根据所述感光器件在所述有机电致发光器件设为黑态时所获取的外界光线强度调整所述有机电致发光器件的发光强度至预设发光光强,不同的所述外界光线强度和与其相对应的所述预设发光光强形成第二对应关系。
  5. 如权利要求1所述的电子装置,其特征在于,所述处理器根据所述感光器件感测到的外界光线强度的变化得到外界光线强度变化的频率,当外界光线强度的变化频率大于预设频率的时候,所述处理器保持当前电致变色吸收层的透光率以及当前有机电致发光器件的发光强度。
  6. 如权利要求1所述的电子装置,其特征在于,当所述电子装置的电量小于预设电量时,所述处理器保持当前电致变色吸收层的透光率,且所述处理器根据所述电子装置的电量调整所述有机电致发光器件的发光强度小于预设值。
  7. 如权利要求1至6任一项所述的电子装置,其特征在于,所述显示面 板还包括触控电极层,所述触控电极层设于所述有机电致发光器件的一侧,所述电致变色吸收层设于所述触控电极层远离所述有机电致发光器件的表面上。
  8. 如权利要求7所述的电子装置,其特征在于,所述显示面板还包括覆盖层,所述覆盖层设于所述电致变色吸收层远离所述触控电极层的表面上。
  9. 如权利要求1至6任一项所述的电子装置,其特征在于,所述显示面板还包括触控电极层,所述触控电极层设于所述电致变色吸收层远离所述有机电致发光器件的表面上。
  10. 如权利要求9所述的电子装置,其特征在于,所述显示面板还包括覆盖层,所述覆盖层设于所述触控电极层远离所述电致变色吸收层的表面上。
  11. 如权利要求1至6任一项所述的电子装置,其特征在于,所述显示面板包括显示区和非显示区,所述显示区包括阵列分布的子显示区,所述有机电致发光器件设于所述子显示区,所述有机电致发光器件还包括:
    阳极;
    发光层,所述发光层设置在所述阳极的表面上;
    阴极,所述阴极设置在所述发光层远离所述阳极的表面上且位于所述子显示区内,所述电致变色吸收层设于所述阴极远离所述发光层的一侧;所述阴极用于将自所述电致变色吸收层入射的外界光线反射,所述阴极图案化而使所述阴极的面积占所述显示区预设比例以使自所述电致变色吸收层对应的显示区内入射的所述外界光线在所述阴极上的反射率小于预设值,相邻的子显示区内的阴极之间存在间隙。
  12. 一种电子装置的控制方法,其特征在于,所述电子装置包括显示面板,所述显示面板包括有机电致发光器件和电致变色吸收层,所述电致变色吸收层设于所述有机电致发光器件的一侧,所述电子装置的控制方法包括:
    检测照射到所述显示面板上的外界光线强度;
    根据照射到所述显示面板上的外界光线强度调整所述电致变色吸收层的透光率以及有机电致发光器件的发光强度。
  13. 如权利要求12所述的电子装置的控制方法,其特征在于,当所述显示面板上的外界光线强度为第一光线强度时,将所述第一光线强度与预存的外界光线强度进行比较,当所述第一光线强度与预存的外界光线强度中的第一外界光线强度匹配时,读取与第一外界光线强度对应的电致变色吸收层的第一透光率及有机电致发光器件的第一发光强度,并调整电致变色吸收层的透光率为第一透光率,且调整所述有机电致发光器件的发光强度为第一发光强度。
  14. 如权利要求13所述的电子装置的控制方法,其特征在于,当所述显示面板上的外界光线强度与所述第一光线强度的差值在预设范围内时,调整所述电致变色吸收层的透光率设为第一透光率,且调整所述有机电致发光器件的发光强度设为第一发光强度。
  15. 如权利要求13所述的电子装置的控制方法,其特征在于,所述第一外界光线强度与所述第一外界光线强度对应的电致变色吸收层的第一透光率之间的对应关系记为第一对应关系,所述第一外界光线强度与所述第一外界光线强度对应的有机电致发光器件的第一发光强度之间的对应关系记为第二对 应关系;
    所述第一对应关系的获取方法包括:
    将所述有机电致发光器件设为黑态,根据外界光线强度调整所述电致变色吸收层的透光率至预设透光率,不同的所述外界光线强度和与其相对应的所述预设透光率形成第一对应关系;
    所述第二对应关系的获取方法包括:
    将所述有机电致发光器件设为白态,根据所述有机电致发光器件设为黑态时的外界光线强度调整所述有机电致发光器件的发光强度至预设发光光强,不同的所述外界光线强度和与其相对应的所述预设发光光强形成第二对应关系。
  16. 如权利要求13所述的电子装置的控制方法,其特征在于,当外界光线强度的变化频率大于预设频率的时候,保持当前电致变色吸收层的透光率以及当前有机电致发光器件的发光强度。
  17. 如权利要求13所述的电子装置的控制方法,其特征在于,当所述电子装置的电量小于预设电量时,保持当前电致变色吸收层的透光率,且根据所述电子装置的电量调整所述有机电致发光器件的发光强度小于预设值。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储了用于电子装置的控制的程序,其中,所述程序被执行的时候执行如权利要求12~17任意一项所述的控制方法。
PCT/CN2018/098136 2018-08-01 2018-08-01 电子装置及其控制方法、计算机可读存储介质 WO2020024190A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880094128.5A CN112639589A (zh) 2018-08-01 2018-08-01 电子装置及其控制方法、计算机可读存储介质
PCT/CN2018/098136 WO2020024190A1 (zh) 2018-08-01 2018-08-01 电子装置及其控制方法、计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/098136 WO2020024190A1 (zh) 2018-08-01 2018-08-01 电子装置及其控制方法、计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020024190A1 true WO2020024190A1 (zh) 2020-02-06

Family

ID=69231164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098136 WO2020024190A1 (zh) 2018-08-01 2018-08-01 电子装置及其控制方法、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN112639589A (zh)
WO (1) WO2020024190A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116364004A (zh) * 2023-03-27 2023-06-30 惠科股份有限公司 显示设备及其驱动方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115103132A (zh) * 2022-06-16 2022-09-23 Oppo广东移动通信有限公司 拍摄模组保护方法及装置、计算机可读介质和电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157081A (ja) * 2003-11-27 2005-06-16 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイ装置
CN1655024A (zh) * 2004-02-09 2005-08-17 株式会社日立显示器 液晶显示装置
CN102842266A (zh) * 2011-06-21 2012-12-26 索尼公司 显示器和电子单元
CN105353533A (zh) * 2014-08-20 2016-02-24 群创光电股份有限公司 显示面板及使用其的显示设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200827828A (en) * 2006-12-29 2008-07-01 Innolux Display Corp Liquid crystal display device
CN102270069B (zh) * 2010-06-03 2015-01-28 乐金显示有限公司 集成有触摸面板的显示设备
KR102568924B1 (ko) * 2016-06-14 2023-08-22 삼성디스플레이 주식회사 표시 장치 및 이를 포함하는 룸미러 모듈
CN207081916U (zh) * 2017-06-08 2018-03-09 深圳市澳柯瑞科技有限公司 一种户外显示装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157081A (ja) * 2003-11-27 2005-06-16 Fujitsu Hitachi Plasma Display Ltd プラズマディスプレイ装置
CN1655024A (zh) * 2004-02-09 2005-08-17 株式会社日立显示器 液晶显示装置
CN102842266A (zh) * 2011-06-21 2012-12-26 索尼公司 显示器和电子单元
CN105353533A (zh) * 2014-08-20 2016-02-24 群创光电股份有限公司 显示面板及使用其的显示设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116364004A (zh) * 2023-03-27 2023-06-30 惠科股份有限公司 显示设备及其驱动方法

Also Published As

Publication number Publication date
CN112639589A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
CN108717244B (zh) 显示装置及其控制方法、存储介质
US7289099B2 (en) Transflective liquid crystal display device and method of fabricating the same
US11086183B2 (en) Dimmer, manufacturing method thereof, backlight unit and display device
US20110175946A1 (en) Transflective liquid crystal display device and method of fabricating the same
CN109976030B (zh) 全反射显示屏及其控制方法、显示装置
CN112419879B (zh) 一种显示面板及显示装置
US8686984B2 (en) Device for placement in front of a display device
CN114267710A (zh) 显示面板、显示装置以及显示装置的控制方法
CN107402488A (zh) 电致变色元件的驱动方法及决定褪色电压的方法
WO2020024190A1 (zh) 电子装置及其控制方法、计算机可读存储介质
US11069757B2 (en) Organic light emitting diode display panel and method for making same
US20190235540A1 (en) Display device, electronic device and display control method for screen
US20050122053A1 (en) Organic electroluminescent display
CN108196808B (zh) 一种显示装置、电子设备以及屏幕显示控制方法
US20140118416A1 (en) Display having low power consumption
US20210165273A1 (en) Display device and driving method thereof
CN114283752A (zh) 一种光强自调节液晶显示屏
US9846343B2 (en) Display device and display control method
CN215815880U (zh) 显示面板及显示装置
CN104615397A (zh) 一种用于移动终端的低功耗的显示装置及其控制方法
EP3745246A1 (en) Display device, electronic apparatus and screen display control method
CN213401208U (zh) 一种可调节透明度的oled显示屏
CN105572949A (zh) 一种智能挡光玻璃
CN219832081U (zh) 一种一体色触控显示模组
CN221281689U (zh) 一种反射光源无痕显示器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928766

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928766

Country of ref document: EP

Kind code of ref document: A1