WO2020022446A1 - 摩擦構造体及びこれを用いた摩擦方法 - Google Patents

摩擦構造体及びこれを用いた摩擦方法 Download PDF

Info

Publication number
WO2020022446A1
WO2020022446A1 PCT/JP2019/029254 JP2019029254W WO2020022446A1 WO 2020022446 A1 WO2020022446 A1 WO 2020022446A1 JP 2019029254 W JP2019029254 W JP 2019029254W WO 2020022446 A1 WO2020022446 A1 WO 2020022446A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction
dlc
humidity
graphene
chamber
Prior art date
Application number
PCT/JP2019/029254
Other languages
English (en)
French (fr)
Inventor
▲ジュン▼豪 崔
健人 松村
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2020022446A1 publication Critical patent/WO2020022446A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene

Definitions

  • the present invention relates to a friction structure in which a first member at least partially composed of graphene and a second member rub against each other, and a friction method using the same.
  • the friction structure a structure in which a first member at least partly made of graphene and a second member are in friction is used.
  • Graphene is a thin film having the highest mechanical strength among carbon-based materials. For this reason, in such a friction structure, it is possible to avoid an increase in the size of the friction structure due to a part of the first member being formed of thin-film graphene, and furthermore, it is possible to prevent the friction member between the first member and the second member from becoming large. The durability of one member against abrasion can be increased.
  • graphene is a compound having a two-dimensional sheet structure including carbon atoms with sp 2 bonds.
  • Patent Document 1 a friction generator in which graphene, which is an energy generating layer formed on the upper surface of a first electrode (first member), and a second electrode (second member) frictionally generate electric energy. (Friction structure) has been proposed.
  • the graphene of the first member may be worn or the surface of the second member may be worn. May peel off.
  • the graphene of the first member may be worn, and if the surface of the second member is made of an amorphous hard carbon film, the amorphous hard carbon film is formed of the remaining hard material of the second member. There is a risk of peeling from the part. For this reason, when the graphene of the first member is rubbed with the second member, the frictional force generated between the first member and the second member is reduced to protect both the first member and the second member. It needs to be kept small.
  • an object of the present invention is to reduce the frictional force generated between the first member and the second member when the first member at least partially composed of graphene and the second member are rubbed. I do.
  • the present invention is a friction structure in which a first member at least partially composed of graphene and a second member frictionally rub, and wherein the second member includes A portion where friction occurs with graphene is made of Si-DLC.
  • the portion of the second member where friction occurs with the graphene of the first member is made of Si-DLC, the friction causes both graphene and Si-DLC to be in the air.
  • a hydrogen bond is formed with water, and the water is formed as a water molecule layer between the first member and the second member. Therefore, the frictional force generated between the first member and the second member by the water molecule layer is reduced. It can be kept small.
  • the friction structure controls a humidity in the friction chamber according to a Si content of Si-DLC constituting the second member and a friction chamber accommodating the first member and the second member. And a humidity control unit.
  • the humidity in the room in which the first member and the second member are accommodated can be controlled, and the first member and the second member can be controlled in accordance with the Si content of the Si-DLC constituting the second member.
  • a water molecule layer can be effectively formed in between. For this reason, the frictional force generated between the first member and the second member can be effectively reduced.
  • the humidity in the friction chamber may be 80% or more.
  • friction between the first member and the second member changes the structure of the graphene of the first member into an amorphous hard carbon film, and forms C—OH in the molecules of the amorphous hard carbon film. be able to.
  • a hydrogen bond can be generated with water molecules in the atmosphere, and the first member A water molecule layer can be more effectively formed between the first member and the second member. For this reason, the frictional force generated between the first member and the second member can be further reduced.
  • the present invention is a method of causing a first member at least partially composed of graphene to friction with a second member, wherein the second member performs friction between the first member and graphene.
  • the portion is constituted by Si-DLC.
  • the portion of the second member where friction occurs with the graphene of the first member is made of Si-DLC, the friction causes both graphene and Si-DLC to be in the air.
  • a hydrogen bond is formed with water, and the water is formed as a water molecule layer between the first member and the second member. Therefore, the frictional force generated between the first member and the second member by the water molecule layer is reduced. It can be kept small.
  • the frictional force generated between the first member and the second member is reduced when the first member at least partially made of graphene and the second member are rubbed. Can be suppressed.
  • FIG. 2 is a diagram and a table for explaining test conditions in a test example of the friction structure shown in FIG. 1.
  • 3 is a graph showing the results of a test example of the friction structure shown in FIG. 1.
  • 3 is a graph showing the results of a test example of the friction structure shown in FIG. 1.
  • FIG. 2 is an optical microscope image and a graph showing results of a test example of the friction structure shown in FIG. 1.
  • FIG. 2 is a diagram for analyzing a friction mechanism in a test example of the friction structure illustrated in FIG. 1.
  • 3 is a graph showing the results of a test example of the friction structure shown in FIG. 1.
  • FIG. 2 is an optical microscope image and a graph showing results of a test example of the friction structure shown in FIG. 1.
  • 3 is a graph showing the results of a test example of the friction structure shown in FIG. 1. It is a figure for explaining the 1st friction mechanism of the friction structure concerning the present invention. It is a figure for explaining the 2nd friction mechanism of the friction structure concerning the present invention.
  • FIG. 1 is a schematic view showing an embodiment of the friction structure according to the present invention.
  • the friction structure 1 includes a first member 2 at least partially composed of graphene, and a second member 3 that performs friction between the first member 2.
  • the first member 2 includes a substrate 2a and graphene 2b formed on the substrate 2a.
  • the substrate 2a is a SiO 2 / Si substrate.
  • a portion of the first member 2 where friction occurs with the graphene 2b is made of Si-DLC.
  • Si-DLC is diamond-like carbon containing Si (silicon) atoms in the molecule.
  • diamond-like carbon is an amorphous hard carbon film having characteristics closer to diamond than graphite.
  • the amorphous hard carbon film is a film containing both a diamond crystal structure and a graphite structure in a molecule.
  • the diamond crystal structure is a tetrahedral molecular structure including carbon atoms having sp 3 hybrid orbitals (carbon atoms having sp 3 bonds).
  • the graphite structure is a molecular structure formed in a regular hexagonal plane layer by carbon atoms having sp 2 hybrid orbitals (carbon atoms having sp 2 bonds).
  • the amorphous hard carbon film has low friction properties, wear resistance, high hardness, mold release properties, and corrosion resistance.
  • the friction structure 1 further includes a friction chamber (not shown) that accommodates the first member 2 and the second member 3, and a humidity control unit (not shown) that controls the humidity in the friction chamber. ing.
  • the humidity control unit controls the humidity in the friction chamber according to the Si content of the Si-DLC constituting the second member 3.
  • FIG. 2A and 2B are a diagram and a table for explaining a friction test example of the friction structure shown in FIG. 1, wherein FIG. 2A is a schematic diagram of a friction test device, and FIG. 2B is a table showing friction test conditions. And (c) is a table showing the film forming conditions of Si-DLC.
  • the friction test apparatus 11 includes a friction chamber 12, a mounting table 13 provided inside the friction chamber 12, and a substrate 14 rotating on the upper surface of the mounting table 13 (see FIG. 1).
  • the substrate 14 is a multilayer graphene
  • the ball 15 has a sphere 15a, which is a SUJ2 steel ball, and a protective film 15b formed of Si-DLC or H-DLC formed on the surface of the sphere 15a.
  • the friction tester 11 performs a ball-on-disk rotational friction, and the load of the ball 15 is 100 g (0.98 N). Further, the turning radius of the substrate 14 was set to 1.0 to 3.5 mm. Further, the rotation speed of the substrate 14 was set to 20 mm / s (55 to 191 rpm). The interior of the friction chamber 12 was filled with the atmosphere, and the relative humidity (RH) in the atmosphere was controlled to 10, 40, 70, and 80%, respectively. Further, the internal temperature of the friction chamber 12 was set to 22 ⁇ 1 ° C.
  • the ball 15 was manufactured by the bipolar PBII & D method (Si-DLC was formed on the surface of the SUJ2 steel ball).
  • This manufacturing method was performed as follows. First, the electrode and the SUJ2 steel ball were housed inside the chamber. Next, a film forming gas for forming a film on the SUJ2 steel ball was supplied from the gas supply device into the chamber. Further, a positive voltage and a negative voltage (pulse voltage) were alternately applied to the electrodes by a voltage application device. As a result, a plasma space was formed inside the chamber, and ions were generated by passing a film-forming gas through the plasma space. The ions formed Si-DLC on the surface of the SUJ2 steel ball.
  • the manufacturing conditions were such that the frequency of the pulse voltage was 4000 Hz and the gas pressure in the chamber was 0.4 Pa. Further, the pulse voltage was set to a positive voltage of +1.5 kV and a negative voltage of -5.0 kV. The film formation time was 2 hours. Then, a film forming gas was supplied into the chamber at a flow rate of 10 sccm. A gas containing TMS and toluene was used as a film forming gas.
  • TMS means tetramethylsilane.
  • FIG. 3 is a graph showing the friction coefficient (vertical axis) of the substrate 14 with respect to the friction time (horizontal axis) performed between the substrate 14 (multilayer graphene) and the ball 15 in the friction test apparatus 11 shown in FIG. is there.
  • FIG. 3 shows the results of a friction test example in the case where Si-DLCs having different Si contents (the protective film 15b of the ball 15) are used.
  • FIG. 3A shows the case where H-DLC is formed on the surface of the ball 15 (Si 0%) and the case where low Si content Si-DLC is formed (Si 9.4%) in the friction test apparatus 11 shown in FIG. , Si 7.9% and Si 3.4%).
  • H-DLC is formed by forming Si-DLC having a low Si content on the surface of the ball 15.
  • the coefficient of friction of the substrate 14 was able to be kept small as compared with the case of forming.
  • FIG. 3B shows a case where Si-DLC having a high Si content is formed on the surface of the ball 15 in the friction test apparatus 11 shown in FIG. 2 (Si 26.3%, Si 18.6%, Si 12.7%). ).
  • H-DLC is formed by forming Si-DLC having a high Si content on the surface of the ball 15.
  • the coefficient of friction of the substrate 14 was able to be suppressed smaller than that in the case of forming (for a friction time of 200 s).
  • Si-DLC having a high Si content was formed on the surface of the ball 15, the coefficient of friction of the substrate 14 rapidly increased in a short time, and the coefficient of friction of the substrate 14 was not stable.
  • the humidity in the friction chamber is set to 70% (medium humidity)
  • the substrate in the case where the Si-DLC having a low Si content and the Si-DLC having a high Si content are formed on the surface of the ball 15.
  • the change in the coefficient of friction of No. 14 will be described.
  • FIG. 4 (a) shows the friction when the Si-DLC having a Si content of 9.4% (Si-DLC having a low Si content) is formed on the surface of the ball 15 in the friction test apparatus 11 shown in FIG.
  • the cases where the internal humidity of the chamber 12 is 40% (low humidity) and 70% (medium humidity) are shown, respectively.
  • the friction coefficient of the substrate 14 can be kept low when the internal humidity of the friction chamber 12 is 40% or 70%, but when the humidity is 70%.
  • the coefficient of friction of the substrate 14 could be stabilized, as compared with the case where the coefficient of friction of the substrate 14 rapidly increased in a very short time.
  • FIG. 4B shows a case where Si-DLC having a Si content of 18.6% (Si-DLC having a high Si content) is formed on the surface of the ball 15 in the friction test apparatus 11 shown in FIG. ,
  • the case where the internal humidity of the friction chamber 12 is 40% (low humidity), 70% (medium humidity) and 80% (high humidity), respectively.
  • the friction coefficient of the substrate 14 can be kept small.
  • FIG. 5 shows an optical microscope image and a Raman spectrum showing the state of the substrate 14 after friction in the friction test apparatus 11 shown in FIG.
  • FIG. 5A shows an optical microscope image and a Raman spectrum when the Si content of the Si-DLC formed on the surface of the ball 15 is 9.4% and the internal humidity of the friction chamber 12 is 40%. Is shown.
  • FIG. 5B shows an optical microscope image and a Raman image when the Si content of the Si-DLC formed on the surface of the ball 15 is 18.6% and the internal humidity of the friction chamber 12 is 70%. The spectrum is shown.
  • FIG. 5C shows an optical microscope image and a Raman spectrum when H-DLC is formed on the surface of the ball 15 and the internal humidity of the friction chamber 12 is set to 40%.
  • reference numerals 1 to 3 attached to the Raman spectrum shown on the right side correspond to samples 1 to 3 attached to the optical microscope image shown on the left side. This indicates that was collected.
  • FIG. 5 shows that, by forming Si-DLC on the surface of the ball 15 that rubs against the substrate 14, a substance that cannot be detected when H-DLC is formed on the surface of the ball 15 is detected by friction marks on the substrate 14. It indicates that it was done.
  • FIG. 6 shows a graph for analyzing in detail the peaks indicated by reference signs X and Y in FIGS. 5A and 5B.
  • FIG. 6 is a graph showing peak intensity (vertical axis) with respect to Raman shift (horizontal axis).
  • the Raman spectrum indicated by “2” in FIG. 5A is located on the upper side
  • the Raman spectrum of Si-DLC is located on the lower side.
  • FIG. 6B is known to be a Raman spectrum of graphene. This indicates that the peak indicated by the symbol X in FIG. 5A is derived from Si-DLC transferred from the ball 15 to the substrate 14 due to friction between the substrate 14 and the ball 15. .
  • the peak indicated by the symbol Y in FIG. 5B is also considered to be a Si-DLC peak.
  • FIG. 7 shows the result of analyzing the Si-DLC transferred to the substrate 14 by X-ray photoelectron spectroscopy (XPS), and shows the relationship between the binding energy (horizontal axis) and the peak intensity (vertical axis).
  • FIG. 7A shows the Si2p peak
  • FIG. 7B shows the O1s peak.
  • Si-DLC Si 9.4% ball
  • Si—O is detected in a transfer track (wear track) composed of Si—DLC transferred to the substrate 14. Further, as shown in FIG.
  • Si—O shown in FIG. 7A is not derived from O 2 —Si but derived from Si—OH (O—Si—C). That is, FIG. 7 shows that the Si-DLC transferred to the substrate 14 by the friction between the substrate 14 and the ball 15 contains Si-OH in its molecules.
  • FIG. 8 shows an optical microscope image and a Raman spectrum showing the state of the substrate 14 after friction in the friction test apparatus 11 shown in FIG.
  • FIG. 8 is a diagram when the Si content of the Si-DLC formed on the surface of the ball 15 is 18.6% and the internal humidity of the friction chamber 12 is 80%
  • FIG. 3B is a graph showing a Raman spectrum of a sample collected at a location marked with a circle in FIG. FIG. 8B shows the relationship between the peak intensity (vertical axis) and the Raman shift (horizontal axis).
  • FIG. 9 shows the substrate 14 after friction in the friction test apparatus 11 shown in FIG. 2 analyzed by X-ray photoelectron spectroscopy (XPS).
  • FIG. 9A shows the relationship between the intensity of the O1s peak (vertical axis) and the binding energy (horizontal axis)
  • FIG. 9B shows the relationship between the intensity of the C1s peak (vertical axis) and the binding energy (horizontal axis). Shows the relationship.
  • FIG. 9A when Si-DLC having a Si content of 18.6% is used, when the internal humidity of the friction chamber 12 is 70%, O-Si-C is detected as an O1s peak.
  • FIG. 9B when the internal humidity of the friction chamber 12 was 80%, O 2 -Si was detected as the O1s peak. Further, as shown in FIG. 9B, when the internal humidity of the friction chamber 12 is 70% and 80%, mainly CC and CH are detected as C1s peaks. On the other hand, when the internal humidity of the friction chamber 12 is 80%, the peak intensity of CO in the C1s peak is larger than that when the internal humidity is 70%. That is, FIG. 9 shows that the friction was performed by a different mechanism when the humidity was 80% than when the humidity was 70%.
  • FIG. 10 is a diagram for describing a first friction mechanism of the friction structure shown in FIG.
  • FIG. 10 corresponds to a friction mechanism in the case of performing friction in the atmosphere having a humidity of less than 80% in the friction structure shown in FIG.
  • the first friction mechanism of the friction structure shown in FIG. 1 is as follows. First, friction is performed between the first member 2 and the second member 3. As a result, a part of the Si-DLC formed on the second member 3 is transferred to the graphene 2b of the first member 2 as the transfer material T.
  • Si-DLC has a property of dissociating and adsorbing moisture in the atmosphere to change Si—O in the molecule into Si—OH.
  • the Si-DLC transferred to the first member 2 and the Si-DLC contained in the second member 3 are dissociated and adsorbed by the Si—O in these molecules to remove the moisture in the atmosphere and to form Si—OH. Become.
  • a water molecule layer L is formed between the first member 2 and the second member 3.
  • the first member 2 and the second member 3 can perform friction via the water molecule layer L, and the frictional force of the friction generated between the first member 2 and the second member 3 can be reduced. Can be.
  • FIG. 11 is a view for explaining a second friction mechanism of the friction structure shown in FIG. FIG. 11 corresponds to a friction mechanism in the case of performing friction in the atmosphere having a humidity of 80% or more in the friction structure shown in FIG.
  • the second friction mechanism of the friction structure shown in FIG. 1 is as follows. First, by performing friction between the first member 2 and the second member 3, the frictional portion of the graphene 2 b formed on the first member 2 changes its structure into an amorphous hard carbon film, and this amorphous hard carbon film is formed. The carbon film dissociates and adsorbs moisture in the atmosphere to form C—OH in the molecules of the amorphous hard carbon film. On the other hand, the Si-DLC formed on the second member 3 dissociates and adsorbs moisture in the atmosphere, so that Si—O in the molecules of the Si—DLC becomes Si—OH.
  • the C—OH formed on the first member 2 and the Si—OH formed on the second member 3 form a hydrogen bond with the moisture in the atmosphere, thereby forming a connection between the first member 2 and the second member 3.
  • a water molecule layer L is formed therebetween.
  • the number of the water molecule layers L formed between the first member 2 and the second member 3 is 4 or more and 8 or less. Accordingly, the water molecule structure of the water molecule layer L has a structure similar to the water molecule structure immediately before the structure changes from a solid-like structure (ice-like structure) to a liquid structure. For this reason, the Si-DLC constituting the second member 3 adsorbs an appropriate amount of water molecules from the water molecule layer L, thereby reducing the frictional force generated between the first member 2 and the second member 3. Can be effectively reduced.
  • the portion of the first member 2 where friction occurs with the graphene 2 b is made of Si-DLC. Both the graphene 2b and the Si-DLC form a hydrogen bond with moisture in the atmosphere, and this moisture is formed as a water molecule layer L between the first member 2 and the second member 3, so that the water molecule layer L As a result, the frictional force generated between the first member 2 and the second member 3 can be reduced.
  • the friction structure 1 has a friction chamber for accommodating the first member 2 and the second member 3 and a friction chamber in accordance with the Si content of Si-DLC constituting the second member 3. And a humidity control unit for controlling the humidity of the air.
  • a humidity control unit for controlling the humidity of the air.
  • the humidity in the friction chamber 12 may be 80% or more.
  • the friction between the first member 2 and the second member 3 changes the structure of the graphene 2b of the first member 2 into an amorphous hard carbon film, and also includes C- in the molecules of the amorphous hard carbon film. OH can be formed. Thereby, hydrogen bonds can be generated with water molecules in the atmosphere together with Si—OH formed in the molecules of the Si-DLC of the second member 3 due to friction between the first member 2 and the second member 3.
  • the water molecule layer L can be more effectively formed between the first member 2 and the second member 3. For this reason, the frictional force generated between the first member 2 and the second member 3 can be further reduced.
  • the friction structure 1 can be applied to, for example, a micro-mold, a MEMS, and a protective film of a magnetic disk. Further, the friction structure 1 can be applied to a friction generator that performs friction power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

第1部材と第2部材とが摩擦するにあたり、第1部材と第2部材との間で生じる摩擦力を小さく抑える。第1部材の少なくとも一部はグラフェンで構成される。 摩擦構造体1において第1部材2と第2部材3とが摩擦する。第1部材2の少なくとも一部はグラフェン2bで構成されている。第2部材3において、第1部材2のグラフェン2bとの間で摩擦が行われる部分はSi-DLCにより構成されている。摩擦構造体1は、第1部材2と第2部材3とを収容する摩擦室と、第2部材3を構成するSi-DLCのSi含有率に応じて摩擦室内の湿度を制御する湿度制御部とをさらに備える。摩擦室内の湿度は80%以上であってもよい。

Description

摩擦構造体及びこれを用いた摩擦方法
 本発明は、少なくとも一部がグラフェンで構成された第1部材と、第2部材とが摩擦する摩擦構造体及びこれを用いた摩擦方法に関するものである。
 近年では、摩擦構造体として、少なくとも一部がグラフェンで構成された第1部材と、第2部材とが摩擦するものが使用される。グラフェンは、薄膜でありながら炭素系材料の中で最も機械的強度が高い材料である。このため、このような摩擦構造体は、第1部材の一部を薄膜のグラフェンで構成することによる摩擦構造体の大型化を回避でき、しかも、第1部材と第2部材との摩擦による第1部材の摩耗に対する耐久性を高めることができる。なお、グラフェンとは、sp結合がなされた炭素原子で構成された二次元シート構造を有する化合物である。
 例えば、特許文献1では、第1電極(第1部材)の上面に形成されたエネルギー発生層であるグラフェンと、第2電極(第2部材)とが摩擦して電気エネルギーを発生させる摩擦発電機(摩擦構造体)が提案されている。
特開2016-208816号公報
 しかし、上記特許文献1に記載の摩擦発電機(摩擦構造体)では、グラフェンとの間で摩擦が行われる第2部材の材料によっては、第1部材のグラフェンが摩耗したり第2部材の表面が剥離したりするおそれがある。例えば、第2部材を鋼で構成すると第1部材のグラフェンが摩耗するおそれがあり、第2部材の表面を非晶質硬質炭素膜で構成すると非晶質硬質炭素膜が第2部材の残りの部分から剥離するおそれがある。このため、第1部材のグラフェンを第2部材と摩擦する場合には、第1部材と第2部材との両方を保護するために、第1部材と第2部材との間で生じる摩擦力を小さく抑える必要がある。
 そこで、本発明は、少なくとも一部がグラフェンで構成された第1部材と、第2部材とが摩擦するにあたり、第1部材と第2部材との間で生じる摩擦力を小さく抑えることを目的とする。
 上記課題を解決するため、本発明は、少なくとも一部がグラフェンで構成された第1部材と、第2部材とが摩擦する摩擦構造体であって、前記第2部材において、前記第1部材のグラフェンとの間で摩擦が行われる部分はSi-DLCにより構成されていることを特徴とする。
 本発明によれば、第2部材において第1部材のグラフェンとの間で摩擦が行われる部分がSi-DLCにより構成されていることにより、当該摩擦によりグラフェンとSi-DLCとが共に大気中の水分と水素結合を生じ、この水分が第1部材と第2部材との間に水分子層として形成されるため、この水分子層により第1部材と第2部材との間で生じる摩擦力を小さく抑えることができる。
 また、前記摩擦構造体は、前記第1部材と前記第2部材とを収容する摩擦室と、前記第2部材を構成するSi-DLCのSi含有率に応じて前記摩擦室内の湿度を制御する湿度制御部とをさらに備えることができる。これにより、第1部材と第2部材とが収容される室内における湿度を制御することができ、第2部材を構成するSi-DLCのSi含有率に応じて第1部材と第2部材との間に効果的に水分子層を形成することができる。このため、第1部材と第2部材との間で生じる摩擦力を効果的に小さく抑えることができる。
 さらに、前記摩擦室内の湿度は80%以上であってもよい。これにより、第1部材と第2部材との摩擦により、第1部材のグラフェンを非晶質硬質炭素膜に構造変化させると共に、この非晶質硬質炭素膜の分子中にC-OHを形成することができる。これにより、第1部材と第2部材との摩擦により第2部材のSi-DLC分子中に形成されたSi-OHと共に、大気中の水分子と水素結合を生じさせることができ、第1部材と第2部材との間に水分子層をより効果的に形成することができる。このため、第1部材と第2部材との間で生じる摩擦力をさらに小さく抑えることができる。
 また、本発明は、少なくとも一部がグラフェンで構成された第1部材を第2部材と摩擦させる方法であって、前記第2部材において、前記第1部材のグラフェンとの間で摩擦が行われる部分はSi-DLCにより構成されていることを特徴とする。
 本発明によれば、第2部材において第1部材のグラフェンとの間で摩擦が行われる部分がSi-DLCにより構成されていることにより、当該摩擦によりグラフェンとSi-DLCとが共に大気中の水分と水素結合を生じ、この水分が第1部材と第2部材との間に水分子層として形成されるため、この水分子層により第1部材と第2部材との間で生じる摩擦力を小さく抑えることができる。 
 以上のように、本発明によれば、少なくとも一部がグラフェンで構成された第1部材と、第2部材とが摩擦するにあたり、第1部材と第2部材との間で生じる摩擦力を小さく抑えることができる。
本発明に係る摩擦構造体の一実施形態を示す概略図である。 図1に示す摩擦構造体の試験例における試験条件を説明するための図及び表である。 図1に示す摩擦構造体の試験例における結果を示すグラフである。 図1に示す摩擦構造体の試験例における結果を示すグラフである。 図1に示す摩擦構造体の試験例における結果を示す光学顕微鏡画像及びグラフである。 図1に示す摩擦構造体の試験例における摩擦メカニズムを分析するための図である。 図1に示す摩擦構造体の試験例における結果を示すグラフである。 図1に示す摩擦構造体の試験例における結果を示す光学顕微鏡画像及びグラフである。 図1に示す摩擦構造体の試験例における結果を示すグラフである。 本発明に係る摩擦構造体の第1摩擦メカニズムを説明するための図である。 本発明に係る摩擦構造体の第2摩擦メカニズムを説明するための図である。
 次に、本発明を実施するための形態について、図面を参照しながら詳細に説明する。まず、本発明に係る摩擦構造体の構成について説明する。
 図1は、本発明に係る摩擦構造体の一実施形態を示す概略図である。同図に示すように、摩擦構造体1は、少なくとも一部がグラフェンで構成された第1部材2と、第1部材2との間で摩擦が行われる第2部材3とを備えている。第1部材2は、基板2aと、基板2aに形成されたグラフェン2bとを備えている。ここで、基板2aは、SiO/Si基板である。また、第2部材3は、第1部材2のグラフェン2bとの間で摩擦が行われる部分がSi-DLCで構成されている。
 ここで、Si-DLCとは、分子中にSi(ケイ素)原子が含まれるダイヤモンドライクカーボンである。また、ダイヤモンドライクカーボンとは、非晶質硬質炭素膜のうち、黒鉛よりもダイヤモンドに近い特性を有するものである。さらに、非晶質硬質炭素膜とは、分子中にダイヤモンド結晶構造と黒鉛構造との両方を含む膜である。ダイヤモンド結晶構造とは、sp混成軌道を有する炭素原子(sp結合がなされた炭素原子)を含み正四面体に形成された分子構造である。また、黒鉛構造とは、sp混成軌道を有する炭素原子(sp結合がなされた炭素原子)により正六角形状の平面層に形成された分子構造である。非晶質硬質炭素膜は、低摩擦性、耐摩耗性、高硬度性、離型性、耐腐食性を有している。
 また、摩擦構造体1は、第1部材2と第2部材3とを収容する摩擦室(図示せず)と、この摩擦室内の湿度を制御する湿度制御部(図示せず)とをさらに備えている。ここで、湿度制御部は、第2部材3を構成するSi-DLCのSi含有率に応じて摩擦室内の湿度を制御する。
 次に、本発明に係る摩擦構造体の摩擦試験例における試験条件について説明する。
 図2は、図1に示す摩擦構造体の摩擦試験例を説明するための図及び表であり、(a)は摩擦試験装置の概略図を示し、(b)は摩擦試験条件を示す表であり、(c)はSi-DLCの成膜条件を示す表である。
 同図(a)に示すように、摩擦試験装置11は、摩擦室12と、摩擦室12の内部に設けられた載置台13と、載置台13の上面で回転する基板14(図1に示す第1部材2に相当)と、基板14に押しつけられるボール15(図1に示す第2部材3に相当)とを備えている。ここで、基板14は複層グラフェンであり、ボール15は、SUJ2鋼球である球体15aと、球体15aの表面に形成されたSi-DLC又はH-DLCで構成される保護膜15bとを有する。
 ここで、同図(b)に示すように、摩擦試験装置11はボールオンディスク型回転摩擦を行うものとし、ボール15の荷重は100g(0.98N)とした。また、基板14の回転半径を1.0~3.5mmとした。さらに、基板14の回転速度は20mm/s(55~191rpm)とした。また、摩擦室12の内部は大気で満たすと共に、この大気における相対湿度(RH)を10、40、70及び80%にそれぞれ制御した。さらに、摩擦室12の内部温度は22±1℃とした。
 また、同図(c)に示すように、バイポーラPBII&D法によりボール15を製造した(SUJ2鋼球の表面にSi-DLCを形成した)。この製造方法は、次のように行った。まず、チャンバの内部に電極及びSUJ2鋼球を収容した。次に、ガス供給装置からSUJ2鋼球に成膜するための成膜ガスをチャンバの内部に供給した。さらに、電圧印加装置により正電圧及び負電圧(パルス電圧)を交互に電極に印加した。これにより、チャンバの内部にプラズマ空間を形成し、このプラズマ空間に成膜ガスを通過させることでイオンを発生させ、このイオンによりSUJ2鋼球の表面にSi-DLCを形成した。
 ここで、この製造条件(成膜条件)は、パルス電圧の周波数を4000Hzとし、チャンバ内のガス圧力を0.4Paとした。さらに、パルス電圧は、正電圧を+1.5kVとすると共に負電圧を-5.0kVとした。また、成膜時間は2hとした。そして、成膜ガスを10sccmの流量でチャンバ内に供給した。また、成膜ガスには、TMSとトルエンとを含むものを使用した。ここで、TMSとはテトラメチルシランを意味している。なお、比較例としてSi-DLCに代えてH-DLCを成膜する場合には、成膜ガスにはトルエンのみを含むものを使用した。
 さらに、本発明に係る摩擦構造体の摩擦試験例における結果について説明する。具体的には、グラフェンとの間で摩擦が行われるSi-DLCのSi含有率と摩擦環境における大気中の湿度との関係、この関係から導き出した好適な摩擦条件、この摩擦条件と通常の摩擦条件との摩擦メカニズムの差異点について説明する。
 図3は、図2に示す摩擦試験装置11において基板14(複層グラフェン)とボール15との間で行われた摩擦時間(横軸)に対する基板14の摩擦係数(縦軸)を示すグラフである。また、図3には、異なるSi含有率を有するSi-DLC(ボール15の保護膜15b)を使用した場合における摩擦試験例の結果が示されている。
 図3(a)は、図2に示す摩擦試験装置11においてボール15の表面にH-DLCを形成する場合(Si0%)及び低Si含有率のSi-DLCを形成する場合(Si9.4%、Si7.9%、Si3.4%)を示している。図3(a)に示されるように、摩擦室12の内部湿度が40%(低湿度)である場合、ボール15の表面に低Si含有率のSi-DLCを形成することでH-DLCを形成する場合に比較して基板14の摩擦係数を小さく抑えることができた。特に、Si含有率が7.9%以上9.4%以下のSi-DLCを形成することで、Si含有率が3.4%のSi-DLCを形成する場合に見られた微小時間における基板14の摩擦係数の急上昇を防止することができ、基板14の摩擦係数μを0.042~0.049で安定させることができた。
 また、図3(b)は、図2に示す摩擦試験装置11においてボール15の表面に高Si含有率のSi-DLCを形成する場合(Si26.3%、Si18.6%、Si12.7%)を示している。図3(b)に示されるように、摩擦室12の内部湿度が40%(低湿度)である場合、ボール15の表面に高Si含有率のSi-DLCを形成することでH-DLCを形成する場合に比較して基板14の摩擦係数を小さく抑えることができた(摩擦時間200sまでの間)。しかし、ボール15の表面に高Si含有率のSi-DLCを形成する場合、微小時間における基板14の摩擦係数の急上昇が見られ、基板14の摩擦係数は安定しなかった。
 したがって、図3に示すように、低湿度大気である摩擦環境(摩擦室12内)においては、摩擦部材(ボール15)に形成するSi-DLCのSi含有率が低い場合は、Si-DLCとの間で摩擦が行われるグラフェン(基板14)の摩擦係数を小さく抑えることに加え、グラフェンの摩擦係数が小さい状態で安定させることができる。これに対し、摩擦部材(ボール15)に形成するSi-DLCのSi含有率が高い場合は、Si-DLCとの間で摩擦が行われるグラフェン(基板14)の摩擦係数を小さく抑えることができるが、グラフェンの摩擦係数を小さい状態で安定させることはできない。
 そこで、次に、摩擦室内の湿度を70%(中湿度)にした場合において、ボール15の表面に低Si含有率のSi-DLCと高Si含有率のSi-DLCとを形成した場合における基板14の摩擦係数の変化について説明する。
 図4(a)は、図2に示す摩擦試験装置11においてボール15の表面にSi含有率が9.4%のSi-DLC(低Si含有率のSi-DLC)を形成する場合において、摩擦室12の内部湿度が40%(低湿度)及び70%(中湿度)である場合をそれぞれ示している。図4(a)に示されるように、摩擦室12の内部湿度が40%及び70%のいずれの場合も、基板14の摩擦係数を小さく抑えることができるが、湿度が70%である場合には微小時間における基板14の摩擦係数の急上昇が見られるのに比較して、湿度が40%である場合は基板14の摩擦係数を安定させることができた。
 一方、図4(b)は、図2に示す摩擦試験装置11においてボール15の表面にSi含有率が18.6%のSi-DLC(高Si含有率のSi-DLC)を形成する場合において、摩擦室12の内部湿度が40%(低湿度)、70%(中湿度)及び80%(高湿度)である場合をそれぞれ示している。図4(b)に示されるように、摩擦室12の内部湿度が40%、70%及び80%のいずれの場合であっても、基板14(複層グラフェン)の摩擦係数を小さく抑えることができるが(低湿度の場合は摩擦時間200sまでの間)、湿度が40%である場合には微小時間における基板14の摩擦係数の急上昇が見られるのに対し、湿度が70%である場合には基板14の摩擦係数を安定させることができた。
 つまり、図4に示すように、グラフェンとSi-DLCとを摩擦するにあたっては、Si-DLCのSi含有率及び摩擦環境の大気中の湿度にかかわらず、グラフェンの摩擦係数を小さく抑えることができる。しかし、グラフェンの摩擦係数を小さい状態で安定させるためには、低湿度環境においてSi含有率が小さいSi-DLCを使用するか、又は、中湿度環境においてSi含有率が大きいSi-DLCを使用する必要がある。
 ところで、図4(b)に示すように、摩擦室内の湿度が80%である場合は、摩擦室内の湿度が40%及び70%である場合に比較して、基板14の摩擦係数をより小さく抑えることができると共に(摩擦係数μ=0.035)、基板14の摩擦係数が微小時間に急上昇することなく安定している。このため、摩擦室内の湿度が80%未満である場合と80%以上である場合とで、摩擦メカニズムが共通するのか否かを以下において分析した。
 まず、摩擦環境(摩擦室内)の湿度が80%未満である場合における摩擦メカニズムの分析結果について説明する。
 図5は、図2に示す摩擦試験装置11における摩擦後の基板14の状態を示す光学顕微鏡画像及びラマンスペクトルを示している。図5(a)は、ボール15の表面に形成されるSi-DLCのSi含有率が9.4%であり、摩擦室12の内部湿度が40%である場合における光学顕微鏡画像及びラマンスペクトルを示している。さらに、図5(b)は、ボール15の表面に形成されるSi-DLCのSi含有率が18.6%であり、摩擦室12の内部湿度が70%である場合における光学顕微鏡画像及びラマンスペクトルを示している。さらに、図5(c)は、ボール15の表面にH-DLCを形成すると共に、摩擦室12の内部湿度を40%とした場合における光学顕微鏡画像及びラマンスペクトルを示している。ここで、図5(a)~(c)それぞれにおいて、右側に示されるラマンスペクトルに付された符号1~3は、左側に示される光学顕微鏡画像に付された符号1~3の箇所で試料を採取したことを示している。
 図5(a)~(c)における「2」で示されるラマンスペクトルにおいて、図5(a)(b)で検出されたピーク(符号X、Yが付された部分のピーク)に相当するピークが図5(c)では検出されなかった。つまり、図5は、基板14と摩擦を行うボール15の表面にSi-DLCを形成することで、ボール15の表面にH-DLCを形成する場合では検出されない物質が基板14の摩擦痕で検出されたことを示している。
 図6は、図5(a)(b)において符号X、Yによって示されるピークを詳細に解析するためのグラフを示している。図6は、ラマンシフト(横軸)に対するピーク強度(縦軸)を示すグラフである。図6(a)において、図5(a)の「2」で示されたラマンスペクトルが上側に位置しており、Si-DLCのラマンスペクトルが下側に位置している。ここで、図6(a)における上側のラマンスペクトルから下側のラマンスペクトルを差し引くと、図6(b)に示すようになる。また、図6(b)は、グラフェンのラマンスペクトルであることが知られている。このことから、図5(a)において符号Xで示されるピークは、基板14とボール15との摩擦によりボール15から基板14へ移着したSi-DLCに由来するものであることが示された。なお、図5(b)において符号Yで示されるピークも、同様にSi-DLCのピークであると考えられる。
 そこで、ボール15から基板14へ移着したSi-DLCの具体的な化学構造について分析した。図7は、基板14に移着したSi-DLCをX線光電子分光分析(XPS)で解析したものであり、結合エネルギー(横軸)に対するピーク強度(縦軸)の関係を示している。図7(a)はSi2pピークを示しており、図7(b)はO1sピークを示している。図7(a)に示すように、ボール15の表面に形成されたSi含有率が9.4%のSi-DLC(Si9.4% ball)においてはSi-Cが検出されているのに対し、基板14に移着したSi-DLCで構成される移着物(wear track)においてはSi-Oが検出されている。また、図7(b)に示すように、図7(a)に示されるSi-Oは、O-Si由来のものではなくSi-OH(O-Si-C)由来のものである。つまり、図7は、基板14とボール15との摩擦により基板14に移着したSi-DLCが、その分子中にSi-OHを含むことを示している。
 次に、摩擦環境(摩擦室内)の湿度が80%以上である場合における摩擦メカニズムの分析結果について説明する。
 図8は、図2に示す摩擦試験装置11における摩擦後の基板14の状態を示す光学顕微鏡画像及びラマンスペクトルを示している。図8は、ボール15の表面に形成されるSi-DLCのSi含有率が18.6%であり、摩擦室12の内部湿度が80%である場合における図であり、(a)は摩擦後における基板14の光学顕微鏡画像、(b)は(a)において丸印が付された箇所で採取した試料のラマンスペクトルを示すグラフである。また、図8(b)は、ラマンシフト(横軸)に対するピーク強度(縦軸)の関係を示している。
 Si含有率が18.6%のSi-DLCを摩擦に使用するにあたっては、図5(b)に示すように、摩擦室12の内部湿度が70%である場合には基板14にグラフェン由来の摩擦痕が残されているのに対し、図8(a)に示すように、摩擦室12の内部湿度が80%である場合には基板14にグラフェン由来の摩擦痕が残されていない。また、図8(b)に示されるように、ラマンスペクトルからはSi-DLCが検出されなかった。よって、湿度が80%である場合には湿度が70%である場合とは異なる摩擦メカニズムで摩擦が行われると考えられる。そこで、この場合における摩擦メカニズムの分析を行った。
 図9は、図2に示す摩擦試験装置11における摩擦後の基板14をX線光電子分光分析(XPS)で解析したものである。図9(a)は結合エネルギー(横軸)に対するO1sピークの強度(縦軸)の関係を示しており、図9(b)は結合エネルギー(横軸)に対するC1sピークの強度(縦軸)の関係を示している。図9(a)に示すように、Si含有率が18.6%のSi-DLCを使用する場合、摩擦室12の内部湿度が70%である場合はO1sピークとしてO-Si-Cが検出されたのに対し、摩擦室12の内部湿度が80%である場合はO1sピークとしてO-Siが検出された。さらに、図9(b)に示すように、摩擦室12の内部湿度が70%及び80%である場合、共にC1sピークとして主にC-CおよびC-Hが検出されている。これに対し、摩擦室12の内部湿度が80%である場合には、70%である場合に比較してC1sピーク中のC-Oのピーク強度が大きくなっている。つまり、図9は、湿度が80%である場合は湿度が70%である場合とは異なるメカニズムで摩擦が行われたことを示している。
 最後に、本発明に係る摩擦構造体の摩擦メカニズムについて説明する。図10は、図1に示す摩擦構造体の第1摩擦メカニズムについて説明するための図である。また、図10は、図1に示す摩擦構造体において湿度80%未満の大気で摩擦を行う場合における摩擦メカニズムに相当する。
 図10に示すように、図1に示す摩擦構造体の第1摩擦メカニズムは次の通りである。まず、第1部材2と第2部材3とで摩擦を行う。これにより、第2部材3に形成されたSi-DLCの一部が移着物Tとして第1部材2のグラフェン2bに移着する。ここで、Si-DLCは、大気中の水分を解離吸着することで、その分子中のSi-OをSi-OHに変化させる性質を有している。これにより、第1部材2に移着したSi-DLCと第2部材3に含まれるSi-DLCとは、これらの分子中のSi-Oが大気中の水分を解離吸着してSi-OHとなる。さらに、これらSi-OHと大気中の水分子とが水素結合を行うため、第1部材2と第2部材3との間に水分子層Lが形成される。これにより、第1部材2と第2部材3とが水分子層Lを介して摩擦を行うことができ、第1部材2と第2部材3との間で生じる摩擦の摩擦力を小さく抑えることができる。
 図11は、図1に示す摩擦構造体の第2摩擦メカニズムについて説明するための図である。また、図11は、図1に示す摩擦構造体において湿度80%以上の大気で摩擦を行う場合における摩擦メカニズムに相当する。
 図11に示すように、図1に示す摩擦構造体の第2摩擦メカニズムは次の通りである。まず、第1部材2と第2部材3とで摩擦を行うことで、第1部材2に形成されたグラフェン2bの摩擦部分が非晶質硬質炭素膜に構造変化すると共に、この非晶質硬質炭素膜が大気中の水分を解離吸着することで非晶質硬質炭素膜の分子中にC-OHが形成される。その一方で、第2部材3に形成されたSi-DLCが大気中の水分を解離吸着することで、このSi-DLCの分子中のSi-OがSi-OHとなる。さらに、第1部材2に形成されたC-OHと第2部材3に形成されたSi-OHとが大気中の水分と水素結合を生じることで、第1部材2と第2部材3との間に水分子層Lが形成される。これにより、第1部材2と第2部材3とが水分子層Lを介して摩擦を行うことができ、第1部材2と第2部材3との間で生じる摩擦の摩擦力を小さく抑えることができる。
 ここで、第1摩擦メカニズム及び第2摩擦メカニズムにおいて、第1部材2と第2部材3との間に形成される水分子層Lの層数は4以上8以下であることが好ましい。これにより、水分子層Lの水分子構造が、固体のような構造(ice-like構造)から液体構造に変化する直前の水分子構造と同様の構造となる。このため、第2部材3を構成するSi-DLCが水分子層Lから適量の水分子を吸着することで、第1部材2と第2部材3との間で生じる摩擦力を水分子層Lにより効果的に低減することができる。
 以上のように、上記実施の形態によれば、第2部材3において、第1部材2のグラフェン2bとの間で摩擦が行われる部分がSi-DLCにより構成されていることにより、当該摩擦によりグラフェン2bとSi-DLCとが共に大気中の水分と水素結合を生じ、この水分が第1部材2と第2部材3との間に水分子層Lとして形成されるため、この水分子層Lにより第1部材2と第2部材3との間で生じる摩擦力を小さく抑えることができる。
 また、上記実施の形態において、摩擦構造体1は、第1部材2と第2部材3とを収容する摩擦室と、第2部材3を構成するSi-DLCのSi含有率に応じて摩擦室内の湿度を制御する湿度制御部とをさらに備えることができる。これにより、第1部材2と第2部材3とが収容される室内における湿度を制御することができ、第2部材3を構成するSi-DLCのSi含有率に応じて第1部材2と第2部材3との間に効果的に水分子層Lを形成することができる。このため、第1部材2と第2部材3との間で生じる摩擦力を効果的に小さく抑えることができる。
 さらに、上記実施の形態において、摩擦室12内の湿度は80%以上であってもよい。これにより、第1部材2と第2部材3との摩擦により、第1部材2のグラフェン2bを非晶質硬質炭素膜に構造変化させると共に、この非晶質硬質炭素膜の分子中にC-OHを形成することができる。これにより、第1部材2と第2部材3との摩擦により第2部材3のSi-DLCの分子中に形成されたSi-OHと共に、大気中の水分子と水素結合を生じさせることができ、第1部材2と第2部材3との間により効果的に水分子層Lを形成することができる。このため、第1部材2と第2部材3との間で生じる摩擦力をさらに小さく抑えることができる。
 なお、上記実施の形態において、摩擦構造体1は、例えば、マイクロ金型、MEMS、磁気ディスクの保護膜に適用することができる。さらに、摩擦構造体1は、摩擦発電を行う摩擦発電機にも適用することができる。
1 摩擦構造体
2 第1部材
2a 基板
2b グラフェン
3 第2部材
11 摩擦試験装置
12 摩擦室
13 載置台
14 基板
15 ボール
15a 球体
15b 保護膜

Claims (4)

  1.  少なくとも一部がグラフェンで構成された第1部材と、第2部材とが摩擦する摩擦構造体であって、
     前記第2部材において、前記第1部材のグラフェンとの間で摩擦が行われる部分はSi-DLCにより構成されていることを特徴とする摩擦構造体。
  2.  前記摩擦構造体は、
     前記第1部材と前記第2部材とを収容する摩擦室と、
     前記第2部材を構成するSi-DLCのSi含有率に応じて前記摩擦室内の湿度を制御する湿度制御部とをさらに備えることを特徴とする請求項1に記載の摩擦構造体。
  3.  前記摩擦室内の湿度は、80%以上であることを特徴とする請求項2に記載の摩擦構造体。
  4.  少なくとも一部がグラフェンで構成された第1部材を第2部材と摩擦させる方法であって、
     前記第2部材において、前記第1部材のグラフェンとの間で摩擦が行われる部分はSi-DLCにより構成されていることを特徴とする摩擦方法。
PCT/JP2019/029254 2018-07-26 2019-07-25 摩擦構造体及びこれを用いた摩擦方法 WO2020022446A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139978 2018-07-26
JP2018139978A JP2020015652A (ja) 2018-07-26 2018-07-26 摩擦構造体及びこれを用いた摩擦方法

Publications (1)

Publication Number Publication Date
WO2020022446A1 true WO2020022446A1 (ja) 2020-01-30

Family

ID=69181617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029254 WO2020022446A1 (ja) 2018-07-26 2019-07-25 摩擦構造体及びこれを用いた摩擦方法

Country Status (2)

Country Link
JP (1) JP2020015652A (ja)
WO (1) WO2020022446A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555655A (zh) * 2020-05-16 2020-08-18 西安工业大学 基于三维石墨烯的集成微纳能量回收存储芯片及其工作方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7417916B2 (ja) * 2018-11-06 2024-01-19 株式会社ダイセル 炭素移着膜が形成された摺動部材

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220415A1 (en) * 2009-08-18 2011-09-15 Exxonmobil Research And Engineering Company Ultra-low friction coatings for drill stem assemblies
CN203069440U (zh) * 2013-01-29 2013-07-17 广州有色金属研究院 一种摩擦磨损试验机的湿度调节装置
US20150197701A1 (en) * 2012-07-19 2015-07-16 Uchicago Argonne, Llc Superlubricating graphene and graphene oxide films
US20170120293A1 (en) * 2014-06-19 2017-05-04 Uchicago Argonne, Llc Low friction wear resistant graphene films

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110220415A1 (en) * 2009-08-18 2011-09-15 Exxonmobil Research And Engineering Company Ultra-low friction coatings for drill stem assemblies
US20150197701A1 (en) * 2012-07-19 2015-07-16 Uchicago Argonne, Llc Superlubricating graphene and graphene oxide films
CN203069440U (zh) * 2013-01-29 2013-07-17 广州有色金属研究院 一种摩擦磨损试验机的湿度调节装置
US20170120293A1 (en) * 2014-06-19 2017-05-04 Uchicago Argonne, Llc Low friction wear resistant graphene films

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111555655A (zh) * 2020-05-16 2020-08-18 西安工业大学 基于三维石墨烯的集成微纳能量回收存储芯片及其工作方法
CN111555655B (zh) * 2020-05-16 2021-07-20 西安工业大学 基于三维石墨烯的集成微纳能量回收存储芯片及其工作方法

Also Published As

Publication number Publication date
JP2020015652A (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
Erdemir et al. Achieving superlubricity in DLC films by controlling bulk, surface, and tribochemistry
Sutton et al. The friction of diamond-like carbon coatings in a water environment
Erdemir Genesis of superlow friction and wear in diamondlike carbon films
Andersson et al. Friction of diamond-like carbon films in different atmospheres
WO2020022446A1 (ja) 摩擦構造体及びこれを用いた摩擦方法
Liu et al. Fluorinated graphene: A promising macroscale solid lubricant under various environments
JP4078317B2 (ja) 固体表面の評価方法、磁気ディスクの評価方法、磁気ディスクおよびその製造方法
Marino et al. Understanding run-in behavior of diamond-like carbon friction and preventing diamond-like carbon wear in humid air
Erdemir et al. Synthesis of superlow-friction carbon films from highly hydrogenated methane plasmas
Chen et al. Structural and environmental dependence of superlow friction in ion vapour-deposited aC: H: Si films for solid lubrication application
JP2007257756A (ja) 磁気ディスクの製造方法及び磁気ディスク
Liu et al. Effect of oil temperature and counterpart material on the wear mechanism of ta-CNx coating under base oil lubrication
Ronkainen et al. Environmental and thermal effects on the tribological performance of DLC coatings
Zhou et al. Friction and wear property of a-CNx coatings sliding against Si3N4 balls in water
Grill et al. Tribological behavior of diamond-like carbon: effects of preparation conditions and annealing
JP5841596B2 (ja) 非晶質炭素膜層への撥水撥油層を固定する方法及び該方法により形成された積層体
Shi et al. Tribological properties of hydrogenated amorphous carbon films in different atmospheres
Sharma et al. Tribological properties of ultra nanocrystalline diamond film-effect of sliding counterbodies
Park et al. Tribochemical reaction of hydrogenated diamond-like carbon films: a clue to understand the environmental dependence
Konca et al. Dry sliding behaviour of non-hydrogenated DLC coatings against Al, Cu and Ti in ambient air and argon
Wang et al. Low friction of graphene nanocrystallite embedded carbon nitride coatings prepared with MCECR plasma sputtering
Li et al. Effects of tribochemical reaction on tribological behaviors of Si3N4/polycrystalline diamond in hydrochloric acid
JP2009289411A (ja) 磁気ディスクおよび製造方法
US8071164B1 (en) Method for lubricating contacting surfaces
US20150044510A1 (en) Method and material for protecting magnetic information storage media

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840523

Country of ref document: EP

Kind code of ref document: A1