WO2020022443A1 - Joint - Google Patents

Joint Download PDF

Info

Publication number
WO2020022443A1
WO2020022443A1 PCT/JP2019/029250 JP2019029250W WO2020022443A1 WO 2020022443 A1 WO2020022443 A1 WO 2020022443A1 JP 2019029250 W JP2019029250 W JP 2019029250W WO 2020022443 A1 WO2020022443 A1 WO 2020022443A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
refrigerant
main body
heat exchanger
tube
Prior art date
Application number
PCT/JP2019/029250
Other languages
French (fr)
Japanese (ja)
Inventor
俊 吉岡
祥志 松本
智己 廣川
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP19841770.1A priority Critical patent/EP3828490B1/en
Publication of WO2020022443A1 publication Critical patent/WO2020022443A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • F28F9/268Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators by permanent joints, e.g. by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0252Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2225/00Reinforcing means
    • F28F2225/04Reinforcing means for conduits

Definitions

  • a joint that connects a multi-hole flat tube and a circular tube, and allows carbon dioxide refrigerant to pass through.
  • a multi-well flat tube In a refrigeration system using carbon dioxide as the working fluid, a multi-well flat tube is used. On the other hand, when a multi-hole flat tube is used for a refrigerating apparatus, a multi-hole flat tube and a circular tube are sometimes connected, and a joint for connecting these is proposed (for example, Patent Document 1 (WO2014 / 199514)). )).).
  • the joint according to the first aspect is a joint through which a CO 2 refrigerant passes.
  • the joint connects the multi-hole flat tube and the circular tube.
  • the multi-hole flat tube has a thickness T and a width W. W> T.
  • the width of the multi-hole flat tube is a direction in which a plurality of holes are arranged.
  • the thickness direction and the width direction of the multi-hole flat tube are defined as the longitudinal direction and the lateral direction of the joint, respectively.
  • the joint includes a first connection portion and a main body.
  • the first connecting portion covers the outside of the end of the multi-hole flat tube.
  • the main body is continuous from the first connection.
  • the inner diameter of the main body in the vertical direction is larger than the inner diameter of the first connection portion in the vertical direction.
  • the inner diameter in the longitudinal direction of the main body is larger than the inner diameter in the longitudinal direction of the first connecting portion, so that oil stays near the multi-hole flat tube on the inner peripheral surface of the first connecting portion. Hateful.
  • the joint of the second aspect is the joint of the first aspect, in which the main body portion has a region in which the inner diameter in the vertical direction gradually increases as the distance from the first connection portion increases.
  • the main body portion gradually increases in inner diameter in the vertical direction as the distance from the first connection portion increases, so that the inner peripheral surface of the first connection portion is closer to the multi-hole flat tube. It is difficult for oil to stay.
  • the joint of the third aspect is the joint of the first aspect or the second aspect, and further includes a second connection portion.
  • the second connecting portion is continuous from the main body.
  • the second connecting portion covers the outside of the end of the circular tube.
  • a joint according to a fourth aspect is the joint according to the third aspect, wherein the first connection portion is formed by processing one end of a circular pipe.
  • the joint according to the fourth aspect can be manufactured by processing a circular pipe, so that the manufacturing cost is low.
  • the joint according to the fifth aspect is the joint according to the third aspect or the fourth aspect, wherein the thickness of the pipe of the joint is greater than the thickness of the circular pipe.
  • the circular pipe is intended to be a circular pipe to which the joint is connected.
  • the joint according to the sixth aspect is the joint according to any one of the first to fifth aspects, and further includes a reinforcing portion.
  • the reinforcing portion reinforces the strength of the joint.
  • the joint of the sixth aspect uses the reinforcing portion, the strength is easily maintained even when the refrigerant pressure of the main body portion is high.
  • the joint according to the seventh aspect is any one of the joints according to the first aspect to the sixth aspect, and is formed by bonding two or more members.
  • the joint according to the eighth aspect is the joint according to the first aspect or the second aspect, wherein the main body is a part of a circular pipe.
  • the joint according to the ninth aspect is the joint according to any one of the first to eighth aspects, and further has a flat portion that is continuous from the main body and does not form a refrigerant passage.
  • a joint according to a tenth aspect is the joint according to the sixth aspect, wherein the reinforcing portion extends in the coolant flow path in the vertical direction.
  • the reinforcing portion is arranged to extend in the longitudinal direction in the refrigerant flow path, the expansion in the longitudinal direction inside the main body portion can be suppressed.
  • a joint according to an eleventh aspect is the joint according to the sixth aspect, wherein the reinforcing portion is disposed outside the coolant flow path and in contact with the outer surface of the main body.
  • the joint of the twelfth aspect is the joint of the sixth aspect, and further has a flat portion that is continuous from the main body and does not form a passage for the refrigerant.
  • the reinforcing portion is disposed outside the coolant flow path in contact with the outer surface of the main body 302 and the surface of the flat portion.
  • the heat exchanger of the present disclosure includes the joint according to any one of the first to twelfth aspects and a multi-hole flat tube.
  • the multi-hole flat tube is connected to the joint.
  • the air conditioner of the present disclosure is an air conditioner provided with a heat exchanger.
  • FIG. 2 is a refrigerant circuit diagram of the refrigeration apparatus 1 according to the first embodiment.
  • FIG. 3 is a side view of the heat exchanger 4 according to the first embodiment in the vicinity of the folded portion 33.
  • FIG. 4 is a longitudinal sectional view of the joint 34 according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the joint 34 according to the first embodiment. Sectional drawing in section S of the heat exchanger tube 30 in the heat exchanger of modification 2A. Sectional drawing in section S of heat exchanger tube 30 in heat exchanger 4 of a 2nd embodiment.
  • FIG. 14 is an external perspective view of a joint 34c and a reinforcing portion 304c according to a third embodiment of the third embodiment.
  • FIG. 18 is an external perspective view of a joint 34d and a reinforcing portion 304d according to a fourth embodiment of the third embodiment.
  • FIG. 1 shows a refrigerant circuit configuration of refrigeration apparatus 1 of the first embodiment.
  • the refrigeration apparatus 1 of the present embodiment is an apparatus that performs a two-stage compression refrigeration cycle using carbon dioxide that is a refrigerant that operates in a supercritical region.
  • the refrigerating apparatus 1 of the present embodiment can be used for an air conditioner for performing cooling and heating, a water heater and the like, and the like.
  • the refrigerant circuit of the refrigeration apparatus 1 of the present embodiment mainly includes a compressor 2, a four-way switching valve 3, a heat source side heat exchanger 4, an expansion mechanism 5, a use side heat exchanger 6, and an intercooler 7.
  • a compressor 2 a compressor 2 a four-way switching valve 3
  • a heat source side heat exchanger 4 an expansion mechanism 5 a use side heat exchanger 6, and an intercooler 7.
  • the compressor 2 is a two-stage compressor that compresses the refrigerant in two stages by the two compression elements 2c and 2d.
  • the compressor 2 sucks the refrigerant from the suction pipe 2a, compresses the sucked refrigerant by the first-stage compression element 2c, and discharges the compressed refrigerant to the intermediate refrigerant pipe 8.
  • the refrigerant discharged to the intermediate refrigerant pipe 8 is further drawn into the second stage compression element 2d, compressed, and discharged to the discharge pipe 2b.
  • the discharge pipe 2b is a refrigerant pipe for sending the refrigerant discharged from the compressor 2 to the four-way switching valve 3.
  • the discharge pipe 2b is provided with an oil separator 41 and a check valve 42.
  • the oil separator 41 separates refrigerant oil mixed with the refrigerant discharged from the compressor 2 from the refrigerant.
  • the separated oil is depressurized by the capillary tube 41c and returned to the suction pipe 2a of the compressor 2 via the oil return pipe 41b.
  • the refrigerating machine oil of the present embodiment is not particularly limited as long as it is a refrigerating machine oil used for a CO 2 refrigerant.
  • the refrigerator oil include PAG (polyalkylene glycols) and POE (polyol esters).
  • the four-way switching valve 3 can switch the flow of the refrigerant flowing through the path connecting the heat source side heat exchanger 4, the expansion mechanism 5, and the use side heat exchanger 6 between a forward direction and a reverse direction.
  • the refrigerant flowing out of the compressor 2 flows from the heat source side heat exchanger 4 to the use side heat exchanger 6.
  • the heat source side heat exchanger 4 is a radiator, and the use side heat exchanger 6 is an evaporator.
  • the refrigerant flowing out of the compressor 2 flows from the use side heat exchanger 6 to the heat source side heat exchanger 4.
  • the use side heat exchanger 6 is a radiator, and the heat source side heat exchanger 4 is an evaporator.
  • An intermediate cooler 7 and a check valve 15 are provided in the middle of the intermediate refrigerant pipe 8. That is, the refrigerant that has been compressed by the first-stage compression element 2c exchanges heat with air in the intercooler 7, and flows into the second-stage compression element 2d again.
  • the intermediate refrigerant pipe 8 is provided with an intermediate cooler bypass pipe 9 so as to bypass the intermediate cooler 7. That is, the refrigerant flowing through the first-stage compression element 2c and the intercooler bypass pipe 9 flows into the second-stage compression element 2d without passing through the intercooler 7.
  • the flow of the refrigerant to the intercooler 7 or the flow of the refrigerant to the intercooler bypass pipe 9 is switched by the on-off valves 11 and 12.
  • a refrigerant flows through the intermediate cooler 7, and conversely, when the use-side heat exchanger 6 is used as a radiator, the intermediate cooling is used. It controls so that a refrigerant
  • coolant may flow into the container bypass pipe 9. That is, the use of the intercooler 7 is basically for cooling.
  • the refrigerating apparatus 1 of the present embodiment uses a two-stage compression compressor, but the same applies when two compressors are used. Further, a compressor having three or more stages or a compression mechanism may be used.
  • the outdoor unit 10 houses the fan 40, the compressor 2, the heat source side heat exchanger 4, the intercooler 7, the expansion mechanism 5, the four-way switching valve 3, and the oil separator 41 in the casing 20.
  • FIG. 2 is an external perspective view of the outdoor unit 10
  • FIG. 3A is a perspective view of a part of the heat source side heat exchanger 4.
  • the heat source side heat exchanger 4 of the present embodiment is disposed on three inner sides of the casing 20 of the outdoor unit 10, as shown in FIG.
  • the fan 40 rotates, air around the casing 20 is taken in from three sides and passes through the heat source side heat exchanger 4.
  • the air that has entered the casing 20 passes through the fan 40 and is blown out upward from the upper surface of the casing 20. Therefore, the outdoor unit 10 of the present embodiment is a top blow type. The air exchanges heat with the refrigerant while passing through the heat exchanger 4 to be heated or cooled.
  • the heat exchanger 4 includes a heat transfer tube 30 through which a refrigerant flows, and metal fins 50 that promote heat exchange between the refrigerant and air.
  • the heat transfer tube 30 of the present embodiment is a multi-hole flat tube. In the multi-hole flat tube, a plurality of holes through which the refrigerant flows are arranged in the width direction.
  • the refrigerant is introduced into the heat transfer tube 30 from outside the heat exchanger 4 at the first end 4a.
  • the refrigerant flows from the first end 4a to three sides of the heat transfer tube 30 that is bent at 90 degrees at two locations, and reaches the second end 4b.
  • the flow direction is reversed by 180 °, flows again on the three side surfaces, and returns to the first end 4a.
  • the refrigerant flows out of the heat exchanger 4 from the heat transfer tube 30 at the first end 4a.
  • the heat transfer tube forming the refrigerant flow path from the first end 4a to the second end 4b is referred to as a first heat transfer tube 30a, and the heat transfer tube through which the refrigerant flows in the opposite direction is referred to as a second heat transfer tube 30b. .
  • the heat transfer tubes 30 are arranged in two rows with respect to the flow of air. In each row, the first heat transfer tubes 30a and the second heat transfer tubes 30b are alternately arranged vertically.
  • the direction of the flow of the refrigerant in the heat exchanger 4 is basically described in the case where the refrigerant is used as a radiator. When used in an evaporator, the direction of the refrigerant is reversed.
  • FIG. 4 is a longitudinal sectional view of the folded portion 33 of the refrigerant.
  • a portion near the second end 4b of the first heat transfer tube 30a is referred to as a first straight portion 31
  • a portion near the second end 4b of the second heat transfer tube 30b is referred to as a second straight portion 32.
  • the folded portion 33 reverses the direction of the refrigerant flowing through the first straight portion 31 of the heat transfer tube 30 (the multi-hole flat tube 300), and flows the coolant to the second straight portion 32 below the first straight portion 31.
  • the folded portion 33 is formed by using two joints 34a and 34b and a U-shaped tube 350.
  • the joints 34a and 34b connect the heat transfer tube 30 and the U-shaped tube 350.
  • the heat transfer tube 30 may be a multi-hole flat tube or a circular tube, and is not particularly limited.
  • a multi-hole flat tube 300 is used.
  • the multi-hole flat tube has high heat transfer performance between the refrigerant and the heat transfer tube.
  • a plurality of holes are arranged in a line, the arrangement direction of the holes of the multi-hole flat tube is defined as the width direction, and the width direction and the direction perpendicular to the flow direction of the refrigerant are defined as the thickness direction. Call. If the thickness (length in the thickness direction) of the multi-hole flat tube is T and the width (length in the width direction) is W, W> T.
  • the refrigerant that has flowed through the flow passages that are the plurality of holes of the multi-hole flat tube 300 is collected in one flow passage at the folded portion 33. Therefore, the homogenization of the refrigerant is measured in the folded portion 33, that is, the joints 34a and 34b and the U-shaped tube.
  • the thickness T of the heat transfer tube 30 in the vertical direction is 3 mm or less.
  • the vertical distance DP between the center of the first straight portion 31 and the center of the second straight portion 32 is 0 mm to 21 mm.
  • the first straight portion 31 and the second straight portion 32 sandwiching the folded portion 33 of the heat transfer tube 30 are arranged close to each other. Therefore, temperature unevenness of the passing air can be suppressed. Therefore, the heat exchange efficiency is also improved.
  • the vertical distance DP between the center of the first straight portion 31 and the center of the second straight portion 32 is not more than five times the thickness T of the heat transfer tube 30 in the vertical direction.
  • the first straight portion 31 and the second straight portion 32 sandwiching the folded portion 33 of the heat transfer tube 30 are arranged close to each other. Therefore, temperature unevenness of the passing air can be suppressed.
  • the heat exchanger 4 of the present embodiment further includes a plurality of fins 50.
  • the fins 50 are fixed to the heat transfer tubes 30 and promote heat exchange between the heat transfer tubes 30 and air.
  • the fin pitch of the plurality of fins 50 is at least 1.3 mm, preferably at least 1.4 mm.
  • the heat exchange efficiency can be improved by setting the vertical thickness T of the heat transfer tube 30 to 3 mm or less and setting the fin pitch to 1.3 mm or more.
  • the temperature difference between the refrigerant inlet temperature and the refrigerant outlet temperature of the heat exchanger 4 is 40 ° C. or more.
  • a CO 2 refrigerant is used as the refrigerant.
  • the CO 2 refrigerant is a supercritical refrigerant, and the temperature of the refrigerant in the radiator greatly decreases. It will be over 40 ° C. Since the temperature difference between the refrigerants is large, the effect of arranging the first straight portion 31 and the second straight portion 32 so as to be close to each other is also great.
  • the second straight portion 32 is located above or below the first straight portion 31.
  • the first straight portion 31 and the second straight portion 32 are located above and below, the distance between them is short, and the temperature unevenness of the passing air can be further suppressed. Further, since the fins 50 are connected above and below the heat transfer tube 30, the surrounding temperature approaches through the fins 50.
  • FIG. 5A is a longitudinal sectional view of the joint 34
  • FIG. 5B is a transverse sectional view of the joint 34.
  • the joint 34 of the present embodiment connects the multi-hole flat tube 300 and the circular tube 35.
  • the circular tube 35 is a U-shaped tube 350.
  • the refrigerant passing therethrough is a CO 2 refrigerant.
  • the joint 34 has a first connection portion 301, a main body portion 302, and a second connection portion 303.
  • the first connection part 301 covers the outside of the end of the multi-hole flat tube 300.
  • the main body part 302 is continuous from the first connection part 301.
  • the second connection portion 303 is continuous from the main body.
  • the second connection portion 303 covers the outside of the end of the circular tube 35.
  • the vertical inner diameter L 301 of the first connection portion 301 is slightly larger than the thickness T of the multi-hole flat tube 300.
  • the inner diameter L 302 of the main body 302 in the vertical direction is larger than the inner diameter L 301 of the first connection part 301 in the vertical direction. Further, the main body portion 302, follow away from the first connecting portion 301, the longitudinal direction of the inner diameter L 302 increases, at a certain portion, becomes constant.
  • the lateral inner diameter W 301 of the first connection portion 301 is slightly larger than the width W of the multi-hole flat tube 300.
  • the lateral inner diameter W 302 of the main body 302 is smaller than the lateral inner diameter W 301 of the first connection portion 301.
  • the main body portion 302 follow away from the first connecting portion 301, the lateral inner diameter W 302 decreases, at some portions, it becomes constant.
  • the portion where the horizontal inner diameter W 302 is constant has the same length as the portion where the vertical inner diameter L 302 is constant.
  • the longitudinal inner diameter L 302 of the main body 302 of the joint 34 is larger than the longitudinal inner diameter L 301 of the first connecting portion 301, the inner peripheral surface of the first connecting portion 301 is close to the multi-hole flat tube 300. Oil does not easily accumulate in oil.
  • the inner diameter of the circular pipe 35 connected to one of the joints 34 is the thickness of the hole of the multi-hole flat tube 300 connected to the other of the joints 34 in the thickness direction. Larger than the diameter.
  • the thickness of the pipe of the joint 34 is larger than the thickness of the circular pipe 35.
  • the joint 34 of the present embodiment further includes a reinforcing portion 304 that extends in the longitudinal direction in the refrigerant flow path.
  • the reinforcing section 304 is configured by a reinforcing member.
  • the reinforcing part 304 is arranged near the first connection part 301.
  • the first reinforcing portion 304 connects the upper and lower sides of the pipe constituting the joint 34, and in FIG. 5A, has a role of reinforcing both when receiving a tensile stress and when receiving a compressive stress from above and below the pipe. Since the pressure of the CO 2 refrigerant is high and the first connection portion 301 has a flat shape, it is preferable to use a reinforcing portion.
  • the first manufacturing method of the joint 34 is a method using a circular pipe.
  • the circular pipe is a normal circular pipe having a constant inner diameter.
  • the thickness of the circular pipe of the raw material is greater than the thickness of the circular pipe 35 to be connected.
  • To make the first connection portion 301 one end of the circular tube is crushed flat.
  • the lateral inner diameter W 301 is slightly smaller than the width W of the multi-hole flat tube 300 such that the longitudinal inner diameter L 301 of the end portion is slightly larger than the thickness T of the multi-hole flat tube 300. Process so that it becomes larger.
  • the second manufacturing method of the joint 34 is a method using a bonding method.
  • the reinforcing portion 304 is previously bonded to the upper portion or the lower portion by brazing or the like.
  • the upper part and the lower part are bonded together by brazing or the like to form the joint 34.
  • Intercooler 7 The arrangement of the intercooler 7 of the present embodiment will be described with reference to a top view of FIG. 8A and a cross-sectional view of FIG. 8B.
  • the intercooler 7 of the present embodiment is arranged on the windward side of the heat exchanger 4 and inside the casing 20 independently of the heat exchanger 4.
  • the term “independent” means that the fins 50 of the heat exchanger 4 and the fins (not shown) of the intercooler 7 are not connected, and the heat exchanger 4 and the intercooler 7 are separate.
  • the intercooler is disposed at a height higher than half of the height at which the heat exchanger 4 is disposed.
  • the fan 40 is disposed above the heat exchanger 4 and the intercooler 7, and the wind speed increases as the side of the heat exchanger 4 goes upward.
  • the intercooler 7 is arranged on the upstream side of the heat exchanger 4, so that a sufficient temperature difference between the air and the refrigerant can be secured, and the heat exchange amount can be increased.
  • the intercooler 7 is arranged at the upper part, the air flow is relatively large, and the heat exchange amount can be increased.
  • the joint 34 of the present embodiment is used in the refrigeration apparatus 1 using a CO 2 refrigerant. And the multi-hole flat tube 300 and the circular tube 35 are connected.
  • the joint 34 has a first connection portion 301, a main body portion 302, and a second connection portion 303.
  • the first connection portion 301 covers the outside of the end of the multi-hole flat tube.
  • the main body part 302 is continuous from the first connection part 301.
  • the second connecting portion 303 is continuous from the main body and covers the outside of the end of the circular tube.
  • the longitudinal direction of the inner diameter L 302 of the main body portion 302 is larger than the longitudinal direction of the inner diameter L 301 of the first connecting portion. Therefore, oil does not easily stay around the connection portion on the inner peripheral surface of the joint 34.
  • the main body 302 further has a region where the inner diameter in the vertical direction gradually increases as the distance from the first connection portion 301 increases.
  • the joint 34 of the present embodiment is formed by processing one end of a circular pipe.
  • the thickness of the circular pipe of this raw material is larger than the thickness of the circular pipe 35 to be connected.
  • the original portion of the circular tube of the raw material is a portion of the main body portion 302 and a portion having constant inner diameters L 302 and W 302 .
  • the joint 34 of the present embodiment can be manufactured by adding a simple process to a circular pipe, the manufacturing cost can be suppressed.
  • the wall thickness of the pipe of the joint 34 of the present embodiment is larger than the thickness of the circular pipe 35.
  • the reason why the thickness of the pipe of the joint 34 is increased is that the joint 34 requires a higher strength than the circular pipe 35 because the joint 34 has a flat portion.
  • the joint according to the present embodiment further includes a reinforcing portion 304.
  • the reinforcing portion 304 is disposed in the refrigerant flow path of the joint 34 so as to extend in the vertical direction.
  • the reinforcing part 304 connects the upper part and the lower part of the inner wall of the joint 34. There is a reinforcing role in both cases where tensile stress and compressive stress are received from above and below the joint 34. Since the pressure of the CO 2 refrigerant is high and the first connection portion 301 has a flat shape, it is preferable to use the reinforcing portion 304.
  • the joint 34 of the present embodiment may be manufactured by bonding two or more members. By manufacturing by bonding, it is possible to easily manufacture a joint having a complicated structure such as including the reinforcing portion 304.
  • the joint 34 of Modification 1A has the same features as (3-1) to (3-3) and (3-5), similarly to the joint 34 of the first embodiment.
  • the joint 34a, the U-shaped pipe 350, and the joint 34b may be formed as an integrated body as the folded portion 33 as shown in FIG.
  • FIGS. 7A and 7B are side views of the first end 4a and the second end 4b viewed from the direction in which the refrigerant flows, and are cross-sectional views perpendicular to the direction in which the refrigerant flows in the middle between the first end 4a and the second end 4b.
  • FIG. 6B shows a cross-sectional view at S.
  • the first heat transfer tube 30a is a heat transfer tube for flowing the refrigerant from the first end 4a to the second end 4b
  • the second heat transfer tube 30b is the opposite.
  • the flow of the refrigerant will be described assuming that the heat exchanger 4 is used as a radiator. When used as an evaporator, the flow of the refrigerant is reversed.
  • the heat transfer tube is a multi-hole flat tube.
  • the thickness T of the heat transfer tube 30 in the vertical direction is 3 mm or less.
  • the refrigerant enters the first refrigerant port 401 shown in FIG. 7A.
  • the refrigerant flowing from the first refrigerant inlet / outlet 401 through the first heat transfer tube 30a exchanges heat with air via three side surfaces of the heat exchanger 4 and reaches the second end 4b.
  • the refrigerant that has reached the second end 4b is returned by the return portion 33 to another row (here, an adjacent windward side row).
  • the vertical distance DP between the center of the first heat transfer tube 30a (the first straight portion 31) and the center of the second heat transfer tube 30b (the second straight portion 32) is 21 mm or less.
  • the configuration of the folded portion 33 of the present embodiment is the same as the configuration of the modified example 1A.
  • the first heat transfer tube 30a and the second heat transfer tube 30b are composed of two joints 34 and a U-shaped tube 350 connecting them. Connected by
  • the heat transfer tubes 30a and 30b of the present embodiment are vertically arranged at a period P.
  • the vertical distance DP between the center of the first heat transfer tube 30a (first straight portion 31) and the center of the second heat transfer tube 30b (second straight portion 32) is set to be greater than 0 and smaller than DP. Have been. That is, 0 ⁇ DP ⁇ P.
  • the refrigerant returned at the second end 4b flows through the second heat transfer tube 30b, exchanges heat with air while passing through the three side surfaces, and reaches the first end 4a.
  • the refrigerant that has reached the first end flows out from the second refrigerant port 402 into the refrigerant circuit outside the heat exchanger 4.
  • the case where the first heat transfer tube 30a is placed on the leeward side and the second heat transfer tube 30b is placed on the leeward side has been described.
  • the arrangement may be reversed.
  • the heat transfer tube 30 makes only one reciprocation between the first end 4a and the second end 4b has been described.
  • the present invention is also effective when making two or more round trips.
  • the heat exchanger of the second embodiment is similar to the heat exchanger of the first embodiment (3-1) to (3-3), (3--3). 5) to (3-7).
  • the first heat transfer tube 30a and the second heat transfer tube 30b before and after the folded portion 33 of the heat exchanger 4 of the second embodiment are another adjacent row. Therefore, when viewed in the same row, the first heat transfer pipe 30a and the second heat transfer pipe 30b having different refrigerant temperatures are not arranged side by side, and the temperature distribution in the row is suppressed.
  • the first heat transfer tubes 30a and the second heat transfer tubes 30b before and after the turn-back portion 33 are another adjacent row, and the first heat transfer tubes 30a (the first straight portion 31).
  • the vertical distance DP between the center of the second heat transfer tube 30b (the second straight portion 32) and the center thereof is set to be larger than 0 and smaller than DP.
  • the second heat transfer tube 30b is not obstructed by the second heat transfer tube 30b even on the leeward first heat transfer tube 30a, and the heat exchange between the air and the refrigerant is promoted.
  • first refrigerant port 401 and the second refrigerant port 402 of the present embodiment are arranged in different rows. Therefore, for example, when a refrigerant collecting pipe is separately provided at the inlet / outlet of the refrigerant, it is easy to simply configure the connection pipe.
  • FIG. 6A is a cross-sectional view of a cross section S perpendicular to the direction in which the refrigerant flows in the middle of the first end 4a and the second end 4b of the heat exchanger 4 of Modification Example 2A.
  • Modified example 2A is that the center of the first heat transfer tube 30a (the first straight portion 31) and the center of the second heat transfer tube 30b (the second straight portion 32) in the folded portion 33 of the refrigerant at the second end 4b.
  • the difference from the second embodiment is that the vertical distance DP is 0.
  • the other points are the same as the second embodiment.
  • the heat exchanger of Modification 2A has the same features as the heat exchanger 4 of the second embodiment, and (6-1) and (6-3).
  • ⁇ Third embodiment> Structure of the Joint of the Third Embodiment (8-1) Overall Structure of the Joint of the Third Embodiment
  • the joints 34a to 34e of the third embodiment connect the multi-hole flat tube 300 and the circular tube 35. , CO 2 refrigerant.
  • Each of the joints 34a to 34e has a first connection portion 301, a main body portion 302 continuous from the first connection portion 301, and reinforcing portions 304a to 304e.
  • the first connection portion 301 covers the outside of the end of the multi-hole flat tube 300.
  • the main body part 302 is continuous from the first connection part 301.
  • the reinforcing portions 304a to 304e reinforce the strength of the joints 34a to 34e.
  • the joints 34a to 34e of the present embodiment are connected to the multi-hole flat tube 300, they have a flat shape, and stress tends to concentrate locally. Further, since the CO 2 refrigerant is used at a high pressure, a large stress is applied to the joint. Furthermore, in consideration of stacking and using the multi-hole flat tubes 300, the thickness of the tube wall of the main body 302 cannot be unnecessarily increased. Since the joints 34a to 34e of the present embodiment have the reinforcing portions 304a to 304e, the joints 34a to 34e can be deformed or broken even if the inside of the joints 34a to 34e becomes high pressure by using CO 2 refrigerant. Can be suppressed.
  • the joint 34e of the present embodiment may further include a flat portion 305 that is continuous from the main body 302 and does not form a passage for the refrigerant.
  • the thickness T and the width W (W> T) of the multi-hole flat tube 300 are defined as in the first embodiment. Then, the thickness direction and the width direction of the multi-hole flat tube 300 are defined as the longitudinal direction and the lateral direction of the joint 34, respectively.
  • the reinforcing portions 304a and 304b of the present embodiment may be arranged in the refrigerant flow path so as to extend in the vertical direction.
  • the reinforcing portions 304c to 304e of the present embodiment may be arranged outside the coolant flow path and in contact with the outer surface of the main body 302.
  • the reinforcing portions 304c to 304e do not become a resistance to the flow of the refrigerant. Further, it is relatively easy to manufacture to arrange the reinforcing portions 304c to 304e on the outer surface of the main body 302.
  • the reinforcing portion 304e of the present embodiment may be arranged outside the coolant flow path in contact with the outer surface of the main body 302 and the surface of the flat portion 305.
  • the reinforcing portion 304e By arranging the reinforcing portion 304e not only on the outer surface of the main body 302 but also on the surface of the flat portion 305, the strength against the expansion of the main body 302 due to the internal pressure is more reliably secured.
  • the joints 34 a to 34 e of the present embodiment may further include a second connection portion 303 which is continuous from the main body 302 and covers the outside of the end of the circular tube 35.
  • first connection portions 301 of the joints 34a to 34e of the present embodiment may be formed by processing one end of the circular pipe 35.
  • the longitudinal inner diameter (L 302 ) of the main body 302 may be larger than the longitudinal inner diameter (L 301 ) of the first connection portion 301.
  • the main body 302 of the joint 34 of the present embodiment may have a region in which the inner diameter in the vertical direction gradually increases as the distance from the first connection portion 301 increases.
  • the thickness of the pipes of the joints 34a to 34e may be larger than the thickness of the circular pipe 35.
  • the material of the joints 34a to 34e is metal.
  • the metal is aluminum, copper, iron, or an alloy containing them.
  • the material of the multi-hole flat tube 300 and the circular tube 35 is metal.
  • the metal is aluminum, copper, iron, or an alloy containing them.
  • the first manufacturing method of the joints 34a to 34e is a method using a circular pipe.
  • Circular pipe is a normal circular pipe with a constant inner diameter.
  • the thickness of the circular pipe of the raw material is greater than the thickness of the circular pipe 35 to be connected.
  • FIGS. 11 and 12 show examples of the joints 34c and 34d created by the first manufacturing method.
  • the second method of manufacturing the joints 34a to 34e is a method using a bonding method.
  • a joint is formed by deforming and bonding the two plates.
  • the joint 34e in FIG. 13 is formed by bonding two deformed plates 3413 and 3414 to form a joint main body 302, a first connection portion 301, and a second connection portion 303.
  • the material of the reinforcement is metal.
  • the metal is aluminum, copper, iron, or an alloy containing them.
  • the material of the reinforcing portion may be the same as the material of the main body. In this case, there is an advantage that a battery reaction hardly occurs.
  • the material of the reinforcement may be different from the material of the body.
  • a material having good thermal conductivity may be used as a material of the main body portion, and a material having high mechanical strength may be used as a material of the reinforcing portion.
  • the material having good heat conductivity is, for example, aluminum or copper, and the material having high strength is, for example, stainless steel (an alloy containing iron).
  • FIG. 9 is a cross-sectional view of the joint 34a and the reinforcing portion 304a of Example 1 of the third embodiment.
  • the reinforcing portion 304a is a rod, and protrusions are arranged at both ends.
  • the rod penetrates the upper and lower portions of the main body portion 302 of FIG. 9 at two places.
  • a hole is formed in the main body portion 302 of the joint 34a and the hole is closed.
  • the rod is inserted, protrusions are formed at both ends of the rod, and the holes are formed by sealing the holes of the main body 302 by brazing or the like.
  • a rod having a protrusion at one end of a bolt may be inserted from one end of the main body 302, and a nut-like object may be attached at the other end to form a protrusion at the other end.
  • the reinforcing portion 304a according to the first embodiment suppresses the protrusion from being deformed so that the main body 302 expands even when the refrigerant inside the main body 302 becomes high pressure and pushes the wall of the main body 302 outward. I do.
  • the number of bars of the reinforcing portion 304a according to the first embodiment may be one or more.
  • the reinforcing portion 304 may be plate-shaped. In this case, it is preferable that the heat exchanger extends along the flow path of the refrigerant.
  • the joint 34a of the first embodiment may be a deformed circular tube or a structure obtained by bonding two plates.
  • joint 34b 8-3-2
  • Reinforcing portion 304b of joint 34b of the second embodiment may be formed by deforming a circular tube or by bonding two plates.
  • the reinforcing portion 304b of the second embodiment is obtained by deforming the main body portion 302 of the joint 34b and bonding the deformed body portion at the abutted portion.
  • the bonding method is, for example, brazing. Therefore, the reinforcing portion 304b has the bonding portion 3041.
  • the number of the reinforcing portions 304b in the second embodiment may be one or more.
  • the bonding portion 3041 of the reinforcing portion 304b according to the second embodiment may be a dot-like portion or may extend linearly. When extending in a straight line, it is preferable to extend along the flow path in which the refrigerant flows.
  • joint 34c (8-3-3) Reinforcing part 304c of joint 34c of the third embodiment
  • the joint 34c according to the third embodiment is obtained by deforming a circular pipe.
  • the reinforcing portion 304c of the third embodiment is a plate (rib) attached to the outside of the main body 302 of the joint 34c as shown in FIG.
  • the plate is attached so that the thickness direction of the plate is along the surface of the main body 302.
  • the main body 302 and the reinforcement 304c are adhered by brazing.
  • the reinforcing portion 304c of the third embodiment is arranged outside the main body portion 302, it does not become a resistance of the refrigerant flow path.
  • the number of the reinforcing portions 304c of the third embodiment may be one or more.
  • the reinforcing portion 304d of the fourth embodiment is a plate (rib) attached to the outside of the main body 302 of the joint 34d.
  • the plate is attached so that the surface of the plate is along the surface of the main body 302.
  • the main body 302 and the reinforcement 304c are adhered by brazing.
  • the reinforcing portion 304d of the fourth embodiment is arranged outside the main body portion 302, it does not become a resistance of the refrigerant flow path.
  • the reinforcing portion 304d of the fourth embodiment may be singular or plural.
  • the effect of the reinforcing portion 304d of the fourth embodiment is similar to the case where the thickness of the main body of the pipe of the joint is increased. However, compared to the case where the thickness of the main body of the pipe of the joint is simply increased, it is possible to realize a configuration in which only the wall to which pressure is applied is increased, and the portion where pressure is not applied is reduced.
  • the joint 34e of the fifth embodiment further has a flat portion 305.
  • the size of the flat portion 305 is arbitrary. It does not have to be as large as shown in FIG.
  • the four reinforcing portions 304e of the fifth embodiment are plates (ribs) stuck across the boundary between the main body 302 of the joint 34c and the four flat portions 305.
  • the plate is attached so that the thickness direction of the plate is along the surface of the main body 302.
  • the main body 302 and the reinforcement 304c are adhered by brazing.
  • the reinforcing portion 304e of the fifth embodiment is disposed outside the main body portion 302, it does not become a resistance of the refrigerant flow path.
  • the joint 34 and the reinforcing portion 304 of the first embodiment disclosed in FIGS. 5A and 5B are also examples of the joint and the reinforcing portion of the third embodiment.

Abstract

For a joint connecting a multi-holed flat tube and a circular pipe, a problem may occur in which oil accumulates in the vicinity of a connection portion. In a refrigeration device that uses carbon dioxide as a refrigerant, for which oil is of high importance, this can be a significant problem. Provided is a joint (34) equipped with a first connection section (301) covering the outside of an end portion of a multi-holed flat tube (300), and a main body section (302) that continues from the first connection section (301), wherein the inner diameter (L302) of the main body section (302) in the longitudinal direction is greater than the inner diameter (L301) of the first connection section (301) in the longitudinal direction. The longitudinal direction is the thickness direction of the multi-holed flat tube (300) (thickness T, width W, W>T).

Description

継手Fitting
 多穴扁平管と円管を接続する継手であって、二酸化炭素冷媒を通す継手。 継 手 A joint that connects a multi-hole flat tube and a circular tube, and allows carbon dioxide refrigerant to pass through.
 作動流体として二酸化炭素を用いた冷凍装置において、多穴扁平管が用いられている。一方、多穴扁平管を冷凍装置に用いる場合、多穴扁平管と円管とを接続する場合があり、これらを接続するための継手が提案されている(たとえば、特許文献1(WO2014/199514)を参照。)。 冷凍 In a refrigeration system using carbon dioxide as the working fluid, a multi-well flat tube is used. On the other hand, when a multi-hole flat tube is used for a refrigerating apparatus, a multi-hole flat tube and a circular tube are sometimes connected, and a joint for connecting these is proposed (for example, Patent Document 1 (WO2014 / 199514)). )).).
 多穴扁平管と円管を接続する継手の場合、接続部の近傍に油が溜まるという不具合が生じる可能性がある。油の重要性が高い二酸化炭素を冷媒に用いた冷凍装置においては、大きな課題となる可能性がある。 継 手 In the case of a joint that connects a multi-hole flat tube and a circular tube, there is a possibility that a problem that oil accumulates near the connection portion may occur. In a refrigeration system using carbon dioxide as a refrigerant, which has a high importance for oil, there is a possibility that this may be a major problem.
 第1観点の継手は、CO冷媒を通す継手である。継手は、多穴扁平管と、円管とを接続する。多穴扁平管は、厚みTで、幅Wである。W>Tである。ここで、多穴扁平管の幅とは、複数の穴が配列している方向である。多穴扁平管の厚み方向、幅方向を、それぞれ、継手の縦方向、横方向とする。継手は、第1接続部と、本体部とを備えている。第1接続部は、多穴扁平管の端部の外側を覆っている。本体部は、第1接続部から連続している。本体部の縦方向の内径は、第1接続部の縦方向の内径よりも大きい。 The joint according to the first aspect is a joint through which a CO 2 refrigerant passes. The joint connects the multi-hole flat tube and the circular tube. The multi-hole flat tube has a thickness T and a width W. W> T. Here, the width of the multi-hole flat tube is a direction in which a plurality of holes are arranged. The thickness direction and the width direction of the multi-hole flat tube are defined as the longitudinal direction and the lateral direction of the joint, respectively. The joint includes a first connection portion and a main body. The first connecting portion covers the outside of the end of the multi-hole flat tube. The main body is continuous from the first connection. The inner diameter of the main body in the vertical direction is larger than the inner diameter of the first connection portion in the vertical direction.
 第1観点の継手は、本体部の縦方向の内径が、第1接続部の縦方向の内径よりも大きいので、第1接続部の内周面で、多穴扁平管付近に油が滞留しにくい。 In the joint according to the first aspect, the inner diameter in the longitudinal direction of the main body is larger than the inner diameter in the longitudinal direction of the first connecting portion, so that oil stays near the multi-hole flat tube on the inner peripheral surface of the first connecting portion. Hateful.
 第2観点の継手は、第1観点の継手であって、本体部は、第1接続部から離れるに従い、縦方向の内径が、次第に大きくなっている領域を有している。 継 手 The joint of the second aspect is the joint of the first aspect, in which the main body portion has a region in which the inner diameter in the vertical direction gradually increases as the distance from the first connection portion increases.
 第2観点の継手は、本体部は、第1接続部から離れるに従い、縦方向の内径が、次第に大きくなっているので、より、第1接続部の内周面で、多穴扁平管付近に油が滞留しにくい。 In the joint according to the second aspect, the main body portion gradually increases in inner diameter in the vertical direction as the distance from the first connection portion increases, so that the inner peripheral surface of the first connection portion is closer to the multi-hole flat tube. It is difficult for oil to stay.
 第3観点の継手は、第1観点または第2観点の継手であって、第2接続部をさらに備える。第2接続部は、前記本体部から連続している。第2接続部は円管の端部の外側を覆っている。 継 手 The joint of the third aspect is the joint of the first aspect or the second aspect, and further includes a second connection portion. The second connecting portion is continuous from the main body. The second connecting portion covers the outside of the end of the circular tube.
 第4観点の継手は、第3観点の継手であって、第1接続部は、円管の一端を加工して形成されている。 継 手 A joint according to a fourth aspect is the joint according to the third aspect, wherein the first connection portion is formed by processing one end of a circular pipe.
 第4観点の継手は、円管を加工して製造できるので、製造コストが安い。 継 手 The joint according to the fourth aspect can be manufactured by processing a circular pipe, so that the manufacturing cost is low.
 第5観点の継手は、第3観点または第4観点の継手であって、継手の管の厚みは、円管の厚みよりも厚い。ここで、円管とは、継手が接続する円管を意図している。 継 手 The joint according to the fifth aspect is the joint according to the third aspect or the fourth aspect, wherein the thickness of the pipe of the joint is greater than the thickness of the circular pipe. Here, the circular pipe is intended to be a circular pipe to which the joint is connected.
 第6観点の継手は、第1観点~第5観点のいずれかの継手であって、さらに、補強部を備えている。補強部は、継手の強度を補強する。 継 手 The joint according to the sixth aspect is the joint according to any one of the first to fifth aspects, and further includes a reinforcing portion. The reinforcing portion reinforces the strength of the joint.
 第6観点の継手は、補強部を用いているので、本体部の冷媒圧力が高い場合でも、強度が維持されやすい。 継 手 Since the joint of the sixth aspect uses the reinforcing portion, the strength is easily maintained even when the refrigerant pressure of the main body portion is high.
 第7観点の継手は、第1観点~第6観点のいずれかの継手であって、2以上の部材の貼りあわせで構成されている。 継 手 The joint according to the seventh aspect is any one of the joints according to the first aspect to the sixth aspect, and is formed by bonding two or more members.
 第8観点の継手は、第1観点または第2観点のいずれかの継手であって、本体部は、円管の一部である。 継 手 The joint according to the eighth aspect is the joint according to the first aspect or the second aspect, wherein the main body is a part of a circular pipe.
 第9観点の継手は、第1観点~第8観点のいずれかの継手であって、さらに、本体部から連続し、冷媒の通路を形成しない、平坦部を有している。 継 手 The joint according to the ninth aspect is the joint according to any one of the first to eighth aspects, and further has a flat portion that is continuous from the main body and does not form a refrigerant passage.
 第10観点の継手は、第6観点の継手であって、補強部は、冷媒流路に縦方向に延びて配置されている。 継 手 A joint according to a tenth aspect is the joint according to the sixth aspect, wherein the reinforcing portion extends in the coolant flow path in the vertical direction.
 第10観点の継手は、補強部が冷媒流路に縦方向に延びて配置されているので、本体部内部の縦方向の膨張を抑制できる。 継 手 In the joint according to the tenth aspect, since the reinforcing portion is arranged to extend in the longitudinal direction in the refrigerant flow path, the expansion in the longitudinal direction inside the main body portion can be suppressed.
 第11観点の継手は、第6観点の継手であって、補強部は、冷媒流路の外に、本体部の外表面に接して配置されている。 継 手 A joint according to an eleventh aspect is the joint according to the sixth aspect, wherein the reinforcing portion is disposed outside the coolant flow path and in contact with the outer surface of the main body.
 第12観点の継手は、第6観点の継手であって、さらに、本体部から連続し、冷媒の通路を形成しない、平坦部を有する。補強部は、冷媒流路の外に、本体部302の外表面および平坦部の表面に接して配置されている。 継 手 The joint of the twelfth aspect is the joint of the sixth aspect, and further has a flat portion that is continuous from the main body and does not form a passage for the refrigerant. The reinforcing portion is disposed outside the coolant flow path in contact with the outer surface of the main body 302 and the surface of the flat portion.
 本開示の熱交換器は、第1観点~第12観点のいずれかの継手と、多穴扁平管とを有している。多穴扁平管は、継手に接続される。 熱 The heat exchanger of the present disclosure includes the joint according to any one of the first to twelfth aspects and a multi-hole flat tube. The multi-hole flat tube is connected to the joint.
 本開示の空気調和装置は、熱交換器を備えた空気調和装置である。 空 気 The air conditioner of the present disclosure is an air conditioner provided with a heat exchanger.
第1実施形態の冷凍装置1の冷媒回路図。FIG. 2 is a refrigerant circuit diagram of the refrigeration apparatus 1 according to the first embodiment. 第1実施形態の室外ユニット10の概略斜視図。The schematic perspective view of the outdoor unit 10 of 1st Embodiment. 第1実施形態の熱源側熱交換器4の一部の概略斜視図。The schematic perspective view of some heat source side heat exchangers 4 of a 1st embodiment. 第1実施形態の熱交換器4の折返し部33付近の側面図。FIG. 3 is a side view of the heat exchanger 4 according to the first embodiment in the vicinity of the folded portion 33. 第1実施形態の継手34の縦断面図。FIG. 4 is a longitudinal sectional view of the joint 34 according to the first embodiment. 第1実施形態の継手34の横断面図。FIG. 3 is a cross-sectional view of the joint 34 according to the first embodiment. 変形例2Aの熱交換器において、伝熱管30の断面Sにおける断面図。Sectional drawing in section S of the heat exchanger tube 30 in the heat exchanger of modification 2A. 第2実施形態の熱交換器4において、伝熱管30の断面Sにおける断面図。Sectional drawing in section S of heat exchanger tube 30 in heat exchanger 4 of a 2nd embodiment. 第2実施形態の熱交換器4において、第1端部4aの側面図。The side view of the 1st end 4a in heat exchanger 4 of a 2nd embodiment. 第2実施形態の熱交換器4において、第2端部4bの側面図。The side view of the 2nd end part 4b in heat exchanger 4 of a 2nd embodiment. 第1実施形態の熱交換器4と、中間冷却器7の上面図。The top view of the heat exchanger 4 of 1st Embodiment, and the intercooler 7. 第1実施形態の熱交換器4と、中間冷却器7の断面Sにおける断面図。Sectional drawing in section S of heat exchanger 4 of a 1st embodiment, and intercooler 7. 第3実施形態の実施例1の継手34aと補強部304aの縦断面図。The longitudinal section of the joint 34a and reinforcement part 304a of Example 1 of a 3rd embodiment. 第3実施形態の実施例2の継手34bと補強部304bの縦断面図。The longitudinal section of joint 34b and reinforcement part 304b of Example 2 of a 3rd embodiment. 第3実施形態の実施例3の継手34cと補強部304cの外観斜視図。FIG. 14 is an external perspective view of a joint 34c and a reinforcing portion 304c according to a third embodiment of the third embodiment. 第3実施形態の実施例4の継手34dと補強部304dの外観斜視図。FIG. 18 is an external perspective view of a joint 34d and a reinforcing portion 304d according to a fourth embodiment of the third embodiment. 第3実施形態の実施例5の継手34eと補強部304eの外観斜視図。The external appearance perspective view of the joint 34e and the reinforcement part 304e of Example 5 of 3rd Embodiment.
 <第1実施形態>
 (1)冷凍装置1の冷媒回路構成
 第1実施形態の冷凍装置1の冷媒回路構成を図1に示す。本実施形態の冷凍装置1は、超臨界域で作動する冷媒である二酸化炭素を用い、二段圧縮式の冷凍サイクルを行う装置である。本実施形態の冷凍装置1は、冷暖房を行う空気調和装置、冷温水器などに用いることができる。
<First embodiment>
(1) Refrigerant circuit configuration of refrigeration apparatus 1 FIG. 1 shows a refrigerant circuit configuration of refrigeration apparatus 1 of the first embodiment. The refrigeration apparatus 1 of the present embodiment is an apparatus that performs a two-stage compression refrigeration cycle using carbon dioxide that is a refrigerant that operates in a supercritical region. The refrigerating apparatus 1 of the present embodiment can be used for an air conditioner for performing cooling and heating, a water heater and the like, and the like.
 本実施形態の冷凍装置1の冷媒回路は、主に、圧縮機2、四方切換弁3、熱源側熱交換器4、膨張機構5と、利用側熱交換器6と、中間冷却器7とを有している。 The refrigerant circuit of the refrigeration apparatus 1 of the present embodiment mainly includes a compressor 2, a four-way switching valve 3, a heat source side heat exchanger 4, an expansion mechanism 5, a use side heat exchanger 6, and an intercooler 7. Have.
 圧縮機2は、2つの圧縮要素2c、2dで冷媒を二段圧縮する二段圧縮機である。圧縮機2は、吸入管2aから冷媒を吸入し、吸入された冷媒を第1段圧縮要素2cによって、圧縮した後に中間冷媒管8に吐出する。中間冷媒管8に吐出された冷媒は、さらに第2段圧縮要素2dに吸入されて、圧縮されて、吐出管2bに吐出される。吐出管2bは、圧縮機2から吐出された冷媒を四方切換弁3に送るための冷媒管である。吐出管2bには、油分離器41と逆止弁42とが設けられている。油分離器41は、圧縮機2から吐出される冷媒に混ざる冷凍機油を冷媒から分離する。分離された油は、キャピラリチューブ41cで減圧され、油戻し管41bを経由して、圧縮機2の吸入管2aに戻される。 The compressor 2 is a two-stage compressor that compresses the refrigerant in two stages by the two compression elements 2c and 2d. The compressor 2 sucks the refrigerant from the suction pipe 2a, compresses the sucked refrigerant by the first-stage compression element 2c, and discharges the compressed refrigerant to the intermediate refrigerant pipe 8. The refrigerant discharged to the intermediate refrigerant pipe 8 is further drawn into the second stage compression element 2d, compressed, and discharged to the discharge pipe 2b. The discharge pipe 2b is a refrigerant pipe for sending the refrigerant discharged from the compressor 2 to the four-way switching valve 3. The discharge pipe 2b is provided with an oil separator 41 and a check valve 42. The oil separator 41 separates refrigerant oil mixed with the refrigerant discharged from the compressor 2 from the refrigerant. The separated oil is depressurized by the capillary tube 41c and returned to the suction pipe 2a of the compressor 2 via the oil return pipe 41b.
 なお、本実施形態の冷凍機油は、CO冷媒で用いられる冷凍機油であれば、特に限定されない。冷凍機油の例としては、PAG(ポリアルキレングリコール類)、POE(ポリオールエステル類)などがある。 The refrigerating machine oil of the present embodiment is not particularly limited as long as it is a refrigerating machine oil used for a CO 2 refrigerant. Examples of the refrigerator oil include PAG (polyalkylene glycols) and POE (polyol esters).
 四方切換弁3は、熱源側熱交換器4、膨張機構5、利用側熱交換器6を繋ぐパスを流れる冷媒の流れを順方向と逆方向に切り換えることができる。冷房時には、圧縮機2から流出した冷媒を、熱源側熱交換器4から利用側熱交換器6に流す。このとき、熱源側熱交換器4は放熱器であり、利用側熱交換器6は蒸発器である。暖房時には、逆に、圧縮機2から流出した冷媒を、利用側熱交換器6から熱源側熱交換器4に流す。このとき、利用側熱交換器6は放熱器であり、熱源側熱交換器4は蒸発器である。 (4) The four-way switching valve 3 can switch the flow of the refrigerant flowing through the path connecting the heat source side heat exchanger 4, the expansion mechanism 5, and the use side heat exchanger 6 between a forward direction and a reverse direction. During cooling, the refrigerant flowing out of the compressor 2 flows from the heat source side heat exchanger 4 to the use side heat exchanger 6. At this time, the heat source side heat exchanger 4 is a radiator, and the use side heat exchanger 6 is an evaporator. Conversely, at the time of heating, the refrigerant flowing out of the compressor 2 flows from the use side heat exchanger 6 to the heat source side heat exchanger 4. At this time, the use side heat exchanger 6 is a radiator, and the heat source side heat exchanger 4 is an evaporator.
 中間冷媒管8の中途には、中間冷却器7と、逆止弁15が、設けられている。すなわち、第1段圧縮要素2cによって圧縮された後の冷媒は、中間冷却器7にて、空気と熱交換を行い、再び第2段圧縮要素2dに流入する。 中間 An intermediate cooler 7 and a check valve 15 are provided in the middle of the intermediate refrigerant pipe 8. That is, the refrigerant that has been compressed by the first-stage compression element 2c exchanges heat with air in the intercooler 7, and flows into the second-stage compression element 2d again.
 また、中間冷媒管8には、中間冷却器7をバイパスするように、中間冷却器バイパス管9が設けられている。すなわち、第1段圧縮要素2c、中間冷却器バイパス管9を流れた冷媒は、中間冷却器7を経由せずに、第2段圧縮要素2dに流入する。中間冷却器7に冷媒を流すか、中間冷却器バイパス管9に冷媒を流すかは、開閉弁11、12によって、切り換える。基本的に、利用側熱交換器6を蒸発器として利用する場合には、中間冷却器7に冷媒を流し、逆に、利用側熱交換器6を放熱器として利用する場合には、中間冷却器バイパス管9に冷媒を流すよう、制御する。つまり、基本的に、中間冷却器7を使うのは、冷房の場合である。 中間 Further, the intermediate refrigerant pipe 8 is provided with an intermediate cooler bypass pipe 9 so as to bypass the intermediate cooler 7. That is, the refrigerant flowing through the first-stage compression element 2c and the intercooler bypass pipe 9 flows into the second-stage compression element 2d without passing through the intercooler 7. The flow of the refrigerant to the intercooler 7 or the flow of the refrigerant to the intercooler bypass pipe 9 is switched by the on-off valves 11 and 12. Basically, when the use-side heat exchanger 6 is used as an evaporator, a refrigerant flows through the intermediate cooler 7, and conversely, when the use-side heat exchanger 6 is used as a radiator, the intermediate cooling is used. It controls so that a refrigerant | coolant may flow into the container bypass pipe 9. That is, the use of the intercooler 7 is basically for cooling.
 なお、本実施形態の冷凍装置1は二段圧縮の圧縮機を用いているが、圧縮機を2台用いた場合も同様である。また、三段以上の圧縮機、または、圧縮機構を用いてもよい。 Note that the refrigerating apparatus 1 of the present embodiment uses a two-stage compression compressor, but the same applies when two compressors are used. Further, a compressor having three or more stages or a compression mechanism may be used.
 (2)冷凍装置1の室外ユニット10の構成
 (2-1)室外ユニット10の全体構成
 本実施形態の冷凍装置1の室外ユニット10の構成要素を図1の点線で、外観を図2の斜視図で示す。
(2) Configuration of the outdoor unit 10 of the refrigeration apparatus 1 (2-1) Overall configuration of the outdoor unit 10 The components of the outdoor unit 10 of the refrigeration apparatus 1 of the present embodiment are indicated by dotted lines in FIG. Shown in the figure.
 室外ユニット10は、ケーシング20の中に、ファン40、圧縮機2、熱源側熱交換器4、中間冷却器7、膨張機構5、四方切換弁3、油分離器41を収容している。 The outdoor unit 10 houses the fan 40, the compressor 2, the heat source side heat exchanger 4, the intercooler 7, the expansion mechanism 5, the four-way switching valve 3, and the oil separator 41 in the casing 20.
 (2-2)熱源側熱交換器4
 図2は、室外ユニット10の外観斜視図、図3Aは、熱源側熱交換器4の一部の斜視図である。
(2-2) Heat source side heat exchanger 4
FIG. 2 is an external perspective view of the outdoor unit 10, and FIG. 3A is a perspective view of a part of the heat source side heat exchanger 4.
 本実施形態の熱源側熱交換器4は、図2に示すように、室外ユニット10のケーシング20の内側の3側面に配置されている。ファン40が回転すると、ケーシング20の周りの空気が、3側面から取り込まれ、熱源側熱交換器4を通過する。ケーシング20の中に入った空気は、ファン40を通過して、ケーシング20の上面から、上向きに外へ吹出される。したがって、本実施形態の室外ユニット10は、上吹きタイプである。空気は、熱交換器4を通過中に冷媒と熱交換を行い、加熱または冷却される。 熱 The heat source side heat exchanger 4 of the present embodiment is disposed on three inner sides of the casing 20 of the outdoor unit 10, as shown in FIG. When the fan 40 rotates, air around the casing 20 is taken in from three sides and passes through the heat source side heat exchanger 4. The air that has entered the casing 20 passes through the fan 40 and is blown out upward from the upper surface of the casing 20. Therefore, the outdoor unit 10 of the present embodiment is a top blow type. The air exchanges heat with the refrigerant while passing through the heat exchanger 4 to be heated or cooled.
 本実施形態の熱源側熱交換器4の一側面の概略を図3の斜視図に示す。熱交換器4は、内部に冷媒を流す伝熱管30と、冷媒と空気との熱交換を促進する金属フィン50とを有している。本実施形態の伝熱管30は、多穴扁平管である。多穴扁平管では、冷媒の流れる複数の穴が幅方向に並んでいる。 概略 An outline of one side of the heat source side heat exchanger 4 of the present embodiment is shown in a perspective view of FIG. The heat exchanger 4 includes a heat transfer tube 30 through which a refrigerant flows, and metal fins 50 that promote heat exchange between the refrigerant and air. The heat transfer tube 30 of the present embodiment is a multi-hole flat tube. In the multi-hole flat tube, a plurality of holes through which the refrigerant flows are arranged in the width direction.
 本実施形態の熱交換器4においては、図2に示すように、冷媒は、熱交換器4の外部から、第1端部4aで伝熱管30に導入される。冷媒は、第1端部4aから、2箇所で90°折り曲げられた伝熱管30の3側面を流れて、第2端部4bに達する。冷媒は、第2端部4bに達すると流れ方向を180°反転され、再び3側面を流れた後、第1端部4aに戻る。冷媒は、第1端部4aで、伝熱管30より熱交換器4の外部に流出する。ここで、第1端部4aから第2端部4bへと向かう冷媒流路を形成する伝熱管を第1伝熱管30aとし、その逆向きに冷媒を流す伝熱管を第2伝熱管30bとする。 In the heat exchanger 4 of the present embodiment, as shown in FIG. 2, the refrigerant is introduced into the heat transfer tube 30 from outside the heat exchanger 4 at the first end 4a. The refrigerant flows from the first end 4a to three sides of the heat transfer tube 30 that is bent at 90 degrees at two locations, and reaches the second end 4b. When the refrigerant reaches the second end 4b, the flow direction is reversed by 180 °, flows again on the three side surfaces, and returns to the first end 4a. The refrigerant flows out of the heat exchanger 4 from the heat transfer tube 30 at the first end 4a. Here, the heat transfer tube forming the refrigerant flow path from the first end 4a to the second end 4b is referred to as a first heat transfer tube 30a, and the heat transfer tube through which the refrigerant flows in the opposite direction is referred to as a second heat transfer tube 30b. .
 本実施形態においては、図3に示すように、伝熱管30は、空気の流れに対して2列配列されている。その各列において、第1伝熱管30aと第2伝熱管30bは交互に、上下に配列されている。 In this embodiment, as shown in FIG. 3, the heat transfer tubes 30 are arranged in two rows with respect to the flow of air. In each row, the first heat transfer tubes 30a and the second heat transfer tubes 30b are alternately arranged vertically.
 また、本明細書において、熱交換器4における冷媒の流れの向きは、基本的に、放熱器として用いる場合について説明している。蒸発器に用いる場合は冷媒の向きが逆転する。 In this specification, the direction of the flow of the refrigerant in the heat exchanger 4 is basically described in the case where the refrigerant is used as a radiator. When used in an evaporator, the direction of the refrigerant is reversed.
 (2-3)折返し部33の構成
 本実施形態の熱源側熱交換器4の第2端部4b付近の構成について、図面を用いて説明する。第2端部4bには、折返し部33が配置される。図4は、冷媒の折返し部33の縦断面図である。ここで、第1伝熱管30aの第2端部4b付近の部分を第1直線部31とし、第2伝熱管30bの第2端部4b付近の部分を第2直線部32とする。
(2-3) Configuration of Folding Section 33 The configuration near the second end 4b of the heat source side heat exchanger 4 of the present embodiment will be described with reference to the drawings. The folded portion 33 is disposed at the second end 4b. FIG. 4 is a longitudinal sectional view of the folded portion 33 of the refrigerant. Here, a portion near the second end 4b of the first heat transfer tube 30a is referred to as a first straight portion 31, and a portion near the second end 4b of the second heat transfer tube 30b is referred to as a second straight portion 32.
 折返し部33は、伝熱管30(多穴扁平管300)の第1直線部31を流れてきた冷媒の向きを反転させて、第1直線部31の下の第2直線部32に流す。 The folded portion 33 reverses the direction of the refrigerant flowing through the first straight portion 31 of the heat transfer tube 30 (the multi-hole flat tube 300), and flows the coolant to the second straight portion 32 below the first straight portion 31.
 折返し部33は、二つの継手34a、34bと、U字管350を用いて形成されている。継手34a、34bは、伝熱管30と、U字管350を接続する。 The folded portion 33 is formed by using two joints 34a and 34b and a U-shaped tube 350. The joints 34a and 34b connect the heat transfer tube 30 and the U-shaped tube 350.
 伝熱管30は、多穴扁平管であっても良いし、円管であってもよく、特に限定されない。本実施形態においては、多穴扁平管300を用いている。多穴扁平管は、冷媒と、伝熱管との間の伝熱性能が高い。本実施形態の多穴扁平管300では、複数の穴が一列に並んでおり、多穴扁平管の穴の配列方向を幅方向とし、幅方向および冷媒の流れ方向に垂直な方向を厚み方向と呼ぶ。多穴扁平管の厚み(厚み方向の長さ)をTとし、幅(幅方向の長さ)をWとすると、W>Tである。 熱 The heat transfer tube 30 may be a multi-hole flat tube or a circular tube, and is not particularly limited. In the present embodiment, a multi-hole flat tube 300 is used. The multi-hole flat tube has high heat transfer performance between the refrigerant and the heat transfer tube. In the multi-hole flat tube 300 of the present embodiment, a plurality of holes are arranged in a line, the arrangement direction of the holes of the multi-hole flat tube is defined as the width direction, and the width direction and the direction perpendicular to the flow direction of the refrigerant are defined as the thickness direction. Call. If the thickness (length in the thickness direction) of the multi-hole flat tube is T and the width (length in the width direction) is W, W> T.
 本実施形態においては、多穴扁平管300の複数の穴である流路を流れた冷媒が、折返し部33において、一流路に集められる。そこで、折返し部33、すなわち、継手34a、34bおよびU字管において、冷媒の均質化が測られる。 In the present embodiment, the refrigerant that has flowed through the flow passages that are the plurality of holes of the multi-hole flat tube 300 is collected in one flow passage at the folded portion 33. Therefore, the homogenization of the refrigerant is measured in the folded portion 33, that is, the joints 34a and 34b and the U-shaped tube.
 本実施形態においては、伝熱管30の鉛直方向の厚みTは3mm以下である。また、第1直線部31の中心と、第2直線部32の中心の鉛直方向の距離DPが、0mm~21mmである。 に お い て In the present embodiment, the thickness T of the heat transfer tube 30 in the vertical direction is 3 mm or less. The vertical distance DP between the center of the first straight portion 31 and the center of the second straight portion 32 is 0 mm to 21 mm.
 本実施形態においては、CO冷媒を用いた熱交換器4において、伝熱管30の折返し部33を挟んだ第1直線部31と第2直線部32を近くなるように配置している。そのために、通過空気の温度ムラが抑制できる。そのため、熱交換効率も向上する。 In the present embodiment, in the heat exchanger 4 using the CO 2 refrigerant, the first straight portion 31 and the second straight portion 32 sandwiching the folded portion 33 of the heat transfer tube 30 are arranged close to each other. Therefore, temperature unevenness of the passing air can be suppressed. Therefore, the heat exchange efficiency is also improved.
 本実施形態の熱交換器4において、第1直線部31の中心と、第2直線部32の中心の鉛直方向の距離DPは、伝熱管30の鉛直方向の厚みTの5倍以下である。 熱 In the heat exchanger 4 of the present embodiment, the vertical distance DP between the center of the first straight portion 31 and the center of the second straight portion 32 is not more than five times the thickness T of the heat transfer tube 30 in the vertical direction.
 本実施形態においては、CO冷媒を用いた熱交換器4において、伝熱管30の折返し部33を挟んだ第1直線部31と第2直線部32を近くなるように配置している。そのために、通過空気の温度ムラが抑制できる。 In the present embodiment, in the heat exchanger 4 using the CO 2 refrigerant, the first straight portion 31 and the second straight portion 32 sandwiching the folded portion 33 of the heat transfer tube 30 are arranged close to each other. Therefore, temperature unevenness of the passing air can be suppressed.
 本実施形態の熱交換器4は、さらに、複数のフィン50を備えている。フィン50は、伝熱管30に固定され、伝熱管30と空気との熱交換を促進する。複数のフィン50のフィンピッチは、1.3mm以上、好ましくは、1.4mm以上である。 熱 The heat exchanger 4 of the present embodiment further includes a plurality of fins 50. The fins 50 are fixed to the heat transfer tubes 30 and promote heat exchange between the heat transfer tubes 30 and air. The fin pitch of the plurality of fins 50 is at least 1.3 mm, preferably at least 1.4 mm.
 本実施形態の熱交換器4は、伝熱管30の鉛直方向の厚みTは3mm以下であり、フィンピッチを1.3mm以上とすることにより、熱交換効率を向上できる。 熱 In the heat exchanger 4 of the present embodiment, the heat exchange efficiency can be improved by setting the vertical thickness T of the heat transfer tube 30 to 3 mm or less and setting the fin pitch to 1.3 mm or more.
 本実施形態の熱交換器4が、放熱器として用いられたとき、熱交換器4の冷媒入口温度と、冷媒出口温度との温度差が40℃以上である。 When the heat exchanger 4 of the present embodiment is used as a radiator, the temperature difference between the refrigerant inlet temperature and the refrigerant outlet temperature of the heat exchanger 4 is 40 ° C. or more.
 本実施形態では、冷媒として、CO冷媒を用いている。CO冷媒は、超臨界で用いる冷媒であり、放熱器において、冷媒の温度低下は大きい。40℃以上にもなる。冷媒の温度差が大きいため、第1直線部31と第2直線部32を近くなるように配置する効果も大きい。 In the present embodiment, a CO 2 refrigerant is used as the refrigerant. The CO 2 refrigerant is a supercritical refrigerant, and the temperature of the refrigerant in the radiator greatly decreases. It will be over 40 ° C. Since the temperature difference between the refrigerants is large, the effect of arranging the first straight portion 31 and the second straight portion 32 so as to be close to each other is also great.
 本実施形態の熱交換器4においては、第2直線部32は、第1直線部31の上、または、下に位置している。 熱 In the heat exchanger 4 of the present embodiment, the second straight portion 32 is located above or below the first straight portion 31.
 本実施形態の熱交換器4は、第1直線部31、第2直線部32が上下に位置しているので、両者の距離が近く、通過空気の温度ムラをより抑制できる。また、伝熱管30の上下は、フィン50が繋がっているため、フィン50を通じて、周辺の温度は、接近する。 熱 In the heat exchanger 4 of the present embodiment, since the first straight portion 31 and the second straight portion 32 are located above and below, the distance between them is short, and the temperature unevenness of the passing air can be further suppressed. Further, since the fins 50 are connected above and below the heat transfer tube 30, the surrounding temperature approaches through the fins 50.
 また、以上は第1直線部31を流れてきた冷媒を下向きに第2直線部32に折り返す場合について説明した。上向きに折り返す場合も、全く同様である。 以上 In addition, the case where the refrigerant flowing through the first linear portion 31 is folded downward to the second linear portion 32 has been described above. The same applies to the case of turning up.
 (2-4)継手34の詳細説明
 図5Aは、継手34の縦断面図、図5Bは、継手34の横断面図である。本実施形態の継手34は、図5A、5Bに示すように、多穴扁平管300と、円管35とを接続する。本実施形態では、円管35は、U字管350である。内部に通す冷媒は、CO冷媒である。
(2-4) Detailed Description of the Joint 34 FIG. 5A is a longitudinal sectional view of the joint 34, and FIG. 5B is a transverse sectional view of the joint 34. As shown in FIGS. 5A and 5B, the joint 34 of the present embodiment connects the multi-hole flat tube 300 and the circular tube 35. In the present embodiment, the circular tube 35 is a U-shaped tube 350. The refrigerant passing therethrough is a CO 2 refrigerant.
 継手34は、第1接続部301と、本体部302と、第2接続部303とを有している。第1接続部301は、多穴扁平管300の端部の外部を覆っている。本体部302は、第1接続部301から連続している。第2接続部303は、本体部から連続している。第2接続部303は、円管35の端部の外側を覆っている。 The joint 34 has a first connection portion 301, a main body portion 302, and a second connection portion 303. The first connection part 301 covers the outside of the end of the multi-hole flat tube 300. The main body part 302 is continuous from the first connection part 301. The second connection portion 303 is continuous from the main body. The second connection portion 303 covers the outside of the end of the circular tube 35.
 縦方向に見ると、図5Aに示すように、第1接続部301の縦方向の内径L301は、多穴扁平管300の厚みTよりもわずかに大きい。そして、本体部302の縦方向の内径L302は、第1接続部301の縦方向の内径L301よりも大きい。また、本体部302においては、第1接続部301から遠ざかる従い、縦方向の内径L302は増加し、ある部分で、一定となる。 When viewed in the vertical direction, as shown in FIG. 5A, the vertical inner diameter L 301 of the first connection portion 301 is slightly larger than the thickness T of the multi-hole flat tube 300. The inner diameter L 302 of the main body 302 in the vertical direction is larger than the inner diameter L 301 of the first connection part 301 in the vertical direction. Further, the main body portion 302, follow away from the first connecting portion 301, the longitudinal direction of the inner diameter L 302 increases, at a certain portion, becomes constant.
 一方、横方向に見ると、図5Bに示すように、第1接続部301の横方向の内径W301は、多穴扁平管300の幅Wよりもわずかに大きい。そして、本体部302の横方向の内径W302は、第1接続部301の横方向の内径W301よりも小さい。また、本体部302においては、第1接続部301から遠ざかる従い、横方向の内径W302は減少し、ある部分で、一定となる。横方向の内径W302が一定となった部分では、縦方向の内径L302が一定となった部分と同じ長さである。 On the other hand, when viewed in the lateral direction, as shown in FIG. 5B, the lateral inner diameter W 301 of the first connection portion 301 is slightly larger than the width W of the multi-hole flat tube 300. The lateral inner diameter W 302 of the main body 302 is smaller than the lateral inner diameter W 301 of the first connection portion 301. Further, the main body portion 302, follow away from the first connecting portion 301, the lateral inner diameter W 302 decreases, at some portions, it becomes constant. The portion where the horizontal inner diameter W 302 is constant has the same length as the portion where the vertical inner diameter L 302 is constant.
 継手34の本体部302の縦方向の内径L302が、第1接続部301の縦方向の内径L301よりも大きいために、第1接続部301の内周面で、多穴扁平管300付近に油が滞留しにくい。 Since the longitudinal inner diameter L 302 of the main body 302 of the joint 34 is larger than the longitudinal inner diameter L 301 of the first connecting portion 301, the inner peripheral surface of the first connecting portion 301 is close to the multi-hole flat tube 300. Oil does not easily accumulate in oil.
 また、図5Aに示すように、本実施形態においては、継手34の一方に接続される円管35の内径は、継手34の他方に接続される多穴扁平管300の穴の、厚み方向の径よりも大きい。 Further, as shown in FIG. 5A, in the present embodiment, the inner diameter of the circular pipe 35 connected to one of the joints 34 is the thickness of the hole of the multi-hole flat tube 300 connected to the other of the joints 34 in the thickness direction. Larger than the diameter.
 さらに、継手34の管の厚みは、円管35の厚みよりも厚い。 Furthermore, the thickness of the pipe of the joint 34 is larger than the thickness of the circular pipe 35.
 また、本実施形態の継手34は、さらに、冷媒流路に、縦方向に延びて配置される補強部304を有しているのが好ましい。補強部304は、補強部材で構成されている。補強部304は、第1接続部301の近くに配置されている。第1補強部304は、継手34を構成する管の上下を繋いでおり、図5Aで、管の上下から引っ張り応力を受ける場合も圧縮応力を受ける場合も補強の役割がある。CO冷媒は圧力が高く、第1接続部301は扁平な形をしているために、補強部を用いるのが好ましい。 Further, it is preferable that the joint 34 of the present embodiment further includes a reinforcing portion 304 that extends in the longitudinal direction in the refrigerant flow path. The reinforcing section 304 is configured by a reinforcing member. The reinforcing part 304 is arranged near the first connection part 301. The first reinforcing portion 304 connects the upper and lower sides of the pipe constituting the joint 34, and in FIG. 5A, has a role of reinforcing both when receiving a tensile stress and when receiving a compressive stress from above and below the pipe. Since the pressure of the CO 2 refrigerant is high and the first connection portion 301 has a flat shape, it is preferable to use a reinforcing portion.
 (2-4-1)継手34の製造方法
 本実施形態の継手34の製造方法を二通り説明する。
(2-4-1) Method of Manufacturing Joint 34 Two methods of manufacturing the joint 34 of the present embodiment will be described.
 継手34の第1の製造方法は、円管を用いる方法である。 The first manufacturing method of the joint 34 is a method using a circular pipe.
 円管は、内径が一定している通常の円管である。原料の円管の肉厚は、接続する円管35の肉厚よりも厚い。第1接続部301を作るため、円管の一端を扁平に押しつぶす。そうして、端部の縦方向の内径L301が、多穴扁平管300の厚みTよりもわずかに大きくなるように、横方向の内径W301が多穴扁平管300の幅Wよりもわずかに大きくなるように、加工する。 The circular pipe is a normal circular pipe having a constant inner diameter. The thickness of the circular pipe of the raw material is greater than the thickness of the circular pipe 35 to be connected. To make the first connection portion 301, one end of the circular tube is crushed flat. Then, the lateral inner diameter W 301 is slightly smaller than the width W of the multi-hole flat tube 300 such that the longitudinal inner diameter L 301 of the end portion is slightly larger than the thickness T of the multi-hole flat tube 300. Process so that it becomes larger.
 このような製造方法は、製造が比較的、容易ではあるが、補強部304を挿入するのは困難である。したがって、補強部304を用いない場合に利用する製造方法である。 Although such a manufacturing method is relatively easy to manufacture, it is difficult to insert the reinforcing portion 304. Therefore, this is a manufacturing method used when the reinforcing portion 304 is not used.
 継手34の第2の製造方法は、貼り合せ工法を用いる方法である。 The second manufacturing method of the joint 34 is a method using a bonding method.
 図5Aに示す継手34において、その中央部から上の部分と下の部分を別々に用意する。厳密に半分にする必要は無く、一方が大きくてもかまわない。 継 手 In the joint 34 shown in FIG. 5A, an upper part and a lower part from the center are separately prepared. It is not necessary to strictly halve the size, and one may be larger.
 補強部304は、あらかじめ上の部分か、下の部分に、ロウ付け等で接着しておく。その上の部分と下の部分を、ロウ付け等で貼り合わせて、継手34を形成する。 (4) The reinforcing portion 304 is previously bonded to the upper portion or the lower portion by brazing or the like. The upper part and the lower part are bonded together by brazing or the like to form the joint 34.
 (2-5)中間冷却器7
 本実施形態の中間冷却器7の配置を図8Aの上面図、図8Bの断面図を用いて説明する。
(2-5) Intercooler 7
The arrangement of the intercooler 7 of the present embodiment will be described with reference to a top view of FIG. 8A and a cross-sectional view of FIG. 8B.
 本実施形態の中間冷却器7は、図8Aに示すように、熱交換器4の風上側、ケーシング20の内側に、熱交換器4とは独立に配置されている。なお、ここで、独立とは、熱交換器4のフィン50と、中間冷却器7のフィン(図示せず)は繋がっておらず、かつ、熱交換器4と、中間冷却器7は、別々の冷媒出入り口を有していることを意味している。 As shown in FIG. 8A, the intercooler 7 of the present embodiment is arranged on the windward side of the heat exchanger 4 and inside the casing 20 independently of the heat exchanger 4. Here, the term “independent” means that the fins 50 of the heat exchanger 4 and the fins (not shown) of the intercooler 7 are not connected, and the heat exchanger 4 and the intercooler 7 are separate. Has a refrigerant inlet / outlet.
 また、中間冷却器は、図8Bに示すように、熱交換器4の配置している高さのうち、半分より上の高さに配置されている。 中間 Also, as shown in FIG. 8B, the intercooler is disposed at a height higher than half of the height at which the heat exchanger 4 is disposed.
 本実施形態の室外ユニット10においては、ファン40は、熱交換器4、中間冷却器7の上に配置されており、熱交換器4の側面においても上に行くほど風速が増大する。 フ ァ ン In the outdoor unit 10 of the present embodiment, the fan 40 is disposed above the heat exchanger 4 and the intercooler 7, and the wind speed increases as the side of the heat exchanger 4 goes upward.
 中間冷却器7は、熱交換器4よりも上流側に配置されており、空気と冷媒との温度差を十分に確保でき、熱交換量を大きくできる。 (4) The intercooler 7 is arranged on the upstream side of the heat exchanger 4, so that a sufficient temperature difference between the air and the refrigerant can be secured, and the heat exchange amount can be increased.
 また、中間冷却器7は、上部に配置されているために、風量が比較的大きく、熱交換量を大きくすることができる。 Further, since the intercooler 7 is arranged at the upper part, the air flow is relatively large, and the heat exchange amount can be increased.
 (3)特徴
 (3-1)
 本実施形態の継手34は、CO冷媒を用いた冷凍装置1で用いられるものである。そして、多穴扁平管300と、円管35とを接続するものである。
(3) Features (3-1)
The joint 34 of the present embodiment is used in the refrigeration apparatus 1 using a CO 2 refrigerant. And the multi-hole flat tube 300 and the circular tube 35 are connected.
 継手34は、第1接続部301と、本体部302と、第2接続部303とを有する。第1接続部301は、多穴扁平管の端部の外側を覆う。本体部302は、第1接続部301から連続する。第2接続部303は、本体部から連続し、前記円管の端部の外側を覆う。このような構成の継手においては、継手34の多穴扁平管300との接続部分周辺の内周面において、油が溜まりやすいという課題があった。 The joint 34 has a first connection portion 301, a main body portion 302, and a second connection portion 303. The first connection portion 301 covers the outside of the end of the multi-hole flat tube. The main body part 302 is continuous from the first connection part 301. The second connecting portion 303 is continuous from the main body and covers the outside of the end of the circular tube. In the joint having such a configuration, there is a problem that oil easily accumulates on an inner peripheral surface around a connection portion of the joint 34 with the multi-hole flat tube 300.
 本実施形態の継手34は、本体部302の縦方向の内径L302が、第1接続部の縦方向の内径L301よりも大きい。そのため、継手34の内周面の接続部分周辺に油が滞留しにくい。 Joint 34 of the present embodiment, the longitudinal direction of the inner diameter L 302 of the main body portion 302 is larger than the longitudinal direction of the inner diameter L 301 of the first connecting portion. Therefore, oil does not easily stay around the connection portion on the inner peripheral surface of the joint 34.
 (3-2)
 本実施形態の継手34は、さらに、本体部302は、第1接続部301から離れるに従い、縦方向の内径が、次第に大きくなっている領域を有している。
(3-2)
In the joint 34 of the present embodiment, the main body 302 further has a region where the inner diameter in the vertical direction gradually increases as the distance from the first connection portion 301 increases.
 このような構成を有しているために、さらに、継手34の内周面の接続部分周辺に油が滞留しにくい。 油 Owing to such a configuration, oil does not easily stay around the connection portion on the inner peripheral surface of the joint 34.
 (3-3)
 本実施形態の継手34は、一製造方法において、円管の一端を加工して形成されている。この原料の円管の肉厚は、接続する円管35の肉厚よりも厚い。そして、原料の円管の元の部分は、本体部302の一部分、内径L302、W302が一定の部分となっている。
(3-3)
In one manufacturing method, the joint 34 of the present embodiment is formed by processing one end of a circular pipe. The thickness of the circular pipe of this raw material is larger than the thickness of the circular pipe 35 to be connected. The original portion of the circular tube of the raw material is a portion of the main body portion 302 and a portion having constant inner diameters L 302 and W 302 .
 本実施形態の継手34は、円管に簡単な加工を加えて製造できるので、製造コストを抑制できる。 継 手 Since the joint 34 of the present embodiment can be manufactured by adding a simple process to a circular pipe, the manufacturing cost can be suppressed.
 (3-4)
 本実施形態の継手34の管の肉厚は、円管35の厚みよりも厚い。継手34の管の肉厚を厚くする理由は、継手34は扁平な部分を有するため、円管35よりも高い強度を必要とするからである。
(3-4)
The wall thickness of the pipe of the joint 34 of the present embodiment is larger than the thickness of the circular pipe 35. The reason why the thickness of the pipe of the joint 34 is increased is that the joint 34 requires a higher strength than the circular pipe 35 because the joint 34 has a flat portion.
 (3-5)
 本実施形態の継手は、さらに、補強部304を備えている。補強部304は、継手34の冷媒流路に、縦方向に延びて配置されている。補強部304は、継手34の内壁の上部と下部を接続している。継手34の上下から引っ張り応力を受ける場合も圧縮応力を受ける場合も補強の役割がある。CO冷媒は圧力が高く、第1接続部301は扁平な形をしているために、補強部304を用いるのが好ましい。
(3-5)
The joint according to the present embodiment further includes a reinforcing portion 304. The reinforcing portion 304 is disposed in the refrigerant flow path of the joint 34 so as to extend in the vertical direction. The reinforcing part 304 connects the upper part and the lower part of the inner wall of the joint 34. There is a reinforcing role in both cases where tensile stress and compressive stress are received from above and below the joint 34. Since the pressure of the CO 2 refrigerant is high and the first connection portion 301 has a flat shape, it is preferable to use the reinforcing portion 304.
 (3-6)
 本実施形態の継手34は、2以上の部材の貼りあわせで製造しても良い。貼りあわせで製造することにより、補強部304を備えるなど、複雑な構造の継手も容易に製造することができる。
(3-6)
The joint 34 of the present embodiment may be manufactured by bonding two or more members. By manufacturing by bonding, it is possible to easily manufacture a joint having a complicated structure such as including the reinforcing portion 304.
 (4)変形例
 (4-1)変形例1A
 第1実施形態においては、継手34は、多穴扁平管300と、円管35と、別体であった。変形例1Aでは、継手34は、円管35と一体である。その他の構成は、第1実施形態と同様である。
(4) Modification (4-1) Modification 1A
In the first embodiment, the joint 34 is separate from the multi-hole flat tube 300 and the circular tube 35. In the modification 1A, the joint 34 is integral with the circular pipe 35. Other configurations are the same as in the first embodiment.
 変形例1Aの継手34は、第1実施形態の継手34と同様に、(3-1)~(3-3)、(3-5)と同様の特徴を有している。 継 手 The joint 34 of Modification 1A has the same features as (3-1) to (3-3) and (3-5), similarly to the joint 34 of the first embodiment.
 また、変形例1Aの継手34の応用として、図4に示すような折返し部33として、継手34a、U字管350、継手34bを、一体物として構成しても良い。 応 用 Further, as an application of the joint 34 of the modified example 1A, the joint 34a, the U-shaped pipe 350, and the joint 34b may be formed as an integrated body as the folded portion 33 as shown in FIG.
 <第2実施形態>
 (5)第2実施形態の熱交換器4の構成
 第1実施形態および変形例1Aの熱交換器4においては、伝熱管30は、上下方向に折り返されていた。すなわち、第1直線部31および第2直線部32が同一の列に属する場合であった。第2実施形態の熱交換器4においては、伝熱管30は列を跨いで折り返される。その他の第2実施形態の冷凍装置1の構成は、第1実施形態、変形例1Aと同じである。
<Second embodiment>
(5) Configuration of Heat Exchanger 4 of Second Embodiment In the heat exchanger 4 of the first embodiment and Modification 1A, the heat transfer tubes 30 are folded up and down. That is, the first straight portion 31 and the second straight portion 32 belong to the same column. In the heat exchanger 4 of the second embodiment, the heat transfer tubes 30 are folded over rows. Other configurations of the refrigeration apparatus 1 of the second embodiment are the same as those of the first embodiment and Modification 1A.
 第2実施形態の熱交換器4の構成を図面を用いて説明する。第1端部4a、第2端部4bにおいて、冷媒の流れる方向から見た側面を図7A、7Bに、第1端部4a、第2端部4bの中間における冷媒の流れる方向と垂直な断面Sにおける断面図を図6Bに示す。第1実施形態と同様に、第1伝熱管30aは、冷媒を第1端部4aから第2端部4bへ流す伝熱管であり、第2伝熱管30bはその逆である。また、本実施形態においても、熱交換器4は放熱器として利用するものとして、冷媒の流れを説明する。蒸発器として利用する場合は、冷媒の流れは逆転する。本実施形態においては、伝熱管は、多穴扁平管を用いている。伝熱管30の鉛直方向の厚みTは3mm以下である。 構成 The configuration of the heat exchanger 4 of the second embodiment will be described with reference to the drawings. FIGS. 7A and 7B are side views of the first end 4a and the second end 4b viewed from the direction in which the refrigerant flows, and are cross-sectional views perpendicular to the direction in which the refrigerant flows in the middle between the first end 4a and the second end 4b. FIG. 6B shows a cross-sectional view at S. Similarly to the first embodiment, the first heat transfer tube 30a is a heat transfer tube for flowing the refrigerant from the first end 4a to the second end 4b, and the second heat transfer tube 30b is the opposite. Also in the present embodiment, the flow of the refrigerant will be described assuming that the heat exchanger 4 is used as a radiator. When used as an evaporator, the flow of the refrigerant is reversed. In this embodiment, the heat transfer tube is a multi-hole flat tube. The thickness T of the heat transfer tube 30 in the vertical direction is 3 mm or less.
 本実施形態の熱交換器4においては、冷媒は、図7Aに示す第1冷媒出入り口401に入る。第1冷媒出入り口401より第1伝熱管30aを流れた冷媒は、熱交換器4の3側面を経由して空気と熱交換して、第2端部4bに達する。 冷媒 In the heat exchanger 4 of the present embodiment, the refrigerant enters the first refrigerant port 401 shown in FIG. 7A. The refrigerant flowing from the first refrigerant inlet / outlet 401 through the first heat transfer tube 30a exchanges heat with air via three side surfaces of the heat exchanger 4 and reaches the second end 4b.
 第2端部4bに達した冷媒は、折返し部33によって、別の列(ここでは、隣の風上側の列)に折り返される。このとき、第1伝熱管30a(第1直線部31)の中心と、第2伝熱管30b(第2直線部32)の中心の鉛直方向の距離DPは、21mm以下である。また、本実施形態の折返し部33の構成は、変形例1Aの構成と同様であって、第1伝熱管30aと第2伝熱管30bは、2つの継手34と、それを繋ぐU字管350で接続されている。 {Circle around (2)} The refrigerant that has reached the second end 4b is returned by the return portion 33 to another row (here, an adjacent windward side row). At this time, the vertical distance DP between the center of the first heat transfer tube 30a (the first straight portion 31) and the center of the second heat transfer tube 30b (the second straight portion 32) is 21 mm or less. The configuration of the folded portion 33 of the present embodiment is the same as the configuration of the modified example 1A. The first heat transfer tube 30a and the second heat transfer tube 30b are composed of two joints 34 and a U-shaped tube 350 connecting them. Connected by
 また、本実施形態の伝熱管30a、30bは、上下に、周期Pで配列されている。第1伝熱管30a(第1直線部31)の中心と、第2伝熱管30b(第2直線部32)の中心の鉛直方向の距離DPは、0よりも大きく、かつ、DPよりも小さく設定されている。つまり、0<DP<Pである。 熱 Moreover, the heat transfer tubes 30a and 30b of the present embodiment are vertically arranged at a period P. The vertical distance DP between the center of the first heat transfer tube 30a (first straight portion 31) and the center of the second heat transfer tube 30b (second straight portion 32) is set to be greater than 0 and smaller than DP. Have been. That is, 0 <DP <P.
 第2端部4bで折り返された冷媒は、第2伝熱管30bを流れ、3側面を経由するうちに空気と熱交換をし、第1端部4aに達する。第1端部に達した冷媒は、第2冷媒出入り口402より、熱交換器4の外の冷媒回路へ流出する。 {Circle around (2)} The refrigerant returned at the second end 4b flows through the second heat transfer tube 30b, exchanges heat with air while passing through the three side surfaces, and reaches the first end 4a. The refrigerant that has reached the first end flows out from the second refrigerant port 402 into the refrigerant circuit outside the heat exchanger 4.
 以上、本実施形態においては、第1伝熱管30aを風下に、第2伝熱管30bを風上に置く場合について説明した。逆に配置しても良い。 As described above, in this embodiment, the case where the first heat transfer tube 30a is placed on the leeward side and the second heat transfer tube 30b is placed on the leeward side has been described. The arrangement may be reversed.
 また、本実施形態においては、伝熱管30が、第1端部4aと第2端部4bの間を一往復だけする場合について説明した。2往復以上する場合も本発明は有効である。 In the present embodiment, the case where the heat transfer tube 30 makes only one reciprocation between the first end 4a and the second end 4b has been described. The present invention is also effective when making two or more round trips.
 (6)第2実施形態の熱交換器の特徴
 第2実施機体の熱交換器は、第1実施形態の熱交換器と同様に、(3-1)~(3-3)、(3-5)~(3-7)の効果を有する。
(6) Features of the heat exchanger of the second embodiment The heat exchanger of the second embodiment is similar to the heat exchanger of the first embodiment (3-1) to (3-3), (3--3). 5) to (3-7).
 (6-1)
 第2実施形態の熱交換器4の折返し部33前後の第1伝熱管30a、第2伝熱管30bは、隣接する別の列である。したがって、同一の列で見ると、冷媒温度の違う第1伝熱管30aと第2伝熱管30bが並んでいるということが無く、列内での温度分布が抑制される。
(6-1)
The first heat transfer tube 30a and the second heat transfer tube 30b before and after the folded portion 33 of the heat exchanger 4 of the second embodiment are another adjacent row. Therefore, when viewed in the same row, the first heat transfer pipe 30a and the second heat transfer pipe 30b having different refrigerant temperatures are not arranged side by side, and the temperature distribution in the row is suppressed.
 (6-2)
 本実施形態の熱交換器4において、折返し部33前後の第1伝熱管30a、第2伝熱管30bは、隣接する別の列であり、かつ、第1伝熱管30a(第1直線部31)の中心と、第2伝熱管30b(第2直線部32)の中心の鉛直方向の距離DPは、0よりも大きく、かつ、DPよりも小さく設定されている。
(6-2)
In the heat exchanger 4 of the present embodiment, the first heat transfer tubes 30a and the second heat transfer tubes 30b before and after the turn-back portion 33 are another adjacent row, and the first heat transfer tubes 30a (the first straight portion 31). And the vertical distance DP between the center of the second heat transfer tube 30b (the second straight portion 32) and the center thereof is set to be larger than 0 and smaller than DP.
 この配置のために、風下にある第1伝熱管30aに対しても第2伝熱管30bが障害になって風が当たりにくいということが無く、空気と冷媒の熱交換が促進される。 配置 Due to this arrangement, the second heat transfer tube 30b is not obstructed by the second heat transfer tube 30b even on the leeward first heat transfer tube 30a, and the heat exchange between the air and the refrigerant is promoted.
 (6-3)
 また、本実施形態の第1冷媒出入り口401、第2冷媒出入り口402はそれぞれ別の列に配列されている。したがって、たとえば、冷媒の出入り口に、別途、冷媒集合管を設けたときに、接続配管をシンプルに構成しやすい。
(6-3)
Further, the first refrigerant port 401 and the second refrigerant port 402 of the present embodiment are arranged in different rows. Therefore, for example, when a refrigerant collecting pipe is separately provided at the inlet / outlet of the refrigerant, it is easy to simply configure the connection pipe.
 (7)第2実施形態の変形例
 (7-1)変形例2A
 変形例2Aの熱交換器4の第1端部4a、第2端部4bの中間において冷媒の流れる方向と垂直な断面Sの断面図を図6Aに示す。変形例2Aは、第2端部4bにおける、冷媒の折返し部33における、第1伝熱管30a(第1直線部31)の中心と、第2伝熱管30b(第2直線部32)の中心の鉛直方向の距離DPが0である点が、第2実施形態と異なる。その他の点は、第2実施形態と同じである。
(7) Modification of Second Embodiment (7-1) Modification 2A
FIG. 6A is a cross-sectional view of a cross section S perpendicular to the direction in which the refrigerant flows in the middle of the first end 4a and the second end 4b of the heat exchanger 4 of Modification Example 2A. Modified example 2A is that the center of the first heat transfer tube 30a (the first straight portion 31) and the center of the second heat transfer tube 30b (the second straight portion 32) in the folded portion 33 of the refrigerant at the second end 4b. The difference from the second embodiment is that the vertical distance DP is 0. The other points are the same as the second embodiment.
 変形例2Aの熱交換器は、第2実施形態の熱交換器4と、(6-1)、(6-3)と同様の特徴を有する。 熱 The heat exchanger of Modification 2A has the same features as the heat exchanger 4 of the second embodiment, and (6-1) and (6-3).
 <第3実施形態>
 (8)第3実施形態の継手の構成
 (8-1)第3実施形態の継手の全体構成
 第3実施形態の継手34a~34eは、多穴扁平管300と、円管35とを接続し、CO冷媒を通す。継手34a~34eは、第1接続部301と、第1接続部301から連続する本体部302と、補強部304a~304eとを有している。第1接続部301は、多穴扁平管300の端部の外側を覆う。本体部302は、第1接続部301から連続している。補強部304a~304eは、継手34a~34eの強度を補強する。
<Third embodiment>
(8) Structure of the Joint of the Third Embodiment (8-1) Overall Structure of the Joint of the Third Embodiment The joints 34a to 34e of the third embodiment connect the multi-hole flat tube 300 and the circular tube 35. , CO 2 refrigerant. Each of the joints 34a to 34e has a first connection portion 301, a main body portion 302 continuous from the first connection portion 301, and reinforcing portions 304a to 304e. The first connection portion 301 covers the outside of the end of the multi-hole flat tube 300. The main body part 302 is continuous from the first connection part 301. The reinforcing portions 304a to 304e reinforce the strength of the joints 34a to 34e.
 本実施形態の継手34a~34eは、多穴扁平管300に接続されているので、扁平な形をしており、局部に応力が集中しやすい。また、CO冷媒は、高圧で用いられるので、継手には大きな応力がかかる。さらに、多穴扁平管300を積み重ねて用いることを考慮すれば、本体部302の管壁の厚みをむやみに厚くする事もできない。本実施形態の継手34a~34eは補強部304a~304eを有しているので、CO冷媒に用いて、継手34a~34eの内部が高圧になったとしても継手34a~34eの変形や破壊を抑制することができる。 Since the joints 34a to 34e of the present embodiment are connected to the multi-hole flat tube 300, they have a flat shape, and stress tends to concentrate locally. Further, since the CO 2 refrigerant is used at a high pressure, a large stress is applied to the joint. Furthermore, in consideration of stacking and using the multi-hole flat tubes 300, the thickness of the tube wall of the main body 302 cannot be unnecessarily increased. Since the joints 34a to 34e of the present embodiment have the reinforcing portions 304a to 304e, the joints 34a to 34e can be deformed or broken even if the inside of the joints 34a to 34e becomes high pressure by using CO 2 refrigerant. Can be suppressed.
 本実施形態の継手34eは、さらに、本体部302から連続し、前記冷媒の通路を形成しない、平坦部305を有していても良い。 The joint 34e of the present embodiment may further include a flat portion 305 that is continuous from the main body 302 and does not form a passage for the refrigerant.
 また、本実施形態において、多穴扁平管300の厚みTと、幅W(W>T)とを第1実施形態と同様に定義する。そして、多穴扁平管300の厚み方向、幅方向を、それぞれ、継手34の縦方向、横方向と定義する。 に お い て In the present embodiment, the thickness T and the width W (W> T) of the multi-hole flat tube 300 are defined as in the first embodiment. Then, the thickness direction and the width direction of the multi-hole flat tube 300 are defined as the longitudinal direction and the lateral direction of the joint 34, respectively.
 本実施形態の補強部304a~304bは、冷媒流路に、縦方向に延びて配置されていても良い。 補強 The reinforcing portions 304a and 304b of the present embodiment may be arranged in the refrigerant flow path so as to extend in the vertical direction.
 冷媒流路に補強部304a~304bを配置することにより、本体部302の外にはみ出す部分が少なくなり、継手34a~34bの縦方向の長さを抑制できる。 (4) By arranging the reinforcing portions 304a to 304b in the refrigerant flow path, the portion protruding outside the main body 302 is reduced, and the length of the joints 34a to 34b in the vertical direction can be suppressed.
 本実施形態の補強部304c~304eは、冷媒流路の外に、本体部302の外表面に接して配置されていてもよい。 補強 The reinforcing portions 304c to 304e of the present embodiment may be arranged outside the coolant flow path and in contact with the outer surface of the main body 302.
 冷媒流路の外に補強部304c~304eを配置することにより、補強部304c~304eが冷媒の流れの抵抗とならない。また、本体部302の外表面に補強部304c~304eを配置するのは比較的製造が容易である。 こ と By arranging the reinforcing portions 304c to 304e outside the refrigerant flow path, the reinforcing portions 304c to 304e do not become a resistance to the flow of the refrigerant. Further, it is relatively easy to manufacture to arrange the reinforcing portions 304c to 304e on the outer surface of the main body 302.
 本実施形態の補強部304eは、冷媒流路の外に、本体部302の外表面と平坦部305の表面に接して配置されていてもよい。 補強 The reinforcing portion 304e of the present embodiment may be arranged outside the coolant flow path in contact with the outer surface of the main body 302 and the surface of the flat portion 305.
 補強部304eを、本体部302の外表面だけでなく平坦部305の表面にも接して配置することにより、内部の圧力による本体部302の膨張に対する強度がより確実に確保される。 By arranging the reinforcing portion 304e not only on the outer surface of the main body 302 but also on the surface of the flat portion 305, the strength against the expansion of the main body 302 due to the internal pressure is more reliably secured.
 本実施形態の継手34a~34eは、さらに、本体部302から連続し、円管35の端部の外側を覆う第2接続部303を備えてもよい。 The joints 34 a to 34 e of the present embodiment may further include a second connection portion 303 which is continuous from the main body 302 and covers the outside of the end of the circular tube 35.
 また、本実施形態の継手34a~34eの第1接続部301は、円管35の一端を加工して形成されていてもよい。 In addition, the first connection portions 301 of the joints 34a to 34e of the present embodiment may be formed by processing one end of the circular pipe 35.
 本実施形態の継手34においては、本体部302の縦方向の内径(L302)は、前記第1接続部301の縦方向の内径(L301)よりも大きくてもよい。 In the joint 34 of the present embodiment, the longitudinal inner diameter (L 302 ) of the main body 302 may be larger than the longitudinal inner diameter (L 301 ) of the first connection portion 301.
 また、本実施形態の継手34の本体部302は、第1接続部301から離れるに従い、縦方向の内径が、次第に大きくなっている領域を有していてもよい。 In addition, the main body 302 of the joint 34 of the present embodiment may have a region in which the inner diameter in the vertical direction gradually increases as the distance from the first connection portion 301 increases.
 また、継手34a~34eの管の厚みは、円管35の厚みよりも厚くてもよい。 The thickness of the pipes of the joints 34a to 34e may be larger than the thickness of the circular pipe 35.
 継手34a~34eの材料は、金属である。金属は、アルミニウム、銅、鉄、または、それらを含む合金である。多穴扁平管300と円管35の材料は、金属である。金属は、アルミニウム、銅、鉄、または、それらを含む合金である。 材料 The material of the joints 34a to 34e is metal. The metal is aluminum, copper, iron, or an alloy containing them. The material of the multi-hole flat tube 300 and the circular tube 35 is metal. The metal is aluminum, copper, iron, or an alloy containing them.
 (8-2)第3実施形態の継手34a~34eの製造方法
 第3実施形態の継手34a~34eの2つの製造方法について、説明する。
(8-2) Manufacturing Method of Joints 34a to 34e of Third Embodiment Two manufacturing methods of the joints 34a to 34e of the third embodiment will be described.
 継手34a~34eの第1の製造方法は、円管を用いる方法である。 The first manufacturing method of the joints 34a to 34e is a method using a circular pipe.
 円管は、内径が一定している通常の円管である。原料の円管の肉厚は、接続する円管35の肉厚よりも厚い。第1接続部301を作るため、円管の一端を扁平に押しつぶす。 Circular pipe is a normal circular pipe with a constant inner diameter. The thickness of the circular pipe of the raw material is greater than the thickness of the circular pipe 35 to be connected. To make the first connection portion 301, one end of the circular tube is crushed flat.
 第1の製造方法で作成した継手34c、34dの例を図11、図12に示す。 FIGS. 11 and 12 show examples of the joints 34c and 34d created by the first manufacturing method.
 継手34a~34eの第2の製造方法は、貼り合せ工法を用いる方法である。 2 The second method of manufacturing the joints 34a to 34e is a method using a bonding method.
 2枚の板を変形させて、貼り合わせることにより、継手を形成する。 継 手 A joint is formed by deforming and bonding the two plates.
 図13の継手34eは、変形された2枚の板3413、3414を貼り合わされて継手の本体部302、第1接続部301、第2接続部303が構成されている。 継 手 The joint 34e in FIG. 13 is formed by bonding two deformed plates 3413 and 3414 to form a joint main body 302, a first connection portion 301, and a second connection portion 303.
 (8-3)第3実施形態の継手34a~34eの補強部304a~304eの詳細説明
 第3実施形態の継手34a~34eの補強部304a~304eの詳細について、図9~13を用いて説明する。
(8-3) Detailed Description of Reinforcements 304a to 304e of Joints 34a to 34e of Third Embodiment Details of the reinforcements 304a to 304e of joints 34a to 34e of the third embodiment will be described with reference to FIGS. I do.
 補強部の材料は、金属である。金属は、アルミニウム、銅、鉄、または、それらを含む合金である。補強部の材料は、本体部の材料と同じでも良い。この場合、電池反応が起こりにくいと言うメリットがある。補強部の材料は、本体部の材料と異なっていても良い。本体部の材料としては熱伝導性の良い材料を用い、補強部の材料としては機械的な強度の大きい材料を用いてもよい。熱伝導性の良い材料とは、たとえば、アルミニウム、銅などであり、強度の大きい材料とは、たとえば、ステンレス(鉄を含む合金)である。 材料 The material of the reinforcement is metal. The metal is aluminum, copper, iron, or an alloy containing them. The material of the reinforcing portion may be the same as the material of the main body. In this case, there is an advantage that a battery reaction hardly occurs. The material of the reinforcement may be different from the material of the body. A material having good thermal conductivity may be used as a material of the main body portion, and a material having high mechanical strength may be used as a material of the reinforcing portion. The material having good heat conductivity is, for example, aluminum or copper, and the material having high strength is, for example, stainless steel (an alloy containing iron).
 (8-3-1)実施例1の継手34aの補強部304a
 図9は、第3実施形態の実施例1の継手34aと補強部304aの断面図である。
(8-3-1) Reinforcing part 304a of joint 34a of the first embodiment
FIG. 9 is a cross-sectional view of the joint 34a and the reinforcing portion 304a of Example 1 of the third embodiment.
 実施例1の補強部304aは、棒であり、両端に突部が配置されている。棒は、図9の本体部302の上下を2箇所で貫通している
 このような補強部304aの製造方法としては、たとえば、継手34aの本体部302に穴を開け、この穴を塞ぐように棒が挿入され、棒の両端に突部が形成され、本体部302の穴をロウ付け等で封止して作成される。たとえば、本体部302の一方からボルト状の一端に突起のある棒を挿入して、他端でナット状の物を取り付け他端の突起を形成しても良い。
The reinforcing portion 304a according to the first embodiment is a rod, and protrusions are arranged at both ends. The rod penetrates the upper and lower portions of the main body portion 302 of FIG. 9 at two places. As a method of manufacturing such a reinforcing portion 304a, for example, a hole is formed in the main body portion 302 of the joint 34a and the hole is closed. The rod is inserted, protrusions are formed at both ends of the rod, and the holes are formed by sealing the holes of the main body 302 by brazing or the like. For example, a rod having a protrusion at one end of a bolt may be inserted from one end of the main body 302, and a nut-like object may be attached at the other end to form a protrusion at the other end.
 実施例1の補強部304aは、本体部302の内部の冷媒が高圧力になり、本体部302の壁を外向きに押しても、突起部が、本体部302が広がるように変形するのを抑制する。 The reinforcing portion 304a according to the first embodiment suppresses the protrusion from being deformed so that the main body 302 expands even when the refrigerant inside the main body 302 becomes high pressure and pushes the wall of the main body 302 outward. I do.
 実施例1の補強部304aの棒は、1本であっても良いし、複数であっても良い。 補強 The number of bars of the reinforcing portion 304a according to the first embodiment may be one or more.
 また、図5A、5Bの補強部304と同様に、板状のものであっても良い。この場合は、冷媒の流れる流路に沿って広がっているものが好ましい。 板 Also, like the reinforcing portion 304 of FIGS. 5A and 5B, the reinforcing portion 304 may be plate-shaped. In this case, it is preferable that the heat exchanger extends along the flow path of the refrigerant.
 実施例1の継手34aは、円管を変形したものでも、2枚の板を貼り合わせたものであっても良い。 継 手 The joint 34a of the first embodiment may be a deformed circular tube or a structure obtained by bonding two plates.
 (8-3-2)実施例2の継手34bの補強部304b
 実施例2の継手34bは、円管を変形したものでも、2枚の板を貼り合わせたものであっても良い。
(8-3-2) Reinforcing portion 304b of joint 34b of the second embodiment
The joint 34b according to the second embodiment may be formed by deforming a circular tube or by bonding two plates.
 実施例2の補強部304bは、図10に示すように、継手34bの本体部302を変形させ、つき合わせた部分で接着したものである。接着方法としては、たとえば、ロウ付けである。したがって、補強部304bは、接着部3041を有している。 As shown in FIG. 10, the reinforcing portion 304b of the second embodiment is obtained by deforming the main body portion 302 of the joint 34b and bonding the deformed body portion at the abutted portion. The bonding method is, for example, brazing. Therefore, the reinforcing portion 304b has the bonding portion 3041.
 実施例2の補強部304bは、単数でも複数でも良い。 補強 The number of the reinforcing portions 304b in the second embodiment may be one or more.
 実施例2の補強部304bの接着部3041は点状であっても良いし、直線状に延びたものであってもよい。直線状に延びている場合は、冷媒の流れる流路に沿って延びているものが好ましい。 The bonding portion 3041 of the reinforcing portion 304b according to the second embodiment may be a dot-like portion or may extend linearly. When extending in a straight line, it is preferable to extend along the flow path in which the refrigerant flows.
 (8-3-3)実施例3の継手34cの補強部304c
 実施例3の継手34cは、円管を変形したものである。
(8-3-3) Reinforcing part 304c of joint 34c of the third embodiment
The joint 34c according to the third embodiment is obtained by deforming a circular pipe.
 実施例3の補強部304cは、図11に示すように、継手34cの本体部302の外側に貼り付けた板(リブ)である。板の厚み方向が本体部302の表面に沿うように貼り付けられている。また、本体部302と補強部304cは、ロー付けによって接着されている。 The reinforcing portion 304c of the third embodiment is a plate (rib) attached to the outside of the main body 302 of the joint 34c as shown in FIG. The plate is attached so that the thickness direction of the plate is along the surface of the main body 302. The main body 302 and the reinforcement 304c are adhered by brazing.
 実施例3の補強部304cは、本体部302の外側に配置されているので、冷媒流路の抵抗とならない。 補強 Since the reinforcing portion 304c of the third embodiment is arranged outside the main body portion 302, it does not become a resistance of the refrigerant flow path.
 実施例3の補強部304cは、単数でも複数でも良い。 補強 The number of the reinforcing portions 304c of the third embodiment may be one or more.
 (8-3-4)実施例4の継手34dの補強部304d
 実施例4の継手34dは、円管を変形したものである。
(8-3-4) Reinforcing part 304d of joint 34d of Example 4
The joint 34d according to the fourth embodiment is obtained by deforming a circular pipe.
 実施例4の補強部304dは、図12に示すように、継手34dの本体部302の外側に貼り付けた板(リブ)である。板の表面が本体部302の表面に沿うように貼り付けられている。また、本体部302と補強部304cは、ロー付けによって接着されている。 補強 As shown in FIG. 12, the reinforcing portion 304d of the fourth embodiment is a plate (rib) attached to the outside of the main body 302 of the joint 34d. The plate is attached so that the surface of the plate is along the surface of the main body 302. The main body 302 and the reinforcement 304c are adhered by brazing.
 実施例4の補強部304dは、本体部302の外側に配置されているので、冷媒流路の抵抗とならない。 補強 Since the reinforcing portion 304d of the fourth embodiment is arranged outside the main body portion 302, it does not become a resistance of the refrigerant flow path.
 実施例4の補強部304dは、単数でも複数でも良い。 補強 The reinforcing portion 304d of the fourth embodiment may be singular or plural.
 実施例4の補強部304dの効果は、継手の管の本体部の厚みを厚くした場合に類似している。しかし、単に、継手の管の本体部の厚みを厚くした場合と比べると、より圧力がかかる壁のみを厚くして、圧力の余りかからない部分は、薄くする構成が実現できている。 The effect of the reinforcing portion 304d of the fourth embodiment is similar to the case where the thickness of the main body of the pipe of the joint is increased. However, compared to the case where the thickness of the main body of the pipe of the joint is simply increased, it is possible to realize a configuration in which only the wall to which pressure is applied is increased, and the portion where pressure is not applied is reduced.
 (8-3-5)実施例5の継手34eの補強部304e
 実施例5の継手34eは、図13に示すように、2枚の板3413、3414を貼り合わせたものである。
(8-3-5) Reinforcing part 304e of joint 34e of the fifth embodiment
As shown in FIG. 13, a joint 34e according to the fifth embodiment is obtained by bonding two plates 3413 and 3414 together.
 実施例5の継手34eは、さらに、平坦部305を有している。平坦部305は、板3413に2箇所、板3414に2箇所、合わせて4箇所である。平坦部305の大きさは任意である。図13に示すほど大きくなくても良い。 継 手 The joint 34e of the fifth embodiment further has a flat portion 305. There are four flat portions 305 at two places on the plate 3413 and two places on the plate 3414. The size of the flat portion 305 is arbitrary. It does not have to be as large as shown in FIG.
 実施例5の4つの補強部304eは、図11に示すように、継手34cの本体部302と、4枚の平坦部305の境界部分を跨いで貼り付けた板(リブ)である。板の厚み方向が本体部302の表面に沿うように貼り付けられている。また、本体部302と補強部304cは、ロー付けによって接着されている。 As shown in FIG. 11, the four reinforcing portions 304e of the fifth embodiment are plates (ribs) stuck across the boundary between the main body 302 of the joint 34c and the four flat portions 305. The plate is attached so that the thickness direction of the plate is along the surface of the main body 302. The main body 302 and the reinforcement 304c are adhered by brazing.
 実施例5の補強部304eは、本体部302の外側に配置されているので、冷媒流路の抵抗とならない。 補強 Since the reinforcing portion 304e of the fifth embodiment is disposed outside the main body portion 302, it does not become a resistance of the refrigerant flow path.
 また、実施例5の補強部304eは、平坦部305の上にも接着されているので、平坦部305が無い場合よりも強度が高い。 {Circle around (5)} Since the reinforcing portion 304e of the fifth embodiment is also adhered on the flat portion 305, the strength is higher than when the flat portion 305 is not provided.
 (8-3-6)その他の実施例
 図5A、5Bに開示されている第1実施形態の継手34、補強部304は、第3実施形態の継手、補強部の一実施例でもある。
(8-3-6) Other Examples The joint 34 and the reinforcing portion 304 of the first embodiment disclosed in FIGS. 5A and 5B are also examples of the joint and the reinforcing portion of the third embodiment.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the present disclosure described in the claims. .
1        冷凍装置
2        圧縮機
3        四方切換弁
4        熱源側熱交換器
5        膨張機構
6        利用側熱交換器
7        中間冷却器
10       室外ユニット
20       ケーシング
30       伝熱管
30a      第1伝熱管
30b      第2伝熱管
31       第1直線部
32       第2直線部
33       折返し部
34、34a~34e   継手
35       円管
300      多穴扁平管
301      第1接続部
302      本体部
303      第2接続部
304、304a~304e   補強部
305      平坦部
350      U字管
40       ファン
50       フィン
DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus 2 Compressor 3 Four-way switching valve 4 Heat source side heat exchanger 5 Expansion mechanism 6 User side heat exchanger 7 Intercooler 10 Outdoor unit 20 Casing 30 Heat transfer tube 30a First heat transfer tube 30b Second heat transfer tube 31 First Straight portion 32 Second straight portion 33 Folded portions 34, 34a to 34e Joint 35 Circular tube 300 Multi-hole flat tube 301 First connection portion 302 Main body portion 303 Second connection portions 304, 304a to 304e Reinforcement portion 305 Flat portion 350 U-shaped Tube 40 fan 50 fin
WO2014/199514WO2014 / 199514

Claims (14)

  1.  厚みT、幅W(W>T)の多穴扁平管(300)と、円管(35)とを接続し、CO冷媒を通す継手(34)であって、
     前記多穴扁平管の厚み方向、幅方向を、それぞれ、前記継手の縦方向、横方向としたとき、
     前記継手は、
     前記多穴扁平管の端部の外側を覆う第1接続部(301)と、
     前記第1接続部から連続する本体部(302)と、
    を備え、
     前記本体部の縦方向の内径(L302)は、前記第1接続部の縦方向の内径(L301)よりも大きい、
    継手。
    A joint (34) for connecting a multi-hole flat tube (300) having a thickness T and a width W (W> T) to a circular tube (35) and passing a CO 2 refrigerant,
    When the thickness direction and the width direction of the multi-hole flat tube are respectively the longitudinal direction and the lateral direction of the joint,
    The joint is
    A first connection portion (301) that covers the outside of the end of the multi-hole flat tube;
    A body portion (302) continuous from the first connection portion;
    With
    A longitudinal inner diameter (L 302 ) of the main body is larger than a longitudinal inner diameter (L 301 ) of the first connection portion;
    Fittings.
  2.  前記本体部は、
     前記第1接続部から離れるに従い、縦方向の内径が、次第に大きくなっている領域を有している、
    請求項1に記載の継手。
    The main body is
    As the distance from the first connection portion increases, the inner diameter in the vertical direction has a region that is gradually increased.
    The joint according to claim 1.
  3.  前記継手は、さらに、
     前記本体部から連続し、前記円管の端部の外側を覆う第2接続部(303)を
    備える、
    請求項1または2に記載の継手。
    The joint further comprises:
    A second connection portion (303) that is continuous from the main body portion and covers the outside of the end of the circular tube;
    The joint according to claim 1.
  4.  前記第1接続部は、円管の一端を加工して形成されている、
    請求項3に記載の継手。
    The first connection portion is formed by processing one end of a circular tube.
    The joint according to claim 3.
  5.  前記継手の管の厚みは、前記円管の厚みよりも厚い、
    請求項3または4に記載の継手。
    The thickness of the pipe of the joint is thicker than the thickness of the circular pipe,
    The joint according to claim 3.
  6.  前記継手は、さらに、
     前記継手の強度を補強する補強部(304)、
    を備える、
    請求項1~5のいずれか1項に記載の継手。
    The joint further comprises:
    A reinforcing portion (304) for reinforcing the strength of the joint,
    Comprising,
    The joint according to any one of claims 1 to 5.
  7.  前記継手は、2以上の部材の貼りあわせで構成されている、
    請求項1~6に記載の継手。
    The joint is formed by bonding two or more members,
    The joint according to any one of claims 1 to 6.
  8.  前記本体部は、前記円管の一部である、
    請求項1または2に記載の継手。
    The main body is a part of the circular tube,
    The joint according to claim 1.
  9.  前記継手(34e)は、さらに、前記本体部(302)から連続し、前記冷媒の通路を形成しない、平坦部(305)を有している、
    請求項1~8のいずれか1項に記載の継手。
    The joint (34e) further includes a flat portion (305) that is continuous with the main body portion (302) and does not form a passage for the refrigerant.
    The joint according to any one of claims 1 to 8.
  10.  前記補強部は、冷媒流路に縦方向に延びて配置されている、
    請求項6に記載の継手。
    The reinforcing portion is arranged to extend in the longitudinal direction in the refrigerant flow path,
    The joint according to claim 6.
  11.  前記補強部は、冷媒流路の外に、前記本体部の外表面に接して配置されている、
    請求項6に記載の継手。
    The reinforcing portion is disposed outside the coolant flow path, in contact with an outer surface of the main body portion,
    The joint according to claim 6.
  12.  前記継手(34e)は、さらに、前記本体部(302)から連続し、前記冷媒の通路を形成しない、平坦部(305)を有し、
     前記補強部(304e)は、冷媒流路の外に、前記本体部(302)の外表面および前記平坦部の表面に接して配置されている、
    請求項6に記載の継手。
    The joint (34e) further includes a flat portion (305) that is continuous with the main body portion (302) and does not form a passage for the refrigerant.
    The reinforcing portion (304e) is disposed outside the coolant flow path in contact with an outer surface of the main body portion (302) and a surface of the flat portion.
    The joint according to claim 6.
  13.  請求項1~12に記載の継手と、
     前記継手に接続される多穴扁平管と、
    を備えた、
    熱交換器(4)。
    A joint according to any of claims 1 to 12,
    A multi-hole flat tube connected to the joint,
    With
    Heat exchanger (4).
  14.  請求項13に記載の熱交換器を備えた、
    空気調和装置(1)。
    A heat exchanger according to claim 13,
    Air conditioner (1).
PCT/JP2019/029250 2018-07-25 2019-07-25 Joint WO2020022443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19841770.1A EP3828490B1 (en) 2018-07-25 2019-07-25 Joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-139667 2018-07-25
JP2018139667A JP2021167676A (en) 2018-07-25 2018-07-25 Joint

Publications (1)

Publication Number Publication Date
WO2020022443A1 true WO2020022443A1 (en) 2020-01-30

Family

ID=69180768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029250 WO2020022443A1 (en) 2018-07-25 2019-07-25 Joint

Country Status (3)

Country Link
EP (1) EP3828490B1 (en)
JP (1) JP2021167676A (en)
WO (1) WO2020022443A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203589A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Heat exchanger, method for manufacturing heat exchanger, and method for manufacturing header assembly
US11421246B2 (en) 2013-08-21 2022-08-23 Commonwealth Scientific And Industrial Research Organisation Rust resistance gene

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185614A (en) * 2009-02-12 2010-08-26 Mitsubishi Electric Corp Flat pipe joint
JP2011127831A (en) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp Heat exchanger and refrigerating cycle device including the same
WO2014199514A1 (en) 2013-06-14 2014-12-18 三菱電機株式会社 Outdoor unit for air conditioner and production method for outdoor unit for air conditioner
JP2016038141A (en) * 2014-08-07 2016-03-22 三菱電機株式会社 Heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07125529A (en) * 1993-11-02 1995-05-16 Kansai Pipe Kogyo Kk Manufacture of pipe joint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010185614A (en) * 2009-02-12 2010-08-26 Mitsubishi Electric Corp Flat pipe joint
JP2011127831A (en) * 2009-12-17 2011-06-30 Mitsubishi Electric Corp Heat exchanger and refrigerating cycle device including the same
WO2014199514A1 (en) 2013-06-14 2014-12-18 三菱電機株式会社 Outdoor unit for air conditioner and production method for outdoor unit for air conditioner
JP2016038141A (en) * 2014-08-07 2016-03-22 三菱電機株式会社 Heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3828490A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11421246B2 (en) 2013-08-21 2022-08-23 Commonwealth Scientific And Industrial Research Organisation Rust resistance gene
WO2020203589A1 (en) * 2019-03-29 2020-10-08 ダイキン工業株式会社 Heat exchanger, method for manufacturing heat exchanger, and method for manufacturing header assembly

Also Published As

Publication number Publication date
EP3828490A4 (en) 2021-09-15
EP3828490A1 (en) 2021-06-02
JP2021167676A (en) 2021-10-21
EP3828490B1 (en) 2023-03-08

Similar Documents

Publication Publication Date Title
US20120031601A1 (en) Multichannel tubes with deformable webs
CN105229407A (en) Duplex heat exchanger
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
JPWO2003040640A1 (en) Heat exchanger and heat exchanger tube
JP6847229B2 (en) Heat exchanger and refrigeration cycle equipment
WO2020022443A1 (en) Joint
CN108139178B (en) Heat exchanger and refrigeration cycle device provided with same
US11002489B2 (en) Heat exchanger and air conditioning apparatus
KR20080095628A (en) Air conditioner
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP3911604B2 (en) Heat exchanger and refrigeration cycle
JPH1123182A (en) Heat exchanger
JP2001027484A (en) Serpentine heat-exchanger
JP6198976B2 (en) Heat exchanger and refrigeration cycle apparatus
JP2020016391A (en) Heat source unit of freezer
JP5403029B2 (en) Refrigeration equipment
JP2019113239A (en) Air conditioning equipment
JP7130116B2 (en) air conditioner
JP6599056B1 (en) Gas header, heat exchanger and refrigeration cycle apparatus
JP2024057108A (en) Refrigeration equipment heat source unit
WO2019150864A1 (en) Refrigeration device
JP5525763B2 (en) Heat transfer tube, heat exchanger, and air conditioner equipped with the heat exchanger
JP2020016390A (en) Heat exchanger
JP2014025615A (en) Heat exchanger and heat cycle device including heat exchanger
JP2012037099A (en) Indoor unit of air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019841770

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019841770

Country of ref document: EP

Effective date: 20210225

NENP Non-entry into the national phase

Ref country code: JP