WO2020022077A1 - Water-based paint composition - Google Patents

Water-based paint composition Download PDF

Info

Publication number
WO2020022077A1
WO2020022077A1 PCT/JP2019/027451 JP2019027451W WO2020022077A1 WO 2020022077 A1 WO2020022077 A1 WO 2020022077A1 JP 2019027451 W JP2019027451 W JP 2019027451W WO 2020022077 A1 WO2020022077 A1 WO 2020022077A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
meth
resin particles
acrylic resin
acrylate
Prior art date
Application number
PCT/JP2019/027451
Other languages
French (fr)
Japanese (ja)
Inventor
岳 富森
麗了 江森
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Priority to CN201980045136.5A priority Critical patent/CN112368345A/en
Priority to JP2020532286A priority patent/JP7280263B2/en
Publication of WO2020022077A1 publication Critical patent/WO2020022077A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a water-based coating composition which has good film-forming properties at low temperatures and also has excellent corrosion resistance, hardness and water resistance.
  • the present invention also relates to a coated article having a cured coating film of the aqueous coating composition.
  • Emulsion paints are the mainstream in water-based paints.Emulsion paints have a much lower solvent content than solvent-based paints, but in order to improve the film-forming properties, they are water-based, but have a considerable amount as a film-forming aid. The fact is that the solvent is contained in the paint.
  • Patent Document 1 discloses a first ethylenically unsaturated compound component (A) in which the glass transition temperature of a polymer is ⁇ 30 ° C. or less, and a second ethylenic unsaturated compound component in which the glass transition temperature of a polymer is 30 ° C. or more.
  • a method for producing an aqueous emulsion which comprises subjecting an unsaturated compound component (B) to power feed polymerization in an aqueous medium under specific polymerization conditions.
  • the aqueous emulsion obtained by the production method has good low-temperature film-forming properties without using a solvent such as a film-forming auxiliary, has a low tackiness on the surface of the obtained resin film, and has excellent durability.
  • a solvent such as a film-forming auxiliary
  • the present invention has been made in view of the above circumstances, has an object to provide a water-based coating composition having good film-forming properties at low temperatures, and excellent corrosion resistance, hardness and water resistance. is there.
  • the present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that an aqueous paint containing core-shell type acrylic resin particles containing at least one gradient polymer layer and having a shell portion having an acid value in a specific range. According to the composition, it has been found that the above object can be achieved.
  • the present invention includes the following embodiments. (1) containing core-shell type acrylic resin particles (A) including at least one gradient polymer layer, An aqueous coating composition, wherein the shell part of the core-shell type acrylic resin particles (A) has an acid value in the range of 20 to 100 mgKOH / g.
  • a coated article having a substrate and a cured coating film of the aqueous coating composition according to any one of (1) to (3) on the substrate.
  • the aqueous coating composition of the present invention having the above characteristics can form a coating film having good low-temperature film-forming properties and excellent corrosion resistance, hardness and water resistance.
  • the aqueous coating composition according to the present invention contains core-shell type acrylic resin particles (A) including at least one gradient polymer layer, and the shell part of the core-shell type acrylic resin particles (A) has an acid value of 20 to 100 mg KOH. / G range.
  • the “shell” of the core-shell type acrylic resin particles (A) means a polymer layer present in the outermost layer of the resin particles, and the “core” is a polymer of the inner layer of the resin particles excluding the shell.
  • the term “core-shell structure” means a structure having the above-mentioned core part and shell part.
  • the core-shell structure generally has a layer structure in which the core portion is completely covered with the shell portion, but depending on the mass ratio of the core portion and the shell portion, the amount of monomer in the shell portion forms the layer structure. In some cases, it may not be enough. In such a case, it is not necessary to have a complete layer structure as described above, and a structure in which a shell part covers a part of the core part may be used.
  • the gradient polymer layer means a polymer layer having a layer structure in which the composition changes continuously (has a composition gradient).
  • it means a polymer layer having a composition gradient in which the monomer (or monomer mixture) composition continuously changes from, for example, monomer A (or monomer mixture A) to monomer B (or monomer mixture B). It is.
  • the gradient polymer layer can be generally obtained by a known polymerization method called power feed polymerization. Specifically, for example, when a polymerization reaction of two types of monomer A (monomer mixture A) and monomer B (monomer mixture B) is performed, monomer B (monomer mixture B) is converted to monomer A (monomer mixture A). The monomer A (monomer mixture A) is introduced into the reaction vessel while being dropped into the container to be accommodated, and a polymerization reaction is carried out, whereby a gradient polymer layer can be obtained.
  • power feed polymerization Specifically, for example, when a polymerization reaction of two types of monomer A (monomer mixture A) and monomer B (monomer mixture B) is performed, monomer B (monomer mixture B) is converted to monomer A (monomer mixture A).
  • the monomer A (monomer mixture A) is introduced into the reaction vessel while being dropped into the container to be accommodated, and a polymerization reaction is carried out, whereby
  • the synthesis conditions (timing of the start of mixing of the monomer A (monomer mixture A) and the monomer B (monomer mixture B), the container containing the monomer A (monomer mixture A) with the monomer B (monomer mixture B)
  • a gradient polymer layer having a desired composition gradient can be obtained by, for example, setting the rate at which the monomer A (monomer mixture A) is introduced into the reaction vessel and the rate at which the monomer A (monomer mixture A) is introduced into the reaction vessel.
  • the core-shell type acrylic resin particles (A) have at least one gradient polymer layer, and the gradient polymer layer can be any layer in the core-shell type acrylic resin particles (A).
  • the core-shell type acrylic resin particles (A) are usually a copolymer (I) containing a polymerizable unsaturated monomer as a copolymer component and a copolymer (II) containing a polymerizable unsaturated monomer as a copolymer component. ) Is an acrylic resin particle comprising a shell portion.
  • the polymerizable unsaturated monomer means a monomer having a polymerizable unsaturated group.
  • the polymerizable unsaturated group means an unsaturated group capable of undergoing radical polymerization.
  • examples of the polymerizable unsaturated group include a vinyl group, a vinylidene group, an acryloyl group, and a methacryloyl group.
  • (meth) acrylate means “acrylate or methacrylate”.
  • (Meth) acrylic acid means “acrylic acid or methacrylic acid”.
  • (meth) acryloyl means “acryloyl or methacryloyl”.
  • (Meth) acrylamide” means “acrylamide or methacrylamide”.
  • polymerizable unsaturated monomer examples include a polymerizable unsaturated monomer having one polymerizable unsaturated group in one molecule and a polymerizable unsaturated monomer having two or more polymerizable unsaturated groups in one molecule. it can.
  • Examples of the polymerizable unsaturated monomer having one polymerizable unsaturated group in one molecule include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and i-propyl (meth) acrylate , N-butyl (meth) acrylate, i-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (Meth) acrylate, tridecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, “isostearyl acrylate” (trade name, manufactured by Osaka Organic Chemical Industry Co., Ltd.), cyclohexyl (me
  • These monomers can be used alone or in combination of two or more, depending on the performance required for the core-shell type acrylic resin particles (A).
  • Examples of the polymerizable unsaturated monomer having two or more polymerizable unsaturated groups in one molecule include allyl (meth) acrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol.
  • the polymerizable unsaturated monomer having two or more polymerizable unsaturated groups in one molecule has a function of imparting a crosslinked structure to the copolymer.
  • the proportion of the polymerizable unsaturated monomer can be appropriately determined according to the degree of crosslinking of the copolymer.
  • the core-shell type acrylic resin particles (A) are obtained by emulsion-polymerizing the polymerizable unsaturated monomer mixture to obtain an emulsion of the core copolymer (I), and then adding the polymerizable unsaturated monomer mixture to the emulsion. , And emulsion polymerization to prepare a shell copolymer (II).
  • Emulsion polymerization for preparing an emulsion of the core copolymer (I) can be carried out by a conventionally known method. For example, it can be carried out by emulsion-polymerizing a polymerizable unsaturated monomer mixture using a polymerization initiator in the presence of an emulsifier.
  • an anionic emulsifier and a nonionic emulsifier can be suitably used.
  • anionic emulsifier examples include sodium salts and ammonium salts of alkylsulfonic acid, alkylbenzenesulfonic acid, alkylphosphoric acid and the like.
  • nonionic emulsifiers include, for example, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyethylene phenyl ether, polyoxyethylene nonyl phenyl ether, and polyoxyethylene nonyl phenyl ether.
  • Ethylene octyl phenyl ether, polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene monooleate, sorbitan monolaurate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene sorbitan monolaurate, etc. be able to.
  • Examples of the reactive anionic emulsifier include a sodium salt of a sulfonic acid compound having a radical polymerizable unsaturated group such as an allyl group, a methallyl group, a (meth) acryloyl group, a propenyl group, and a butenyl group, and an ammonium salt of the sulfonic acid compound. And the like.
  • the amount of the emulsifier used is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1% by mass or more, and 15% by mass, based on the total amount of all the monomers used. Is preferably 10% by mass or less, more preferably 5% by mass or less.
  • polymerization initiator examples include benzoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, cumene hydroperoxide, tert-butyl peroxide, tert-butylperoxylaurate, and tert-butylperoxy.
  • Organic peroxides such as isopropyl carbonate, tert-butylperoxyacetate, diisopropylbenzene hydroperoxide; azobisisobutyronitrile, azobis (2,4-dimethylvaleronitrile), azobis (2-methylpropionnitrile), azobis (2-methylbutyronitrile), 4,4′-azobis (4-cyanobutanoic acid), dimethylazobis (2-methylpropionate), azobis [2-methyl-N- (2-hydridene) Azo compounds such as xyethyl) -propionamide] and azobis ⁇ 2-methyl-N- [2- (1-hydroxybutyl)]-propionamide ⁇ ; persulfates such as potassium persulfate, ammonium persulfate and sodium persulfate; Can be mentioned.
  • persulfates such as potassium persulfate, ammonium persulfate and sodium persulfate
  • polymerization initiators can be used alone or in combination of two or more. Further, if necessary, a reducing agent such as sugar, sodium formaldehyde sulfoxylate, iron complex or the like may be used in combination with the polymerization initiator to form a redox initiator.
  • a reducing agent such as sugar, sodium formaldehyde sulfoxylate, iron complex or the like may be used in combination with the polymerization initiator to form a redox initiator.
  • the amount of the polymerization initiator used is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and preferably 5% by mass or less, based on the total amount of all the monomers used. It is more preferably at most 3% by mass.
  • the method of adding the polymerization initiator is not particularly limited, and can be appropriately selected according to the type and amount of the polymerization initiator. For example, it can be previously contained in a monomer mixture or an aqueous medium, can be added at a time during polymerization, or can be added dropwise.
  • the core-shell type acrylic resin particles (A) are obtained by adding a polymerizable unsaturated monomer mixture to the emulsion of the core copolymer (I) obtained above and further polymerizing to form a shell copolymer (II).
  • the monomer mixture forming the shell copolymer (II) may appropriately contain components such as the polymerization initiator, the chain transfer agent, the reducing agent, and the emulsifier, if necessary. Further, the monomer mixture can be dropped as it is, but it is preferable to drop the monomer mixture as a monomer emulsion obtained by dispersing the monomer mixture in an aqueous medium. In this case, the particle size of the monomer emulsion is not particularly limited.
  • the monomer mixture or an emulsion thereof is dropped at once or gradually, and an emulsion of the core copolymer (I) is obtained. And heating the mixture to an appropriate temperature with stirring.
  • the core-shell type acrylic resin particles (A) thus obtained have a multilayer structure having the copolymer (I) as a core and the copolymer (II) as a shell.
  • the core-shell type acrylic resin particles (A) are polymerizable non-polymerizable particles which form another resin layer between the step of obtaining the core copolymer (I) and the step of obtaining the shell copolymer (II).
  • a step of supplying a saturated monomer (one or a mixture of two or more) to carry out emulsion polymerization acrylic resin particles comprising three or more layers can be obtained.
  • the core-shell type acrylic resin particles (A) are resin particles including at least one gradient polymer layer, and the gradient polymer layer can be any layer in the core-shell type acrylic resin particles (A).
  • the resin layer to be used as the gradient polymer layer can be prepared by the above-described power feed polymerization or the like.
  • the ratio of the gradient polymer layer in the core-shell type acrylic resin particles (A) is 10% with respect to the total amount of all the copolymerized components of the core-shell type acrylic resin particles (A) from the viewpoint of the corrosion resistance and hardness of the obtained coating film.
  • % By mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less.
  • a layer other than the gradient polymer layer in the core-shell type acrylic resin particles (A) is present in a certain degree or more, and a certain degree of hardness can be maintained by the presence of the hard monomer component. .
  • the content is 10% by mass or more, excellent film-forming properties and good anticorrosion properties can be obtained.
  • the acid value of the shell portion is preferably 20 mgKOH / g or more from the viewpoint of the dispersion stability of the particles and the hydrophilicity of the coating film. , 25 mgKOH / g or more, more preferably 30 mgKOH / g or more, further preferably 100 mgKOH / g or less, more preferably 80 mgKOH / g or less, and even more preferably 60 mgKOH / g or less.
  • the acid value of the shell portion is 20 mgKOH / g or more, the dispersion stability of the particles becomes good, and when the acid value is 100 mgKOH / g or less, the hydrophilicity of the coating film becomes too high to prevent corrosion and water resistance. Can be prevented from becoming defective.
  • the hydrophilicity is greatly reduced after forming a film, and the water resistance and the corrosion resistance are advantageous.
  • a carboxyl group-containing polymerizable unsaturated monomer is advantageous.
  • Acrylic acid and / or methacrylic acid can be particularly preferably used as the carboxyl group-containing polymerizable unsaturated monomer.
  • the acid value (mgKOH / g) is represented by mg of potassium hydroxide when the amount of acid groups contained in 1 g of a sample (1 g of solid content in the case of resin) is converted into potassium hydroxide. It is.
  • the molecular weight of potassium hydroxide is 56.1.
  • Acid value (mgKOH / g) 56.1 ⁇ V ⁇ C / m V: titration (ml), C: concentration of titrant (mol / l), m: solid weight of sample (g)
  • the glass transition temperature (Tg) of the core-shell type acrylic resin particles (A) is preferably ⁇ 10 ° C. or higher, more preferably ⁇ 5 ° C. or higher, and further preferably 0 ° C. or higher, from the viewpoint of coating film hardness.
  • Tg glass transition temperature
  • n represents the number of types of monomers used (natural number)
  • W1 to Wn are the weight percentages of the n monomers used in the copolymerization
  • T1 to Tn are the weights of the n monomers.
  • T1 to Tn the values described in Polymer Hand Book (Second Edition, edited by J. Brandup, EH Immergut), pages III-139 to 179, can be used.
  • the glass transition temperature (° C.) when the Tg of the homopolymer of the monomer is not clear can be determined as a static glass transition temperature by actual measurement.
  • a sample is taken in a measurement cup, and the solvent is completely removed by vacuum suction.
  • the calorie change is measured at a temperature rate in the range of ⁇ 20 ° C. to + 200 ° C., and the first baseline change point on the low temperature side is defined as a static glass transition temperature.
  • the core-shell type acrylic resin particles (A) have 80% by mass or more of all copolymer components (all polymerizable unsaturated monomers constituting the core copolymer (I) and the shell copolymer (II)). It is preferable that the polymerizable unsaturated monomer has a solubility parameter value (SP value) of 9.5 or less from the viewpoints of corrosion resistance and water resistance of the obtained coating film.
  • the polymerizable unsaturated monomer having a solubility parameter value (SP value) of 9.5 or less is more preferably 90% by mass or more, more preferably 95% by mass or more of all copolymerized components.
  • solubility parameter value is as defined in Polymer ⁇ Engineering and ⁇ Science, 14, No. 2, p. 147 (1974), calculated by the following Fedors equation.
  • SP ⁇ ( ⁇ e1) / ⁇ ( ⁇ v1) ⁇ (In the formula, ⁇ e1 represents the aggregation energy per unit functional group, and ⁇ v1 represents the molecular volume per unit functional group.)
  • the SP value of a copolymer or a blend of a mixture of two or more resins is as follows: , And a value obtained by multiplying the SP value of each component of the monomer unit or the blend by the mass fraction.
  • the core-shell type acrylic resin particles (A) preferably have a weight average molecular weight of 40,000 or more from the viewpoints of corrosion resistance, water resistance and hardness of the resulting coating film.
  • the weight average molecular weight is a value obtained by converting the retention time measured using a gel permeation chromatograph into the molecular weight of polystyrene by the retention time of a standard polystyrene having a known molecular weight measured under the same conditions. .
  • HEC-8120GPC (trade name, manufactured by Tosoh Corporation) is used as a gel permeation chromatograph, and one “TSKgel @ G4000HXL” and two “TSKgel @ G3000HXL” are used as columns.
  • TSKgel @ G2000HXL (trade name, all manufactured by Tosoh Corporation) using a differential refractometer as a detector, mobile phase: tetrahydrofuran, measurement temperature: 40 ° C.
  • the weight average molecular weight can be determined by measuring the flow rate under the condition of 1 mL / min.
  • the average particle size of the core-shell type acrylic resin particles (A) is preferably 50 nm or more, more preferably 60 nm or more, still more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less, and even more preferably 300 nm or less.
  • the average particle diameter can be measured using a general measuring means such as laser light scattering.
  • the average particle size of the resin particles is a value measured at 20 ° C. after dilution with deionized water by a conventional method using a submicron particle size distribution analyzer.
  • the submicron particle size distribution measuring device for example, "COULTER @ N4 type" (trade name, manufactured by Beckman Coulter, Inc.) can be used.
  • acid groups such as carboxyl groups of the acrylic resin particles can be neutralized with a neutralizing agent.
  • the neutralizing agent is not particularly limited as long as it can neutralize an acid group. Examples thereof include sodium hydroxide, potassium hydroxide, trimethylamine, 2- (dimethylamino) ethanol, and 2-amino-2-methyl- Examples thereof include 1-propanol, triethylamine, and aqueous ammonia. These neutralizing agents can be suitably used in such an amount that the pH of the aqueous dispersion of the core-shell type acrylic resin particles (A) after neutralization is about 6.5 to 9.0.
  • Resin particles other than the core-shell type acrylic resin particles (A) can be used in the water-based coating composition as needed.
  • the resin particles are resin particles composed of a plurality of resins
  • the resin particles may be blended into a plurality of resin particles to form resin particles, or may be a blend of a plurality of types of resin particles.
  • These resin particles can be usually blended in the form of an emulsion into the aqueous coating composition.
  • the aqueous paint composition preferably has a pH of 5.0 or more, more preferably 6.0 or more, and preferably 10.0 or less, more preferably 9.0 or less.
  • the aqueous coating composition may contain a crosslinking agent, a curing catalyst, a pigment such as a coloring pigment, a filler, an aggregate, a dispersant, a wetting agent, a thickener, a rheology control agent, a surface conditioning agent, It can also contain foaming agents, preservatives, fungicides, pH adjusters, rust inhibitors, anti-settling agents, anti-freezing agents, anti-skinning agents, ultraviolet absorbers, antioxidants, organic solvents and the like.
  • the water-based coating composition is a cured coating film which is applied and cured on various substrates, preferably a metal substrate, as required.
  • the coating can be applied once or twice or more by a conventionally known method such as roller coating, spray coating, brush coating, curtain coating, shower coating, dip coating, etc. to form a coating film.
  • the base material is a metal base material
  • the water-based coating composition according to the present embodiment is applied on the metal base material, and by forming a cured coating film by effect, the film forming property at low temperatures is good, A coated article having excellent anticorrosion properties can be obtained.
  • the coating film of the water-based coating composition is preferably cured at room temperature from the viewpoint of energy saving and the like.
  • forced drying or heat curing can also be performed.
  • the thickness of the cured coating film obtained by coating and curing the aqueous coating composition is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, from the viewpoints of corrosion resistance, water resistance and hardness of the formed cured coating film. Preferably, it is 25 ⁇ m or more, more preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 60 ⁇ m or less.
  • Component (A2), component (B1) ) Component and (B2) component), and an aqueous solution of initiator 1 (in Table 1, VA-057 is a trade name, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., 2-2'-azobis [N- (2-carboxyethyl) -2-methylpropiondiamine] tetrahydrate) was started dropwise to polymerize.
  • the dropping rate was about 146.0 parts / hour for the component (A1) emulsion and about 6.6 parts / hour for the aqueous initiator 1 solution.
  • the dropping of the (A2) component emulsion shown in Table 1 was started.
  • the component (B1) emulsion shown in Table 1 was dropped into the component (A2) emulsion.
  • the dropping rate of the component (B1) emulsion was set to a rate at which the dropping was completed simultaneously with the dropping of the component (A2) emulsion, that is, about 73.0 parts / hour in the present production example.
  • the component (B2) emulsion was dropped at about 146.0 parts / hour.
  • the reaction was carried out at 82 ° C. for 0.5 hour, and an aqueous solution of initiator 2 was added dropwise at about 3.3 parts / hour.
  • the emulsion had a viscosity (measured with a B-type viscometer, 60 rpm, 20 ° C.) of 680 mPa ⁇ s, a pH of 9.2 (measured with a pH meter), and an average particle diameter of 105 nm.
  • Production Example 11 (for Comparative Example) Into a polymerization apparatus equipped with a stirrer, a thermometer, and a reflux condenser, charged amounts of deionized water and Newcol 707SF shown in Table 1 were added, and the temperature was raised after sufficient nitrogen replacement. While stirring at about 100 rpm, the internal temperature was maintained at 82 ° C., and the component (A1) shown in Table 1 emulsified using a homomixer and an aqueous solution of initiator 1 were added dropwise to initiate polymerization. The dropping rate was about 146.0 parts / hour for the component (A1) emulsion and about 6.6 parts / hour for the aqueous initiator 1 solution.
  • the dropping of the (A1) component emulsion was completed, the dropping of the (B1) component emulsion shown in Table 1 was started, and was dropped at about 146.0 parts / hour.
  • the reaction was carried out at 82 ° C. for 0.5 hour, and an aqueous solution of initiator 2 was added dropwise at about 3.3 parts / hour.
  • the reaction was carried out at 82 ° C for 1.5 hours, and then cooled to 25 ° C.
  • the emulsion had a viscosity (measured with a B-type viscometer, 60 rpm, 20 ° C) of 620 mPa ⁇ s, a pH of 9.2 (measured with a pH meter), and an average particle diameter of 110 nm.
  • Production Example 12 (for Comparative Example) Into a polymerization apparatus equipped with a stirrer, a thermometer, and a reflux condenser, charged amounts of deionized water and Newcol 707SF shown in Table 1 were added, and the temperature was raised after sufficient nitrogen replacement. While stirring at about 100 rpm, the internal temperature was maintained at 82 ° C., and the component (A1) shown in Table 1 emulsified using a homomixer and an aqueous solution of initiator 1 were added dropwise over 3 hours to polymerize. After the completion of the dropwise addition, the reaction was carried out at 82 ° C. for 0.5 hour, and the initiator 2 aqueous solution was added dropwise over 0.5 hour.
  • the emulsion had a viscosity (measured with a B-type viscometer, 60 rpm, 20 ° C) of 520 mPa ⁇ s, a pH of 9.2 (measured with a pH meter), and an average particle diameter of 108 nm.
  • Example 1 DISPERBYK (registered trademark) -190 (trade name, manufactured by BYK, pigment dispersant, solid content: 40%) 3 parts (solid content: 1.2 parts), BYK (registered trademark) -024 (trade name, manufactured by BYK, 0.4 parts of antifoaming agent, solid content 100%), 35 parts of JR-603 (trade name, manufactured by Teika, titanium oxide, solid content 100%), Super SS (trade name, manufactured by Maruo Calcium Co., calcium carbonate, 15 parts of solid content 100%), 25 parts of deionized water and 2 parts of dipropylene glycol monomethyl ether were mixed, and after adding glass beads, the mixture was dispersed with a paint shaker for 60 minutes to obtain a pigment paste (P1) (solid content of 64.2%). ) Got.
  • P1 solid content of 64.2%
  • the glass transition temperature (Tg, ° C) of the core-shell type acrylic resin particles (A-1) to (A-12) of each aqueous coating composition and the solubility parameter value in all the copolymer components are 9
  • the ratio (% by mass) of a polymerizable unsaturated monomer having a value of 0.5 or less is also shown.
  • each aqueous coating composition No. obtained in the above Examples 1 to 8 and Comparative Examples 1 to 4 was coated. 1 to No. No. 12 was applied using an air spray so that the thickness of the cured coating film was 40 ⁇ m.
  • each test plate having a cured coating film formed on a steel plate was obtained by being left at 23 ° C. and 65% RH for 7 days.
  • Corrosion resistance With respect to each test plate, the coating film was cut with a knife to reach the base material with a knife, and 120 hours in accordance with JIS K 5600-7-1 (1999) "Neutral salt spray resistance" A salt spray test was performed. Evaluation was made according to the following criteria based on the width of rust and blisters from knife scratches. The smaller the maximum width of rust and blisters, the better the anticorrosion. If the rating is A to C, the anticorrosion is good.
  • the specular gloss (60 °) of the coated surface was measured in accordance with JIS K 5600-4-7 (1999) “Specular gloss”. If the specular gloss (60 °) of the coated surface is 70 or more, the gloss is good.
  • Pencil hardness The pencil hardness of the coated surface of each test plate was measured in accordance with JIS K 5600-5-4 (1999) “Scratch hardness (pencil method)”. Pencil hardness is F, HB, B, 2B in order from the harder one. If the hardness is B or more, the hardness is good.
  • an aqueous coating composition which has good film-forming properties at low temperatures and also has excellent coating properties such as corrosion resistance, hardness and water resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide a water-based paint composition having excellent film-forming properties at low temperatures, and having superior corrosion resistance, hardness, and water resistance. The present invention pertains to a water-based paint composition that contains core-shell acrylic resin particles (A) including at least one gradient polymer layer, in which the acid value of the shell parts of the core-shell acrylic resin particles (A) is within the range of 20-100 mg KOH/g.

Description

水性塗料組成物Aqueous paint composition
 本発明は、低温での造膜性が良好で、防食性、硬度及び耐水性にも優れる水性塗料組成物に関する。また、前記水性塗料組成物の硬化塗膜を有する塗装物品にも関する。 The present invention relates to a water-based coating composition which has good film-forming properties at low temperatures and also has excellent corrosion resistance, hardness and water resistance. The present invention also relates to a coated article having a cured coating film of the aqueous coating composition.
 近年、地球環境保護及び安全衛生上の観点から、溶剤系塗料から水系塗料への転換が進められており、金属基材等の防食塗料分野においても水性防食塗料の開発が行われている。 In recent years, from the viewpoints of global environmental protection and health and safety, conversion from solvent-based paints to water-based paints has been promoted, and water-based anticorrosive paints have been developed in the field of anticorrosive paints such as metal substrates.
 水性塗料においてはエマルション塗料が主流であり、エマルション塗料は溶剤系塗料と比べると溶剤の含有量は格段に少ないが、造膜性向上のために、水性といえども造膜助剤として、相当量の溶剤を塗料中に含んでいるのが実情である。 Emulsion paints are the mainstream in water-based paints.Emulsion paints have a much lower solvent content than solvent-based paints, but in order to improve the film-forming properties, they are water-based, but have a considerable amount as a film-forming aid. The fact is that the solvent is contained in the paint.
 造膜助剤(溶剤)を使用することなく造膜性を向上する手法として、エマルション樹脂を軟質化する方法があるが、得られる塗膜の硬度が低下して、防食性等の塗膜性能も低下する。 As a method of improving the film forming property without using a film forming aid (solvent), there is a method of softening the emulsion resin, but the hardness of the obtained coating film is reduced, and the coating film performance such as anti-corrosion property is obtained. Also decrease.
 特許文献1には、重合物のガラス転移温度が-30℃以下となる第1のエチレン性不飽和化合物成分(A)と、重合物のガラス転移温度が30℃以上となる第2のエチレン性不飽和化合物成分(B)とを、水性媒体中で特定の重合条件によりパワーフィード重合することを特徴とする水性エマルションの製造方法が開示されている。該製造方法により得られた水性エマルションは造膜助剤などの溶剤を使用せずに良好な低温成膜性を有し、得られた樹脂皮膜の表面のタックが少なく、かつ優れた耐久性を有することが記載されている。 Patent Document 1 discloses a first ethylenically unsaturated compound component (A) in which the glass transition temperature of a polymer is −30 ° C. or less, and a second ethylenic unsaturated compound component in which the glass transition temperature of a polymer is 30 ° C. or more. There is disclosed a method for producing an aqueous emulsion, which comprises subjecting an unsaturated compound component (B) to power feed polymerization in an aqueous medium under specific polymerization conditions. The aqueous emulsion obtained by the production method has good low-temperature film-forming properties without using a solvent such as a film-forming auxiliary, has a low tackiness on the surface of the obtained resin film, and has excellent durability. Has been described.
日本国特開2000-319301号公報Japanese Patent Laid-Open No. 2000-319301
 しかしながら、該製造方法により得られた水性エマルションは、低温成膜性及びタック性の向上は認められるものの、得られる塗膜の硬度が不十分であり、改善が望まれる。 However, in the aqueous emulsion obtained by the production method, although low-temperature film formability and tackiness are improved, the hardness of the obtained coating film is insufficient, and improvement is desired.
 本発明は上記事情を勘案してなされたものであり、低温での造膜性が良好で、かつ防食性、硬度及び耐水性にも優れる水性塗料組成物を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, has an object to provide a water-based coating composition having good film-forming properties at low temperatures, and excellent corrosion resistance, hardness and water resistance. is there.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、少なくとも1層のグラジエントポリマー層を含み、シェル部が特定範囲の酸価であるコアシェル型アクリル樹脂粒子を含有する水性塗料組成物によれば、上記目的を達成できることを見出した。 Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that an aqueous paint containing core-shell type acrylic resin particles containing at least one gradient polymer layer and having a shell portion having an acid value in a specific range. According to the composition, it has been found that the above object can be achieved.
 即ち、本発明は、下記の態様を包含する。
(1)少なくとも1層のグラジエントポリマー層を含むコアシェル型アクリル樹脂粒子(A)を含有し、
 前記コアシェル型アクリル樹脂粒子(A)のシェル部の酸価が20~100mgKOH/gの範囲内である水性塗料組成物。
That is, the present invention includes the following embodiments.
(1) containing core-shell type acrylic resin particles (A) including at least one gradient polymer layer,
An aqueous coating composition, wherein the shell part of the core-shell type acrylic resin particles (A) has an acid value in the range of 20 to 100 mgKOH / g.
(2)前記コアシェル型アクリル樹脂粒子(A)のガラス転移温度が-10℃以上である前記(1)に記載の水性塗料組成物。 (2) The aqueous coating composition according to (1), wherein the core-shell type acrylic resin particles (A) have a glass transition temperature of −10 ° C. or higher.
(3)前記コアシェル型アクリル樹脂粒子(A)の全共重合成分の80重量%以上が、溶解性パラメーター値が9.5以下の重合性不飽和モノマーである前記(1)又は(2)に記載の水性塗料組成物。 (3) The polymerizable unsaturated monomer according to (1) or (2), wherein at least 80% by weight of all copolymerized components of the core-shell type acrylic resin particles (A) is a polymerizable unsaturated monomer having a solubility parameter value of 9.5 or less. An aqueous coating composition as described in the above.
 基材と、前記基材上に前記(1)~(3)のいずれか一に記載の水性塗料組成物の硬化塗膜とを有する塗装物品。 (4) A coated article having a substrate and a cured coating film of the aqueous coating composition according to any one of (1) to (3) on the substrate.
 前記基材が金属基材である前記(4)に記載の塗装物品。 塗装 The coated article according to (4), wherein the base is a metal base.
 本発明の水性塗料組成物は、上記特徴を有することにより、低温での造膜性が良好で、かつ防食性、硬度及び耐水性にも優れる塗膜を形成することができる。 水性 The aqueous coating composition of the present invention having the above characteristics can form a coating film having good low-temperature film-forming properties and excellent corrosion resistance, hardness and water resistance.
 以下、本発明の水性塗料組成物について、さらに詳細に説明する。なお、本明細書において、‘質量%’と‘重量%’、‘質量部’と‘重量部’とは、それぞれ同義である。 Hereinafter, the aqueous coating composition of the present invention will be described in more detail. In this specification, the terms "% by mass" and "% by weight" and "parts by mass" and "parts by weight" have the same meanings.
 本発明に係る水性塗料組成物は、少なくとも1層のグラジエントポリマー層を含むコアシェル型アクリル樹脂粒子(A)を含有し、該コアシェル型アクリル樹脂粒子(A)のシェル部の酸価が20~100mgKOH/gの範囲内であることを特徴とするものである。 The aqueous coating composition according to the present invention contains core-shell type acrylic resin particles (A) including at least one gradient polymer layer, and the shell part of the core-shell type acrylic resin particles (A) has an acid value of 20 to 100 mg KOH. / G range.
 本実施形態において、コアシェル型アクリル樹脂粒子(A)の「シェル部」は樹脂粒子の最外層に存在する重合体層を意味し、「コア部」は上記シェル部を除く樹脂粒子内層の重合体層を意味し、「コアシェル型構造」は上記コア部とシェル部を有する構造を意味するものである。 In the present embodiment, the “shell” of the core-shell type acrylic resin particles (A) means a polymer layer present in the outermost layer of the resin particles, and the “core” is a polymer of the inner layer of the resin particles excluding the shell. The term “core-shell structure” means a structure having the above-mentioned core part and shell part.
 上記コアシェル型構造は、通常、コア部がシェル部に完全に被覆された層構造が一般的であるが、コア部とシェル部の質量比率等によっては、シェル部のモノマー量が層構造を形成せしめるのに不十分な場合もあり得る。そのような場合は、上記のような完全な層構造である必要はなく、コア部の一部をシェル部が被覆した構造であってもよい。 The core-shell structure generally has a layer structure in which the core portion is completely covered with the shell portion, but depending on the mass ratio of the core portion and the shell portion, the amount of monomer in the shell portion forms the layer structure. In some cases, it may not be enough. In such a case, it is not necessary to have a complete layer structure as described above, and a structure in which a shell part covers a part of the core part may be used.
 また、上記コアシェル型構造における多層構造の概念は、コアシェル型アクリル樹脂粒子(A)においてコア部に多層構造が形成される場合にも同様に当てはまるものとする。 概念 The concept of the multilayer structure in the core-shell type structure also applies to the case where the core-shell type acrylic resin particles (A) have a multilayer structure in the core.
 本実施形態において、グラジエントポリマー層とは、組成が連続的に変化する(組成勾配を有する)層構造を有するポリマー層を意味するものである。 に お い て In the present embodiment, the gradient polymer layer means a polymer layer having a layer structure in which the composition changes continuously (has a composition gradient).
 より具体的には、例えばモノマーA(又はモノマー混合物A)からモノマーB(又はモノマー混合物B)へとモノマー(又はモノマー混合物)組成が連続的に変化した、組成勾配を有するポリマー層を意味するものである。 More specifically, it means a polymer layer having a composition gradient in which the monomer (or monomer mixture) composition continuously changes from, for example, monomer A (or monomer mixture A) to monomer B (or monomer mixture B). It is.
 上記グラジエントポリマー層は一般に、パワーフィード重合とよばれる公知の重合方法により得ることができる。具体的には、例えば2種類のモノマーA(モノマー混合物A)とモノマーB(モノマー混合物B)とを重合反応する場合には、モノマーB(モノマー混合物B)を、モノマーA(モノマー混合物A)を収容する容器内に滴下しながら、モノマーA(モノマー混合物A)を反応容器に導入して重合反応を行うことによりグラジエントポリマー層を得ることができる。 The gradient polymer layer can be generally obtained by a known polymerization method called power feed polymerization. Specifically, for example, when a polymerization reaction of two types of monomer A (monomer mixture A) and monomer B (monomer mixture B) is performed, monomer B (monomer mixture B) is converted to monomer A (monomer mixture A). The monomer A (monomer mixture A) is introduced into the reaction vessel while being dropped into the container to be accommodated, and a polymerization reaction is carried out, whereby a gradient polymer layer can be obtained.
 上記パワーフィード重合において、合成条件(モノマーA(モノマー混合物A)とモノマーB(モノマー混合物B)との混合開始のタイミング、モノマーB(モノマー混合物B)をモノマーA(モノマー混合物A)を収容する容器内に滴下する速度とモノマーA(モノマー混合物A)を反応容器に導入する速度の設定等)により、所望の組成勾配を有するグラジエントポリマー層を得ることができる。 In the above power feed polymerization, the synthesis conditions (timing of the start of mixing of the monomer A (monomer mixture A) and the monomer B (monomer mixture B), the container containing the monomer A (monomer mixture A) with the monomer B (monomer mixture B) A gradient polymer layer having a desired composition gradient can be obtained by, for example, setting the rate at which the monomer A (monomer mixture A) is introduced into the reaction vessel and the rate at which the monomer A (monomer mixture A) is introduced into the reaction vessel.
 コアシェル型アクリル樹脂粒子(A)は上記グラジエントポリマー層を少なくとも1層有するものであり、該グラジエントポリマー層はコアシェル型アクリル樹脂粒子(A)中の任意の層とすることができる。 The core-shell type acrylic resin particles (A) have at least one gradient polymer layer, and the gradient polymer layer can be any layer in the core-shell type acrylic resin particles (A).
 コアシェル型アクリル樹脂粒子(A)は、通常、重合性不飽和モノマーを共重合成分とする共重合体(I)であるコア部と重合性不飽和モノマーを共重合成分とする共重合体(II)であるシェル部とからなるアクリル樹脂粒子である。重合性不飽和モノマーは重合性不飽和基を有するモノマーを意味する。 The core-shell type acrylic resin particles (A) are usually a copolymer (I) containing a polymerizable unsaturated monomer as a copolymer component and a copolymer (II) containing a polymerizable unsaturated monomer as a copolymer component. ) Is an acrylic resin particle comprising a shell portion. The polymerizable unsaturated monomer means a monomer having a polymerizable unsaturated group.
 本明細書において、重合性不飽和基とは、ラジカル重合し得る不飽和基を意味する。重合性不飽和基としては、例えば、ビニル基、ビニリデン基、アクリロイル基、メタクリロイル基等を挙げることができる。 重合 In the present specification, the polymerizable unsaturated group means an unsaturated group capable of undergoing radical polymerization. Examples of the polymerizable unsaturated group include a vinyl group, a vinylidene group, an acryloyl group, and a methacryloyl group.
 また、本明細書において、「(メタ)アクリレート」は「アクリレート又はメタクリレート」を意味する。「(メタ)アクリル酸」は、「アクリル酸又はメタクリル酸」を意味する。また、「(メタ)アクリロイル」は、「アクリロイル又はメタクリロイル」を意味する。また、「(メタ)アクリルアミド」は、「アクリルアミド又はメタクリルアミド」を意味する。 In this specification, “(meth) acrylate” means “acrylate or methacrylate”. “(Meth) acrylic acid” means “acrylic acid or methacrylic acid”. Further, “(meth) acryloyl” means “acryloyl or methacryloyl”. “(Meth) acrylamide” means “acrylamide or methacrylamide”.
 重合性不飽和モノマーとしては、重合性不飽和基を1分子中に1個有する重合性不飽和モノマー及び重合性不飽和基を1分子中に2個以上有する重合性不飽和モノマーを挙げることができる。 Examples of the polymerizable unsaturated monomer include a polymerizable unsaturated monomer having one polymerizable unsaturated group in one molecule and a polymerizable unsaturated monomer having two or more polymerizable unsaturated groups in one molecule. it can.
 重合性不飽和基を1分子中に1個有する重合性不飽和モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ノニル(メタ)アクリレート、トリデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、「イソステアリルアクリレート」(商品名、大阪有機化学工業社製)、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート等のアルキル又はシクロアルキル(メタ)アクリレート;イソボルニル(メタ)アクリレート等のイソボルニル基を有する重合性不飽和モノマー;アダマンチル(メタ)アクリレート等のアダマンチル基を有する重合性不飽和モノマー;トリシクロデセニル(メタ)アクリレート等のトリシクロデセニル基を有する重合性不飽和モノマー;ベンジル(メタ)アクリレート、スチレン、α-メチルスチレン、ビニルトルエン等の芳香環含有重合性不飽和モノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(2-メトキシエトキシ)シラン、γ-(メタ)アクリロイルオキシプロピルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルトリエトキシシラン等のアルコキシシリル基を有する重合性不飽和モノマー;パーフルオロブチルエチル(メタ)アクリレート、パーフルオロオクチルエチル(メタ)アクリレート等のパーフルオロアルキル(メタ)アクリレート;フルオロオレフィン等のフッ素化アルキル基を有する重合性不飽和モノマー;マレイミド基等の光重合性官能基を有する重合性不飽和モノマー;N-ビニルピロリドン、エチレン、ブタジエン、クロロプレン、プロピオン酸ビニル、酢酸ビニル等のビニル化合物;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリル酸と炭素数2~8の2価アルコールとのモノエステル化物、該モノエステル化物のε-カプロラクトン変性体、N-ヒドロキシメチル(メタ)アクリルアミド、アリルアルコ-ル、分子末端が水酸基であるポリオキシエチレン鎖を有する(メタ)アクリレート等の水酸基含有重合性不飽和モノマー;(メタ)アクリル酸、マレイン酸、クロトン酸、β-カルボキシエチルアクリレート等のカルボキシル基含有重合性不飽和モノマー;(メタ)アクリロニトリル、(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、グリシジル(メタ)アクリレートとアミン類との付加物等の含窒素重合性不飽和モノマー;グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3,4-エポキシシクロヘキシルエチル(メタ)アクリレート、3,4-エポキシシクロヘキシルプロピル(メタ)アクリレート、アリルグリシジルエーテル等のエポキシ基含有重合性不飽和モノマー;分子末端がアルコキシ基であるポリオキシエチレン鎖を有する(メタ)アクリレート等を挙げることができる。 Examples of the polymerizable unsaturated monomer having one polymerizable unsaturated group in one molecule include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and i-propyl (meth) acrylate , N-butyl (meth) acrylate, i-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (Meth) acrylate, tridecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, “isostearyl acrylate” (trade name, manufactured by Osaka Organic Chemical Industry Co., Ltd.), cyclohexyl (meth) acrylate, methylcyclohexyl (meth) ) Acri Alkyl or cycloalkyl (meth) acrylate such as tert-butylcyclohexyl (meth) acrylate, cyclododecyl (meth) acrylate, and tricyclodecanyl (meth) acrylate; polymerization having an isobornyl group such as isobornyl (meth) acrylate Polymerizable unsaturated monomer having an adamantyl group such as adamantyl (meth) acrylate; polymerizable unsaturated monomer having a tricyclodecenyl group such as tricyclodecenyl (meth) acrylate; benzyl (meth) ) Aromatic ring-containing polymerizable unsaturated monomers such as acrylate, styrene, α-methylstyrene and vinyltoluene; vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, γ- (meth) acryloyloxy Polymerizable unsaturated monomers having an alkoxysilyl group such as propyltrimethoxysilane and γ- (meth) acryloyloxypropyltriethoxysilane; and perfluorobutylethyl (meth) acrylate and perfluorooctylethyl (meth) acrylate Fluoroalkyl (meth) acrylate; polymerizable unsaturated monomer having a fluorinated alkyl group such as fluoroolefin; polymerizable unsaturated monomer having a photopolymerizable functional group such as a maleimide group; N-vinylpyrrolidone, ethylene, butadiene, chloroprene , Vinyl compounds such as vinyl propionate and vinyl acetate; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) Monoester product of (meth) acrylic acid such as acrylate and dihydric alcohol having 2 to 8 carbon atoms, ε-caprolactone modified product of the monoester product, N-hydroxymethyl (meth) acrylamide, allyl alcohol, molecular terminal A hydroxyl group-containing polymerizable unsaturated monomer such as (meth) acrylate having a polyoxyethylene chain having a hydroxyl group; a carboxyl group-containing polymerizable unsaturated monomer such as (meth) acrylic acid, maleic acid, crotonic acid, and β-carboxyethyl acrylate Monomers: (meth) acrylonitrile, (meth) acrylamide, N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, N, N-dimethylaminopropyl (meth) acrylamide, glycidyl (meth) ) Acrylates and amines Nitrogen-containing polymerizable unsaturated monomers such as adducts; glycidyl (meth) acrylate, β-methylglycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, 3,4-epoxycyclohexylethyl (meth) acrylate And epoxy-containing polymerizable unsaturated monomers such as 3,4-epoxycyclohexylpropyl (meth) acrylate and allyl glycidyl ether; and (meth) acrylates having a polyoxyethylene chain whose molecular terminal is an alkoxy group. .
 これらのモノマーは、コアシェル型アクリル樹脂粒子(A)に要求される性能に応じて、1種を単独で、又は2種以上を組合せて使用することができる。 These monomers can be used alone or in combination of two or more, depending on the performance required for the core-shell type acrylic resin particles (A).
 重合性不飽和基を1分子中に2個以上有する重合性不飽和モノマーとしては、例えば、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルエタンジ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルエタントリ(メタ)アクリレート、1,1,1-トリスヒドロキシメチルプロパントリ(メタ)アクリレート、メチレンビス(メタ)アクリルアミド、エチレンビス(メタ)アクリルアミド、トリアリルイソシアヌレート、ジアリルテレフタレート、ジビニルベンゼン等を挙げることができる。これらのモノマーは、1種を単独で、又は2種以上を組合せて使用することができる。 Examples of the polymerizable unsaturated monomer having two or more polymerizable unsaturated groups in one molecule include allyl (meth) acrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, and tetraethylene glycol. Di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tetra (meth) acrylate, glycerol di (meth) acrylate, 1,1,1-trishydroxymethylethanedi (meth) acryl 1,1,1-trishydroxymethylethanetri (meth) acrylate, 1,1,1-trishydroxymethylpropanetri (meth) acrylate, methylenebis (meth) acrylamide, ethylenebis (meth) acrylamide, triallyl Examples include isocyanurate, diallyl terephthalate, and divinylbenzene. These monomers can be used alone or in combination of two or more.
 上記重合性不飽和基を1分子中に2個以上有する重合性不飽和モノマーは、共重合体に架橋構造を付与する機能を有する。重合性不飽和基を1分子中に2個以上有する重合性不飽和モノマーを使用する場合、その使用割合は、共重合体の架橋の程度に応じて適宜決定し得るが、通常、重合性不飽和基を1分子中に2個以上有する重合性不飽和モノマー及び重合性不飽和基を1分子中に1個有する重合性不飽和モノマーの総量に対して、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がさらに好ましく、また、30質量%以下が好ましく、10質量%以下がより好ましく、7質量%以下がさらに好ましい。 重合 The polymerizable unsaturated monomer having two or more polymerizable unsaturated groups in one molecule has a function of imparting a crosslinked structure to the copolymer. When a polymerizable unsaturated monomer having two or more polymerizable unsaturated groups in one molecule is used, the proportion of the polymerizable unsaturated monomer can be appropriately determined according to the degree of crosslinking of the copolymer. It is preferably at least 0.1% by mass based on the total amount of the polymerizable unsaturated monomer having two or more saturated groups in one molecule and the polymerizable unsaturated monomer having one polymerizable unsaturated group in one molecule, 0.5% by mass or more is more preferable, 1% by mass or more is more preferable, 30% by mass or less is preferable, 10% by mass or less is more preferable, and 7% by mass or less is further preferable.
 コアシェル型アクリル樹脂粒子(A)は、重合性不飽和モノマー混合物を乳化重合してコア部共重合体(I)のエマルションを得た後、このエマルション中に、重合性不飽和モノマー混合物を添加し、さらに乳化重合させてシェル部共重合体(II)を調製することにより得ることができる。 The core-shell type acrylic resin particles (A) are obtained by emulsion-polymerizing the polymerizable unsaturated monomer mixture to obtain an emulsion of the core copolymer (I), and then adding the polymerizable unsaturated monomer mixture to the emulsion. , And emulsion polymerization to prepare a shell copolymer (II).
 コア部共重合体(I)のエマルションを調製する乳化重合は、従来公知の方法により行うことができる。例えば、乳化剤の存在下で、重合開始剤を使用して重合性不飽和モノマー混合物を乳化重合することにより行うことができる。 Emulsion polymerization for preparing an emulsion of the core copolymer (I) can be carried out by a conventionally known method. For example, it can be carried out by emulsion-polymerizing a polymerizable unsaturated monomer mixture using a polymerization initiator in the presence of an emulsifier.
 上記乳化剤としてはアニオン性乳化剤及びノニオン性乳化剤を好適に使用することができる。 ア ニ オ ン As the emulsifier, an anionic emulsifier and a nonionic emulsifier can be suitably used.
 該アニオン性乳化剤としては、例えば、アルキルスルホン酸、アルキルベンゼンスルホン酸、アルキルリン酸等のナトリウム塩やアンモニウム塩を挙げることができる。また、ノニオン系乳化剤としては、例えば、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンモノラウレート、ポリオキシエチレンモノステアレート、ポリオキシエチレンモノオレエート、ソルビタンモノラウレート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレンソルビタンモノラウレート等を挙げることができる。 ア ニ オ ン Examples of the anionic emulsifier include sodium salts and ammonium salts of alkylsulfonic acid, alkylbenzenesulfonic acid, alkylphosphoric acid and the like. Examples of nonionic emulsifiers include, for example, polyoxyethylene oleyl ether, polyoxyethylene stearyl ether, polyoxyethylene lauryl ether, polyoxyethylene tridecyl ether, polyoxyethylene phenyl ether, polyoxyethylene nonyl phenyl ether, and polyoxyethylene nonyl phenyl ether. Ethylene octyl phenyl ether, polyoxyethylene monolaurate, polyoxyethylene monostearate, polyoxyethylene monooleate, sorbitan monolaurate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene sorbitan monolaurate, etc. be able to.
 また、1分子中にアニオン性基とポリオキシエチレン基、ポリオキシプロピレン基等のポリオキシアルキレン基とを有するポリオキシアルキレン基含有アニオン性乳化剤;1分子中にアニオン性基とラジカル重合性不飽和基とを有する反応性アニオン性乳化剤を使用することもできる。 A polyoxyalkylene group-containing anionic emulsifier having an anionic group and a polyoxyalkylene group such as a polyoxyethylene group or a polyoxypropylene group in one molecule; an anionic group and a radical polymerizable unsaturated molecule in one molecule; It is also possible to use reactive anionic emulsifiers having groups.
 上記反応性アニオン性乳化剤としては、アリル基、メタリル基、(メタ)アクリロイル基、プロペニル基、ブテニル基等のラジカル重合性不飽和基を有するスルホン酸化合物のナトリウム塩、該スルホン酸化合物のアンモニウム塩等を挙げることができる。 Examples of the reactive anionic emulsifier include a sodium salt of a sulfonic acid compound having a radical polymerizable unsaturated group such as an allyl group, a methallyl group, a (meth) acryloyl group, a propenyl group, and a butenyl group, and an ammonium salt of the sulfonic acid compound. And the like.
 上記乳化剤の使用量は、使用される全モノマーの総量に対して、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1質量%以上がさらに好ましく、また、15質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。 The amount of the emulsifier used is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, still more preferably 1% by mass or more, and 15% by mass, based on the total amount of all the monomers used. Is preferably 10% by mass or less, more preferably 5% by mass or less.
 前記重合開始剤としては、例えば、ベンゾイルパーオキシド、オクタノイルパーオキサイド、ラウロイルパーオキシド、ステアロイルパーオキサイド、クメンハイドロパーオキサイド、tert-ブチルパーオキサイド、tert-ブチルパーオキシラウレート、tert-ブチルパーオキシイソプロピルカーボネート、tert-ブチルパーオキシアセテート、ジイソプロピルベンゼンハイドロパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス(2,4-ジメチルバレロニトリル)、アゾビス(2-メチルプロピオンニトリル)、アゾビス(2-メチルブチロニトリル)、4、4’-アゾビス(4-シアノブタン酸)、ジメチルアゾビス(2-メチルプロピオネート)、アゾビス[2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド]、アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]-プロピオンアミド}等のアゾ化合物;過硫酸カリウム、過硫酸アンモニウム、過硫酸ナトリウム等の過硫酸塩等を挙げることができる。これらの重合開始剤は、単独で又は2種以上組合せて使用することができる。また、上記重合開始剤に、必要に応じて、糖、ナトリウムホルムアルデヒドスルホキシレート、鉄錯体等の還元剤を併用して、レドックス開始剤とすることもできる。 Examples of the polymerization initiator include benzoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, cumene hydroperoxide, tert-butyl peroxide, tert-butylperoxylaurate, and tert-butylperoxy. Organic peroxides such as isopropyl carbonate, tert-butylperoxyacetate, diisopropylbenzene hydroperoxide; azobisisobutyronitrile, azobis (2,4-dimethylvaleronitrile), azobis (2-methylpropionnitrile), azobis (2-methylbutyronitrile), 4,4′-azobis (4-cyanobutanoic acid), dimethylazobis (2-methylpropionate), azobis [2-methyl-N- (2-hydridene) Azo compounds such as xyethyl) -propionamide] and azobis {2-methyl-N- [2- (1-hydroxybutyl)]-propionamide}; persulfates such as potassium persulfate, ammonium persulfate and sodium persulfate; Can be mentioned. These polymerization initiators can be used alone or in combination of two or more. Further, if necessary, a reducing agent such as sugar, sodium formaldehyde sulfoxylate, iron complex or the like may be used in combination with the polymerization initiator to form a redox initiator.
 上記重合開始剤の使用量は、一般に、使用される全モノマーの総量に対して、0.1質量%以上が好ましく、0.2質量%以上がより好ましく、また、5質量%以下が好ましく、3質量%以下がより好ましい。該重合開始剤の添加方法は、特に制限されるものではなく、その種類及び量等に応じて適宜選択することができる。例えば、予めモノマー混合物又は水性媒体に含有させることもできるし、或いは重合時に一括して添加することもできるし、又は滴下することもできる。 In general, the amount of the polymerization initiator used is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and preferably 5% by mass or less, based on the total amount of all the monomers used. It is more preferably at most 3% by mass. The method of adding the polymerization initiator is not particularly limited, and can be appropriately selected according to the type and amount of the polymerization initiator. For example, it can be previously contained in a monomer mixture or an aqueous medium, can be added at a time during polymerization, or can be added dropwise.
 コアシェル型アクリル樹脂粒子(A)は上記で得られるコア部共重合体(I)のエマルションに、重合性不飽和モノマー混合物を添加し、さらに重合させてシェル部共重合体(II)を形成することによって得ることができる。 The core-shell type acrylic resin particles (A) are obtained by adding a polymerizable unsaturated monomer mixture to the emulsion of the core copolymer (I) obtained above and further polymerizing to form a shell copolymer (II). Can be obtained by:
 上記シェル部共重合体(II)を形成するモノマー混合物は、必要に応じて、前記重合開始剤、連鎖移動剤、還元剤、乳化剤等の成分を適宜含有することができる。また、当該モノマー混合物は、そのまま滴下することもできるが、該モノマー混合物を水性媒体に分散して得られるモノマー乳化物として滴下することが好ましい。この場合におけるモノマー乳化物の粒子径は特に制限されるものではない。 モ ノ マ ー The monomer mixture forming the shell copolymer (II) may appropriately contain components such as the polymerization initiator, the chain transfer agent, the reducing agent, and the emulsifier, if necessary. Further, the monomer mixture can be dropped as it is, but it is preferable to drop the monomer mixture as a monomer emulsion obtained by dispersing the monomer mixture in an aqueous medium. In this case, the particle size of the monomer emulsion is not particularly limited.
 シェル部共重合体(II)を形成するモノマー混合物の重合方法としては、例えば、該モノマー混合物又はその乳化物を、一括で又は徐々に滴下して、上記コア部共重合体(I)のエマルションに、添加し、攪拌しながら適当な温度に加熱する方法を挙げることができる。 As a method for polymerizing the monomer mixture forming the shell copolymer (II), for example, the monomer mixture or an emulsion thereof is dropped at once or gradually, and an emulsion of the core copolymer (I) is obtained. And heating the mixture to an appropriate temperature with stirring.
 かくして得られるコアシェル型アクリル樹脂粒子(A)は、共重合体(I)をコア部とし、共重合体(II)をシェル部とする複層構造を有する。 The core-shell type acrylic resin particles (A) thus obtained have a multilayer structure having the copolymer (I) as a core and the copolymer (II) as a shell.
 また、コアシェル型アクリル樹脂粒子(A)は、上記コア部共重合体(I)を得る工程とシェル部共重合体(II)を得る工程の間に、他の樹脂層を形成せしめる重合性不飽和モノマー(1種または2種以上の混合物)を供給して乳化重合を行なう工程を追加することによって、3層またはそれ以上の層からなるアクリル樹脂粒子とすることもできる。 In addition, the core-shell type acrylic resin particles (A) are polymerizable non-polymerizable particles which form another resin layer between the step of obtaining the core copolymer (I) and the step of obtaining the shell copolymer (II). By adding a step of supplying a saturated monomer (one or a mixture of two or more) to carry out emulsion polymerization, acrylic resin particles comprising three or more layers can be obtained.
 コアシェル型アクリル樹脂粒子(A)は、少なくとも1層のグラジエントポリマー層を含む樹脂粒子であるが、該グラジエントポリマー層は上記コアシェル型アクリル樹脂粒子(A)中の任意の層とすることができる。 The core-shell type acrylic resin particles (A) are resin particles including at least one gradient polymer layer, and the gradient polymer layer can be any layer in the core-shell type acrylic resin particles (A).
 グラジエントポリマー層とする樹脂層は前記したパワーフィード重合等により調製することができる。 樹脂 The resin layer to be used as the gradient polymer layer can be prepared by the above-described power feed polymerization or the like.
 コアシェル型アクリル樹脂粒子(A)中のグラジエントポリマー層の比率は、得られる塗膜の防食性及び硬度の観点から、コアシェル型アクリル樹脂粒子(A)の全共重合成分の総量に対して、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましく、また、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましい。
 該比率を90質量%以下とすることにより、コアシェル型アクリル樹脂粒子(A)中のグラジエントポリマー層以外の層が一定以上存在し、硬質モノマー成分の存在によって一定以上の硬度を維持することができる。また、10質量%以上とすることにより、造膜性に優れ、良好な防食性が得られる。
The ratio of the gradient polymer layer in the core-shell type acrylic resin particles (A) is 10% with respect to the total amount of all the copolymerized components of the core-shell type acrylic resin particles (A) from the viewpoint of the corrosion resistance and hardness of the obtained coating film. % By mass or more, more preferably 20% by mass or more, still more preferably 30% by mass or more, and preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less.
By setting the ratio to 90% by mass or less, a layer other than the gradient polymer layer in the core-shell type acrylic resin particles (A) is present in a certain degree or more, and a certain degree of hardness can be maintained by the presence of the hard monomer component. . When the content is 10% by mass or more, excellent film-forming properties and good anticorrosion properties can be obtained.
 コアシェル型アクリル樹脂粒子(A)は、粒子の分散安定性と塗膜の親水性の観点からシェル部(シェル部共重合体(II)(最外層))の酸価が20mgKOH/g以上が好ましく、25mgKOH/g以上がより好ましく、30mgKOH/g以上がさらに好ましく、また、100mgKOH/g以下が好ましく、80mgKOH/g以下がより好ましく、60mgKOH/g以下がさらに好ましい。 In the core-shell type acrylic resin particles (A), the acid value of the shell portion (shell portion copolymer (II) (outermost layer)) is preferably 20 mgKOH / g or more from the viewpoint of the dispersion stability of the particles and the hydrophilicity of the coating film. , 25 mgKOH / g or more, more preferably 30 mgKOH / g or more, further preferably 100 mgKOH / g or less, more preferably 80 mgKOH / g or less, and even more preferably 60 mgKOH / g or less.
 シェル部の酸価を20mgKOH/g以上とすることにより、粒子の分散安定性が良好となり、また、100mgKOH/g以下とすることにより、塗膜の親水性が高くなりすぎて防食性や耐水性が不良となるのを防ぐことができる。 When the acid value of the shell portion is 20 mgKOH / g or more, the dispersion stability of the particles becomes good, and when the acid value is 100 mgKOH / g or less, the hydrophilicity of the coating film becomes too high to prevent corrosion and water resistance. Can be prevented from becoming defective.
 シェル部共重合体(II)に酸価を付与するためのモノマーとしては、中和剤が揮発し、成膜した後に親水性が大きく低下し、耐水性や防食性に有利になるとの観点から、カルボキシル基含有重合性不飽和モノマーを含有することが好ましい。 As a monomer for imparting an acid value to the shell copolymer (II), from the viewpoint that the neutralizing agent is volatilized, the hydrophilicity is greatly reduced after forming a film, and the water resistance and the corrosion resistance are advantageous. And a carboxyl group-containing polymerizable unsaturated monomer.
 カルボキシル基含有重合性不飽和モノマーとしては、特に、アクリル酸及び/又はメタクリル酸を好適に使用することができる。 Acrylic acid and / or methacrylic acid can be particularly preferably used as the carboxyl group-containing polymerizable unsaturated monomer.
 本明細書において酸価(mgKOH/g)は、試料1g(樹脂の場合は固形分1g)に含まれる酸基の量を水酸化カリウムに換算したときの水酸化カリウムのmg数で表したものである。水酸化カリウムの分子量は56.1とする。 In the present specification, the acid value (mgKOH / g) is represented by mg of potassium hydroxide when the amount of acid groups contained in 1 g of a sample (1 g of solid content in the case of resin) is converted into potassium hydroxide. It is. The molecular weight of potassium hydroxide is 56.1.
 酸価の測定は、JIS K-5601-2-1(1999)に準拠して行う。試料をトルエン/エタノール=2/1(体積比)の混合溶剤で溶解し、フェノールフタレインを指示薬として水酸化カリウム溶液で滴定し、下記式により算出する。 (4) The acid value is measured in accordance with JIS K-5601-2-1 (1999). A sample is dissolved in a mixed solvent of toluene / ethanol = 2/1 (volume ratio), titrated with a potassium hydroxide solution using phenolphthalein as an indicator, and calculated by the following equation.
 酸価(mgKOH/g)=56.1×V×C/m
 V:滴定量(ml)、C:滴定液の濃度(mol/l)、m:試料の固形分重量(g)
Acid value (mgKOH / g) = 56.1 × V × C / m
V: titration (ml), C: concentration of titrant (mol / l), m: solid weight of sample (g)
 コアシェル型アクリル樹脂粒子(A)のガラス転移温度(Tg)は、塗膜硬度の観点から、-10℃以上が好ましく、-5℃以上がより好ましく、0℃以上がさらに好ましい。
 ガラス転移温度(Tg)を-10℃以上とすることにより、得られる塗膜硬度の低下を防ぎ、耐跡付き性を維持することができる。
The glass transition temperature (Tg) of the core-shell type acrylic resin particles (A) is preferably −10 ° C. or higher, more preferably −5 ° C. or higher, and further preferably 0 ° C. or higher, from the viewpoint of coating film hardness.
By setting the glass transition temperature (Tg) to -10 ° C. or higher, it is possible to prevent a decrease in the hardness of the obtained coating film and to maintain the trace resistance.
 なお本明細書において、樹脂が2種以上のモノマーからなる共重合体である場合には、当該共重合体のガラス転移温度(Tg、℃)は、下記式によって算出することができる。
1/Tg(K)=(W1/T1)+(W2/T2)+・・(Wn/Tn)
Tg(℃)=Tg(K)-273
 各式中、nは使用されたモノマーの種類数(自然数)を表し、W1~Wnは共重合に使用されたn種のモノマーのそれぞれの重量%、T1~Tnはn種の単量体のホモポリマーのそれぞれのTg(K)を表わす。なお、T1~Tnは、Polymer Hand Book(Second Edition,J.Brandup・E.H.Immergut編)III-139~179頁に記載された値を用いることができる。
In the present specification, when the resin is a copolymer composed of two or more monomers, the glass transition temperature (Tg, ° C) of the copolymer can be calculated by the following equation.
1 / Tg (K) = (W1 / T1) + (W2 / T2) +... (Wn / Tn)
Tg (° C.) = Tg (K) -273
In each formula, n represents the number of types of monomers used (natural number), W1 to Wn are the weight percentages of the n monomers used in the copolymerization, and T1 to Tn are the weights of the n monomers. Represents the respective Tg (K) of the homopolymer. For T1 to Tn, the values described in Polymer Hand Book (Second Edition, edited by J. Brandup, EH Immergut), pages III-139 to 179, can be used.
 また、モノマーのホモポリマーのTgが明確でない場合のガラス転移温度(℃)は、実測により静的ガラス転移温度として求めることもできる。この場合、例えば示差走査熱量計「DSC-220U」(セイコーインスツルメント社製)を用いて、試料を測定カップに採り、真空吸引して完全に溶剤を除去した後、3℃/分の昇温速度で-20℃~+200℃の範囲で熱量変化を測定し、低温側の最初のベースラインの変化点を静的ガラス転移温度とする。 ガ ラ ス In addition, the glass transition temperature (° C.) when the Tg of the homopolymer of the monomer is not clear can be determined as a static glass transition temperature by actual measurement. In this case, for example, using a differential scanning calorimeter “DSC-220U” (manufactured by Seiko Instruments Inc.), a sample is taken in a measurement cup, and the solvent is completely removed by vacuum suction. The calorie change is measured at a temperature rate in the range of −20 ° C. to + 200 ° C., and the first baseline change point on the low temperature side is defined as a static glass transition temperature.
 また、コアシェル型アクリル樹脂粒子(A)は、全共重合成分(コア部共重合体(I)及びシェル部共重合体(II)を構成する全重合性不飽和モノマー)の80質量%以上が、溶解性パラメーター値(SP値)が9.5以下の重合性不飽和モノマーであることが、得られる塗膜の防食性及び耐水性の観点から好ましい。溶解性パラメーター値(SP値)が9.5以下である重合性不飽和モノマーは、全共重合成分の90質量%以上がより好ましく、95質量%以上がさらに好ましい。 Further, the core-shell type acrylic resin particles (A) have 80% by mass or more of all copolymer components (all polymerizable unsaturated monomers constituting the core copolymer (I) and the shell copolymer (II)). It is preferable that the polymerizable unsaturated monomer has a solubility parameter value (SP value) of 9.5 or less from the viewpoints of corrosion resistance and water resistance of the obtained coating film. The polymerizable unsaturated monomer having a solubility parameter value (SP value) of 9.5 or less is more preferably 90% by mass or more, more preferably 95% by mass or more of all copolymerized components.
 本明細書において、溶解性パラメーター値(SP値)は、Polymer Engineering and Science,14,No.2,p.147(1974)に記載された、下記のFedors式により算出される値である。 に お い て In the present specification, the solubility parameter value (SP value) is as defined in Polymer {Engineering and} Science, 14, No. 2, p. 147 (1974), calculated by the following Fedors equation.
 SP=√{Σ(Δe1)/Σ(Δv1)}
(式中、Δe1は各単位官能基当たりの凝集エネルギー、Δv1は各単位官能基当たりの分子容を示す。)なお、共重合体又は2種以上の樹脂の混合物であるブレンド物のSP値は、単量体ユニット又はブレンド物の各成分のSP値に質量分率を乗じたものを合計した値とした。
SP = {(Δe1) / {(Δv1)}
(In the formula, Δe1 represents the aggregation energy per unit functional group, and Δv1 represents the molecular volume per unit functional group.) The SP value of a copolymer or a blend of a mixture of two or more resins is as follows: , And a value obtained by multiplying the SP value of each component of the monomer unit or the blend by the mass fraction.
 また、コアシェル型アクリル樹脂粒子(A)は、得られる塗膜の防食性、耐水性及び硬度の観点から重量平均分子量が40000以上であることが好ましい。 {Circle around (4)} The core-shell type acrylic resin particles (A) preferably have a weight average molecular weight of 40,000 or more from the viewpoints of corrosion resistance, water resistance and hardness of the resulting coating film.
 本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフを用いて測定した保持時間を、同一条件で測定した分子量既知の標準ポリスチレンの保持時間によりポリスチレンの分子量に換算して求めた値である。 In the present specification, the weight average molecular weight is a value obtained by converting the retention time measured using a gel permeation chromatograph into the molecular weight of polystyrene by the retention time of a standard polystyrene having a known molecular weight measured under the same conditions. .
 具体的には、例えば、ゲルパーミエーションクロマトグラフ装置として、「HLC-8120GPC」(商品名、東ソー社製)を使用し、カラムとして、「TSKgel G4000HXL」を1本、「TSKgel G3000HXL」を2本、及び「TSKgel G2000HXL」を1本(商品名、いずれも東ソー社製)の計4本を使用し、検出器として、示差屈折率計を使用し、移動相:テトラヒドロフラン、測定温度:40℃、流速:1mL/minの条件下で測定することで、重量平均分子量を求めることができる。 Specifically, for example, “HLC-8120GPC” (trade name, manufactured by Tosoh Corporation) is used as a gel permeation chromatograph, and one “TSKgel @ G4000HXL” and two “TSKgel @ G3000HXL” are used as columns. , And one TSKgel @ G2000HXL (trade name, all manufactured by Tosoh Corporation) using a differential refractometer as a detector, mobile phase: tetrahydrofuran, measurement temperature: 40 ° C., The weight average molecular weight can be determined by measuring the flow rate under the condition of 1 mL / min.
 コアシェル型アクリル樹脂粒子(A)の平均粒子径は、50nm以上が好ましく、60nm以上がより好ましく、70nm以上がさらに好ましく、また、500nm以下が好ましく、400nm以下がより好ましく、300nm以下がさらに好ましい。 (4) The average particle size of the core-shell type acrylic resin particles (A) is preferably 50 nm or more, more preferably 60 nm or more, still more preferably 70 nm or more, preferably 500 nm or less, more preferably 400 nm or less, and even more preferably 300 nm or less.
 平均粒子径を50nm以上とすることにより、粘度が高くなりすぎず、ハンドリングが良好となる。また、平均粒子径を500nm以下とすることにより、分散安定性が良好となる。 こ と By setting the average particle diameter to 50 nm or more, the viscosity does not become too high, and the handling becomes good. Further, by setting the average particle size to 500 nm or less, the dispersion stability is improved.
 平均粒子径はレーザー光散乱等の一般的な測定手段を用いて測定することができる。 The average particle diameter can be measured using a general measuring means such as laser light scattering.
 本明細書において、樹脂粒子の平均粒子径は、サブミクロン粒度分布測定装置を用いて、常法により脱イオン水で希釈してから20℃で測定した値である。サブミクロン粒度分布測定装置としては、例えば、「COULTER N4型」(商品名、ベックマン・コールター社製)を使用することができる。 に お い て In the present specification, the average particle size of the resin particles is a value measured at 20 ° C. after dilution with deionized water by a conventional method using a submicron particle size distribution analyzer. As the submicron particle size distribution measuring device, for example, "COULTER @ N4 type" (trade name, manufactured by Beckman Coulter, Inc.) can be used.
 コアシェル型アクリル樹脂粒子(A)の機械的安定性を向上させるために、該アクリル樹脂粒子が有するカルボキシル基等の酸基を中和剤により中和することができる。該中和剤としては、酸基を中和できるものであれば特に制限はなく、例えば、水酸化ナトリウム、水酸化カリウム、トリメチルアミン、2-(ジメチルアミノ)エタノール、2-アミノ-2-メチル-1-プロパノール、トリエチルアミン、アンモニア水等を挙げることができる。これらの中和剤は、中和後のコアシェル型アクリル樹脂粒子(A)の水分散液のpHが6.5~9.0程度となるような量で好適に使用することができる。 (4) In order to improve the mechanical stability of the core-shell type acrylic resin particles (A), acid groups such as carboxyl groups of the acrylic resin particles can be neutralized with a neutralizing agent. The neutralizing agent is not particularly limited as long as it can neutralize an acid group. Examples thereof include sodium hydroxide, potassium hydroxide, trimethylamine, 2- (dimethylamino) ethanol, and 2-amino-2-methyl- Examples thereof include 1-propanol, triethylamine, and aqueous ammonia. These neutralizing agents can be suitably used in such an amount that the pH of the aqueous dispersion of the core-shell type acrylic resin particles (A) after neutralization is about 6.5 to 9.0.
 水性塗料組成物には、コアシェル型アクリル樹脂粒子(A)以外の樹脂粒子も必要に応じて使用することができる。具体的には、例えば、アクリル樹脂、アクリル/スチレン樹脂、ウレタン樹脂、フェノール樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、酢酸ビニル/アクリル樹脂、エチレン/酢酸ビニル樹脂、エポキシ樹脂、エポキシエステル樹脂、ポリエステル樹脂、アルキド樹脂、アクリロニトリル/ブタジエン樹脂、スチレン/ブタジエン樹脂、ポリブタジエン、ポリイソプレン、シリコン樹脂、及びフッ素樹脂等、また、これらの樹脂を変性したもの、例えば、カーボネート変性ウレタン樹脂、アクリル樹脂変性エポキシ樹脂、アルキド変性エポキシ樹脂、ポリブタジエン変性エポキシ樹脂、(ポリ)アミン変性エポキシ樹脂、ウレタン変性エポキシ樹脂等の樹脂から選ばれる少なくとも1種からなる樹脂粒子を挙げることができる。これらの樹脂粒子はいわゆるゴムであってもよい。ただし、前記コアシェル型アクリル樹脂粒子(A)を除く。 樹脂 Resin particles other than the core-shell type acrylic resin particles (A) can be used in the water-based coating composition as needed. Specifically, for example, acrylic resin, acrylic / styrene resin, urethane resin, phenol resin, vinyl chloride resin, vinyl acetate resin, vinyl acetate / acrylic resin, ethylene / vinyl acetate resin, epoxy resin, epoxy ester resin, polyester resin , Alkyd resin, acrylonitrile / butadiene resin, styrene / butadiene resin, polybutadiene, polyisoprene, silicone resin, fluororesin, etc., and those obtained by modifying these resins, for example, carbonate-modified urethane resin, acrylic resin-modified epoxy resin, Resin particles composed of at least one resin selected from alkyd-modified epoxy resin, polybutadiene-modified epoxy resin, (poly) amine-modified epoxy resin, and urethane-modified epoxy resin can be given. These resin particles may be so-called rubber. However, the core-shell type acrylic resin particles (A) are excluded.
 上記樹脂粒子は、複数の樹脂からなる樹脂粒子である場合、複数の樹脂をブレンドした後に樹脂粒子としてもよく、複数種の樹脂粒子のブレンドであってもよい。これらの樹脂粒子は、通常、エマルションの形態で水性塗料組成物中に配合することができる。 In the case where the resin particles are resin particles composed of a plurality of resins, the resin particles may be blended into a plurality of resin particles to form resin particles, or may be a blend of a plurality of types of resin particles. These resin particles can be usually blended in the form of an emulsion into the aqueous coating composition.
 水性塗料組成物は、塗料の貯蔵安定性の観点から、pHが5.0以上が好ましく、6.0以上がより好ましく、また、10.0以下が好ましく、9.0以下がより好ましい。 From the viewpoint of the storage stability of the paint, the aqueous paint composition preferably has a pH of 5.0 or more, more preferably 6.0 or more, and preferably 10.0 or less, more preferably 9.0 or less.
 また、水性塗料組成物は、必要に応じて、架橋剤、硬化触媒、着色顔料等の顔料、充填剤、骨材、分散剤、湿潤剤、増粘剤、レオロジーコントロール剤、表面調整剤、消泡剤、防腐剤、防黴剤、pH調整剤、防錆剤、沈降防止剤、凍結防止剤、皮張り防止剤、紫外線吸収剤、酸化防止剤、有機溶剤等を含有することもできる。 In addition, the aqueous coating composition may contain a crosslinking agent, a curing catalyst, a pigment such as a coloring pigment, a filler, an aggregate, a dispersant, a wetting agent, a thickener, a rheology control agent, a surface conditioning agent, It can also contain foaming agents, preservatives, fungicides, pH adjusters, rust inhibitors, anti-settling agents, anti-freezing agents, anti-skinning agents, ultraviolet absorbers, antioxidants, organic solvents and the like.
 水性塗料組成物は、必要に応じて下地処理した各種基材上、好ましくは金属基材上に塗装して硬化した硬化塗膜とすることが好ましい。塗装は、従来公知の方法、例えばローラー塗装、スプレー塗装、刷毛塗装、カーテン塗装、シャワー塗装、浸漬塗装等の方法によって直接1回又は2回以上塗装して塗膜を形成することができる。 It is preferable that the water-based coating composition is a cured coating film which is applied and cured on various substrates, preferably a metal substrate, as required. The coating can be applied once or twice or more by a conventionally known method such as roller coating, spray coating, brush coating, curtain coating, shower coating, dip coating, etc. to form a coating film.
 基材を金属基材とした場合、当該金属基材上に本実施形態に係る水性塗料組成物を塗装、効果して硬化塗膜を形成することにより、低温での造膜性が良好で、防食性にも優れる塗装物品を得ることができる。 When the base material is a metal base material, the water-based coating composition according to the present embodiment is applied on the metal base material, and by forming a cured coating film by effect, the film forming property at low temperatures is good, A coated article having excellent anticorrosion properties can be obtained.
 水性塗料組成物の塗膜は、省エネルギー等の観点から常温で硬化させることが好ましい。なお、生産効率向上等の観点から、強制乾燥や加熱硬化させることもできる。 塗膜 The coating film of the water-based coating composition is preferably cured at room temperature from the viewpoint of energy saving and the like. In addition, from the viewpoint of improving the production efficiency, forced drying or heat curing can also be performed.
 また、水性塗料組成物を塗装、硬化して得られる硬化塗膜の膜厚は、形成される硬化塗膜の防食性、耐水性及び硬度等の観点から、10μm以上が好ましく、20μm以上がより好ましく、25μm以上がさらに好ましく、また、200μm以下が好ましく、100μm以下がより好ましく、60μm以下がさらに好ましい。 Further, the thickness of the cured coating film obtained by coating and curing the aqueous coating composition is preferably 10 μm or more, more preferably 20 μm or more, from the viewpoints of corrosion resistance, water resistance and hardness of the formed cured coating film. Preferably, it is 25 μm or more, more preferably 200 μm or less, more preferably 100 μm or less, and even more preferably 60 μm or less.
 以下、製造例、実施例及び比較例を挙げて、本発明をさらに具体的に説明する。但し、本発明は、これらにより限定されない。各例において、「部」及び「%」は、特記しない限り、質量基準による。また、塗膜の膜厚は硬化塗膜に基づくものである。なお、表中の空欄は、その成分が含まれていないことを表す。 Hereinafter, the present invention will be described more specifically with reference to Production Examples, Examples, and Comparative Examples. However, the present invention is not limited by these. In each example, “parts” and “%” are based on mass unless otherwise specified. Further, the thickness of the coating film is based on the cured coating film. Note that a blank column in the table indicates that the component is not included.
<コアシェル型アクリル樹脂粒子の製造>
 製造例1
 撹拌機、温度計、還流凝縮機を備えた重合装置中に、表1に示す量の仕込みの脱イオン水(DIW)及びNewcol(登録商標)707SF(商品名、日本乳化剤社製、アニオン性界面活性剤、固形分30質量%)を入れ、窒素置換を十分に行った後、昇温した。約100rpmで撹拌しながら内温を82℃に保ち、表1に示される(A1)成分をホモミキサーを用いて乳化したもの(以下、(A1)成分乳化物という。(A2)成分、(B1)成分及び(B2)成分についても同様に表記する。)、及び開始剤1水溶液(表1中、VA-057は商品名、富士フィルム和光純薬社製、2-2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンジアミン]四水塩)を滴下開始し、重合させた。
 滴下速度は、(A1)成分乳化物は約146.0部/時間、開始剤1水溶液は約6.6部/時間とした。(A1)成分乳化物が滴下終了すると同時に、表1に示す(A2)成分乳化物を滴下し始めた。これと同時に表1に示す(B1)成分乳化物を(A2)成分乳化物に滴下した。(B1)成分乳化物の滴下速度は、(A2)成分乳化物の滴下終了と同時に滴下が終了する速度、すなわち本製造例では約73.0部/時間とした。その後(B2)成分乳化物を約146.0部/時間で滴下した。
 滴下終了後、82℃で0.5時間反応させ、開始剤2水溶液を約3.3部/時間で滴下した。滴下終了後、82℃で1.5時間反応させ、その後25℃に冷却した。最後に表1に示す中和剤を添加し、固形分質量濃度40.0%のコアシェル型アクリル樹脂粒子(A-1)(シェル部酸価34mgKOH/g、コア層(=均一層/グラジエントポリマー層)/シェル層の質量比率は、75(=25/50)/25)のエマルションを得た。
<Production of core-shell type acrylic resin particles>
Production Example 1
In a polymerization apparatus equipped with a stirrer, a thermometer, and a reflux condenser, deionized water (DIW) and Newcol (registered trademark) 707SF (trade name, manufactured by Nippon Emulsifier Co., Ltd., anionic interface) were charged in the amounts shown in Table 1. An activator and a solid content of 30% by mass) were added, and the temperature was raised after sufficient nitrogen replacement. While stirring at about 100 rpm, the internal temperature was kept at 82 ° C., and the component (A1) shown in Table 1 was emulsified using a homomixer (hereinafter, referred to as “component (A1) component emulsion. Component (A2), component (B1) ) Component and (B2) component), and an aqueous solution of initiator 1 (in Table 1, VA-057 is a trade name, manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., 2-2'-azobis [N- (2-carboxyethyl) -2-methylpropiondiamine] tetrahydrate) was started dropwise to polymerize.
The dropping rate was about 146.0 parts / hour for the component (A1) emulsion and about 6.6 parts / hour for the aqueous initiator 1 solution. At the same time when the dropping of the (A1) component emulsion was completed, the dropping of the (A2) component emulsion shown in Table 1 was started. At the same time, the component (B1) emulsion shown in Table 1 was dropped into the component (A2) emulsion. The dropping rate of the component (B1) emulsion was set to a rate at which the dropping was completed simultaneously with the dropping of the component (A2) emulsion, that is, about 73.0 parts / hour in the present production example. Thereafter, the component (B2) emulsion was dropped at about 146.0 parts / hour.
After completion of the dropwise addition, the reaction was carried out at 82 ° C. for 0.5 hour, and an aqueous solution of initiator 2 was added dropwise at about 3.3 parts / hour. After the completion of the dropwise addition, the reaction was carried out at 82 ° C for 1.5 hours, and then cooled to 25 ° C. Finally, the neutralizing agent shown in Table 1 was added, and the core-shell type acrylic resin particles (A-1) having a solid content mass concentration of 40.0% (shell part acid value: 34 mgKOH / g, core layer (= uniform layer / gradient polymer) An emulsion having a mass ratio of (layer) / shell layer of 75 (= 25/50) / 25) was obtained.
 上記エマルションは、粘度(B型粘度計にて測定、60rpm、20℃)680mPa・s、pH9.2(pHメーターにて測定)、平均粒子径105nmであった。 The emulsion had a viscosity (measured with a B-type viscometer, 60 rpm, 20 ° C.) of 680 mPa · s, a pH of 9.2 (measured with a pH meter), and an average particle diameter of 105 nm.
 製造例2~10
 製造例1において、配合組成を表1に示すものへと変更する以外は、製造例1と同様にして、各コアシェル型アクリル樹脂粒子(A-2)~(A-10)(すべて、コア層(=均一層/グラジエントポリマー層)/シェル層の質量比率は75(=25/50)/25)を得た。コアシェル型アクリル樹脂粒子(A-9)及び(A-10)は、比較例用のアクリル樹脂粒子である。
Production Examples 2 to 10
Each of the core-shell type acrylic resin particles (A-2) to (A-10) (all of the core layer) was manufactured in the same manner as in Production Example 1 except that the composition was changed to that shown in Table 1. The mass ratio of (= uniform layer / gradient polymer layer) / shell layer was 75 (= 25/50) / 25. Core-shell type acrylic resin particles (A-9) and (A-10) are acrylic resin particles for a comparative example.
 製造例11(比較例用)
 撹拌機、温度計、還流凝縮機を備えた重合装置中に、表1に示す量の仕込みの脱イオン水及びNewcol707SFを入れ、窒素置換を十分に行った後、昇温した。約100rpmで撹拌しながら内温を82℃に保ち、表1に示される(A1)成分をホモミキサーを用いて乳化したもの、及び開始剤1水溶液を滴下開始し、重合させた。滴下速度は、(A1)成分乳化物は約146.0部/時間、開始剤1水溶液は約6.6部/時間とした。(A1)成分乳化物を滴下終了すると同時に、表1に示す(B1)成分乳化物を滴下し始め、約146.0部/時間で滴下した。滴下終了後、82℃で0.5時間反応させ、開始剤2水溶液を約3.3部/時間で滴下した。滴下終了後、82℃で1.5時間反応させ、その後25℃に冷却した。最後に表1に示す中和剤を添加し、固形分質量濃度40.0%のコアシェル型アクリル樹脂粒子(A-11)(シェル部酸価34mgKOH/g、コア層(=均一層/グラジエントポリマー層)/シェル層の質量比率は、50(=50/0)/50(グラジエントポリマー層がない))のエマルションを得た。
Production Example 11 (for Comparative Example)
Into a polymerization apparatus equipped with a stirrer, a thermometer, and a reflux condenser, charged amounts of deionized water and Newcol 707SF shown in Table 1 were added, and the temperature was raised after sufficient nitrogen replacement. While stirring at about 100 rpm, the internal temperature was maintained at 82 ° C., and the component (A1) shown in Table 1 emulsified using a homomixer and an aqueous solution of initiator 1 were added dropwise to initiate polymerization. The dropping rate was about 146.0 parts / hour for the component (A1) emulsion and about 6.6 parts / hour for the aqueous initiator 1 solution. At the same time when the dropping of the (A1) component emulsion was completed, the dropping of the (B1) component emulsion shown in Table 1 was started, and was dropped at about 146.0 parts / hour. After completion of the dropwise addition, the reaction was carried out at 82 ° C. for 0.5 hour, and an aqueous solution of initiator 2 was added dropwise at about 3.3 parts / hour. After the completion of the dropwise addition, the reaction was carried out at 82 ° C for 1.5 hours, and then cooled to 25 ° C. Finally, a neutralizing agent shown in Table 1 was added, and the core-shell type acrylic resin particles (A-11) having a solid content mass concentration of 40.0% (shell part acid value: 34 mgKOH / g, core layer (= uniform layer / gradient polymer) An emulsion having a mass ratio of (layer) / shell layer of 50 (= 50/0) / 50 (there was no gradient polymer layer) was obtained.
 上記エマルションは、粘度(B型粘度計にて測定、60rpm、20℃)620mPa・s、pH9.2(pHメーターにて測定)、平均粒子径110nmであった。 The emulsion had a viscosity (measured with a B-type viscometer, 60 rpm, 20 ° C) of 620 mPa · s, a pH of 9.2 (measured with a pH meter), and an average particle diameter of 110 nm.
 製造例12(比較例用)
 撹拌機、温度計、還流凝縮機を備えた重合装置中に、表1に示す量の仕込みの脱イオン水及びNewcol707SFを入れ、窒素置換を十分に行った後、昇温した。約100rpmで撹拌しながら内温を82℃に保ち、表1に示される(A1)成分をホモミキサーを用いて乳化したもの、及び開始剤1水溶液を3時間かけて滴下し、重合させた。滴下終了後、82℃で0.5時間反応させ、開始剤2水溶液を0.5時間かけて滴下した。滴下終了後、82℃で1.5時間反応させ、その後25℃に冷却した。最後に表1に示す中和剤を添加し、固形分質量濃度40.0%のコアシェル型アクリル樹脂粒子(A-12)(シェル部酸価34mgKOH/g、単層均一組成粒子)のエマルションを得た。
Production Example 12 (for Comparative Example)
Into a polymerization apparatus equipped with a stirrer, a thermometer, and a reflux condenser, charged amounts of deionized water and Newcol 707SF shown in Table 1 were added, and the temperature was raised after sufficient nitrogen replacement. While stirring at about 100 rpm, the internal temperature was maintained at 82 ° C., and the component (A1) shown in Table 1 emulsified using a homomixer and an aqueous solution of initiator 1 were added dropwise over 3 hours to polymerize. After the completion of the dropwise addition, the reaction was carried out at 82 ° C. for 0.5 hour, and the initiator 2 aqueous solution was added dropwise over 0.5 hour. After the completion of the dropwise addition, the reaction was carried out at 82 ° C for 1.5 hours, and then cooled to 25 ° C. Finally, a neutralizing agent shown in Table 1 was added to obtain an emulsion of core-shell type acrylic resin particles (A-12) having a solid content mass concentration of 40.0% (shell part acid value: 34 mgKOH / g, monolayer uniform composition particles). Obtained.
 上記エマルションは、粘度(B型粘度計にて測定、60rpm、20℃)520mPa・s、pH9.2(pHメーターにて測定)、平均粒子径108nmであった。 The emulsion had a viscosity (measured with a B-type viscometer, 60 rpm, 20 ° C) of 520 mPa · s, a pH of 9.2 (measured with a pH meter), and an average particle diameter of 108 nm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<水性塗料組成物の製造>
 実施例1
 DISPERBYK(登録商標)-190(商品名、BYK社製、顔料分散剤、固形分40%)3部(固形分1.2部)、BYK(登録商標)-024(商品名、BYK社製、消泡剤、固形分100%)0.4部、JR-603(商品名、テイカ社製、酸化チタン、固形分100%)35部、スーパーSS(商品名、丸尾カルシウム社製、炭酸カルシウム、固形分100%)15部、脱イオン水25部及びジプロピレングリコールモノメチルエーテル2部を混合しガラスビーズを添加後、ペイントシェーカーで60分間分散し、顔料ペースト(P1)(固形分64.2%)を得た。
<Production of aqueous coating composition>
Example 1
DISPERBYK (registered trademark) -190 (trade name, manufactured by BYK, pigment dispersant, solid content: 40%) 3 parts (solid content: 1.2 parts), BYK (registered trademark) -024 (trade name, manufactured by BYK, 0.4 parts of antifoaming agent, solid content 100%), 35 parts of JR-603 (trade name, manufactured by Teika, titanium oxide, solid content 100%), Super SS (trade name, manufactured by Maruo Calcium Co., calcium carbonate, 15 parts of solid content 100%), 25 parts of deionized water and 2 parts of dipropylene glycol monomethyl ether were mixed, and after adding glass beads, the mixture was dispersed with a paint shaker for 60 minutes to obtain a pigment paste (P1) (solid content of 64.2%). ) Got.
 ガラスビーズを除去後、得られた顔料ペースト(P1)80部(固形分51.4部)に製造例1で得られたコアシェル型アクリル樹脂粒子(A-1)のエマルション250部(固形分100部)、BYK-348(商品名、BYK社製、表面調整剤、固形分100%)0.5部、SNシックナー660T(商品名、サンノプコ社製、増粘剤、固形分20%)2.5部(固形分0.5部)及びジプロピレングリコールモノメチルエーテル10部を混合攪拌することにより、pH8.2、塗料固形分44.5質量%の水性塗料組成物No.1を得た。 After removing the glass beads, 250 parts of an emulsion of the core-shell type acrylic resin particles (A-1) obtained in Production Example 1 (solids of 100 parts) was added to 80 parts (solids of 51.4 parts) of the obtained pigment paste (P1). 1.), BYK-348 (trade name, manufactured by BYK, surface conditioner, solid content 100%), 0.5 part, SN thickener 660T (trade name, manufactured by San Nopco, thickener, solid content 20%) By mixing and stirring 5 parts (solid content: 0.5 part) and 10 parts of dipropylene glycol monomethyl ether, the aqueous coating composition No. having a pH of 8.2 and a coating solid content of 44.5% by mass was mixed. 1 was obtained.
 実施例2~8及び比較例1~4
 実施例1において、配合組成を表2に示すものへと変更する以外は、実施例1と同様にして、各水性塗料組成物No.2~No.12を得た。
Examples 2 to 8 and Comparative Examples 1 to 4
In the same manner as in Example 1 except that the composition was changed to the composition shown in Table 2, the respective water-based coating composition Nos. 2 to No. 12 was obtained.
 なお、表2には各水性塗料組成物のコアシェル型アクリル樹脂粒子(A-1)~(A-12)のガラス転移温度(Tg、℃)及び全共重合成分中の溶解性パラメーター値が9.5以下の重合性不飽和モノマーの比率(質量%)(SP値9.5以下モノマー比率(質量%))も併せて示した。 In Table 2, the glass transition temperature (Tg, ° C) of the core-shell type acrylic resin particles (A-1) to (A-12) of each aqueous coating composition and the solubility parameter value in all the copolymer components are 9 The ratio (% by mass) of a polymerizable unsaturated monomer having a value of 0.5 or less (the monomer ratio (% by mass) having an SP value of 9.5 or less) is also shown.
<試験板の作製>
 研磨及び脱脂を行った70mm×150mm×0.8mmの冷間圧延鋼板(基材)上に、上記の実施例1~8及び比較例1~4で得た各水性塗料組成物No.1~No.12を、エアスプレーを用いて、硬化塗膜の厚さが40μmとなるようにそれぞれ塗装した。次に、23℃、65%RHで7日間放置して鋼板上に硬化塗膜が形成された各試験板を得た。
<Preparation of test plate>
On the polished and degreased 70 mm × 150 mm × 0.8 mm cold-rolled steel plate (substrate), each aqueous coating composition No. obtained in the above Examples 1 to 8 and Comparative Examples 1 to 4 was coated. 1 to No. No. 12 was applied using an air spray so that the thickness of the cured coating film was 40 μm. Next, each test plate having a cured coating film formed on a steel plate was obtained by being left at 23 ° C. and 65% RH for 7 days.
<試験板の評価>
 得られた各試験板について、下記の各試験を行った。評価結果を表2に併せて示す。
<Evaluation of test plate>
The following tests were performed for each of the obtained test plates. The evaluation results are also shown in Table 2.
 防食性:各試験板について、基材に達するように塗膜にナイフでクロスカット傷を入れ、JIS K 5600-7-1(1999)「耐中性塩水噴霧性」に準拠して、120時間耐塩水噴霧試験を行った。ナイフ傷からの錆及びフクレの幅によって以下の基準で評価した。錆及びフクレの最大幅が小さいほど防食性が優れ、評価がA~Cであれば、防食性が良好である。 Corrosion resistance: With respect to each test plate, the coating film was cut with a knife to reach the base material with a knife, and 120 hours in accordance with JIS K 5600-7-1 (1999) "Neutral salt spray resistance" A salt spray test was performed. Evaluation was made according to the following criteria based on the width of rust and blisters from knife scratches. The smaller the maximum width of rust and blisters, the better the anticorrosion. If the rating is A to C, the anticorrosion is good.
 A:錆、フクレの最大幅が、カット部から1mm未満(片側)
 B:錆、フクレの最大幅が、カット部から1mm以上2mm未満(片側)
 C:錆、フクレの最大幅が、カット部から2mm以上3mm未満(片側)
 D:錆、フクレの最大幅が、カット部から3mm以上5mm未満(片側)
 E:錆、フクレの最大幅が、カット部から5mm以上(片側)
A: The maximum width of rust and blisters is less than 1 mm from the cut part (one side)
B: The maximum width of rust and blisters is 1 mm or more and less than 2 mm from the cut part (one side)
C: The maximum width of rust and blisters is 2 mm or more and less than 3 mm from the cut part (one side)
D: The maximum width of rust and blisters is 3 mm or more and less than 5 mm from the cut part (one side)
E: The maximum width of rust and blisters is 5 mm or more from the cut part (one side)
 耐水性:各試験板を23℃の脱イオン水に48時間浸漬し、塗面を以下の基準で評価した。評価が◎又は○であれば、耐水性が良好である。
 ◎:良好で問題ない。
 ○:ややツヤビケが見られるが実用レベルである。
 △:フクレ、ツヤビケのいずれかが認められる。
 ×:フクレ、ツヤビケのいずれかが著しく認められる。
Water resistance: Each test plate was immersed in deionized water at 23 ° C. for 48 hours, and the coated surface was evaluated according to the following criteria. If the evaluation is ◎ or ○, the water resistance is good.
A: Good and no problem.
:: Some gloss is observed, but it is at a practical level.
Δ: Either blister or gloss was observed.
×: Either blisters or glossiness are remarkably observed.
 光沢:各試験板について、JIS K 5600-4-7(1999)「鏡面光沢度」に準拠して、塗面の鏡面光沢度(60°)を測定した。塗面の鏡面光沢度(60°)が70以上であれば、光沢が良好である。 Gloss: For each test plate, the specular gloss (60 °) of the coated surface was measured in accordance with JIS K 5600-4-7 (1999) “Specular gloss”. If the specular gloss (60 °) of the coated surface is 70 or more, the gloss is good.
 鉛筆硬度:各試験板について、JIS K 5600-5-4(1999)「引っかき硬度(鉛筆法)」に準拠して、塗面の鉛筆硬度を測定した。鉛筆硬度は硬い方から順にF、HB、B、2Bであり、B以上の硬度であれば、硬度が良好である。 Pencil hardness: The pencil hardness of the coated surface of each test plate was measured in accordance with JIS K 5600-5-4 (1999) “Scratch hardness (pencil method)”. Pencil hardness is F, HB, B, 2B in order from the harder one. If the hardness is B or more, the hardness is good.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2018年7月27日出願の日本特許出願(特願2018-141479)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on Japanese Patent Application (No. 2018-141479) filed on Jul. 27, 2018, the contents of which are incorporated herein by reference.
 本発明によれば、低温での造膜性が良好で、かつ防食性、硬度及び耐水性等の塗膜性能にも優れる水性塗料組成物を提供することができる。 According to the present invention, it is possible to provide an aqueous coating composition which has good film-forming properties at low temperatures and also has excellent coating properties such as corrosion resistance, hardness and water resistance.

Claims (5)

  1.  少なくとも1層のグラジエントポリマー層を含むコアシェル型アクリル樹脂粒子(A)を含有し、
     前記コアシェル型アクリル樹脂粒子(A)のシェル部の酸価が20~100mgKOH/gの範囲内である水性塗料組成物。
    A core-shell type acrylic resin particle (A) including at least one gradient polymer layer,
    An aqueous coating composition, wherein the shell part of the core-shell type acrylic resin particles (A) has an acid value in the range of 20 to 100 mgKOH / g.
  2.  前記コアシェル型アクリル樹脂粒子(A)のガラス転移温度が-10℃以上である請求項1に記載の水性塗料組成物。 The aqueous coating composition according to claim 1, wherein the core-shell type acrylic resin particles (A) have a glass transition temperature of -10 ° C or higher.
  3.  前記コアシェル型アクリル樹脂粒子(A)の全共重合成分の80重量%以上が、溶解性パラメーター値が9.5以下の重合性不飽和モノマーである請求項1又は2に記載の水性塗料組成物。 The aqueous coating composition according to claim 1 or 2, wherein at least 80% by weight of all copolymerized components of the core-shell type acrylic resin particles (A) are polymerizable unsaturated monomers having a solubility parameter value of 9.5 or less. .
  4.  基材と、前記基材上に請求項1~3のいずれか一項に記載の水性塗料組成物の硬化塗膜とを有する塗装物品。 (4) A coated article having a base material and a cured coating film of the aqueous coating composition according to any one of claims 1 to 3 on the base material.
  5.  前記基材が金属基材である請求項4に記載の塗装物品。 The coated article according to claim 4, wherein the base material is a metal base material.
PCT/JP2019/027451 2018-07-27 2019-07-11 Water-based paint composition WO2020022077A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980045136.5A CN112368345A (en) 2018-07-27 2019-07-11 Aqueous coating composition
JP2020532286A JP7280263B2 (en) 2018-07-27 2019-07-11 Aqueous paint composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-141479 2018-07-27
JP2018141479 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020022077A1 true WO2020022077A1 (en) 2020-01-30

Family

ID=69180994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027451 WO2020022077A1 (en) 2018-07-27 2019-07-11 Water-based paint composition

Country Status (3)

Country Link
JP (1) JP7280263B2 (en)
CN (1) CN112368345A (en)
WO (1) WO2020022077A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319301A (en) * 1999-05-13 2000-11-21 Showa Highpolymer Co Ltd Production of aqueous emulsion
JP2001502366A (en) * 1996-09-18 2001-02-20 イーストマン ケミカル カンパニー Self-crosslinkable aqueous dispersion
JP2006342218A (en) * 2005-06-07 2006-12-21 Daicel Chem Ind Ltd Water-dispersible resin composition for coating steel plate
JP2014148642A (en) * 2013-02-04 2014-08-21 Nippon Paint Co Ltd Water-based coating composition, multilayer coating film forming method using the same, and viscosity control method
WO2015015827A1 (en) * 2013-08-01 2015-02-05 関西ペイント株式会社 Aqueous coating composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105175600A (en) * 2015-10-13 2015-12-23 三棵树涂料股份有限公司 Core-shell-type styrene-acrylic emulsion with dual-gradient structures contained in shell layers and preparing method thereof
US11214675B2 (en) * 2016-03-07 2022-01-04 Covestro (Netherlands) B.V. Aqueous binder composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001502366A (en) * 1996-09-18 2001-02-20 イーストマン ケミカル カンパニー Self-crosslinkable aqueous dispersion
JP2000319301A (en) * 1999-05-13 2000-11-21 Showa Highpolymer Co Ltd Production of aqueous emulsion
JP2006342218A (en) * 2005-06-07 2006-12-21 Daicel Chem Ind Ltd Water-dispersible resin composition for coating steel plate
JP2014148642A (en) * 2013-02-04 2014-08-21 Nippon Paint Co Ltd Water-based coating composition, multilayer coating film forming method using the same, and viscosity control method
WO2015015827A1 (en) * 2013-08-01 2015-02-05 関西ペイント株式会社 Aqueous coating composition

Also Published As

Publication number Publication date
JPWO2020022077A1 (en) 2021-08-05
JP7280263B2 (en) 2023-05-23
CN112368345A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
JP6567673B2 (en) Aqueous dispersion containing multistage polymer and coating composition containing the same
EP1167477B1 (en) Resin composition for aqueous paint
JP4836542B2 (en) Paint composition
JP2011122113A (en) Emulsion resin-based coating material
WO2015068751A1 (en) Film-forming auxiliary
JP7339257B2 (en) Aqueous paint composition
JP2002146155A (en) Aqueous resin dispersion and aqueous coating containing the same
JP4441847B2 (en) Aqueous pressure-sensitive adhesive composition, method for producing the same, and pressure-sensitive adhesive product
JP7280263B2 (en) Aqueous paint composition
JP2006117797A (en) Water-based primer composition
JP5520724B2 (en) Aqueous two-component clear paint composition
JP6274988B2 (en) Food contact paint composition
JP5649763B1 (en) Water-based paint composition
JP7381466B2 (en) Water-based coating compositions and coated articles
JP2001164065A (en) Aqueous dispersion of fluorine containing copolymer
JPH0860117A (en) Crosslinked acrylic pressure-sensitive adhesive
JP3366736B2 (en) Polymer latex for water-based cross-linked paint and paint composition using the latex
JP2503477B2 (en) Metallic finishing method
JP2002241702A (en) Composition for outdoor coating
JP2011089014A (en) Resin composition for plastic coating material, process for producing aqueous polymer and plastic coating material
JP3253453B2 (en) Water-based crosslinkable coating composition containing silicon-containing polymer latex
JP2023127036A (en) Aqueous coating composition for wood
JP2003096264A (en) Water-based high solid thermoset resin composition
US20230220141A1 (en) Aqueous dispersion of multistage polymeric particles and process for preparing the same
JP2003342313A (en) Aqueous resin composition and aqueous coating material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532286

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840705

Country of ref document: EP

Kind code of ref document: A1