WO2020024167A1 - 一种物质检测数据库的数据添加方法、装置和检测设备 - Google Patents

一种物质检测数据库的数据添加方法、装置和检测设备 Download PDF

Info

Publication number
WO2020024167A1
WO2020024167A1 PCT/CN2018/098090 CN2018098090W WO2020024167A1 WO 2020024167 A1 WO2020024167 A1 WO 2020024167A1 CN 2018098090 W CN2018098090 W CN 2018098090W WO 2020024167 A1 WO2020024167 A1 WO 2020024167A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
spectral information
database
equation
component
Prior art date
Application number
PCT/CN2018/098090
Other languages
English (en)
French (fr)
Inventor
骆磊
牟涛涛
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Priority to CN201880001389.8A priority Critical patent/CN109073541B/zh
Priority to PCT/CN2018/098090 priority patent/WO2020024167A1/zh
Publication of WO2020024167A1 publication Critical patent/WO2020024167A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the embodiments of the present application relate to the technical field of substance detection, for example, to a method, a device, and a detection device for adding data to a substance detection database.
  • a Raman detection device can determine the composition of a substance by acquiring a Raman spectrum of the substance and comparing the spectrum with a known spectrum in a preset database.
  • the inventors found that there are at least the following problems in the related technology: in the method of detecting the composition of a substance by obtaining a substance spectrum, the establishment of a preset database is a key factor, but because of the millions of substances in nature Together with artificially synthesized substances, the amount of real substances is huge. It is a very time-consuming and laborious task to add such a large amount of pure substances and their corresponding spectra to the preset database.
  • An object of the embodiments of the present application is to provide a method, device, and detection device for adding data to a substance detection database, and to provide a method for expanding a database for substance detection, thereby saving manpower and material resources for expanding the substance detection database.
  • an embodiment of the present application provides a method for adding data to a substance detection database.
  • the method is applied to a detection device, and the method includes:
  • the substance is a mixed substance and the spectral information of at least one component in the substance is unknown, an equation about the spectral information of each component in the substance is obtained based on the substance;
  • the spectral information of a component whose spectral information is unknown is obtained through the equation, the spectral information and its corresponding component are added to a preset single substance database, and the preset single substance database stores at least one Single substance and spectral information of said single substance.
  • an embodiment of the present application further provides a data addition device for a substance detection database, where the device is applied to a detection device, and the device includes:
  • a substance acquisition module configured to acquire spectral information of a substance and a component and a proportion of the substance
  • An equation obtaining module for obtaining an equation about the spectral information of each component in the substance based on the substance if the substance is a mixed substance and the spectral information of at least one component in the substance is unknown;
  • a data adding module is configured to, if the spectral information of a component whose spectral information is unknown is obtained through the equation, add the spectral information and its corresponding component to a preset single substance database, the preset single substance
  • the database stores at least one single substance and the spectral information of the single substance.
  • an embodiment of the present application further provides a detection device, including:
  • At least one processor At least one processor
  • a memory connected in communication with the at least one processor; wherein,
  • the memory stores instructions executable by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the foregoing method.
  • the data adding method, device and detection device of the substance detection database provided in the embodiment of the present application obtain an equation about the spectral information of each component in the mixed substance based on the mixed substance, then obtain the spectral information of each component by solving the equation, and obtain The spectral information is added to the preset single substance database to expand the data of the preset single substance database.
  • the embodiment of the present application provides a new method for expanding a single substance database, which avoids the work of searching for a single substance and its spectral information, and saves manpower and material resources.
  • 1a is a schematic diagram of an application scenario of a data adding method and device of a substance detection database of the present application
  • FIG. 1b is a schematic diagram of an application scenario of the data adding method and device of the substance detection database of the present application
  • FIG. 3 is a flowchart of an embodiment of a method for adding data to a substance detection database of the present application
  • FIG. 4 is a flowchart of an embodiment of a method for adding data to a substance detection database of the present application
  • FIG. 5 is a schematic structural diagram of an embodiment of a data adding device of a substance detection database of the present application.
  • FIG. 6 is a schematic structural diagram of an embodiment of a data adding device of a substance detection database of the present application.
  • FIG. 7 is a schematic structural diagram of an embodiment of a data adding device of a substance detection database of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a detection device according to an embodiment of the present application.
  • the method and device for adding data of the substance detection database are applicable to the application scenarios shown in FIG. 1a and FIG. 1b.
  • the application scenario shown in FIG. 1a includes a substance to be detected 10, a detection terminal 21, and a detection device 20.
  • the detection terminal 21 is configured to obtain the spectral information of the substance 10 to be detected, and then transmit the spectral information of the substance 10 to be detected.
  • the detection device 20 is configured to identify a component based on the spectral information of the substance 10 to be detected.
  • the detection terminal 21 and the detection device 20 may communicate with each other through a network 30.
  • the network 30 may be, for example, a local area network of a home or a company, or a specific network.
  • the detection terminal 21 and the detection device 20 have at least one network interface, and establish a communication connection with the network 30.
  • the detection terminal 21 may be a Raman spectrometer, an infrared spectrometer, or the like capable of acquiring a substance spectrum.
  • the detection device 20 may be any suitable electronic device with computing and storage functions, including a cloud server or other server.
  • the detection device 20 may also integrate the functions of the detection terminal 21 into the detection device 20, and the detection device 20 separately completes obtaining the spectral information of the substance to be detected 10 from the substance 10 to be detected, and acquires the spectrum information through the spectrum The composition of the substance to be detected. In other application scenarios, it may further include more substances to be detected 10, a detection device 20, and a detection terminal 21.
  • the detection device 20 presets a preset single substance database (including multiple single substances and their corresponding spectral information). After acquiring the spectral information of the substance to be detected 10, the spectral information can be compared with the known information in the preset single substance database. The spectral information is compared to determine the component composition of the substance 10 to be detected. In order to improve the accuracy of detection, a large amount of single substance spectral information needs to be stored in the preset single substance database. Finding a single substance and obtaining its corresponding spectral information is very time-consuming and labor-intensive. And often many substances contain impurities, which are not really pure substances. Adding such impurities-containing substances to the preset database will also affect the accuracy of the recognition results.
  • a mixed substance refers to a substance composed of at least two kinds of single substances mixed together in a certain ratio.
  • the single substance contained in the mixed substance is called a component of the mixed substance, and the proportion of each single substance in the mixed substance is a single substance. proportion.
  • a mixed substance M is composed of 30% A and 70% B, then A and B are the components of the mixed substance, and 30% and 70% are the ratio of A and B, respectively.
  • the spectral information of the mixture and the spectral information of its components satisfy different equations.
  • the spectral information of the mixture and the spectral information of its components satisfy the following relationship (the following takes the mixture including single substance A and single substance B as an example):
  • X A and X B are the proportion of single substance A and single substance B in the mixed substance
  • E A and E B are the activity coefficients of single substance A and single substance B
  • Y An is the single substance A
  • Y Bn is the ordinate value corresponding to the abscissa n in the spectral information of the single substance B
  • Y Mn is the ordinate value corresponding to the abscissa n in the spectral information of the mixed substance M Coordinate value.
  • the activity coefficient represents the spectral intensity of each substance per unit time when the substance is irradiated with a fixed power and a fixed wavelength under exactly the same environmental conditions. If the name of the substance is known, the activity coefficient of the substance is determined. As a known mixed substance, X A and X B are also determined.
  • the spectral information is a set of data corresponding to the spectral curve.
  • the spectral information of each substance can take the same set of abscissa values, and the spectral information of each substance has different ordinate values corresponding to the same abscissa value.
  • the following is an example of the spectral information of a substance, where the first number of each group corresponds to the abscissa and the second number corresponds to the ordinate.
  • the spectral information of the mixed substance M is known, if the spectral information of one of the single substance A and the single substance B is known, the spectral information of the other single substance can be solved. If the spectral information of single substance A and single substance B is unknown, you can try to form a multivariate equation with other equations containing the spectral information of single substance A and single substance B to solve the spectral information of single substance in the equation.
  • the equations of the A spectral information and the single substance C spectral information form a ternary linear equations, and so on.
  • the theoretical spectral curve of the mixture of 49% n-propanol and 51% ethanol obtained by equation (1) agrees with the standard spectrum of the mixture on each abscissa.
  • the upper curve in FIG. 2 is a standard spectrum curve of the mixture
  • the lower curve is a spectrum curve obtained by theoretical fitting according to formula (1).
  • a preset mixed substance database may be set at the detection device 20 at the same time, and the preset mixed substance database stores the name, spectral information, components, and ratio of the mixed substance, and the components based on the mixed substance. And an equation (for example, the equation shown in equation (1)).
  • the detection device 20 may add the single substance and its spectral information to a preset single substance database. If the substance is a mixed substance, an equation can be established based on the composition, proportion, and spectral information of the mixture to solve the spectral information of the components in the mixed substance. When the equation has a solution, the single substance and its spectral information obtained by the solution are added to a preset single substance database.
  • the equation can also be added to a preset mixture substance database, and a multivariate equation can be formed with an existing equation in the preset mixture substance database.
  • a multivariate equation can be formed with an existing equation in the preset mixture substance database.
  • the activity coefficient of the substance may be stored in the local database of the detection device 20, and the activity coefficient of the substance may be obtained by querying the local database. In other embodiments, the activity coefficient may also be queried by accessing the database of the cloud server through the network.
  • equation relationship (1) is only an example of the equation relationship satisfied for the mixed substance spectral information and the component spectral information. In other implementation manners, different equation relationships may also be adopted.
  • FIG. 3 is a schematic flowchart of a method for adding data to a substance detection database according to an embodiment of the present application. The method may be performed by the detection device 20 in FIG. 1a or FIG. 1b. As shown in FIG. 3, the method includes:
  • the spectral information of the substance, as well as the composition and ratio can be uploaded by the user to the detection device 20.
  • the detection terminal 21 acquires the spectral information of the substance, if the user knows the composition and composition ratio of the substance, the user can input the composition and composition ratio to upload to the detection device 20.
  • the substance is a mixed substance and the spectral information of at least one component in the substance is unknown, obtain an equation about the spectral information of each component in the substance based on the substance.
  • spectral information of a component whose spectral information is unknown is obtained through the equation, add the spectral information and its corresponding component to a preset single substance database, where the preset single substance database stores at least A single substance and the spectral information of said single substance.
  • the substance is a mixed substance, it can be queried in the preset single substance database whether each component of the mixed substance exists in the preset single substance database. If each component exists in the preset single substance database, it means that each single substance contained in the mixed substance is a known substance and does not need to be added. The process can be terminated directly and the user can be further prompted.
  • an equation about the spectral information of each component is obtained based on the mixed substance.
  • an equation can be established based on the ratio of the components in the mixed substance, the activity coefficient, and the spectral information of the mixed substance.
  • the spectral information equation about each component can also be obtained based on the ratio of each component and other parameters.
  • some embodiments satisfy the following equation relationship, that is, the polynomials on both sides of the equation are: the proportion of each component in the mixed substance, the sum of the product of the spectral ordinate and the activity coefficient And, a product of a first polynomial and a spectral ordinate of the mixed substance, the first polynomial is a sum of a product of a proportion of each component in the mixed substance and an activity coefficient. Equation (1) shows the above equation relationship.
  • E A , E B , and E C are known quantities, and Y Mn (Y M1 , Y M2 ,..., Y Mn ) is the ordinate corresponding to a set of abscissa values in the spectral information of the mixed substance, and Y An ( Y A1 , Y A2 , ..., Y An ) are the ordinate values corresponding to the same set of abscissa values in the spectral information of component A, and Y Bn (Y B1 , Y B2 , ..., Y Bn ) is the spectrum of component B The ordinate value corresponding to the same set of abscissa values in the information, Y Cn (Y C1 , Y C2 , ..., Y Cn ) is the ordinate value corresponding to the same set of abscissa values in the spectral information of component C.
  • the spectral information of each substance takes the same set of abscissa values (that is, the abscissas of Y An , Y Bn , Y Cn, and Y Mn are the same, where n is 1, 2, 7), it is only necessary to obtain the ordinate values. Obtain the spectral information of the substance.
  • the equation can be used to obtain the spectral information of components whose spectral information is unknown in the mixture.
  • the spectral information of the single substance obtained by the solution is added to the prediction.
  • Set up a single substance database please refer to steps 209 and 210 in FIG. 4 (steps 201-203 are the same as steps 101-103), and the obtained spectral information of the single substance can also be substituted into the preset mixture database.
  • Other equations containing unknown amounts of spectral information are also be substituted into the preset mixture database.
  • Y Bn For example, if solved for Y Bn, it can be substituted into Y Bn comprising Y Bn and Y Dn equations comprising Y Bn, Y Dn equation Y En and the like.
  • Y Dn and Y En can be obtained by solving them again and again, and the new single substance spectrum information can be obtained continuously.
  • the new single substance spectral information obtained in this process is added to the preset single substance database.
  • Y An , Y Bn , and Y Cn are unknown (refer to steps 207-212 in FIG. 4 in this embodiment), the component whose spectral information in the mixed substance is unknown cannot be obtained through the equation.
  • the component whose spectral information in the mixed substance is unknown cannot be obtained through the equation.
  • search for preset multivariate linear equations in the preset mixture database For example, Y An, Y Bn, Y Cn and Y Cn Y Bn are unknown, further comprising a predetermined mixture further comprises a database Y Bn and Y Cn equations, the two equations can be composed of linear equations.
  • the spectral information of single substance B and single substance C can be obtained, and the spectral information corresponding to single substance B and single substance C is added to the preset single substance database.
  • the new single-matter spectral information continue to substitute other equations, and repeat iteratively, until there is no one-variable linear equation or multivariate linear equation that can be solved in the preset mixture database.
  • the detection device 20 adds the single substance and its corresponding spectral information to a preset Single substance database. And the spectral information of the substance is substituted into the equation containing the unknown amount of the spectral information in the preset mixture substance database. If new spectrum information is solved, then it is substituted into other equations, and so on until the preset mixture substance database is no longer Until there are equations or systems that can be solved. In some of these embodiments, it is also possible to check whether there are equations with unknown quantities in the preset mixture database, and delete them if there are, to free up storage space.
  • the data adding method of the substance detection database obtaineds an equation about the spectral information of each component in the mixed substance based on the mixed substance, and then obtains the spectral information of each component by solving the equation, and adds the obtained spectral information to the pre- Set up a single substance database to expand the data of the preset single substance database.
  • a new method for expanding the single-substance database is provided, which avoids the work of searching for single-substances and their spectral information, and saves manpower and material resources. Moreover, this method can obtain relatively pure single substances, which can improve the accuracy of identifying spectra using a preset single substance database.
  • the embodiment of the present application further provides a data adding device of a substance detection database, and the data adding device of the substance detection database is used for the detection device 20 shown in FIG. 1a or FIG. 1b.
  • the data adding device 500 of the detection database includes:
  • the substance acquiring module 501 is configured to acquire spectral information of a substance and a component and a ratio of the substance.
  • An equation obtaining module 502 is configured to obtain an equation about the spectral information of each component in the substance based on the substance if the substance is a mixed substance and the spectral information of at least one component in the substance is unknown.
  • a data adding module 503 is configured to, if the spectral information of a component whose spectral information is unknown is obtained through the equation, add the spectral information and its corresponding component to a preset single substance database, where the preset single The substance database stores at least one single substance and spectral information of the single substance.
  • the data adding device of the substance detection database obtained in the embodiment of the present application obtains an equation about the spectral information of each component in the mixed substance based on the mixed substance, and then obtains the spectral information of each component by solving the equation, and adds the obtained spectral information to the Set up a single substance database to expand the data of the preset single substance database.
  • a new method for expanding the single-substance database is provided, which avoids the work of searching for single-substances and their spectral information, and saves manpower and material resources. Moreover, this method can obtain relatively pure single substances, which can improve the accuracy of identifying spectra using a preset single substance database.
  • the data adding device 500 of the substance detection database further includes:
  • the equation adding module 504 is used to add the equation to a preset mixture database if the spectral information of the component whose spectral information is unknown cannot be obtained through the equation, and the preset mixture database stores at least A mixed substance and an equation about the spectral information of each component in the mixed substance.
  • An equation solving module 505 is configured to obtain spectral information of components whose spectral information is unknown based on at least two equations in the preset mixture substance database.
  • the second data adding module 506 is configured to add the spectral information and the corresponding component to the preset single substance database if the spectral information of the component whose spectral information is unknown is obtained through the equation solving module.
  • the data adding device 500 of the substance detection database further includes:
  • the equation substitution module 507 is configured to substitute the obtained spectrum information into an equation containing an unknown amount of the spectrum information in a preset mixture substance database to solve new spectrum information;
  • a third data adding module 508 is configured to add the new spectrum information and the corresponding single substance to a preset single substance database.
  • the data adding device 500 of the substance detection database further includes:
  • a fourth data adding module 509 configured to add the substance and its corresponding spectral information to the preset single substance database if the substance is a single substance;
  • a second equation substitution module 510 configured to substitute the spectral information of the substance into an equation containing an unknown amount of the spectral information in a preset mixture substance database, and solve new spectrum information based on the equation in the preset mixture substance database;
  • a fifth data adding module 511 is configured to add the new spectral information and the corresponding single substance to the preset single substance database.
  • the equation obtaining module 502 is specifically configured to:
  • the polynomials on both sides of the equation are:
  • a product of a first polynomial and a spectral ordinate of the mixed substance is a sum of a product of a proportion of each component in the mixed substance and an activity coefficient.
  • the data adding device 500 of the substance detection database further includes:
  • the deleting module 512 is configured to delete an equation that does not contain unknown spectral information in the preset mixture substance database.
  • the data adding device of the substance detection database can execute the data adding method of the substance detection database provided in the embodiment of the present application, and has the functional modules and beneficial effects corresponding to the execution method.
  • the data adding method of the substance detection database provided in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a detection device 20 according to an embodiment of the present application. As shown in FIG. 8, the detection device 20 includes:
  • One processor 21 is taken as an example in FIG. 8.
  • the processor 21 and the memory 22 may be connected through a bus or in other manners. In FIG. 8, the connection through the bus is taken as an example.
  • the memory 22 is a non-volatile computer-readable storage medium, and can be used to store a non-volatile software program, a non-volatile computer executable program, and a module, such as a data addition method of a substance detection database in the embodiment of the present application.
  • Corresponding program instructions / modules (for example, the substance acquisition module 501, the equation acquisition module 502, and the data addition module 503 shown in FIG. 5).
  • the processor 21 executes various functional applications and data processing of the detection device by running non-volatile software programs, instructions, and modules stored in the memory 22, that is, a data addition method of the substance detection database of the above method embodiment.
  • the memory 22 may include a storage program area and a storage data area, where the storage program area may store an operating system and application programs required for at least one function; the storage data area may store data created according to the use of the data adding device of the substance detection database Wait.
  • the memory 22 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 22 may optionally include a memory remotely disposed with respect to the processor 21, and these remote memories may be connected to the data adding device of the substance detection database through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the one or more modules are stored in the memory 22, and when executed by the one or more processors 21, perform a data addition method of the substance detection database in any of the above method embodiments, for example, execute the above description Steps 101 to 103 of the method in FIG. 3, and steps 201 to 212 of the method in FIG. 4; the implementation of modules 501-513 in FIG. 5 Features.
  • the above product can execute the method provided in the embodiment of the present application, and has the corresponding functional modules and beneficial effects of executing the method.
  • the above product can execute the method provided in the embodiment of the present application, and has the corresponding functional modules and beneficial effects of executing the method.
  • An embodiment of the present application provides a non-volatile computer-readable storage medium, where the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, as shown in FIG. 8
  • a processor 21 may enable the one or more processors to execute the data adding method of the substance detection database in any of the method embodiments described above, for example, to execute the method steps 101 to 103 in FIG. 3 described above. Steps 201 to 212 of method 4 are implemented; the functions of modules 501-513 in FIG. 5, modules 501-510 in FIG. 6, and modules 501-512 in FIG. 7 are implemented.
  • the embodiments can be implemented by means of software plus a general hardware platform, and of course, also by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the method of the foregoing embodiment can be completed by using a computer program to instruct related hardware.
  • the program can be stored in a computer-readable storage medium. When executed, the processes of the embodiments of the methods described above may be included.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RandomAccess Memory, RAM).

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种物质检测数据库的数据添加方法、装置和检测设备。所述方法包括:获取物质的光谱信息以及所述物质的组分和比例(101);如果所述物质为混合物质,且所述物质中的至少一个组分光谱信息未知,则基于所述物质获得关于所述物质中各组分光谱信息的方程(102);如果通过所述方程获得所述物质中光谱信息未知的组分的光谱信息,则将该光谱信息及其对应的组分加入预设单物质数据库,所述预设单物质数据库存储有至少一种单物质以及所述单物质的光谱信息(103)。所述方法避免了寻找单物质及其光谱信息的工作,节省了人力、物力的投入。

Description

一种物质检测数据库的数据添加方法、装置和检测设备 技术领域
本申请实施例涉及物质检测技术领域,例如涉及一种物质检测数据库的数据添加方法、装置和检测设备。
背景技术
近年来,物质检测设备的应用日趋广泛,例如安检中检测可疑物品、药监局检测药品成分、农药残留检测等。目前的检测设备中,通过光谱确认物质成分的方法由于能准确迅速的检测出物质成分,得到了广泛的应用。例如拉曼检测设备,通过获取物质的拉曼光谱,然后将所述光谱与预设数据库中的已知光谱进行对比,可以确定出物质的成分。
在研究现有技术的过程中,发明人发现相关技术中至少存在如下问题:在通过获取物质光谱检测物质成分的方法中,预设数据库的建立是关键因素,但是由于自然界的物质千千万万,再加上人工合成的物质,真实存在的物质数量庞大。将如此数量庞大的纯净物质及其对应的光谱加入预设数据库中是一个非常耗时耗力的工作。
发明内容
本申请实施例的一个目的是提供一种物质检测数据库的数据添加方法、装置和检测设备,提供了用于物质检测的数据库扩充方法,节省扩充物质检测数据库的人力物力投入。
第一方面,本申请实施例提供了一种物质检测数据库的数据添加方法,所述方法应用于检测设备,所述方法包括:
获取物质的光谱信息以及所述物质的组分和比例;
如果所述物质为混合物质,且所述物质中的至少一个组分光谱信息未知,则基于所述物质获得关于所述物质中各组分光谱信息的方程;
如果通过所述方程获得所述物质中光谱信息未知的组分的光谱信息,则将该光谱信息及其对应的组分加入预设单物质数据库,所述预设单物质数据库存 储有至少一种单物质以及所述单物质的光谱信息。
第二方面,本申请实施例还提供了一种物质检测数据库的数据添加装置,所述装置应用于检测设备,所述装置包括:
物质获取模块,用于获取物质的光谱信息以及所述物质的组分和比例;
方程获取模块,用于如果所述物质为混合物质,且所述物质中的至少一个组分光谱信息未知,则基于所述物质获得关于所述物质中各组分光谱信息的方程;
数据添加模块,用于如果通过所述方程获得所述物质中光谱信息未知的组分的光谱信息,则将该光谱信息及其对应的组分加入预设单物质数据库,所述预设单物质数据库存储有至少一种单物质以及所述单物质的光谱信息。
第三方面,本申请实施例还提供了一种检测设备,包括:
至少一个处理器;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述的方法。
本申请实施例提供的物质检测数据库的数据添加方法、装置和检测设备,基于混合物质获得关于混合物质中各组分光谱信息的方程,然后通过求解方程获得各组分的光谱信息,并将获得的光谱信息加入预设单物质数据库,以扩充预设单物质数据库的数据。本申请实施例提供了一种新的扩充单物质数据库的方法,避免了寻找单物质及其光谱信息的工作,节省了人力、物力的投入。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1a是本申请物质检测数据库的数据添加方法和装置的应用场景示意图;
图1b是本申请物质检测数据库的数据添加方法和装置的应用场景示意图;
图2是本申请实施例采用方程获得的物质理论光谱与物质标准光谱对比图;
图3是本申请物质检测数据库的数据添加方法的一个实施例的流程图;
图4是本申请物质检测数据库的数据添加方法的一个实施例的流程图;
图5是本申请物质检测数据库的数据添加装置的一个实施例的结构示意图;
图6是本申请物质检测数据库的数据添加装置的一个实施例的结构示意图;
图7是本申请物质检测数据库的数据添加装置的一个实施例的结构示意图;
图8是本申请实施例提供的检测设备的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供的物质检测数据库的数据添加方法和装置适用于图1a和图1b所示的应用场景。在图1a所示的应用场景中,包括待检测物质10、检测终端21和检测设备20,其中,检测终端21用于获得待检测物质10的光谱信息,然后将待检测物质10的光谱信息传送给检测设备20。检测设备20用于根据待检测物质10的光谱信息进行组成成分识别。检测终端21与检测设备20之间可以通过网络30互相通信,其中,网络30可以是例如家庭或公司的局域网,或一个特定网络等。检测终端21和检测设备20具有至少一个网络接口,与网络30建立通信连接。检测终端21可以是能获取物质光谱的拉曼光谱仪、红外光谱仪等。检测设备20可以是任何合适的、具有运算和存储功能的电子设备,包括云端服务器或者其他服务器等。
如图1b所示,检测设备20也可以将检测终端21的功能集成在检测设备20中,由检测设备20单独完成从待检测物质10获取待检测物质10的光谱信息,并通过该光谱信息获取待检测物质的成分。在其他应用场景中,还可以包括更多的待检测物质10、检测设备20以及检测终端21。
检测设备20预先设置预设单物质数据库(包括多个单物质及其对应的光谱信息),当获取待检测物质10的光谱信息后,可以将该光谱信息与预设单物质数据库中的已知光谱信息进行对比,以确定出待检测物质10的成分组成。为提高检测的准确性,预设单物质数据库中需存储大量的单物质光谱信息。通过查 找单物质并获取其对应的光谱信息的工作非常耗时耗力。而且往往很多物质都含有杂质,并非真正纯净的物质,将这类含有杂质的物质加入预设数据库也会影响识别结果的准确性。
如果能通过已知组分、比例和光谱信息的混合物质去反推获得其包含的组分的光谱信息,也可以构成扩充单物质数据库数据的一种途径。其中,混合物质是指由至少两种单物质按照一定比例混合在一起组成的物质,混合物质中包含的单物质称为混合物质的组分,各单物质占混合物质的占比,为单物质的比例。例如,一混合物质M由30%的A和70%的B组成,则A和B为该混合物质的组分,30%和70%分别为A和B的比例。
如果已知混合物M的光谱,由于混合物光谱信息与其组分光谱信息满足一定的等式关系,通过该关系可以求出其组分A和B的光谱信息。根据不同的实现方式,混合物光谱信息与其组分的光谱信息满足不同的等式。以拉曼光谱的一种实现为例,混合物光谱与其组分的光谱信息满足以下关系(以下以混合物包括单物质A和单物质B为例):
X A*Y An*E A+X B*Y Bn*E B=(X A*E A+X B*E B)*Y Mn。       (1)
其中,X A和X B分别为单物质A和单物质B在混合物质中所占的比例,E A和E B分别为单物质A和单物质B的活性系数,Y An为在单物质A的光谱信息中横坐标n对应的纵坐标值、Y Bn为在单物质B的光谱信息中横坐标n对应的纵坐标值,Y Mn为在混合物质M的光谱信息中横坐标n对应的纵坐标值。其中,活性系数表征在完全相同环境条件下以固定功率固定波长照射物质,单位时间内每种物质的光谱强度。如果知道物质名称,则该物质的活性系数是确定的。作为已知混合物质,X A和X B也是确定的。
其中,光谱信息是与光谱曲线对应的一组数据,各物质的光谱信息可以取同一组横坐标值,各物质的光谱信息在同一横坐标值对应的纵坐标值不同。以下为某一物质的光谱信息示例,其中,每一组的第一个数字对应横坐标,第二个数字对应纵坐标。
100 0.001219
……
400 0.412633
500 0.612320
600 0.298450
……
1900 0.001028
2000 0.001232
由于混合物质M的光谱信息是已知的,如果单物质A和单物质B其中之一的光谱信息是已知的,则另一个单物质的光谱信息可求解。如果单物质A和单物质B的光谱信息都是未知的,则可以试着与其他包含单物质A和单物质B的光谱信息的方程组成多元方程,以求解方程中单物质的光谱信息。例如,可以与包含单物质A光谱信息和单物质B光谱信息但比例系数不同的方程组成二元一次方程组,或者与包含单物质B光谱信息和单物质C光谱信息的方程、以及包含单物质A光谱信息和单物质C光谱信息的方程组成三元一次方程组,等等。请参照图2,通过等式(1)获得的混合物49%正丙醇与51%乙醇的理论光谱曲线在每一个横坐标的纵坐标值均与该混合物的标准光谱相符。其中,图2中上面的曲线为混合物的标准光谱曲线,下面的曲线为根据公式(1)理论拟合获得的光谱曲线。
在其中一些实施例中,可以在检测设备20同时设置预设混合物质数据库,所述预设混合物质数据库中存储混合物质的名称、光谱信息、组分和比例,以及依据该混合物质的组分和比例获得的方程(例如式(1)所示的方程)。
当用户通过检测终端21获得某一物质的光谱信息时,如果用户知道该物质的组分和比例,可以将该物质的组分、比例和光谱信息等上传检测设备20。如果该物质为新的单物质,检测设备20可以将该单物质及其光谱信息加入预设单物质数据库。如果该物质为混合物质,则可以根据该混合物的组分、比例和光谱信息等建立方程式,求解混合物质中组分的光谱信息。该方程式有解的场合,将求解获得的单物质及其光谱信息加入预设单物质数据库。该方程式无解的场合,还可以将该方程式加入预设混合物质数据库,并与预设混合物质数据库中已经存在的方程式组成多元方程。以求解新的单物质的光谱信息。通过上述方法可以不断获得新的单物质的光谱信息,预设单物质数据库中的数据得到扩充,该方法简单有效,可以节省大量的人力和物力。
其中,在一些实施例中,可以在检测设备20本地数据库中存储物质的活性 系数,通过查询本地数据库获得物质的活性系数。在其他实施例中,也可以通过网络访问云端服务器的数据库查询该活性系数。
需要说明的是,上述等式关系(1)仅是对混合物质光谱信息和组分光谱信息满足的等式关系的一种举例,在其他实现方式中,也可以采用不同的等式关系。
图3为本申请实施例提供的物质检测数据库的数据添加方法的流程示意图,所述方法可由图1a或图1b中的检测设备20执行,如图3所示,所述方法包括:
101:获取物质的光谱信息以及所述物质的组分和比例。
其中,物质的光谱信息以及组分和比例,可以由用户选择上传检测设备20。在检测终端21获取物质的光谱信息后,如果用户知晓物质的组分和构成比例,用户可以将该组分和构成比例输入以上传至检测设备20。
102:如果所述物质为混合物质,且所述物质中的至少一个组分光谱信息未知,则基于所述物质获得关于所述物质中各组分光谱信息的方程。
103:如果通过所述方程获得所述物质中光谱信息未知的组分的光谱信息,则将该光谱信息及其对应的组分加入预设单物质数据库,所述预设单物质数据库存储有至少一种单物质以及所述单物质的光谱信息。
如果物质是混合物质,则可以在预设单物质数据库中查询混合物质的每个组分是否都存在于预设单物质数据库中。如果各组分都存在于预设单物质数据库中,则说明该混合物质包含的各个单物质均为已知物质,不需要添加,可以直接中止流程,并可进一步提示用户。
如果该物质中有至少一个组分不存在于预设单物质数据库,即至少一个组分光谱信息未知,则基于该混合物质获得关于其各组分光谱信息的方程。在其中一些实施例中,可以基于混合物质中各组分的比例、活性系数以及混合物质的光谱信息建立方程。在另一些实施例中,也可以基于各组分的比例和其他参数获得关于各组分的光谱信息方程。在采用活性系数建立方程的实现方式中,其部分实施例满足以下等式关系,即等式两侧的多项式分别为:混合物质中各组分的比例、光谱纵坐标和活性系数的乘积之和,以及,第一多项式与所述混合物质的光谱纵坐标之积,所述第一多项式为所述混合物质中各组分比例、活性系数的乘积之和。式(1)示出了上述等式关系。
以式(1)所示的等式为例说明,假如混合物质为a%A+b%B+c%C,a+b+c=100,则该混合物质与其组分的光谱信息满足以下方程式:
a%*Y An*E A+b%*Y Bn*E B+c%*Y Cn*E C=(a%*E A+b%*E B+c%*E C)*Y Mn
其中,E A、E B、E C为已知量,Y Mn(Y M1、Y M2、…、Y Mn)为混合物质的光谱信息中一组横坐标值对应的纵坐标值,Y An(Y A1、Y A2、…、Y An)为组分A的光谱信息中同一组横坐标值对应的纵坐标值,Y Bn(Y B1、Y B2、…、Y Bn)为组分B的光谱信息中同一组横坐标值对应的纵坐标值,Y Cn(Y C1、Y C2、…、Y Cn)为组分C的光谱信息中同一组横坐标值对应的纵坐标值。因为各物质的光谱信息取同一组横坐标值(即Y An、Y Bn、Y Cn和Y Mn的横坐标相同,其中,n为1,2,…),因此只需获得纵坐标值即可以获得物质的光谱信息。
如果Y An、Y Bn、Y Cn中有两个是已知的,则通过该方程可以求解获得该混合物质中光谱信息未知的组分的光谱信息,将求解获得的单物质的光谱信息加入预设单物质数据库。在本申请的另一些实施例中,请参照图4中的步骤209和210(步骤201-203与步骤101-103相同),还可将获得的单物质的光谱信息代入预设混合物质数据库中其他包含该光谱信息未知量的方程中。例如,如果求解得到Y Bn,可以将Y Bn代入包含Y Bn和Y Dn的方程、包含Y Bn、Y Dn和Y En的方程等。通过上述方程又可求解获得Y Dn和Y En,如此循环反复,可以不断的获得新的单物质的光谱信息。求解完一元一次方程后,还可以再求解多元一次方程,直到不能再求解获得新的单物质的光谱信息。这个过程中获得的新的单物质的光谱信息均加入预设单物质数据库。在其中一些实施例中,还可以查看预设混合物质数据库中是否存在没有未知量的方程,如果有则将其删除,以释放存储空间。
如果Y An、Y Bn、Y Cn中有至少两个是未知的(该实施例请参照图4中的步骤207-212),则通过该方程无法求解获得该混合物质中光谱信息未知的组分的光谱信息,将上述方程式加入预设混合物质数据库中。并在预设混合物质数据库中搜寻是否存在可以求解的多元一次方程。例如,Y An、Y Bn、Y Cn中Y Bn和Y Cn未知,预设混合物数据库中还包括另一个包含Y Bn和Y Cn的方程,则这两个方程可以组成二元一次方程。通过求解该二元一次方程,可以获得单物质B和单物质C的光谱信息,将单物质B和单物质C对应的光谱信息加入预设单物质数据库。求解出新的单物质光谱信息后,继续代入其他方程,循环反复,直到预设混合物质数据库中不再存在可以求解的一元一次方程或者多元一次方程。在其中一些 实施例中,还可以查看预设混合物质数据库中是否存在没有未知量的方程,如果有则将其删除,以释放存储空间。
在本申请的一些实施例中,请参照图4中的步骤204-206,如果用户上传给检测设备20的物质为单物质,则检测设备20将该单物质及其对应的光谱信息加入预设单物质数据库。并将该物质的光谱信息代入预设混合物质数据库中包含该光谱信息未知量的方程,如果求解出新的光谱信息,再继续代入其他方程,如此循环反复,直到预设混合物质数据库中不再存在可以求解的方程或者方程组为止。在其中一些实施例中,还可以查看预设混合物质数据库中是否存在没有未知量的方程,如果有则将其删除,以释放存储空间。
本申请实施例提供的物质检测数据库的数据添加方法,基于混合物质获得关于混合物质中各组分光谱信息的方程,然后通过求解方程获得各组分的光谱信息,并将获得的光谱信息加入预设单物质数据库,以扩充预设单物质数据库的数据。提供了一种新的扩充单物质数据库的方法,避免了寻找单物质及其光谱信息的工作,节省了人力、物力的投入。而且该方法可以获得相对纯净的单物质,能提高利用预设单物质数据库识别光谱的准确性。
相应的,本申请实施例还提供了一种物质检测数据库的数据添加装置,所述物质检测数据库的数据添加装置用于图1a或图1b所示的检测设备20,如图5所示,物质检测数据库的数据添加装置500包括:
物质获取模块501,用于获取物质的光谱信息以及所述物质的组分和比例。
方程获取模块502,用于如果所述物质为混合物质,且所述物质中的至少一个组分光谱信息未知,则基于所述物质获得关于所述物质中各组分光谱信息的方程。
数据添加模块503,用于如果通过所述方程获得所述物质中光谱信息未知的组分的光谱信息,则将该光谱信息及其对应的组分加入预设单物质数据库,所述预设单物质数据库存储有至少一种单物质以及所述单物质的光谱信息。
本申请实施例提供的物质检测数据库的数据添加装置,基于混合物质获得关于混合物质中各组分光谱信息的方程,然后通过求解方程获得各组分的光谱 信息,并将获得的光谱信息加入预设单物质数据库,以扩充预设单物质数据库的数据。提供了一种新的扩充单物质数据库的方法,避免了寻找单物质及其光谱信息的工作,节省了人力、物力的投入。而且该方法可以获得相对纯净的单物质,能提高利用预设单物质数据库识别光谱的准确性。
请参照图6,在物质检测数据库的数据添加装置500的一些实施例中,物质检测数据库的数据添加装置500还包括:
方程添加模504,用于如果通过所述方程不能获得所述物质中光谱信息未知的组分的光谱信息,则将所述方程加入预设混合物质数据库,所述预设混合物质数据库存储有至少一种混合物质、以及关于混合物质中各组分光谱信息的方程。
方程求解模块505,用于基于所述预设混合物质数据库中的至少两个方程获取光谱信息未知的组分的光谱信息。
第二数据添加模块506,用于如果通过方程求解模块获得光谱信息未知的组分的光谱信息,则将该光谱信息及其对应的组分加入所述预设单物质数据库。
请参照图7,在物质检测数据库的数据添加装置500的一些实施例中,物质检测数据库的数据添加装置500还包括:
方程代入模块507,用于将获得的光谱信息代入预设混合物质数据库中包含该光谱信息未知量的方程,以求解新的光谱信息;
第三数据添加模块508,用于将该新的光谱信息及其对应的单物质加入预设单物质数据库。
请参照图7,在物质检测数据库的数据添加装置500的一些实施例中,物质检测数据库的数据添加装置500还包括:
第四数据添加模块509,用于如果所述物质为单物质,将所述物质及其对应的光谱信息加入所述预设单物质数据库;
第二方程代入模块510,用于将所述物质的光谱信息代入预设混合物质数据库中包含该光谱信息未知量的方程,并基于预设混合物质数据库中的方程求解新的光谱信息;
第五数据添加模块511,用于将所述新的光谱信息及其对应的单物质加入所述预设单物质数据库。
在物质检测数据库的数据添加装置500的一些实施例中,方程获取模块502 具体用于:
获取所述物质中各组分的活性系数;
基于所述物质的光谱信息、所述物质中各组分的比例和活性系数,获得关于所述物质中各组分光谱信息的方程。
在物质检测数据库的数据添加装置500的一些实施例中,所述方程等式两侧的多项式分别为:
混合物质中各组分的比例、光谱纵坐标和活性系数的乘积之和,以及,
第一多项式与所述混合物质的光谱纵坐标之积,所述第一多项式为所述混合物质中各组分比例、活性系数的乘积之和。
请参照图7,在物质检测数据库的数据添加装置500的一些实施例中,物质检测数据库的数据添加装置500还包括:
删除模块512,用于删除预设混合物质数据库中不包含未知光谱信息的方程。
需要说明的是,上述物质检测数据库的数据添加装置可执行本申请实施例所提供的物质检测数据库的数据添加方法,具备执行方法相应的功能模块和有益效果。未在物质检测数据库的数据添加装置实施例中详尽描述的技术细节,可参见本申请实施例所提供的物质检测数据库的数据添加方法。
图8是本申请实施例提供的检测设备20的硬件结构示意图,如图8所示,该检测设备20包括:
一个或多个处理器21以及存储器12,图8中以一个处理器21为例。
处理器21和存储器22可以通过总线或者其他方式连接,图8中以通过总线连接为例。
存储器22作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本申请实施例中的物质检测数据库的数据添加方法对应的程序指令/模块(例如,附图5所示的物质获取模块501、方程获取模块502和数据添加模块503)。处理器21通过运行存储在存储器22中的非易失性软件程序、指令以及模块,从而执行检测设备的各种功能应用以及数据处理,即实现上述方法实施例的物质检测数据库的数据添加方法。
存储器22可以包括存储程序区和存储数据区,其中,存储程序区可存储操 作系统、至少一个功能所需要的应用程序;存储数据区可存储根据物质检测数据库的数据添加装置的使用所创建的数据等。此外,存储器22可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器22可选包括相对于处理器21远程设置的存储器,这些远程存储器可以通过网络连接至物质检测数据库的数据添加装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器22中,当被所述一个或者多个处理器21执行时,执行上述任意方法实施例中的物质检测数据库的数据添加方法,例如,执行以上描述的图3中的方法步骤101至步骤103,图4中的方法步骤201至步骤212;实现图5中的模块501-503、图6中的模块501-506、图7中模块501-512的功能。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请实施例提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图8中的一个处理器21,可使得上述一个或多个处理器可执行上述任意方法实施例中的物质检测数据库的数据添加方法,例如,执行以上描述的图3中的方法步骤101至步骤103,图4中的方法步骤201至步骤212;实现图5中的模块501-503、图6中的模块501-506、图7中模块501-512的功能。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域普通技术人员可以清楚地了解到各实施方式可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领 域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种物质检测数据库的数据添加方法,所述方法应用于检测设备,其特征在于,所述方法包括:
    获取物质的光谱信息以及所述物质的组分和比例;
    如果所述物质为混合物质,且所述物质中的至少一个组分光谱信息未知,则基于所述物质获得关于所述物质中各组分光谱信息的方程;
    如果通过所述方程获得所述物质中光谱信息未知的组分的光谱信息,则将该光谱信息及其对应的组分加入预设单物质数据库,所述预设单物质数据库存储有至少一种单物质以及所述单物质的光谱信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    如果通过所述方程不能获得所述物质中光谱信息未知的组分的光谱信息,则将所述方程加入预设混合物质数据库,所述预设混合物质数据库存储有至少一种混合物质、以及关于混合物质中各组分光谱信息的方程;
    基于所述预设混合物质数据库中的至少两个方程获取光谱信息未知的组分的光谱信息,如果获得光谱信息未知的组分的光谱信息,则将该光谱信息及其对应的组分加入所述预设单物质数据库。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    将获得的光谱信息代入预设混合物质数据库中包含该光谱信息未知量的方程,以求解新的光谱信息;
    将该新的光谱信息及其对应的单物质加入预设单物质数据库。
  4. 根据权利要求1-3任意一项所述的方法,其特征在于,所述方法还包括:
    如果所述物质为单物质,将所述物质及其对应的光谱信息加入所述预设单物质数据库;
    将所述物质的光谱信息代入预设混合物质数据库中包含该光谱信息未知量的方程,并基于预设混合物质数据库中的方程求解新的光谱信息;
    将所述新的光谱信息及其对应的单物质加入所述预设单物质数据库。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述基于所述物质获得关于所述物质中各组分光谱信息的方程,包括:
    获取所述物质中各组分的活性系数;
    基于所述物质的光谱信息、所述物质中各组分的比例和活性系数,获得关于所述物质中各组分光谱信息的方程。
  6. 根据权利要求5所述的方法,其特征在于,所述方程等式两侧的多项式分别为:
    混合物质中各组分的比例、光谱纵坐标和活性系数的乘积之和,以及,
    第一多项式与所述混合物质的光谱纵坐标之积,所述第一多项式为所述混合物质中各组分比例、活性系数的乘积之和。
  7. 根据权利要求2-6任意一项所述的方法,其特征在于,所述方法还包括:
    删除预设混合物质数据库中不包含未知光谱信息的方程。
  8. 一种物质检测数据库的数据添加装置,所述装置应用于检测设备,其特征在于,所述装置包括:
    物质获取模块,用于获取物质的光谱信息以及所述物质的组分和比例;
    方程获取模块,用于如果所述物质为混合物质,且所述物质中的至少一个组分光谱信息未知,则基于所述物质获得关于所述物质中各组分光谱信息的方程;
    数据添加模块,用于如果通过所述方程获得所述物质中光谱信息未知的组分的光谱信息,则将该光谱信息及其对应的组分加入预设单物质数据库,所述预设单物质数据库存储有至少一种单物质以及所述单物质的光谱信息。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括:
    方程添加模块,用于如果通过所述方程不能获得所述物质中光谱信息未知的组分的光谱信息,则将所述方程加入预设混合物质数据库,所述预设混合物质数据库存储有至少一种混合物质、以及关于混合物质中各组分光谱信息的方程;
    方程求解模块,用于基于所述预设混合物质数据库中的至少两个方程获取光谱信息未知的组分的光谱信息;
    第二数据添加模块,用于如果通过方程求解模块获得光谱信息未知的组分的光谱信息,则将该光谱信息及其对应的组分加入所述预设单物质数据库。
  10. 根据权利要求8或9所述的装置,其特征在于,所述装置还包括:
    方程代入模块,用于将获得的光谱信息代入预设混合物质数据库中包含该光谱信息未知量的方程,以求解新的光谱信息;
    第三数据添加模块,用于将该新的光谱信息及其对应的单物质加入预设单物质数据库。
  11. 根据权利要求8-10任意一项所述的装置,其特征在于,所述装置还包括:
    第四数据添加模块,用于如果所述物质为单物质,将所述物质及其对应的光谱信息加入所述预设单物质数据库;
    第二方程代入模块,用于将所述物质的光谱信息代入预设混合物质数据库中包含该光谱信息未知量的方程,并基于预设混合物质数据库中的方程求解新的光谱信息;
    第五数据添加模块,用于将所述新的光谱信息及其对应的单物质加入所述预设单物质数据库。
  12. 根据权利要求8-11任意一项所述的装置,其特征在于,所述方程获取模块具体用于:
    获取所述物质中各组分的活性系数;
    基于所述物质的光谱信息、所述物质中各组分的比例和活性系数,获得关于所述物质中各组分光谱信息的方程。
  13. 根据权利要求12所述的装置,其特征在于,所述方程等式两侧的多项式分别为:
    混合物质中各组分的比例、光谱纵坐标和活性系数的乘积之和,以及,
    第一多项式与所述混合物质的光谱纵坐标之积,所述第一多项式为所述混合物质中各组分比例、活性系数的乘积之和。
  14. 根据权利要求9-13任意一项所述的装置,其特征在于,所述装置还包括:
    删除模块,用于删除预设混合物质数据库中不包含未知光谱信息的方程。
  15. 一种检测设备,其特征在于,包括:
    至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1-7任一项所述的方法。
  16. 一种非易失性计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,当所述计算机可执行指令被检测设备执行时,使所述检测设备执行权利要求1-7任一项所述的方法。
  17. 一种计算机程序产品,其特征在于,所述计算机程序产品包括存储在非易失性计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被检测设备执行时,使所述检测设备执行权利要求1-7任一项所述的方法。
PCT/CN2018/098090 2018-08-01 2018-08-01 一种物质检测数据库的数据添加方法、装置和检测设备 WO2020024167A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880001389.8A CN109073541B (zh) 2018-08-01 2018-08-01 一种物质检测数据库的数据添加方法、装置和检测设备
PCT/CN2018/098090 WO2020024167A1 (zh) 2018-08-01 2018-08-01 一种物质检测数据库的数据添加方法、装置和检测设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/098090 WO2020024167A1 (zh) 2018-08-01 2018-08-01 一种物质检测数据库的数据添加方法、装置和检测设备

Publications (1)

Publication Number Publication Date
WO2020024167A1 true WO2020024167A1 (zh) 2020-02-06

Family

ID=64789273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098090 WO2020024167A1 (zh) 2018-08-01 2018-08-01 一种物质检测数据库的数据添加方法、装置和检测设备

Country Status (2)

Country Link
CN (1) CN109073541B (zh)
WO (1) WO2020024167A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949824A (zh) * 2009-06-30 2011-01-19 武汉矽感科技有限公司 根据物质的光谱信息对商品进行检测的方法和系统装置
CN103278488A (zh) * 2013-05-24 2013-09-04 沈阳黎明航空发动机(集团)有限责任公司 一种快速半定量gh4169合金痕量元素的方法
CN105699298A (zh) * 2016-02-02 2016-06-22 安徽恒昊科技有限公司 一种快速检测分析绢云母质量的方法
CN108064341A (zh) * 2017-06-12 2018-05-22 深圳前海达闼云端智能科技有限公司 物质成分检测方法、装置和检测设备
CN108235733A (zh) * 2017-12-29 2018-06-29 深圳达闼科技控股有限公司 基于拉曼光谱的物质识别方法及云端系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425975C (zh) * 2004-07-29 2008-10-15 中国石油化工股份有限公司 由近红外光谱测定汽油性质数据的方法
US8027814B2 (en) * 2004-07-30 2011-09-27 University Of Cincinnati Methods for assessing a condition by analyzing blood in cerebrospinal fluid
CN103439266A (zh) * 2013-08-26 2013-12-11 广东省珠宝玉石及贵金属检测中心 一种珠宝玉石及岩石矿物的鉴定分析系统
CN108124462B (zh) * 2017-11-28 2020-11-17 深圳达闼科技控股有限公司 一种混合物检测方法及设备
EP3517936A4 (en) * 2017-11-28 2019-12-25 Cloudminds (Shenzhen) Holdings Co., Ltd. MIX DETECTION METHOD AND DEVICE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949824A (zh) * 2009-06-30 2011-01-19 武汉矽感科技有限公司 根据物质的光谱信息对商品进行检测的方法和系统装置
CN103278488A (zh) * 2013-05-24 2013-09-04 沈阳黎明航空发动机(集团)有限责任公司 一种快速半定量gh4169合金痕量元素的方法
CN105699298A (zh) * 2016-02-02 2016-06-22 安徽恒昊科技有限公司 一种快速检测分析绢云母质量的方法
CN108064341A (zh) * 2017-06-12 2018-05-22 深圳前海达闼云端智能科技有限公司 物质成分检测方法、装置和检测设备
CN108235733A (zh) * 2017-12-29 2018-06-29 深圳达闼科技控股有限公司 基于拉曼光谱的物质识别方法及云端系统

Also Published As

Publication number Publication date
CN109073541A (zh) 2018-12-21
CN109073541B (zh) 2021-02-02

Similar Documents

Publication Publication Date Title
US10303874B2 (en) Malicious code detection method based on community structure analysis
JP6740457B2 (ja) 商標画像のコンテンツ・ベースの検索及び取得
WO2019119322A1 (zh) 检测系统、方法及相关装置
US10801951B2 (en) Mixture detection method and device
WO2018227338A1 (zh) 物质成分检测方法、装置和检测设备
KR102236931B1 (ko) 툴 프로세스 데이터에 대한 다-변량 분석을 제공하기 위한 k-최근접 이웃-기반 방법 및 시스템
CN106294499A (zh) 一种数据库数据查询方法和设备
US20160149948A1 (en) Automated Cyber Threat Mitigation Coordinator
CN110297849B (zh) 员工不相容权限筛选方法、装置、计算机设备及存储介质
WO2020245504A1 (en) Method and system for integration testing
WO2020024167A1 (zh) 一种物质检测数据库的数据添加方法、装置和检测设备
WO2019218158A1 (zh) 一种物质检测方法、系统、装置及计算机可读存储介质
CN112632564A (zh) 一种威胁评估方法及装置
CN104598598A (zh) 一种关系型数据标准性的评估方法
US9990369B2 (en) Method and apparatus for scanning files
US11131623B2 (en) Mixture detection method and device
CN111352993A (zh) 一种跨平台数据同步方法及装置、电子设备
CN114528552A (zh) 基于漏洞的安全事件关联方法及相关设备
CN114416806A (zh) 电力安全知识数据的采集方法、装置及计算机设备
CN109788001B (zh) 可疑互联网协议地址发现方法、用户设备、存储介质及装置
CN113254942A (zh) 数据处理方法、系统及装置
CN114826726B (zh) 网络资产脆弱性检测方法、装置、计算机设备和存储介质
US8949787B2 (en) Locating isolation points in an application under multi-tenant environment
WO2017124926A1 (zh) 传感器测试方法及装置
US11762812B2 (en) Detecting changes in a namespace using namespace enumeration endpoint response payloads

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18928714

Country of ref document: EP

Kind code of ref document: A1