JP6157239B2 - Lens barrel and imaging device - Google Patents

Lens barrel and imaging device Download PDF

Info

Publication number
JP6157239B2
JP6157239B2 JP2013133635A JP2013133635A JP6157239B2 JP 6157239 B2 JP6157239 B2 JP 6157239B2 JP 2013133635 A JP2013133635 A JP 2013133635A JP 2013133635 A JP2013133635 A JP 2013133635A JP 6157239 B2 JP6157239 B2 JP 6157239B2
Authority
JP
Japan
Prior art keywords
movable member
optical axis
drive unit
electromagnetic drive
image blur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013133635A
Other languages
Japanese (ja)
Other versions
JP2015011036A (en
JP2015011036A5 (en
Inventor
悠 安田
悠 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013133635A priority Critical patent/JP6157239B2/en
Publication of JP2015011036A publication Critical patent/JP2015011036A/en
Publication of JP2015011036A5 publication Critical patent/JP2015011036A5/ja
Application granted granted Critical
Publication of JP6157239B2 publication Critical patent/JP6157239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、像ブレ補正装置を備えるレンズ鏡筒、及びレンズ鏡筒を備える撮像装置に関する。   The present invention relates to a lens barrel provided with an image blur correction device and an imaging device provided with the lens barrel.

デジタルカメラ等のレンズ鏡筒に搭載される像ブレ補正装置は、像ブレ補正光学系としての補正レンズ又は撮像素子を保持する可動部材を光軸と略直交する面内の2方向に駆動することで、撮影時に発生する手ブレ等による影響を緩和する。   An image blur correction device mounted on a lens barrel of a digital camera or the like drives a movable lens holding a correction lens or an image sensor as an image blur correction optical system in two directions in a plane substantially orthogonal to the optical axis. This reduces the effects of camera shake that occurs during shooting.

従来のこの種の像ブレ補正装置としては、固定部材を間に挟んで光軸方向の前後にそれぞれ第1の補正レンズを保持する第1の可動部材と、第2の補正レンズを保持する第2の可動部材とを配置したものが提案されている(特許文献1)。この提案では、第1の可動部材及び第2の可動部材をそれぞれ独立して光軸と略直交する面内の2方向に駆動することで、像ブレ補正装置の補正可能な角度が増加できるとしている。   As a conventional image blur correction apparatus of this type, a first movable member that holds a first correction lens and a second correction lens that hold a first correction lens in front and rear in the optical axis direction with a fixed member interposed therebetween, respectively. The thing which arrange | positioned 2 movable members is proposed (patent document 1). In this proposal, the correctable angle of the image blur correction device can be increased by driving the first movable member and the second movable member independently in two directions in a plane substantially orthogonal to the optical axis. Yes.

特開2009−258389号公報JP 2009-258389 A

ところで、上記特許文献1の像ブレ補正装置において、ズーミングやフォーカシング等によって撮影光学系を構成するレンズ群同士の間隔が変化したとき、それに応じて第1及び第2の可動部材の光軸方向の距離を変えて光学性能の向上を図ることが考えられる。   By the way, in the image blur correction apparatus of Patent Document 1, when the distance between the lens groups constituting the photographing optical system is changed by zooming, focusing, or the like, the optical axis direction of the first and second movable members is accordingly changed. It is conceivable to improve the optical performance by changing the distance.

しかし、上記特許文献1では、第1の可動部材及び第2の可動部材は、共通する固定部材に対して光軸と略直交する面内を移動可能に支持されているため、第1の可動部材と第2の可動部材との光軸方向の距離は一定となる。このため、ズーミングやフォーカシング等によってレンズ群同士の間隔が変化した場合に、像ブレ補正の光学性能の向上を図ることが難しい。   However, in Patent Document 1, the first movable member and the second movable member are supported so as to be movable in a plane substantially perpendicular to the optical axis with respect to the common fixed member. The distance in the optical axis direction between the member and the second movable member is constant. For this reason, it is difficult to improve the optical performance of image blur correction when the distance between the lens groups changes due to zooming, focusing, or the like.

一方、第1及び第2の可動部材の光軸方向の距離を変えて光学性能の向上を図る場合、第1及び第2の可動部材をそれぞれ光軸と略直交する方向に駆動する各電磁駆動部が光軸方向に重なって配置されるため、各電磁駆動部の間に磁気的な相互作用力が発生する。そして、第1及び第2の可動部材の光軸方向の距離が変わると、各電磁駆動部に対する磁気的な相互作用力の影響も変化するため、第1及び第2の可動部材の光軸と略直交する方向での高精度な位置制御が難しくなるという問題がある。   On the other hand, when the optical performance is improved by changing the distance between the first and second movable members in the optical axis direction, each electromagnetic drive that drives the first and second movable members in directions substantially orthogonal to the optical axis, respectively. Since the portions are arranged so as to overlap in the optical axis direction, a magnetic interaction force is generated between the electromagnetic drive portions. When the distance in the optical axis direction of the first and second movable members changes, the influence of the magnetic interaction force on each electromagnetic drive unit also changes, so the optical axes of the first and second movable members There is a problem that highly accurate position control in a substantially orthogonal direction becomes difficult.

そこで、本発明は、ズーミングやフォーカシング等によってレンズ群同士の間隔が変化した場合の像ブレ補正の光学性能の向上を図ると共に、第1及び第2の可動部材の光軸と交差する方向での高精度な位置制御を実現する仕組みを提供することを目的とする。   Therefore, the present invention aims to improve the optical performance of image blur correction when the distance between the lens groups changes due to zooming, focusing, etc., and in the direction intersecting the optical axes of the first and second movable members. An object is to provide a mechanism for realizing high-precision position control.

上記目的を達成するために、本発明のレンズ鏡筒は、第1の像ブレ補正光学系を保持する第1の可動部材、前記第1の可動部材を光軸と交差する方向に移動可能に支持する第1の固定部材、前記第1の可動部材を光軸と交差する第1の方向に駆動する第1の電磁駆動部、及び第1の可動部材を光軸と交差する第2の方向に駆動する第2の電磁駆動部を有する第1の像ブレ補正装置と、第2の像ブレ補正光学系を保持する第2の可動部材、前記第2の可動部材を光軸と交差する方向に移動可能に支持する第2の固定部材、前記第2の可動部材を光軸と交差する第3の方向に駆動する第3の電磁駆動部、及び第2の可動部材を光軸と交差する第4の方向に駆動する第4の電磁駆動部を有する第2の像ブレ補正装置と、を備え、前記第1の像ブレ補正装置は、前記第2の像ブレ補正装置に対して光軸方向に相対的に移動可能とされ、光軸を中心として周方向に90°ごとに4等分した領域をそれぞれ第1領域、第2領域、第3領域、及び第4領域とした場合、前記第1の電磁駆動部は、前記第1領域に配置され、前記第2の電磁駆動部は、前記第2領域に配置され、前記第3の電磁駆動部は、前記第3領域に配置され、前記第4の電磁駆動部は、前記第4領域に配置されることを特徴とする。   In order to achieve the above object, the lens barrel of the present invention has a first movable member that holds the first image blur correction optical system, and the first movable member is movable in a direction intersecting the optical axis. A first fixed member to be supported, a first electromagnetic drive unit that drives the first movable member in a first direction intersecting the optical axis, and a second direction that intersects the first movable member with the optical axis A first image blur correction apparatus having a second electromagnetic drive unit that is driven in a second direction, a second movable member that holds a second image blur correction optical system, and a direction in which the second movable member intersects the optical axis A second fixed member that is movably supported, a third electromagnetic drive unit that drives the second movable member in a third direction that intersects the optical axis, and a second movable member that intersects the optical axis. A second image blur correction device having a fourth electromagnetic drive unit that drives in a fourth direction, and the first image blur compensation device. The apparatus is movable relative to the second image blur correction apparatus in the optical axis direction, and an area divided into four equal parts every 90 ° in the circumferential direction with the optical axis as a center is respectively the first area and the first area. When the second region, the third region, and the fourth region, the first electromagnetic driving unit is disposed in the first region, the second electromagnetic driving unit is disposed in the second region, The third electromagnetic drive unit is disposed in the third region, and the fourth electromagnetic drive unit is disposed in the fourth region.

本発明によれば、ズーミングやフォーカシング等によってレンズ群同士の間隔が変化した場合の像ブレ補正の光学性能の向上を図ることができると共に、第1及び第2の可動部材の光軸と交差する方向での高精度な位置制御を実現することができる。   According to the present invention, it is possible to improve the optical performance of image blur correction when the distance between the lens groups is changed by zooming, focusing, or the like, and intersect the optical axes of the first and second movable members. High-precision position control in the direction can be realized.

本発明の実施形態の一例である像ブレ補正装置を備えるレンズ鏡筒の分解斜視図である。1 is an exploded perspective view of a lens barrel including an image blur correction device that is an example of an embodiment of the present invention. 図1に示すレンズ鏡筒の組立体におけるテレ位置での光軸方向に沿う断面図である。FIG. 2 is a cross-sectional view along the optical axis direction at a tele position in the lens barrel assembly shown in FIG. 1. 図1に示すレンズ鏡筒の組立体におけるワイド位置での光軸方向に沿う断面図である。FIG. 2 is a cross-sectional view along the optical axis direction at a wide position in the lens barrel assembly shown in FIG. 1. 2群鏡筒の分解斜視図である。It is a disassembled perspective view of a 2nd group lens-barrel. 2群鏡筒の光軸方向に沿う断面図である。It is sectional drawing in alignment with the optical axis direction of a 2nd group barrel. 2群鏡筒及び3群鏡筒の一部を分解した斜視図である。It is the perspective view which decomposed | disassembled some 2nd group barrels and the 3rd group barrels. 2群鏡筒の可動部材及び3群鏡筒の可動部材を光軸方向から見た図である。It is the figure which looked at the movable member of the 2nd group barrel, and the movable member of the 3rd group barrel from the optical axis direction. 本発明例及び比較例における2群鏡筒の電磁駆動部と3群鏡筒の電磁駆動部との間の距離と2群鏡筒の電磁駆動部が3群鏡筒の電磁駆動部に与える磁気干渉量との関係を示すグラフ図である。The distance between the electromagnetic drive unit of the second group barrel and the electromagnetic drive unit of the third group barrel and the magnetism that the electromagnetic drive unit of the second group barrel gives to the electromagnetic drive unit of the third group barrel in the present invention example and the comparative example It is a graph which shows the relationship with the amount of interference. 2群鏡筒の電磁駆動部の駆動を制御する制御回路のブロック図である。It is a block diagram of the control circuit which controls the drive of the electromagnetic drive part of a 2nd group lens barrel. 位置センサの出力電圧と可動部材の光軸と略直交する方向の変位量との関係を示すグラフ図である。It is a graph which shows the relationship between the output voltage of a position sensor, and the displacement amount of the direction substantially orthogonal to the optical axis of a movable member.

以下、本発明の実施形態の一例を図面を参照して説明する。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態の一例である像ブレ補正装置を備えるレンズ鏡筒の分解斜視図である。図2は、図1に示すレンズ鏡筒の組立体におけるテレ位置での光軸方向に沿う断面図である。図3は、図1に示すレンズ鏡筒の組立体におけるワイド位置での光軸方向に沿う断面図である。なお、本実施形態では、デジタルカメラ等の撮像装置に搭載されるレンズ鏡筒を例に採る。   FIG. 1 is an exploded perspective view of a lens barrel provided with an image blur correction device as an example of an embodiment of the present invention. FIG. 2 is a cross-sectional view along the optical axis direction at the tele position in the lens barrel assembly shown in FIG. FIG. 3 is a cross-sectional view taken along the optical axis direction at the wide position in the lens barrel assembly shown in FIG. In the present embodiment, a lens barrel mounted on an imaging apparatus such as a digital camera is taken as an example.

図1乃至図3に示すように、本実施形態のレンズ鏡筒100は、素子ホルダ102、固定筒103、カム筒104、1群鏡筒110、2群鏡筒120、3群鏡筒130、及び4群鏡筒140を備える。レンズ鏡筒100は、撮影位置と収納位置との間で撮影光学系が光軸方向に移動して撮影倍率を変更するズーム式とされている。   As shown in FIGS. 1 to 3, the lens barrel 100 of the present embodiment includes an element holder 102, a fixed barrel 103, a cam barrel 104, a first group barrel 110, a second group barrel 120, a third group barrel 130, And a fourth group barrel 140. The lens barrel 100 is a zoom type in which the photographing optical system moves in the optical axis direction between the photographing position and the storage position to change the photographing magnification.

素子ホルダ102は、CCDセンサやCMOSセンサ等の撮像素子101を保持する。また、素子ホルダ102には、4群鏡筒140の後述するメインバー143、サブバー144、及びステッピングモータ145が固定される。   The element holder 102 holds an image sensor 101 such as a CCD sensor or a CMOS sensor. Further, a main bar 143, a sub bar 144, and a stepping motor 145, which will be described later, of the fourth group barrel 140 are fixed to the element holder 102.

固定筒103は、像面側の端部に素子ホルダ102が固定され、被写体側の端部内周部に、1群鏡筒110の後述する1群レンズホルダ112が保持される。また、固定筒103の周壁には、光軸方向に延びる第1直進溝1031、及び第2直進溝1032がそれぞれ周方向に略等間隔で3箇所ずつ形成されている。   In the fixed cylinder 103, the element holder 102 is fixed to the end on the image plane side, and a first group lens holder 112 (to be described later) of the first group lens barrel 110 is held on the inner periphery of the end on the subject side. In addition, on the peripheral wall of the fixed cylinder 103, there are formed three first rectilinear grooves 1031 and second rectilinear grooves 1032 extending in the optical axis direction at substantially equal intervals in the circumferential direction.

第1直進溝1031には、2群鏡筒120の後述する固定地板123に設けられたフォロア1231が係合し、これにより、固定筒103に対して2群鏡筒120が光軸方向に移動可能に支持される。また、第2直進溝1032には、3群鏡筒130の後述する固定地板133に設けられたフォロア1331が係合し、これにより、固定筒103に対して3群鏡筒130が光軸方向に移動可能に支持される。   A follower 1231 provided on a fixed ground plate 123 (described later) of the second group lens barrel 120 is engaged with the first rectilinear groove 1031, whereby the second group lens barrel 120 moves in the optical axis direction with respect to the fixed cylinder 103. Supported as possible. Further, a follower 1331 provided on a fixed ground plate 133 (to be described later) of the third group barrel 130 is engaged with the second rectilinear groove 1032, so that the third group barrel 130 is aligned with the fixed barrel 103 in the optical axis direction. Is supported so as to be movable.

カム筒104は、固定筒103の外周部に回転可能に支持される。カム筒104の周壁には、第1カム溝1041、及び第2カム溝1042がそれぞれ周方向に略等間隔で3箇所ずつ形成されている。   The cam cylinder 104 is rotatably supported on the outer peripheral portion of the fixed cylinder 103. On the peripheral wall of the cam cylinder 104, three first cam grooves 1041 and two second cam grooves 1042 are formed at substantially equal intervals in the circumferential direction.

第1カム溝1041には、2群鏡筒120の後述する固定地板123に設けられたフォロア1231が追従し、これにより、カム筒104の回転に応じて2群鏡筒120が光軸方向に進退移動する。第2カム溝1042には、3群鏡筒130の後述する固定地板133に設けられたフォロア1331が追従し、これにより、カム筒104の回転に応じて3群鏡筒130が光軸方向に進退移動する。   A follower 1231 provided on a fixed ground plate 123 (to be described later) of the second group barrel 120 follows the first cam groove 1041, whereby the second group barrel 120 is moved in the optical axis direction according to the rotation of the cam barrel 104. Move forward and backward. A follower 1331 provided on a fixed ground plate 133 (to be described later) of the third group barrel 130 follows the second cam groove 1042, whereby the third group barrel 130 is moved in the optical axis direction according to the rotation of the cam barrel 104. Move forward and backward.

カム筒104の回転位置は、不図示の検出手段によって検出することができる。また、カム筒104の回転は、ユーザによる手動操作でもよいし、不図示のステッピングモータや超音波モータ等の専用の駆動手段によるものでもよい。カム筒104の回転操作により異なる第1カム溝1041及び第2カム溝1042に追従する2群鏡筒120及び3群鏡筒130の光軸方向の相対的な位置を変更することが可能となる。   The rotational position of the cam cylinder 104 can be detected by a detection means (not shown). The cam cylinder 104 may be rotated manually by a user or by a dedicated driving means such as a stepping motor or an ultrasonic motor (not shown). It is possible to change the relative positions in the optical axis direction of the second group barrel 120 and the third group barrel 130 following the different first cam grooves 1041 and second cam grooves 1042 depending on the rotation operation of the cam barrel 104. .

1群鏡筒110は、1群レンズ111を保持する1群レンズホルダ112を有し、固定筒103に固定される。2群鏡筒120は、本発明の第1の像ブレ補正装置の一例に相当し、3群鏡筒130は、本発明の第2の像ブレ補正装置の一例に相当する。なお、2群鏡筒120、及び3群鏡筒130の詳細については、後述する。   The first group barrel 110 includes a first group lens holder 112 that holds the first group lens 111 and is fixed to the fixed barrel 103. The second group lens barrel 120 corresponds to an example of the first image blur correction device of the present invention, and the third group lens barrel 130 corresponds to an example of the second image blur correction device of the present invention. Details of the second group barrel 120 and the third group barrel 130 will be described later.

4群鏡筒140は、4群レンズ141を保持する4群レンズホルダ142を有する。4群レンズ141は、本実施形態では、フォーカスレンズで構成される。4群レンズホルダ142には、スリーブ1411、回転止め溝1412、及びナット1413(図1参照)が設けられている。   The fourth group barrel 140 has a fourth group lens holder 142 that holds the fourth group lens 141. In the present embodiment, the fourth group lens 141 is constituted by a focus lens. The fourth group lens holder 142 is provided with a sleeve 1411, a rotation stop groove 1412, and a nut 1413 (see FIG. 1).

スリーブ1411は、素子ホルダ102に固定されたメインバー143に光軸方向に移動可能に嵌合され、これにより、4群レンズホルダ142を光軸方向に進退移動可能に保持する。回転止め溝1412は、素子ホルダ102に固定されたサブバー144に係合することで、4群レンズホルダ142がメインバー143を中心として回転することを規制する。ナット1413は、ステッピングモータ145の回転軸に設けられたリードスクリューに螺合される。   The sleeve 1411 is fitted to a main bar 143 fixed to the element holder 102 so as to be movable in the optical axis direction, thereby holding the fourth group lens holder 142 so as to be movable back and forth in the optical axis direction. The anti-rotation groove 1412 engages with the sub bar 144 fixed to the element holder 102 to restrict the fourth group lens holder 142 from rotating about the main bar 143. The nut 1413 is screwed into a lead screw provided on the rotating shaft of the stepping motor 145.

したがって、ステッピングモータ145を駆動すると、リードスクリューとナット1413とのねじ作用により、4群レンズ141を保持する4群レンズホルダ142が光軸方向に進退移動し、これにより、フォーカシング動作が行われる。   Therefore, when the stepping motor 145 is driven, the fourth group lens holder 142 holding the fourth group lens 141 is moved forward and backward in the optical axis direction by the screw action of the lead screw and the nut 1413, thereby performing a focusing operation.

次に、図2乃至図5を参照して、2群鏡筒120について説明する。図4は、2群鏡筒120の分解斜視図である。図5は、2群鏡筒120の光軸方向に沿う断面図である。図2乃至図5に示すように、2群鏡筒120は、補正レンズ121、可動部材122、固定地板123、転動ボール124、電磁駆動部125,126、付勢ばね127、位置センサ128、及びセンサホルダ129を備える。   Next, the second group barrel 120 will be described with reference to FIGS. FIG. 4 is an exploded perspective view of the second group barrel 120. FIG. 5 is a cross-sectional view of the second group barrel 120 along the optical axis direction. As shown in FIGS. 2 to 5, the second group lens barrel 120 includes a correction lens 121, a movable member 122, a fixed ground plate 123, rolling balls 124, electromagnetic driving units 125 and 126, an urging spring 127, a position sensor 128, And a sensor holder 129.

可動部材122は、電磁駆動部125の磁石1251及び電磁駆動部126の磁石1261を保持するとともに、中央の開口部に補正レンズ121を保持する。可動部材122は、固定地板123との間で周方向に略等間隔で3箇所配置される転動ボール124によって光軸と略直角に交差(略直交)する面内を移動可能に転動支持される。また、可動部材122には、3つの付勢ばね127の一端が掛止される。ここで、補正レンズ121は、本発明の第1の像ブレ補正光学系の一例に相当し、可動部材122は、本発明の第1の可動部材の一例に相当する。   The movable member 122 holds the magnet 1251 of the electromagnetic drive unit 125 and the magnet 1261 of the electromagnetic drive unit 126, and holds the correction lens 121 in the central opening. The movable member 122 is movably supported in a plane that intersects (substantially orthogonal to) the optical axis substantially at right angles by rolling balls 124 that are arranged at three positions at regular intervals in the circumferential direction between the movable member 122 and the fixed base plate 123. Is done. In addition, one end of three urging springs 127 is hooked on the movable member 122. Here, the correction lens 121 corresponds to an example of the first image blur correction optical system of the present invention, and the movable member 122 corresponds to an example of the first movable member of the present invention.

固定地板123は、外周部に径方向外方に突出するフォロア1231が周方向に略等間隔で3箇所形成されている。固定地板123の中央の開口部には、可動部材122が配置され、これにより、可動部材122の光軸と略直交する方向の移動量を制限する。   In the fixed ground plate 123, three followers 1231 projecting radially outward are formed on the outer peripheral portion at substantially equal intervals in the circumferential direction. A movable member 122 is disposed in the central opening of the fixed ground plate 123, thereby limiting the amount of movement of the movable member 122 in the direction substantially orthogonal to the optical axis.

また、固定地板123は、電磁駆動部125のコイル1252及びヨーク1253を保持するとともに、電磁駆動部126のコイル1262及びヨーク1263を保持する。コイル1252及びヨーク1253は、可動部材122に保持された磁石1251の着磁面に対して光軸方向に対向配置され、コイル1262及びヨーク1263は、可動部材122に保持された磁石1261の着磁面に対して光軸方向に対向配置される。   The fixed ground plate 123 holds the coil 1252 and the yoke 1253 of the electromagnetic driving unit 125 and also holds the coil 1262 and the yoke 1263 of the electromagnetic driving unit 126. The coil 1252 and the yoke 1253 are arranged to face the magnetized surface of the magnet 1251 held by the movable member 122 in the optical axis direction, and the coil 1262 and the yoke 1263 are magnetized by the magnet 1261 held by the movable member 122. Opposed to the surface in the optical axis direction.

固定地板123には、転動ボール124の受け部が周方向に略等間隔で3箇所設けられている。固定地板123と可動部材122との間に配置される3つの転動ボール124を介して固定地板123に対して可動部材122が光軸と直交する面内にて移動可能に支持される。また、固定地板123には、3つの付勢ばね127の他端が掛止される。ここで、固定地板123は、本発明の第1の固定部材の一例に相当する。   The fixed ground plate 123 is provided with three receiving portions for the rolling balls 124 at substantially equal intervals in the circumferential direction. The movable member 122 is supported by the fixed ground plate 123 movably in a plane orthogonal to the optical axis via three rolling balls 124 disposed between the fixed ground plate 123 and the movable member 122. Further, the other end of the three biasing springs 127 is hooked to the fixed ground plate 123. Here, the fixed ground plate 123 corresponds to an example of the first fixing member of the present invention.

電磁駆動部125,126は、ともにボイスコイルモータ等で構成され、電磁駆動部125は、磁石1251、コイル1252、及びヨーク1253を有し、電磁駆動部126は、磁石1261、コイル1262、及びヨーク1263を有する。ここで、電磁駆動部125は、本発明の第1の電磁駆動部の一例に相当し、電磁駆動部126は、本発明の第2の電磁駆動部の一例に相当する。   The electromagnetic driving units 125 and 126 are both configured by a voice coil motor or the like, and the electromagnetic driving unit 125 includes a magnet 1251, a coil 1252, and a yoke 1253, and the electromagnetic driving unit 126 includes a magnet 1261, a coil 1262, and a yoke. 1263. Here, the electromagnetic drive unit 125 corresponds to an example of the first electromagnetic drive unit of the present invention, and the electromagnetic drive unit 126 corresponds to an example of the second electromagnetic drive unit of the present invention.

電磁駆動部125は、固定地板123に保持されたコイル1252に電流を流すことで、可動部材122に保持された磁石1251との間にローレンツ力を発生し、可動部材122を光軸と略直交する第1の方向に駆動する。本実施形態では、磁石1251とヨーク1253とでコイル1252を光軸方向に挟み込むようにしているため、磁石1251の作る磁束を効率的に駆動力に変換することができる。   The electromagnetic drive unit 125 generates a Lorentz force between the magnet 1251 held by the movable member 122 by causing a current to flow through the coil 1252 held by the fixed ground plate 123, and makes the movable member 122 substantially orthogonal to the optical axis. Drive in the first direction. In this embodiment, since the coil 1252 is sandwiched between the magnet 1251 and the yoke 1253 in the optical axis direction, the magnetic flux generated by the magnet 1251 can be efficiently converted into a driving force.

電磁駆動部126は、電磁駆動部125に対して90°位相をずらして配置される。そして、固定地板123に保持されたコイル1262に電流を流すことで、可動部材122に保持された磁石1261との間にローレンツ力を発生し、これにより、可動部材122を光軸と略直交し、かつ第1の方向と略直交する第2の方向に駆動する。本実施形態についても、磁石1261とヨーク1263とでコイル1262を光軸方向に挟み込むようにしているため、磁石1261の作る磁束を効率的に駆動力に変換することができる。   The electromagnetic drive unit 126 is arranged with a 90 ° phase shift with respect to the electromagnetic drive unit 125. Then, a current is passed through the coil 1262 held on the fixed ground plate 123 to generate a Lorentz force with the magnet 1261 held on the movable member 122, thereby making the movable member 122 substantially orthogonal to the optical axis. And in a second direction substantially orthogonal to the first direction. Also in this embodiment, since the coil 1262 is sandwiched between the magnet 1261 and the yoke 1263 in the optical axis direction, the magnetic flux generated by the magnet 1261 can be efficiently converted into a driving force.

付勢ばね127は、本実施形態では、引っ張りコイルばねで構成され、一端が可動部材122に掛止され、他端が固定地板123に掛止されて、可動部材122と固定地板123とを互いに近づける方向に付勢する。この付勢力により、可動部材122と固定地板123と間に転動ボール124が挟持され、転動ボール124と固定地板123及び可動部材122との接触状態を保つことができる。   In this embodiment, the urging spring 127 is constituted by a tension coil spring, and one end is hooked to the movable member 122 and the other end is hooked to the fixed ground plate 123 to connect the movable member 122 and the fixed ground plate 123 to each other. Energize in the approaching direction. By this urging force, the rolling ball 124 is sandwiched between the movable member 122 and the fixed ground plate 123, and the contact state between the rolling ball 124, the fixed ground plate 123, and the movable member 122 can be maintained.

位置センサ128は、磁気センサで構成され、2つ配置されて、それぞれ磁石1251及び磁石1261の磁束を検出する。そして、2つの位置センサ128の出力変化に基づき可動部材122の光軸と略直交する面内の位置を検出することができる。   The position sensor 128 includes a magnetic sensor, and two position sensors 128 are arranged to detect magnetic fluxes of the magnet 1251 and the magnet 1261, respectively. Based on the output changes of the two position sensors 128, the position in the plane substantially orthogonal to the optical axis of the movable member 122 can be detected.

センサホルダ129は、2つの位置センサ128をそれぞれ磁石1251及び磁石1261と光軸方向に対向する位置に保持する。また、センサホルダ129は、固定地板123に固定されることで、センサホルダ129と固定地板123との間の空間に可動部材122や電磁駆動部125,126等が収納される。   The sensor holder 129 holds the two position sensors 128 at positions facing the magnets 1251 and 1261 in the optical axis direction, respectively. In addition, the sensor holder 129 is fixed to the fixed ground plate 123, so that the movable member 122, the electromagnetic drive units 125 and 126, and the like are accommodated in the space between the sensor holder 129 and the fixed ground plate 123.

次に、図2及び図3に戻って、3群鏡筒130について説明する。図2及び図3に示すように、3群鏡筒130は、補正レンズ131、可動部材132、固定地板133、転動ボール134(不図示)、電磁駆動部135,136(図7参照)、付勢ばね137(図6参照)、位置センサ138、及びセンサホルダ139を備える。電磁駆動部135は、可動部材132を光軸と略直交する第3の方向に駆動し、電磁駆動部136は、可動部材132を光軸と略直交し、かつ第3の方向と略直交する第4の方向に駆動する。   Next, returning to FIGS. 2 and 3, the third group barrel 130 will be described. As shown in FIGS. 2 and 3, the third group lens barrel 130 includes a correction lens 131, a movable member 132, a fixed ground plate 133, a rolling ball 134 (not shown), electromagnetic drive units 135 and 136 (see FIG. 7), An urging spring 137 (see FIG. 6), a position sensor 138, and a sensor holder 139 are provided. The electromagnetic drive unit 135 drives the movable member 132 in a third direction substantially orthogonal to the optical axis, and the electromagnetic drive unit 136 causes the movable member 132 to be substantially orthogonal to the optical axis and substantially orthogonal to the third direction. Drive in the fourth direction.

ここで、補正レンズ131は、本発明の第2の像ブレ補正光学系の一例に相当し、可動部材132は、本発明の第2の可動部材の一例に相当し、固定地板133は、本発明の第2の固定部材の一例に相当する。また、電磁駆動部135は、本発明の第3の電磁駆動部の一例に相当し、電磁駆動部136は、本発明の第4の電磁駆動部の一例に相当する。なお、3群鏡筒130は、補正レンズ131の形状、及び補正レンズ131を保持する可動部材132の形状以外は、前述した2群鏡筒120と同様の構成であるため、その説明を省略する。   Here, the correction lens 131 corresponds to an example of the second image blur correction optical system of the present invention, the movable member 132 corresponds to an example of the second movable member of the present invention, and the fixed ground plate 133 This corresponds to an example of the second fixing member of the invention. The electromagnetic drive unit 135 corresponds to an example of a third electromagnetic drive unit of the present invention, and the electromagnetic drive unit 136 corresponds to an example of a fourth electromagnetic drive unit of the present invention. The third group barrel 130 has the same configuration as that of the second group barrel 120 described above except for the shape of the correction lens 131 and the shape of the movable member 132 that holds the correction lens 131, and a description thereof will be omitted. .

次に、図6及び図7を参照して、2群鏡筒120と3群鏡筒130との位置関係について説明する。図6は、2群鏡筒120及び3群鏡筒130の一部を分解した斜視図である。図7は、2群鏡筒120の可動部材122及び3群鏡筒130の可動部材132を光軸方向から見た図である。   Next, the positional relationship between the second group barrel 120 and the third group barrel 130 will be described with reference to FIGS. FIG. 6 is an exploded perspective view of a part of the second group barrel 120 and the third group barrel 130. FIG. 7 is a view of the movable member 122 of the second group barrel 120 and the movable member 132 of the third group barrel 130 as viewed from the optical axis direction.

図6及び図7に示すように、2群鏡筒120の電磁駆動部125及び3群鏡筒130の電磁駆動部135は、光軸を間に挟んで互いに反対側に配置される。2群鏡筒120の電磁駆動部126及び3群鏡筒130の電磁駆動部136についても、光軸を間に挟んで互いに反対側に配置される。   As shown in FIGS. 6 and 7, the electromagnetic drive unit 125 of the second group barrel 120 and the electromagnetic drive unit 135 of the third group barrel 130 are arranged on opposite sides with the optical axis in between. The electromagnetic drive unit 126 of the second group barrel 120 and the electromagnetic drive unit 136 of the third group barrel 130 are also arranged on opposite sides with the optical axis in between.

即ち、図7に示すように、光軸を中心として周方向に90°ごとに4等分した領域を反時計回りにそれぞれ第1領域〜第4領域とすると、2群鏡筒120の電磁駆動部125は、第1領域に配置され、2群鏡筒120の電磁駆動部126は、第2領域に配置される。また、3群鏡筒130の電磁駆動部135は、第3領域に配置され、3群鏡筒130の電磁駆動部136は、第4領域に配置される。したがって、2群鏡筒120と3群鏡筒130とが光軸方向に接近しても、それぞれの電磁駆動部同士は、周方向の距離が確保され、電磁駆動部同士の磁気的な干渉や機械的な干渉を避けることができる。   That is, as shown in FIG. 7, when the regions divided into four equal parts in the circumferential direction about 90 ° around the optical axis are defined as first region to fourth region in the counterclockwise direction, the electromagnetic drive of the second group barrel 120 The part 125 is disposed in the first region, and the electromagnetic driving unit 126 of the second group barrel 120 is disposed in the second region. Further, the electromagnetic drive unit 135 of the third group barrel 130 is disposed in the third region, and the electromagnetic drive unit 136 of the third group barrel 130 is disposed in the fourth region. Therefore, even if the second group barrel 120 and the third group barrel 130 are close to each other in the optical axis direction, the distance between the respective electromagnetic drive units is ensured, and magnetic interference between the electromagnetic drive units or Mechanical interference can be avoided.

この効果について、図7及び図8を参照して、2群鏡筒120の電磁駆動部125が3群鏡筒130の電磁駆動部136に与える磁気干渉量を例に挙げて説明する。図8は、本発明例及び比較例における電磁駆動部125,136間の距離と電磁駆動部125が電磁駆動部136に与える磁気干渉量との関係を示すグラフ図である。ここで、本発明例では、図7に示すように、電磁駆動部125,136が互いに90°位相をずらして配置され、比較例では、電磁駆動部125,136が光軸方向に重ねて配置されるものとする。   This effect will be described with reference to FIGS. 7 and 8 by taking as an example the amount of magnetic interference that the electromagnetic drive unit 125 of the second group barrel 120 gives to the electromagnetic drive unit 136 of the third group barrel 130. FIG. 8 is a graph showing the relationship between the distance between the electromagnetic drive units 125 and 136 and the amount of magnetic interference that the electromagnetic drive unit 125 gives to the electromagnetic drive unit 136 in the present invention example and the comparative example. Here, in the present invention example, as shown in FIG. 7, the electromagnetic drive units 125 and 136 are arranged so as to be shifted from each other by 90 °, and in the comparative example, the electromagnetic drive units 125 and 136 are arranged so as to overlap each other in the optical axis direction. Shall be.

電磁駆動部125と電磁駆動部136とが光軸方向に最も近づく、撮影光学系を広角側に変倍させた状態で、電磁駆動部125と電磁駆動部136との光軸方向の距離は1.8mmとする。   The distance in the optical axis direction between the electromagnetic drive unit 125 and the electromagnetic drive unit 136 is 1 in a state where the electromagnetic drive unit 125 and the electromagnetic drive unit 136 are closest to the optical axis direction and the imaging optical system is zoomed to the wide angle side. 8 mm.

この状態において、比較例では、電磁駆動部125,136が光軸方向に重ねて配置されるので、電磁駆動部125,136の中心点間の距離は、1.8mmである。これに対し、本発明例では、電磁駆動部125,136の中心点間の距離(図7のV1−V4間の距離)は、8.59mmとなる。   In this state, in the comparative example, since the electromagnetic drive units 125 and 136 are arranged so as to overlap in the optical axis direction, the distance between the center points of the electromagnetic drive units 125 and 136 is 1.8 mm. On the other hand, in the present invention example, the distance between the center points of the electromagnetic drive units 125 and 136 (the distance between V1 and V4 in FIG. 7) is 8.59 mm.

電磁駆動部125による電磁駆動部136への磁気干渉量の大きさは、電磁駆動部125を単一の磁極子と仮定すると、図8に示すように、電磁駆動部125,136間の距離の二乗に反比例する。このため、電磁駆動部125,136の中心点間の距離が1.8mmの比較例における磁気干渉量を100%として相対的に比較すると、本発明例における磁気干渉量は、電磁駆動部125,136間の距離の比(1.8/8.59)の二乗の0.04倍に低減する。このように、本発明例では、電磁駆動部125,135間の磁気干渉量を小さくすることができる。   Assuming that the electromagnetic drive unit 125 is a single magnetic pole, the magnitude of the amount of magnetic interference from the electromagnetic drive unit 125 to the electromagnetic drive unit 136 is as shown in FIG. Inversely proportional to the square. Therefore, when the relative amount of magnetic interference in the comparative example in which the distance between the center points of the electromagnetic driving units 125 and 136 is 1.8 mm is set as 100%, the magnetic interference amount in the present invention example is The distance ratio between 136 is reduced to 0.04 times the square of the ratio (1.8 / 8.59). Thus, in the present invention example, the amount of magnetic interference between the electromagnetic drive units 125 and 135 can be reduced.

また、本実施形態では、2群鏡筒120の電磁駆動部125,126は、3群鏡筒130側にヨーク1253,1263が配置されるので、電磁駆動部125,126の発生する磁束が3群鏡筒130に与える影響を小さくすることができる。同様に、3群鏡筒130の電磁駆動部135,136は、2群鏡筒120側にヨーク1353,1363が配置されるので、電磁駆動部135,136の発生する磁束が2群鏡筒120に与える影響を小さくすることができる。   In the present embodiment, the electromagnetic drive units 125 and 126 of the second group barrel 120 have the yokes 1253 and 1263 arranged on the third group barrel 130 side, so that the magnetic flux generated by the electromagnetic drive units 125 and 126 is 3 The influence on the group barrel 130 can be reduced. Similarly, since the electromagnetic driving portions 135 and 136 of the third group barrel 130 are provided with yokes 1353 and 1363 on the second group barrel 120 side, the magnetic flux generated by the electromagnetic driving portions 135 and 136 is generated by the second group barrel 120. Can be reduced.

これにより、2群鏡筒120と3群鏡筒130とを光軸方向に接近させても、電磁駆動部同士の磁気干渉をより小さくすることができ、2群鏡筒120と3群鏡筒130との光軸方向の距離を広い範囲で設定することができる。   Accordingly, even when the second group barrel 120 and the third group barrel 130 are moved closer to each other in the optical axis direction, the magnetic interference between the electromagnetic drive units can be further reduced, and the second group barrel 120 and the third group barrel can be reduced. The distance in the optical axis direction with respect to 130 can be set in a wide range.

また、本実施形態では、2群鏡筒120の可動部材122と3群鏡筒130の可動部材132との間に、2群鏡筒120の固定地板123及び3群鏡筒130の固定地板133が配置される。可動部材122は、固定地板123に対して転動ボール124を介して転動可能に支持されるが、落下等による衝撃を受けると、固定地板123の反対側に浮き上がる。また、可動部材132は、固定地板133に対して転動ボール134(不図示)を介して転動可能に支持されるが、落下等による衝撃を受けると固定地板133の反対側に浮き上がる。   In this embodiment, the fixed ground plate 123 of the second group barrel 120 and the fixed ground plate 133 of the third group barrel 130 are provided between the movable member 122 of the second group barrel 120 and the movable member 132 of the third group barrel 130. Is placed. The movable member 122 is supported so as to be able to roll with respect to the fixed ground plate 123 via the rolling balls 124, but when it receives an impact due to dropping or the like, it floats on the opposite side of the fixed ground plate 123. In addition, the movable member 132 is supported so as to be able to roll with respect to the fixed ground plate 133 via a rolling ball 134 (not shown). However, when the movable member 132 receives an impact due to dropping or the like, the movable member 132 is lifted to the opposite side of the fixed ground plate 133.

したがって、上記のような配置とすることにより、2群鏡筒120の可動部材122と3群鏡筒130の可動部材132は、衝撃を受けても互いの距離は狭くならない。このため、可動部材122と可動部材132との光軸方向の距離を短くしても、互いの接触を避けることができる。   Therefore, with the arrangement as described above, the distance between the movable member 122 of the second group barrel 120 and the movable member 132 of the third group barrel 130 is not reduced even when subjected to an impact. For this reason, even if the distance of the optical axis direction of the movable member 122 and the movable member 132 is shortened, mutual contact can be avoided.

次に、図9及び図10を参照して、2群鏡筒120による像ブレ補正方法について説明する。図9は、2群鏡筒120の電磁駆動部125の駆動を制御する制御回路のブロック図である。なお、2群鏡筒120の電磁駆動部126、及び3群鏡筒130の電磁駆動部135,136についても、図9と同様の制御回路が用いられるため、ここでは、2群鏡筒120の電磁駆動部125についてのみ説明する。   Next, an image blur correction method using the second group barrel 120 will be described with reference to FIGS. FIG. 9 is a block diagram of a control circuit that controls the driving of the electromagnetic drive unit 125 of the second group barrel 120. 9 is used for the electromagnetic drive unit 126 of the second group barrel 120 and the electromagnetic drive units 135 and 136 of the third group barrel 130. Only the electromagnetic drive unit 125 will be described.

図9において、Cpは、可動部材122に保持される補正レンズ121の光軸と略直交する方向での目標位置を電圧に変換した指令値である。目標位置の算出は、レンズ鏡筒に取り付けられた角加速度計の出力値を積分および位相補償する方法や、撮像素子から得られた画像情報より計算する方法などの、公知の方法を用いることができる。   In FIG. 9, Cp is a command value obtained by converting a target position in a direction substantially orthogonal to the optical axis of the correction lens 121 held by the movable member 122 into a voltage. For calculation of the target position, a known method such as a method of integrating and phase compensating the output value of the angular accelerometer attached to the lens barrel or a method of calculating from the image information obtained from the image sensor is used. it can.

Apは、フィードバック回路のループゲイン係数である。与えられた指令値Cpと位置センサS(位置センサ128に相当)によって得られた可動部材122の位置との差をループゲイン係数Apにより増幅し、電磁駆動部125にその差に応じた電圧を入力する。本実施形態では、後述するように、ループゲイン係数Apの値を複数用意し、撮影光学系の変倍操作に応じてその値を変更する。   Ap is a loop gain coefficient of the feedback circuit. A difference between the given command value Cp and the position of the movable member 122 obtained by the position sensor S (corresponding to the position sensor 128) is amplified by a loop gain coefficient Ap, and a voltage corresponding to the difference is applied to the electromagnetic drive unit 125. input. In the present embodiment, as will be described later, a plurality of values of the loop gain coefficient Ap are prepared, and the values are changed according to the magnification operation of the photographing optical system.

Fは、電磁駆動部125に入力された電圧と可動部材122の変位量との変換係数である。可動部材122の変位量と位置センサSの出力電圧とは、ほぼ線形近似できるような関係となっている。変換係数Fは、電磁駆動部125の推力定数、コイル1252の抵抗やインピーダンス、入力電圧の周波数、可動部材122の質量、付勢ばね127のばね定数、摩擦などによって決まる。このようなフィードバック制御回路により、補正レンズ121の位置を指令値Cpに対して精度よく追従させることができる。   F is a conversion coefficient between the voltage input to the electromagnetic drive unit 125 and the amount of displacement of the movable member 122. The displacement amount of the movable member 122 and the output voltage of the position sensor S have a relationship that can be approximately linearly approximated. The conversion coefficient F is determined by the thrust constant of the electromagnetic drive unit 125, the resistance and impedance of the coil 1252, the frequency of the input voltage, the mass of the movable member 122, the spring constant of the biasing spring 127, friction, and the like. By such a feedback control circuit, the position of the correction lens 121 can be made to accurately follow the command value Cp.

次に、図10を参照して、2群鏡筒120の位置センサ128の出力について詳しく説明する。図10は、位置センサ128の出力電圧yと可動部材122の光軸と略直交する方向の変位量xとの関係を示すグラフ図である。   Next, the output of the position sensor 128 of the second group barrel 120 will be described in detail with reference to FIG. FIG. 10 is a graph showing the relationship between the output voltage y of the position sensor 128 and the amount of displacement x in a direction substantially orthogonal to the optical axis of the movable member 122.

本実施形態では、撮影光学系の変倍操作によってレンズ群同士の間隔が変化したとき、それに応じて2群鏡筒120と3群鏡筒130との光軸方向の距離を変えて像ブレ補正の光学性能の向上を図る。その際、2群鏡筒120の位置センサ128と3群鏡筒130の磁石1351等の強磁性体との位置関係が変化する。   In the present embodiment, when the distance between the lens groups is changed by the zooming operation of the photographing optical system, the image blur correction is performed by changing the distance in the optical axis direction between the second group barrel 120 and the third group barrel 130 accordingly. To improve the optical performance. At that time, the positional relationship between the position sensor 128 of the second group barrel 120 and the ferromagnetic material such as the magnet 1351 of the third group barrel 130 changes.

図10において、撮影光学系がワイド位置にあるとき、実線で示す曲線となり、撮影光学系がテレ位置にあるとき、破線で示す曲線となる。このように、2群鏡筒120の磁石1251,1261以外から位置センサ128が受ける磁力の影響は、3群鏡筒130の相対位置に応じて再現性のある変化をする。本実施形態では、2群鏡筒120と3群鏡筒130との光軸方向の距離が変化したとき、位置センサ128が3群鏡筒130の磁石1351等から受ける磁力の影響が変化しないよう、位置センサ128の出力電圧yと可動部材122の変位量xとの関係を変更する。   In FIG. 10, when the photographing optical system is at the wide position, the curve is indicated by a solid line, and when the photographing optical system is at the tele position, the curve is indicated by a broken line. Thus, the influence of the magnetic force received by the position sensor 128 from other than the magnets 1251 and 1261 of the second group barrel 120 changes reproducibly according to the relative position of the third group barrel 130. In the present embodiment, when the distance in the optical axis direction between the second group barrel 120 and the third group barrel 130 changes, the influence of the magnetic force that the position sensor 128 receives from the magnet 1351 of the third group barrel 130 does not change. The relationship between the output voltage y of the position sensor 128 and the displacement amount x of the movable member 122 is changed.

具体的には、可動部材122の変位量xと位置センサ128の出力電圧yとの間の比例定数である位置センサ128のゲイン係数Aと、位置センサ128の出力電圧のオフセット量Bと、を複数用意して不図示のメモリ等に記憶しておく。そして、不図示の制御部は、2群鏡筒120と3群鏡筒130の光軸方向の位置関係に応じて、位置センサ128が3群鏡筒130の磁石1351等から受ける磁力の影響が変化しないように適切なゲイン係数A及びオフセット量Bの値を選択する。これにより、2群鏡筒120と3群鏡筒130の光軸方向の位置変化による磁気干渉の影響をさらに低減することができる。   Specifically, the gain coefficient A of the position sensor 128, which is a proportional constant between the displacement amount x of the movable member 122 and the output voltage y of the position sensor 128, and the offset amount B of the output voltage of the position sensor 128, A plurality are prepared and stored in a memory (not shown). The control unit (not shown) is affected by the magnetic force that the position sensor 128 receives from the magnet 1351 of the third group barrel 130 according to the positional relationship between the second group barrel 120 and the third group barrel 130 in the optical axis direction. Appropriate values of gain coefficient A and offset amount B are selected so as not to change. Thereby, it is possible to further reduce the influence of magnetic interference due to the position change of the second group barrel 120 and the third group barrel 130 in the optical axis direction.

同様の理由で、2群鏡筒120と3群鏡筒130の光軸方向の位置関係に応じて、電磁駆動部125の推力定数等も再現性のある変化をする。そのため、制御系の特性を最適化するループゲイン係数Apの値も2群鏡筒120と3群鏡筒130の光軸方向の位置関係に応じて変化する。本実施形態では、2群鏡筒120と3群鏡筒130の光軸方向の位置関係に応じて、予めメモリ等に記憶しておいた複数のループゲイン係数Apの値から制御部が最適な値を選択することで、変化した電磁駆動部125の推力定数等を適正な値に変更する。ここで、ゲイン係数A、オフセット量B及びループゲイン係数Apは、可動部材122の変位量xと位置センサ128の出力電圧yとの関係を表すパラメータである。   For the same reason, the thrust constant and the like of the electromagnetic drive unit 125 change with reproducibility according to the positional relationship between the second group barrel 120 and the third group barrel 130 in the optical axis direction. Therefore, the value of the loop gain coefficient Ap that optimizes the characteristics of the control system also changes according to the positional relationship between the second group barrel 120 and the third group barrel 130 in the optical axis direction. In the present embodiment, the control unit is optimal from the values of a plurality of loop gain coefficients Ap stored in advance in a memory or the like according to the positional relationship between the second group barrel 120 and the third group barrel 130 in the optical axis direction. By selecting a value, the changed thrust constant or the like of the electromagnetic driving unit 125 is changed to an appropriate value. Here, the gain coefficient A, the offset amount B, and the loop gain coefficient Ap are parameters representing the relationship between the displacement amount x of the movable member 122 and the output voltage y of the position sensor 128.

2群鏡筒120と3群鏡筒130の光軸方向の位置関係の情報は、例えばカム筒103の回転角度の検出結果に基づいて取得することができる。カム筒104の回転角度は、不図示の検出手段を用いて直接検出してもよいし、カム筒104の回転のために専用のモータを用いる場合は、そのモータの回転量を検出する手段を用いてもよい。   Information on the positional relationship of the second group barrel 120 and the third group barrel 130 in the optical axis direction can be acquired based on, for example, the detection result of the rotation angle of the cam barrel 103. The rotation angle of the cam cylinder 104 may be detected directly using a detection means (not shown). When a dedicated motor is used for the rotation of the cam cylinder 104, a means for detecting the rotation amount of the motor is provided. It may be used.

以上説明したように、本実施形態では、ズーミングやフォーカシング等によって撮影光学系のレンズ群同士の間隔が変化した場合、それに応じて2群鏡筒120と3群鏡筒130との光軸方向の距離を変えて像ブレ補正の光学性能の向上を図ることができる。また、本実施形態では、2群鏡筒120と3群鏡筒130の光軸方向の位置変化による磁気干渉の影響を低減することができるので、可動部材122,132の光軸と略直交する方向での高精度な位置制御を実現することができる。   As described above, in the present embodiment, when the interval between the lens groups of the photographing optical system changes due to zooming, focusing, or the like, the optical axis direction between the second group barrel 120 and the third group barrel 130 is changed accordingly. The optical performance of image blur correction can be improved by changing the distance. Further, in the present embodiment, the influence of magnetic interference due to the position change of the second group barrel 120 and the third group barrel 130 in the optical axis direction can be reduced, so that the optical axes of the movable members 122 and 132 are substantially orthogonal. High-precision position control in the direction can be realized.

なお、本発明の構成は、上記実施形態に例示したものに限定されるものではなく、材質、形状、寸法、形態、数、配置箇所等は、本発明の要旨を逸脱しない範囲において適宜変更可能である。   The configuration of the present invention is not limited to that exemplified in the above embodiment, and the material, shape, dimensions, form, number, arrangement location, and the like can be changed as appropriate without departing from the scope of the present invention. It is.

例えば、上記実施形態では、像ブレ補正光学系として補正レンズを例示したが、CCDセンサやCMOSセンサ等の撮像素子を用いてもよい。   For example, in the above embodiment, the correction lens is exemplified as the image blur correction optical system, but an image sensor such as a CCD sensor or a CMOS sensor may be used.

120 2群鏡筒
122 可動部材
122 固定地板
125,126 電磁駆動部
130 3群鏡筒
132 可動部材
132 固定地板
135,136 電磁駆動部
120 Second group lens barrel 122 Movable member 122 Fixed ground plate 125, 126 Electromagnetic drive unit 130 Third group lens barrel 132 Movable member 132 Fixed ground plate 135, 136 Electromagnetic drive unit

Claims (10)

第1の像ブレ補正光学系を保持する第1の可動部材、前記第1の可動部材を光軸と交差する方向に移動可能に支持する第1の固定部材、前記第1の可動部材を光軸と交差する第1の方向に駆動する第1の電磁駆動部、及び第1の可動部材を光軸と交差する第2の方向に駆動する第2の電磁駆動部を有する第1の像ブレ補正装置と、
第2の像ブレ補正光学系を保持する第2の可動部材、前記第2の可動部材を光軸と交差する方向に移動可能に支持する第2の固定部材、前記第2の可動部材を光軸と交差する第3の方向に駆動する第3の電磁駆動部、及び第2の可動部材を光軸と交差する第4の方向に駆動する第4の電磁駆動部を有する第2の像ブレ補正装置と、を備え、
前記第1の像ブレ補正装置は、前記第2の像ブレ補正装置に対して光軸方向に相対的に移動可能とされ、
光軸を中心として周方向に90°ごとに4等分した領域をそれぞれ第1領域、第2領域、第3領域、及び第4領域とした場合、前記第1の電磁駆動部は、前記第1領域に配置され、前記第2の電磁駆動部は、前記第2領域に配置され、前記第3の電磁駆動部は、前記第3領域に配置され、前記第4の電磁駆動部は、前記第4領域に配置されることを特徴とするレンズ鏡筒。
A first movable member that holds the first image blur correction optical system, a first fixed member that movably supports the first movable member in a direction that intersects the optical axis, and a light beam that supports the first movable member. A first image blur having a first electromagnetic drive unit that drives in a first direction that intersects the axis, and a second electromagnetic drive unit that drives the first movable member in a second direction that intersects the optical axis. A correction device;
A second movable member that holds the second image blur correction optical system; a second fixed member that movably supports the second movable member in a direction that intersects the optical axis; and A second image blur having a third electromagnetic drive unit that drives in a third direction that intersects the axis, and a fourth electromagnetic drive unit that drives the second movable member in a fourth direction that intersects the optical axis. A correction device,
The first image blur correction device is movable relative to the second image blur correction device in the optical axis direction;
When the regions divided into four equal parts in the circumferential direction about the optical axis are divided into four regions, the first region, the second region, the third region, and the fourth region, respectively, the first electromagnetic driving unit Arranged in one region, the second electromagnetic drive unit is arranged in the second region, the third electromagnetic drive unit is arranged in the third region, and the fourth electromagnetic drive unit is A lens barrel arranged in the fourth region.
前記第1の像ブレ補正装置に対する前記第2の像ブレ補正装置の光軸方向の位置を変更する操作手段を備えること特徴とする請求項1に記載のレンズ鏡筒。   2. The lens barrel according to claim 1, further comprising operation means for changing a position of the second image blur correction device in the optical axis direction with respect to the first image blur correction device. 第1の可動部材の第1の固定部材に対する光軸と交差する方向の位置を検出する位置センサと、
前記位置センサの出力に基づき、前記第1の可動部材が目標位置に移動するように前記第1の電磁駆動部に入力する電圧をフィードバック制御する制御手段と、を備えることを特徴とする請求項1又は2に記載のレンズ鏡筒。
A position sensor for detecting a position of the first movable member in a direction intersecting the optical axis with respect to the first fixed member;
And a control unit that feedback-controls a voltage input to the first electromagnetic driving unit so that the first movable member moves to a target position based on an output of the position sensor. The lens barrel according to 1 or 2.
前記第1の像ブレ補正装置に対する前記第2の像ブレ補正装置の光軸方向の相対位置を検出する検出手段と、を備え、
前記制御手段は、前記検出手段により検出された前記第1の像ブレ補正装置に対する前記第2の像ブレ補正装置の光軸方向の相対位置の変化に応じて、前記第1の可動部材の光軸と交差する方向の変位量と前記位置センサの出力との関係を表すパラメータを変更することを特徴とする請求項3に記載のレンズ鏡筒。
Detecting means for detecting a relative position in the optical axis direction of the second image blur correction device with respect to the first image blur correction device;
The control means detects light of the first movable member according to a change in a relative position of the second image blur correction apparatus in the optical axis direction with respect to the first image blur correction apparatus detected by the detection means. The lens barrel according to claim 3, wherein a parameter representing a relationship between a displacement amount in a direction intersecting the axis and an output of the position sensor is changed.
前記パラメータは、前記第1の可動部材の前記変位量と前記位置センサの出力との間の比例定数である前記位置センサのゲイン係数、前記位置センサの出力のオフセット量、及び前記第1の電磁駆動部のフィードバック制御におけるループゲイン係数の少なくとも一つであることを特徴とする請求項4に記載のレンズ鏡筒。   The parameters include a gain coefficient of the position sensor, which is a proportional constant between the displacement amount of the first movable member and the output of the position sensor, an offset amount of the output of the position sensor, and the first electromagnetic wave. The lens barrel according to claim 4, wherein the lens barrel is at least one of loop gain coefficients in feedback control of the drive unit. 前記第1の固定部材及び前記第2の固定部材は、前記第1の可動部材と前記第2の可動部材との間に配置されることを特徴とする請求項1乃至5のいずれか1項に記載のレンズ鏡筒。   The said 1st fixing member and the said 2nd fixing member are arrange | positioned between the said 1st movable member and the said 2nd movable member, The any one of Claim 1 thru | or 5 characterized by the above-mentioned. The lens barrel described in 1. 前記第1の電磁駆動部は、第1の磁石、第1のコイル及び第1のヨークを有していて、 前記第1の可動部材は、前記第1の磁石を保持し、
前記第1の固定部材は、前記第1のコイル及び前記第1のヨークを保持することを特徴とする請求項6に記載のレンズ鏡筒。
The first electromagnetic drive unit includes a first magnet, a first coil, and a first yoke, and the first movable member holds the first magnet,
The lens barrel according to claim 6, wherein the first fixing member holds the first coil and the first yoke.
前記第の電磁駆動部は、第2の磁石、第2のコイル及び第2のヨークを有していて、 前記第2の可動部材は、前記第2の磁石を保持し、
前記第2の固定部材は、前記第2のコイル及び前記第2のヨークを保持することを特徴とする請求項7に記載のレンズ鏡筒。
The third electromagnetic drive unit has a second magnet, a second coil, and a second yoke, and the second movable member holds the second magnet,
The lens barrel according to claim 7, wherein the second fixing member holds the second coil and the second yoke.
レンズ鏡筒を備える撮像装置であって、
前記レンズ鏡筒として、請求項1乃至8のいずれか1項に記載のレンズ鏡筒を備えることを特徴とする撮像装置。
An imaging device comprising a lens barrel,
An imaging apparatus comprising the lens barrel according to claim 1 as the lens barrel.
第1の像ブレ補正光学系を保持する第1の可動部材、前記第1の可動部材を光軸と交差する方向に移動可能に支持する第1の固定部材、前記第1の可動部材を光軸と交差する第1の方向に駆動する第1の電磁駆動部、及び第1の可動部材を光軸と交差する第2の方向に駆動する第2の電磁駆動部を有する第1の像ブレ補正装置と、
第2の像ブレ補正光学系を保持する第2の可動部材、前記第2の可動部材を光軸と交差する方向に移動可能に支持する第2の固定部材、前記第2の可動部材を光軸と交差する第3の方向に駆動する第3の電磁駆動部、及び第2の可動部材を光軸と交差する第4の方向に駆動する第4の電磁駆動部を有する第2の像ブレ補正装置と、を備え、
前記第1の像ブレ補正装置は、前記第2の像ブレ補正装置に対して光軸方向に相対的に移動可能とされ、
光軸を中心として周方向に90°ごとに4等分した領域をそれぞれ第1領域、第2領域、第3領域、及び第4領域とした場合、前記第1の電磁駆動部は、前記第1領域に配置され、前記第2の電磁駆動部は、前記第2領域に配置され、前記第3の電磁駆動部は、前記第3領域に配置され、前記第4の電磁駆動部は、前記第4領域に配置されることを特徴とする撮像装置。
A first movable member that holds the first image blur correction optical system, a first fixed member that movably supports the first movable member in a direction that intersects the optical axis, and a light beam that supports the first movable member. A first image blur having a first electromagnetic drive unit that drives in a first direction that intersects the axis, and a second electromagnetic drive unit that drives the first movable member in a second direction that intersects the optical axis. A correction device;
A second movable member that holds the second image blur correction optical system; a second fixed member that movably supports the second movable member in a direction that intersects the optical axis; and A second image blur having a third electromagnetic drive unit that drives in a third direction that intersects the axis, and a fourth electromagnetic drive unit that drives the second movable member in a fourth direction that intersects the optical axis. A correction device,
The first image blur correction device is movable relative to the second image blur correction device in the optical axis direction;
When the regions divided into four equal parts in the circumferential direction about the optical axis are divided into four regions, the first region, the second region, the third region, and the fourth region, respectively, the first electromagnetic driving unit Arranged in one region, the second electromagnetic drive unit is arranged in the second region, the third electromagnetic drive unit is arranged in the third region, and the fourth electromagnetic drive unit is An image pickup apparatus arranged in a fourth region.
JP2013133635A 2013-06-26 2013-06-26 Lens barrel and imaging device Expired - Fee Related JP6157239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133635A JP6157239B2 (en) 2013-06-26 2013-06-26 Lens barrel and imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133635A JP6157239B2 (en) 2013-06-26 2013-06-26 Lens barrel and imaging device

Publications (3)

Publication Number Publication Date
JP2015011036A JP2015011036A (en) 2015-01-19
JP2015011036A5 JP2015011036A5 (en) 2016-08-04
JP6157239B2 true JP6157239B2 (en) 2017-07-05

Family

ID=52304293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133635A Expired - Fee Related JP6157239B2 (en) 2013-06-26 2013-06-26 Lens barrel and imaging device

Country Status (1)

Country Link
JP (1) JP6157239B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6789734B2 (en) * 2016-09-06 2020-11-25 キヤノン株式会社 Image blur correction device, lens device, and image pickup device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003295250A (en) * 2002-04-05 2003-10-15 Canon Inc Optical system and optical equipment with it
JP5430074B2 (en) * 2008-04-03 2014-02-26 キヤノン株式会社 Optical apparatus and imaging apparatus including the same
JP2009258389A (en) * 2008-04-16 2009-11-05 Canon Inc Image blur correction apparatus, imaging apparatus and optical apparatus
JP2011064820A (en) * 2009-09-15 2011-03-31 Nikon Corp Vibration-proof unit and imaging device
JP2012208336A (en) * 2011-03-30 2012-10-25 Fujifilm Corp Image blurring correction device

Also Published As

Publication number Publication date
JP2015011036A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP5430074B2 (en) Optical apparatus and imaging apparatus including the same
JP5202202B2 (en) Optical equipment
JP5109450B2 (en) Blur correction device and optical apparatus
JP4888129B2 (en) Lens barrel and digital camera
JP2003295249A (en) Lens barrel and optical equipment using it
JP2006350157A (en) Image blur correcting device, lens barrel having the image blur correcting device, and optical equipment
JP5436014B2 (en) Image blur correction device
US10241349B2 (en) Image stabilization apparatus, lens apparatus, and imaging apparatus
JP2002214504A (en) Optical device and photographing device
JP5446321B2 (en) Vibration correction apparatus and optical apparatus
JP6376801B2 (en) Image blur correction device, lens barrel, and optical apparatus
JP2013104920A (en) Optical element drive device and optical equipment
JP6157239B2 (en) Lens barrel and imaging device
JP2009169232A (en) Lens barrel for camera
JP2013088684A (en) Shake correction device, lens barrel, and optical instrument
JP6436619B2 (en) Optical equipment
JP2016133371A (en) Magnetic position detection device, drive device, and optical apparatus
JP2010276842A (en) Image blurring correcting device
JP5181542B2 (en) Blur correction device, electronic equipment
JP2016057386A (en) Image tremor correction device and optical device having the same
JP2013003524A (en) Image blur correction device and optical equipment using the same
JP2012053141A (en) Lens barrel and optical equipment including the same
JP2012237856A (en) Optical apparatus
JP2010152220A (en) Optical vibration isolation apparatus and optical equipment
JP2019095627A (en) Tremor-proof lens barrel

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170606

R151 Written notification of patent or utility model registration

Ref document number: 6157239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees