WO2020022026A1 - Lens barrel, imaging device, position detection method, and position detection program - Google Patents

Lens barrel, imaging device, position detection method, and position detection program Download PDF

Info

Publication number
WO2020022026A1
WO2020022026A1 PCT/JP2019/026687 JP2019026687W WO2020022026A1 WO 2020022026 A1 WO2020022026 A1 WO 2020022026A1 JP 2019026687 W JP2019026687 W JP 2019026687W WO 2020022026 A1 WO2020022026 A1 WO 2020022026A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
lens
position detection
detection sensor
lens group
Prior art date
Application number
PCT/JP2019/026687
Other languages
French (fr)
Japanese (ja)
Inventor
伸一郎 藤木
真彦 宮田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020532264A priority Critical patent/JP6889334B2/en
Publication of WO2020022026A1 publication Critical patent/WO2020022026A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/06Swinging lens about normal to the optical axis

Definitions

  • the present invention relates to a lens barrel, an imaging device, a position detection method, and a position detection program, and particularly to a lens barrel, an imaging device, a position detection method, and a position detection program for detecting the position of a movable optical element with a magnetic sensor.
  • a technology for detecting the position of a movable optical element in a lens barrel using a magnetic sensor such as a Hall sensor or an MR sensor (Magneto-Resistance-Sensor / Magnetoresistance effect sensor) is known.
  • a magnetic sensor is used to detect the position of an optical element in a lens barrel with a built-in electromagnetic actuator (an actuator using electromagnetic force)
  • the magnetic sensor will be affected by magnetism from the actuator (magnetic interference).
  • magnetic interference magnetic interference
  • a magnetic sensor and an actuator are sufficiently separated from each other (for example, Patent Document 1 and the like), or a magnetic shielding member is disposed between the magnetic sensor and the actuator (for example, Patent Document 1). 2) to prevent a decrease in detection accuracy.
  • the present invention has been made in view of such circumstances, and has as its object to provide a lens barrel, an imaging device, a position detection method, and a position detection program capable of accurately detecting the position of a detection target.
  • a first optical element movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the first optical element, and a magnetic field that changes according to the position of the first optical element.
  • a first unit including a position detection sensor that outputs a signal proportional to the magnitude of the detected magnetic field as a position signal, and a second optical element movably supported in a direction parallel or perpendicular to the optical axis.
  • a second unit including: an electromagnetic type second actuator that drives the second optical element; a unit driving unit that relatively moves the first unit and the second unit along the optical axis;
  • a lens barrel comprising: a position signal correction unit configured to correct a position signal output from the position detection sensor according to a relative positional relationship between the unit and the second unit.
  • the relative positional relationship (distance relationship and The position signal output from the position detection sensor is corrected in accordance with the definition. Thereby, the position of the first optical element to be detected can be accurately detected.
  • the relative positional relationship between the first unit and the second unit changes.
  • the influence of magnetism on the position detection sensor from the second actuator changes, and the output of the position detection sensor changes. Therefore, even when the relative positional relationship between the first unit and the second unit changes, the relative positional relationship between the first unit and the second unit is changed so that the output characteristic of the position detection sensor does not change. Accordingly, the output of the position detection sensor is corrected. Thereby, even if the relative positional relationship between the first unit and the second unit changes, the position of the first optical element to be detected can be detected with high accuracy.
  • the method of driving by the unit driving unit may be manual or electric.
  • the first unit and the second unit relatively move along the optical axis by the zoom operation. That is, the relative positional relationship between the first unit and the second unit changes by the zoom operation.
  • the output of the position detection sensor is corrected based on the zoom position. This makes it possible to more easily correct the output of the position detection sensor.
  • the unit driving section moves the first unit and the second unit along the optical axis by the cam mechanism.
  • the first unit and the second unit are arranged adjacent to each other.
  • the influence of magnetism on the position detection sensor from the second actuator increases as the distance between the position detection sensor and the second actuator decreases. Therefore, the present invention works particularly effectively when the first unit and the second unit are arranged adjacent to each other.
  • the position detection sensor is constituted by the Hall sensor.
  • the Hall sensor is one of the magnetic sensors and outputs a signal proportional to the magnitude of the detected magnetic field. Therefore, when the Hall sensor is used as a position detection sensor, the position detection sensor is affected by magnetism from the second actuator, and thus the present invention works effectively.
  • the second actuator is constituted by a voice coil motor.
  • the voice coil motor is one of electromagnetic actuators, and is an actuator having a magnet and a coil as main components. Therefore, when a voice coil motor is used for the second actuator, the present invention works effectively because the second actuator affects the detection of the position detection sensor.
  • the second actuator is a moving magnet type voice coil motor
  • the position signal correction unit determines a relative positional relationship between the first unit and the second unit and a position of the second optical element.
  • the second actuator is constituted by a moving magnet type voice coil motor.
  • a moving magnet type voice coil motor is a type of voice coil motor in which a magnet moves in a magnetic field generated by a yoke and a coil. Therefore, in this case, the magnet is provided in the second optical element which is a movable component. If the second actuator is a moving magnet type voice coil motor, the magnet moves, so it is necessary to correct the output of the position detection sensor in consideration of the position of the magnet. Therefore, in this aspect, the output of the position detection sensor is corrected according to the relative positional relationship between the first unit and the second unit and the position of the second optical element that is the position of the magnet. Thereby, the position of the first optical element to be detected can be accurately detected.
  • the output of the position detection sensor also changes depending on the mounting position and mounting posture of the position detection sensor. According to this aspect, the output of the position detection sensor is corrected based on the mounting position and / or mounting posture of the position detection sensor. Thereby, the position of the first optical element to be detected can be detected with higher accuracy.
  • the output of the position detection sensor changes depending on the temperature of the surrounding environment. According to this aspect, the output of the position detection sensor is corrected based on the temperature detected by the temperature sensor. Thereby, the position of the first optical element to be detected can be detected with higher accuracy.
  • information necessary for correcting the position signal based on the temperature is acquired based on the position signal output from the position detection sensor when the first optical element is located at the calibration reference position.
  • This makes it possible to easily acquire information (particularly, an offset amount) necessary for correcting the position signal based on the temperature.
  • the calibration reference position for example, a movable end on one side of the first optical element (an end on one side of the movable range) can be adopted.
  • the position signal correction section corrects the position signal based on the temperature detected by the temperature sensor when the temperature detected by the temperature sensor exceeds a predetermined allowable range. Or the lens barrel of (11).
  • the correction based on the temperature is performed only when the temperature detected by the temperature sensor exceeds a predetermined allowable range. Accordingly, the correction based on the temperature is performed only when the correction is truly required, so that the overall processing load can be reduced.
  • the second unit further includes a second optical element position detecting unit that detects a position of the second optical element.
  • the second unit is provided with the second optical element position detection unit that detects the position of the second optical element. Thereby, the position of the second optical element in the second unit can be detected.
  • the second optical element position detector includes an origin detector that detects movement of the second optical element to a predetermined origin, and a displacement detector that detects a displacement of the second optical element.
  • the second optical element position detecting section includes the origin detecting section and the displacement detecting section.
  • the origin detection unit detects movement of the second optical element to a predetermined origin.
  • the displacement detector detects a displacement of the second optical element from the origin.
  • the second optical element position detector detects that the second optical element is located at the origin by the origin detector, and detects the amount of displacement of the second optical element from the origin by the displacement detector, thereby obtaining the second optical element.
  • the position of the optical element (the position relative to the origin) is detected.
  • the displacement amount detection unit is configured by an MR sensor (Magneto Resistance Sensor).
  • the lens that is the first optical element is moved parallel to the optical axis to correct the field curvature
  • the lens that is the second optical element is moved parallel to the optical axis.
  • the lens barrel according to any one of (1) to (15), wherein the lens barrel is moved to adjust a focus.
  • the field curvature is corrected by moving the lens as the first optical element in parallel with the optical axis.
  • the focal point is adjusted by moving the lens, which is the second optical element, in parallel with the optical axis.
  • An imaging apparatus including the lens barrel according to any one of (1) to (16).
  • the lens barrel of the imaging device is provided with any one of the lens barrels (1) to (16).
  • a movable lens supported movably in a direction parallel or perpendicular to the optical axis, a first actuator for driving the movable lens, and a magnetic field that changes according to the position of the movable lens is detected.
  • a position detection sensor that outputs a signal proportional to the size as a position signal, and a movable unit including: a movable unit driving unit that moves the movable unit along the optical axis; an imaging lens including: an optical axis; An image sensor that is movably supported in the orthogonal direction and captures an optical image of a subject via an imaging lens, an electromagnetic second actuator that drives the image sensor, and a relative positional relationship between the movable unit and the image sensor And a position signal correction unit that corrects a position signal output from the position detection sensor in accordance with (1).
  • the position is determined according to the relative positional relationship.
  • the position signal output from the detection sensor is corrected. Thereby, the position of the movable lens to be detected can be accurately detected.
  • the movable unit relatively moves along the optical axis by the zoom operation. That is, the relative positional relationship between the movable unit and the image sensor changes by the zoom operation.
  • the position signal correction unit for correcting the position signal output from the position detection sensor based on the zoom position, and the imaging device according to (19).
  • the relative positional relationship between the movable unit and the image sensor is uniquely determined by the zoom position. Therefore, in the present embodiment, the output of the position detection sensor is corrected based on the zoom position. This makes it possible to more easily correct the output of the position detection sensor.
  • a first optical element movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the first optical element, and a magnetic field that changes according to the position of the first optical element.
  • a position detection sensor that outputs a signal proportional to the magnitude of the detected magnetic field as a position signal; and a second optical unit movably supported in a direction parallel or perpendicular to the optical axis.
  • a second unit including an element and an electromagnetic second actuator for driving a second optical element is configured to generate a position signal output from a position detection sensor in a lens barrel relatively moving along an optical axis.
  • a position detecting method for detecting a position of the first optical element based on the position information, the step of obtaining a position signal output from the position detecting sensor, and the step of obtaining information on a relative positional relationship between the first unit and the second unit. get Step and, depending on the relative positional relationship between the first unit and second unit, the position detecting method comprising the steps of correcting the position signal output from the position detection sensor.
  • the first unit when the first unit including the position detection sensor and the second unit including the electromagnetic actuator (the second actuator) relatively move along the optical axis, the first unit includes the first unit.
  • Information on the relative positional relationship between the unit and the second unit is acquired, and the output of the position detection sensor is corrected based on the acquired information on the positional relationship.
  • a movable lens movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the movable lens, and a magnetic field that changes according to the position of the movable lens are detected.
  • a position detection sensor that outputs a signal proportional to the size as a position signal
  • a movable unit including: a movable unit driving unit that moves the movable unit along the optical axis; an imaging lens including: an optical axis; An image sensor that is movably supported in a direction orthogonal to the image sensor and captures an optical image of a subject via an imaging lens, and an electromagnetic second actuator that drives the image sensor;
  • a position detection method for detecting a position of a movable unit based on a position signal output the method comprising: obtaining a position signal output from a position detection sensor. Acquiring information on the relative positional relationship between the movable unit and the image sensor; and correcting the position signal output from the position detection sensor according to the relative positional
  • the movable unit including the position detection sensor moves relatively to the image sensor driven by the electromagnetic actuator (second actuator)
  • the relative position of the movable unit and the image sensor is increased.
  • the information of the positional relationship is acquired, and the output of the position detection sensor is corrected based on the acquired information of the positional relationship.
  • a first optical element movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the first optical element, and a magnetic field that varies according to the position of the first optical element.
  • a position detection sensor that outputs a signal proportional to the magnitude of the detected magnetic field as a position signal; and a second optical unit movably supported in a direction parallel or perpendicular to the optical axis.
  • a second unit including an element and an electromagnetic second actuator for driving a second optical element is configured to generate a position signal output from a position detection sensor in a lens barrel relatively moving along an optical axis.
  • a position detection program that causes a computer to execute a process of detecting a position of the first optical element based on the first and second units; Detecting the relative positional relationship between the first unit and the second unit, and correcting the position signal output from the position detecting sensor according to the relative positional relationship between the first unit and the second unit. program.
  • the first unit when the first unit including the position detection sensor and the second unit including the electromagnetic actuator (the second actuator) relatively move along the optical axis, the first unit includes the first unit.
  • Information on the relative positional relationship between the unit and the second unit is acquired, and the output of the position detection sensor is corrected based on the acquired information on the positional relationship.
  • a movable lens supported movably in a direction parallel or perpendicular to the optical axis, a first actuator that drives the movable lens, and a magnetic field that changes according to the position of the movable lens is detected.
  • a position detection sensor that outputs a signal proportional to the size as a position signal, and a movable unit including: a movable unit driving unit that moves the movable unit along the optical axis; an imaging lens including: an optical axis; An image sensor that is movably supported in a direction orthogonal to the image sensor and captures an optical image of a subject via an imaging lens, and an electromagnetic second actuator that drives the image sensor;
  • the movable unit including the position detection sensor moves relatively to the image sensor driven by the electromagnetic actuator (second actuator)
  • the relative position of the movable unit and the image sensor is increased.
  • the information of the positional relationship is acquired, and the output of the position detection sensor is corrected based on the acquired information of the positional relationship.
  • the position of the detection target can be accurately detected.
  • FIG. 1 is a plan view showing an embodiment of an interchangeable lens to which the present invention is applied.
  • Rear view of the interchangeable lens shown in FIG. FIG. 3 is a cross-sectional view taken along the line 3-3 when the zoom operation is performed to the wide end.
  • FIG. 4 is a sectional view taken along line 4-4 of FIG. 2 when zooming to the wide end.
  • FIG. 4 is a sectional view taken along line 4-4 of FIG. 2 when zooming to the telephoto end. 6-6 sectional view of FIG. 7-7 sectional view of FIG. Diagram showing the movement of each lens group when zoom operation is performed
  • Sectional drawing which shows the support structure of a 3rd lens group movable holding frame and a 4th lens group movable holding frame.
  • FIG. 4 is a diagram schematically illustrating a positional relationship between a third lens unit and a fourth lens unit at a wide end. The figure which shows typically the positional relationship of the 3rd lens group and the 4th lens group at a telephoto end. 4 is a graph showing the relationship between the position of the front group of the third lens group and the output value of the position detection sensor.
  • FIG. 9 is a flowchart illustrating a procedure of a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
  • 4 is a flowchart showing the procedure of drive control processing for the front group of the third lens group.
  • Diagram showing the mounting state of the position detection sensor when properly mounted Diagram showing the mounting state of the position detection sensor when improperly mounted 7 is a graph showing the relationship between the position of the front group of the third lens group at a certain zoom position and the output value of the position detection sensor.
  • FIG. 6 is a block diagram of a configuration related to a process of detecting the position of the front group of the third lens group when correcting the output of the position detection sensor based on temperature
  • FIG. 6 is a block diagram of a configuration related to a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
  • 9 is a flowchart illustrating a procedure of a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
  • FIG. drawing which shows an example of a lens barrel provided with a lens moving in a direction perpendicular to the optical axis and a lens moving in a direction parallel to the optical axis.
  • 28-28 sectional view of FIG. 27-29 sectional view of FIG. Schematic configuration diagram of an imaging device to which the present invention is applied 31-31 sectional view of FIG. 30
  • FIG. 30 is a sectional view taken along line 32-32 of FIG.
  • FIG. 3 is a block diagram of a correction function of an output of a focus lens position detection sensor provided by a control unit of the imaging device.
  • 4 is a flowchart showing a procedure of a focus lens position detection process including correction of an output of a focus lens position detection sensor.
  • FIG. 1 is a plan view showing an embodiment of an interchangeable lens to which the present invention is applied.
  • FIG. 2 is a rear view (view from the mount side) of the interchangeable lens shown in FIG.
  • FIG. 3 is a sectional view taken along line 3-3 in FIG. 2 when the zoom operation is performed to the wide end.
  • FIG. 4 is a sectional view taken along line 4-4 in FIG. 2 when the zoom operation is performed to the wide end.
  • FIG. 5 is a cross-sectional view taken along line 4-4 of FIG. 2 when the zoom operation is performed to the telephoto end.
  • FIG. 6 is a sectional view taken along line 6-6 of FIG.
  • FIG. 7 is a sectional view taken along the line 7-7 in FIG.
  • the interchangeable lens 1 of the present embodiment is a so-called zoom lens, and the focal length changes continuously by a manual zoom operation.
  • the interchangeable lens 1 includes a lens barrel main body 10 to which a lens is attached, and an exterior body 2 that covers the outer circumference of the lens barrel main body 10.
  • the exterior body 2 has a cylindrical shape, accommodates the lens barrel main body 10 inside thereof, and covers the outer periphery of the lens barrel main body 10.
  • the exterior body 2 includes a focus ring 3 as a focus operation member, a zoom ring 4 as a zoom operation member, and an aperture ring 5 as an aperture operation member.
  • the focus of the interchangeable lens 1 is manually adjusted by rotating the focus ring 3. Further, by rotating the zoom ring 4, the focal length changes continuously within a predetermined range. By rotating the aperture ring 5, the aperture value (F value) is switched at predetermined steps.
  • the lens barrel main body 10 is an example of a lens barrel.
  • the lens barrel main body 10 has a fixed barrel 12 and a cam barrel 14.
  • the cam cylinder 14 is fitted to the inner peripheral part of the fixed cylinder 12 and holds the inner peripheral part of the fixed cylinder 12 rotatably in the circumferential direction.
  • the fixed cylinder 12 has a mount 16 at its rear end (the end on the image plane side).
  • the mount 16 is constituted by a so-called bayonet mount.
  • the cam cylinder 14 is connected to the zoom ring 4 via a connecting member (not shown). Therefore, when the zoom ring 4 is rotated, the cam barrel 14 also rotates in conjunction with the rotation.
  • a plurality of lenses are arranged inside the fixed barrel 12. Specifically, a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, and a fifth lens group G5 are arranged in this order from the object side along the optical axis Z. .
  • Each lens group includes at least one lens.
  • ⁇ ⁇ Aperture St is arranged inside fixed cylinder 12.
  • the stop St is arranged between the first lens group G1 and the second lens group G2.
  • FIG. 8 is a diagram illustrating a moving state of each lens group when a zoom operation is performed.
  • (A) shows the lens arrangement at the wide end
  • (B) shows the lens arrangement at the tele end.
  • Curves indicated by reference signs AL1 to AL4 indicate the movement trajectories of the lens groups that are moved by the zoom operation.
  • reference symbol AL1 denotes a movement locus of the first lens group G1
  • reference sign AL2 denotes a movement locus of the second lens group G2
  • reference sign AL3 denotes a movement locus of the third lens group G3
  • reference sign AL4 denotes a movement locus of the fourth lens group G4.
  • the moving locus is shown.
  • the first lens group G1 to the fourth lens group G4 are lens groups that move with respect to the image plane Sim by a zoom operation.
  • the fifth lens group G5 is a lens group fixed to the image plane Sim by a zoom operation.
  • the stop St moves integrally with the second lens group G2.
  • the third lens group G3 is composed of a third lens group front group G3a and a third lens group rear group G3b.
  • the front third lens group G3a is a lens group for correcting the curvature of field, and corrects the curvature of field by moving along the optical axis Z.
  • the third lens group front group G3a is configured to be movable independently, independently of the other lens groups.
  • the fourth lens group G4 is a lens group for focus adjustment, and adjusts the focus by moving along the optical axis Z. For this reason, the fourth lens group G4 is configured to be independently movable independently of the other lens groups.
  • the movement of each lens group by the zoom operation is realized by the cam mechanism.
  • the cam mechanism converts the rotation of the cam barrel 14 into a linear motion, and moves each lens group along the optical axis Z.
  • the cam mechanism includes a fixed barrel 12 having a rectilinear groove, a cam barrel 14 having a cam groove, and a cam follower provided in a holding frame of each lens group. You.
  • Each of the first to fourth lens groups G1 to G4 is moved by a cam mechanism along predetermined movement trajectories AL1 to AL4.
  • the cam mechanism is an example of a unit driving unit.
  • the first lens group holding frame 20 is provided with three first lens group zoom drive cam followers 32 on the outer peripheral portion thereof.
  • the three first lens group zoom drive cam followers 32 are arranged at equal intervals in the circumferential direction.
  • Each first lens group zoom drive cam follower 32 is fitted into a first lens group zoom drive cam groove 14A provided in the cam barrel 14 and a first lens group zoom drive straight drive groove 12A provided in the fixed barrel 12, respectively. Are combined.
  • the first lens group G1 is held in the fixed barrel 12.
  • the cam barrel 14 is rotated by the zoom ring 4
  • the first lens group G1 moves along the optical axis Z in the fixed barrel 12 by the action of the cam mechanism.
  • the second lens group G2 is held by the second lens group holding frame 22, is disposed in the fixed barrel 12, and passes through the fixed barrel 12 along the optical axis Z. Supported movably in a direction parallel to
  • the second lens group holding frame 22 is provided with three second lens group zoom drive cam followers 34 on its outer peripheral portion.
  • the three second lens group zoom driving cam followers 34 are arranged at equal intervals in the circumferential direction.
  • Each of the second lens group zoom drive cam followers 34 is fitted into the second lens group zoom drive cam groove 14B provided in the cam barrel 14 and the second lens group zoom drive straight advance groove 12B provided in the fixed barrel 12, respectively.
  • the second lens group G2 is held in the fixed barrel 12.
  • the cam barrel 14 is rotated by the zoom ring 4
  • the second lens group G2 moves along the optical axis Z in the fixed barrel 12 by the action of the cam mechanism.
  • an aperture unit 30 constituting the aperture St is assembled to the second lens group holding frame 22.
  • the stop St is disposed in the fixed barrel 12 and moves together with the second lens group G2.
  • the third lens group G ⁇ b> 3 is held by the third lens group holding frame 24, is arranged in the fixed barrel 12, and moves inside the fixed barrel 12. It is movably supported in a direction parallel to the optical axis Z.
  • the third lens group holding frame 24 includes a third lens group base holding frame 24A and a third lens group movable holding frame 24B held by the third lens group base holding frame 24A.
  • the third lens group movable holding frame 24B is arranged in the third lens group base holding frame 24A, and is movably supported in the third lens group base holding frame 24A in a direction parallel to the optical axis Z.
  • the front group G3a of the third lens group is held by the third lens group movable holding frame 24B.
  • the third lens group rear group G3b is held by the third lens group base holding frame 24A.
  • the third lens group base holding frame 24A is provided with three third lens group zoom drive cam followers 36 on the outer peripheral portion thereof.
  • the three third lens group zoom drive cam followers 36 are arranged at equal intervals in the circumferential direction.
  • Each of the third lens group zoom drive cam followers 36 is fitted into a third lens group zoom drive cam groove 14C provided in the cam barrel 14 and a third lens group zoom drive straight advance groove 12C provided in the fixed barrel 12.
  • the third lens group base holding frame 24 ⁇ / b> A is held in the fixed barrel 12.
  • the third lens group base holding frame 24A moves along the optical axis Z in the fixed barrel 12.
  • first main shaft 48 and a first sub shaft 50 are provided in the third lens group base holding frame 24A.
  • the first main shaft 48 and the first sub shaft 50 are respectively arranged along the optical axis Z (see FIG. 3). Further, the first main shaft 48 and the first sub shaft 50 are arranged at positions facing each other with the optical axis Z interposed therebetween (see FIG. 6). More specifically, they are arranged on a straight line passing through the optical axis Z in a cross section orthogonal to the optical axis Z.
  • the third lens group movable holding frame 24B includes a first main guide portion 52 that slides along the first main shaft 48 and a first sub guide portion 54 that slides along the first sub shaft 50.
  • the third lens group movable holding frame 24B is slidably supported by the first main shaft 48 and the first sub shaft 50 via the first main guide portion 52 and the first sub guide portion 54.
  • FIG. 9 is a cross-sectional view showing a support structure of the third lens group movable holding frame and the fourth lens group movable holding frame.
  • the first main guide portion 52 has a cylindrical shape, and has sliding portions 52A at both ends in the axial direction.
  • the sliding portion 52A has an inner diameter corresponding to the outer diameter of the first main shaft 48.
  • the sliding portions 52A at both ends slide along the first main shaft 48.
  • the first sub-guide portion 54 has a U-shaped groove 54A at the tip.
  • the first sub guide portion 54 slides along the first sub shaft 50 by fitting the first sub shaft 50 into the groove portion 54A.
  • the first main guide portion 52 is slidably supported by the first main shaft 48, and the first sub guide portion 54 is slidably supported by the first sub shaft 50. Accordingly, the third lens group base holding frame 24A is movably supported along the optical axis Z.
  • the third lens group movable holding frame 24B is moved along the optical axis Z in the third lens group base holding frame 24A by being driven by the third lens group front group drive actuator 56.
  • the third lens group front group drive actuator 56 is an example of a first actuator.
  • the front group G3a of the third lens group is an example of a first optical element.
  • the third lens group front group drive actuator 56 is constituted by a moving magnet type (movable magnet type) voice coil motor (Voice Coil Motor: VCM).
  • the moving magnet type VCM is a VCM in which a magnet moves in a magnetic field generated by a yoke and a coil.
  • the VCM is one of the electromagnetic actuators using electromagnetic force.
  • the third lens group movable holding frame 24B is provided with a plurality of driving magnets 56A and a plurality of inner yokes 56B constituted by the moving magnet type VCM.
  • the third lens group base holding frame 24A is provided with a driving coil 56C and a plurality of outer yokes 56D constituting a moving magnet type VCM.
  • FIG. 10 is a cross-sectional view showing the mounting structure of the third lens group front group drive actuator.
  • the driving coil 56C is wound around the outer periphery of the third lens group movable holding frame 24B, and is attached to the inner periphery of the third lens group base holding frame 24A.
  • the third lens group movable holding frame 24B moves inside the driving coil 56C along the optical axis Z.
  • the plurality of driving magnets 56A are arranged in two groups. Specifically, the two groups are arranged symmetrically with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z. On this straight line L, a first main shaft 48 and a first sub shaft 50 are arranged. Therefore, the two groups of the driving magnets 56 ⁇ / b> A are arranged symmetrically with respect to the straight line L passing through the first main shaft 48 and the first sub shaft 50.
  • each group is provided with three driving magnets 56A.
  • the driving magnets 56A of each group are arranged at equal intervals along the peripheral surface of the third lens group movable holding frame 24B.
  • the plurality of inner yokes 56B are arranged corresponding to the driving magnets 56A.
  • Each inner yoke 56B is integrated with the corresponding driving magnet 56A and attached to the third lens group movable holding frame 24B.
  • a plurality of outer yokes 56D are arranged corresponding to a plurality of inner yokes 56B. Each outer yoke 56D is arranged to face the corresponding inner yoke 56B with the driving coil 56C interposed therebetween.
  • the third lens group G3 is held in the fixed barrel 12.
  • the third lens group G3 moves along the optical axis Z in the fixed barrel 12 by the action of the cam mechanism. That is, the third lens group front group G3a and the third lens group rear group G3b move in the fixed cylinder 12 along the optical axis Z as a unit.
  • the third lens group front group drive actuator 56 is driven, the third lens group front group G3a moves alone along the optical axis Z.
  • the third lens group front group drive actuator 56 moves the third lens group front group G3a by itself, thereby correcting the field curvature.
  • the fourth lens group G ⁇ b> 4 is held by the fourth lens group holding frame 26, is disposed in the fixed barrel 12, and moves inside the fixed barrel 12. It is movably supported in a direction parallel to the optical axis Z.
  • the fourth lens group holding frame 26 includes a fourth lens group base holding frame 26A and a fourth lens group movable holding frame 26B held by the fourth lens group base holding frame 26A.
  • the fourth lens group movable holding frame 26B is arranged in the fourth lens group base holding frame 26A, and is movably supported in the fourth lens group base holding frame 26A in a direction parallel to the optical axis Z.
  • the fourth lens group G4 is held by the fourth lens group movable holding frame 26B.
  • the fourth lens group base holding frame 26A is provided with three fourth lens group zoom drive cam followers 38 on the outer peripheral portion thereof.
  • the three fourth lens group zoom drive cam followers 38 are arranged at equal intervals in the circumferential direction.
  • the fourth lens group zoom drive cam followers 38 are fitted into the fourth lens group zoom drive cam grooves 14D provided in the cam barrel 14 and the fourth lens group zoom drive straight advance grooves 12D provided in the fixed barrel 12, respectively. Are combined.
  • the fourth lens group base holding frame 26A is held in the fixed barrel 12.
  • the fourth lens group base holding frame 26A moves in the fixed barrel 12 along the optical axis Z.
  • second main shaft 58 and a second sub shaft 60 are provided in the fourth lens group base holding frame 26A.
  • the second main shaft 58 and the second sub shaft 60 are respectively arranged along the optical axis Z (see FIG. 3). Further, the second main shaft 58 and the second sub shaft 60 are arranged at positions facing each other with the optical axis Z interposed therebetween (see FIG. 7). Further, the second main shaft 58 is arranged at the same position as the first main shaft 48 in the circumferential direction of a circle centered on the optical axis Z. Accordingly, the second main shaft 58 and the second sub shaft 60 are arranged on the same straight line as the first main shaft 48 and the first sub shaft 50 in a cross section orthogonal to the optical axis Z.
  • the term “identical” includes a range recognized as being substantially identical.
  • the fourth lens group movable holding frame 26 ⁇ / b> B includes a second main guide portion 62 that slides along the second main shaft 58 and a second sub guide portion 64 that slides along the second sub shaft 60.
  • the fourth lens group movable holding frame 26B is slidably supported by the second main shaft 58 and the second sub shaft 60 via the second main guide portion 62 and the second sub guide portion 64.
  • the second main guide portion 62 has a cylindrical shape and has sliding portions 62A at both ends in the axial direction.
  • the sliding portion 62A has an inner diameter corresponding to the outer diameter of the second main shaft 58.
  • the sliding portions 62A at both ends of the second main guide portion 62 slide along the second main shaft 58.
  • the second sub-guide portion 64 has a U-shaped groove 64A at the tip.
  • the groove portion 64 ⁇ / b> A of the second sub guide portion 64 slides along the second sub shaft 60.
  • the fourth lens group movable holding frame 26B In the fourth lens group movable holding frame 26B, the second main guide portion 62 is slidably supported by the second main shaft 58, and the second sub guide portion 64 is slidably supported by the second sub shaft 60. Thereby, the fourth lens group base holding frame 26A is movably supported along the optical axis Z.
  • the fourth lens group movable holding frame 26B is driven by a plurality of fourth lens group drive actuators 68.
  • the fourth lens group drive actuator 68 is an example of a second actuator.
  • the fourth lens group G4 is an example of a second optical element.
  • Each of the fourth lens group drive actuators 68 is constituted by a moving coil type (moving coil type) voice coil motor (VCM) 68.
  • the moving coil type VCM is a type of VCM in which only a coil moves in a magnetic field generated by a magnet. As described above, the VCM is one of the electromagnetic actuators using electromagnetic force.
  • FIG. 11 is a sectional view showing a mounting structure of the fourth lens group drive actuator.
  • the plurality of fourth lens group drive actuators 68 are divided into two groups and arranged. Specifically, the two groups are arranged symmetrically with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z.
  • the second main shaft 58 and the second sub shaft 60 are arranged on the straight line L. Therefore, the two groups are arranged symmetrically with respect to the straight line L passing through the second main axis 58 and the second auxiliary axis 60.
  • each group includes two fourth lens group drive actuators 68.
  • the two fourth lens group drive actuators 68 are arranged at predetermined intervals along the peripheral surface of the fourth lens group movable holding frame 26B.
  • Each fourth lens group drive actuator 68 includes a drive coil 68A, a drive magnet 68B, an inner yoke 68C, and an outer yoke 68D.
  • the drive coil 68A of each fourth lens group drive actuator 68 is attached to the fourth lens group movable holding frame 26B.
  • the fourth lens group movable holding frame 26B has a coil holding section 70 on the outer periphery thereof, and the coil holding section 70 holds a driving coil 68A of each fourth lens group drive actuator 68.
  • each fourth lens group drive actuator 68 is arranged to face each other with the drive coil 68A interposed therebetween.
  • the inner yoke 68C and the outer yoke 68D are integrally formed.
  • the integrally formed inner yoke 68C and outer yoke 68D are arranged at predetermined positions with the outer yoke 68D being held by the inner peripheral portion of the fourth lens group base holding frame 26A.
  • the drive magnet 68B of each fourth lens group drive actuator 68 is attached to the inside of the outer yoke 56D and is arranged at a predetermined position.
  • the drive magnet 68B of each fourth lens group drive actuator 68 is an example of a plurality of second drive magnets.
  • the fourth lens group G4 is held in the fixed barrel 12. Further, when the cam barrel 14 is rotated by the zoom ring 4, the fourth lens group G4 moves along the optical axis Z in the fixed barrel 12 by the action of the cam mechanism. Further, when the fourth lens group drive actuator 68 is driven, the fourth lens group G4 moves alone along the optical axis Z. By moving the fourth lens group G4 by itself by the fourth lens group drive actuator 68, focus adjustment is performed.
  • the fifth lens group G ⁇ b> 5 is held in the fifth lens group holding frame 28 and arranged in the fixed barrel 12.
  • the front group G3a and the fourth lens group G4 of the third lens group can move independently of the other lens groups. Therefore, the positions of the third lens group front group G3a and the fourth lens group G4 are separately detected.
  • the position of the third lens group front group G3a is detected by the third lens group front group position detector 80, and the position of the fourth lens group G4 is detected by the fourth lens group position detector 90. .
  • the third lens group front group position detecting section 80 detects the position of the third lens group movable holding frame 24B within the third lens group base holding frame 24A, and detects the position of the third lens group front group G3a. . More specifically, the position of the third lens group movable holding frame 24B with respect to a reference position set in the third lens group base holding frame 24A is detected, and the position of the third lens group front group G3a with respect to the reference position. Is detected.
  • the front position detection unit 80 of the third lens group detects the position detection magnet 82 provided in the third lens group movable holding frame 24B and the position of the position detection magnet 82.
  • a position detection sensor 84 that operates.
  • the position detection sensor 84 is configured by a Hall sensor that is a magnetic sensor.
  • the position detection sensor 84 composed of a Hall sensor detects a magnetic field that changes according to the position of the position detection magnet 82, and outputs a signal proportional to the magnitude of the detected magnetic field as a position signal.
  • the position detection sensor 84 is provided on the third lens group base holding frame 24A.
  • the position detection sensor 84 is disposed at the installation position of the first sub shaft 50 in a cross section orthogonal to the optical axis Z, as shown in FIGS. More specifically, they are arranged on a straight line L passing through the optical axis Z and the first sub-axis 50.
  • the position detection sensor 84 is disposed behind the first sub shaft 50 (on the image surface side) in a cross section parallel to the optical axis Z, as shown in FIGS.
  • the position detecting magnet 82 is provided on the third lens group movable holding frame 24B.
  • the position detecting magnet 82 is arranged close to the position detecting sensor 84.
  • the first sub guide portion 54 is disposed at the installation position, and faces the position detection sensor 84 with a predetermined gap. Placed.
  • the position detecting magnet 82 and the position detecting sensor 84 are both arranged on a straight line L passing through the optical axis Z and the first sub-axis 50 in a cross section orthogonal to the optical axis Z.
  • the position of the position detecting magnet 82 provided in the third lens group movable holding frame 24B is detected by the position detecting sensor 84, so that the third The position of the front lens group G3a is detected.
  • the fourth lens group position detecting section 90 detects the position of the fourth lens group movable holding frame 26B in the fourth lens group base holding frame 26A, and detects the position of the fourth lens group G4. More specifically, the position of the fourth lens group movable holding frame 26B with respect to the origin set in the fourth lens group base holding frame 26A is detected, and the position of the fourth lens group G4 with respect to the origin is detected.
  • the fourth lens group position detector 90 is an example of a second optical element position detector.
  • the fourth lens group position detector 90 includes an origin detector 92 that detects that the fourth lens group G4 is located at the origin, and a displacement detector 94 that detects the displacement of the fourth lens group G4. Is done.
  • the fourth lens group position detecting section 90 detects that the fourth lens group G4 is located at the origin by the origin detecting section 92, detects the displacement from the origin by the displacement detecting section 94, and outputs the fourth lens group. The position of G4 is detected.
  • the origin detecting unit 92 includes a light blocking plate 92A and a photo interrupter 92B.
  • the light blocking plate 92A is provided on the first main guide portion 52, and the photo interrupter 92B is provided on the fourth lens group base holding frame 26A.
  • the origin detecting unit 92 detects that the fourth lens group G4 is located at the origin by detecting the light shielding plate 92A by the photo interrupter 92B (the fourth lens group G4 is detected by detecting the light shielding by the light shielding plate 92A).
  • the light shielding plate 92A and the photo interrupter 92B are installed such that the light shielding plate 92A is detected at the timing when the fourth lens group G4 is located at the origin (the light shielding plate 92A is detected at the timing when the fourth lens group G4 is located at the origin). 92A is installed so as to shield the photo interrupter 92B from light.
  • the displacement amount detection unit 94 includes a magnetic scale 94A and an MR sensor (Magneto Resistive Sensor; magnetoresistive element) for detecting the N pole and the S pole of the magnetic scale 94A. 94B.
  • the MR sensor 94B is one of the magnetic sensors.
  • the magnetic scale 94A has a bar shape, and has a structure in which N poles and S poles are magnetized at a constant pitch along the longitudinal direction.
  • the magnetic scale 94A is provided on the second main guide portion 62, and is arranged along the moving direction of the fourth lens group G4. That is, they are arranged along the optical axis Z.
  • the MR sensor 94B is provided in the fourth lens group base holding frame 26A.
  • the MR sensor 94B is arranged close to the magnetic scale 94A. More specifically, as shown in FIG. 11, in a cross section orthogonal to the optical axis Z, it is arranged at the installation position of the second main guide portion 62, and is arranged to face the magnetic scale 94A with a predetermined gap. You.
  • the magnetic scale 94A and the MR sensor 94B are both arranged on a straight line L passing through the optical axis Z and the second main axis 58 in a cross section orthogonal to the optical axis Z.
  • the fourth lens group G4 is located at the origin by detecting the light shielding plate 92A provided in the second main guide section 62 with the photo interrupter 92B. Is detected.
  • the displacement of the second main guide portion 62 is detected by the MR sensor 94B via the magnetic scale 94A, whereby the displacement of the fourth lens group G4 is detected.
  • the photo interrupter 92B detects that the fourth lens group G4 is located at the origin, and the MR sensor 94B detects the amount of displacement from the origin, thereby detecting the position of the fourth lens group G4 with respect to the origin.
  • the position detection sensor 84 is disposed at the position of the first sub shaft 50 in a cross section orthogonal to the optical axis Z (see FIG. 10).
  • the MR sensor 94B is disposed at the position of the second main guide portion 62 in a cross section orthogonal to the optical axis Z.
  • the position of the second main guide portion 62 is the position of the second main shaft 58 (see FIG. 11).
  • the first main axis 48 and the first sub-axis 50 and the second main axis 58 and the second sub-axis 60 are arranged on a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z. Therefore, the position detection sensor 84 and the MR sensor 94B are arranged on a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z.
  • the third lens group front group drive actuator 56 that drives the third lens group front group G3a includes a plurality of driving magnets 56A, a plurality of inner yokes 56B, and a plurality of outer yokes 56D, which are constituent elements thereof. In a cross section orthogonal to Z, they are arranged symmetrically with respect to a straight line L passing through the optical axis Z (see FIG. 10). That is, the elements constituting the magnetic body are arranged symmetrically with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z.
  • the plurality of fourth lens group drive actuators 68 that drive the fourth lens group G4 are symmetrically arranged with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z (see FIG. 10). ). Also in this case, the elements constituting the magnetic body are arranged symmetrically with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z.
  • the elements constituting the magnetic material are symmetrically arranged with respect to the position detection sensor 84 and the MR sensor 94B in a cross section orthogonal to the optical axis Z.
  • the influence of each magnetic sensor on each sensor can be made uniform, and more accurate detection can be performed.
  • the first main shaft 48 and the first sub shaft 50 are arranged on the inner diameter side than the second main shaft 58 and the second sub shaft 60.
  • the lengths of the first main shaft 48 and the second main shaft 58 can be increased, the lengths of the first main guide portion 52 and the second main guide portion 62 can be increased, and the third lens group front group G3a and the fourth lens Group G4 can be stably supported.
  • the positional relationship between the position detection sensor 84 which is a Hall sensor, and the fourth lens group drive actuator 68 changes by zooming. Therefore, the output of the position detection sensor 84 is corrected according to the change in the positional relationship due to the zoom. This will be described in detail later.
  • FIG. 12 is a block diagram illustrating an electrical configuration of the interchangeable lens.
  • the interchangeable lens 1 includes a third lens group front group drive unit 110 that drives the third lens group front group G3a, a third lens group front group position detection unit 80 that detects the position of the third lens group front group G3a, and a fourth A fourth lens group drive section 112 for driving the lens group G4, a fourth lens group position detection section 90 for detecting the position of the fourth lens group G4, an aperture drive section 114 for driving the aperture St, and detecting the temperature inside the interchangeable lens Temperature detector 116, a focus operation detector 118 for detecting a focus operation, a zoom position detector 120 for detecting a zoom position, an aperture setting detector 122 for detecting an aperture setting, and an overall control of the entire operation of the interchangeable lens 1. And a lens control unit 100 that performs the operation.
  • the third lens group front group drive section 110 includes the third lens group front group drive actuator 56 and its drive circuit.
  • the third lens group front group drive section 110 drives the third lens group front group drive actuator 56 in response to a command from the lens control section 100, and moves the third lens group front group G3a along the optical axis Z. Let it.
  • the third lens group front group position detection unit 80 includes a position detection sensor 84, and the position detection sensor 84 detects the position of the position detection magnet 82 provided on the third lens group movable holding frame 24B.
  • the position of the front group G3a of the three lens groups is detected.
  • the position here is a position with respect to a reference position set in the third lens group base holding frame 24A.
  • the position detection sensor 84 composed of a Hall sensor detects a magnetic field that changes in accordance with the position of the position detection magnet 82, and outputs a signal proportional to the detected magnetic field to the position signal of the third lens group front group G3a. Is output to the lens control unit 100.
  • the lens control unit 100 processes a signal output from the position detection sensor 84 to detect the position of the third front lens group G3a. At this time, processing is performed in consideration of the positional relationship between the position detection sensor 84 and the fourth lens group drive actuator 68 to detect the position of the third lens group front group G3a.
  • the fourth lens group drive section 112 includes a plurality of fourth lens group drive actuators 68 and a drive circuit therefor.
  • the fourth lens group drive section 112 drives each fourth lens group drive actuator 68 in response to a command from the lens control section 100 to move the fourth lens group G4 along the optical axis Z.
  • the fourth lens group position detector 90 includes an origin detector 92 and a displacement detector 94.
  • the origin detection unit 92 includes a photo interrupter 92B, and detects that the fourth lens group G4 is located at the origin.
  • the displacement detection unit 94 includes an MR sensor 94B, and detects the displacement of the fourth lens group G4.
  • the origin detecting unit 92 detects that the fourth lens group G4 is located at the origin, and the displacement detecting unit 94 detects the amount of displacement from the origin, thereby detecting the position of the fourth lens group G4.
  • the aperture driving unit 114 includes an aperture driving actuator (not shown) for driving the aperture St, and a driving circuit therefor.
  • the aperture drive actuator is formed of, for example, a step motor.
  • the aperture driving unit 114 drives an aperture driving actuator in accordance with a command from the lens control unit 100 to expand and contract the aperture St.
  • the temperature detecting section 116 includes a temperature sensor (not shown), and detects the temperature inside the interchangeable lens by the temperature sensor.
  • the temperature sensor is provided in the aperture unit 30, for example. Temperature detecting section 116 outputs information on the temperature inside the interchangeable lens detected by the temperature sensor to lens control section 100.
  • the focus operation detection unit 118 detects the amount of rotation operation of the focus ring 3 and outputs the detection result to the lens control unit 100.
  • the lens control unit 100 detects a focus operation amount based on an output from the focus operation detection unit 118.
  • the zoom position detector 120 detects the set position of the zoom ring 4 and outputs the detection result to the lens controller 100.
  • the lens control unit 100 detects the zoom position (set value of the focal length) based on the output from the zoom position detection unit 120.
  • the aperture setting detector 122 detects the setting position of the aperture ring 5 and outputs the detection result to the lens controller 100.
  • the lens control unit 100 detects a set aperture value (F value) based on an output from the aperture setting detection unit 122.
  • the aperture value that can be set includes auto, and when auto is selected, the aperture value is set based on an instruction from the camera body.
  • the lens control unit 100 controls the operation of each unit based on the operation of the focus ring 3, the zoom ring 4, and the aperture ring 5. Specifically, when the manual focus is set, the fourth lens group drive actuator 68 is driven to move the fourth lens group G4 based on the rotation operation amount of the focus ring 3. At this time, the fourth lens group G4 is moved based on the position of the fourth lens group G4 detected by the fourth lens group position detector 90.
  • the third lens group front group drive actuator 56 and the fourth lens group drive actuator 68 are driven based on the zoom position changed by the operation of the zoom ring 4, and the third lens group front group G3a and the fourth lens group G4 Is moved to a predetermined position.
  • the third lens group front group G3a is moved to a predetermined position based on the position of the third lens group front group G3a detected by the third lens group front group position detection unit 80.
  • the fourth lens group G4 is moved to a predetermined position based on the position of the fourth lens group G4 detected by the fourth lens group position detecting section 90.
  • the aperture driving unit 114 is driven to operate the aperture St.
  • the lens control unit 100 controls the operation of each unit according to a command from a camera to which the interchangeable lens 1 is attached.
  • the fourth lens group drive actuator 68 is driven based on autofocus information from the camera to move the fourth lens group G4 to a predetermined position.
  • the aperture driving unit 114 is driven based on the aperture setting information from the camera to operate the aperture St.
  • the lens control unit 100 communicates with the camera control unit 130 of the camera, and receives a drive command for each unit from the camera control unit 130. Further, the control unit 130 transmits zoom setting information, aperture setting information, focus position information, and the like to the camera control unit 130. Communication between the lens control unit 100 and the camera control unit 130 is performed via a terminal 16A provided on the mount 16 (see FIG. 2).
  • the lens controller 100 drives the third lens group front group drive actuator 56 based on the temperature detected by the temperature sensor to move the third lens group front group G3a to a predetermined position. Thereby, the field curvature caused by the temperature change is corrected.
  • the lens control unit 100 is composed of, for example, a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and executes a predetermined program. And implement various control functions.
  • a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and executes a predetermined program. And implement various control functions.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • FIG. 13 is a diagram schematically showing the positional relationship between the third lens unit and the fourth lens unit at the wide end
  • FIG. 14 is a diagram showing the positional relationship between the third lens unit and the fourth lens unit at the telephoto end. It is a figure which shows typically.
  • the third lens group G3 and the fourth lens group G4 are adjacent to each other.
  • the third lens group G3 and the fourth lens group G4 are both lens groups that are moved by a zoom operation. However, the amounts of movement by zoom are different from each other. Therefore, the relative positional relationship between the third lens group G3 and the fourth lens group G4 is changed by the zoom operation. Specifically, the position changes gradually from the wide end to the tele end (see FIG. 8). Therefore, the third lens group G3 and the fourth lens group G4 are closest to each other at the wide end (see FIG. 13), and are farthest apart at the telephoto end (see FIG. 14).
  • the third lens group G3 and the fourth lens group G4 are provided with the position detection sensor 84 provided in the third lens group holding frame 24 and the fourth lens group holding frame 26.
  • the positional relationship with the fourth lens group drive actuator 68 also changes.
  • the influence of the magnetism received by the position detection sensor 84 from the fourth lens group drive actuator 68 changes, and the output characteristics of the position detection sensor 84 change.
  • FIG. 15 is a graph showing the relationship between the position of the front group of the third lens group and the output value of the position detection sensor.
  • the vertical axis indicates the position of the third lens group front group G3a, and the horizontal axis indicates the output value of the position detection sensor 84.
  • the graph indicated by the solid line Wa indicates the relationship between the position of the third lens group front group G3a at a certain zoom position a and the output value of the position detection sensor 84.
  • a graph indicated by a broken line Wb shows a relationship between the position of the third lens group front group G3a and the output value of the position detection sensor 84 at a certain zoom position b.
  • the position detection sensor 84 outputs a signal corresponding to the position of the third lens group front group G3a. That is, a signal of a voltage corresponding to the position is output as a position signal.
  • the output characteristics of the position detection sensor 84 change. That is, even if the actual position of the third lens group front group G3a is the same, the output value changes depending on the zoom position. For this reason, in the interchangeable lens 1 of the present embodiment, the output of the position detection sensor 84 is corrected according to the zoom position. Hereinafter, this processing will be described.
  • the third lens group G3, the third lens group front group drive actuator 56, and the position detection sensor 84 constitute one unit based on the third lens group holding frame 24. Then, this unit moves parallel to the optical axis Z by the zoom operation. Further, the fourth lens group G4, the fourth lens group drive actuator 68, and the fourth lens group position detecting section 90 constitute one unit based on the fourth lens group holding frame 26, and this unit is operated by a zoom operation. It moves parallel to the optical axis Z.
  • a unit based on the third lens group holding frame 24 is an example of a first unit
  • a unit based on the fourth lens group holding frame 26 is an example of a second unit.
  • FIG. 16 is a block diagram of a configuration related to a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
  • the process of detecting the position of the front group G3a of the third lens group including the correction of the output of the position detection sensor 84 is performed by the lens control unit 100.
  • the lens control unit 100 executes a predetermined control program (position detection program), thereby obtaining a position signal, a position signal acquisition unit 140 for acquiring a position signal, a position signal correction unit 142 for correcting the acquired position signal, and The function of the position calculation unit 144 that calculates the position of the front group G3a of the third lens group based on the position signal is realized.
  • a predetermined control program position detection program
  • the position signal acquisition unit 140 acquires a signal output from the position detection sensor 84 as a position signal. As the position signal, a signal having a voltage value corresponding to the position is obtained.
  • the position signal correction unit 142 corrects the position signal acquired by the position signal acquisition unit 140 based on the zoom position.
  • the position signal correction unit 142 acquires information on the zoom position from the zoom position detection unit 120, and acquires information on a correction coefficient corresponding to the acquired zoom position from the correction information storage unit 146. Then, the position signal is corrected based on the obtained correction coefficient.
  • the third lens group front group G3a at the zoom position a (the solid line graph Wa in FIG. 15).
  • y A (a) x + B (a).
  • a (a) is the inclination (sensor output sensitivity) at the zoom position a
  • B (a) is the intercept (sensor output bias) at the zoom position a.
  • a (b) is the inclination (sensor output sensitivity) at the zoom position b
  • B (b) is the intercept (sensor output bias) at the zoom position b.
  • the output value at each zoom position is corrected so as to match the output value at the zoom position a. That is, at the same position, the output value of the position detection sensor 84 at each zoom position is corrected so as to have the same output value.
  • ⁇ and ⁇ are correction coefficients
  • the correction coefficients ⁇ and ⁇ are obtained in advance for each zoom position, and are stored in the correction information storage unit 146 in association with the zoom position information.
  • the correction information storage unit 146 is configured by a ROM of a computer constituting the lens control unit 100.
  • the positional relationship between the position detection sensor 84 and the fourth lens group drive actuator 68 is uniquely determined by the zoom position, by acquiring information on the zoom position, the position detection sensor 84 and the fourth lens group drive are substantially driven. Information on the positional relationship with the actuator 68 (synonymous with the positional relationship between the first unit and the second unit) is obtained.
  • the position calculation unit 144 calculates the position of the third lens group front group G3a based on the corrected position signal X. Thus, a correct position can be detected regardless of the zoom position.
  • FIG. 17 is a flowchart illustrating a procedure (a position detection method) of a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
  • a position signal x output from the position detection sensor 84 is obtained (step S1).
  • information on the current zoom position is obtained from the zoom position detector 120 (step S2).
  • correction coefficients ⁇ and ⁇ corresponding to the zoom position are obtained (step S3).
  • the position of the third lens group front group G3a is calculated based on the corrected position signal X (step S5). As a result, the position of the third lens group front group G3a is determined.
  • the position of the third lens group front group G3a can always be accurately detected.
  • FIG. 18 is a flowchart illustrating a procedure of a drive control process for the front group of the third lens group.
  • a target position as a destination is set (step S11).
  • the front group G3a of the third lens group is driven by a zoom operation and a temperature change. Therefore, the target position is set based on the zoom position and the temperature.
  • Step S12 the current position information of the front group G3a of the third lens group is obtained (Step S12).
  • the method of acquiring the current position information is as described above. That is, the output of the position detection sensor 84 is corrected based on the zoom position, and the position is detected based on the corrected output.
  • step S13 the drive amount of the third lens group front group drive actuator 56 required to move from the current position to the target position is calculated (step S13).
  • step S14 the third lens group front group drive actuator 56 is driven based on the calculated drive amount (step S14).
  • step S15 the current position information of the third lens group front group G3a is obtained (step S15). Then, it is determined whether or not the target position has been reached based on the obtained position information (step S16). If the target position has been reached, the process ends. On the other hand, if the target position has not been reached, the process returns to step S13, and the processes in steps S13 to S16 are repeated until the target position is reached.
  • the third lens group front group drive actuator 56 is constituted by the VCM, but may be constituted by another actuator.
  • the fourth lens group drive actuator 68 is configured by the VCM, but may be configured by another electromagnetic actuator.
  • the zoom operation is performed manually, but the zoom operation may be performed electrically using a motor or the like.
  • the lens group moved by zooming is driven and moved by the cam mechanism, but may be driven and moved by another driving mechanism.
  • a Hall sensor is used as the position detection sensor 84, but a magnetic sensor of the same type as the Hall sensor can be used. That is, a sensor that detects a magnetic field that changes according to the position and outputs a signal proportional to the magnitude of the detected magnetic field can be used.
  • the position of the fourth lens group G4 is detected using the photo interrupter and the MR sensor.
  • the position may be detected using a Hall sensor. In this case, it is preferable to correct the output of the Hall sensor according to the zoom position, as in the case of the third lens group front group G3a.
  • FIG. 19 is a diagram showing an attached state of the position detection sensor when properly attached.
  • FIG. 20 is a diagram illustrating an attached state of the position detection sensor when the sensor is improperly attached.
  • the position detection sensor 84 when properly mounted, is mounted parallel to the optical axis Z. Further, it is attached at a position at a regular distance D from the position detecting magnet 82.
  • the position detection sensor 84 is mounted in a posture inclined with respect to the optical axis Z as shown in FIG. Alternatively, it is attached to a position at a distance d different from the regular distance D from the position detecting magnet 82.
  • FIG. 21 is a graph showing the relationship between the position of the front group of the third lens group at a certain zoom position and the output value of the position detection sensor.
  • a solid line W1 is a graph when the position detection sensor 84 is properly attached.
  • a broken line W2 is a graph when the position detection sensor 84 is attached in an inappropriate posture.
  • the dashed line W3 is a graph when the position detection sensor 84 is mounted at an inappropriate position.
  • the intercept (sensor output bias) of the graph (see FIG. 15) indicating the output characteristics of the position detection sensor 84 changes (see the graph of the dashed-dotted line W3).
  • the position signal correction unit 142 obtains, from the correction information storage unit 146, information on the correction coefficients ⁇ and ⁇ corresponding to the zoom position and the correction coefficients ⁇ ( ⁇ ) and ⁇ (d) based on the mounting state, and obtains the obtained correction.
  • a correction function F (x) ( ⁇ + ⁇ (d)) x + ( ⁇ + ⁇ ( ⁇ )) is set based on the coefficients ⁇ , ⁇ , ⁇ ( ⁇ ) and ⁇ (d), and the output (position Signal) x is corrected.
  • the position of the front group G3a of the third lens group can be detected with higher accuracy.
  • the position signal is corrected in consideration of both the mounting position (distance d from the position detecting magnet 82) of the position detection sensor 84 and the mounting posture (inclination ⁇ with respect to the optical axis Z).
  • the position signal may be corrected in consideration of at least one of them.
  • the position signal correction unit 142 stores the information of the correction coefficients ⁇ ( ⁇ ) and ⁇ (d) in the correction information storage unit 146, but the information of the mounting position of the position detection sensor 84 The information (distance d from the position detecting magnet 82) and the information of the mounting posture (inclination ⁇ with respect to the optical axis Z) may be stored in the correction information storage unit 146. In this case, when setting the correction function F (x), the correction coefficients ⁇ ( ⁇ ) and ⁇ (d) are set based on the position information and the posture information.
  • the output characteristics of the Hall sensor vary depending on the temperature of the use environment. Therefore, in order to detect the position of the third lens group front group G3a with higher accuracy, it is preferable to consider the temperature of the use environment. In the present embodiment, the position of the front group G3a of the third lens group is detected in consideration of the temperature of the use environment.
  • the position detection sensor 84 composed of a Hall sensor changes the slope (sensor output sensitivity) and intercept (sensor output bias) of the graph showing the output characteristics depending on the temperature. Therefore, the output (position signal) of the position detection sensor 84 is corrected by the following method.
  • the tilt correction coefficient ⁇ (T) and the intercept correction coefficient ⁇ (T) are obtained for each individual interchangeable lens 1 and stored in the correction information storage unit 146.
  • the correction coefficients ⁇ (T) and ⁇ (T) are examples of information necessary for correcting a position signal based on temperature.
  • FIG. 22 is a block diagram of a configuration relating to a process of detecting the position of the front group of the third lens group when correcting the output of the position detection sensor based on the temperature.
  • the mounting state of the position detection sensor 84 is not considered, but the position of the third lens group front group G3a can be detected with higher accuracy by considering the mounting state of the position detection sensor 84. it can.
  • the correction function F (x) ( ⁇ + ⁇ (d) + ⁇ (T)) x + ( ⁇ + ⁇ ( ⁇ ) + ⁇ (T)) is set to correct the output (position signal) x of the position detection sensor 84. .
  • FIG. 23 is a conceptual diagram of a method for obtaining a correction coefficient of an intercept based on a temperature.
  • the front group G3a of the third lens group is moved to one movable end, the output value of the position detection sensor 84 is obtained at that position, and based on the obtained output value of the position detection sensor 84, , The intercept correction coefficient T (T) is obtained.
  • the front group G3a of the third lens group is configured such that the first main guide part 52 and / or the first sub guide part 54 abut on one end, and thereby one movable end (one end of the movable range). ) Located. In the example shown in FIG. 23, it is located at the end on the image plane side. This position is used as a calibration reference position.
  • a reference temperature (reference temperature) is set (for example, 25 ° C.), and the output of the position detection sensor 84 when the third lens group front group G3a is positioned at the calibration reference position under the set reference temperature. The value is determined for each individual. The obtained output value is stored in the correction information storage unit 146 as a reference output value.
  • the front group G3a of the third lens group is positioned at the calibration reference position.
  • the output value of the position detection sensor 84 is obtained.
  • a difference between the obtained output value and the reference output value is obtained.
  • the obtained difference is acquired as the intercept correction coefficient ⁇ (T).
  • the intercept correction coefficient ⁇ (T) based on the temperature can be obtained from the output of the position detection sensor 84 when located at the calibration reference position. Thereby, the correction coefficient ⁇ (T) of the intercept based on the temperature can be acquired more appropriately.
  • This process is performed, for example, when the interchangeable lens 1 is activated (synonymous with the activation of the camera).
  • the correction based on the temperature may be performed only when the temperature detected by the temperature sensor exceeds a predetermined allowable range. For example, an allowable range is set in a certain range before and after the reference temperature, and when the allowable range is exceeded, the correction based on the temperature is performed. Thereby, the startup time of the interchangeable lens 1 can be reduced.
  • the intercept correction coefficient ⁇ (T) is obtained by the method described in the above-described modification, the process of moving the lens to the reference position for calibration can be omitted, so that the startup time can be significantly reduced.
  • the actuator that drives the fourth lens group G4 (the fourth lens group drive actuator 68) is configured by a moving coil type VCM.
  • VCM moving coil type
  • the influence of the magnetism that the position detection sensor 84 receives from the fourth lens group drive actuator 68 is sufficient if only the change in the positional relationship between the two due to zooming is considered.
  • the actuator that drives the fourth lens group G4 is constituted by a moving magnet type VCM
  • high-precision detection cannot be performed even if only the positional relationship change due to zooming is considered. This is because the moving magnet type VCM moves the magnet together with the movable part. Therefore, in order to detect the position of the third lens group front group G3a with higher accuracy, the position detection sensor 84 is considered in consideration of the position of the movable part driven by the actuator, that is, the position of the fourth lens group G4. Output (position signal) needs to be corrected.
  • FIG. 24 is a cross-sectional view showing a schematic configuration of an interchangeable lens when the fourth lens group drive actuator is configured by a moving magnet type VCM.
  • the fourth lens group drive actuator 66 is configured by a moving magnet type VCM.
  • the fourth lens group movable holding frame 26B is provided with a plurality of driving magnets 66A and a plurality of inner yokes 66B constituted by the moving magnet type VCM.
  • the fourth lens group base holding frame 26A is provided with a driving coil 66C and a plurality of outer yokes 66D constituting a moving magnet type VCM.
  • the driving coil 66C is wound around the outer periphery of the fourth lens group movable holding frame 26B and attached to the inner periphery of the fourth lens group base holding frame 26A.
  • the fourth lens group movable holding frame 26B moves inside the driving coil 66C along the optical axis Z.
  • the plurality of drive magnets 66A are divided into two groups, and are symmetrical with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z. (See FIGS. 6 and 10).
  • the plurality of inner yokes 66B are arranged corresponding to the driving magnets 66A. Each inner yoke 66B is integrated with the corresponding driving magnet 66A and attached to the fourth lens group movable holding frame 26B.
  • the plurality of outer yokes 66D are arranged corresponding to the plurality of inner yokes 66B. Each outer yoke 66D is arranged to face the corresponding inner yoke 66B with the driving coil 66C interposed therebetween.
  • the fourth lens group drive actuator 66 when the fourth lens group drive actuator 66 is driven, the fourth lens group G4 moves along the optical axis Z. At this time, the driving magnet 66A also moves together with the fourth lens group G4.
  • FIG. 25 is a block diagram of a configuration relating to a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
  • the process of detecting the position of the front group G3a of the third lens group including the correction of the output of the position detection sensor 84 is performed by the lens controller 100.
  • the lens control unit 100 of the present embodiment is different from the lens control unit 100 of the above embodiment in that the function of the relative position calculation unit 148 is further realized.
  • the relative position calculator 148 calculates the relative position of the position detection sensor 84 with respect to the fourth lens group G4 (synonymous with the distance between the fourth lens group G4 and the position detection sensor 84). The relative position calculator 148 calculates a relative position of the position detection sensor 84 with respect to the fourth lens group G4 based on the zoom position and the position of the fourth lens group G4.
  • the driving magnet 66A of the fourth lens group driving actuator 66 moves together with the fourth lens group G4. Therefore, calculating the relative position of the position detection sensor 84 with respect to the fourth lens group G4 is equivalent to calculating the relative position of the position detection sensor 84 with respect to the driving magnet 66A.
  • the relative position calculation unit 148 acquires information on the zoom position from the zoom position detection unit 120, and acquires information on the position of the fourth lens group G4 from the fourth lens group position detection unit 90.
  • the position signal correction unit 142 corrects the position signal acquired by the position signal acquisition unit 140 based on the information on the relative position calculated by the relative position calculation unit 148. Specifically, information on the relative position is obtained from the relative position calculation unit 148, and information on the correction coefficient corresponding to the obtained relative position is obtained from the correction information storage unit 146. Then, the position signal is corrected based on the obtained correction coefficient. That is, a correction function F (x) is set based on the obtained correction coefficient, and the position signal x is corrected according to the set correction function F (X).
  • the correction coefficient is obtained in advance for each relative position, and is stored in the correction information storage unit 146 in association with the information on the relative position.
  • the position calculation unit 144 calculates the position of the third lens group front group G3a based on the corrected position signal X. Thus, a correct position can be detected regardless of the zoom position.
  • FIG. 26 is a flowchart illustrating a procedure (a position detection method) of a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
  • the position signal x output from the position detection sensor 84 is obtained (Step S21).
  • information on the current zoom position is obtained from the zoom position detection unit 120 (step S22).
  • information on the position of the fourth lens group G4 is obtained from the fourth lens group position detecting section 90 (Step S23).
  • the relative position of the position detection sensor 84 with respect to the fourth lens group G4 is calculated based on the acquired information on the zoom position and the information on the position of the fourth lens group G4 (step S24).
  • a correction coefficient corresponding to the calculated relative position is obtained (step S25).
  • a correction function F (x) is set based on the obtained correction coefficient, and the position signal x is corrected (step S26).
  • the third lens group front group G3a is calculated based on the corrected position signal X (step S27). As a result, the position of the third lens group front group G3a is determined.
  • the output (position signal) of the position detection sensor 84 is corrected in consideration of the position of the fourth lens group G4. By doing so, the position of the third lens group front group G3a can always be accurately detected.
  • correction can be applied in consideration of the mounting state and the temperature of the position detection sensor 84, thereby enabling more accurate position detection.
  • FIG. 27 is a cross-sectional view illustrating an example of a lens barrel including a lens moving in a direction perpendicular to the optical axis and a lens moving in a direction parallel to the optical axis.
  • FIG. 28 is a sectional view taken along line 28-28 of FIG.
  • FIG. 29 is a sectional view taken along line 29-29 of FIG.
  • the lens barrel 200 includes a first lens unit 220 having a lens moving in a direction perpendicular to the optical axis Z, and a second lens having a lens moving in a direction parallel to the optical axis Z.
  • a unit 240 is provided.
  • the distance between the first lens unit 220 and the second lens unit 240 is variable, for example, by zooming.
  • the first lens unit 220 and the second lens unit 240 are moved by the cam mechanism, and the interval between them is variable.
  • the present invention is applied to an interchangeable lens has been described as an example, but the present invention can also be applied to a lens that is integrally assembled with a camera.
  • the lens barrel main body 210 has a fixed cylinder 212 and a cam cylinder 214.
  • the cam cylinder 214 is fitted to the inner peripheral part of the fixed cylinder 212, and holds the inner peripheral part of the fixed cylinder 212 rotatably in the circumferential direction.
  • the first lens unit 220 is a so-called camera shake correction lens unit. As shown in FIGS. 27 and 28, the first lens unit 220 includes a first lens 222 that is a camera shake correction lens, a first lens holding frame 224 that holds the first lens 222, and a first lens 222.
  • the first lens X-axis direction drive actuator 226X that drives in the X-axis direction
  • the first lens Y-axis direction drive actuator 226Y that drives the first lens 222 in the Y-axis direction
  • the position of the first lens 222 in the X-axis direction is a so-called camera shake correction lens unit.
  • the first lens unit 220 includes a first lens 222 that is a camera shake correction lens, a first lens holding frame 224 that holds the first lens 222, and a first lens 222.
  • the first lens X-axis direction drive actuator 226X that drives in the X-axis direction
  • the first lens Y-axis direction drive actuator 226Y that drives the first
  • the first lens unit 220 is an example of a first unit.
  • the first lens 222 is a lens for correcting camera shake, and corrects camera shake by moving in a plane orthogonal to the optical axis Z.
  • the first lens 222 is an example of a first optical element.
  • the first lens holding frame 224 includes a first lens base holding frame 224A and a first lens movable holding frame 224B.
  • the first lens base holding frame 224A and the first lens movable holding frame 224B are integrated by sandwiching a plurality of rigid spheres 225a therebetween and connecting a plurality of locations by a spring 225b. Accordingly, the first lens movable holding frame 224B is movably supported by the first lens base holding frame 224A in a plane orthogonal to the optical axis Z.
  • the first lens base holding frame 224A is provided with three first lens zoom drive cam followers 232 on the outer periphery thereof.
  • the three first lens zoom drive cam followers 232 are arranged at equal intervals in the circumferential direction.
  • Each first lens zoom drive cam follower 232 is fitted into a first lens zoom drive cam groove 214A provided in the cam barrel 214 and a first lens zoom drive straight advance groove 212A provided in the fixed barrel 212, respectively. .
  • the first lens base holding frame 224A is held in the fixed cylinder 212. Further, when the cam barrel 214 is rotated, the first lens base holding frame 224A moves along the optical axis Z in the fixed barrel 212 along a predetermined movement locus.
  • the first lens X-axis direction drive actuator 226X drives the first lens 222 in the X-axis direction.
  • the first lens Y-axis direction drive actuator 226Y drives the first lens 222 in the Y-axis direction.
  • the X axis and the Y axis are set as two axes orthogonal to each other in a plane orthogonal to the optical axis Z, as shown in FIG.
  • the first lens X-axis direction drive actuator 226X and the first lens Y-axis direction drive actuator 226Y are both configured by a moving coil type VCM.
  • a driving coil is provided in the first lens movable holding frame 224B that is a movable portion.
  • the first lens X-axis direction drive actuator 226X and the first lens Y-axis direction drive actuator 226Y are examples of a first actuator.
  • the first lens X-axis direction position detection sensor 228X detects the position of the first lens 222 in the X-axis direction with respect to a preset reference position.
  • the first lens Y-axis direction position detection sensor 228Y detects the position of the first lens 222 in the Y-axis direction with respect to a preset reference position.
  • the first lens X-axis direction position detection sensor 228X and the first lens Y-axis direction position detection sensor 228Y are both constituted by Hall sensors, and are provided by a position detection magnet provided in a first lens movable holding frame 224B that is a movable part.
  • the first lens X-axis direction position detection sensor 228X detects the position of the X-axis direction position detection magnet 230X provided on the first lens movable holding frame 224B, and the X-axis of the first lens 222. Detect the position in the direction.
  • the first lens Y-axis direction position detection sensor 228Y detects the position of the Y-axis direction position detection magnet 230Y provided on the first lens movable holding frame 224B, and detects the position of the first lens 222 in the Y-axis direction. Is detected.
  • the second lens unit 240 is a so-called focus adjustment lens unit. As shown in FIGS. 27 and 29, the second lens unit 240 includes a second lens 242 serving as a focus adjusting lens, a second lens holding frame 244 holding the second lens 242, and a A pair of second lens drive actuators 246 that drive in different directions, and a second lens position detector 248 that detects the position of the second lens 242.
  • the second lens unit 240 is an example of a second unit.
  • the second lens 242 is a focus adjusting lens (a so-called focus lens), and the focus is adjusted by moving along the optical axis Z.
  • the second lens 242 is an example of a second optical element.
  • the second lens holding frame 244 includes a second lens base holding frame 244A and a second lens movable holding frame 244B.
  • the second lens movable holding frame 244B is disposed in the second lens base holding frame 244A, and is supported movably in the second lens base holding frame 244A in a direction parallel to the optical axis Z.
  • the second lens 242 is held by the second lens movable holding frame 244B.
  • the second lens base holding frame 244A is provided with three second lens zoom driving cam followers 250 on the outer peripheral portion thereof.
  • the three second lens zoom drive cam followers 250 are arranged at equal intervals in the circumferential direction.
  • Each of the second lens zoom drive cam followers 250 is fitted into a second lens zoom drive cam groove 214B provided in the cam barrel 214 and a second lens zoom drive straight groove 212B provided in the fixed barrel 212, respectively. .
  • the second lens base holding frame 244A is held in the fixed cylinder 212. Further, when the cam barrel 214 is rotated, the second lens base holding frame 244A moves along the optical axis Z along a predetermined movement locus inside the fixed barrel 212.
  • a main shaft 252 and a sub shaft 254 that guide the second lens movable holding frame 244B are provided in the second lens base holding frame 244A.
  • the main axis 252 and the sub axis 254 are arranged in parallel with the optical axis Z, respectively.
  • the second lens movable holding frame 244B includes a main guide 256 that slides along the main shaft 252 and a sub-guide 258 that slides along the sub-shaft 254.
  • the second lens movable holding frame 244B is slidably supported by the main shaft 252 and the sub shaft 254 via the main guide portion 256 and the sub guide portion 258.
  • the second lens drive actuator 246 drives the second lens 242.
  • the second lens drive actuator 246 is configured by a moving coil type VCM which is an electromagnetic actuator. Therefore, a driving coil is provided in the second lens movable holding frame 244B, which is a movable portion.
  • the second lens drive actuator 246 is an example of a second actuator.
  • the second lens position detector 248 detects the position of the second lens 242.
  • the second lens position detector 248 detects the position of the second lens movable holding frame 244B in the second lens base holding frame 244A, and detects the position of the second lens 242. More specifically, the position of the second lens movable holding frame 244B with respect to the origin set in the second lens base holding frame 244A is detected, and the position of the second lens 242 with respect to the origin is detected.
  • the second lens position detector 248 is an example of a second optical element position detector.
  • the second lens position detector 248 includes an origin detector 248A that detects that the second lens 242 is located at the origin, and a displacement detector 248B that detects the displacement of the second lens 242.
  • the second lens position detecting unit 248 detects that the second lens 242 is located at the origin by the origin detecting unit 248A, detects the displacement from the origin by the displacement detecting unit 248B, and determines the position of the second lens 242. Is detected.
  • the origin detection unit 248A includes a light-shielding plate and a photo interrupter.
  • the displacement detecting section 248B includes a magnetic scale and an MR sensor.
  • the lens barrel 200 of the present embodiment configured as described above rotates the cam barrel 14 so that the first lens unit 220 and the second lens unit 240 move along the optical axis Z along a predetermined movement locus. Move. Further, by driving the first lens X-axis direction drive actuator 226X and the first lens Y-axis direction drive actuator 212Y, the first lens 222 moves in a plane orthogonal to the optical axis Z. Further, by driving the second lens drive actuator 246, the second lens 242 moves parallel to the optical axis Z.
  • the position of the first lens 222 in the first lens unit 220 is detected by the first lens X-axis direction position detection sensor 228X and the first lens Y-axis direction position detection sensor 228Y.
  • the position of the second lens 242 in the second lens unit 240 is detected by the second lens position detection unit 248.
  • the first lens X-axis direction position detection sensor 228X and the first lens Y-axis direction position detection sensor 228Y configured by a Hall sensor are provided according to the relative positional relationship between the first lens unit 220 and the second lens unit 240.
  • the output is corrected.
  • the output (position signal) is corrected in the following procedure.
  • a position signal output from the first lens X-axis direction position detection sensor 228X and a position signal output from the first lens Y-axis direction position detection sensor 228Y are obtained.
  • first lens unit 220 and the second lens unit 240 information on the relative positional relationship between the first lens unit 220 and the second lens unit 240 is obtained. Since the first lens unit 220 and the second lens unit 240 move according to a known movement locus, their positional relationship is known. The relative position of the first lens unit 220 with respect to the second lens unit 240 is uniquely determined from the rotational position of the cam barrel 214 or the position of the first lens unit 220 or the position of the second lens unit 240 on the optical axis. Is determined. Therefore, by acquiring these pieces of information, information on the relative positional relationship between the first lens unit 220 and the second lens unit 240 is acquired.
  • the information of the correction coefficient is obtained in advance for each relative position of the first lens unit 220 with respect to the second lens unit 240 and stored in the storage unit.
  • the information of the correction coefficient is prepared individually for each sensor. That is, a correction coefficient for the output from the first lens X-axis direction position detection sensor 228X and a correction coefficient for the output from the first lens Y-axis direction position detection sensor 228Y are separately prepared.
  • a correction function is set based on the obtained correction coefficient, and the position signal is corrected. More specifically, a correction function in the X-axis direction is set based on the acquired correction coefficient in the X-axis direction, and the position signal in the X-axis direction output from the first lens X-axis direction position detection sensor 228X is corrected. I do. Further, a correction function in the Y-axis direction is set based on the acquired correction coefficient in the Y-axis direction, and the position signal in the Y-axis direction output from the first lens Y-axis direction position detection sensor 228Y is corrected.
  • the position of the first lens 222 in the X-axis direction and the position in the Y-axis direction are calculated based on the corrected position signals in the X-axis direction and the Y-axis direction.
  • the outputs of the first lens X-axis direction position detection sensor 228X and the first lens Y-axis direction position detection sensor 228Y are corrected according to the relative positional relationship between the first lens unit 220 and the second lens unit 240. By doing so, the position of the first lens 222 can always be accurately detected.
  • the second lens 242 is configured to move in parallel with the optical axis Z.
  • the present invention is also applied to a case where the second lens 242 moves in a direction perpendicular to the optical axis Z. it can.
  • the present invention is also applicable to a case where the first lens 222 moves parallel to the optical axis Z and the second lens 242 moves in a direction perpendicular to the optical axis Z.
  • the present invention is applied to an interchangeable lens
  • the application of the present invention is not limited to this, and the present invention is applied to a lens barrel integrally provided in a camera. Can be similarly applied.
  • the lens barrel to which the present invention can be applied is not limited to a lens barrel of a camera, but can be applied to lens barrels of various optical devices such as a projector, a microscope, and binoculars.
  • FIG. 30 is a schematic configuration diagram of an imaging device to which the present invention has been applied.
  • An imaging device 300 shown in FIG. 1 is a digital camera having a so-called sensor shift type image stabilization function, and includes an imaging lens 310, an image sensor 350 that captures an optical image of a subject via the imaging lens 310, and an image sensor.
  • a camera shake correction mechanism 360 that corrects camera shake by moving 350 in a plane perpendicular to the optical axis Z.
  • the imaging lens 310 includes a zoom lens having a zoom function and a focus adjustment function.
  • the imaging lens 310 is configured by combining a plurality of lenses, and the focal length changes continuously by moving some of the lenses along the optical axis Z.
  • the focus is adjusted by moving some of the lenses (focus lenses) along the optical axis Z.
  • FIG. 30 only the focus lens 312 is shown for convenience of explanation.
  • the focus lens 312 moves on a predetermined movement locus by zooming, and moves independently by being driven by an actuator.
  • the focus lens 312 is an example of a movable lens.
  • the imaging lens 310 includes a focus lens driving unit 314 that drives the focus lens 312 and a focus lens position detection unit 316 that detects the position of the focus lens 312.
  • FIG. 31 is a sectional view taken along line 31-31 of FIG.
  • the focus lens 312 is held in the focus lens holding frame 318 and arranged in the imaging lens 310.
  • the focus lens holding frame 318 includes a focus lens base holding frame 318A and a focus lens movable holding frame 318B.
  • the focus lens movable holding frame 318B is disposed in the focus lens base holding frame 318A, and is supported movably in the focus lens base holding frame 318A in a direction parallel to the optical axis Z.
  • the focus lens 312 is held by the focus lens movable holding frame 318B.
  • the focus lens base holding frame 318A is provided with three focus lens zoom drive cam followers 320 on its outer peripheral portion.
  • the three focus lens zoom drive cam followers 320 are arranged at equal intervals in the circumferential direction.
  • Each of the focus lens zoom drive cam followers 320 is fitted into a focus lens zoom drive cam groove 322A provided in the cam barrel 322 and a focus lens zoom drive straight advance groove 324A provided in the fixed barrel 324, respectively.
  • the cam barrel 322 is connected to a zoom ring (not shown) provided on the outer periphery of the imaging lens 310, and rotates in conjunction with the zoom ring.
  • the set zoom position is detected by a zoom position detector (not shown).
  • a main shaft 326 and a sub shaft 328 are provided in the focus lens base holding frame 318A.
  • the main axis 326 and the sub axis 328 are respectively arranged along the optical axis Z.
  • the focus lens movable holding frame 318 ⁇ / b> B includes a main guide 330 that slides along the main shaft 326 and a sub guide 332 that slides along the sub shaft 328.
  • the focus lens movable holding frame 318B is slidably supported by the main shaft 326 and the sub shaft 328 via the main guide portion 330 and the sub guide portion 332.
  • the focus lens driving unit 314 is configured by a pair of focus lens driving actuators 334.
  • the focus lens drive actuator 334 is configured by a moving coil type VCM. Therefore, a driving coil is provided on the focus lens movable holding frame 318B which is a movable portion.
  • the focus lens drive actuator 334 is an example of a first actuator.
  • the focus lens position detection unit 316 includes a focus lens position detection magnet 316A and a focus lens position detection sensor 316B.
  • the focus lens position detecting magnet 316A is provided on a focus lens movable holding frame 318B that is a movable part.
  • the focus lens position detection sensor 316B is provided in the focus lens base holding frame 318A.
  • the focus lens position detection sensor 316B detects the position of the focus lens position detection magnet 316A to detect the position of the focus lens 312.
  • the position here is a position in the focus lens base holding frame 318A. That is, the position is relative to the reference position set in the focus lens base holding frame 318A.
  • the focus lens 312, the focus lens drive unit 314, and the focus lens position detection unit 316 constitute one unit with reference to the focus lens holding frame 318, and this unit moves in parallel with the optical axis Z by zoom operation.
  • the unit based on the focus lens holding frame 318 is an example of a movable unit.
  • the cam mechanism including the cam barrel 322, the fixed barrel 324, and the cam follower 320 for driving the focus lens zoom is an example of a movable unit driving unit.
  • the image sensor 350 captures an optical image of a subject via the imaging lens 310.
  • the image sensor 350 is configured by a known area image sensor such as a CMOS (Complementary Metal-Oxide Semiconductor) or a CCD (Charge Coupled Device).
  • CMOS Complementary Metal-Oxide Semiconductor
  • CCD Charge Coupled Device
  • FIG. 32 is a sectional view taken along line 32-32 of FIG.
  • the camera shake correction mechanism 360 corrects the camera shake by moving the image sensor 350 in a plane perpendicular to the optical axis Z.
  • the camera shake correction mechanism 360 detects an image sensor holding frame 362 that movably supports the image sensor 350 in a plane orthogonal to the optical axis Z, an image sensor driving unit that drives the image sensor 350, and detects the position of the image sensor 350. And an image sensor position detecting unit.
  • the image sensor holding frame 362 includes an image sensor movable holding frame 362A that holds the image sensor 350, an image sensor base holding frame 362B that slidably supports the image sensor movable holding frame 362A in a plane perpendicular to the optical axis Z, It consists of.
  • a plurality of rigid spheres 368 are interposed therebetween, and a plurality of locations are connected by a spring 370 to be integrated. Accordingly, the image sensor movable holding frame 362A is movably supported by the image sensor base holding frame 362B in a plane orthogonal to the optical axis Z.
  • the image sensor driving unit includes an image sensor X-axis direction drive actuator 364X that drives the image sensor movable holding frame 362A in the X-axis direction, and an image sensor Y-axis direction drive actuator 364Y that drives the image sensor movable holding frame 362A in the Y-axis direction.
  • the X axis and the Y axis are set as two axes orthogonal to each other in a plane orthogonal to the optical axis Z, as shown in FIG.
  • Each of the image sensor X-axis direction drive actuator 364X and the image sensor Y-axis direction drive actuator 364Y is configured by a moving coil type VCM which is an electromagnetic actuator.
  • a driving coil is provided in the image sensor movable holding frame 362A which is a movable portion.
  • the image sensor X-axis direction drive actuator 364X and the image sensor Y-axis direction drive actuator 364Y are examples of a second actuator.
  • the image sensor 350 moves in the X-axis direction in a plane orthogonal to the optical axis Z. Further, by driving the image sensor movable holding frame 362A in the Y-axis direction by the image sensor Y-axis direction drive actuator 364Y, the image sensor 350 moves in the Y-axis direction in a plane orthogonal to the optical axis Z.
  • the image sensor position detection unit includes an image sensor X-axis direction position detection sensor 366X that detects the position of the image sensor 350 in the X-axis direction, and an image sensor Y-axis direction position detection sensor that detects the Y-axis direction position of the image sensor 350. 366Y.
  • Each of the image sensor X-axis direction position detection sensor 366X and the image sensor Y-axis direction position detection sensor 366Y is configured by a Hall sensor, and detects the position of a position detection magnet provided in the image sensor movable holding frame 362A that is a movable part. Then, the positions of the image sensor 350 in the X-axis direction and the Y-axis direction are detected.
  • the image sensor X-axis direction position detection sensor 366X detects the position of the X-axis direction position detection magnet 368X provided on the image sensor movable holding frame 362A, and the position of the image sensor 350 in the X-axis direction. Is detected.
  • the image sensor Y-axis direction position detection sensor 366Y detects the position of the Y-axis direction position detection magnet 368Y provided on the image sensor movable holding frame 362A, and detects the position of the image sensor 350 in the Y-axis direction. .
  • the focus lens holding frame 318 moves along the optical axis Z by the zoom operation.
  • the distance between the focus lens holding frame 318 and the image sensor 350 changes.
  • the distance between the image sensor driving unit and the focus lens position detection sensor 316B changes.
  • the image sensor driver includes a magnetic material
  • the output characteristics of the focus lens position detection sensor 316B change. Therefore, the output (position signal) of the focus lens position detection sensor 316B is corrected according to the zoom position.
  • the control unit of the imaging device 300 includes a computer having a CPU, a ROM, and a RAM, and provides a function of correcting the output of the focus lens position detection sensor by executing a predetermined program.
  • FIG. 33 is a block diagram of a function of correcting the output of the focus lens position detection sensor provided by the control unit of the imaging device.
  • the control unit of the imaging device 300 calculates the position of the focus lens 312 based on the position signal acquisition unit 380 that acquires the position signal, the position signal correction unit 382 that corrects the acquired position signal, and the corrected position signal.
  • the function of the position calculation unit 384 is provided.
  • the position signal acquisition unit 380 acquires a signal output from the focus lens position detection sensor 316B as a position signal.
  • the position signal correction unit 382 corrects the position signal acquired by the position signal acquisition unit 380 based on the zoom position.
  • the position signal correction unit 382 obtains information on the zoom position from the zoom position detection unit 388, and obtains information on a correction coefficient corresponding to the obtained zoom position from the correction information storage unit 386. Then, a correction function is set based on the obtained correction coefficient, and the position signal is corrected.
  • the correction coefficient can be obtained by the same method as in the first embodiment. That is, since the relative positional relationship between the focus lens position detection sensor 316B and the image sensor 350 at each zoom position is uniquely determined and known, correction is made in advance from the output of the focus lens position detection sensor 316B for each zoom position.
  • the coefficients ⁇ and ⁇ are determined in advance.
  • Information on the obtained correction coefficient is stored in the correction information storage unit 386 in association with information on the zoom position.
  • the correction information storage unit 386 is configured by, for example, a ROM.
  • the position calculation unit 384 calculates the position of the focus lens 312 based on the corrected position signal. Thus, a correct position can be detected regardless of the zoom position.
  • FIG. 34 is a flowchart illustrating a procedure (a position detection method) of a focus lens position detection process including correction of an output of the focus lens position detection sensor.
  • a position signal output from the focus lens position detection sensor 316B is obtained (Step S31).
  • information on the current zoom position is obtained from the zoom position detector 120 (step S32).
  • a correction coefficient corresponding to the zoom position is obtained (step S33).
  • a correction function is set based on the obtained correction coefficient, and the position signal is corrected (step S34).
  • the position of the focus lens 312 is calculated based on the corrected position signal (step S35). Thereby, an accurate position of the focus lens 312 is obtained.
  • the position of the third lens group front group G3a can always be accurately detected.
  • the application of the present invention is not limited to an imaging device as a single unit, but can be similarly applied to an imaging device assembled in a mobile phone, a smartphone, a tablet computer, or the like. Further, the imaging device to which the present invention is applied is not limited to an imaging device that captures a still image, but can be applied to an imaging device that captures a moving image.
  • the hardware configuration for realizing the function of correcting the output of the position detection sensor and the like can be configured by various processors.
  • the circuit configuration can be changed after manufacturing a general-purpose processor such as CPU or FPGA (FPGA: Field Programmable Gate Array) that functions as a processing unit that executes software (programs) to perform various processes.
  • a dedicated electrical circuit which is a processor having a circuit configuration specifically designed to execute a specific process such as a programmable processor (PLD: Programmable Logic Device), an ASIC (Application Specific Integrated Circuit), etc. It is.
  • One processing unit may be constituted by one of these various processors, or may be constituted by two or more processors of the same type or different types. For example, it may be composed of a plurality of FPGAs or a combination of a CPU and an FPGA.
  • a plurality of processing units may be configured by one processor.
  • a processor As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a client or a server, one processor is configured by a combination of one or more CPUs and software, There is a form in which this processor functions as a plurality of processing units.
  • a processor that realizes the functions of the entire system including a plurality of processing units with a single IC chip (IC: Integrated Circuit), as represented by a system-on-chip (SoC), is used. There is a form.
  • the various processing units are configured by using one or more of the above various processors as a hardware structure.
  • a program for causing a computer to realize the function of correcting the output of the position detection sensor described in the above embodiment is recorded on an optical disk, a magnetic disk, or a computer readable medium that is a non-transitory information storage medium such as a semiconductor memory or other tangible material.
  • a program it is possible to provide a program through this information storage medium.
  • the program signal can be provided as a download service using an electric communication line such as the Internet.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

Provided are: a lens barrel that makes it possible to precisely detect the position of an object to be detected; an imaging device; a position detection method; and a position detection program. The lens barrel (200) is provided with: a first lens unit (220) provided with a position detection sensor configured from a hole sensor; and a second lens unit (240) provided with an electromagnetic actuator. When the relative positional relationship of the first lens unit (220) and the second lens unit (240) is changed by zooming, the output of the position detection sensor provided to the first lens unit (220) is corrected in accordance with the relative positional relationship of the first lens unit (220) and the second lens unit (240).

Description

鏡胴、撮像装置、位置検出方法及び位置検出プログラムLens barrel, imaging device, position detection method, and position detection program
 本発明は、鏡胴、撮像装置、位置検出方法及び位置検出プログラムに係り、特に、可動する光学素子の位置を磁気センサで検出する鏡胴、撮像装置、位置検出方法及び位置検出プログラムに関する。 The present invention relates to a lens barrel, an imaging device, a position detection method, and a position detection program, and particularly to a lens barrel, an imaging device, a position detection method, and a position detection program for detecting the position of a movable optical element with a magnetic sensor.
 鏡胴において、ホールセンサ、MRセンサ(Magneto Resistance Sensor/磁気抵抗効果センサ)等の磁気センサを用いて可動する光学素子の位置を検出する技術が知られている。しかし、電磁式のアクチュエータ(電磁力を利用したアクチュエータのこと。)が内蔵された鏡胴において光学素子の位置検出用に磁気センサを使用すると、磁気センサがアクチュエータからの磁気の影響(磁気干渉)を受け、位置の検出精度が低下するという問題がある。この問題を解消するため、従来は、磁気センサとアクチュエータとを十分に離間させたり(たとえば、特許文献1等)、磁気センサとアクチュエータとの間に磁気遮蔽部材を配置したり(たとえば、特許文献2等)して、検出精度の低下を防止していた。 技術 A technology for detecting the position of a movable optical element in a lens barrel using a magnetic sensor such as a Hall sensor or an MR sensor (Magneto-Resistance-Sensor / Magnetoresistance effect sensor) is known. However, if a magnetic sensor is used to detect the position of an optical element in a lens barrel with a built-in electromagnetic actuator (an actuator using electromagnetic force), the magnetic sensor will be affected by magnetism from the actuator (magnetic interference). As a result, there is a problem that the position detection accuracy is reduced. In order to solve this problem, conventionally, a magnetic sensor and an actuator are sufficiently separated from each other (for example, Patent Document 1 and the like), or a magnetic shielding member is disposed between the magnetic sensor and the actuator (for example, Patent Document 1). 2) to prevent a decrease in detection accuracy.
国際公開第2016/006168号International Publication No. 2016/006168 特開2008-15159号公報JP 2008-15159 A
 電磁式のアクチュエータが磁気センサに及ぼす影響は、アクチュエータと磁気センサとの間の距離によって変化する。したがって、アクチュエータと磁気センサとの間の距離が変化する場合には、その距離の変化を考慮しないと、対象の位置を精度よく検出できないという欠点がある。 影響 The effect of the electromagnetic actuator on the magnetic sensor varies depending on the distance between the actuator and the magnetic sensor. Therefore, when the distance between the actuator and the magnetic sensor changes, there is a disadvantage that the target position cannot be accurately detected unless the change in the distance is considered.
 本発明は、このような事情に鑑みてなされたもので、検出対象の位置を精度よく検出できる鏡胴、撮像装置、位置検出方法及び位置検出プログラムを提供することを目的とする。 The present invention has been made in view of such circumstances, and has as its object to provide a lens barrel, an imaging device, a position detection method, and a position detection program capable of accurately detecting the position of a detection target.
 上記課題を解決するための手段は、次のとおりである。 手段 The means for solving the above problems are as follows.
 (1)光軸と平行又は垂直な方向に移動自在に支持された第1光学素子と、第1光学素子を駆動する第1アクチュエータと、第1光学素子の位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた第1ユニットと、光軸と平行又は垂直な方向に移動自在に支持された第2光学素子と、第2光学素子を駆動する電磁式の第2アクチュエータと、を備えた第2ユニットと、第1ユニット及び第2ユニットを光軸に沿って相対的に移動させるユニット駆動部と、第1ユニット及び第2ユニットの相対的な位置関係に応じて、位置検出センサから出力される位置信号を補正する位置信号補正部と、を備えた鏡胴。 (1) A first optical element movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the first optical element, and a magnetic field that changes according to the position of the first optical element. A first unit including a position detection sensor that outputs a signal proportional to the magnitude of the detected magnetic field as a position signal, and a second optical element movably supported in a direction parallel or perpendicular to the optical axis. A second unit including: an electromagnetic type second actuator that drives the second optical element; a unit driving unit that relatively moves the first unit and the second unit along the optical axis; A lens barrel comprising: a position signal correction unit configured to correct a position signal output from the position detection sensor according to a relative positional relationship between the unit and the second unit.
 本態様によれば、第1ユニット及び第2ユニットを光軸に沿って相対的に移動させることによって、両者の相対的な位置関係が変化した場合に、その相対的な位置関係(距離関係と同義)に応じて、位置検出センサから出力される位置信号が補正される。これにより、検出対象である第1光学素子の位置を精度よく検出できる。 According to this aspect, by moving the first unit and the second unit relatively along the optical axis, when the relative positional relationship between them changes, the relative positional relationship (distance relationship and The position signal output from the position detection sensor is corrected in accordance with the definition. Thereby, the position of the first optical element to be detected can be accurately detected.
 第1ユニット及び第2ユニットの相対的な位置関係が変化すると、位置検出センサ及び第2アクチュエータの相対的な位置関係が変化する。位置検出センサ及び第2アクチュエータの相対的な位置関係が変化すると、位置検出センサが第2アクチュエータから受ける磁気の影響が変化し、位置検出センサの出力が変化する。そこで、第1ユニット及び第2ユニットの相対的な位置関係が変化した場合であっても、位置検出センサの出力特性が変化しないように、第1ユニット及び第2ユニットの相対的な位置関係に応じて、位置検出センサの出力を補正する。これにより、第1ユニット及び第2ユニットの相対的な位置関係が変化した場合であっても、検出対象である第1光学素子の位置を精度よく検出できる。なお、ユニット駆動部による駆動の方式は、手動であってもよいし、電動であってもよい。 す る と When the relative positional relationship between the first unit and the second unit changes, the relative positional relationship between the position detection sensor and the second actuator changes. When the relative positional relationship between the position detection sensor and the second actuator changes, the influence of magnetism on the position detection sensor from the second actuator changes, and the output of the position detection sensor changes. Therefore, even when the relative positional relationship between the first unit and the second unit changes, the relative positional relationship between the first unit and the second unit is changed so that the output characteristic of the position detection sensor does not change. Accordingly, the output of the position detection sensor is corrected. Thereby, even if the relative positional relationship between the first unit and the second unit changes, the position of the first optical element to be detected can be detected with high accuracy. The method of driving by the unit driving unit may be manual or electric.
 (2)ユニット駆動部は、ズーム操作に応じて、第1ユニット及び第2ユニットを光軸に沿って相対的に移動させる、上記(1)の鏡胴。 (2) The lens barrel according to (1), wherein the unit driving unit relatively moves the first unit and the second unit along the optical axis in response to a zoom operation.
 本態様によれば、ズーム操作によって、第1ユニット及び第2ユニットが光軸に沿って相対的に移動する。すなわち、ズーム操作によって、第1ユニット及び第2ユニットの相対的な位置関係が変化する。 According to the aspect, the first unit and the second unit relatively move along the optical axis by the zoom operation. That is, the relative positional relationship between the first unit and the second unit changes by the zoom operation.
 (3)位置信号補正部は、ズームポジションに基づいて、位置検出センサから出力される位置信号を補正する、上記(2)の鏡胴。 (3) The lens barrel according to (2), wherein the position signal correction unit corrects the position signal output from the position detection sensor based on the zoom position.
 ズーム操作によって、第1ユニット及び第2ユニットが移動する場合、第1ユニット及び第2ユニットの相対的な位置関係は、ズームポジションによって一意に定まる。そこで、本態様では、ズームポジションに基づいて、位置検出センサの出力が補正される。これにより、より簡単に位置検出センサの出力を補正できる。 場合 When the first unit and the second unit move by the zoom operation, the relative positional relationship between the first unit and the second unit is uniquely determined by the zoom position. Therefore, in the present embodiment, the output of the position detection sensor is corrected based on the zoom position. This makes it possible to more easily correct the output of the position detection sensor.
 (4)ユニット駆動部は、カム機構によって、第1ユニット及び第2ユニットを光軸に沿って移動させる、上記(1)から(3)のいずれか一の鏡胴。 (4) The lens barrel according to any one of (1) to (3), wherein the unit driving section moves the first unit and the second unit along the optical axis by a cam mechanism.
 本態様によれば、ユニット駆動部が、カム機構によって、第1ユニット及び第2ユニットを光軸に沿って移動させる。 According to this aspect, the unit driving section moves the first unit and the second unit along the optical axis by the cam mechanism.
 (5)第1ユニット及び第2ユニットが隣接して配置される、上記(1)から(4)のいずれか一の鏡胴。 (5) The lens barrel according to any one of (1) to (4), wherein the first unit and the second unit are arranged adjacent to each other.
 本態様によれば、第1ユニット及び第2ユニットが隣接して配置される。位置検出センサが、第2アクチュエータから受ける磁気の影響は、位置検出センサと第2アクチュエータとの間の距離が近いほど大きくなる。したがって、第1ユニット及び第2ユニットが隣接して配置されている場合、本発明は特に有効に作用する。 According to this aspect, the first unit and the second unit are arranged adjacent to each other. The influence of magnetism on the position detection sensor from the second actuator increases as the distance between the position detection sensor and the second actuator decreases. Therefore, the present invention works particularly effectively when the first unit and the second unit are arranged adjacent to each other.
 (6)位置検出センサが、ホールセンサである、上記(1)から(5)のいずれか一の鏡胴。 (6) The lens barrel according to any one of (1) to (5), wherein the position detection sensor is a hall sensor.
 本態様によれば、位置検出センサがホールセンサで構成される。ホールセンサは、磁気センサの一つであり、検出した磁界の大きさに比例した信号を出力する。したがって、ホールセンサが位置検出センサとして使用されている場合、位置検出センサは第2アクチュエータからの磁気の影響を受けるので、本発明は有効に作用する。 According to this aspect, the position detection sensor is constituted by the Hall sensor. The Hall sensor is one of the magnetic sensors and outputs a signal proportional to the magnitude of the detected magnetic field. Therefore, when the Hall sensor is used as a position detection sensor, the position detection sensor is affected by magnetism from the second actuator, and thus the present invention works effectively.
 (7)第2アクチュエータが、ボイスコイルモータである、上記(1)から(6)のいずれか一の鏡胴。 (7) The lens barrel according to any one of (1) to (6), wherein the second actuator is a voice coil motor.
 本態様によれば、第2アクチュエータがボイスコイルモータで構成される。ボイスコイルモータは、電磁式のアクチュエータの一つであり、マグネットとコイルを主要な構成要素とするアクチュエータである。したがって、第2アクチュエータにボイスコイルモータが使用されている場合、第2アクチュエータは位置検出センサの検出に影響を及ぼすので、本発明は有効に作用する。 According to this aspect, the second actuator is constituted by a voice coil motor. The voice coil motor is one of electromagnetic actuators, and is an actuator having a magnet and a coil as main components. Therefore, when a voice coil motor is used for the second actuator, the present invention works effectively because the second actuator affects the detection of the position detection sensor.
 (8)第2アクチュエータが、ムービングマグネット型のボイスコイルモータであり、位置信号補正部は、第1ユニット及び第2ユニットの相対的な位置関係、及び、第2光学素子の位置に応じて、位置検出センサから出力される位置信号を補正する、上記(7)の鏡胴。 (8) The second actuator is a moving magnet type voice coil motor, and the position signal correction unit determines a relative positional relationship between the first unit and the second unit and a position of the second optical element. The lens barrel according to the above (7), which corrects the position signal output from the position detection sensor.
 本態様によれば、第2アクチュエータがムービングマグネット型のボイスコイルモータで構成される。ムービングマグネット型のボイスコイルモータとは、ヨークとコイルが作る磁場の中でマグネットが動くタイプのボイスコイルモータである。したがって、この場合、可動の構成要素である第2光学素子にマグネットが備えられる。第2アクチュエータが、ムービングマグネット型のボイスコイルモータの場合、マグネットが移動するため、マグネットの位置を考慮して、位置検出センサの出力を補正する必要がある。そこで、本態様では、第1ユニット及び第2ユニットの相対的な位置関係と、マグネットの位置である第2光学素子の位置に応じて、位置検出センサの出力が補正される。これにより、検出対象である第1光学素子の位置を精度よく検出できる。 According to this aspect, the second actuator is constituted by a moving magnet type voice coil motor. A moving magnet type voice coil motor is a type of voice coil motor in which a magnet moves in a magnetic field generated by a yoke and a coil. Therefore, in this case, the magnet is provided in the second optical element which is a movable component. If the second actuator is a moving magnet type voice coil motor, the magnet moves, so it is necessary to correct the output of the position detection sensor in consideration of the position of the magnet. Therefore, in this aspect, the output of the position detection sensor is corrected according to the relative positional relationship between the first unit and the second unit and the position of the second optical element that is the position of the magnet. Thereby, the position of the first optical element to be detected can be accurately detected.
 (9)位置信号補正部は、更に、位置検出センサの取り付け位置、及び/又は、取り付け姿勢に基づいて、位置信号を補正する、上記(1)から(8)のいずれか一の鏡胴。 (9) The lens barrel according to any one of (1) to (8), wherein the position signal correction unit further corrects the position signal based on a mounting position and / or a mounting posture of the position detection sensor.
 位置検出センサの出力は、位置検出センサの取り付け位置及び取り付け姿勢によっても変化する。本態様によれば、位置検出センサの取り付け位置、及び/又は、取り付け姿勢に基づいて、位置検出センサの出力が補正される。これにより、検出対象である第1光学素子の位置を更に精度よく検出できる。 出力 The output of the position detection sensor also changes depending on the mounting position and mounting posture of the position detection sensor. According to this aspect, the output of the position detection sensor is corrected based on the mounting position and / or mounting posture of the position detection sensor. Thereby, the position of the first optical element to be detected can be detected with higher accuracy.
 (10)温度センサを更に備え、位置信号補正部は、更に、温度センサで検出される温度に基づいて、位置信号を補正する、上記(1)から(9)のいずれか一の鏡胴。 (10) The lens barrel according to any one of (1) to (9), further including a temperature sensor, wherein the position signal correction unit further corrects the position signal based on the temperature detected by the temperature sensor.
 位置検出センサの出力は、周辺環境の温度によっても変化する。本態様によれば、温度センサで検出される温度に基づいて、位置検出センサの出力が補正される。これにより、検出対象である第1光学素子の位置を更に精度よく検出できる。 出力 The output of the position detection sensor changes depending on the temperature of the surrounding environment. According to this aspect, the output of the position detection sensor is corrected based on the temperature detected by the temperature sensor. Thereby, the position of the first optical element to be detected can be detected with higher accuracy.
 (11)第1光学素子を較正用基準位置に位置させた場合に位置検出センサから出力される位置信号に基づいて、温度に基づく前記位置信号の補正に必要な情報を取得する、上記(10)の鏡胴。 (11) Based on the position signal output from the position detection sensor when the first optical element is positioned at the calibration reference position, information necessary for correcting the position signal based on the temperature is acquired based on (10). ) Lens barrel.
 本態様によれば、第1光学素子を較正用基準位置に位置させた場合に位置検出センサから出力される位置信号に基づいて、温度に基づく位置信号の補正に必要な情報が取得される。これにより、温度に基づく位置信号の補正に必要な情報(特に、オフセット量)を簡単に取得できる。較正用基準位置は、たとえば、第1光学素子の一方側の可動端(可動範囲の一方側の端部)を採用できる。 According to this aspect, information necessary for correcting the position signal based on the temperature is acquired based on the position signal output from the position detection sensor when the first optical element is located at the calibration reference position. This makes it possible to easily acquire information (particularly, an offset amount) necessary for correcting the position signal based on the temperature. As the calibration reference position, for example, a movable end on one side of the first optical element (an end on one side of the movable range) can be adopted.
 (12)位置信号補正部は、温度センサで検出される温度が、あらかじめ定められた許容範囲を超える場合に、温度センサで検出される温度に基づいて、位置信号を補正する、上記(10)又は(11)の鏡胴。 (12) The position signal correction section corrects the position signal based on the temperature detected by the temperature sensor when the temperature detected by the temperature sensor exceeds a predetermined allowable range. Or the lens barrel of (11).
 本態様によれば、温度センサで検出される温度が、あらかじめ定められた許容範囲を超える場合に限って、温度に基づく補正が行われる。これにより、真に補正が必要な場合に限って、温度に基づく補正が行われるため、全体の処理負荷を軽減できる。 According to this aspect, the correction based on the temperature is performed only when the temperature detected by the temperature sensor exceeds a predetermined allowable range. Accordingly, the correction based on the temperature is performed only when the correction is truly required, so that the overall processing load can be reduced.
 (13)第2ユニットは、第2光学素子の位置を検出する第2光学素子位置検出部を更に備える、上記(1)から(12)のいずれか一の鏡胴。 (13) The lens barrel according to any one of (1) to (12), wherein the second unit further includes a second optical element position detecting unit that detects a position of the second optical element.
 本態様によれば、第2光学素子の位置を検出する第2光学素子位置検出部が第2ユニットに備えられる。これにより、第2ユニットにおける第2光学素子の位置を検出できる。 According to this aspect, the second unit is provided with the second optical element position detection unit that detects the position of the second optical element. Thereby, the position of the second optical element in the second unit can be detected.
 (14)第2光学素子位置検出部は、あらかじめ定められた原点への第2光学素子の移動を検出する原点検出部と、第2光学素子の変位量を検出する変位量検出部と、を有する、上記(13)の鏡胴。 (14) The second optical element position detector includes an origin detector that detects movement of the second optical element to a predetermined origin, and a displacement detector that detects a displacement of the second optical element. The lens barrel according to (13) above.
 本態様によれば、第2光学素子位置検出部が、原点検出部及び変位量検出部を有する。原点検出部は、あらかじめ定められた原点への第2光学素子の移動を検出する。変位量検出部は、原点からの第2光学素子の変位量を検出する。第2光学素子位置検出部は、原点検出部によって第2光学素子が原点に位置したことを検出し、変位量検出部によって原点からの第2光学素子の変位量を検出することにより、第2光学素子の位置(原点に対する相対的な位置)を検出する。 According to this aspect, the second optical element position detecting section includes the origin detecting section and the displacement detecting section. The origin detection unit detects movement of the second optical element to a predetermined origin. The displacement detector detects a displacement of the second optical element from the origin. The second optical element position detector detects that the second optical element is located at the origin by the origin detector, and detects the amount of displacement of the second optical element from the origin by the displacement detector, thereby obtaining the second optical element. The position of the optical element (the position relative to the origin) is detected.
 (15)変位量検出部は、MRセンサで構成される、上記(14)の鏡胴。 (15) The lens barrel according to the above (14), wherein the displacement amount detection unit is constituted by an MR sensor.
 本態様によれば、変位量検出部がMRセンサ(Magneto Resistance Sensor;磁気抵抗効果センサ)で構成される。 According to this aspect, the displacement amount detection unit is configured by an MR sensor (Magneto Resistance Sensor).
 (16)第1ユニットにおいて、第1光学素子であるレンズを光軸と平行に移動させて、像面湾曲を補正し、第2ユニットにおいて、第2光学素子であるレンズを光軸と平行に移動させて、焦点を調節する、上記(1)から(15)のいずれか一の鏡胴。 (16) In the first unit, the lens that is the first optical element is moved parallel to the optical axis to correct the field curvature, and in the second unit, the lens that is the second optical element is moved parallel to the optical axis. The lens barrel according to any one of (1) to (15), wherein the lens barrel is moved to adjust a focus.
 本態様によれば、第1ユニットにおいて、第1光学素子であるレンズを光軸と平行に移動させることにより、像面湾曲が補正される。また、第2ユニットにおいて、第2光学素子であるレンズを光軸と平行に移動させることにより、焦点が調節される。 According to this aspect, in the first unit, the field curvature is corrected by moving the lens as the first optical element in parallel with the optical axis. In the second unit, the focal point is adjusted by moving the lens, which is the second optical element, in parallel with the optical axis.
 (17)上記(1)から(16)のいずれか一の鏡胴を備えた撮像装置。 (17) An imaging apparatus including the lens barrel according to any one of (1) to (16).
 本態様によれば、撮像装置の鏡胴に上記(1)から(16)のいずれかの鏡胴が備えられる。 According to this aspect, the lens barrel of the imaging device is provided with any one of the lens barrels (1) to (16).
 (18)光軸と平行又は垂直な方向に移動自在に支持された可動レンズと、可動レンズを駆動する第1アクチュエータと、可動レンズの位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた可動ユニットと、可動ユニットを光軸に沿って移動させる可動ユニット駆動部と、を備えた撮像レンズと、光軸と直交する方向に移動自在に支持され、撮像レンズを介して被写体の光学像を撮像するイメージセンサと、イメージセンサを駆動する電磁式の第2アクチュエータと、可動ユニット及びイメージセンサの相対的な位置関係に応じて、位置検出センサから出力される位置信号を補正する位置信号補正部と、を備えた撮像装置。 (18) A movable lens supported movably in a direction parallel or perpendicular to the optical axis, a first actuator for driving the movable lens, and a magnetic field that changes according to the position of the movable lens is detected. A position detection sensor that outputs a signal proportional to the size as a position signal, and a movable unit including: a movable unit driving unit that moves the movable unit along the optical axis; an imaging lens including: an optical axis; An image sensor that is movably supported in the orthogonal direction and captures an optical image of a subject via an imaging lens, an electromagnetic second actuator that drives the image sensor, and a relative positional relationship between the movable unit and the image sensor And a position signal correction unit that corrects a position signal output from the position detection sensor in accordance with (1).
 本態様によれば、可動ユニットを光軸に沿って相対的に移動させることによって、可動ユニット及びイメージセンサの相対的な位置関係が変化した場合に、その相対的な位置関係に応じて、位置検出センサから出力される位置信号が補正される。これにより、検出対象である可動レンズの位置を精度よく検出できる。 According to this aspect, when the relative positional relationship between the movable unit and the image sensor changes by moving the movable unit relatively along the optical axis, the position is determined according to the relative positional relationship. The position signal output from the detection sensor is corrected. Thereby, the position of the movable lens to be detected can be accurately detected.
 (19)可動ユニット駆動部は、ズーム操作に応じて、可動ユニットを光軸に沿って移動させる、上記(18)の撮像装置。 (19) The imaging device according to (18), wherein the movable unit driving unit moves the movable unit along the optical axis in response to a zoom operation.
 本態様によれば、ズーム操作によって、可動ユニットが光軸に沿って相対的に移動する。すなわち、ズーム操作によって可動ユニット及びイメージセンサの相対的な位置関係が変化する。 According to this aspect, the movable unit relatively moves along the optical axis by the zoom operation. That is, the relative positional relationship between the movable unit and the image sensor changes by the zoom operation.
 (20)位置信号補正部は、ズームポジションに基づいて、位置検出センサから出力される位置信号を補正する位置信号補正部と、上記(19)の撮像装置。 (20) The position signal correction unit for correcting the position signal output from the position detection sensor based on the zoom position, and the imaging device according to (19).
 ズーム操作によって、可動ユニットが移動する場合、可動ユニット及びイメージセンサの相対的な位置関係は、ズームポジションによって一意に定まる。そこで、本態様では、ズームポジションに基づいて、位置検出センサの出力が補正される。これにより、より簡単に位置検出センサの出力を補正できる。 場合 When the movable unit moves by the zoom operation, the relative positional relationship between the movable unit and the image sensor is uniquely determined by the zoom position. Therefore, in the present embodiment, the output of the position detection sensor is corrected based on the zoom position. This makes it possible to more easily correct the output of the position detection sensor.
 (21)光軸と平行又は垂直な方向に移動自在に支持された第1光学素子と、第1光学素子を駆動する第1アクチュエータと、第1光学素子の位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた第1ユニット、及び、光軸と平行又は垂直な方向に移動自在に支持された第2光学素子と、第2光学素子を駆動する電磁式の第2アクチュエータと、を備えた第2ユニットが、光軸に沿って相対的に移動する鏡胴において、位置検出センサから出力される位置信号に基づいて、第1光学素子の位置を検出する位置検出方法であって、位置検出センサから出力される位置信号を取得するステップと、第1ユニット及び第2ユニットの相対的な位置関係の情報を取得するステップと、第1ユニット及び第2ユニットの相対的な位置関係に応じて、位置検出センサから出力される位置信号を補正するステップと、を含む位置検出方法。 (21) A first optical element movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the first optical element, and a magnetic field that changes according to the position of the first optical element. A position detection sensor that outputs a signal proportional to the magnitude of the detected magnetic field as a position signal; and a second optical unit movably supported in a direction parallel or perpendicular to the optical axis. A second unit including an element and an electromagnetic second actuator for driving a second optical element is configured to generate a position signal output from a position detection sensor in a lens barrel relatively moving along an optical axis. A position detecting method for detecting a position of the first optical element based on the position information, the step of obtaining a position signal output from the position detecting sensor, and the step of obtaining information on a relative positional relationship between the first unit and the second unit. get Step and, depending on the relative positional relationship between the first unit and second unit, the position detecting method comprising the steps of correcting the position signal output from the position detection sensor.
 本態様によれば、位置検出センサを備えた第1ユニット、及び、電磁式のアクチュエータ(第2アクチュエータ)を備えた第2ユニットが、光軸に沿って相対的に移動する場合において、第1ユニット及び第2ユニットの相対的な位置関係の情報を取得し、取得した位置関係の情報に基づいて、位置検出センサの出力が補正される。これにより、第1ユニット及び第2ユニットの相対的な位置関係が変化した場合であっても、検出対象である第1光学素子の位置を精度よく検出できる。 According to this aspect, when the first unit including the position detection sensor and the second unit including the electromagnetic actuator (the second actuator) relatively move along the optical axis, the first unit includes the first unit. Information on the relative positional relationship between the unit and the second unit is acquired, and the output of the position detection sensor is corrected based on the acquired information on the positional relationship. Thereby, even if the relative positional relationship between the first unit and the second unit changes, the position of the first optical element to be detected can be detected with high accuracy.
 (22)光軸と平行又は垂直な方向に移動自在に支持された可動レンズと、可動レンズを駆動する第1アクチュエータと、可動レンズの位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた可動ユニットと、可動ユニットを光軸に沿って移動させる可動ユニット駆動部と、を備えた撮像レンズと、光軸と直交する方向に移動自在に支持され、撮像レンズを介して被写体の光学像を撮像するイメージセンサと、イメージセンサを駆動する電磁式の第2アクチュエータと、を備えた撮像装置において、位置検出センサから出力される位置信号に基づいて、可動ユニットの位置を検出する位置検出方法であって、位置検出センサから出力される位置信号を取得するステップと、可動ユニット及びイメージセンサの相対的な位置関係の情報を取得するステップと、可動ユニット及びイメージセンサの相対的な位置関係に応じて、位置検出センサから出力される位置信号を補正するステップと、を含む位置検出方法。 (22) A movable lens movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the movable lens, and a magnetic field that changes according to the position of the movable lens are detected. A position detection sensor that outputs a signal proportional to the size as a position signal, and a movable unit including: a movable unit driving unit that moves the movable unit along the optical axis; an imaging lens including: an optical axis; An image sensor that is movably supported in a direction orthogonal to the image sensor and captures an optical image of a subject via an imaging lens, and an electromagnetic second actuator that drives the image sensor; A position detection method for detecting a position of a movable unit based on a position signal output, the method comprising: obtaining a position signal output from a position detection sensor. Acquiring information on the relative positional relationship between the movable unit and the image sensor; and correcting the position signal output from the position detection sensor according to the relative positional relationship between the movable unit and the image sensor. And a position detection method including:
 本態様によれば、位置検出センサを備えた可動ユニットが、電磁式のアクチュエータ(第2アクチュエータ)によって駆動されるイメージセンサに対して相対的に移動する場合において、可動ユニット及びイメージセンサの相対的な位置関係の情報を取得し、取得した位置関係の情報に基づいて、位置検出センサの出力が補正される。これにより、可動ユニット及びイメージセンサの相対的な位置関係が変化した場合であっても、検出対象である可動レンズの位置を精度よく検出できる。 According to this aspect, when the movable unit including the position detection sensor moves relatively to the image sensor driven by the electromagnetic actuator (second actuator), the relative position of the movable unit and the image sensor is increased. The information of the positional relationship is acquired, and the output of the position detection sensor is corrected based on the acquired information of the positional relationship. Thus, even when the relative positional relationship between the movable unit and the image sensor changes, the position of the movable lens to be detected can be accurately detected.
 (23)光軸と平行又は垂直な方向に移動自在に支持された第1光学素子と、第1光学素子を駆動する第1アクチュエータと、第1光学素子の位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた第1ユニット、及び、光軸と平行又は垂直な方向に移動自在に支持された第2光学素子と、第2光学素子を駆動する電磁式の第2アクチュエータと、を備えた第2ユニットが、光軸に沿って相対的に移動する鏡胴において、位置検出センサから出力される位置信号に基づいて、第1光学素子の位置を検出する処理をコンピュータに実行させる位置検出プログラムであって、位置検出センサから出力される位置信号を取得するステップと、第1ユニット及び第2ユニットの相対的な位置関係の情報を取得するステップと、第1ユニット及び第2ユニットの相対的な位置関係に応じて、位置検出センサから出力される位置信号を補正するステップと、を含む位置検出プログラム。 (23) A first optical element movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the first optical element, and a magnetic field that varies according to the position of the first optical element. A position detection sensor that outputs a signal proportional to the magnitude of the detected magnetic field as a position signal; and a second optical unit movably supported in a direction parallel or perpendicular to the optical axis. A second unit including an element and an electromagnetic second actuator for driving a second optical element is configured to generate a position signal output from a position detection sensor in a lens barrel relatively moving along an optical axis. A position detection program that causes a computer to execute a process of detecting a position of the first optical element based on the first and second units; Detecting the relative positional relationship between the first unit and the second unit, and correcting the position signal output from the position detecting sensor according to the relative positional relationship between the first unit and the second unit. program.
 本態様によれば、位置検出センサを備えた第1ユニット、及び、電磁式のアクチュエータ(第2アクチュエータ)を備えた第2ユニットが、光軸に沿って相対的に移動する場合において、第1ユニット及び第2ユニットの相対的な位置関係の情報を取得し、取得した位置関係の情報に基づいて、位置検出センサの出力が補正される。これにより、第1ユニット及び第2ユニットの相対的な位置関係が変化した場合であっても、検出対象である第1光学素子の位置を精度よく検出できる。 According to this aspect, when the first unit including the position detection sensor and the second unit including the electromagnetic actuator (the second actuator) relatively move along the optical axis, the first unit includes the first unit. Information on the relative positional relationship between the unit and the second unit is acquired, and the output of the position detection sensor is corrected based on the acquired information on the positional relationship. Thereby, even if the relative positional relationship between the first unit and the second unit changes, the position of the first optical element to be detected can be detected with high accuracy.
 (24)光軸と平行又は垂直な方向に移動自在に支持された可動レンズと、可動レンズを駆動する第1アクチュエータと、可動レンズの位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた可動ユニットと、可動ユニットを光軸に沿って移動させる可動ユニット駆動部と、を備えた撮像レンズと、光軸と直交する方向に移動自在に支持され、撮像レンズを介して被写体の光学像を撮像するイメージセンサと、イメージセンサを駆動する電磁式の第2アクチュエータと、を備えた撮像装置において、位置検出センサから出力される位置信号に基づいて、可動ユニットの位置を検出する処理をコンピュータに実行させる位置検出プログラムであって、位置検出センサから出力される位置信号を取得するステップと、可動ユニット及びイメージセンサの相対的な位置関係の情報を取得するステップと、可動ユニット及びイメージセンサの相対的な位置関係に応じて、位置検出センサから出力される位置信号を補正するステップと、を含む位置検出プログラム。 (24) A movable lens supported movably in a direction parallel or perpendicular to the optical axis, a first actuator that drives the movable lens, and a magnetic field that changes according to the position of the movable lens is detected. A position detection sensor that outputs a signal proportional to the size as a position signal, and a movable unit including: a movable unit driving unit that moves the movable unit along the optical axis; an imaging lens including: an optical axis; An image sensor that is movably supported in a direction orthogonal to the image sensor and captures an optical image of a subject via an imaging lens, and an electromagnetic second actuator that drives the image sensor; A position detection program for causing a computer to execute a process of detecting the position of the movable unit based on the output position signal, the position detection program comprising: Obtaining a position signal output from the position detection sensor, obtaining information on a relative positional relationship between the movable unit and the image sensor, and Correcting the output position signal.
 本態様によれば、位置検出センサを備えた可動ユニットが、電磁式のアクチュエータ(第2アクチュエータ)によって駆動されるイメージセンサに対して相対的に移動する場合において、可動ユニット及びイメージセンサの相対的な位置関係の情報を取得し、取得した位置関係の情報に基づいて、位置検出センサの出力が補正される。これにより、可動ユニット及びイメージセンサの相対的な位置関係が変化した場合であっても、検出対象である可動レンズの位置を精度よく検出できる。 According to this aspect, when the movable unit including the position detection sensor moves relatively to the image sensor driven by the electromagnetic actuator (second actuator), the relative position of the movable unit and the image sensor is increased. The information of the positional relationship is acquired, and the output of the position detection sensor is corrected based on the acquired information of the positional relationship. Thus, even when the relative positional relationship between the movable unit and the image sensor changes, the position of the movable lens to be detected can be accurately detected.
 本発明によれば、検出対象の位置を精度よく検出できる。 According to the present invention, the position of the detection target can be accurately detected.
本発明が適用された交換レンズの一実施形態を示す平面図1 is a plan view showing an embodiment of an interchangeable lens to which the present invention is applied. 図1に示す交換レンズの背面図Rear view of the interchangeable lens shown in FIG. ワイド端までズーム操作した場合の図2の3-3断面図FIG. 3 is a cross-sectional view taken along the line 3-3 when the zoom operation is performed to the wide end. ワイド端までズーム操作した場合の図2の4-4断面図FIG. 4 is a sectional view taken along line 4-4 of FIG. 2 when zooming to the wide end. テレ端までズーム操作した場合の図2の4-4断面図FIG. 4 is a sectional view taken along line 4-4 of FIG. 2 when zooming to the telephoto end. 図3の6-6断面図6-6 sectional view of FIG. 図3の7-7断面図7-7 sectional view of FIG. ズーム操作した場合の各レンズ群の移動状態を示す図Diagram showing the movement of each lens group when zoom operation is performed 第3レンズ群可動保持枠及び第4レンズ群可動保持枠の支持構造を示す断面図Sectional drawing which shows the support structure of a 3rd lens group movable holding frame and a 4th lens group movable holding frame. 第3レンズ群前群駆動アクチュエータの取り付け構造を示す断面図Sectional drawing which shows the mounting structure of the 3rd lens group front group drive actuator. 第4レンズ群駆動アクチュエータの取り付け構造を示す断面図Sectional drawing which shows the mounting structure of a 4th lens group drive actuator. 交換レンズの電気的構成を示すブロック図Block diagram showing the electrical configuration of the interchangeable lens ワイド端での第3レンズ群と第4レンズ群の位置関係を模式的に示す図FIG. 4 is a diagram schematically illustrating a positional relationship between a third lens unit and a fourth lens unit at a wide end. テレ端での第3レンズ群と第4レンズ群の位置関係を模式的に示す図The figure which shows typically the positional relationship of the 3rd lens group and the 4th lens group at a telephoto end. 第3レンズ群前群の位置と位置検出センサの出力値との関係を示すグラフ4 is a graph showing the relationship between the position of the front group of the third lens group and the output value of the position detection sensor. 位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理に係わる構成のブロックA block having a configuration related to a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor. 位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理の手順を示すフローチャート9 is a flowchart illustrating a procedure of a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor. 第3レンズ群前群の駆動制御の処理の手順を示すフローチャート4 is a flowchart showing the procedure of drive control processing for the front group of the third lens group. 適切に取り付けられた場合の位置検出センサの取り付け状態を示す図Diagram showing the mounting state of the position detection sensor when properly mounted 不適切に取り付けられた場合の位置検出センサの取り付け状態を示す図Diagram showing the mounting state of the position detection sensor when improperly mounted あるズームポジションにおける第3レンズ群前群の位置と位置検出センサの出力値との関係を示すグラフ7 is a graph showing the relationship between the position of the front group of the third lens group at a certain zoom position and the output value of the position detection sensor. 温度に基づいて位置検出センサの出力を補正する場合の第3レンズ群前群の位置の検出処理に係わる構成のブロック図FIG. 6 is a block diagram of a configuration related to a process of detecting the position of the front group of the third lens group when correcting the output of the position detection sensor based on temperature 温度に基づく切片の補正係数の取得方法の概念図Conceptual diagram of acquisition method of intercept correction coefficient based on temperature 第4レンズ群駆動アクチュエータがムービングマグネット型のVCMで構成される場合の交換レンズの概略構成を示す断面図Sectional drawing which shows the schematic structure of an interchangeable lens when a 4th lens group drive actuator is comprised by a moving magnet type VCM. 位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理に係わる構成のブロック図FIG. 6 is a block diagram of a configuration related to a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor. 位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理の手順を示すフローチャート9 is a flowchart illustrating a procedure of a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor. 光軸と垂直な方向に移動するレンズ及び光軸と平行な方向に移動するレンズを備えたレンズ鏡胴の一例を示す断面図Sectional drawing which shows an example of a lens barrel provided with a lens moving in a direction perpendicular to the optical axis and a lens moving in a direction parallel to the optical axis. 図27の28-28断面図28-28 sectional view of FIG. 図27の29-29断面図27-29 sectional view of FIG. 本発明が適用された撮像装置の概略構成図Schematic configuration diagram of an imaging device to which the present invention is applied 図30の31-31断面図31-31 sectional view of FIG. 30 図30の32-32断面図FIG. 30 is a sectional view taken along line 32-32 of FIG. 撮像装置の制御部が提供するフォーカスレンズ位置検出センサの出力の補正機能のブロック図FIG. 3 is a block diagram of a correction function of an output of a focus lens position detection sensor provided by a control unit of the imaging device. フォーカスレンズ位置検出センサの出力の補正を含むフォーカスレンズの位置の検出処理の手順を示すフローチャート4 is a flowchart showing a procedure of a focus lens position detection process including correction of an output of a focus lens position detection sensor.
 以下、添付図面に従って本発明を実施するための好ましい形態について詳説する。 Hereinafter, preferred embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings.
 [第1の実施の形態]
 ここでは、本発明をレンズ交換式カメラの交換レンズに適用した場合を例に説明する。この種の交換レンズは、マウントを介してカメラ本体に着脱自在に装着される。
[First Embodiment]
Here, a case where the present invention is applied to an interchangeable lens of an interchangeable lens type camera will be described as an example. This type of interchangeable lens is detachably attached to a camera body via a mount.
 図1は、本発明が適用された交換レンズの一実施形態を示す平面図である。図2は、図1に示す交換レンズの背面図(マウント側から見た図)である。図3は、ワイド端までズーム操作した場合の図2の3-3断面図である。図4は、ワイド端までズーム操作した場合の図2の4-4断面図である。図5は、テレ端までズーム操作した場合の図2の4-4断面図である。図6は、図3の6-6断面図である。図7は、図3の7-7断面図である。 FIG. 1 is a plan view showing an embodiment of an interchangeable lens to which the present invention is applied. FIG. 2 is a rear view (view from the mount side) of the interchangeable lens shown in FIG. FIG. 3 is a sectional view taken along line 3-3 in FIG. 2 when the zoom operation is performed to the wide end. FIG. 4 is a sectional view taken along line 4-4 in FIG. 2 when the zoom operation is performed to the wide end. FIG. 5 is a cross-sectional view taken along line 4-4 of FIG. 2 when the zoom operation is performed to the telephoto end. FIG. 6 is a sectional view taken along line 6-6 of FIG. FIG. 7 is a sectional view taken along the line 7-7 in FIG.
 本実施の形態の交換レンズ1は、いわゆるズームレンズであり、手動によるズーム操作によって、焦点距離が連続的に変化する。交換レンズ1は、レンズが組み付けられた鏡胴本体10と、鏡胴本体10の外周を覆う外装体2と、を備える。 交換 The interchangeable lens 1 of the present embodiment is a so-called zoom lens, and the focal length changes continuously by a manual zoom operation. The interchangeable lens 1 includes a lens barrel main body 10 to which a lens is attached, and an exterior body 2 that covers the outer circumference of the lens barrel main body 10.
 [外装体]
 外装体2は、円筒形状を有し、その内側に鏡胴本体10を収容して、鏡胴本体10の外周を覆う。外装体2には、フォーカスの操作部材であるフォーカスリング3、ズームの操作部材であるズームリング4及び絞りの操作部材である絞りリング5が備えられる。交換レンズ1は、フォーカスリング3を回転操作することにより、マニュアルで焦点調節される。また、ズームリング4を回転操作することにより、あらかじめ定められた範囲内で焦点距離が連続的に変化する。また、絞りリング5を回転操作することにより、あらかじめ定められたステップで絞り値(F値)が切り替えられる。
[Outer body]
The exterior body 2 has a cylindrical shape, accommodates the lens barrel main body 10 inside thereof, and covers the outer periphery of the lens barrel main body 10. The exterior body 2 includes a focus ring 3 as a focus operation member, a zoom ring 4 as a zoom operation member, and an aperture ring 5 as an aperture operation member. The focus of the interchangeable lens 1 is manually adjusted by rotating the focus ring 3. Further, by rotating the zoom ring 4, the focal length changes continuously within a predetermined range. By rotating the aperture ring 5, the aperture value (F value) is switched at predetermined steps.
 [鏡胴本体]
 鏡胴本体10は、鏡胴の一例である。鏡胴本体10は、固定筒12及びカム筒14を有する。カム筒14は、固定筒12の内周部に嵌合されて、固定筒12の内周部を周方向に回転自在に保持される。
[Lens body]
The lens barrel main body 10 is an example of a lens barrel. The lens barrel main body 10 has a fixed barrel 12 and a cam barrel 14. The cam cylinder 14 is fitted to the inner peripheral part of the fixed cylinder 12 and holds the inner peripheral part of the fixed cylinder 12 rotatably in the circumferential direction.
 固定筒12は、その後端部(像面側の端部)にマウント16を有する。マウント16は、いわゆるバヨネットマウントで構成される。 The fixed cylinder 12 has a mount 16 at its rear end (the end on the image plane side). The mount 16 is constituted by a so-called bayonet mount.
 カム筒14は、図示しない連結部材を介してズームリング4と連結される。したがって、ズームリング4を回転させると、その回転に連動して、カム筒14も回転する。 The cam cylinder 14 is connected to the zoom ring 4 via a connecting member (not shown). Therefore, when the zoom ring 4 is rotated, the cam barrel 14 also rotates in conjunction with the rotation.
 [レンズ構成]
 固定筒12の内部には、複数のレンズが配置される。具体的には、光軸Zに沿って、物体側から順に、第1レンズ群G1、第2レンズ群G2、第3レンズ群G3、第4レンズ群G4及び第5レンズ群G5が配置される。各レンズ群は、少なくとも1枚のレンズで構成される。
[Lens configuration]
A plurality of lenses are arranged inside the fixed barrel 12. Specifically, a first lens group G1, a second lens group G2, a third lens group G3, a fourth lens group G4, and a fifth lens group G5 are arranged in this order from the object side along the optical axis Z. . Each lens group includes at least one lens.
 また、固定筒12の内部には、絞りStが配置される。絞りStは、第1レンズ群G1と第2レンズ群G2との間に配置される。 絞 り Aperture St is arranged inside fixed cylinder 12. The stop St is arranged between the first lens group G1 and the second lens group G2.
 図8は、ズーム操作した場合の各レンズ群の移動状態を示す図である。同図において、(A)は、ワイド端でのレンズ配置を示しており、(B)は、テレ端でのレンズ配置を示している。また、符号AL1~AL4で示す曲線は、ズーム操作によって移動するレンズ群の移動軌跡を示している。具体的には、符号AL1は第1レンズ群G1の移動軌跡、符号AL2は第2レンズ群G2の移動軌跡、符号AL3は第3レンズ群G3の移動軌跡、符号AL4は第4レンズ群G4の移動軌跡を示している。 FIG. 8 is a diagram illustrating a moving state of each lens group when a zoom operation is performed. In the same figure, (A) shows the lens arrangement at the wide end, and (B) shows the lens arrangement at the tele end. Curves indicated by reference signs AL1 to AL4 indicate the movement trajectories of the lens groups that are moved by the zoom operation. Specifically, reference symbol AL1 denotes a movement locus of the first lens group G1, reference sign AL2 denotes a movement locus of the second lens group G2, reference sign AL3 denotes a movement locus of the third lens group G3, and reference sign AL4 denotes a movement locus of the fourth lens group G4. The moving locus is shown.
 図8に示すように、第1レンズ群G1から第4レンズ群G4は、ズーム操作により、像面Simに対して移動するレンズ群である。一方、第5レンズ群G5は、ズーム操作により、像面Simに対して固定のレンズ群である。絞りStは、第2レンズ群G2と一体的に移動する。 As shown in FIG. 8, the first lens group G1 to the fourth lens group G4 are lens groups that move with respect to the image plane Sim by a zoom operation. On the other hand, the fifth lens group G5 is a lens group fixed to the image plane Sim by a zoom operation. The stop St moves integrally with the second lens group G2.
 図8に示すように、第3レンズ群G3は、第3レンズ群前群G3a及び第3レンズ群後群G3bで構成される。第3レンズ群前群G3aは、像面湾曲補正用のレンズ群であり、光軸Zに沿って移動することにより、像面湾曲を補正する。このため、第3レンズ群前群G3aは、他のレンズ群とは独立して、単体で移動可能に構成される。 3As shown in FIG. 8, the third lens group G3 is composed of a third lens group front group G3a and a third lens group rear group G3b. The front third lens group G3a is a lens group for correcting the curvature of field, and corrects the curvature of field by moving along the optical axis Z. For this reason, the third lens group front group G3a is configured to be movable independently, independently of the other lens groups.
 また、第4レンズ群G4は、焦点調節用のレンズ群であり、光軸Zに沿って移動することにより、焦点を調節する。このため、第4レンズ群G4は、他のレンズ群とは独立して、単体で移動可能に構成される。 {Circle around (4)} The fourth lens group G4 is a lens group for focus adjustment, and adjusts the focus by moving along the optical axis Z. For this reason, the fourth lens group G4 is configured to be independently movable independently of the other lens groups.
 ズーム操作による各レンズ群の移動は、カム機構によって実現される。カム機構は、カム筒14の回転を直線運動に変換して、各レンズ群を光軸Zに沿って移動させる。本実施の形態の交換レンズ1において、カム機構は、直進溝を備えた固定筒12と、カム溝を備えたカム筒14と、各レンズ群の保持枠に備えられたカムフォロアと、で構成される。第1レンズ群G1から第4レンズ群G4の各レンズ群は、カム機構によって、あらかじめ定められた移動軌跡AL1~AL4に沿って移動する。カム機構は、ユニット駆動部の一例である。 移動 The movement of each lens group by the zoom operation is realized by the cam mechanism. The cam mechanism converts the rotation of the cam barrel 14 into a linear motion, and moves each lens group along the optical axis Z. In the interchangeable lens 1 according to the present embodiment, the cam mechanism includes a fixed barrel 12 having a rectilinear groove, a cam barrel 14 having a cam groove, and a cam follower provided in a holding frame of each lens group. You. Each of the first to fourth lens groups G1 to G4 is moved by a cam mechanism along predetermined movement trajectories AL1 to AL4. The cam mechanism is an example of a unit driving unit.
 [各レンズ群の保持構造]
 [第1レンズ群]
 図3、図4及び図5に示すように、第1レンズ群G1は、第1レンズ群保持枠20に保持されて、固定筒12内に配置され、かつ、固定筒12内を光軸Zと平行な方向に移動自在に支持される。
[Holding structure of each lens group]
[First lens group]
As shown in FIGS. 3, 4, and 5, the first lens group G1 is held by the first lens group holding frame 20, is disposed in the fixed barrel 12, and passes through the fixed barrel 12 along the optical axis Z. Supported movably in a direction parallel to
 第1レンズ群保持枠20には、その外周部に3本の第1レンズ群ズーム駆動用カムフォロア32が備えられる。3本の第1レンズ群ズーム駆動用カムフォロア32は、周方向に等間隔に配置される。各第1レンズ群ズーム駆動用カムフォロア32は、それぞれカム筒14に備えられた第1レンズ群ズーム駆動用カム溝14A及び固定筒12に備えられた第1レンズ群ズーム駆動用直進溝12Aに嵌合される。 The first lens group holding frame 20 is provided with three first lens group zoom drive cam followers 32 on the outer peripheral portion thereof. The three first lens group zoom drive cam followers 32 are arranged at equal intervals in the circumferential direction. Each first lens group zoom drive cam follower 32 is fitted into a first lens group zoom drive cam groove 14A provided in the cam barrel 14 and a first lens group zoom drive straight drive groove 12A provided in the fixed barrel 12, respectively. Are combined.
 以上の構成により、固定筒12内に第1レンズ群G1が保持される。また、ズームリング4によってカム筒14を回転させると、カム機構の作用によって、第1レンズ群G1が固定筒12内を光軸Zに沿って移動する。 に よ り With the above configuration, the first lens group G1 is held in the fixed barrel 12. When the cam barrel 14 is rotated by the zoom ring 4, the first lens group G1 moves along the optical axis Z in the fixed barrel 12 by the action of the cam mechanism.
 [第2レンズ群]
 図3、図4及び図5に示すように、第2レンズ群G2は、第2レンズ群保持枠22に保持されて、固定筒12内に配置され、かつ、固定筒12内を光軸Zと平行な方向に移動自在に支持される。
[Second lens group]
As shown in FIGS. 3, 4, and 5, the second lens group G2 is held by the second lens group holding frame 22, is disposed in the fixed barrel 12, and passes through the fixed barrel 12 along the optical axis Z. Supported movably in a direction parallel to
 第2レンズ群保持枠22には、その外周部に3本の第2レンズ群ズーム駆動用カムフォロア34が備えられる。3本の第2レンズ群ズーム駆動用カムフォロア34は、周方向に等間隔に配置される。各第2レンズ群ズーム駆動用カムフォロア34は、それぞれカム筒14に備えられた第2レンズ群ズーム駆動用カム溝14B及び固定筒12に備えられた第2レンズ群ズーム駆動用直進溝12Bに嵌合される。 The second lens group holding frame 22 is provided with three second lens group zoom drive cam followers 34 on its outer peripheral portion. The three second lens group zoom driving cam followers 34 are arranged at equal intervals in the circumferential direction. Each of the second lens group zoom drive cam followers 34 is fitted into the second lens group zoom drive cam groove 14B provided in the cam barrel 14 and the second lens group zoom drive straight advance groove 12B provided in the fixed barrel 12, respectively. Are combined.
 以上の構成により、固定筒12内に第2レンズ群G2が保持される。また、ズームリング4によってカム筒14を回転させると、カム機構の作用によって、第2レンズ群G2が固定筒12内を光軸Zに沿って移動する。 With the above configuration, the second lens group G2 is held in the fixed barrel 12. When the cam barrel 14 is rotated by the zoom ring 4, the second lens group G2 moves along the optical axis Z in the fixed barrel 12 by the action of the cam mechanism.
 なお、図3、図4及び図5に示すように、第2レンズ群保持枠22には、絞りStを構成する絞りユニット30が組み付けられる。これにより、絞りStが、固定筒12内に配置され、かつ、第2レンズ群G2と共に移動する。 As shown in FIGS. 3, 4, and 5, an aperture unit 30 constituting the aperture St is assembled to the second lens group holding frame 22. Thus, the stop St is disposed in the fixed barrel 12 and moves together with the second lens group G2.
 [第3レンズ群]
 図3、図4、図5及び図6に示すように、第3レンズ群G3は、第3レンズ群保持枠24に保持されて、固定筒12内に配置され、かつ、固定筒12内を光軸Zと平行な方向に移動自在に支持される。
[Third lens group]
As shown in FIGS. 3, 4, 5 and 6, the third lens group G <b> 3 is held by the third lens group holding frame 24, is arranged in the fixed barrel 12, and moves inside the fixed barrel 12. It is movably supported in a direction parallel to the optical axis Z.
 第3レンズ群保持枠24は、第3レンズ群ベース保持枠24Aと、その第3レンズ群ベース保持枠24Aに保持された第3レンズ群可動保持枠24Bと、で構成される。第3レンズ群可動保持枠24Bは、第3レンズ群ベース保持枠24A内に配置され、かつ、第3レンズ群ベース保持枠24A内を光軸Zと平行な方向に移動自在に支持される。第3レンズ群前群G3aは、第3レンズ群可動保持枠24Bに保持される。第3レンズ群後群G3bは、第3レンズ群ベース保持枠24Aに保持される。 The third lens group holding frame 24 includes a third lens group base holding frame 24A and a third lens group movable holding frame 24B held by the third lens group base holding frame 24A. The third lens group movable holding frame 24B is arranged in the third lens group base holding frame 24A, and is movably supported in the third lens group base holding frame 24A in a direction parallel to the optical axis Z. The front group G3a of the third lens group is held by the third lens group movable holding frame 24B. The third lens group rear group G3b is held by the third lens group base holding frame 24A.
 第3レンズ群ベース保持枠24Aには、その外周部に3本の第3レンズ群ズーム駆動用カムフォロア36が備えられる。3本の第3レンズ群ズーム駆動用カムフォロア36は、周方向に等間隔に配置される。各第3レンズ群ズーム駆動用カムフォロア36は、それぞれカム筒14に備えられた第3レンズ群ズーム駆動用カム溝14C及び固定筒12に備えられた第3レンズ群ズーム駆動用直進溝12Cに嵌合される。これにより、第3レンズ群ベース保持枠24Aが、固定筒12内に保持される。また、ズームリング4によってカム筒14を回転させると、第3レンズ群ベース保持枠24Aが、固定筒12内を光軸Zに沿って移動する。 カ ム The third lens group base holding frame 24A is provided with three third lens group zoom drive cam followers 36 on the outer peripheral portion thereof. The three third lens group zoom drive cam followers 36 are arranged at equal intervals in the circumferential direction. Each of the third lens group zoom drive cam followers 36 is fitted into a third lens group zoom drive cam groove 14C provided in the cam barrel 14 and a third lens group zoom drive straight advance groove 12C provided in the fixed barrel 12. Are combined. Thereby, the third lens group base holding frame 24 </ b> A is held in the fixed barrel 12. When the cam barrel 14 is rotated by the zoom ring 4, the third lens group base holding frame 24A moves along the optical axis Z in the fixed barrel 12.
 第3レンズ群ベース保持枠24A内には、第1主軸48及び第1副軸50が備えられる。第1主軸48及び第1副軸50は、それぞれ光軸Zに沿って配置される(図3参照)。また、第1主軸48及び第1副軸50は、光軸Zを挟んで互いに対向する位置に配置される(図6参照)。より具体的には、光軸Zと直交する断面において、光軸Zを通る直線上に配置される。 1A first main shaft 48 and a first sub shaft 50 are provided in the third lens group base holding frame 24A. The first main shaft 48 and the first sub shaft 50 are respectively arranged along the optical axis Z (see FIG. 3). Further, the first main shaft 48 and the first sub shaft 50 are arranged at positions facing each other with the optical axis Z interposed therebetween (see FIG. 6). More specifically, they are arranged on a straight line passing through the optical axis Z in a cross section orthogonal to the optical axis Z.
 第3レンズ群可動保持枠24Bは、第1主軸48に沿って摺動する第1主ガイド部52及び第1副軸50に沿って摺動する第1副ガイド部54を備える。第3レンズ群可動保持枠24Bは、第1主ガイド部52及び第1副ガイド部54を介して、第1主軸48及び第1副軸50にスライド自在に支持される。 The third lens group movable holding frame 24B includes a first main guide portion 52 that slides along the first main shaft 48 and a first sub guide portion 54 that slides along the first sub shaft 50. The third lens group movable holding frame 24B is slidably supported by the first main shaft 48 and the first sub shaft 50 via the first main guide portion 52 and the first sub guide portion 54.
 図9は、第3レンズ群可動保持枠及び第4レンズ群可動保持枠の支持構造を示す断面図である。 FIG. 9 is a cross-sectional view showing a support structure of the third lens group movable holding frame and the fourth lens group movable holding frame.
 同図に示すように、第1主ガイド部52は、筒形状を有し、その軸方向の両端の摺動部52Aを有する。摺動部52Aは、第1主軸48の外径に対応した内径を有する。第1主ガイド部52は、この両端の摺動部52Aが、第1主軸48に沿って摺動する。 As shown in the figure, the first main guide portion 52 has a cylindrical shape, and has sliding portions 52A at both ends in the axial direction. The sliding portion 52A has an inner diameter corresponding to the outer diameter of the first main shaft 48. In the first main guide portion 52, the sliding portions 52A at both ends slide along the first main shaft 48.
 第1副ガイド部54は、先端にU字形状の溝部54Aを有する。第1副ガイド部54は、この溝部54Aに第1副軸50が嵌合することにより、第1副軸50に沿って摺動する。 The first sub-guide portion 54 has a U-shaped groove 54A at the tip. The first sub guide portion 54 slides along the first sub shaft 50 by fitting the first sub shaft 50 into the groove portion 54A.
 第3レンズ群可動保持枠24Bは、第1主ガイド部52が第1主軸48にスライド自在に支持され、かつ、第1副ガイド部54が第1副軸50にスライド自在に支持されることにより、第3レンズ群ベース保持枠24A内を光軸Zに沿って移動自在に支持される。 In the third lens group movable holding frame 24B, the first main guide portion 52 is slidably supported by the first main shaft 48, and the first sub guide portion 54 is slidably supported by the first sub shaft 50. Accordingly, the third lens group base holding frame 24A is movably supported along the optical axis Z.
 第3レンズ群可動保持枠24Bは、第3レンズ群前群駆動アクチュエータ56に駆動されることにより、第3レンズ群ベース保持枠24A内を光軸Zに沿って移動する。第3レンズ群前群駆動アクチュエータ56は、第1アクチュエータの一例である。また、第3レンズ群前群G3aは、第1光学素子の一例である。 可 動 The third lens group movable holding frame 24B is moved along the optical axis Z in the third lens group base holding frame 24A by being driven by the third lens group front group drive actuator 56. The third lens group front group drive actuator 56 is an example of a first actuator. The front group G3a of the third lens group is an example of a first optical element.
 第3レンズ群前群駆動アクチュエータ56は、ムービングマグネット型(可動磁石型)のボイスコイルモータ(Voice Coil Motor;VCM)で構成される。ムービングマグネット型のVCMとは、ヨークとコイルが作る磁場の中でマグネットが動くタイプのVCMである。なお、VCMは、電磁力を利用した電磁式のアクチュエータの一つである。第3レンズ群可動保持枠24Bには、このムービングマグネット型のVCMで構成する複数の駆動用マグネット56A及び複数のインナーヨーク56Bが備えられる。また、第3レンズ群ベース保持枠24Aには、ムービングマグネット型のVCMを構成する駆動用コイル56C及び複数のアウターヨーク56Dが備えられる。 The third lens group front group drive actuator 56 is constituted by a moving magnet type (movable magnet type) voice coil motor (Voice Coil Motor: VCM). The moving magnet type VCM is a VCM in which a magnet moves in a magnetic field generated by a yoke and a coil. The VCM is one of the electromagnetic actuators using electromagnetic force. The third lens group movable holding frame 24B is provided with a plurality of driving magnets 56A and a plurality of inner yokes 56B constituted by the moving magnet type VCM. The third lens group base holding frame 24A is provided with a driving coil 56C and a plurality of outer yokes 56D constituting a moving magnet type VCM.
 図10は、第3レンズ群前群駆動アクチュエータの取り付け構造を示す断面図である。 FIG. 10 is a cross-sectional view showing the mounting structure of the third lens group front group drive actuator.
 同図に示すように、駆動用コイル56Cは、第3レンズ群可動保持枠24Bの外周部を囲うように巻かれて、第3レンズ群ベース保持枠24Aの内周部に取り付けられる。第3レンズ群可動保持枠24Bは、この駆動用コイル56Cの内側を光軸Zに沿って移動する。 As shown in the figure, the driving coil 56C is wound around the outer periphery of the third lens group movable holding frame 24B, and is attached to the inner periphery of the third lens group base holding frame 24A. The third lens group movable holding frame 24B moves inside the driving coil 56C along the optical axis Z.
 複数の駆動用マグネット56Aは、2つのグループにグループ分けされて配置される。具体的には、2つのグループが、光軸Zと直交する断面において、光軸Zを通る直線Lに対して対称に配置される。この直線L上には、第1主軸48及び第1副軸50が配置される。したがって、駆動用マグネット56Aの2つのグループは、第1主軸48及び第1副軸50を通る直線Lに対して対象に配置される。 (4) The plurality of driving magnets 56A are arranged in two groups. Specifically, the two groups are arranged symmetrically with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z. On this straight line L, a first main shaft 48 and a first sub shaft 50 are arranged. Therefore, the two groups of the driving magnets 56 </ b> A are arranged symmetrically with respect to the straight line L passing through the first main shaft 48 and the first sub shaft 50.
 本実施の形態では、駆動用マグネット56Aを6つ備え、6つの駆動用マグネット56Aを2つのグループにグループ分けして配置している。したがって、各グループには3つの駆動用マグネット56Aが備えられる。各グループの駆動用マグネット56Aは、第3レンズ群可動保持枠24Bの周面に沿って等間隔に配置される。 In the present embodiment, six driving magnets 56A are provided, and the six driving magnets 56A are divided into two groups and arranged. Therefore, each group is provided with three driving magnets 56A. The driving magnets 56A of each group are arranged at equal intervals along the peripheral surface of the third lens group movable holding frame 24B.
 複数のインナーヨーク56Bは、駆動用マグネット56Aに対応して配置される。各インナーヨーク56Bは、対応する駆動用マグネット56Aと一体化されて、第3レンズ群可動保持枠24Bに取り付けられる。 (4) The plurality of inner yokes 56B are arranged corresponding to the driving magnets 56A. Each inner yoke 56B is integrated with the corresponding driving magnet 56A and attached to the third lens group movable holding frame 24B.
 複数のアウターヨーク56Dは、複数のインナーヨーク56Bに対応して配置される。各アウターヨーク56Dは、駆動用コイル56Cを挟んで、対応するインナーヨーク56Bと対向して配置される。 A plurality of outer yokes 56D are arranged corresponding to a plurality of inner yokes 56B. Each outer yoke 56D is arranged to face the corresponding inner yoke 56B with the driving coil 56C interposed therebetween.
 以上の構成により、固定筒12内に第3レンズ群G3が保持される。また、ズームリング4によってカム筒14を回転させると、カム機構の作用によって、第3レンズ群G3が固定筒12内を光軸Zに沿って移動する。すなわち、第3レンズ群前群G3a及び第3レンズ群後群G3bが、一体となって固定筒12内を光軸Zに沿って移動する。更に、第3レンズ群前群駆動アクチュエータ56を駆動すると、第3レンズ群前群G3aが単独で光軸Zに沿って移動する。第3レンズ群前群駆動アクチュエータ56によって第3レンズ群前群G3aを単体で移動させることにより、像面湾曲の補正が行われる。 に よ り With the above configuration, the third lens group G3 is held in the fixed barrel 12. When the cam barrel 14 is rotated by the zoom ring 4, the third lens group G3 moves along the optical axis Z in the fixed barrel 12 by the action of the cam mechanism. That is, the third lens group front group G3a and the third lens group rear group G3b move in the fixed cylinder 12 along the optical axis Z as a unit. Further, when the third lens group front group drive actuator 56 is driven, the third lens group front group G3a moves alone along the optical axis Z. The third lens group front group drive actuator 56 moves the third lens group front group G3a by itself, thereby correcting the field curvature.
 [第4レンズ群]
 図3、図4、図5及び図7に示すように、第4レンズ群G4は、第4レンズ群保持枠26に保持されて、固定筒12内に配置され、かつ、固定筒12内を光軸Zと平行な方向に移動自在に支持される。
[Fourth lens group]
As shown in FIGS. 3, 4, 5, and 7, the fourth lens group G <b> 4 is held by the fourth lens group holding frame 26, is disposed in the fixed barrel 12, and moves inside the fixed barrel 12. It is movably supported in a direction parallel to the optical axis Z.
 第4レンズ群保持枠26は、第4レンズ群ベース保持枠26Aと、その第4レンズ群ベース保持枠26Aに保持された第4レンズ群可動保持枠26Bと、で構成される。第4レンズ群可動保持枠26Bは、第4レンズ群ベース保持枠26A内に配置され、かつ、第4レンズ群ベース保持枠26A内を光軸Zと平行な方向に移動自在に支持される。第4レンズ群G4は、第4レンズ群可動保持枠26Bに保持される。 The fourth lens group holding frame 26 includes a fourth lens group base holding frame 26A and a fourth lens group movable holding frame 26B held by the fourth lens group base holding frame 26A. The fourth lens group movable holding frame 26B is arranged in the fourth lens group base holding frame 26A, and is movably supported in the fourth lens group base holding frame 26A in a direction parallel to the optical axis Z. The fourth lens group G4 is held by the fourth lens group movable holding frame 26B.
 第4レンズ群ベース保持枠26Aには、その外周部に3本の第4レンズ群ズーム駆動用カムフォロア38が備えられる。3本の第4レンズ群ズーム駆動用カムフォロア38は、周方向に等間隔に配置される。各第4レンズ群ズーム駆動用カムフォロア38は、それぞれカム筒14に備えられた第4レンズ群ズーム駆動用カム溝14D及び固定筒12に備えられた第4レンズ群ズーム駆動用直進溝12Dに嵌合される。これにより、第4レンズ群ベース保持枠26Aが、固定筒12内に保持される。また、ズームリング4によってカム筒14を回転させると、第4レンズ群ベース保持枠26Aが、固定筒12内を光軸Zに沿って移動する。 4The fourth lens group base holding frame 26A is provided with three fourth lens group zoom drive cam followers 38 on the outer peripheral portion thereof. The three fourth lens group zoom drive cam followers 38 are arranged at equal intervals in the circumferential direction. The fourth lens group zoom drive cam followers 38 are fitted into the fourth lens group zoom drive cam grooves 14D provided in the cam barrel 14 and the fourth lens group zoom drive straight advance grooves 12D provided in the fixed barrel 12, respectively. Are combined. Thus, the fourth lens group base holding frame 26A is held in the fixed barrel 12. When the cam barrel 14 is rotated by the zoom ring 4, the fourth lens group base holding frame 26A moves in the fixed barrel 12 along the optical axis Z.
 第4レンズ群ベース保持枠26A内には、第2主軸58及び第2副軸60が備えられる。第2主軸58及び第2副軸60は、それぞれ光軸Zに沿って配置される(図3参照)。また、第2主軸58及び第2副軸60は、光軸Zを挟んで互いに対向する位置に配置される(図7参照)。また、第2主軸58は、光軸Zを中心とする円の周方向において、第1主軸48と同じ位置に配置される。したがって、第2主軸58及び第2副軸60は、光軸Zと直交する断面において、第1主軸48及び第1副軸50と同一直線上に配置される。なお、ここでの「同一」は、略同一と認められる範囲を含むものである。 2A second main shaft 58 and a second sub shaft 60 are provided in the fourth lens group base holding frame 26A. The second main shaft 58 and the second sub shaft 60 are respectively arranged along the optical axis Z (see FIG. 3). Further, the second main shaft 58 and the second sub shaft 60 are arranged at positions facing each other with the optical axis Z interposed therebetween (see FIG. 7). Further, the second main shaft 58 is arranged at the same position as the first main shaft 48 in the circumferential direction of a circle centered on the optical axis Z. Accordingly, the second main shaft 58 and the second sub shaft 60 are arranged on the same straight line as the first main shaft 48 and the first sub shaft 50 in a cross section orthogonal to the optical axis Z. Here, the term “identical” includes a range recognized as being substantially identical.
 第4レンズ群可動保持枠26Bは、第2主軸58に沿って摺動する第2主ガイド部62及び第2副軸60に沿って摺動する第2副ガイド部64を備える。第4レンズ群可動保持枠26Bは、第2主ガイド部62及び第2副ガイド部64を介して、第2主軸58及び第2副軸60にスライド自在に支持される。 The fourth lens group movable holding frame 26 </ b> B includes a second main guide portion 62 that slides along the second main shaft 58 and a second sub guide portion 64 that slides along the second sub shaft 60. The fourth lens group movable holding frame 26B is slidably supported by the second main shaft 58 and the second sub shaft 60 via the second main guide portion 62 and the second sub guide portion 64.
 図9に示すように、第2主ガイド部62は、筒形状を有し、その軸方向の両端の摺動部62Aを有する。摺動部62Aは、第2主軸58の外径に対応した内径を有する。第2主ガイド部62は、この両端の摺動部62Aが、第2主軸58に沿って摺動する。 第 As shown in FIG. 9, the second main guide portion 62 has a cylindrical shape and has sliding portions 62A at both ends in the axial direction. The sliding portion 62A has an inner diameter corresponding to the outer diameter of the second main shaft 58. The sliding portions 62A at both ends of the second main guide portion 62 slide along the second main shaft 58.
 第2副ガイド部64は、先端にU字形状の溝部64Aを有する。第2副ガイド部64は、この溝部64Aが第2副軸60に沿って摺動する。 2The second sub-guide portion 64 has a U-shaped groove 64A at the tip. The groove portion 64 </ b> A of the second sub guide portion 64 slides along the second sub shaft 60.
 第4レンズ群可動保持枠26Bは、第2主ガイド部62が第2主軸58にスライド自在に支持され、かつ、第2副ガイド部64が第2副軸60にスライド自在に支持されることにより、第4レンズ群ベース保持枠26A内を光軸Zに沿って移動自在に支持される。 In the fourth lens group movable holding frame 26B, the second main guide portion 62 is slidably supported by the second main shaft 58, and the second sub guide portion 64 is slidably supported by the second sub shaft 60. Thereby, the fourth lens group base holding frame 26A is movably supported along the optical axis Z.
 第4レンズ群可動保持枠26Bは、複数の第4レンズ群駆動アクチュエータ68に駆動される。第4レンズ群駆動アクチュエータ68は、第2アクチュエータの一例である。また、第4レンズ群G4は、第2光学素子の一例である。 The fourth lens group movable holding frame 26B is driven by a plurality of fourth lens group drive actuators 68. The fourth lens group drive actuator 68 is an example of a second actuator. The fourth lens group G4 is an example of a second optical element.
 各第4レンズ群駆動アクチュエータ68は、ムービングコイル型(可動コイル型)のボイスコイルモータ(Voice Coil Motor;VCM)68で構成される。ムービングコイル型のVCMとは、磁石が作る磁場の中でコイルのみが動くタイプのVCMである。上記のように、VCMは、電磁力を利用した電磁式のアクチュエータの一つである。 Each of the fourth lens group drive actuators 68 is constituted by a moving coil type (moving coil type) voice coil motor (VCM) 68. The moving coil type VCM is a type of VCM in which only a coil moves in a magnetic field generated by a magnet. As described above, the VCM is one of the electromagnetic actuators using electromagnetic force.
 図11は、第4レンズ群駆動アクチュエータの取り付け構造を示す断面図である。 FIG. 11 is a sectional view showing a mounting structure of the fourth lens group drive actuator.
 複数の第4レンズ群駆動アクチュエータ68は、2つのグループにグループ分けされて配置される。具体的には、2つのグループが、光軸Zと直交する断面において、光軸Zを通る直線Lに対して対称に配置される。この直線L上には、第2主軸58及び第2副軸60が配置される。したがって、2つのグループは、第2主軸58及び第2副軸60を通る直線Lに対して対象に配置される。 The plurality of fourth lens group drive actuators 68 are divided into two groups and arranged. Specifically, the two groups are arranged symmetrically with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z. The second main shaft 58 and the second sub shaft 60 are arranged on the straight line L. Therefore, the two groups are arranged symmetrically with respect to the straight line L passing through the second main axis 58 and the second auxiliary axis 60.
 本実施の形態では、第4レンズ群駆動アクチュエータ68を4つ備え、4つの第4レンズ群駆動アクチュエータ68を2つのグループにグループ分けして配置している。したがって、各グループには、2つの第4レンズ群駆動アクチュエータ68が含まれる。各グループにおいて、2つの第4レンズ群駆動アクチュエータ68は、第4レンズ群可動保持枠26Bの周面に沿って所定の間隔で配置される。 In the present embodiment, four fourth lens group drive actuators 68 are provided, and the four fourth lens group drive actuators 68 are divided into two groups and arranged. Therefore, each group includes two fourth lens group drive actuators 68. In each group, the two fourth lens group drive actuators 68 are arranged at predetermined intervals along the peripheral surface of the fourth lens group movable holding frame 26B.
 各第4レンズ群駆動アクチュエータ68は、駆動用コイル68A、駆動用マグネット68B、インナーヨーク68C及びアウターヨーク68Dを備える。 Each fourth lens group drive actuator 68 includes a drive coil 68A, a drive magnet 68B, an inner yoke 68C, and an outer yoke 68D.
 各第4レンズ群駆動アクチュエータ68の駆動用コイル68Aは、第4レンズ群可動保持枠26Bに取り付けられる。第4レンズ群可動保持枠26Bは、その外周部にコイル保持部70を有し、このコイル保持部70に各第4レンズ群駆動アクチュエータ68の駆動用コイル68Aが保持される。 The drive coil 68A of each fourth lens group drive actuator 68 is attached to the fourth lens group movable holding frame 26B. The fourth lens group movable holding frame 26B has a coil holding section 70 on the outer periphery thereof, and the coil holding section 70 holds a driving coil 68A of each fourth lens group drive actuator 68.
 各第4レンズ群駆動アクチュエータ68のインナーヨーク68C及びアウターヨーク68Dは、駆動用コイル68Aを挟んで互いに対向して配置される。インナーヨーク68C及びアウターヨーク68Dは、一体で構成される。一体で構成されたインナーヨーク68C及びアウターヨーク68Dは、アウターヨーク68Dの部分が、第4レンズ群ベース保持枠26Aの内周部に保持されて、所定位置に配置される。 The inner yoke 68C and the outer yoke 68D of each fourth lens group drive actuator 68 are arranged to face each other with the drive coil 68A interposed therebetween. The inner yoke 68C and the outer yoke 68D are integrally formed. The integrally formed inner yoke 68C and outer yoke 68D are arranged at predetermined positions with the outer yoke 68D being held by the inner peripheral portion of the fourth lens group base holding frame 26A.
 各第4レンズ群駆動アクチュエータ68の駆動用マグネット68Bは、アウターヨーク56Dの内側に取り付けられて、所定位置に配置される。各第4レンズ群駆動アクチュエータ68の駆動用マグネット68Bは、複数の第2駆動用マグネットの一例である。 The drive magnet 68B of each fourth lens group drive actuator 68 is attached to the inside of the outer yoke 56D and is arranged at a predetermined position. The drive magnet 68B of each fourth lens group drive actuator 68 is an example of a plurality of second drive magnets.
 以上の構成により、固定筒12内に第4レンズ群G4が保持される。また、ズームリング4によってカム筒14を回転させると、カム機構の作用によって、第4レンズ群G4が固定筒12内を光軸Zに沿って移動する。更に、第4レンズ群駆動アクチュエータ68を駆動すると、第4レンズ群G4が単独で光軸Zに沿って移動する。第4レンズ群駆動アクチュエータ68によって第4レンズ群G4を単体で移動させることにより、焦点調節が行われる。 With the above configuration, the fourth lens group G4 is held in the fixed barrel 12. Further, when the cam barrel 14 is rotated by the zoom ring 4, the fourth lens group G4 moves along the optical axis Z in the fixed barrel 12 by the action of the cam mechanism. Further, when the fourth lens group drive actuator 68 is driven, the fourth lens group G4 moves alone along the optical axis Z. By moving the fourth lens group G4 by itself by the fourth lens group drive actuator 68, focus adjustment is performed.
 [第5レンズ群]
 図3、図4及び図5に示すように、第5レンズ群G5は、第5レンズ群保持枠28に保持されて、固定筒12内に配置される。
[Fifth lens group]
As shown in FIGS. 3, 4, and 5, the fifth lens group G <b> 5 is held in the fifth lens group holding frame 28 and arranged in the fixed barrel 12.
 [各レンズ群の位置検出構造]
 [ズーム操作による各レンズ群の位置]
 ズーム操作によって第1レンズ群G1から第4レンズ群G4の各レンズ群は、あらかじめ定められた移動軌跡AL1~AL4に沿って移動する(図6参照)。したがって、ズーム操作による各レンズ群の相対的な位置関係(距離関係)は既知である。
[Position detection structure of each lens group]
[Position of each lens group by zoom operation]
By the zoom operation, each of the first to fourth lens groups G1 to G4 moves along predetermined movement trajectories AL1 to AL4 (see FIG. 6). Therefore, the relative positional relationship (distance relationship) of each lens group by the zoom operation is known.
 [第3レンズ群前群G3a及び第4レンズ群G4の位置検出]
 第3レンズ群前群G3a及び第4レンズ群G4は、他のレンズ群とは独立して移動できる。このため、第3レンズ群前群G3a及び第4レンズ群G4については、別途、その位置が検出される。第3レンズ群前群G3aは、第3レンズ群前群位置検出部80によって、その位置が検出され、第4レンズ群G4は、第4レンズ群位置検出部90によって、その位置が検出される。
[Position Detection of Third Lens Group Front Group G3a and Fourth Lens Group G4]
The front group G3a and the fourth lens group G4 of the third lens group can move independently of the other lens groups. Therefore, the positions of the third lens group front group G3a and the fourth lens group G4 are separately detected. The position of the third lens group front group G3a is detected by the third lens group front group position detector 80, and the position of the fourth lens group G4 is detected by the fourth lens group position detector 90. .
 [第3レンズ群前群位置検出部]
 第3レンズ群前群位置検出部80は、第3レンズ群ベース保持枠24A内での第3レンズ群可動保持枠24Bの位置を検出して、第3レンズ群前群G3aの位置を検出する。より具体的には、第3レンズ群ベース保持枠24A内に設定された基準位置に対する第3レンズ群可動保持枠24Bの位置を検出して、当該基準位置に対する第3レンズ群前群G3aの位置を検出する。
[Third lens group front group position detector]
The third lens group front group position detecting section 80 detects the position of the third lens group movable holding frame 24B within the third lens group base holding frame 24A, and detects the position of the third lens group front group G3a. . More specifically, the position of the third lens group movable holding frame 24B with respect to a reference position set in the third lens group base holding frame 24A is detected, and the position of the third lens group front group G3a with respect to the reference position. Is detected.
 第3レンズ群前群位置検出部80は、図3及び図9に示すように、第3レンズ群可動保持枠24Bに備えられる位置検出用マグネット82と、その位置検出用マグネット82の位置を検出する位置検出センサ84と、で構成される。特に、本実施の形態では、位置検出センサ84が、磁気センサであるホールセンサで構成される。ホールセンサで構成される位置検出センサ84は、位置検出用マグネット82の位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する。 As shown in FIGS. 3 and 9, the front position detection unit 80 of the third lens group detects the position detection magnet 82 provided in the third lens group movable holding frame 24B and the position of the position detection magnet 82. And a position detection sensor 84 that operates. In particular, in the present embodiment, the position detection sensor 84 is configured by a Hall sensor that is a magnetic sensor. The position detection sensor 84 composed of a Hall sensor detects a magnetic field that changes according to the position of the position detection magnet 82, and outputs a signal proportional to the magnitude of the detected magnetic field as a position signal.
 位置検出センサ84は、第3レンズ群ベース保持枠24Aに備えられる。位置検出センサ84は、図6及び図10に示すように、光軸Zと直交する断面において、第1副軸50の設置位置に配置される。より具体的には、光軸Zと第1副軸50とを通る直線L上に配置される。また、位置検出センサ84は、図3及び図9に示すように、光軸Zと平行な断面において、第1副軸50の後方(像面側)に配置される。 The position detection sensor 84 is provided on the third lens group base holding frame 24A. The position detection sensor 84 is disposed at the installation position of the first sub shaft 50 in a cross section orthogonal to the optical axis Z, as shown in FIGS. More specifically, they are arranged on a straight line L passing through the optical axis Z and the first sub-axis 50. The position detection sensor 84 is disposed behind the first sub shaft 50 (on the image surface side) in a cross section parallel to the optical axis Z, as shown in FIGS.
 位置検出用マグネット82は、第3レンズ群可動保持枠24Bに備えられる。位置検出用マグネット82は、位置検出センサ84に近接して配置される。具体的には、図3及び図9に示すように、光軸Zと直交する断面において、第1副ガイド部54の設置位置に配置され、かつ、所定の隙間をもって位置検出センサ84と対向して配置される。この結果、位置検出用マグネット82及び位置検出センサ84は、光軸Zと直交する断面において、共に光軸Zと第1副軸50とを通る直線L上に配置される。 The position detecting magnet 82 is provided on the third lens group movable holding frame 24B. The position detecting magnet 82 is arranged close to the position detecting sensor 84. Specifically, as shown in FIGS. 3 and 9, in a cross section orthogonal to the optical axis Z, the first sub guide portion 54 is disposed at the installation position, and faces the position detection sensor 84 with a predetermined gap. Placed. As a result, the position detecting magnet 82 and the position detecting sensor 84 are both arranged on a straight line L passing through the optical axis Z and the first sub-axis 50 in a cross section orthogonal to the optical axis Z.
 以上の構成の第3レンズ群前群位置検出部80によれば、第3レンズ群可動保持枠24Bに備えられた位置検出用マグネット82の位置を位置検出センサ84で検出することにより、第3レンズ群前群G3aの位置が検出される。 According to the third lens group front group position detecting unit 80 having the above configuration, the position of the position detecting magnet 82 provided in the third lens group movable holding frame 24B is detected by the position detecting sensor 84, so that the third The position of the front lens group G3a is detected.
 [第4レンズ群位置検出部]
 第4レンズ群位置検出部90は、第4レンズ群ベース保持枠26A内での第4レンズ群可動保持枠26Bの位置を検出して、第4レンズ群G4の位置を検出する。より具体的には、第4レンズ群ベース保持枠26A内に設定された原点に対する第4レンズ群可動保持枠26Bの位置を検出して、当該原点に対する第4レンズ群G4の位置を検出する。第4レンズ群位置検出部90は、第2光学素子位置検出部の一例である。
[Fourth lens group position detector]
The fourth lens group position detecting section 90 detects the position of the fourth lens group movable holding frame 26B in the fourth lens group base holding frame 26A, and detects the position of the fourth lens group G4. More specifically, the position of the fourth lens group movable holding frame 26B with respect to the origin set in the fourth lens group base holding frame 26A is detected, and the position of the fourth lens group G4 with respect to the origin is detected. The fourth lens group position detector 90 is an example of a second optical element position detector.
 第4レンズ群位置検出部90は、第4レンズ群G4が原点に位置したことを検出する原点検出部92と、第4レンズ群G4の変位量を検出する変位量検出部94と、で構成される。第4レンズ群位置検出部90は、原点検出部92で第4レンズ群G4が原点に位置したことを検出し、原点からの変位量を変位量検出部94で検出して、第4レンズ群G4の位置を検出する。 The fourth lens group position detector 90 includes an origin detector 92 that detects that the fourth lens group G4 is located at the origin, and a displacement detector 94 that detects the displacement of the fourth lens group G4. Is done. The fourth lens group position detecting section 90 detects that the fourth lens group G4 is located at the origin by the origin detecting section 92, detects the displacement from the origin by the displacement detecting section 94, and outputs the fourth lens group. The position of G4 is detected.
 図7及び図11に示すように、原点検出部92は、遮光板92A及びフォトインタラプタ92Bで構成される。遮光板92Aは、第1主ガイド部52に備えられ、フォトインタラプタ92Bは、第4レンズ群ベース保持枠26Aに備えられる。原点検出部92は、フォトインタラプタ92Bによって遮光板92Aを検出することにより、第4レンズ群G4が原点に位置したことを検出する(遮光板92Aによる遮光を検出することにより、第4レンズ群G4が原点に位置したことを検出する。)。したがって、遮光板92A及びフォトインタラプタ92Bは、第4レンズ群G4が原点に位置するタイミングで遮光板92Aが検出されるように設置される(第4レンズ群G4が原点に位置するタイミングで遮光板92Aがフォトインタラプタ92Bを遮光するように設置される。)。 原点 As shown in FIGS. 7 and 11, the origin detecting unit 92 includes a light blocking plate 92A and a photo interrupter 92B. The light blocking plate 92A is provided on the first main guide portion 52, and the photo interrupter 92B is provided on the fourth lens group base holding frame 26A. The origin detecting unit 92 detects that the fourth lens group G4 is located at the origin by detecting the light shielding plate 92A by the photo interrupter 92B (the fourth lens group G4 is detected by detecting the light shielding by the light shielding plate 92A). Is located at the origin.) Therefore, the light shielding plate 92A and the photo interrupter 92B are installed such that the light shielding plate 92A is detected at the timing when the fourth lens group G4 is located at the origin (the light shielding plate 92A is detected at the timing when the fourth lens group G4 is located at the origin). 92A is installed so as to shield the photo interrupter 92B from light.)
 図3、図7及び図11に示すように、変位量検出部94は、磁気スケール94Aと、その磁気スケール94AのN極及びS極を検出するMRセンサ(Magneto Resistive Sensor;磁気抵抗効果素子)94Bと、で構成される。MRセンサ94Bは、磁気センサの一つである。 As shown in FIG. 3, FIG. 7, and FIG. 11, the displacement amount detection unit 94 includes a magnetic scale 94A and an MR sensor (Magneto Resistive Sensor; magnetoresistive element) for detecting the N pole and the S pole of the magnetic scale 94A. 94B. The MR sensor 94B is one of the magnetic sensors.
 磁気スケール94Aは、バー形状を有し、その長手方向に沿ってN極及びS極が一定ピッチで着磁された構造を有する。磁気スケール94Aは、第2主ガイド部62に備えられ、かつ、第4レンズ群G4の移動方向に沿って配置される。すなわち、光軸Zに沿って配置される。 The magnetic scale 94A has a bar shape, and has a structure in which N poles and S poles are magnetized at a constant pitch along the longitudinal direction. The magnetic scale 94A is provided on the second main guide portion 62, and is arranged along the moving direction of the fourth lens group G4. That is, they are arranged along the optical axis Z.
 MRセンサ94Bは、第4レンズ群ベース保持枠26Aに備えられる。MRセンサ94Bは、磁気スケール94Aに近接して配置される。より具体的には、図11に示すように、光軸Zと直交する断面において、第2主ガイド部62の設置位置に配置され、かつ、所定の隙間をもって磁気スケール94Aと対向して配置される。この結果、磁気スケール94A及びMRセンサ94Bは、光軸Zと直交する断面において、共に光軸Zと第2主軸58とを通る直線L上に配置される。 The MR sensor 94B is provided in the fourth lens group base holding frame 26A. The MR sensor 94B is arranged close to the magnetic scale 94A. More specifically, as shown in FIG. 11, in a cross section orthogonal to the optical axis Z, it is arranged at the installation position of the second main guide portion 62, and is arranged to face the magnetic scale 94A with a predetermined gap. You. As a result, the magnetic scale 94A and the MR sensor 94B are both arranged on a straight line L passing through the optical axis Z and the second main axis 58 in a cross section orthogonal to the optical axis Z.
 以上の構成の第4レンズ群位置検出部90によれば、第2主ガイド部62に備えられた遮光板92Aをフォトインタラプタ92Bで検出することにより、第4レンズ群G4が原点に位置したことが検出される。また、磁気スケール94Aを介して第2主ガイド部62の変位量をMRセンサ94Bで検出することにより、第4レンズ群G4の変位量が検出される。フォトインタラプタ92Bで第4レンズ群G4が原点に位置したことを検出し、MRセンサ94Bで原点からの変位量を検出することにより、原点に対する第4レンズ群G4の位置が検出される。 According to the fourth lens group position detecting section 90 having the above configuration, the fourth lens group G4 is located at the origin by detecting the light shielding plate 92A provided in the second main guide section 62 with the photo interrupter 92B. Is detected. The displacement of the second main guide portion 62 is detected by the MR sensor 94B via the magnetic scale 94A, whereby the displacement of the fourth lens group G4 is detected. The photo interrupter 92B detects that the fourth lens group G4 is located at the origin, and the MR sensor 94B detects the amount of displacement from the origin, thereby detecting the position of the fourth lens group G4 with respect to the origin.
 [センサ類に対する駆動系のレイアウト]
 上記のように、位置検出センサ84は、光軸Zと直交する断面において、第1副軸50の位置に配置される(図10参照)。また、MRセンサ94Bは、光軸Zと直交する断面において、第2主ガイド部62の位置に配置される。第2主ガイド部62の位置は、第2主軸58の位置である(図11参照)。第1主軸48及び第1副軸50並びに第2主軸58及び第2副軸60は、光軸Zと直交する断面において、光軸Zを通る直線L上に配置される。したがって、位置検出センサ84及びMRセンサ94Bは、光軸Zと直交する断面において、光軸Zを通る直線L上に配置される。
[Drive system layout for sensors]
As described above, the position detection sensor 84 is disposed at the position of the first sub shaft 50 in a cross section orthogonal to the optical axis Z (see FIG. 10). The MR sensor 94B is disposed at the position of the second main guide portion 62 in a cross section orthogonal to the optical axis Z. The position of the second main guide portion 62 is the position of the second main shaft 58 (see FIG. 11). The first main axis 48 and the first sub-axis 50 and the second main axis 58 and the second sub-axis 60 are arranged on a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z. Therefore, the position detection sensor 84 and the MR sensor 94B are arranged on a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z.
 一方、第3レンズ群前群G3aを駆動する第3レンズ群前群駆動アクチュエータ56は、その構成要素である複数の駆動用マグネット56A、複数のインナーヨーク56B及び複数のアウターヨーク56Dが、光軸Zと直交する断面において、光軸Zを通る直線Lに対して、対称に配置される(図10参照)。すなわち、磁性体を構成する要素が、光軸Zと直交する断面において、光軸Zを通る直線Lに対して、対称に配置される。 On the other hand, the third lens group front group drive actuator 56 that drives the third lens group front group G3a includes a plurality of driving magnets 56A, a plurality of inner yokes 56B, and a plurality of outer yokes 56D, which are constituent elements thereof. In a cross section orthogonal to Z, they are arranged symmetrically with respect to a straight line L passing through the optical axis Z (see FIG. 10). That is, the elements constituting the magnetic body are arranged symmetrically with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z.
 また、第4レンズ群G4を駆動する複数の第4レンズ群駆動アクチュエータ68は、光軸Zと直交する断面において、光軸Zを通る直線Lに対して、対称に配置される(図10参照)。この場合も、磁性体を構成する要素が、光軸Zと直交する断面において、光軸Zを通る直線Lに対して、対称に配置される。 The plurality of fourth lens group drive actuators 68 that drive the fourth lens group G4 are symmetrically arranged with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z (see FIG. 10). ). Also in this case, the elements constituting the magnetic body are arranged symmetrically with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z.
 このように、本実施の形態の交換レンズ1では、磁性体を構成する要素が、光軸Zと直交する断面において、位置検出センサ84及びMRセンサ94Bに対して対称に配置される。これにより、各センサが磁性体から受ける影響を均一にでき、より高精度な検出が可能になる。 As described above, in the interchangeable lens 1 of the present embodiment, the elements constituting the magnetic material are symmetrically arranged with respect to the position detection sensor 84 and the MR sensor 94B in a cross section orthogonal to the optical axis Z. As a result, the influence of each magnetic sensor on each sensor can be made uniform, and more accurate detection can be performed.
 また、本実施の形態の交換レンズ1では、第1主軸48及び第1副軸50が第2主軸58及び第2副軸60よりも内径側に配置される。これにより、コンパクトな構成で可動するレンズ群を安定して支持できる。すなわち、第1主軸48及び第1副軸50の位置を第2主軸58及び第2副軸60に対して、径方向にずらして配置することにより、全体として、光軸方向のサイズを拡大させずに、第1主軸48及び第2主軸58の長さを確保できる。これにより、第3レンズ群前群G3a及び第4レンズ群G4を安定して支持できる。すなわち、第1主軸48及び第2主軸58の長さを長くできることにより、第1主ガイド部52及び第2主ガイド部62の長さを長くでき、第3レンズ群前群G3a及び第4レンズ群G4を安定して支持できる。 In addition, in the interchangeable lens 1 of the present embodiment, the first main shaft 48 and the first sub shaft 50 are arranged on the inner diameter side than the second main shaft 58 and the second sub shaft 60. This makes it possible to stably support a movable lens group with a compact configuration. That is, by disposing the positions of the first main shaft 48 and the first sub shaft 50 in the radial direction with respect to the second main shaft 58 and the second sub shaft 60, the size in the optical axis direction can be enlarged as a whole. Instead, the lengths of the first main shaft 48 and the second main shaft 58 can be secured. Thereby, the third lens group front group G3a and the fourth lens group G4 can be stably supported. That is, since the lengths of the first main shaft 48 and the second main shaft 58 can be increased, the lengths of the first main guide portion 52 and the second main guide portion 62 can be increased, and the third lens group front group G3a and the fourth lens Group G4 can be stably supported.
 なお、上記のように各センサに対して磁性体を対称に配置した場合であっても、磁性体との間の位置関係が変化する場合は、その変化の影響を受けて検出精度が低下する。特に、ホールセンサについては、絶対位置を検出する構成のため、磁性体との間の位置関係が変化すると、その変化の影響を受けて検出精度が低下する。本実施の形態の交換レンズ1では、ホールセンサである位置検出センサ84と第4レンズ群駆動アクチュエータ68との間の位置関係がズームによって変化する。このため、ズームによる位置関係の変化に応じて、位置検出センサ84の出力が補正される。この点については、後に詳述する。 Even when the magnetic body is symmetrically arranged with respect to each sensor as described above, if the positional relationship with the magnetic body changes, the detection accuracy is reduced due to the influence of the change. . In particular, since the Hall sensor is configured to detect an absolute position, if the positional relationship between the Hall sensor and the magnetic body changes, the detection accuracy is reduced due to the change. In the interchangeable lens 1 of the present embodiment, the positional relationship between the position detection sensor 84, which is a Hall sensor, and the fourth lens group drive actuator 68 changes by zooming. Therefore, the output of the position detection sensor 84 is corrected according to the change in the positional relationship due to the zoom. This will be described in detail later.
 [交換レンズの電気的構成]
 図12は、交換レンズの電気的構成を示すブロック図である。
[Electrical configuration of interchangeable lens]
FIG. 12 is a block diagram illustrating an electrical configuration of the interchangeable lens.
 交換レンズ1は、第3レンズ群前群G3aを駆動する第3レンズ群前群駆動部110、第3レンズ群前群G3aの位置を検出する第3レンズ群前群位置検出部80、第4レンズ群G4を駆動する第4レンズ群駆動部112、第4レンズ群G4の位置を検出する第4レンズ群位置検出部90、絞りStを駆動する絞り駆動部114、交換レンズ内の温度を検出する温度検出部116、フォーカス操作を検出するフォーカス操作検出部118、ズームポジションを検出するズームポジション検出部120、絞りの設定を検出する絞り設定検出部122及び交換レンズ1の全体の動作を統括制御するレンズ制御部100を備える。 The interchangeable lens 1 includes a third lens group front group drive unit 110 that drives the third lens group front group G3a, a third lens group front group position detection unit 80 that detects the position of the third lens group front group G3a, and a fourth A fourth lens group drive section 112 for driving the lens group G4, a fourth lens group position detection section 90 for detecting the position of the fourth lens group G4, an aperture drive section 114 for driving the aperture St, and detecting the temperature inside the interchangeable lens Temperature detector 116, a focus operation detector 118 for detecting a focus operation, a zoom position detector 120 for detecting a zoom position, an aperture setting detector 122 for detecting an aperture setting, and an overall control of the entire operation of the interchangeable lens 1. And a lens control unit 100 that performs the operation.
 第3レンズ群前群駆動部110は、第3レンズ群前群駆動アクチュエータ56、及び、その駆動回路を備える。第3レンズ群前群駆動部110は、レンズ制御部100からの指令に応じて、第3レンズ群前群駆動アクチュエータ56を駆動し、第3レンズ群前群G3aを光軸Zに沿って移動させる。 The third lens group front group drive section 110 includes the third lens group front group drive actuator 56 and its drive circuit. The third lens group front group drive section 110 drives the third lens group front group drive actuator 56 in response to a command from the lens control section 100, and moves the third lens group front group G3a along the optical axis Z. Let it.
 第3レンズ群前群位置検出部80は、位置検出センサ84を備え、その位置検出センサ84で第3レンズ群可動保持枠24Bに備えられた位置検出用マグネット82の位置を検出して、第3レンズ群前群G3aの位置を検出する。なお、ここでの位置とは、第3レンズ群ベース保持枠24A内に設定された基準位置に対する位置である。ホールセンサで構成される位置検出センサ84は、位置検出用マグネット82の位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を第3レンズ群前群G3aの位置信号として、レンズ制御部100に出力する。レンズ制御部100は、位置検出センサ84から出力される信号を処理して、第3レンズ群前群G3aの位置を検出する。この際、位置検出センサ84と第4レンズ群駆動アクチュエータ68との間の位置関係を考慮した処理を行って、第3レンズ群前群G3aの位置を検出する。 The third lens group front group position detection unit 80 includes a position detection sensor 84, and the position detection sensor 84 detects the position of the position detection magnet 82 provided on the third lens group movable holding frame 24B. The position of the front group G3a of the three lens groups is detected. The position here is a position with respect to a reference position set in the third lens group base holding frame 24A. The position detection sensor 84 composed of a Hall sensor detects a magnetic field that changes in accordance with the position of the position detection magnet 82, and outputs a signal proportional to the detected magnetic field to the position signal of the third lens group front group G3a. Is output to the lens control unit 100. The lens control unit 100 processes a signal output from the position detection sensor 84 to detect the position of the third front lens group G3a. At this time, processing is performed in consideration of the positional relationship between the position detection sensor 84 and the fourth lens group drive actuator 68 to detect the position of the third lens group front group G3a.
 第4レンズ群駆動部112は、複数の第4レンズ群駆動アクチュエータ68、及び、その駆動回路を備える。第4レンズ群駆動部112は、レンズ制御部100からの指令に応じて、各第4レンズ群駆動アクチュエータ68を駆動し、第4レンズ群G4を光軸Zに沿って移動させる。 The fourth lens group drive section 112 includes a plurality of fourth lens group drive actuators 68 and a drive circuit therefor. The fourth lens group drive section 112 drives each fourth lens group drive actuator 68 in response to a command from the lens control section 100 to move the fourth lens group G4 along the optical axis Z.
 第4レンズ群位置検出部90は、原点検出部92及び変位量検出部94で構成される。原点検出部92は、フォトインタラプタ92Bを備え、第4レンズ群G4が原点に位置したことを検出する。また、変位量検出部94は、MRセンサ94Bを備え、第4レンズ群G4の変位量を検出する。原点検出部92によって、第4レンズ群G4が原点に位置したことを検出し、変位量検出部94によって原点から変位量を検出することにより、第4レンズ群G4の位置が検出される。 The fourth lens group position detector 90 includes an origin detector 92 and a displacement detector 94. The origin detection unit 92 includes a photo interrupter 92B, and detects that the fourth lens group G4 is located at the origin. Further, the displacement detection unit 94 includes an MR sensor 94B, and detects the displacement of the fourth lens group G4. The origin detecting unit 92 detects that the fourth lens group G4 is located at the origin, and the displacement detecting unit 94 detects the amount of displacement from the origin, thereby detecting the position of the fourth lens group G4.
 絞り駆動部114は、絞りStを駆動する絞り駆動アクチュエータ(不図示)と、その駆動回路を備える。絞り駆動アクチュエータは、たとえば、ステップモータで構成される。絞り駆動部114は、レンズ制御部100からの指令に応じて、絞り駆動アクチュエータを駆動し、絞りStを拡縮させる。 The aperture driving unit 114 includes an aperture driving actuator (not shown) for driving the aperture St, and a driving circuit therefor. The aperture drive actuator is formed of, for example, a step motor. The aperture driving unit 114 drives an aperture driving actuator in accordance with a command from the lens control unit 100 to expand and contract the aperture St.
 温度検出部116は、温度センサ(不図示)を備え、その温度センサによって交換レンズ内の温度を検出する。温度センサは、たとえば、絞りユニット30に備えられる。温度検出部116は、温度センサで検出された交換レンズ内の温度の情報をレンズ制御部100に出力する。 The temperature detecting section 116 includes a temperature sensor (not shown), and detects the temperature inside the interchangeable lens by the temperature sensor. The temperature sensor is provided in the aperture unit 30, for example. Temperature detecting section 116 outputs information on the temperature inside the interchangeable lens detected by the temperature sensor to lens control section 100.
 フォーカス操作検出部118は、フォーカスリング3の回転操作量を検出し、その検出結果をレンズ制御部100に出力する。レンズ制御部100は、フォーカス操作検出部118からの出力に基づいて、フォーカスの操作量を検出する。 The focus operation detection unit 118 detects the amount of rotation operation of the focus ring 3 and outputs the detection result to the lens control unit 100. The lens control unit 100 detects a focus operation amount based on an output from the focus operation detection unit 118.
 ズームポジション検出部120は、ズームリング4の設定位置を検出し、その検出結果をレンズ制御部100に出力する。レンズ制御部100は、ズームポジション検出部120からの出力に基づいて、ズームポジション(焦点距離の設定値)を検出する。 The zoom position detector 120 detects the set position of the zoom ring 4 and outputs the detection result to the lens controller 100. The lens control unit 100 detects the zoom position (set value of the focal length) based on the output from the zoom position detection unit 120.
 絞り設定検出部122は、絞りリング5の設定位置を検出し、その検出結果をレンズ制御部100に出力する。レンズ制御部100は、絞り設定検出部122からの出力に基づいて、設定された絞り値(F値)を検出する。なお、設定可能な絞り値にはオートが含まれ、オートが選択された場合には、カメラ本体からの指示に基づいて、絞り値が設定される。 The aperture setting detector 122 detects the setting position of the aperture ring 5 and outputs the detection result to the lens controller 100. The lens control unit 100 detects a set aperture value (F value) based on an output from the aperture setting detection unit 122. Note that the aperture value that can be set includes auto, and when auto is selected, the aperture value is set based on an instruction from the camera body.
 レンズ制御部100は、フォーカスリング3、ズームリング4及び絞りリング5の操作に基づいて、各部の動作を制御する。具体的には、マニュアルフォーカスに設定された場合に、フォーカスリング3の回転操作量に基づいて、第4レンズ群駆動アクチュエータ68を駆動し、第4レンズ群G4を移動させる。この際、第4レンズ群位置検出部90で検出される第4レンズ群G4の位置に基づいて、第4レンズ群G4を移動させる。 The lens control unit 100 controls the operation of each unit based on the operation of the focus ring 3, the zoom ring 4, and the aperture ring 5. Specifically, when the manual focus is set, the fourth lens group drive actuator 68 is driven to move the fourth lens group G4 based on the rotation operation amount of the focus ring 3. At this time, the fourth lens group G4 is moved based on the position of the fourth lens group G4 detected by the fourth lens group position detector 90.
 また、ズームリング4の操作によって変化したズームポジションに基づいて、第3レンズ群前群駆動アクチュエータ56及び第4レンズ群駆動アクチュエータ68を駆動し、第3レンズ群前群G3a及び第4レンズ群G4を所定位置に移動させる。この際、第3レンズ群前群G3aについては、第3レンズ群前群位置検出部80で検出される第3レンズ群前群G3aの位置に基づいて所定位置に移動させる。また、第4レンズ群G4については、第4レンズ群位置検出部90で検出される第4レンズ群G4の位置に基づいて所定位置に移動させる。 In addition, the third lens group front group drive actuator 56 and the fourth lens group drive actuator 68 are driven based on the zoom position changed by the operation of the zoom ring 4, and the third lens group front group G3a and the fourth lens group G4 Is moved to a predetermined position. At this time, the third lens group front group G3a is moved to a predetermined position based on the position of the third lens group front group G3a detected by the third lens group front group position detection unit 80. In addition, the fourth lens group G4 is moved to a predetermined position based on the position of the fourth lens group G4 detected by the fourth lens group position detecting section 90.
 更に、絞りリング5の操作によって切り替えられた絞り値に基づいて、絞り駆動部114を駆動し、絞りStを動作させる。 Further, based on the aperture value switched by operating the aperture ring 5, the aperture driving unit 114 is driven to operate the aperture St.
 また、レンズ制御部100は、交換レンズ1が装着されたカメラからの指令に応じて、各部の動作を制御する。たとえば、カメラからのオートフォーカスの情報に基づいて、第4レンズ群駆動アクチュエータ68を駆動し、第4レンズ群G4を所定位置に移動させる。また、カメラからの絞りの設定情報に基づいて、絞り駆動部114を駆動し、絞りStを動作させる。 The lens control unit 100 controls the operation of each unit according to a command from a camera to which the interchangeable lens 1 is attached. For example, the fourth lens group drive actuator 68 is driven based on autofocus information from the camera to move the fourth lens group G4 to a predetermined position. In addition, the aperture driving unit 114 is driven based on the aperture setting information from the camera to operate the aperture St.
 レンズ制御部100は、カメラのカメラ制御部130と通信し、カメラ制御部130から各部の駆動指令を受信する。また、ズームの設定情報、絞りの設定情報、フォーカスの位置情報等をカメラ制御部130に送信する。レンズ制御部100とカメラ制御部130との間の通信は、マウント16に備えられた端子16Aを介して行われる(図2参照)。 The lens control unit 100 communicates with the camera control unit 130 of the camera, and receives a drive command for each unit from the camera control unit 130. Further, the control unit 130 transmits zoom setting information, aperture setting information, focus position information, and the like to the camera control unit 130. Communication between the lens control unit 100 and the camera control unit 130 is performed via a terminal 16A provided on the mount 16 (see FIG. 2).
 また、レンズ制御部100は、温度センサで検出される温度に基づいて、第3レンズ群前群駆動アクチュエータ56を駆動し、第3レンズ群前群G3aを所定位置に移動させる。これにより、温度変化によって生じる像面湾曲が補正される。 (4) The lens controller 100 drives the third lens group front group drive actuator 56 based on the temperature detected by the temperature sensor to move the third lens group front group G3a to a predetermined position. Thereby, the field curvature caused by the temperature change is corrected.
 レンズ制御部100は、たとえば、CPU(CPU:Central Processing Unit)、ROM(ROM:Read Only Memory)、RAM(RAM:Random Access Memory)を備えたコンピュータで構成され、所定のプログラムを実行することにより、各種の制御機能等を実現する。 The lens control unit 100 is composed of, for example, a computer having a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory), and executes a predetermined program. And implement various control functions.
 [位置検出センサの出力の補正]
 図13は、ワイド端での第3レンズ群と第4レンズ群の位置関係を模式的に示す図であり、図14は、テレ端での第3レンズ群と第4レンズ群の位置関係を模式的に示す図である。
[Correction of output of position detection sensor]
FIG. 13 is a diagram schematically showing the positional relationship between the third lens unit and the fourth lens unit at the wide end, and FIG. 14 is a diagram showing the positional relationship between the third lens unit and the fourth lens unit at the telephoto end. It is a figure which shows typically.
 第3レンズ群G3及び第4レンズ群G4は、互いに隣接するレンズ群である。また、第3レンズ群G3及び第4レンズ群G4は、共にズーム操作によって移動するレンズ群である。ただし、ズームによる移動量は、互いに異なる。このため、第3レンズ群G3及び第4レンズ群G4は、ズーム操作によって、相対的な位置関係が変化する。具体的には、ワイド端からテレ端に向かって次第に位置が離れるように変化する(図8参照)。したがって、第3レンズ群G3及び第4レンズ群G4は、ワイド端において最も近づき(図13参照)、テレ端において最も離れた位置関係となる(図14参照)。 3The third lens group G3 and the fourth lens group G4 are adjacent to each other. The third lens group G3 and the fourth lens group G4 are both lens groups that are moved by a zoom operation. However, the amounts of movement by zoom are different from each other. Therefore, the relative positional relationship between the third lens group G3 and the fourth lens group G4 is changed by the zoom operation. Specifically, the position changes gradually from the wide end to the tele end (see FIG. 8). Therefore, the third lens group G3 and the fourth lens group G4 are closest to each other at the wide end (see FIG. 13), and are farthest apart at the telephoto end (see FIG. 14).
 第3レンズ群G3及び第4レンズ群G4の相対的な位置関係が変化することにより、第3レンズ群保持枠24に備えられた位置検出センサ84と第4レンズ群保持枠26に備えられた第4レンズ群駆動アクチュエータ68との間の位置関係も変化する。この結果、位置検出センサ84が、第4レンズ群駆動アクチュエータ68から受ける磁気の影響が変化し、位置検出センサ84の出力特性が変化する。 As the relative positional relationship between the third lens group G3 and the fourth lens group G4 changes, the third lens group G3 and the fourth lens group G4 are provided with the position detection sensor 84 provided in the third lens group holding frame 24 and the fourth lens group holding frame 26. The positional relationship with the fourth lens group drive actuator 68 also changes. As a result, the influence of the magnetism received by the position detection sensor 84 from the fourth lens group drive actuator 68 changes, and the output characteristics of the position detection sensor 84 change.
 図15は、第3レンズ群前群の位置と位置検出センサの出力値との関係を示すグラフである。縦軸は第3レンズ群前群G3aの位置を示しており、横軸は位置検出センサ84の出力値を示している。 FIG. 15 is a graph showing the relationship between the position of the front group of the third lens group and the output value of the position detection sensor. The vertical axis indicates the position of the third lens group front group G3a, and the horizontal axis indicates the output value of the position detection sensor 84.
 同図において、実線Waで示すグラフは、あるズームポジションaにおける第3レンズ群前群G3aの位置と位置検出センサ84の出力値との関係を示している。また、破線Wbで示すグラフは、あるズームポジションbにおける第3レンズ群前群G3aの位置と位置検出センサ84の出力値との関係を示している。 In the same figure, the graph indicated by the solid line Wa indicates the relationship between the position of the third lens group front group G3a at a certain zoom position a and the output value of the position detection sensor 84. Further, a graph indicated by a broken line Wb shows a relationship between the position of the third lens group front group G3a and the output value of the position detection sensor 84 at a certain zoom position b.
 同図に示すように、位置検出センサ84は、第3レンズ群前群G3aの位置に応じた信号を出力する。すなわち、位置に応じた電圧の信号を位置信号として出力する。その一方で、位置検出センサ84は、ズームポジションが変わると、出力特性が変化する。すなわち、実際の第3レンズ群前群G3aの位置が同じであっても、ズームポジションによって、出力値が変わる。このため、本実施の形態の交換レンズ1では、ズームポジションに応じて、位置検出センサ84の出力が補正される。以下、この処理について説明する。 As shown in the figure, the position detection sensor 84 outputs a signal corresponding to the position of the third lens group front group G3a. That is, a signal of a voltage corresponding to the position is output as a position signal. On the other hand, when the zoom position changes, the output characteristics of the position detection sensor 84 change. That is, even if the actual position of the third lens group front group G3a is the same, the output value changes depending on the zoom position. For this reason, in the interchangeable lens 1 of the present embodiment, the output of the position detection sensor 84 is corrected according to the zoom position. Hereinafter, this processing will be described.
 なお、本実施の形態の交換レンズ1において、第3レンズ群G3、第3レンズ群前群駆動アクチュエータ56及び位置検出センサ84は、第3レンズ群保持枠24を基準とした1つのユニットを構成し、このユニットがズーム操作によって光軸Zと平行に移動する。また、第4レンズ群G4、第4レンズ群駆動アクチュエータ68及び第4レンズ群位置検出部90は、第4レンズ群保持枠26を基準とした1つのユニットを構成し、このユニットがズーム操作によって光軸Zと平行に移動する。第3レンズ群保持枠24を基準としたユニットは第1ユニットの一例であり、第4レンズ群保持枠26を基準としたユニットは第2ユニットの一例である。 In the interchangeable lens 1 of the present embodiment, the third lens group G3, the third lens group front group drive actuator 56, and the position detection sensor 84 constitute one unit based on the third lens group holding frame 24. Then, this unit moves parallel to the optical axis Z by the zoom operation. Further, the fourth lens group G4, the fourth lens group drive actuator 68, and the fourth lens group position detecting section 90 constitute one unit based on the fourth lens group holding frame 26, and this unit is operated by a zoom operation. It moves parallel to the optical axis Z. A unit based on the third lens group holding frame 24 is an example of a first unit, and a unit based on the fourth lens group holding frame 26 is an example of a second unit.
 [位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理に係わる構成]
 図16は、位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理に係わる構成のブロック図である。
[Configuration Related to Processing for Detecting Position of Front Group of Third Lens Group Including Correction of Output of Position Detection Sensor]
FIG. 16 is a block diagram of a configuration related to a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
 位置検出センサ84の出力の補正を含む第3レンズ群前群G3aの位置の検出処理は、レンズ制御部100で実施される。 The process of detecting the position of the front group G3a of the third lens group including the correction of the output of the position detection sensor 84 is performed by the lens control unit 100.
 レンズ制御部100は、所定の制御プログラム(位置検出プログラム)を実行することにより、位置信号を取得する位置信号取得部140、取得した位置信号を補正する位置信号補正部142、及び、補正後の位置信号に基づいて、第3レンズ群前群G3aの位置を算出する位置算出部144の機能を実現する。 The lens control unit 100 executes a predetermined control program (position detection program), thereby obtaining a position signal, a position signal acquisition unit 140 for acquiring a position signal, a position signal correction unit 142 for correcting the acquired position signal, and The function of the position calculation unit 144 that calculates the position of the front group G3a of the third lens group based on the position signal is realized.
 位置信号取得部140は、位置検出センサ84から出力される信号を位置信号として取得する。位置信号は、位置に対応した電圧値の信号が取得される。 The position signal acquisition unit 140 acquires a signal output from the position detection sensor 84 as a position signal. As the position signal, a signal having a voltage value corresponding to the position is obtained.
 位置信号補正部142は、位置信号取得部140で取得した位置信号をズームポジションに基づいて補正する。位置信号補正部142は、ズームポジション検出部120からズームポジションの情報を取得し、取得したズームポジションに対応した補正係数の情報を補正情報記憶部146から取得する。そして、取得した補正係数に基づいて、位置信号を補正する。 The position signal correction unit 142 corrects the position signal acquired by the position signal acquisition unit 140 based on the zoom position. The position signal correction unit 142 acquires information on the zoom position from the zoom position detection unit 120, and acquires information on a correction coefficient corresponding to the acquired zoom position from the correction information storage unit 146. Then, the position signal is corrected based on the obtained correction coefficient.
 ここで、図15を参照しながら、補正係数の算出方法、及び、その算出した補正係数に基づく位置検出センサ84の出力の補正について説明する。 Here, the method of calculating the correction coefficient and the correction of the output of the position detection sensor 84 based on the calculated correction coefficient will be described with reference to FIG.
 いま、位置検出センサ84の出力値(位置信号)をx、第3レンズ群前群G3aの位置をyとすると、ズームポジションa(図15の実線のグラフWa)における第3レンズ群前群G3aの位置は、y=A(a)x+B(a)と近似できる。また、ズームポジションb(図15の破線のグラフWb、a≠b)における第3レンズ群前群G3aの位置は、y=A(b)x+B(b)と近似できる。ここで、A(a)は、ズームポジションaの場合の傾き(センサ出力感度)であり、B(a)は、ズームポジションaの場合の切片(センサ出力バイアス)である。また、A(b)は、ズームポジションbの場合の傾き(センサ出力感度)であり、B(b)は、ズームポジションbの場合の切片(センサ出力バイアス)である。 Now, assuming that the output value (position signal) of the position detection sensor 84 is x and the position of the third lens group front group G3a is y, the third lens group front group G3a at the zoom position a (the solid line graph Wa in FIG. 15). Can be approximated as y = A (a) x + B (a). Further, the position of the front group G3a of the third lens group at the zoom position b (the broken line graph Wb, a ≠ b in FIG. 15) can be approximated as y = A (b) x + B (b). Here, A (a) is the inclination (sensor output sensitivity) at the zoom position a, and B (a) is the intercept (sensor output bias) at the zoom position a. A (b) is the inclination (sensor output sensitivity) at the zoom position b, and B (b) is the intercept (sensor output bias) at the zoom position b.
 ズームポジションaにおける位置検出センサ84の出力を基準の出力とすると、このズームポジションaでの出力値と一致するように、各ズームポジションでの出力値が補正される。すなわち、同じ位置では、同じ出力値となるように、各ズームポジションでの位置検出センサ84の出力値が補正される。 When the output of the position detection sensor 84 at the zoom position a is set as a reference output, the output value at each zoom position is corrected so as to match the output value at the zoom position a. That is, at the same position, the output value of the position detection sensor 84 at each zoom position is corrected so as to have the same output value.
 ズームポジションbの場合、α=A(a)/A(b)、β=[B(a)-B(b)]/A(b)とすると、補正後の位置検出センサ84の出力値(位置信号)Xは、関数F(x)=αx+βで算出できる。 In the case of the zoom position b, if α = A (a) / A (b) and β = [B (a) −B (b)] / A (b), the corrected output value of the position detection sensor 84 ( The position signal) X can be calculated by a function F (x) = αx + β.
 ここで、α及びβは、補正係数であり、関数F(x)=αx+βは補正関数である。補正係数α及びβは、あらかじめズームポジションごとに求められ、ズームポジションの情報と対応づけられて補正情報記憶部146に記憶される。補正情報記憶部146は、レンズ制御部100を構成するコンピュータのROMで構成される。 Here, α and β are correction coefficients, and the function F (x) = αx + β is a correction function. The correction coefficients α and β are obtained in advance for each zoom position, and are stored in the correction information storage unit 146 in association with the zoom position information. The correction information storage unit 146 is configured by a ROM of a computer constituting the lens control unit 100.
 なお、位置検出センサ84と第4レンズ群駆動アクチュエータ68との位置関係はズームポジションによって一意に定まるので、ズームポジションの情報を取得することにより、実質的に位置検出センサ84と第4レンズ群駆動アクチュエータ68との間の位置関係(第1ユニット及び第2ユニットの間の位置関係と同義)の情報が取得される。 Since the positional relationship between the position detection sensor 84 and the fourth lens group drive actuator 68 is uniquely determined by the zoom position, by acquiring information on the zoom position, the position detection sensor 84 and the fourth lens group drive are substantially driven. Information on the positional relationship with the actuator 68 (synonymous with the positional relationship between the first unit and the second unit) is obtained.
 位置信号補正部142は、ズームポジションに応じた補正係数α及びβの情報を補正情報記憶部146から取得し、取得した補正係数α及びβに基づいて補正関数F(x)=αx+βを設定し、位置信号xを補正する。 The position signal correction unit 142 acquires information on the correction coefficients α and β corresponding to the zoom position from the correction information storage unit 146, and sets a correction function F (x) = αx + β based on the acquired correction coefficients α and β. , The position signal x is corrected.
 位置算出部144は、補正後の位置信号Xに基づいて、第3レンズ群前群G3aの位置を算出する。これにより、ズームポジションによらずに正しい位置を検出できる。 The position calculation unit 144 calculates the position of the third lens group front group G3a based on the corrected position signal X. Thus, a correct position can be detected regardless of the zoom position.
 [位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理の手順]
 図17は、位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理の手順(位置検出方法)を示すフローチャートである。
[Procedure for detecting position of front group of third lens group including correction of output of position detection sensor]
FIG. 17 is a flowchart illustrating a procedure (a position detection method) of a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
 まず、位置検出センサ84から出力される位置信号xを取得する(ステップS1)。次に、ズームポジション検出部120から現在のズームポジションの情報を取得する(ステップS2)。次に、ズームポジションに対応した補正係数α及びβを取得する(ステップS3)。次に、取得した補正係数α及びβに基づいて補正関数F(x)=αx+βを設定し、位置信号xを補正する(ステップS4)。次に、補正後の位置信号Xに基づいて、第3レンズ群前群G3aの位置を算出する(ステップS5)。これにより、第3レンズ群前群G3aの位置が求まる。 First, a position signal x output from the position detection sensor 84 is obtained (step S1). Next, information on the current zoom position is obtained from the zoom position detector 120 (step S2). Next, correction coefficients α and β corresponding to the zoom position are obtained (step S3). Next, a correction function F (x) = αx + β is set based on the obtained correction coefficients α and β to correct the position signal x (step S4). Next, the position of the third lens group front group G3a is calculated based on the corrected position signal X (step S5). As a result, the position of the third lens group front group G3a is determined.
 このように、ズームポジションによって位置検出センサ84の出力を補正することにより、第3レンズ群前群G3aの位置を常に正確に検出できる。 As described above, by correcting the output of the position detection sensor 84 based on the zoom position, the position of the third lens group front group G3a can always be accurately detected.
 [第3レンズ群前群の駆動制御]
 図18は、第3レンズ群前群の駆動制御の処理の手順を示すフローチャートである。
[Drive Control of Front Group of Third Lens Group]
FIG. 18 is a flowchart illustrating a procedure of a drive control process for the front group of the third lens group.
 まず、移動先としての目標位置が設定される(ステップS11)。なお、上記のように、第3レンズ群前群G3aは、ズーム操作及び温度変化によって駆動される。したがって、目標位置は、ズームポジション及び温度に基づいて設定される。 First, a target position as a destination is set (step S11). As described above, the front group G3a of the third lens group is driven by a zoom operation and a temperature change. Therefore, the target position is set based on the zoom position and the temperature.
 目標位置が設定されると、第3レンズ群前群G3aの現在の位置情報が取得される(ステップS12)。現在の位置情報の取得方法は上記のとおりである。すなわち、ズームポジションに基づいて位置検出センサ84の出力が補正され、補正された出力に基づいて、位置が検出される。 When the target position is set, the current position information of the front group G3a of the third lens group is obtained (Step S12). The method of acquiring the current position information is as described above. That is, the output of the position detection sensor 84 is corrected based on the zoom position, and the position is detected based on the corrected output.
 次に、現在の位置から目標位置に移動するために必要な第3レンズ群前群駆動アクチュエータ56の駆動量が算出される(ステップS13)。次に、算出された駆動量に基づいて第3レンズ群前群駆動アクチュエータ56が駆動される(ステップS14)。次に、第3レンズ群前群G3aの現在の位置情報が取得される(ステップS15)。そして、取得された位置情報に基づいて、目標位置に到達したか否かが判定される(ステップS16)。目標位置に到達した場合は、処理を終了する。一方、目標位置に到達していない場合は、ステップS13に戻り、目標位置に到達するまで、上記ステップS13~S16の処理が繰り返される。 Next, the drive amount of the third lens group front group drive actuator 56 required to move from the current position to the target position is calculated (step S13). Next, the third lens group front group drive actuator 56 is driven based on the calculated drive amount (step S14). Next, the current position information of the third lens group front group G3a is obtained (step S15). Then, it is determined whether or not the target position has been reached based on the obtained position information (step S16). If the target position has been reached, the process ends. On the other hand, if the target position has not been reached, the process returns to step S13, and the processes in steps S13 to S16 are repeated until the target position is reached.
 [変形例]
 上記実施の形態では、第3レンズ群前群駆動アクチュエータ56をVCMで構成しているが、その他のアクチュエータで構成することもできる。
[Modification]
In the above embodiment, the third lens group front group drive actuator 56 is constituted by the VCM, but may be constituted by another actuator.
 また、上記実施の形態では、第4レンズ群駆動アクチュエータ68をVCMで構成しているが、その他の電磁式のアクチュエータで構成することもできる。 Further, in the above-described embodiment, the fourth lens group drive actuator 68 is configured by the VCM, but may be configured by another electromagnetic actuator.
 また、上記実施の形態では、ズーム操作を手動で行う構成としているが、モータ等を利用して、電動で行う構成とすることもできる。 In the above embodiment, the zoom operation is performed manually, but the zoom operation may be performed electrically using a motor or the like.
 更に、上記実施の形態では、ズームによって移動するレンズ群をカム機構で駆動して移動させているが、その他の駆動機構で駆動して移動させる構成としてもよい。 Further, in the above-described embodiment, the lens group moved by zooming is driven and moved by the cam mechanism, but may be driven and moved by another driving mechanism.
 また、上記実施の形態では、位置検出センサ84にホールセンサを使用しているが、ホールセンサと同種の磁気センサを使用することもできる。すなわち、位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を出力する形態のセンサを使用できる。 In the above embodiment, a Hall sensor is used as the position detection sensor 84, but a magnetic sensor of the same type as the Hall sensor can be used. That is, a sensor that detects a magnetic field that changes according to the position and outputs a signal proportional to the magnitude of the detected magnetic field can be used.
 また、上記実施の形態では、第4レンズ群G4の位置をフォトインタラプタとMRセンサを用いて検出する構成としているが、ホールセンサで検出する構成とすることもできる。この場合、第3レンズ群前群G3aと同様にズームポジションに応じてホールセンサの出力を補正することが好ましい。 In the above embodiment, the position of the fourth lens group G4 is detected using the photo interrupter and the MR sensor. However, the position may be detected using a Hall sensor. In this case, it is preferable to correct the output of the Hall sensor according to the zoom position, as in the case of the third lens group front group G3a.
 [第2の実施の形態]
 ホールセンサは、取り付けの状態によって出力特性が変わる。したがって、より高精度に第3レンズ群前群G3aの位置を検出するには、センサの取り付けの状態を考慮することが好ましい。本実施の形態では、位置検出センサ84の取り付け状態を考慮して、第3レンズ群前群G3aの位置を検出する。
[Second embodiment]
The output characteristics of the Hall sensor change depending on the state of attachment. Therefore, in order to detect the position of the third lens group front group G3a with higher accuracy, it is preferable to consider the state of attachment of the sensor. In the present embodiment, the position of the third front lens group G3a is detected in consideration of the mounting state of the position detection sensor 84.
 図19は、適切に取り付けられた場合の位置検出センサの取り付け状態を示す図である。図20は、不適切に取り付けられた場合の位置検出センサの取り付け状態を示す図である。 FIG. 19 is a diagram showing an attached state of the position detection sensor when properly attached. FIG. 20 is a diagram illustrating an attached state of the position detection sensor when the sensor is improperly attached.
 図19に示すように、適切に取り付けられた場合、位置検出センサ84は、光軸Zと平行に取り付けられる。また、位置検出用マグネット82から正規の距離Dの位置に取り付けられる。 位置 As shown in FIG. 19, when properly mounted, the position detection sensor 84 is mounted parallel to the optical axis Z. Further, it is attached at a position at a regular distance D from the position detecting magnet 82.
 一方、不適切に取り付けられた場合、図20に示すように、位置検出センサ84は、光軸Zに対して傾いた姿勢で取り付けられる。あるいは、位置検出用マグネット82から正規の距離Dとは異なる距離dの位置に取り付けられる。 On the other hand, if it is improperly mounted, the position detection sensor 84 is mounted in a posture inclined with respect to the optical axis Z as shown in FIG. Alternatively, it is attached to a position at a distance d different from the regular distance D from the position detecting magnet 82.
 図21は、あるズームポジションにおける第3レンズ群前群の位置と位置検出センサの出力値との関係を示すグラフである。 FIG. 21 is a graph showing the relationship between the position of the front group of the third lens group at a certain zoom position and the output value of the position detection sensor.
 同図において、実線W1は、位置検出センサ84が適切に取り付けられた場合のグラフである。また、破線W2は、位置検出センサ84が不適切な姿勢で取り付けられた場合のグラフである。また、一点破線W3は、位置検出センサ84が不適切な位置に取り付けられた場合のグラフである。 に お い て In the figure, a solid line W1 is a graph when the position detection sensor 84 is properly attached. A broken line W2 is a graph when the position detection sensor 84 is attached in an inappropriate posture. The dashed line W3 is a graph when the position detection sensor 84 is mounted at an inappropriate position.
 位置検出センサ84が、不適切な姿勢(傾いた姿勢)で取り付けられた場合、その傾きの大きさによって、位置検出センサ84の出力特性を示すグラフの傾き(センサ出力感度)が変わる(破線W2のグラフ参照)。 When the position detection sensor 84 is mounted in an inappropriate posture (inclination posture), the inclination (sensor output sensitivity) of the graph showing the output characteristics of the position detection sensor 84 changes depending on the magnitude of the inclination (broken line W2). Graph).
 また、位置検出センサ84が、不適切な位置に取り付けられた場合、位置検出センサ84の出力特性を示すグラフ(図15参照)の切片(センサ出力バイアス)が変わる(一点破線W3のグラフ参照)。 Further, when the position detection sensor 84 is mounted at an inappropriate position, the intercept (sensor output bias) of the graph (see FIG. 15) indicating the output characteristics of the position detection sensor 84 changes (see the graph of the dashed-dotted line W3). .
 ズーム操作によって位置検出センサ84と第4レンズ群駆動アクチュエータ68との位置関係が変わる場合、各ズームポジションで位置検出センサ84が第4レンズ群駆動アクチュエータ68から受ける磁気の影響は一様ではない。このため、上記の補正係数α及びβを用いた補正関数F(x)=αx+βでは、適切に位置検出センサ84の出力(位置信号)を補正できない。このため、次の手法で位置検出センサ84の出力(位置信号)を補正する。 (4) When the positional relationship between the position detection sensor 84 and the fourth lens group drive actuator 68 changes due to the zoom operation, the influence of magnetism on the position detection sensor 84 from the fourth lens group drive actuator 68 at each zoom position is not uniform. Therefore, the output (position signal) of the position detection sensor 84 cannot be appropriately corrected by the correction function F (x) = αx + β using the correction coefficients α and β. Therefore, the output (position signal) of the position detection sensor 84 is corrected by the following method.
 光軸Zに対する位置検出センサ84の傾きθを確認し、傾きθによって変わる補正係数γ(θ)を補正関数F(x)に加えて、F(x)=αx+(β+γ(θ))とする。 The inclination θ of the position detection sensor 84 with respect to the optical axis Z is checked, and a correction coefficient γ (θ) that changes according to the inclination θ is added to the correction function F (x), and F (x) = αx + (β + γ (θ)) .
 また、位置検出用マグネット82からの距離dを確認し、距離dによって変わる補正係数δ(d)を補正関数F(x)に加えて、F(x)=(α+δ(d))x+(β+γ(θ))とする。 Further, the distance d from the position detecting magnet 82 is confirmed, and a correction coefficient δ (d) that changes according to the distance d is added to the correction function F (x), and F (x) = (α + δ (d)) x + (β + γ) (Θ)).
 交換レンズ1の個体ごとに傾きθ及び距離dを求めて、補正係数γ(θ)及びδ(d)を求め、補正情報記憶部146に記憶する。 傾 き The inclination θ and the distance d are obtained for each individual interchangeable lens 1, the correction coefficients γ (θ) and δ (d) are obtained, and stored in the correction information storage unit 146.
 位置信号補正部142は、ズームポジションに応じた補正係数α及びβ、並びに、取り付け状態に基づく補正係数γ(θ)及びδ(d)の情報を補正情報記憶部146から取得し、取得した補正係数α、β、γ(θ)及びδ(d)に基づいて、補正関数F(x)=(α+δ(d))x+(β+γ(θ))を設定し、位置検出センサ84の出力(位置信号)xを補正する。これにより、より高精度に第3レンズ群前群G3aの位置を検出できる。 The position signal correction unit 142 obtains, from the correction information storage unit 146, information on the correction coefficients α and β corresponding to the zoom position and the correction coefficients γ (θ) and δ (d) based on the mounting state, and obtains the obtained correction. A correction function F (x) = (α + δ (d)) x + (β + γ (θ)) is set based on the coefficients α, β, γ (θ) and δ (d), and the output (position Signal) x is corrected. As a result, the position of the front group G3a of the third lens group can be detected with higher accuracy.
 なお、本実施の形態は、位置検出センサ84の取り付け位置(位置検出用マグネット82からの距離d)及び取り付け姿勢(光軸Zに対する傾きθ)の双方を考慮して、位置信号を補正しているが、少なくとも一方だけを考慮して、位置信号を補正してもよい。 In the present embodiment, the position signal is corrected in consideration of both the mounting position (distance d from the position detecting magnet 82) of the position detection sensor 84 and the mounting posture (inclination θ with respect to the optical axis Z). However, the position signal may be corrected in consideration of at least one of them.
 また、本実施の形態では、位置信号補正部142は、補正係数γ(θ)及びδ(d)の情報を補正情報記憶部146に記憶させているが、位置検出センサ84の取り付け位置の情報(位置検出用マグネット82からの距離d)及び取り付け姿勢の情報(光軸Zに対する傾きθ)を補正情報記憶部146に記憶させる構成としてもよい。この場合、補正関数F(x)を設定する際に、位置の情報及び姿勢の情報に基づいて、補正係数γ(θ)及びδ(d)を設定する。 Further, in the present embodiment, the position signal correction unit 142 stores the information of the correction coefficients γ (θ) and δ (d) in the correction information storage unit 146, but the information of the mounting position of the position detection sensor 84 The information (distance d from the position detecting magnet 82) and the information of the mounting posture (inclination θ with respect to the optical axis Z) may be stored in the correction information storage unit 146. In this case, when setting the correction function F (x), the correction coefficients γ (θ) and δ (d) are set based on the position information and the posture information.
 [第3の実施の形態]
 ホールセンサは、使用環境の温度によって出力特性が変わる。したがって、より高精度に第3レンズ群前群G3aの位置を検出するには、使用環境の温度を考慮することが好ましい。本実施の形態では、使用環境の温度を考慮して、第3レンズ群前群G3aの位置を検出する。
[Third Embodiment]
The output characteristics of the Hall sensor vary depending on the temperature of the use environment. Therefore, in order to detect the position of the third lens group front group G3a with higher accuracy, it is preferable to consider the temperature of the use environment. In the present embodiment, the position of the front group G3a of the third lens group is detected in consideration of the temperature of the use environment.
 ホールセンサで構成される位置検出センサ84は、温度によって出力特性を示すグラフの傾き(センサ出力感度)及び切片(センサ出力バイアス)が変わる。このため、次の手法で位置検出センサ84の出力(位置信号)を補正する。 The position detection sensor 84 composed of a Hall sensor changes the slope (sensor output sensitivity) and intercept (sensor output bias) of the graph showing the output characteristics depending on the temperature. Therefore, the output (position signal) of the position detection sensor 84 is corrected by the following method.
 温度Tによって変わる傾きの補正係数ε(T)及び切片の補正係数ζ(T)を補正関数F(x)に加えて、F(x)=(α+ε(T))x+(β+ζ(T))とする。 The correction coefficient ε (T) of the slope and the correction coefficient 切 (T) of the intercept which change depending on the temperature T are added to the correction function F (x), and F (x) = (α + ε (T)) x + (β + ζ (T)) And
 交換レンズ1の個体ごとに傾きの補正係数ε(T)及び切片の補正係数ζ(T)を求め、補正情報記憶部146に記憶する。補正係数ε(T)及びζ(T)は、温度に基づく位置信号の補正に必要な情報の一例である。 The tilt correction coefficient ε (T) and the intercept correction coefficient ζ (T) are obtained for each individual interchangeable lens 1 and stored in the correction information storage unit 146. The correction coefficients ε (T) and ζ (T) are examples of information necessary for correcting a position signal based on temperature.
 図22は、温度に基づいて位置検出センサの出力を補正する場合の第3レンズ群前群の位置の検出処理に係わる構成のブロック図である。 FIG. 22 is a block diagram of a configuration relating to a process of detecting the position of the front group of the third lens group when correcting the output of the position detection sensor based on the temperature.
 同図に示すように、位置信号補正部142は、ズームポジション検出部120から現在のズームポジションの情報を取得する。また、位置信号補正部142は、温度検出部116から現在の温度の情報を取得する。位置信号補正部142は、取得した情報に基づいて、現在のズームポジションに対応した補正係数α及びβの情報、並びに、現在の温度Tに対応した補正係数ε(T)及びζ(T)の情報を補正情報記憶部146から取得する。そして、取得した補正係数α、β、ε(T)及びζ(T)に基づいて、補正関数F(x)=(α+ε(T))x+(β+ζ(T))を設定し、位置検出センサ84の出力(位置信号)xを補正する。これにより、より高精度に第3レンズ群前群G3aの位置を検出できる。なお、温度の情報は、温度センサから取得する。 As shown in the figure, the position signal correction unit 142 acquires information on the current zoom position from the zoom position detection unit 120. Further, the position signal correction unit 142 acquires information on the current temperature from the temperature detection unit 116. Based on the acquired information, the position signal correction unit 142 calculates the information of the correction coefficients α and β corresponding to the current zoom position and the correction coefficients ε (T) and ζ (T) corresponding to the current temperature T. Information is acquired from the correction information storage unit 146. Then, based on the acquired correction coefficients α, β, ε (T) and ζ (T), a correction function F (x) = (α + ε (T)) x + (β + ζ (T)) is set, and the position detection sensor is set. The output (position signal) x at 84 is corrected. As a result, the position of the front group G3a of the third lens group can be detected with higher accuracy. Note that the temperature information is obtained from the temperature sensor.
 なお、本実施の形態では、位置検出センサ84の取り付け状態を考慮していないが、位置検出センサ84の取り付け状態を考慮することにより、更に高精度に第3レンズ群前群G3aの位置を検出できる。この場合、補正関数F(x)=(α+δ(d)+ε(T))x+(β+γ(θ)+ζ(T))と設定して、位置検出センサ84の出力(位置信号)xを補正する。 In the present embodiment, the mounting state of the position detection sensor 84 is not considered, but the position of the third lens group front group G3a can be detected with higher accuracy by considering the mounting state of the position detection sensor 84. it can. In this case, the correction function F (x) = (α + δ (d) + ε (T)) x + (β + γ (θ) + ζ (T)) is set to correct the output (position signal) x of the position detection sensor 84. .
 [変形例]
 [温度に基づく切片の補正係数の取得方法の変形例]
 上記実施の形態では、事前に温度ごとの補正係数を求める構成としているが、温度に基づく切片の補正係数ζ(T)については、次の手法で取得することもできる。
[Modification]
[Modification of Method for Obtaining Intercept Correction Coefficient Based on Temperature]
In the above embodiment, the correction coefficient for each temperature is obtained in advance, but the correction coefficient ζ (T) of the intercept based on the temperature can be obtained by the following method.
 図23は、温度に基づく切片の補正係数の取得方法の概念図である。 FIG. 23 is a conceptual diagram of a method for obtaining a correction coefficient of an intercept based on a temperature.
 同図に示すように、第3レンズ群前群G3aを一方側の可動端に移動させ、その位置で位置検出センサ84の出力値を取得し、取得した位置検出センサ84の出力値に基づいて、切片の補正係数ζ(T)を取得する。 As shown in the figure, the front group G3a of the third lens group is moved to one movable end, the output value of the position detection sensor 84 is obtained at that position, and based on the obtained output value of the position detection sensor 84, , The intercept correction coefficient T (T) is obtained.
 第3レンズ群前群G3aは、第1主ガイド部52及び/又は第1副ガイド部54が一方側の端部に当接することにより、一方側の可動端(可動範囲の一方側の端部)に位置する。図23に示す例では、像面側の端部に位置させている。この位置を較正用基準位置とする。 The front group G3a of the third lens group is configured such that the first main guide part 52 and / or the first sub guide part 54 abut on one end, and thereby one movable end (one end of the movable range). ) Located. In the example shown in FIG. 23, it is located at the end on the image plane side. This position is used as a calibration reference position.
 基準とする温度(基準温度)を設定し(たとえば、25℃)、設定した基準温度の下で、第3レンズ群前群G3aを較正用基準位置に位置させた場合の位置検出センサ84の出力値を個体ごとに求める。求めた出力値を基準出力値として、補正情報記憶部146に記憶する。 A reference temperature (reference temperature) is set (for example, 25 ° C.), and the output of the position detection sensor 84 when the third lens group front group G3a is positioned at the calibration reference position under the set reference temperature. The value is determined for each individual. The obtained output value is stored in the correction information storage unit 146 as a reference output value.
 温度に基づく切片の補正係数ζ(T)を取得する場合は、まず、第3レンズ群前群G3aを較正用基準位置に位置させる。次に、位置検出センサ84の出力値を取得する。次に、取得した出力値と基準出力値との差分を求める。求めた差分を切片の補正係数ζ(T)として取得する。 When acquiring the intercept correction coefficient ζ (T) based on the temperature, first, the front group G3a of the third lens group is positioned at the calibration reference position. Next, the output value of the position detection sensor 84 is obtained. Next, a difference between the obtained output value and the reference output value is obtained. The obtained difference is acquired as the intercept correction coefficient ζ (T).
 このように、温度に基づく切片の補正係数ζ(T)については、較正用基準位置に位置させた場合の位置検出センサ84の出力から求めることができる。これにより、より適切に温度に基づく切片の補正係数ζ(T)を取得できる。 Thus, the intercept correction coefficient ζ (T) based on the temperature can be obtained from the output of the position detection sensor 84 when located at the calibration reference position. Thereby, the correction coefficient 片 (T) of the intercept based on the temperature can be acquired more appropriately.
 本処理は、たとえば、交換レンズ1の起動時(カメラの起動時と同義)に実施される。 This process is performed, for example, when the interchangeable lens 1 is activated (synonymous with the activation of the camera).
 [温度に基づく補正処理を行う条件]
 温度に基づく補正は、温度センサで検出される温度が、あらかじめ定められた許容範囲を超える場合にのみ実施するようにしてもよい。たとえば、基準温度の前後一定範囲に許容範囲を設定し、この許容範囲を超える場合に、上記温度に基づく補正を実施する。これにより、交換レンズ1の起動時間を短縮できる。特に、上記変形例で示した方法で切片の補正係数ζ(T)を取得する場合には、レンズを較正用基準位置に移動させる処理等を省略できるので、起動時間を大幅に短縮できる。
[Conditions for performing temperature-based correction processing]
The correction based on the temperature may be performed only when the temperature detected by the temperature sensor exceeds a predetermined allowable range. For example, an allowable range is set in a certain range before and after the reference temperature, and when the allowable range is exceeded, the correction based on the temperature is performed. Thereby, the startup time of the interchangeable lens 1 can be reduced. In particular, when the intercept correction coefficient ζ (T) is obtained by the method described in the above-described modification, the process of moving the lens to the reference position for calibration can be omitted, so that the startup time can be significantly reduced.
 [第4の実施の形態]
 上記実施の形態の交換レンズ1では、第4レンズ群G4を駆動するアクチュエータ(第4レンズ群駆動アクチュエータ68)が、ムービングコイル型のVCMで構成されている。この場合、位置検出センサ84が、第4レンズ群駆動アクチュエータ68から受ける磁気の影響は、ズームによる両者の位置関係の変動だけを考慮すれば足りる。
[Fourth Embodiment]
In the interchangeable lens 1 of the above embodiment, the actuator that drives the fourth lens group G4 (the fourth lens group drive actuator 68) is configured by a moving coil type VCM. In this case, the influence of the magnetism that the position detection sensor 84 receives from the fourth lens group drive actuator 68 is sufficient if only the change in the positional relationship between the two due to zooming is considered.
 しかし、第4レンズ群G4を駆動するアクチュエータが、ムービングマグネット型のVCMで構成される場合、ズームによる位置関係の変動だけを考慮しても、高精度な検出はできない。ムービングマグネット型のVCMは、可動部と共にマグネットも移動するからである。したがって、より高精度に第3レンズ群前群G3aの位置を検出するためには、アクチュエータによって駆動される可動部の位置、すなわち、第4レンズ群G4の位置を考慮して、位置検出センサ84の出力(位置信号)を補正する必要がある。 However, when the actuator that drives the fourth lens group G4 is constituted by a moving magnet type VCM, high-precision detection cannot be performed even if only the positional relationship change due to zooming is considered. This is because the moving magnet type VCM moves the magnet together with the movable part. Therefore, in order to detect the position of the third lens group front group G3a with higher accuracy, the position detection sensor 84 is considered in consideration of the position of the movable part driven by the actuator, that is, the position of the fourth lens group G4. Output (position signal) needs to be corrected.
 [交換レンズの構成]
 まず、第4レンズ群G4を駆動するアクチュエータ(第4レンズ群駆動アクチュエータ)がムービングマグネット型のVCMで構成される場合の交換レンズの構成について説明する。なお、ここでは、第4レンズ群G4の駆動部の構成についてのみ説明する。
[Structure of interchangeable lens]
First, the configuration of the interchangeable lens when the actuator that drives the fourth lens group G4 (the fourth lens group driving actuator) is configured by a moving magnet type VCM will be described. Here, only the configuration of the driving unit of the fourth lens group G4 will be described.
 図24は、第4レンズ群駆動アクチュエータがムービングマグネット型のVCMで構成される場合の交換レンズの概略構成を示す断面図である。 FIG. 24 is a cross-sectional view showing a schematic configuration of an interchangeable lens when the fourth lens group drive actuator is configured by a moving magnet type VCM.
 同図に示すように、本実施の形態の交換レンズ1は、第4レンズ群駆動アクチュエータ66が、ムービングマグネット型のVCMで構成される。第4レンズ群可動保持枠26Bには、このムービングマグネット型のVCMで構成する複数の駆動用マグネット66A及び複数のインナーヨーク66Bが備えられる。また、第4レンズ群ベース保持枠26Aには、ムービングマグネット型のVCMを構成する駆動用コイル66C及び複数のアウターヨーク66Dが備えられる。 As shown in the figure, in the interchangeable lens 1 of the present embodiment, the fourth lens group drive actuator 66 is configured by a moving magnet type VCM. The fourth lens group movable holding frame 26B is provided with a plurality of driving magnets 66A and a plurality of inner yokes 66B constituted by the moving magnet type VCM. The fourth lens group base holding frame 26A is provided with a driving coil 66C and a plurality of outer yokes 66D constituting a moving magnet type VCM.
 駆動用コイル66Cは、第4レンズ群可動保持枠26Bの外周部を囲うように巻かれて、第4レンズ群ベース保持枠26Aの内周部に取り付けられる。第4レンズ群可動保持枠26Bは、この駆動用コイル66Cの内側を光軸Zに沿って移動する。 The driving coil 66C is wound around the outer periphery of the fourth lens group movable holding frame 26B and attached to the inner periphery of the fourth lens group base holding frame 26A. The fourth lens group movable holding frame 26B moves inside the driving coil 66C along the optical axis Z.
 第3レンズ群前群駆動アクチュエータ56と同様に、複数の駆動用マグネット66Aは、2つのグループにグループ分けされ、光軸Zと直交する断面において、光軸Zを通る直線Lに対して対称に配置される(図6及び図10参照)。複数のインナーヨーク66Bは、駆動用マグネット66Aに対応して配置される。各インナーヨーク66Bは、対応する駆動用マグネット66Aと一体化されて、第4レンズ群可動保持枠26Bに取り付けられる。複数のアウターヨーク66Dは、複数のインナーヨーク66Bに対応して配置される。各アウターヨーク66Dは、駆動用コイル66Cを挟んで、対応するインナーヨーク66Bと対向して配置される。 Similarly to the third lens group front group drive actuator 56, the plurality of drive magnets 66A are divided into two groups, and are symmetrical with respect to a straight line L passing through the optical axis Z in a cross section orthogonal to the optical axis Z. (See FIGS. 6 and 10). The plurality of inner yokes 66B are arranged corresponding to the driving magnets 66A. Each inner yoke 66B is integrated with the corresponding driving magnet 66A and attached to the fourth lens group movable holding frame 26B. The plurality of outer yokes 66D are arranged corresponding to the plurality of inner yokes 66B. Each outer yoke 66D is arranged to face the corresponding inner yoke 66B with the driving coil 66C interposed therebetween.
 以上の構成の交換レンズ1によれば、第4レンズ群駆動アクチュエータ66を駆動すると、第4レンズ群G4が光軸Zに沿って移動する。この際、駆動用マグネット66Aも第4レンズ群G4と共に移動する。 According to the interchangeable lens 1 having the above configuration, when the fourth lens group drive actuator 66 is driven, the fourth lens group G4 moves along the optical axis Z. At this time, the driving magnet 66A also moves together with the fourth lens group G4.
 [位置検出センサの出力の補正]
 [位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理に係わる構成]
 図25は、位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理に係わる構成のブロック図である。
[Correction of output of position detection sensor]
[Configuration Related to Processing for Detecting Position of Front Group of Third Lens Group Including Correction of Output of Position Detection Sensor]
FIG. 25 is a block diagram of a configuration relating to a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
 上記実施の形態の交換レンズ1と同様に、位置検出センサ84の出力の補正を含む第3レンズ群前群G3aの位置の検出処理は、レンズ制御部100で実施される。ただし、本実施の形態のレンズ制御部100は、相対位置算出部148の機能を更に実現する点で上記実施の形態のレンズ制御部100と相違する。 As in the case of the interchangeable lens 1 of the above embodiment, the process of detecting the position of the front group G3a of the third lens group including the correction of the output of the position detection sensor 84 is performed by the lens controller 100. However, the lens control unit 100 of the present embodiment is different from the lens control unit 100 of the above embodiment in that the function of the relative position calculation unit 148 is further realized.
 相対位置算出部148は、第4レンズ群G4に対する位置検出センサ84の相対位置(第4レンズ群G4と位置検出センサ84との間の距離と同義)を算出する。相対位置算出部148は、ズームポジション及び第4レンズ群G4の位置に基づいて、第4レンズ群G4に対する位置検出センサ84の相対位置を算出する。 The relative position calculator 148 calculates the relative position of the position detection sensor 84 with respect to the fourth lens group G4 (synonymous with the distance between the fourth lens group G4 and the position detection sensor 84). The relative position calculator 148 calculates a relative position of the position detection sensor 84 with respect to the fourth lens group G4 based on the zoom position and the position of the fourth lens group G4.
 なお、第4レンズ群駆動アクチュエータ66の駆動用マグネット66Aは、第4レンズ群G4と共に移動する。したがって、第4レンズ群G4に対する位置検出センサ84の相対位置を算出することは、駆動用マグネット66Aに対する位置検出センサ84の相対位置を算出することと同義である。 The driving magnet 66A of the fourth lens group driving actuator 66 moves together with the fourth lens group G4. Therefore, calculating the relative position of the position detection sensor 84 with respect to the fourth lens group G4 is equivalent to calculating the relative position of the position detection sensor 84 with respect to the driving magnet 66A.
 相対位置算出部148は、ズームポジション検出部120からズームポジションの情報を取得し、第4レンズ群位置検出部90から第4レンズ群G4の位置の情報を取得する。 The relative position calculation unit 148 acquires information on the zoom position from the zoom position detection unit 120, and acquires information on the position of the fourth lens group G4 from the fourth lens group position detection unit 90.
 位置信号補正部142は、相対位置算出部148で算出される相対位置の情報に基づいて、位置信号取得部140で取得される位置信号を補正する。具体的には、相対位置算出部148から相対位置の情報を取得し、取得した相対位置に対応した補正係数の情報を補正情報記憶部146から取得する。そして、取得した補正係数に基づいて、位置信号を補正する。すなわち、取得した補正係数に基づいて補正関数F(x)を設定し、設定した補正関数F(X)に従って位置信号xを補正する。 The position signal correction unit 142 corrects the position signal acquired by the position signal acquisition unit 140 based on the information on the relative position calculated by the relative position calculation unit 148. Specifically, information on the relative position is obtained from the relative position calculation unit 148, and information on the correction coefficient corresponding to the obtained relative position is obtained from the correction information storage unit 146. Then, the position signal is corrected based on the obtained correction coefficient. That is, a correction function F (x) is set based on the obtained correction coefficient, and the position signal x is corrected according to the set correction function F (X).
 補正係数は、あらかじめ相対位置ごとに求められ、相対位置の情報と対応づけられて補正情報記憶部146に記憶される。 The correction coefficient is obtained in advance for each relative position, and is stored in the correction information storage unit 146 in association with the information on the relative position.
 位置算出部144は、補正後の位置信号Xに基づいて、第3レンズ群前群G3aの位置を算出する。これにより、ズームポジションによらずに正しい位置を検出できる。 The position calculation unit 144 calculates the position of the third lens group front group G3a based on the corrected position signal X. Thus, a correct position can be detected regardless of the zoom position.
 [位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理の手順]
 図26は、位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理の手順(位置検出方法)を示すフローチャートである。
[Procedure for detecting position of front group of third lens group including correction of output of position detection sensor]
FIG. 26 is a flowchart illustrating a procedure (a position detection method) of a process of detecting the position of the front group of the third lens group including the correction of the output of the position detection sensor.
 まず、位置検出センサ84から出力される位置信号xを取得する(ステップS21)。次に、ズームポジション検出部120から現在のズームポジションの情報を取得する(ステップS22)。次に、第4レンズ群位置検出部90から第4レンズ群G4の位置の情報を取得する(ステップS23)。次に、取得したズームポジションの情報及び第4レンズ群G4の位置の情報に基づいて、第4レンズ群G4に対する位置検出センサ84の相対位置を算出する(ステップS24)。次に、算出した相対位置に対応した補正係数を取得する(ステップS25)。次に、取得した補正係数に基づいて補正関数F(x)を設定し、位置信号xを補正する(ステップS26)。次に、補正後の位置信号Xに基づいて、第3レンズ群前群G3aを算出する(ステップS27)。これにより、第3レンズ群前群G3aの位置が求まる。 First, the position signal x output from the position detection sensor 84 is obtained (Step S21). Next, information on the current zoom position is obtained from the zoom position detection unit 120 (step S22). Next, information on the position of the fourth lens group G4 is obtained from the fourth lens group position detecting section 90 (Step S23). Next, the relative position of the position detection sensor 84 with respect to the fourth lens group G4 is calculated based on the acquired information on the zoom position and the information on the position of the fourth lens group G4 (step S24). Next, a correction coefficient corresponding to the calculated relative position is obtained (step S25). Next, a correction function F (x) is set based on the obtained correction coefficient, and the position signal x is corrected (step S26). Next, the third lens group front group G3a is calculated based on the corrected position signal X (step S27). As a result, the position of the third lens group front group G3a is determined.
 このように、第4レンズ群G4を駆動するアクチュエータがムービングマグネット型のVCMで構成される場合は、第4レンズ群G4の位置を考慮して、位置検出センサ84の出力(位置信号)を補正することにより、第3レンズ群前群G3aの位置を常に正確に検出できる。 As described above, when the actuator that drives the fourth lens group G4 is configured by a moving magnet type VCM, the output (position signal) of the position detection sensor 84 is corrected in consideration of the position of the fourth lens group G4. By doing so, the position of the third lens group front group G3a can always be accurately detected.
 なお、本実施の形態においても、位置検出センサ84の取り付け状態及び温度を考慮した補正を適用でき、これにより、より高精度な位置検出が可能になる。 Note that, in the present embodiment as well, correction can be applied in consideration of the mounting state and the temperature of the position detection sensor 84, thereby enabling more accurate position detection.
 [第5の実施の形態]
 上記実施の形態では、第1光学素子及び第2光学素子が、共に光軸と平行な方向に移動する鏡胴に本発明を適用した場合を例に説明したが、本発明の適用は、これに限定されるものではない。第1光学素子及び第2光学素子の双方が光軸と垂直な方向に移動する鏡胴、並びに、第1光学素子及び第2光学素子の一方が光軸と平行な方向に移動し、他方が光軸と垂直な方向に移動する鏡胴にも本発明は適用できる。
[Fifth Embodiment]
In the above-described embodiment, the case where the present invention is applied to the lens barrel in which both the first optical element and the second optical element move in a direction parallel to the optical axis has been described as an example. It is not limited to. A lens barrel in which both the first optical element and the second optical element move in a direction perpendicular to the optical axis, and one of the first optical element and the second optical element moves in a direction parallel to the optical axis, and the other The present invention is also applicable to a lens barrel that moves in a direction perpendicular to the optical axis.
 以下においては、光軸と垂直な方向に移動するレンズ及び光軸と平行な方向に移動するレンズを備えたレンズ鏡胴に本発明を適用した場合を例に説明する。 In the following, a case where the present invention is applied to a lens barrel having a lens moving in a direction perpendicular to the optical axis and a lens moving in a direction parallel to the optical axis will be described as an example.
 [光軸と垂直な方向に移動するレンズ及び光軸と平行な方向に移動するレンズを備えたレンズ鏡胴の構成]
 図27は、光軸と垂直な方向に移動するレンズ及び光軸と平行な方向に移動するレンズを備えたレンズ鏡胴の一例を示す断面図である。図28は、図27の28-28断面図である。図29は、図27の29-29断面図である。
[Configuration of a lens barrel including a lens moving in a direction perpendicular to the optical axis and a lens moving in a direction parallel to the optical axis]
FIG. 27 is a cross-sectional view illustrating an example of a lens barrel including a lens moving in a direction perpendicular to the optical axis and a lens moving in a direction parallel to the optical axis. FIG. 28 is a sectional view taken along line 28-28 of FIG. FIG. 29 is a sectional view taken along line 29-29 of FIG.
 本実施の形態のレンズ鏡胴200は、光軸Zと垂直な方向に移動するレンズを備えた第1レンズユニット220、及び、光軸Zと平行な方向に移動するレンズを備えた第2レンズユニット240を備える。第1レンズユニット220及び第2レンズユニット240は、たとえば、ズームによって、その間隔が可変する。本実施の形態では、カム機構によって、第1レンズユニット220及び第2レンズユニット240が移動し、その間隔が可変する。 The lens barrel 200 according to the present embodiment includes a first lens unit 220 having a lens moving in a direction perpendicular to the optical axis Z, and a second lens having a lens moving in a direction parallel to the optical axis Z. A unit 240 is provided. The distance between the first lens unit 220 and the second lens unit 240 is variable, for example, by zooming. In the present embodiment, the first lens unit 220 and the second lens unit 240 are moved by the cam mechanism, and the interval between them is variable.
 また、上記実施の形態では、本発明を交換レンズに適用した場合を例に説明したが、カメラに一体的に組み付けられたレンズにも適用できる。 In the above embodiment, the case where the present invention is applied to an interchangeable lens has been described as an example, but the present invention can also be applied to a lens that is integrally assembled with a camera.
 [レンズ鏡胴本体]
 レンズ鏡胴本体210は、固定筒212及びカム筒214を有する。カム筒214は、固定筒212の内周部に嵌合されて、固定筒212の内周部を周方向に回転自在に保持される。
[Lens barrel body]
The lens barrel main body 210 has a fixed cylinder 212 and a cam cylinder 214. The cam cylinder 214 is fitted to the inner peripheral part of the fixed cylinder 212, and holds the inner peripheral part of the fixed cylinder 212 rotatably in the circumferential direction.
 [第1レンズユニット]
 第1レンズユニット220は、いわゆる手ぶれ補正用のレンズユニットである。図27及び図28に示すように、第1レンズユニット220は、手ぶれ補正用のレンズである第1レンズ222と、第1レンズ222を保持する第1レンズ保持枠224と、第1レンズ222をX軸方向に駆動する第1レンズX軸方向駆動アクチュエータ226Xと、第1レンズ222をY軸方向に駆動する第1レンズY軸方向駆動アクチュエータ226Yと、第1レンズ222のX軸方向の位置を検出する第1レンズX軸方向位置検出センサ228Xと、第1レンズ222のY軸方向の位置を検出する第1レンズY軸方向位置検出センサ228Yと、を備える。第1レンズユニット220は第1ユニットの一例である。
[First lens unit]
The first lens unit 220 is a so-called camera shake correction lens unit. As shown in FIGS. 27 and 28, the first lens unit 220 includes a first lens 222 that is a camera shake correction lens, a first lens holding frame 224 that holds the first lens 222, and a first lens 222. The first lens X-axis direction drive actuator 226X that drives in the X-axis direction, the first lens Y-axis direction drive actuator 226Y that drives the first lens 222 in the Y-axis direction, and the position of the first lens 222 in the X-axis direction. It includes a first lens X-axis direction position detection sensor 228X for detecting, and a first lens Y-axis direction position detection sensor 228Y for detecting a position of the first lens 222 in the Y-axis direction. The first lens unit 220 is an example of a first unit.
 [第1レンズ]
 上記のように、第1レンズ222は、手ぶれ補正用のレンズであり、光軸Zと直交する面内を移動することで手ぶれを補正する。第1レンズ222は、第1光学素子の一例である。
[First lens]
As described above, the first lens 222 is a lens for correcting camera shake, and corrects camera shake by moving in a plane orthogonal to the optical axis Z. The first lens 222 is an example of a first optical element.
 [第1レンズ保持枠]
 第1レンズ保持枠224は、第1レンズベース保持枠224A及び第1レンズ可動保持枠224Bで構成される。第1レンズベース保持枠224A及び第1レンズ可動保持枠224Bは、その間に複数の剛球225aが挟まれ、複数箇所をバネ225bで連結されて一体化される。これにより、第1レンズ可動保持枠224Bが、第1レンズベース保持枠224Aに対して、光軸Zと直交する面内を移動自在に支持される。
[First lens holding frame]
The first lens holding frame 224 includes a first lens base holding frame 224A and a first lens movable holding frame 224B. The first lens base holding frame 224A and the first lens movable holding frame 224B are integrated by sandwiching a plurality of rigid spheres 225a therebetween and connecting a plurality of locations by a spring 225b. Accordingly, the first lens movable holding frame 224B is movably supported by the first lens base holding frame 224A in a plane orthogonal to the optical axis Z.
 第1レンズベース保持枠224Aには、その外周部に3本の第1レンズズーム駆動用カムフォロア232が備えられる。3本の第1レンズズーム駆動用カムフォロア232は、周方向に等間隔に配置される。各第1レンズズーム駆動用カムフォロア232は、それぞれカム筒214に備えられた第1レンズズーム駆動用カム溝214A及び固定筒212に備えられた第1レンズズーム駆動用直進溝212Aに嵌合される。これにより、第1レンズベース保持枠224Aが、固定筒212内に保持される。また、カム筒214を回転させると、第1レンズベース保持枠224Aが、所定の移動軌跡で固定筒212内を光軸Zに沿って移動する。 The first lens base holding frame 224A is provided with three first lens zoom drive cam followers 232 on the outer periphery thereof. The three first lens zoom drive cam followers 232 are arranged at equal intervals in the circumferential direction. Each first lens zoom drive cam follower 232 is fitted into a first lens zoom drive cam groove 214A provided in the cam barrel 214 and a first lens zoom drive straight advance groove 212A provided in the fixed barrel 212, respectively. . As a result, the first lens base holding frame 224A is held in the fixed cylinder 212. Further, when the cam barrel 214 is rotated, the first lens base holding frame 224A moves along the optical axis Z in the fixed barrel 212 along a predetermined movement locus.
 [第1レンズX軸方向駆動アクチュエータ及び第1レンズY軸方向駆動アクチュエータ]
 第1レンズX軸方向駆動アクチュエータ226Xは、第1レンズ222をX軸方向に駆動する。第1レンズY軸方向駆動アクチュエータ226Yは、第1レンズ222をY軸方向に駆動する。X軸及びY軸は、図28に示すように、光軸Zと直交する面内で互いに直交する2軸として設定される。第1レンズX軸方向駆動アクチュエータ226X及び第1レンズY軸方向駆動アクチュエータ226Yは、共にムービングコイル型のVCMで構成される。したがって、可動部である第1レンズ可動保持枠224Bに駆動用のコイルが備えられる。第1レンズX軸方向駆動アクチュエータ226X及び第1レンズY軸方向駆動アクチュエータ226Yは、第1アクチュエータの一例である。
[First lens X-axis driving actuator and first lens Y-axis driving actuator]
The first lens X-axis direction drive actuator 226X drives the first lens 222 in the X-axis direction. The first lens Y-axis direction drive actuator 226Y drives the first lens 222 in the Y-axis direction. The X axis and the Y axis are set as two axes orthogonal to each other in a plane orthogonal to the optical axis Z, as shown in FIG. The first lens X-axis direction drive actuator 226X and the first lens Y-axis direction drive actuator 226Y are both configured by a moving coil type VCM. Therefore, a driving coil is provided in the first lens movable holding frame 224B that is a movable portion. The first lens X-axis direction drive actuator 226X and the first lens Y-axis direction drive actuator 226Y are examples of a first actuator.
 [第1レンズX軸方向位置検出センサ及び第1レンズY軸方向位置検出センサ]
 第1レンズX軸方向位置検出センサ228Xは、あらかじめ設定された基準位置に対する第1レンズ222のX軸方向の位置を検出する。第1レンズY軸方向位置検出センサ228Yは、あらかじめ設定された基準位置に対する第1レンズ222のY軸方向の位置を検出する。第1レンズX軸方向位置検出センサ228X及び第1レンズY軸方向位置検出センサ228Yは、共にホールセンサで構成され、可動部である第1レンズ可動保持枠224Bに備えられた位置検出用マグネットの位置を検出して、第1レンズ222のX軸方向及びY軸方向の位置を検出する。具体的には、第1レンズX軸方向位置検出センサ228Xは、第1レンズ可動保持枠224Bに備えられたX軸方向位置検出用マグネット230Xの位置を検出して、第1レンズ222のX軸方向の位置を検出する。また、第1レンズY軸方向位置検出センサ228Yは、第1レンズ可動保持枠224Bに備えられたY軸方向位置検出用マグネット230Yの位置を検出して、第1レンズ222のY軸方向の位置を検出する。
[First lens X-axis direction position detection sensor and first lens Y-axis direction position detection sensor]
The first lens X-axis direction position detection sensor 228X detects the position of the first lens 222 in the X-axis direction with respect to a preset reference position. The first lens Y-axis direction position detection sensor 228Y detects the position of the first lens 222 in the Y-axis direction with respect to a preset reference position. The first lens X-axis direction position detection sensor 228X and the first lens Y-axis direction position detection sensor 228Y are both constituted by Hall sensors, and are provided by a position detection magnet provided in a first lens movable holding frame 224B that is a movable part. By detecting the position, the position of the first lens 222 in the X-axis direction and the Y-axis direction is detected. Specifically, the first lens X-axis direction position detection sensor 228X detects the position of the X-axis direction position detection magnet 230X provided on the first lens movable holding frame 224B, and the X-axis of the first lens 222. Detect the position in the direction. The first lens Y-axis direction position detection sensor 228Y detects the position of the Y-axis direction position detection magnet 230Y provided on the first lens movable holding frame 224B, and detects the position of the first lens 222 in the Y-axis direction. Is detected.
 [第2レンズユニット]
 第2レンズユニット240は、いわゆる焦点調節用のレンズユニットである。図27及び図29に示すように、第2レンズユニット240は、焦点調節用のレンズである第2レンズ242と、第2レンズ242を保持する第2レンズ保持枠244と、光軸Zと平行な方向に駆動する一対の第2レンズ駆動アクチュエータ246と、第2レンズ242の位置を検出する第2レンズ位置検出部248と、を備える。第2レンズユニット240は第2ユニットの一例である。
[Second lens unit]
The second lens unit 240 is a so-called focus adjustment lens unit. As shown in FIGS. 27 and 29, the second lens unit 240 includes a second lens 242 serving as a focus adjusting lens, a second lens holding frame 244 holding the second lens 242, and a A pair of second lens drive actuators 246 that drive in different directions, and a second lens position detector 248 that detects the position of the second lens 242. The second lens unit 240 is an example of a second unit.
 [第2レンズ]
 上記のように、第2レンズ242は、焦点調節用のレンズ(いわゆるフォーカスレンズ)であり、光軸Zに沿って移動することにより、焦点が調節される。第2レンズ242は、第2光学素子の一例である。
[Second lens]
As described above, the second lens 242 is a focus adjusting lens (a so-called focus lens), and the focus is adjusted by moving along the optical axis Z. The second lens 242 is an example of a second optical element.
 [第2レンズ保持枠]
 第2レンズ保持枠244は、第2レンズベース保持枠244A及び第2レンズ可動保持枠244Bで構成される。第2レンズ可動保持枠244Bは、第2レンズベース保持枠244A内に配置され、かつ、第2レンズベース保持枠244A内を光軸Zと平行な方向に移動自在に支持される。第2レンズ242は、第2レンズ可動保持枠244Bに保持される。
[Second lens holding frame]
The second lens holding frame 244 includes a second lens base holding frame 244A and a second lens movable holding frame 244B. The second lens movable holding frame 244B is disposed in the second lens base holding frame 244A, and is supported movably in the second lens base holding frame 244A in a direction parallel to the optical axis Z. The second lens 242 is held by the second lens movable holding frame 244B.
 第2レンズベース保持枠244Aには、その外周部に3本の第2レンズズーム駆動用カムフォロア250が備えられる。3本の第2レンズズーム駆動用カムフォロア250は、周方向に等間隔に配置される。各第2レンズズーム駆動用カムフォロア250は、それぞれカム筒214に備えられた第2レンズズーム駆動用カム溝214B及び固定筒212に備えられた第2レンズズーム駆動用直進溝212Bに嵌合される。これにより、第2レンズベース保持枠244Aが、固定筒212内に保持される。また、カム筒214を回転させると、第2レンズベース保持枠244Aが、固定筒212内を所定の移動軌跡で光軸Zに沿って移動する。 The second lens base holding frame 244A is provided with three second lens zoom driving cam followers 250 on the outer peripheral portion thereof. The three second lens zoom drive cam followers 250 are arranged at equal intervals in the circumferential direction. Each of the second lens zoom drive cam followers 250 is fitted into a second lens zoom drive cam groove 214B provided in the cam barrel 214 and a second lens zoom drive straight groove 212B provided in the fixed barrel 212, respectively. . Thereby, the second lens base holding frame 244A is held in the fixed cylinder 212. Further, when the cam barrel 214 is rotated, the second lens base holding frame 244A moves along the optical axis Z along a predetermined movement locus inside the fixed barrel 212.
 第2レンズベース保持枠244A内には、第2レンズ可動保持枠244Bをガイドする主軸252及び副軸254が備えられる。主軸252及び副軸254は、それぞれ光軸Zと平行に配置される。第2レンズ可動保持枠244Bは、主軸252に沿って摺動する主ガイド部256及び副軸254に沿って摺動する副ガイド部258を備える。第2レンズ可動保持枠244Bは、主ガイド部256及び副ガイド部258を介して、主軸252及び副軸254にスライド自在に支持される。 主 A main shaft 252 and a sub shaft 254 that guide the second lens movable holding frame 244B are provided in the second lens base holding frame 244A. The main axis 252 and the sub axis 254 are arranged in parallel with the optical axis Z, respectively. The second lens movable holding frame 244B includes a main guide 256 that slides along the main shaft 252 and a sub-guide 258 that slides along the sub-shaft 254. The second lens movable holding frame 244B is slidably supported by the main shaft 252 and the sub shaft 254 via the main guide portion 256 and the sub guide portion 258.
 [第2レンズ駆動アクチュエータ]
 第2レンズ駆動アクチュエータ246は、第2レンズ242を駆動する。第2レンズ駆動アクチュエータ246は、電磁式のアクチュエータであるムービングコイル型のVCMで構成される。したがって、可動部である第2レンズ可動保持枠244Bに駆動用のコイルが備えられる。第2レンズ駆動アクチュエータ246は、第2アクチュエータの一例である。
[Second lens drive actuator]
The second lens drive actuator 246 drives the second lens 242. The second lens drive actuator 246 is configured by a moving coil type VCM which is an electromagnetic actuator. Therefore, a driving coil is provided in the second lens movable holding frame 244B, which is a movable portion. The second lens drive actuator 246 is an example of a second actuator.
 [第2レンズ位置検出部]
 第2レンズ位置検出部248は、第2レンズ242の位置を検出する。第2レンズ位置検出部248は、第2レンズベース保持枠244A内での第2レンズ可動保持枠244Bの位置を検出して、第2レンズ242の位置を検出する。より具体的には、第2レンズベース保持枠244A内に設定された原点に対する第2レンズ可動保持枠244Bの位置を検出して、当該原点に対する第2レンズ242の位置を検出する。第2レンズ位置検出部248は、第2光学素子位置検出部の一例である。
[Second lens position detector]
The second lens position detector 248 detects the position of the second lens 242. The second lens position detector 248 detects the position of the second lens movable holding frame 244B in the second lens base holding frame 244A, and detects the position of the second lens 242. More specifically, the position of the second lens movable holding frame 244B with respect to the origin set in the second lens base holding frame 244A is detected, and the position of the second lens 242 with respect to the origin is detected. The second lens position detector 248 is an example of a second optical element position detector.
 第2レンズ位置検出部248は、第2レンズ242が原点に位置したことを検出する原点検出部248Aと、第2レンズ242の変位量を検出する変位量検出部248Bと、で構成される。第2レンズ位置検出部248は、原点検出部248Aで第2レンズ242が原点に位置したことを検出し、原点からの変位量を変位量検出部248Bで検出して、第2レンズ242の位置を検出する。原点検出部248Aは、遮光板及びフォトインタラプタで構成される。変位量検出部248Bは、磁気スケール及びMRセンサで構成される。 The second lens position detector 248 includes an origin detector 248A that detects that the second lens 242 is located at the origin, and a displacement detector 248B that detects the displacement of the second lens 242. The second lens position detecting unit 248 detects that the second lens 242 is located at the origin by the origin detecting unit 248A, detects the displacement from the origin by the displacement detecting unit 248B, and determines the position of the second lens 242. Is detected. The origin detection unit 248A includes a light-shielding plate and a photo interrupter. The displacement detecting section 248B includes a magnetic scale and an MR sensor.
 [レンズ鏡胴の動作]
 以上のように構成される本実施の形態のレンズ鏡胴200は、カム筒14を回転させることにより、第1レンズユニット220及び第2レンズユニット240が、所定の移動軌跡で光軸Zに沿って移動する。また、第1レンズX軸方向駆動アクチュエータ226X及び第1レンズY軸方向駆動アクチュエータ212Yを駆動することにより、第1レンズ222が光軸Zと直交する面内を移動する。更に、第2レンズ駆動アクチュエータ246を駆動することにより、第2レンズ242が光軸Zと平行に移動する。
[Operation of lens barrel]
The lens barrel 200 of the present embodiment configured as described above rotates the cam barrel 14 so that the first lens unit 220 and the second lens unit 240 move along the optical axis Z along a predetermined movement locus. Move. Further, by driving the first lens X-axis direction drive actuator 226X and the first lens Y-axis direction drive actuator 212Y, the first lens 222 moves in a plane orthogonal to the optical axis Z. Further, by driving the second lens drive actuator 246, the second lens 242 moves parallel to the optical axis Z.
 第1レンズユニット220における第1レンズ222の位置は、第1レンズX軸方向位置検出センサ228X及び第1レンズY軸方向位置検出センサ228Yで検出される。また、第2レンズユニット240における第2レンズ242の位置は、第2レンズ位置検出部248で検出される。 The position of the first lens 222 in the first lens unit 220 is detected by the first lens X-axis direction position detection sensor 228X and the first lens Y-axis direction position detection sensor 228Y. In addition, the position of the second lens 242 in the second lens unit 240 is detected by the second lens position detection unit 248.
 [第1レンズX軸方向位置検出センサ及び第1レンズY軸方向位置検出センサの出力の補正]
 ホールセンサで構成される第1レンズX軸方向位置検出センサ228X及び第1レンズY軸方向位置検出センサ228Yは、第1レンズユニット220及び第2レンズユニット240の相対的な位置関係に応じて、出力が補正される。出力(位置信号)の補正は、次の手順で行われる。
[Correction of output of first lens X-axis direction position detection sensor and first lens Y-axis direction position detection sensor]
The first lens X-axis direction position detection sensor 228X and the first lens Y-axis direction position detection sensor 228Y configured by a Hall sensor are provided according to the relative positional relationship between the first lens unit 220 and the second lens unit 240. The output is corrected. The output (position signal) is corrected in the following procedure.
 まず、第1レンズX軸方向位置検出センサ228Xから出力される位置信号、及び、第1レンズY軸方向位置検出センサ228Yから出力される位置信号を取得する。 First, a position signal output from the first lens X-axis direction position detection sensor 228X and a position signal output from the first lens Y-axis direction position detection sensor 228Y are obtained.
 次に、第1レンズユニット220及び第2レンズユニット240の相対的な位置関係の情報を取得する。第1レンズユニット220及び第2レンズユニット240は、既知の移動軌跡に従って移動するので、その位置関係は既知である。第2レンズユニット240に対する第1レンズユニット220の相対的な位置は、カム筒214の回転位置、あるいは、光軸上での第1レンズユニット220の位置又は第2レンズユニット240の位置から一意に定まる。したがって、これらの情報を取得して、第1レンズユニット220及び第2レンズユニット240の相対的な位置関係の情報を取得する。 Next, information on the relative positional relationship between the first lens unit 220 and the second lens unit 240 is obtained. Since the first lens unit 220 and the second lens unit 240 move according to a known movement locus, their positional relationship is known. The relative position of the first lens unit 220 with respect to the second lens unit 240 is uniquely determined from the rotational position of the cam barrel 214 or the position of the first lens unit 220 or the position of the second lens unit 240 on the optical axis. Is determined. Therefore, by acquiring these pieces of information, information on the relative positional relationship between the first lens unit 220 and the second lens unit 240 is acquired.
 次に、取得した第1レンズユニット220及び第2レンズユニット240の相対的な位置関係の情報に基づいて、補正係数の情報を取得する。補正係数の情報は、あらかじめ第2レンズユニット240に対する第1レンズユニット220の相対的な位置ごとに求めて記憶部に記憶させておく。また、補正係数の情報は、センサごとに個別に用意する。すなわち、第1レンズX軸方向位置検出センサ228Xからの出力に対する補正係数と、第1レンズY軸方向位置検出センサ228Yからの出力に対する補正係数を個別に用意する。 Next, based on the obtained information on the relative positional relationship between the first lens unit 220 and the second lens unit 240, information on the correction coefficient is obtained. The information of the correction coefficient is obtained in advance for each relative position of the first lens unit 220 with respect to the second lens unit 240 and stored in the storage unit. The information of the correction coefficient is prepared individually for each sensor. That is, a correction coefficient for the output from the first lens X-axis direction position detection sensor 228X and a correction coefficient for the output from the first lens Y-axis direction position detection sensor 228Y are separately prepared.
 次に、取得した補正係数に基づいて補正関数を設定し、位置信号を補正する。より具体的には、取得したX軸方向の補正係数に基づいて、X軸方向の補正関数を設定し、第1レンズX軸方向位置検出センサ228Xから出力されたX軸方向の位置信号を補正する。また、取得したY軸方向の補正係数に基づいて、Y軸方向の補正関数を設定し、第1レンズY軸方向位置検出センサ228Yから出力されたY軸方向の位置信号を補正する。 (4) Next, a correction function is set based on the obtained correction coefficient, and the position signal is corrected. More specifically, a correction function in the X-axis direction is set based on the acquired correction coefficient in the X-axis direction, and the position signal in the X-axis direction output from the first lens X-axis direction position detection sensor 228X is corrected. I do. Further, a correction function in the Y-axis direction is set based on the acquired correction coefficient in the Y-axis direction, and the position signal in the Y-axis direction output from the first lens Y-axis direction position detection sensor 228Y is corrected.
 次に、補正後のX軸方向及びY軸方向の位置信号に基づいて、第1レンズ222のX軸方向の位置及びY軸方向の位置を算出する。 Next, the position of the first lens 222 in the X-axis direction and the position in the Y-axis direction are calculated based on the corrected position signals in the X-axis direction and the Y-axis direction.
 このように、第1レンズユニット220及び第2レンズユニット240の相対的な位置関係に応じて、第1レンズX軸方向位置検出センサ228X及び第1レンズY軸方向位置検出センサ228Yの出力を補正することにより、常に第1レンズ222の位置を正確に検出できる。 As described above, the outputs of the first lens X-axis direction position detection sensor 228X and the first lens Y-axis direction position detection sensor 228Y are corrected according to the relative positional relationship between the first lens unit 220 and the second lens unit 240. By doing so, the position of the first lens 222 can always be accurately detected.
 なお、本実施の形態では、第2レンズ242が光軸Zと平行に移動する構成とされているが、第2レンズ242が光軸Zと垂直な方向に移動する場合にも本発明は適用できる。また、第1レンズ222が光軸Zと平行に移動し、第2レンズ242が光軸Zと垂直な方向に移動する場合にも本発明は適用できる。 In the present embodiment, the second lens 242 is configured to move in parallel with the optical axis Z. However, the present invention is also applied to a case where the second lens 242 moves in a direction perpendicular to the optical axis Z. it can. The present invention is also applicable to a case where the first lens 222 moves parallel to the optical axis Z and the second lens 242 moves in a direction perpendicular to the optical axis Z.
 また、上記一連の実施の形態では、本発明を交換レンズに適用した場合を例説明したが、本発明の適用は、これに限定されず、カメラに一体的に備えられたレンズの鏡胴にも同様に適用できる。 Further, in the above-described series of embodiments, the case where the present invention is applied to an interchangeable lens has been described as an example, but the application of the present invention is not limited to this, and the present invention is applied to a lens barrel integrally provided in a camera. Can be similarly applied.
 また、本発明が適用可能な鏡胴は、カメラの鏡胴に限らず、プロジェクタ、顕微鏡、双眼鏡等の各種光学機器の鏡胴に適用できる。 The lens barrel to which the present invention can be applied is not limited to a lens barrel of a camera, but can be applied to lens barrels of various optical devices such as a projector, a microscope, and binoculars.
 また、上記実施の形態では、ズームによって第1ユニット及び第2ユニットの相対的な位置関係が変わる場合を例に説明したが、他の条件で第1ユニット及び第2ユニットの相対的な位置関係が変わる場合にも同様に適用できる。 Further, in the above embodiment, the case where the relative positional relationship between the first unit and the second unit is changed by zooming has been described as an example, but the relative positional relationship between the first unit and the second unit under other conditions. The same can be applied to the case where is changed.
 [第6の実施の形態]
 [装置構成]
 図30は、本発明が適用された撮像装置の概略構成図である。
[Sixth Embodiment]
[Device configuration]
FIG. 30 is a schematic configuration diagram of an imaging device to which the present invention has been applied.
 同図に示す撮像装置300は、いわゆるセンサシフト方式の手ぶれ補正機能を備えたデジタルカメラであり、撮像レンズ310と、撮像レンズ310を介して被写体の光学像を撮像するイメージセンサ350と、イメージセンサ350を光軸Zと直交する面内を平行移動させて手ぶれを補正する手ぶれ補正機構360と、を備える。 An imaging device 300 shown in FIG. 1 is a digital camera having a so-called sensor shift type image stabilization function, and includes an imaging lens 310, an image sensor 350 that captures an optical image of a subject via the imaging lens 310, and an image sensor. A camera shake correction mechanism 360 that corrects camera shake by moving 350 in a plane perpendicular to the optical axis Z.
 [撮像レンズ]
 撮像レンズ310は、ズーム機能及び焦点調節機能を備えたズームレンズで構成される。撮像レンズ310は、複数のレンズを組み合わせて構成され、一部のレンズを光軸Zに沿って移動させることにより、焦点距離が連続的に変化する。また、一部のレンズ(フォーカスレンズ)を光軸Zに沿って移動させることにより、焦点が調節される。なお、図30では、説明の便宜上、フォーカスレンズ312のみを図示している。
[Imaging lens]
The imaging lens 310 includes a zoom lens having a zoom function and a focus adjustment function. The imaging lens 310 is configured by combining a plurality of lenses, and the focal length changes continuously by moving some of the lenses along the optical axis Z. The focus is adjusted by moving some of the lenses (focus lenses) along the optical axis Z. In FIG. 30, only the focus lens 312 is shown for convenience of explanation.
 本実施の形態の撮像装置300では、フォーカスレンズ312が、ズームによって所定の移動軌跡で移動し、かつ、アクチュエータに駆動されて単独で移動する。フォーカスレンズ312は、可動レンズの一例である。撮像レンズ310は、フォーカスレンズ312を駆動するフォーカスレンズ駆動部314及びフォーカスレンズ312の位置を検出するフォーカスレンズ位置検出部316を備える。 In the imaging device 300 according to the present embodiment, the focus lens 312 moves on a predetermined movement locus by zooming, and moves independently by being driven by an actuator. The focus lens 312 is an example of a movable lens. The imaging lens 310 includes a focus lens driving unit 314 that drives the focus lens 312 and a focus lens position detection unit 316 that detects the position of the focus lens 312.
 [フォーカスレンズの保持構造]
 図31は、図30の31-31断面図である。
[Focus lens holding structure]
FIG. 31 is a sectional view taken along line 31-31 of FIG.
 フォーカスレンズ312は、フォーカスレンズ保持枠318に保持されて、撮像レンズ310内に配置される。フォーカスレンズ保持枠318は、フォーカスレンズベース保持枠318A及びフォーカスレンズ可動保持枠318Bで構成される。フォーカスレンズ可動保持枠318Bは、フォーカスレンズベース保持枠318A内に配置され、かつ、フォーカスレンズベース保持枠318A内を光軸Zと平行な方向に移動自在に支持される。フォーカスレンズ312は、フォーカスレンズ可動保持枠318Bに保持される。 The focus lens 312 is held in the focus lens holding frame 318 and arranged in the imaging lens 310. The focus lens holding frame 318 includes a focus lens base holding frame 318A and a focus lens movable holding frame 318B. The focus lens movable holding frame 318B is disposed in the focus lens base holding frame 318A, and is supported movably in the focus lens base holding frame 318A in a direction parallel to the optical axis Z. The focus lens 312 is held by the focus lens movable holding frame 318B.
 フォーカスレンズベース保持枠318Aには、その外周部に3本のフォーカスレンズズーム駆動用カムフォロア320が備えられる。3本のフォーカスレンズズーム駆動用カムフォロア320は、周方向に等間隔に配置される。各フォーカスレンズズーム駆動用カムフォロア320は、それぞれカム筒322に備えられたフォーカスレンズズーム駆動用カム溝322A及び固定筒324に備えられたフォーカスレンズズーム駆動用直進溝324Aに嵌合される。これにより、カム筒322を回転させると、フォーカスレンズベース保持枠318Aが、所定の移動軌跡で光軸Zに沿って移動する。なお、カム筒322は、撮像レンズ310の外周に備えられたズームリング(不図示)に連結され、ズームリングに連動して回転する。また、設定されたズームポジションは、図示しないズームポジション検出部で検出される。 (3) The focus lens base holding frame 318A is provided with three focus lens zoom drive cam followers 320 on its outer peripheral portion. The three focus lens zoom drive cam followers 320 are arranged at equal intervals in the circumferential direction. Each of the focus lens zoom drive cam followers 320 is fitted into a focus lens zoom drive cam groove 322A provided in the cam barrel 322 and a focus lens zoom drive straight advance groove 324A provided in the fixed barrel 324, respectively. Thus, when the cam barrel 322 is rotated, the focus lens base holding frame 318A moves along the optical axis Z along a predetermined movement locus. The cam barrel 322 is connected to a zoom ring (not shown) provided on the outer periphery of the imaging lens 310, and rotates in conjunction with the zoom ring. The set zoom position is detected by a zoom position detector (not shown).
 フォーカスレンズベース保持枠318A内には、主軸326及び副軸328が備えられる。主軸326及び副軸328は、それぞれ光軸Zに沿って配置される。 主 A main shaft 326 and a sub shaft 328 are provided in the focus lens base holding frame 318A. The main axis 326 and the sub axis 328 are respectively arranged along the optical axis Z.
 フォーカスレンズ可動保持枠318Bは、主軸326に沿って摺動する主ガイド部330及び副軸328に沿って摺動する副ガイド部332を備える。フォーカスレンズ可動保持枠318Bは、主ガイド部330及び副ガイド部332を介して、主軸326及び副軸328にスライド自在に支持される。 The focus lens movable holding frame 318 </ b> B includes a main guide 330 that slides along the main shaft 326 and a sub guide 332 that slides along the sub shaft 328. The focus lens movable holding frame 318B is slidably supported by the main shaft 326 and the sub shaft 328 via the main guide portion 330 and the sub guide portion 332.
 [フォーカスレンズ駆動部]
 フォーカスレンズ駆動部314は、一対のフォーカスレンズ駆動アクチュエータ334で構成される。フォーカスレンズ駆動アクチュエータ334は、ムービングコイル型のVCMで構成される。したがって、可動部であるフォーカスレンズ可動保持枠318Bに駆動用のコイルが備えられる。フォーカスレンズ駆動アクチュエータ334は、第1アクチュエータの一例である。
[Focus lens driver]
The focus lens driving unit 314 is configured by a pair of focus lens driving actuators 334. The focus lens drive actuator 334 is configured by a moving coil type VCM. Therefore, a driving coil is provided on the focus lens movable holding frame 318B which is a movable portion. The focus lens drive actuator 334 is an example of a first actuator.
 [フォーカスレンズ位置検出部]
 フォーカスレンズ位置検出部316は、フォーカスレンズ位置検出用マグネット316A及びフォーカスレンズ位置検出センサ316Bで構成される。
[Focus lens position detector]
The focus lens position detection unit 316 includes a focus lens position detection magnet 316A and a focus lens position detection sensor 316B.
 フォーカスレンズ位置検出用マグネット316Aは、可動部であるフォーカスレンズ可動保持枠318Bに備えらえる。 The focus lens position detecting magnet 316A is provided on a focus lens movable holding frame 318B that is a movable part.
 フォーカスレンズ位置検出センサ316Bは、フォーカスレンズベース保持枠318Aに備えられる。フォーカスレンズ位置検出センサ316Bは、フォーカスレンズ位置検出用マグネット316Aの位置を検出して、フォーカスレンズ312の位置を検出する。なお、ここでの位置は、フォーカスレンズベース保持枠318A内での位置である。すなわち、フォーカスレンズベース保持枠318A内に設定された基準位置に対する位置である。 The focus lens position detection sensor 316B is provided in the focus lens base holding frame 318A. The focus lens position detection sensor 316B detects the position of the focus lens position detection magnet 316A to detect the position of the focus lens 312. The position here is a position in the focus lens base holding frame 318A. That is, the position is relative to the reference position set in the focus lens base holding frame 318A.
 フォーカスレンズ312、フォーカスレンズ駆動部314及びフォーカスレンズ位置検出部316は、フォーカスレンズ保持枠318を基準として1つのユニットを構成し、このユニットがズーム操作によって光軸Zと平行に移動する。フォーカスレンズ保持枠318を基準としたユニットは、可動ユニットの一例である。また、カム筒322、固定筒324及びフォーカスレンズズーム駆動用カムフォロア320で構成されるカム機構は、可動ユニット駆動部の一例である。 The focus lens 312, the focus lens drive unit 314, and the focus lens position detection unit 316 constitute one unit with reference to the focus lens holding frame 318, and this unit moves in parallel with the optical axis Z by zoom operation. The unit based on the focus lens holding frame 318 is an example of a movable unit. The cam mechanism including the cam barrel 322, the fixed barrel 324, and the cam follower 320 for driving the focus lens zoom is an example of a movable unit driving unit.
 [イメージセンサ]
 イメージセンサ350は、撮像レンズ310を介して被写体の光学像を撮像する。イメージセンサ350は、CMOS型(CMOS:Complementary Metal-Oxide Semiconductor)、CCD型(CCD:Charge Coupled Device)等の公知のエリアイメージセンサで構成される。
[Image sensor]
The image sensor 350 captures an optical image of a subject via the imaging lens 310. The image sensor 350 is configured by a known area image sensor such as a CMOS (Complementary Metal-Oxide Semiconductor) or a CCD (Charge Coupled Device).
 [手ぶれ補正機構]
 図32は、図30の32-32断面図である。
[Image stabilization mechanism]
FIG. 32 is a sectional view taken along line 32-32 of FIG.
 手ぶれ補正機構360は、光軸Zと直交する面内でイメージセンサ350を平行移動させて手ぶれを補正する。手ぶれ補正機構360は、光軸Zと直交する面内でイメージセンサ350を移動自在に支持するイメージセンサ保持枠362と、イメージセンサ350を駆動するイメージセンサ駆動部と、イメージセンサ350の位置を検出するイメージセンサ位置検出部と、を備える。 The camera shake correction mechanism 360 corrects the camera shake by moving the image sensor 350 in a plane perpendicular to the optical axis Z. The camera shake correction mechanism 360 detects an image sensor holding frame 362 that movably supports the image sensor 350 in a plane orthogonal to the optical axis Z, an image sensor driving unit that drives the image sensor 350, and detects the position of the image sensor 350. And an image sensor position detecting unit.
 [イメージセンサ保持枠]
 イメージセンサ保持枠362は、イメージセンサ350を保持するイメージセンサ可動保持枠362Aと、イメージセンサ可動保持枠362Aを光軸Zと直交する面内でスライド自在に支持するイメージセンサベース保持枠362Bと、で構成される。イメージセンサ可動保持枠362A及びイメージセンサベース保持枠362Bは、その間に複数の剛球368が挟まれ、複数箇所をバネ370で連結されて一体化される。これにより、イメージセンサ可動保持枠362Aが、イメージセンサベース保持枠362Bに対して、光軸Zと直交する面内を移動自在に支持される。
[Image sensor holding frame]
The image sensor holding frame 362 includes an image sensor movable holding frame 362A that holds the image sensor 350, an image sensor base holding frame 362B that slidably supports the image sensor movable holding frame 362A in a plane perpendicular to the optical axis Z, It consists of. In the image sensor movable holding frame 362A and the image sensor base holding frame 362B, a plurality of rigid spheres 368 are interposed therebetween, and a plurality of locations are connected by a spring 370 to be integrated. Accordingly, the image sensor movable holding frame 362A is movably supported by the image sensor base holding frame 362B in a plane orthogonal to the optical axis Z.
 [イメージセンサ駆動部]
 イメージセンサ駆動部は、イメージセンサ可動保持枠362AをX軸方向に駆動するイメージセンサX軸方向駆動アクチュエータ364Xと、イメージセンサ可動保持枠362AをY軸方向に駆動するイメージセンサY軸方向駆動アクチュエータ364Yと、を備える。X軸及びY軸は、図32に示すように、光軸Zと直交する面内で互いに直交する2軸として設定される。イメージセンサX軸方向駆動アクチュエータ364X及びイメージセンサY軸方向駆動アクチュエータ364Yは、共に電磁式のアクチュエータであるムービングコイル型のVCMで構成される。したがって、可動部であるイメージセンサ可動保持枠362Aに駆動用のコイルが備えられる。イメージセンサX軸方向駆動アクチュエータ364X及びイメージセンサY軸方向駆動アクチュエータ364Yは、第2アクチュエータの一例である。
[Image sensor driver]
The image sensor driving unit includes an image sensor X-axis direction drive actuator 364X that drives the image sensor movable holding frame 362A in the X-axis direction, and an image sensor Y-axis direction drive actuator 364Y that drives the image sensor movable holding frame 362A in the Y-axis direction. And. The X axis and the Y axis are set as two axes orthogonal to each other in a plane orthogonal to the optical axis Z, as shown in FIG. Each of the image sensor X-axis direction drive actuator 364X and the image sensor Y-axis direction drive actuator 364Y is configured by a moving coil type VCM which is an electromagnetic actuator. Therefore, a driving coil is provided in the image sensor movable holding frame 362A which is a movable portion. The image sensor X-axis direction drive actuator 364X and the image sensor Y-axis direction drive actuator 364Y are examples of a second actuator.
 イメージセンサX軸方向駆動アクチュエータ364Xによってイメージセンサ可動保持枠362AをX軸方向に駆動することにより、イメージセンサ350が光軸Zと直交する面内をX軸方向に移動する。また、イメージセンサY軸方向駆動アクチュエータ364Yによってイメージセンサ可動保持枠362AをY軸方向に駆動することにより、イメージセンサ350が光軸Zと直交する面内をY軸方向に移動する。 By driving the image sensor movable holding frame 362A in the X-axis direction by the image sensor X-axis direction drive actuator 364X, the image sensor 350 moves in the X-axis direction in a plane orthogonal to the optical axis Z. Further, by driving the image sensor movable holding frame 362A in the Y-axis direction by the image sensor Y-axis direction drive actuator 364Y, the image sensor 350 moves in the Y-axis direction in a plane orthogonal to the optical axis Z.
 [イメージセンサ位置検出部]
 イメージセンサ位置検出部は、イメージセンサ350のX軸方向の位置を検出するイメージセンサX軸方向位置検出センサ366Xと、イメージセンサ350のY軸方向の位置を検出するイメージセンサY軸方向位置検出センサ366Yと、を備える。イメージセンサX軸方向位置検出センサ366X及びイメージセンサY軸方向位置検出センサ366Yは、共にホールセンサで構成され、可動部であるイメージセンサ可動保持枠362Aに備えられた位置検出用マグネットの位置を検出して、イメージセンサ350のX軸方向及びY軸方向の位置を検出する。具体的には、イメージセンサX軸方向位置検出センサ366Xは、イメージセンサ可動保持枠362Aに備えられたX軸方向位置検出用マグネット368Xの位置を検出して、イメージセンサ350のX軸方向の位置を検出する。また、イメージセンサY軸方向位置検出センサ366Yは、イメージセンサ可動保持枠362Aに備えられたY軸方向位置検出用マグネット368Yの位置を検出して、イメージセンサ350のY軸方向の位置を検出する。
[Image sensor position detector]
The image sensor position detection unit includes an image sensor X-axis direction position detection sensor 366X that detects the position of the image sensor 350 in the X-axis direction, and an image sensor Y-axis direction position detection sensor that detects the Y-axis direction position of the image sensor 350. 366Y. Each of the image sensor X-axis direction position detection sensor 366X and the image sensor Y-axis direction position detection sensor 366Y is configured by a Hall sensor, and detects the position of a position detection magnet provided in the image sensor movable holding frame 362A that is a movable part. Then, the positions of the image sensor 350 in the X-axis direction and the Y-axis direction are detected. Specifically, the image sensor X-axis direction position detection sensor 366X detects the position of the X-axis direction position detection magnet 368X provided on the image sensor movable holding frame 362A, and the position of the image sensor 350 in the X-axis direction. Is detected. The image sensor Y-axis direction position detection sensor 366Y detects the position of the Y-axis direction position detection magnet 368Y provided on the image sensor movable holding frame 362A, and detects the position of the image sensor 350 in the Y-axis direction. .
 [フォーカスレンズ位置検出センサの出力の補正]
 以上のように構成される撮像装置300は、ズーム操作によって、フォーカスレンズ保持枠318が光軸Zに沿って移動する。この結果、フォーカスレンズ保持枠318とイメージセンサ350との間の距離が変化する。フォーカスレンズ保持枠318とイメージセンサ350との間の距離が変化すると、イメージセンサ駆動部とフォーカスレンズ位置検出センサ316Bとの間の距離が変化する。イメージセンサ駆動部は磁性体を含むため、イメージセンサ駆動部とフォーカスレンズ位置検出センサ316Bとの間の距離が変化すると、フォーカスレンズ位置検出センサ316Bの出力特性が変化する。このため、ズームポジションに応じて、フォーカスレンズ位置検出センサ316Bの出力(位置信号)が補正される。この処理は、撮像装置300の制御部で行われる。撮像装置300の制御部は、CPU、ROM、RAMを備えたコンピュータで構成され、所定のプログラムを実行することにより、フォーカスレンズ位置検出センサの出力の補正機能を提供する。
[Correction of output of focus lens position detection sensor]
In the imaging device 300 configured as described above, the focus lens holding frame 318 moves along the optical axis Z by the zoom operation. As a result, the distance between the focus lens holding frame 318 and the image sensor 350 changes. When the distance between the focus lens holding frame 318 and the image sensor 350 changes, the distance between the image sensor driving unit and the focus lens position detection sensor 316B changes. Since the image sensor driver includes a magnetic material, when the distance between the image sensor driver and the focus lens position detection sensor 316B changes, the output characteristics of the focus lens position detection sensor 316B change. Therefore, the output (position signal) of the focus lens position detection sensor 316B is corrected according to the zoom position. This processing is performed by the control unit of the imaging device 300. The control unit of the imaging device 300 includes a computer having a CPU, a ROM, and a RAM, and provides a function of correcting the output of the focus lens position detection sensor by executing a predetermined program.
 図33は、撮像装置の制御部が提供するフォーカスレンズ位置検出センサの出力の補正機能のブロック図である。 FIG. 33 is a block diagram of a function of correcting the output of the focus lens position detection sensor provided by the control unit of the imaging device.
 撮像装置300の制御部は、位置信号を取得する位置信号取得部380、取得した位置信号を補正する位置信号補正部382、及び、補正後の位置信号に基づいて、フォーカスレンズ312の位置を算出する位置算出部384の機能を提供する。 The control unit of the imaging device 300 calculates the position of the focus lens 312 based on the position signal acquisition unit 380 that acquires the position signal, the position signal correction unit 382 that corrects the acquired position signal, and the corrected position signal. The function of the position calculation unit 384 is provided.
 位置信号取得部380は、フォーカスレンズ位置検出センサ316Bから出力される信号を位置信号として取得する。 The position signal acquisition unit 380 acquires a signal output from the focus lens position detection sensor 316B as a position signal.
 位置信号補正部382は、位置信号取得部380で取得した位置信号をズームポジションに基づいて補正する。位置信号補正部382は、ズームポジション検出部388からズームポジションの情報を取得し、取得したズームポジションに対応した補正係数の情報を補正情報記憶部386から取得する。そして、取得した補正係数に基づいて、補正関数を設定し、位置信号を補正する。 The position signal correction unit 382 corrects the position signal acquired by the position signal acquisition unit 380 based on the zoom position. The position signal correction unit 382 obtains information on the zoom position from the zoom position detection unit 388, and obtains information on a correction coefficient corresponding to the obtained zoom position from the correction information storage unit 386. Then, a correction function is set based on the obtained correction coefficient, and the position signal is corrected.
 なお、補正係数については、上記第1の実施の形態と同様の手法で求めることができる。すなわち、各ズームポジションでのフォーカスレンズ位置検出センサ316Bとイメージセンサ350との相対的な位置関係は一意に定まり、既知であるので、事前にズームポジションごとのフォーカスレンズ位置検出センサ316Bの出力から補正係数α及びβを求めておく。求めた補正係数の情報は、ズームポジションの情報に関連付けて、補正情報記憶部386に記憶させておく。補正情報記憶部386は、たとえば、ROMで構成される。 The correction coefficient can be obtained by the same method as in the first embodiment. That is, since the relative positional relationship between the focus lens position detection sensor 316B and the image sensor 350 at each zoom position is uniquely determined and known, correction is made in advance from the output of the focus lens position detection sensor 316B for each zoom position. The coefficients α and β are determined in advance. Information on the obtained correction coefficient is stored in the correction information storage unit 386 in association with information on the zoom position. The correction information storage unit 386 is configured by, for example, a ROM.
 位置算出部384は、補正後の位置信号に基づいて、フォーカスレンズ312の位置を算出する。これにより、ズームポジションによらずに正しい位置を検出できる。 The position calculation unit 384 calculates the position of the focus lens 312 based on the corrected position signal. Thus, a correct position can be detected regardless of the zoom position.
 [フォーカスレンズ位置検出センサの出力の補正を含むフォーカスレンズの位置の検出処理の手順]
 図34は、フォーカスレンズ位置検出センサの出力の補正を含むフォーカスレンズの位置の検出処理の手順(位置検出方法)を示すフローチャートである。
[Procedure of focus lens position detection processing including correction of output of focus lens position detection sensor]
FIG. 34 is a flowchart illustrating a procedure (a position detection method) of a focus lens position detection process including correction of an output of the focus lens position detection sensor.
 まず、フォーカスレンズ位置検出センサ316Bから出力される位置信号を取得する(ステップS31)。次に、ズームポジション検出部120から現在のズームポジションの情報を取得する(ステップS32)。次に、ズームポジションに対応した補正係数を取得する(ステップS33)。次に、取得した補正係数に基づいて補正関数を設定し、位置信号を補正する(ステップS34)。次に、補正後の位置信号に基づいて、フォーカスレンズ312の位置を算出する(ステップS35)。これにより、フォーカスレンズ312の正確な位置が求まる。 First, a position signal output from the focus lens position detection sensor 316B is obtained (Step S31). Next, information on the current zoom position is obtained from the zoom position detector 120 (step S32). Next, a correction coefficient corresponding to the zoom position is obtained (step S33). Next, a correction function is set based on the obtained correction coefficient, and the position signal is corrected (step S34). Next, the position of the focus lens 312 is calculated based on the corrected position signal (step S35). Thereby, an accurate position of the focus lens 312 is obtained.
 このように、ズームポジションによって位置検出センサ84の出力を補正することにより、第3レンズ群前群G3aの位置を常に正確に検出できる。 As described above, by correcting the output of the position detection sensor 84 based on the zoom position, the position of the third lens group front group G3a can always be accurately detected.
 [イメージセンサX軸方向位置検出センサ及びイメージセンサY軸方向位置検出センサの出力の補正]
 イメージセンサX軸方向位置検出センサ366X及びイメージセンサY軸方向位置検出センサ366Yについても、ズーム操作によって、フォーカスレンズ駆動アクチュエータ334から受ける磁気の影響が変化する。したがって、イメージセンサX軸方向位置検出センサ366X及びイメージセンサY軸方向位置検出センサ366Yについても、同様の手法でその出力(位置信号)を補正することが好ましい。これにより、イメージセンサ350の位置を正確に検出できる。
[Correction of output of image sensor X-axis direction position detection sensor and image sensor Y-axis direction position detection sensor]
As for the image sensor X-axis direction position detection sensor 366X and the image sensor Y-axis direction position detection sensor 366Y, the influence of magnetism received from the focus lens drive actuator 334 changes by the zoom operation. Therefore, it is preferable that the output (position signal) of the image sensor X-axis direction position detection sensor 366X and the image sensor Y-axis direction position detection sensor 366Y be corrected in the same manner. Thereby, the position of the image sensor 350 can be accurately detected.
 [変形例]
 本実施の形態においても、位置検出センサの取り付け状態及び温度を考慮した補正を適用でき、これにより、より高精度な位置検出が可能になる。
[Modification]
Also in the present embodiment, it is possible to apply a correction in consideration of the mounting state of the position detection sensor and the temperature, thereby enabling more accurate position detection.
 また、上記実施の形態では、可動レンズが光軸と平行な方向に移動する場合を例に説明したが、可動レンズが光軸と垂直な方向に移動する場合にも本発明は適用できる。 In the above embodiment, the case where the movable lens moves in the direction parallel to the optical axis has been described as an example, but the present invention can be applied to the case where the movable lens moves in the direction perpendicular to the optical axis.
 また、本発明の適用は、単体としての撮像装置に限らず、携帯電話、スマートフォン、タブレット型コンピュータ等に組み付けられた撮像装置にも同様に適用できる。また、本発明が適用される撮像装置は、静止画を撮像する撮像装置に限らず、動画を撮像する撮像装置にも適用できる。 The application of the present invention is not limited to an imaging device as a single unit, but can be similarly applied to an imaging device assembled in a mobile phone, a smartphone, a tablet computer, or the like. Further, the imaging device to which the present invention is applied is not limited to an imaging device that captures a still image, but can be applied to an imaging device that captures a moving image.
 [その他の実施の形態]
 位置検出センサの出力を補正する機能等を実現するためのハードウェア的な構成は、各種のプロセッサーで構成できる。各種のプロセッサーには、ソフトウェア(プログラム)を実行して各種の処理を行う処理部として機能する汎用的なプロセッサーであるCPU、FPGA(FPGA:Field Programmable Gate Array)などの製造後に回路構成を変更可能なプロセッサーであるPLD(PLD:Programmable Logic Device)、ASIC(ASIC:Application Specific Integrated Circuit)などの特定の処理を実行させるために専用に設計された回路構成を有するプロセッサーである専用電気回路などが含まれる。
[Other embodiments]
The hardware configuration for realizing the function of correcting the output of the position detection sensor and the like can be configured by various processors. For various processors, the circuit configuration can be changed after manufacturing a general-purpose processor such as CPU or FPGA (FPGA: Field Programmable Gate Array) that functions as a processing unit that executes software (programs) to perform various processes. A dedicated electrical circuit, which is a processor having a circuit configuration specifically designed to execute a specific process such as a programmable processor (PLD: Programmable Logic Device), an ASIC (Application Specific Integrated Circuit), etc. It is.
 一つの処理部は、これら各種のプロセッサーのうちの一つで構成されていてもよいし、同種又は異種の二つ以上のプロセッサーで構成されていてもよい。たとえば、複数のFPGAで構成されてもよいし、CPU及びFPGAの組み合わせで構成されてもよい。 One processing unit may be constituted by one of these various processors, or may be constituted by two or more processors of the same type or different types. For example, it may be composed of a plurality of FPGAs or a combination of a CPU and an FPGA.
 また、複数の処理部を一つのプロセッサーで構成してもよい。複数の処理部を一つのプロセッサーで構成する例としては、第1に、クライアント、サーバなどのコンピュータに代表されるように、一つ以上のCPUとソフトウェアとの組合せで一つのプロセッサーを構成し、このプロセッサーが複数の処理部として機能する形態がある。第2に、システムオンチップ(SoC:System On Chip)などに代表されるように、複数の処理部を含むシステム全体の機能を一つのICチップ(IC:Integrated Circuit)で実現するプロセッサーを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサーを一つ以上用いて構成される。 Also, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a client or a server, one processor is configured by a combination of one or more CPUs and software, There is a form in which this processor functions as a plurality of processing units. Second, a processor that realizes the functions of the entire system including a plurality of processing units with a single IC chip (IC: Integrated Circuit), as represented by a system-on-chip (SoC), is used. There is a form. As described above, the various processing units are configured by using one or more of the above various processors as a hardware structure.
 更に、これらの各種のプロセッサーのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路である。 Further, the hardware structure of these various processors is, more specifically, an electric circuit in which circuit elements such as semiconductor elements are combined.
 上記の実施形態で説明した位置検出センサの出力を補正する機能をコンピュータに実現させるプログラムを光ディスク、磁気ディスク、若しくは、半導体メモリその他の有体物たる非一時的な情報記憶媒体であるコンピュータ可読媒体に記録し、この情報記憶媒体を通じてプログラムを提供することが可能である。またこのような有体物たる非一時的な情報記憶媒体にプログラムを記憶させて提供する態様に代えて、インターネットなどの電気通信回線を利用してプログラム信号をダウンロードサービスとして提供することも可能である。 A program for causing a computer to realize the function of correcting the output of the position detection sensor described in the above embodiment is recorded on an optical disk, a magnetic disk, or a computer readable medium that is a non-transitory information storage medium such as a semiconductor memory or other tangible material. However, it is possible to provide a program through this information storage medium. Instead of providing the program by storing the program in a non-transitory information storage medium as such a tangible entity, the program signal can be provided as a download service using an electric communication line such as the Internet.
1 交換レンズ
2 外装体
3 フォーカスリング
4 ズームリング
5 絞りリング
10 鏡胴本体
12 固定筒
12A 第1レンズ群ズーム駆動用直進溝
12B 第2レンズ群ズーム駆動用直進溝
12C 第3レンズ群ズーム駆動用直進溝
12D 第4レンズ群ズーム駆動用直進溝
14 カム筒
14A 第1レンズ群ズーム駆動用カム溝
14B 第2レンズ群ズーム駆動用カム溝
14C 第3レンズ群ズーム駆動用カム溝
14D 第4レンズ群ズーム駆動用カム溝
16 マウント
16A 端子
20 第1レンズ群保持枠
22 第2レンズ群保持枠
24 第3レンズ群保持枠
24A 第3レンズ群ベース保持枠
24B 第3レンズ群可動保持枠
26 第4レンズ群保持枠
26A 第4レンズ群ベース保持枠
26B 第4レンズ群可動保持枠
28 第5レンズ群保持枠
30 絞りユニット
32 第1レンズ群ズーム駆動用カムフォロア
34 第2レンズ群ズーム駆動用カムフォロア
36 第3レンズ群ズーム駆動用カムフォロア
38 第4レンズ群ズーム駆動用カムフォロア
48 第1主軸
50 第1副軸
52 第1主ガイド部
52A 摺動部
54 第1副ガイド部
54A 溝部
56 第3レンズ群前群駆動アクチュエータ
56A 駆動用マグネット
56B インナーヨーク
56C 駆動用コイル
56D アウターヨーク
58 第2主軸
60 第2副軸
62 第2主ガイド部
62A 摺動部
64 第2副ガイド部
64A 溝部
66 第4レンズ群駆動アクチュエータ
66A 駆動用マグネット
66B インナーヨーク
66C 駆動用コイル
66D アウターヨーク
68 第4レンズ群駆動アクチュエータ
68A 駆動用コイル
68B 駆動用マグネット
68C インナーヨーク
68D アウターヨーク
70 コイル保持部
80 第3レンズ群前群位置検出部
82 位置検出用マグネット
84 位置検出センサ
90 第4レンズ群位置検出部
92 原点検出部
92A 遮光板
92B フォトインタラプタ
94 変位量検出部
94A 磁気スケール
94B MRセンサ
100 レンズ制御部
110 第3レンズ群前群駆動部
112 第4レンズ群駆動部
114 絞り駆動部
116 温度検出部
118 フォーカス操作検出部
120 ズームポジション検出部
122 絞り設定検出部
130 カメラ制御部
140 位置信号取得部
142 位置信号補正部
144 位置算出部
146 補正情報記憶部
148 相対位置算出部
200 レンズ鏡胴
210 レンズ鏡胴本体
212 固定筒
212A 第1レンズズーム駆動用直進溝
212B 第2レンズズーム駆動用直進溝
212Y 第1レンズY軸方向駆動アクチュエータ
214 カム筒
214A 第1レンズズーム駆動用カム溝
214B 第2レンズズーム駆動用カム溝
220 第1レンズユニット
222 第1レンズ
224 第1レンズ保持枠
224A 第1レンズベース保持枠
224B 第1レンズ可動保持枠
225a 剛球
225b バネ
226X 第1レンズX軸方向駆動アクチュエータ
226Y 第1レンズY軸方向駆動アクチュエータ
228X 第1レンズX軸方向位置検出センサ
228Y 第1レンズY軸方向位置検出センサ
230X X軸方向位置検出用マグネット
230Y Y軸方向位置検出用マグネット
232 第1レンズズーム駆動用カムフォロア
240 第2レンズユニット
242 第2レンズ
244 第2レンズ保持枠
244A 第2レンズベース保持枠
244B 第2レンズ可動保持枠
246 第2レンズ駆動アクチュエータ
248 第2レンズ位置検出部
248A 原点検出部
248B 変位量検出部
250 第2レンズズーム駆動用カムフォロア
252 主軸
254 副軸
256 主ガイド部
258 副ガイド部
300 撮像装置
310 撮像レンズ
312 フォーカスレンズ
314 フォーカスレンズ駆動部
316 フォーカスレンズ位置検出部
316A フォーカスレンズ位置検出用マグネット
316B フォーカスレンズ位置検出センサ
318 フォーカスレンズ保持枠
318A フォーカスレンズベース保持枠
318B フォーカスレンズ可動保持枠
320 フォーカスレンズズーム駆動用カムフォロア
322 カム筒
322A フォーカスレンズズーム駆動用カム溝
324 固定筒
324A フォーカスレンズズーム駆動用直進溝
326 主軸
328 副軸
330 主ガイド部
332 副ガイド部
334 フォーカスレンズ駆動アクチュエータ
350 イメージセンサ
360 補正機構
362 イメージセンサ保持枠
362A イメージセンサ可動保持枠
362B イメージセンサベース保持枠
364X イメージセンサX軸方向駆動アクチュエータ
364Y イメージセンサY軸方向駆動アクチュエータ
366X イメージセンサX軸方向位置検出センサ
366Y イメージセンサY軸方向位置検出センサ
368 剛球
368X X軸方向位置検出用マグネット
368Y Y軸方向位置検出用マグネット
370 バネ
380 位置信号取得部
382 位置信号補正部
384 位置算出部
386 補正情報記憶部
388 ズームポジション検出部
AL1 第1レンズ群の移動軌跡
AL2 第2レンズ群の移動軌跡
AL3 第3レンズ群の移動軌跡
AL4 第4レンズ群の移動軌跡
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G3a 第3レンズ群前群
G3b 第3レンズ群後群
G4 第4レンズ群
G5 第5レンズ群
Sim 像面
St 絞り
Z 光軸
W1 位置検出センサが適切に取り付けられた場合のグラフ
W2 位置検出センサが不適切な姿勢で取り付けられた場合のグラフ
W3 位置検出センサが不適切な位置に取り付けられた場合のグラフ
Wa ズームポジションaにおける第3レンズ群前群の位置と位置検出センサの出力値との関係を示すグラフ
Wb ズームポジションbにおける第3レンズ群前群の位置と位置検出センサの出力値との関係を示グラフ
S1~S5 位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理の手順
S11~S16 第3レンズ群前群の駆動制御の処理の手順
S21~S27 位置検出センサの出力の補正を含む第3レンズ群前群の位置の検出処理の手順
S31~S35 フォーカスレンズ位置検出センサの出力の補正を含むフォーカスレンズの位置の検出処理の手順
REFERENCE SIGNS LIST 1 interchangeable lens 2 exterior body 3 focus ring 4 zoom ring 5 aperture ring 10 lens barrel main body 12 fixed barrel 12A first lens group zoom drive rectilinear groove 12B second lens group zoom drive rectilinear groove 12C third lens group zoom drive Straight groove 12D Fourth lens group zoom drive straight groove 14 Cam barrel 14A First lens group zoom drive cam groove 14B Second lens group zoom drive cam groove 14C Third lens group zoom drive cam groove 14D Fourth lens group Zoom drive cam groove 16 Mount 16A Terminal 20 First lens group holding frame 22 Second lens group holding frame 24 Third lens group holding frame 24A Third lens group base holding frame 24B Third lens group movable holding frame 26 Fourth lens Group holding frame 26A Fourth lens group base holding frame 26B Fourth lens group movable holding frame 28 Fifth lens group holding frame 30 Aperture unit 32 First lens group zoom drive cam follower 34 Second lens group zoom drive cam follower 36 Third lens group zoom drive cam follower 38 Fourth lens group zoom drive cam follower 48 First main shaft 50 First sub shaft 52 First main guide Part 52A Sliding part 54 First sub-guide part 54A Groove part 56 Third lens group front group drive actuator 56A Driving magnet 56B Inner yoke 56C Driving coil 56D Outer yoke 58 Second main shaft 60 Second sub-shaft 62 Second main guide Part 62A Sliding part 64 Second sub guide part 64A Groove 66 Fourth lens group drive actuator 66A Driving magnet 66B Inner yoke 66C Driving coil 66D Outer yoke 68 Fourth lens group driving actuator 68A Driving coil 68B Driving magnet 68C Inneryo 68D Outer yoke 70 Coil holding unit 80 Third lens group front group position detecting unit 82 Position detecting magnet 84 Position detecting sensor 90 Fourth lens group position detecting unit 92 Origin detecting unit 92A Shielding plate 92B Photointerrupter 94 Displacement amount detecting unit 94A Magnetic scale 94B MR sensor 100 Lens control section 110 Third lens group front group drive section 112 Fourth lens group drive section 114 Aperture drive section 116 Temperature detection section 118 Focus operation detection section 120 Zoom position detection section 122 Aperture setting detection section 130 Camera control section 140 Position signal acquisition section 142 Position signal correction section 144 Position calculation section 146 Correction information storage section 148 Relative position calculation section 200 Lens barrel 210 Lens barrel body 212 Fixed barrel 212A First lens zoom drive straight groove 212B Straight forward for two-lens zoom drive 212Y First lens Y-axis direction drive actuator 214 Cam barrel 214A First lens zoom drive cam groove 214B Second lens zoom drive cam groove 220 First lens unit 222 First lens 224 First lens holding frame 224A First lens base Holding frame 224B First lens movable holding frame 225a Rigid sphere 225b Spring 226X First lens X axis direction driving actuator 226Y First lens Y axis direction driving actuator 228X First lens X axis direction position detection sensor 228Y First lens Y axis direction position detection Sensor 230X Magnet for detecting position in X-axis direction 230Y Magnet for detecting position in Y-axis 232 First lens zoom drive cam follower 240 Second lens unit 242 Second lens 244 Second lens holding frame 244A Second lens base holding frame 244 Second lens movable holding frame 246 Second lens drive actuator 248 Second lens position detection unit 248A Origin detection unit 248B Displacement detection unit 250 Second lens zoom drive cam follower 252 Main shaft 254 Sub shaft 256 Main guide unit 258 Sub guide unit 300 Imaging device 310 Imaging lens 312 Focus lens 314 Focus lens drive unit 316 Focus lens position detection unit 316A Focus lens position detection magnet 316B Focus lens position detection sensor 318 Focus lens holding frame 318A Focus lens base holding frame 318B Focus lens movable holding frame 320 Focus lens zoom drive cam follower 322 Cam cylinder 322A Focus lens zoom drive cam groove 324 Fixed cylinder 324A Focus lens zoom drive Straight groove 326 Main shaft 328 Sub shaft 330 Main guide portion 332 Sub guide portion 334 Focus lens drive actuator 350 Image sensor 360 Correction mechanism 362 Image sensor holding frame 362A Image sensor movable holding frame 362B Image sensor base holding frame 364X Image sensor X axis driving Actuator 364Y Image sensor Y-axis direction drive actuator 366X Image sensor X-axis direction position detection sensor 366Y Image sensor Y-axis direction position detection sensor 368 Hard sphere 368X X-axis direction position detection magnet 368Y Y-axis direction position detection magnet 370 Spring 380 Position signal Acquisition unit 382 Position signal correction unit 384 Position calculation unit 386 Correction information storage unit 388 Zoom position detection unit AL1 Movement locus AL2 of first lens group Second lens Trajectory AL3 of the third lens group AL4 trajectory of the fourth lens group G1 first lens group G2 second lens group G3 third lens group G3a third lens group front group G3b third lens group rear group G4 Fourth lens group G5 Fifth lens group Sim Image plane St Aperture Z Optical axis W1 Graph W2 when position detection sensor is properly mounted Graph W3 when position detection sensor is mounted in an inappropriate posture Position detection sensor Graph Wa when mounted at an inappropriate position Graph Wb showing the relationship between the position of the front group of the third lens group at the zoom position a and the output value of the position detection sensor The position of the front group of the third lens group at the zoom position b Graphs S1 to S5 showing the relationship between the position of the third lens group and the output of the position detection sensor. Steps S11 to S16 Procedures S21 to S27 for drive control processing of the front lens group of the third lens group Procedures S31 to S35 for detection processing of the position of the front group of the third lens group including correction of the output of the position detection sensor Focus lens position detection sensor Of focus lens position detection processing including output correction

Claims (26)

  1.  光軸と平行又は垂直な方向に移動自在に支持された第1光学素子と、前記第1光学素子を駆動する第1アクチュエータと、前記第1光学素子の位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた第1ユニットと、
     前記光軸と平行又は垂直な方向に移動自在に支持された第2光学素子と、前記第2光学素子を駆動する電磁式の第2アクチュエータと、を備えた第2ユニットと、
     前記第1ユニット及び前記第2ユニットを前記光軸に沿って相対的に移動させるユニット駆動部と、
     前記第1ユニット及び前記第2ユニットの相対的な位置関係に応じて、前記位置検出センサから出力される前記位置信号を補正する位置信号補正部と、
     を備えた鏡胴。
    A first optical element movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the first optical element, and a magnetic field that changes according to the position of the first optical element. A first unit comprising: a position detection sensor that outputs a signal proportional to the magnitude of the detected magnetic field as a position signal;
    A second unit including: a second optical element movably supported in a direction parallel or perpendicular to the optical axis; and an electromagnetic second actuator that drives the second optical element.
    A unit driving unit that relatively moves the first unit and the second unit along the optical axis;
    A position signal correction unit that corrects the position signal output from the position detection sensor according to a relative positional relationship between the first unit and the second unit;
    The lens barrel with.
  2.  前記ユニット駆動部は、ズーム操作に応じて、前記第1ユニット及び前記第2ユニットを前記光軸に沿って相対的に移動させる、
     請求項1に記載の鏡胴。
    The unit drive unit relatively moves the first unit and the second unit along the optical axis according to a zoom operation.
    The lens barrel according to claim 1.
  3.  前記位置信号補正部は、ズームポジションに基づいて、前記位置検出センサから出力される前記位置信号を補正する、
     請求項2に記載の鏡胴。
    The position signal correction unit corrects the position signal output from the position detection sensor based on a zoom position,
    The lens barrel according to claim 2.
  4.  前記ユニット駆動部は、カム機構によって、前記第1ユニット及び前記第2ユニットを前記光軸に沿って移動させる、
     請求項1から3のいずれか1項に記載の鏡胴。
    The unit drive section moves the first unit and the second unit along the optical axis by a cam mechanism.
    The lens barrel according to claim 1.
  5.  前記第1ユニット及び前記第2ユニットが隣接して配置される、
     請求項1から4のいずれか1項に記載の鏡胴。
    The first unit and the second unit are arranged adjacent to each other;
    The lens barrel according to claim 1.
  6.  前記位置検出センサが、ホールセンサである、
     請求項1から5のいずれか1項に記載の鏡胴。
    The position detection sensor is a Hall sensor,
    The lens barrel according to claim 1.
  7.  前記第2アクチュエータが、ボイスコイルモータである、
     請求項1から6のいずれか1項に記載の鏡胴。
    The second actuator is a voice coil motor,
    The lens barrel according to claim 1.
  8.  前記第2アクチュエータが、ムービングマグネット型のボイスコイルモータであり、
     前記位置信号補正部は、前記第1ユニット及び前記第2ユニットの相対的な位置関係、及び、前記第2光学素子の位置に応じて、前記位置検出センサから出力される前記位置信号を補正する、
     請求項7に記載の鏡胴。
    The second actuator is a moving magnet type voice coil motor,
    The position signal correction unit corrects the position signal output from the position detection sensor according to a relative positional relationship between the first unit and the second unit and a position of the second optical element. ,
    The lens barrel according to claim 7.
  9.  前記位置信号補正部は、更に、前記位置検出センサの取り付け位置、及び/又は、取り付け姿勢に基づいて、前記位置信号を補正する、
     請求項1から8のいずれか1項に記載の鏡胴。
    The position signal correction unit further corrects the position signal based on a mounting position of the position detection sensor and / or a mounting posture,
    The lens barrel according to claim 1.
  10.  温度センサを更に備え、
     前記位置信号補正部は、更に、前記温度センサで検出される温度に基づいて、前記位置信号を補正する、
     請求項1から9のいずれか1項に記載の鏡胴。
    Further comprising a temperature sensor,
    The position signal correction unit further corrects the position signal based on the temperature detected by the temperature sensor,
    The lens barrel according to claim 1.
  11.  前記第1光学素子を較正用基準位置に位置させた場合に前記位置検出センサから出力される前記位置信号に基づいて、前記温度に基づく前記位置信号の補正に必要な情報を取得する、
     請求項10に記載の鏡胴。
    Based on the position signal output from the position detection sensor when the first optical element is positioned at the calibration reference position, obtains information necessary for correcting the position signal based on the temperature,
    The lens barrel according to claim 10.
  12.  前記位置信号補正部は、前記温度センサで検出される前記温度が、あらかじめ定められた許容範囲を超える場合に、前記温度センサで検出される前記温度に基づいて、前記位置信号を補正する、
     請求項10又は11に記載の鏡胴。
    When the temperature detected by the temperature sensor exceeds a predetermined allowable range, the position signal correction unit corrects the position signal based on the temperature detected by the temperature sensor.
    The lens barrel according to claim 10.
  13.  前記第2ユニットは、前記第2光学素子の位置を検出する第2光学素子位置検出部を更に備える、
     請求項1から12のいずれか1項に記載の鏡胴。
    The second unit further includes a second optical element position detector that detects a position of the second optical element.
    The lens barrel according to claim 1.
  14.  前記第2光学素子位置検出部は、
     あらかじめ定められた原点への前記第2光学素子の移動を検出する原点検出部と、
     前記第2光学素子の変位量を検出する変位量検出部と、
     を有する、
     請求項13に記載の鏡胴。
    The second optical element position detection unit includes:
    An origin detection unit that detects movement of the second optical element to a predetermined origin,
    A displacement amount detection unit that detects a displacement amount of the second optical element;
    Having,
    The lens barrel according to claim 13.
  15.  前記変位量検出部は、MRセンサで構成される、
     請求項14に記載の鏡胴。
    The displacement amount detection unit includes an MR sensor.
    The lens barrel according to claim 14.
  16.  前記第1ユニットにおいて、前記第1光学素子であるレンズを前記光軸と平行に移動させて、像面湾曲を補正し、
     前記第2ユニットにおいて、前記第2光学素子であるレンズを前記光軸と平行に移動させて、焦点を調節する、
     請求項1から15のいずれか1項に記載の鏡胴。
    In the first unit, a lens that is the first optical element is moved in parallel with the optical axis to correct a field curvature,
    In the second unit, a lens that is the second optical element is moved in parallel with the optical axis to adjust a focus.
    The lens barrel according to claim 1.
  17.  請求項1から16のいずれか1項に記載の鏡胴を備えた、
     撮像装置。
    A lens barrel according to any one of claims 1 to 16,
    Imaging device.
  18.  光軸と平行又は垂直な方向に移動自在に支持された可動レンズと、前記可動レンズを駆動する第1アクチュエータと、前記可動レンズの位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた可動ユニットと、前記可動ユニットを前記光軸に沿って移動させる可動ユニット駆動部と、を備えた撮像レンズと、
     前記光軸と直交する方向に移動自在に支持され、前記撮像レンズを介して被写体の光学像を撮像するイメージセンサと、
     前記イメージセンサを駆動する電磁式の第2アクチュエータと、
     前記可動ユニット及び前記イメージセンサの相対的な位置関係に応じて、前記位置検出センサから出力される前記位置信号を補正する位置信号補正部と、
     を備えた撮像装置。
    A movable lens movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the movable lens, and a magnetic field that changes according to the position of the movable lens, and a magnitude of the detected magnetic field A position detection sensor that outputs a signal proportional to the position as a position signal, and a movable unit, and a movable unit drive unit that moves the movable unit along the optical axis, and an imaging lens that includes:
    An image sensor that is movably supported in a direction orthogonal to the optical axis and captures an optical image of a subject via the imaging lens;
    An electromagnetic second actuator for driving the image sensor;
    A position signal correction unit that corrects the position signal output from the position detection sensor according to a relative positional relationship between the movable unit and the image sensor,
    An imaging device comprising:
  19.  前記可動ユニット駆動部は、ズーム操作に応じて、前記可動ユニットを前記光軸に沿って移動させる、
     請求項18に記載の撮像装置。
    The movable unit drive section moves the movable unit along the optical axis in accordance with a zoom operation.
    The imaging device according to claim 18.
  20.  前記位置信号補正部は、ズームポジションに基づいて、前記位置検出センサから出力される前記位置信号を補正する位置信号補正部と、
     請求項19に記載の撮像装置。
    The position signal correction unit, based on a zoom position, a position signal correction unit that corrects the position signal output from the position detection sensor,
    The imaging device according to claim 19.
  21.  光軸と平行又は垂直な方向に移動自在に支持された第1光学素子と、前記第1光学素子を駆動する第1アクチュエータと、前記第1光学素子の位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた第1ユニット、及び、前記光軸と平行又は垂直な方向に移動自在に支持された第2光学素子と、前記第2光学素子を駆動する電磁式の第2アクチュエータと、を備えた第2ユニットが、前記光軸に沿って相対的に移動する鏡胴において、前記位置検出センサから出力される前記位置信号に基づいて、前記第1光学素子の位置を検出する位置検出方法であって、
     前記位置検出センサから出力される前記位置信号を取得するステップと、
     前記第1ユニット及び前記第2ユニットの相対的な位置関係の情報を取得するステップと、
     前記第1ユニット及び前記第2ユニットの相対的な位置関係に応じて、前記位置検出センサから出力される前記位置信号を補正するステップと、
     を含む位置検出方法。
    A first optical element movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the first optical element, and a magnetic field that changes according to the position of the first optical element. A first unit comprising: a position detection sensor that outputs a signal proportional to the magnitude of the detected magnetic field as a position signal; and a second optical unit movably supported in a direction parallel or perpendicular to the optical axis. A second unit including an element and an electromagnetic second actuator that drives the second optical element is output from the position detection sensor in a lens barrel that relatively moves along the optical axis. A position detection method for detecting a position of the first optical element based on the position signal,
    Obtaining the position signal output from the position detection sensor;
    Obtaining information on a relative positional relationship between the first unit and the second unit;
    Correcting the position signal output from the position detection sensor according to a relative positional relationship between the first unit and the second unit;
    A position detection method including:
  22.  光軸と平行又は垂直な方向に移動自在に支持された可動レンズと、前記可動レンズを駆動する第1アクチュエータと、前記可動レンズの位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた可動ユニットと、前記可動ユニットを前記光軸に沿って移動させる可動ユニット駆動部と、を備えた撮像レンズと、前記光軸と直交する方向に移動自在に支持され、前記撮像レンズを介して被写体の光学像を撮像するイメージセンサと、前記イメージセンサを駆動する電磁式の第2アクチュエータと、を備えた撮像装置において、前記位置検出センサから出力される前記位置信号に基づいて、前記可動ユニットの位置を検出する位置検出方法であって、
     前記位置検出センサから出力される前記位置信号を取得するステップと、
     前記可動ユニット及び前記イメージセンサの相対的な位置関係の情報を取得するステップと、
     前記可動ユニット及び前記イメージセンサの相対的な位置関係に応じて、前記位置検出センサから出力される前記位置信号を補正するステップと、
     を含む位置検出方法。
    A movable lens movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the movable lens, and a magnetic field that changes according to the position of the movable lens, and a magnitude of the detected magnetic field A position detection sensor that outputs a signal proportional to the position as a position signal; a movable unit driving unit that moves the movable unit along the optical axis; An image sensor that is movably supported in a direction perpendicular to the axis and captures an optical image of a subject via the imaging lens, and an electromagnetic second actuator that drives the image sensor; A position detection method for detecting a position of the movable unit based on the position signal output from the position detection sensor,
    Obtaining the position signal output from the position detection sensor;
    Obtaining information on the relative positional relationship between the movable unit and the image sensor;
    Correcting the position signal output from the position detection sensor according to a relative positional relationship between the movable unit and the image sensor;
    A position detection method including:
  23.  光軸と平行又は垂直な方向に移動自在に支持された第1光学素子と、前記第1光学素子を駆動する第1アクチュエータと、前記第1光学素子の位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた第1ユニット、及び、前記光軸と平行又は垂直な方向に移動自在に支持された第2光学素子と、前記第2光学素子を駆動する電磁式の第2アクチュエータと、を備えた第2ユニットが、前記光軸に沿って相対的に移動する鏡胴において、前記位置検出センサから出力される前記位置信号に基づいて、前記第1光学素子の位置を検出する処理をコンピュータに実行させる位置検出プログラムであって、
     前記位置検出センサから出力される前記位置信号を取得するステップと、
     前記第1ユニット及び前記第2ユニットの相対的な位置関係の情報を取得するステップと、
     前記第1ユニット及び前記第2ユニットの相対的な位置関係に応じて、前記位置検出センサから出力される前記位置信号を補正するステップと、
     を含む位置検出プログラム。
    A first optical element movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the first optical element, and a magnetic field that changes according to the position of the first optical element. A first unit comprising: a position detection sensor that outputs a signal proportional to the magnitude of the detected magnetic field as a position signal; and a second optical unit movably supported in a direction parallel or perpendicular to the optical axis. A second unit including an element and an electromagnetic second actuator that drives the second optical element is output from the position detection sensor in a lens barrel that relatively moves along the optical axis. A position detection program that causes a computer to execute a process of detecting a position of the first optical element based on the position signal,
    Obtaining the position signal output from the position detection sensor;
    Obtaining information on a relative positional relationship between the first unit and the second unit;
    Correcting the position signal output from the position detection sensor according to a relative positional relationship between the first unit and the second unit;
    A position detection program that includes
  24.  光軸と平行又は垂直な方向に移動自在に支持された可動レンズと、前記可動レンズを駆動する第1アクチュエータと、前記可動レンズの位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた可動ユニットと、前記可動ユニットを前記光軸に沿って移動させる可動ユニット駆動部と、を備えた撮像レンズと、前記光軸と直交する方向に移動自在に支持され、前記撮像レンズを介して被写体の光学像を撮像するイメージセンサと、前記イメージセンサを駆動する電磁式の第2アクチュエータと、を備えた撮像装置において、前記位置検出センサから出力される前記位置信号に基づいて、前記可動ユニットの位置を検出する処理をコンピュータに実行させる位置検出プログラムであって、
     前記位置検出センサから出力される前記位置信号を取得するステップと、
     前記可動ユニット及び前記イメージセンサの相対的な位置関係の情報を取得するステップと、
     前記可動ユニット及び前記イメージセンサの相対的な位置関係に応じて、前記位置検出センサから出力される前記位置信号を補正するステップと、
     を含む位置検出プログラム。
    A movable lens movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the movable lens, and a magnetic field that changes according to the position of the movable lens, and a magnitude of the detected magnetic field A position detection sensor that outputs a signal proportional to the position as a position signal; a movable unit driving unit that moves the movable unit along the optical axis; An image sensor that is movably supported in a direction perpendicular to the axis and captures an optical image of a subject via the imaging lens, and an electromagnetic second actuator that drives the image sensor; A position detection program that causes a computer to execute a process of detecting the position of the movable unit based on the position signal output from the position detection sensor. A lamb,
    Obtaining the position signal output from the position detection sensor;
    Obtaining information on the relative positional relationship between the movable unit and the image sensor;
    Correcting the position signal output from the position detection sensor according to a relative positional relationship between the movable unit and the image sensor;
    A position detection program that includes
  25.  非一時的かつコンピュータ読取可能な記憶媒体であって、前記記録媒体に格納された指令がコンピュータによって読み取られた場合に、
     光軸と平行又は垂直な方向に移動自在に支持された第1光学素子と、前記第1光学素子を駆動する第1アクチュエータと、前記第1光学素子の位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた第1ユニット、及び、前記光軸と平行又は垂直な方向に移動自在に支持された第2光学素子と、前記第2光学素子を駆動する電磁式の第2アクチュエータと、を備えた第2ユニットが、前記光軸に沿って相対的に移動する鏡胴において、前記位置検出センサから出力される前記位置信号に基づいて、前記第1光学素子の位置を検出する位置検出機能であって、
     前記位置検出センサから出力される前記位置信号を取得する機能と、
     前記第1ユニット及び前記第2ユニットの相対的な位置関係の情報を取得する機能と、
     前記第1ユニット及び前記第2ユニットの相対的な位置関係に応じて、前記位置検出センサから出力される前記位置信号を補正する機能と、
     を含む位置検出機能をコンピュータに実現させる記憶媒体。
    A non-transitory and computer-readable storage medium, wherein the instructions stored in the storage medium are read by a computer,
    A first optical element movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the first optical element, and a magnetic field that changes according to the position of the first optical element. A first unit comprising: a position detection sensor that outputs a signal proportional to the magnitude of the detected magnetic field as a position signal; and a second optical unit movably supported in a direction parallel or perpendicular to the optical axis. A second unit including an element and an electromagnetic second actuator that drives the second optical element is output from the position detection sensor in a lens barrel that relatively moves along the optical axis. A position detection function for detecting a position of the first optical element based on the position signal,
    A function of acquiring the position signal output from the position detection sensor;
    A function of acquiring information on a relative positional relationship between the first unit and the second unit;
    A function of correcting the position signal output from the position detection sensor according to a relative positional relationship between the first unit and the second unit;
    A storage medium for causing a computer to realize a position detection function including the following.
  26.  非一時的かつコンピュータ読取可能な記憶媒体であって、前記記録媒体に格納された指令がコンピュータによって読み取られた場合に、
     光軸と平行又は垂直な方向に移動自在に支持された可動レンズと、前記可動レンズを駆動する第1アクチュエータと、前記可動レンズの位置に応じて変化する磁界を検出し、検出した磁界の大きさに比例した信号を位置信号として出力する位置検出センサと、を備えた可動ユニットと、前記可動ユニットを前記光軸に沿って移動させる可動ユニット駆動部と、を備えた撮像レンズと、前記光軸と直交する方向に移動自在に支持され、前記撮像レンズを介して被写体の光学像を撮像するイメージセンサと、前記イメージセンサを駆動する電磁式の第2アクチュエータと、を備えた撮像装置において、前記位置検出センサから出力される前記位置信号に基づいて、前記可動ユニットの位置を検出する位置検出機能であって、
     前記位置検出センサから出力される前記位置信号を取得する機能と、
     前記可動ユニット及び前記イメージセンサの相対的な位置関係の情報を取得する機能と、
     前記可動ユニット及び前記イメージセンサの相対的な位置関係に応じて、前記位置検出センサから出力される前記位置信号を補正する機能と、
     を含む位置検出機能をコンピュータに実現させる記憶媒体。
    A non-transitory and computer-readable storage medium, wherein the instructions stored in the storage medium are read by a computer,
    A movable lens movably supported in a direction parallel or perpendicular to the optical axis, a first actuator for driving the movable lens, and a magnetic field that changes according to the position of the movable lens, and a magnitude of the detected magnetic field A position detection sensor that outputs a signal proportional to the position as a position signal; a movable unit driving unit that moves the movable unit along the optical axis; An image sensor that is movably supported in a direction perpendicular to the axis and captures an optical image of a subject via the imaging lens, and an electromagnetic second actuator that drives the image sensor; A position detection function for detecting a position of the movable unit based on the position signal output from the position detection sensor,
    A function of acquiring the position signal output from the position detection sensor;
    A function of acquiring information on a relative positional relationship between the movable unit and the image sensor;
    A function of correcting the position signal output from the position detection sensor according to a relative positional relationship between the movable unit and the image sensor;
    A storage medium for causing a computer to realize a position detection function including the following.
PCT/JP2019/026687 2018-07-26 2019-07-04 Lens barrel, imaging device, position detection method, and position detection program WO2020022026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020532264A JP6889334B2 (en) 2018-07-26 2019-07-04 Lens barrel, imaging device, position detection method and position detection program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-140433 2018-07-26
JP2018140433 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020022026A1 true WO2020022026A1 (en) 2020-01-30

Family

ID=69180728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026687 WO2020022026A1 (en) 2018-07-26 2019-07-04 Lens barrel, imaging device, position detection method, and position detection program

Country Status (2)

Country Link
JP (1) JP6889334B2 (en)
WO (1) WO2020022026A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131618A1 (en) * 2019-12-27 2021-07-01 株式会社ニコン Position detection mechanism, lens barrel, and optical instrument

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276746A (en) * 2009-05-27 2010-12-09 Nikon Corp Lens system, optical equipment, and manufacturing method
JP2017097109A (en) * 2015-11-20 2017-06-01 旭化成エレクトロニクス株式会社 Drive device, lens unit, calibration device, method, and program
JP2017207650A (en) * 2016-05-19 2017-11-24 キヤノン株式会社 Lens device
JP2018063416A (en) * 2016-10-07 2018-04-19 ローム株式会社 Actuator driver, lens controller, and imaging device using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6695898B2 (en) * 2015-11-30 2020-05-20 旭化成エレクトロニクス株式会社 Driving device, lens unit, device, correction method, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010276746A (en) * 2009-05-27 2010-12-09 Nikon Corp Lens system, optical equipment, and manufacturing method
JP2017097109A (en) * 2015-11-20 2017-06-01 旭化成エレクトロニクス株式会社 Drive device, lens unit, calibration device, method, and program
JP2017207650A (en) * 2016-05-19 2017-11-24 キヤノン株式会社 Lens device
JP2018063416A (en) * 2016-10-07 2018-04-19 ローム株式会社 Actuator driver, lens controller, and imaging device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021131618A1 (en) * 2019-12-27 2021-07-01 株式会社ニコン Position detection mechanism, lens barrel, and optical instrument

Also Published As

Publication number Publication date
JPWO2020022026A1 (en) 2021-06-24
JP6889334B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
US9798157B2 (en) Image stabilizing apparatus, lens barrel, and image pickup apparatus
US11592644B2 (en) Optical device and imaging apparatus with position sensors and coil motors
US7949243B2 (en) Optical apparatus
JP6320044B2 (en) Image blur correction device, lens device, and imaging device
JP5995521B2 (en) Lens barrel and camera system
JP6585871B2 (en) Lens device, camera, lens drive control method, and lens drive control program
KR20200018894A (en) Aperture module and camera module including the same
JP2008197388A (en) Image shake correction device, lens barrel, and optical apparatus
WO2020003942A1 (en) Lens barrel and image capturing device
US20150181125A1 (en) Shake correction apparatus and image pickup apparatus thereof, and optical device mountable on image pickup apparatus
JP5963533B2 (en) Lens barrel and camera system
WO2020022026A1 (en) Lens barrel, imaging device, position detection method, and position detection program
WO2020022025A1 (en) Lens barrel, imaging device, lens control method, and lens control program
JP2010249934A (en) Image shake correction apparatus
US11307380B2 (en) Lens barrel
JP2013044569A (en) Position detector, position detection method, and image pickup device
US9400369B2 (en) Optical apparatus
JP6376801B2 (en) Image blur correction device, lens barrel, and optical apparatus
JP6436619B2 (en) Optical equipment
JP6157239B2 (en) Lens barrel and imaging device
JP5905276B2 (en) Lens drive device
JP6448230B2 (en) Optical equipment
JP2011137928A (en) Optical instrument
JP2015118228A (en) Drive device
JP2016085330A (en) Electronic apparatus, control method, control unit, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841587

Country of ref document: EP

Kind code of ref document: A1