WO2020022003A1 - Electronic control device - Google Patents

Electronic control device Download PDF

Info

Publication number
WO2020022003A1
WO2020022003A1 PCT/JP2019/026409 JP2019026409W WO2020022003A1 WO 2020022003 A1 WO2020022003 A1 WO 2020022003A1 JP 2019026409 W JP2019026409 W JP 2019026409W WO 2020022003 A1 WO2020022003 A1 WO 2020022003A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
dcdc converter
electronic control
control device
load
Prior art date
Application number
PCT/JP2019/026409
Other languages
French (fr)
Japanese (ja)
Inventor
泰志 杉山
純之 荒田
隆介 佐原
祐輔 山本
駿太 戸松
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2020532252A priority Critical patent/JPWO2020022003A1/en
Publication of WO2020022003A1 publication Critical patent/WO2020022003A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Definitions

  • the present invention relates to an electronic control unit (Electronic Control Unit: hereinafter referred to as ECU).
  • ECU Electronic Control Unit
  • a circuit configuration in which a DCDC converter is mounted between a battery and an internal load of an ECU to reduce current consumption.
  • a current of several hundred mA can flow, but in the engine stopped state, the DCDC converter driving element is operated intermittently to reduce current consumption.
  • the voltage ripple requirement does not change between the engine stopped state and the operating state, and the obtained frequency reduction effect is reduced even if the intermittent operation is used.
  • a large-sized semiconductor element such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) must be used, and a large driving current is required.
  • Patent Literature 1 by combining the series regulator circuit and the charge pump circuit, power efficiency is optimized at low cost even when power supply fluctuation occurs.
  • the MOSFET used in the series regulator control is turned on to supply power only by conduction loss, and the input voltage is lower than the load allowable voltage. If it is too high, operate as a series regulator.
  • the charge pump circuit is used for generating a gate drive voltage of the MOSFET in any state.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electronic control device capable of reducing a current supplied from a battery while an engine is stopped.
  • an electronic control device includes a DCDC converter provided between a power supply terminal and a load, and the DCDC converter does not perform a switching operation in an engine operating state and does not perform the switching operation. And when the engine is stopped, a voltage is applied to the load based on a switching operation.
  • an electronic control device capable of reducing the current supplied from the battery while the engine is stopped.
  • FIG. 1 is a block diagram illustrating a configuration of the electronic control device according to the first embodiment.
  • FIG. 2 is a block diagram showing a configuration of the DCDC converter of FIG.
  • FIG. 3 is a diagram showing waveforms at the time of switching between the battery connection and the switching operation of the DCDC converter of FIG.
  • FIG. 4 is a diagram showing waveforms during the switching operation of the DCDC converter of FIG.
  • FIG. 5 is a block diagram illustrating a configuration of a DCDC converter applied to the electronic control device according to the second embodiment.
  • FIG. 6 is a diagram showing waveforms at the time of switching between the regulator operation and the switching operation of the DCDC converter of FIG.
  • FIG. 7 is a block diagram illustrating a configuration of an electronic control device according to the third embodiment.
  • FIG. 1 is a block diagram illustrating a configuration of the electronic control device according to the first embodiment.
  • the ECU 2 includes a power supply terminal 3, an IC control power supply 4, a DCDC converter 5, and a load 6.
  • the power supply terminal 3 is connected to the battery 1.
  • the battery voltage Vbat of the battery 1 is, for example, 12V.
  • the DCDC converter 5 is connected between the power supply terminal 3 and the load 6. At this time, the input side of the DCDC converter 5 is connected to the power supply terminal 3 and the IC control power supply 4, and the output side of the DCDC converter 5 is connected to the load 6.
  • the ECU 2 electronically controls on-vehicle devices of the vehicle.
  • the on-vehicle device is, for example, a power device, a steering device, a braking device, or a transmission.
  • An engine or an electric motor can be used as a vehicle power unit.
  • the vehicle-mounted device may be a headlight, a power window, a door lock, an electric seat, an instrument panel, or the like.
  • the IC control power supply 4 detects the battery voltage Vbat of the battery 1 and controls the drive of the DCDC converter 5.
  • the DCDC converter 5 applies a voltage to the load 6 without performing a switching operation in the engine operating state, and applies a voltage to the load 6 based on the switching operation in the engine stopped state. For example, in the engine operating state, the DCDC converter 5 applies the battery voltage Vbat to the load 6.
  • the driving frequency of the switching operation when the engine is stopped is 300 Hz or less. Particularly preferably, the driving frequency of the switching operation when the engine is stopped is in the range of 100 to 300 Hz. Further, the output voltage Vout of the DCDC converter has a higher ripple in the engine stop state than in the engine operation state. At this time, the ripple of the output voltage Vout in the engine stopped state is in the range of 1 to 2V. The ripple frequency of the output voltage Vout is equal to the driving frequency of the switching operation. As the DCDC converter 5, a step-down charge pump can be used.
  • the type and form of the load 6 are not specified.
  • the load 6 may be an internal load of the ECU 2, or may be an external load of the ECU 2.
  • FIG. 1 shows an example in which the load 6 includes a communication wake-up unit 7, series regulators 8, 10, a RAM backup power supply 9, and a timer 11.
  • the communication wake-up unit 7 activates a communication function such as CAN.
  • the RAM backup power supply 9 backs up the RAM power supply.
  • the RAM backup power supply 9 operates at, for example, 5V.
  • the timer 11 measures the engine stop time.
  • the timer 11 operates at, for example, 3.3V.
  • the series regulator 8 lowers the battery voltage Vbat to the operation guarantee voltage of the RAM backup power supply 9.
  • the series regulator 10 lowers the battery voltage Vbat to the operation guarantee voltage of the timer 11.
  • the DCDC converter 5 can reduce the current Ibat supplied from the battery 1 while the engine is stopped by applying a voltage to the load 6 based on the switching operation when the engine is stopped. For this reason, even when the battery 1 cannot be charged while the engine is stopped, it is possible to prevent the occurrence of a trouble in starting the vehicle due to the dead battery. Further, the DCDC converter 5 can reduce the loss and noise accompanying the switching operation by applying the voltage to the load 6 without performing the switching operation in the engine operating state.
  • FIG. 2 is a block diagram showing a configuration of the DCDC converter of FIG. 2, the DCDC converter 5 includes terminals N1 to N4, switching elements SW1 to SW4, a charge pump control unit 12, and a voltage detection circuit 13.
  • the switching elements SW1 to SW4 MOSFETs or bipolar transistors can be used.
  • the switching elements SW1 to SW4 may be IGBTs (Insulated Gate Bipolar Transistors).
  • the charge pump control unit 12 switches between the operation of applying the battery voltage Vbat to the load 6 and the switching operation of the switching elements SW1 to SW4 based on the ignition key signal Sig and the detection value of the voltage detection circuit 13.
  • each of the switching elements SW1 to SW4 is switched on and off based on the threshold value Vth.
  • Voltage detection circuit 13 detects output voltage Vout of DCDC converter 5.
  • the voltage detection circuit 13 can use a comparator that detects only the low threshold of the output voltage Vout.
  • the switching element SW1 is connected to the terminal N1.
  • the switching element SW3 is connected to the switching element SW1.
  • the switching element SW2 is connected to the switching element SW3.
  • the switching element SW4 is connected to the switching element SW2.
  • connection point of the switching elements SW1 and SW3 is connected to the terminal N2.
  • the connection point between the switching elements SW2 and SW4 is connected to the terminal N3.
  • the connection point between the switching elements SW2 and SW3 is connected to the terminal N4.
  • the capacitor C1 is connected between the terminals N2 and N3.
  • the capacitor C2 and the load 6 are connected to the terminal N4.
  • the capacitors C1 and C2 can be externally connected to the DCDC converter 5.
  • the charge pump control unit 12 turns on the switching elements SW1 and SW3 and turns off the switching elements SW2 and SW4.
  • the battery 1 of FIG. 1 and the load 6 are directly connected via the DCDC converter 5, and the battery voltage Vbat of the battery 1 is applied to the load 6.
  • a current path L1 of the terminal N1, the switching element SW1, the switching element SW3, and the terminal N4 is formed in the DCDC converter 5.
  • the switching elements SW1 to SW4 do not perform the switching operation, it is possible to reduce the loss and noise accompanying the switching operation.
  • the charge pump control unit 12 alternately turns on the switching elements SW1 and SW2 and turns off the switching elements SW3 and SW4, and turns on the switching elements SW1 and SW2 and turns on the switching elements SW3 and SW4. repeat. In this case, the voltage generated based on the charge pump operation of DCDC converter 5 is applied to load 6.
  • DC-DC converter is a switching regulator using an inductor.
  • a large inductance value is required in order to reduce current ripple, resulting in an increase in cost.
  • a circuit using a charge pump which is one of the forms of the DCDC converter 5 suitable for applications having a small output current, can be used, and cost can be reduced.
  • the switching elements SW1 to SW4 can have a sufficiently high on-resistance that the power consumption does not exceed the allowable loss in the engine operating state and the switching operation failure due to the voltage drop does not occur in the engine stopped state.
  • the on-resistance of the switching elements SW1 to SW4 can be set in the range of 100 to 300 ⁇ .
  • the size of a semiconductor switch such as a MOSFET used for the switching elements SW1 to SW4 can be reduced, and the current required for gate drive can be reduced.
  • FIG. 3 is a diagram showing waveforms at the time of switching between the battery connection and the switching operation of the DCDC converter of FIG.
  • the charge pump control unit 12 connects the battery 1 and the load 6 by turning on the switching elements SW1 and SW3 and turning off the switching elements SW2 and SW4.
  • the output voltage Vout of the DCDC converter 5 becomes substantially equal to the battery voltage Vbat.
  • the output voltage Vout of the DCDC converter 5 has a value obtained by subtracting the voltage drop due to the ON resistance of the switching elements SW1 and SW3 from the battery voltage Vbat.
  • the battery voltage Vbat is equal to the battery voltage Vfull at the time of full charge.
  • the DCDC converter 5 performs a switching operation to reduce the current consumption of the battery 1. At this time, the output voltage Vout of the DCDC converter 5 becomes the voltage Vsw obtained by lowering the battery voltage Vbat by the step-down charge pump operation of the DCDC converter 5. A ripple LP due to the step-down charge pump operation of the DCDC converter 5 occurs in the output voltage Vout of the DCDC converter 5.
  • the battery current Ibat alternates between the output current Iop and the offset current Iof.
  • the offset current Iof is a current supplied to the IC control power supply 4 in FIG. Therefore, assuming that the battery current Ibat in the engine operating state is Idc, the current supplied from the battery 1 to the load 6 in the engine stopped state is smaller by Idc-Iop than in the engine operating state.
  • the charge pump control unit 12 connects the battery 1 and the load 6 by turning on the switching elements SW1 and SW3 and turning off the switching elements SW2 and SW4, and shifts to a mode in which the standby of the load 6 is continued. In this case, an alarm signal can be transmitted to inform the user that the battery voltage Vbat has significantly deteriorated.
  • the battery current Ibat in the engine stopped state is not only reduced by the switching operation of the DCDC converter 5, but also a small-sized MOSFET is used and the comparator for detecting the low voltage threshold is used.
  • the drive current and the control current can be reduced, and the battery current Ibat can be further reduced.
  • the size of the MOSFET is set to a value such that the voltage drop does not fall below the guaranteed voltage of the load 6 even when the battery current Ibat flows in the engine operating state. Specifically, when the load current in the engine operating state is 5 mA and the guaranteed voltage of the load 6 is 4.5 V, the on-resistance of the MOSFET that can operate even when the battery voltage Vbat drops to 6 V is 300 ⁇ in series. Therefore, the MOSFET size is set so that the on-resistance becomes 300 ⁇ at the maximum.
  • the MOSFET size varies depending on the use conditions, but it is sufficient if the drive current is sufficiently smaller than the load current. Further, by switching the driving of the DCDC converter 5 according to the vehicle state, it is possible to continue supplying power to the load 6.
  • FIG. 4 is a diagram showing waveforms during the switching operation of the DCDC converter of FIG.
  • switching of the switching elements SW1 to SW4 is performed by detecting a low voltage of the output voltage Vout in order to suppress current consumption required for controlling the charge pump.
  • the threshold value of the low voltage detection is set to Vth.
  • the battery 1 in FIG. 1 charges the capacitors C1 and C2.
  • the capacitor C1 charges the capacitor C2 by turning off the switching elements SW1 and SW2 and turning on the switching elements SW3 and SW4. I do.
  • the charge pump control unit 12 can keep the output voltage Vout constant by repeating this control. However, a ripple LP occurs in the output voltage Vout.
  • the ripple voltage Vripple of the output voltage Vout can be calculated by Expression (1).
  • Vripple (Cout ⁇ Vout + Cin ⁇ (Vbat ⁇ Vout)) / (Cin + Cout) (1)
  • the ripple frequency f calculated from the equation (2) in the ECU 2 is a very small value of about several hundred Hz.
  • the ripple voltage Vripple also has a large value of about 1 V.
  • the function is originally connected to the battery voltage.
  • the output current Iout of the DCDC converter 5 can be reduced by reducing the ripple frequency f. Therefore, the DCDC converter 5 can reduce the output current Iout of the DCDC converter 5 by driving the switching operation at a low frequency of 300 Hz or less.
  • the DCDC converter 5 applies the battery voltage Vdat to the load 6 without performing the switching operation. This allows the DCDC converter 5 to keep the ripple voltage Vripple low without driving the high frequency of 300 to 400 kHz in the engine operating state.
  • the switching operation of the DCDC converter 5 is performed when the engine is stopped, and the battery 1 and the load 6 are directly connected via the DCDC converter 4 when the engine is operating.
  • the wake-up function which is one of the loads 6, enters a standby state with a 5V power supply instead of the battery power supply 1 to reduce current consumption.
  • the switching elements SW1 and SW3 of the DCDC converter 5 are used as a series regulator.
  • FIG. 5 is a block diagram illustrating a configuration of a DCDC converter applied to the electronic control device according to the second embodiment.
  • the DCDC converter 15 includes a converter internal control unit 14 instead of the charge pump control unit 12 of the DCDC converter 5 of FIG.
  • Converter internal control section 14 includes charge pump control section 12A and regulator control section 12B.
  • the charge pump control unit 12A performs switching operation of the switching elements SW1 to SW4 based on the ignition key signal Sig and the detection value of the voltage detection circuit 13. In the switching operation of the switching elements SW1 to SW4, each of the switching elements SW1 to SW4 is switched on and off based on the threshold value Vth.
  • the regulator control unit 12B causes the switching elements SW1 and SW3 to operate as a series regulator based on the ignition key signal Sig and the detection value of the voltage detection circuit 13.
  • the semiconductor switches used for the switching elements SW1 and SW3 are turned on half.
  • Half-on is a state in which the channel of the semiconductor switch is maintained at an intermediate potential between on and off.
  • the regulator control unit 12B causes the DCDC converter 15 to operate as a series regulator by half-turning on the switching elements SW1 and SW3 and turning off the switching elements SW2 and SW4. In the series regulator operation, the regulator control unit 12B may turn on the switching element SW1, turn on the switching element SW3 half-on, or turn on the switching element SW1 and turn on the switching element SW3.
  • the battery 1 of FIG. 1 and the load 6 are connected via the switching elements SW1 and SW3, and a voltage obtained by subtracting the voltage drop by the switching elements SW1 and SW3 from the battery voltage Vbat of the battery 1 is applied to the load 6. .
  • a current path L1 of the terminal N1, the switching element SW1, the switching element SW3, and the terminal N4 is formed in the DCDC converter 15.
  • the charge pump control unit 12A operates in the same manner as the charge pump control unit 12 in FIG.
  • the DCDC converter 15 can always be operated to supply a 5 V voltage to the load 6, but the DCDC converter 5 is required to reduce the power consumption of the control circuit.
  • the output voltage Vout is controlled by detecting a low voltage, so that a large ripple voltage is generated.
  • the battery voltage Vbat is not constant during the operation of the vehicle.
  • the ripple voltage Vripple of the output voltage Vout increases to 16 V or more, and the load 6 This may cause device destruction.
  • the cost of the DCDC converter 15 can be reduced. If the ignition key is turned off, the vehicle is at a stop, and no power fluctuation occurs.
  • FIG. 6 is a diagram showing waveforms at the time of switching between the regulator operation and the switching operation of the DCDC converter of FIG.
  • the regulator control unit 12B controls the switching elements SW1 and SW3 as a series regulator and supplies power to the load 6.
  • the output voltage Vout of the DCDC converter 5 is set to the regulator voltage Vreg.
  • the regulator voltage Vreg can be set to the operation guarantee voltage of the load 6.
  • the battery current Ibat in the engine operating state is the sum of the offset current Iof supplied to the IC control power supply 4 in FIG. 1 and the current supplied to the load 6 when the DCDC converter 5 operates the regulator.
  • the DCDC converter 5 performs a switching operation to reduce the current consumption of the battery 1.
  • the regulator control unit 12B controls the switching elements SW1 and SW3 as a series regulator, connects the battery 1 to the load 6 via the switching elements SW1 and SW3, and shifts to a mode in which the standby of the load 6 is continued. In this case, an alarm signal can be transmitted to inform the user that the battery voltage Vbat has significantly deteriorated.
  • FIG. 7 is a block diagram illustrating a configuration of an electronic control device according to the third embodiment.
  • the ECU 2A has an output terminal 16 added to the ECU 2 of FIG.
  • the output terminal 16 is connected to the output of the DCDC converter 5.
  • the output terminal 16 is connected to the ECUs 2B and 2C.
  • the ECUs 2B and 2C can omit the IC control power supply and the DCDC converter. At this time, power can be supplied to the ECUs 2B and 2C from the DCDC converter 6 of the ECU 2A.
  • the control current of the DCDC converter 5 can be reduced.
  • the ratio of the offset current to the output current is large, the effect of reducing the current consumption is reduced.
  • the ratio of the offset current to the output current can be reduced, and the battery can be reduced in current consumption at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

Provided is an electronic control device capable of reducing the current supplied from a battery while an engine is stopped. While the engine is in operation, a switching element (SW1) and a switching element (SW3) are turned on, a switching element (SW2) and a switching element (SW4) are turned off, a battery (1) and a load (6) are directly connected via a DC-DC converter (5), and the battery voltage (Vbat) of the battery (1) is applied to the load (6). While the engine is in a stopped state, the state in which the switching element (SW1) and the switching element (SW2) are on and the switching element (SW3) and the switching element (SW4) are off and the state in which the switching element (SW1) and the switching element (SW2) are off and the switching element (SW3) and the switching element (SW4) are on are alternately repeated, and the voltage generated on the basis of the charge pump operation of the DC-DC converter (5) is applied to the load (6).

Description

電子制御装置Electronic control unit
 本発明は、電子制御装置(Electronic Control Unit:以下、ECUと言う)に関する。 The present invention relates to an electronic control unit (Electronic Control Unit: hereinafter referred to as ECU).
 自動車業界では、環境および排気規制の強化に対応するため、車両の電子制御化が進んでおり、車両に搭載される制御装置の数も増加している。ところで、ECUに要求される仕様において、エンジン停止中でも動作を継続しなければならない機能がある。例えば、RAM(Random access memory)を用いたバックアップ機能、CAN(Controller Area Network)通信を用いたウェイクアップ機能およびタイマカウンタ機能が挙げられる。 In the automotive industry, electronic control of vehicles is progressing to respond to stricter environmental and emission regulations, and the number of control devices mounted on vehicles is also increasing. By the way, in the specifications required for the ECU, there is a function that the operation must be continued even when the engine is stopped. For example, a backup function using a RAM (Random Access Memory), a wake-up function using CAN (Controller Area Network) communication, and a timer counter function can be given.
 これらの電力は車載バッテリから供給されるが、エンジン停止中はバッテリの充電ができない。このため、消費電流の総和が大きいと、バッテリ上がりに起因する車両始動不具合発生が懸念される。このような事象を防止するため、エンジン停止状態でのバッテリ消費電流の低減が求められている。 These powers are supplied from the on-board battery, but the battery cannot be charged while the engine is stopped. For this reason, if the sum of the consumed currents is large, there is a concern that a vehicle starting malfunction due to a dead battery may occur. In order to prevent such an event, it is required to reduce the current consumption of the battery when the engine is stopped.
 一般的に、バッテリとECUの内部負荷の間にDCDCコンバータを搭載し、消費電流を低減させる回路構成が用いられている。エンジン動作状態では、数100mAの電流を流せるが、エンジン停止状態では、DCDCコンバータ駆動素子を間欠動作させ、消費電流の低減を実現している。 Generally, a circuit configuration is used in which a DCDC converter is mounted between a battery and an internal load of an ECU to reduce current consumption. In the engine operating state, a current of several hundred mA can flow, but in the engine stopped state, the DCDC converter driving element is operated intermittently to reduce current consumption.
 このような回路構成の場合、エンジン停止状態と動作状態で電圧リプル要求が変化せず、間欠動作を用いても、得られる周波数低減効果が少なくなる。また、数100mAの電流を流すために、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)などのサイズの大きな半導体素子を用いなければならず、大きな駆動電流を必要とする。 In the case of such a circuit configuration, the voltage ripple requirement does not change between the engine stopped state and the operating state, and the obtained frequency reduction effect is reduced even if the intermittent operation is used. In order to pass a current of several hundred mA, a large-sized semiconductor element such as a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) must be used, and a large driving current is required.
 特許文献1に記載された技術によれば、シリーズレギュレータ回路とチャージポンプ回路を組み合わせることで、電源変動が発生しても、低コストで電力効率の最適化を実現している。特許文献1に記載された技術では、入力電圧が負荷許容電圧よりも低い場合は、シリーズレギュレータ制御で用いるMOSFETをオンさせることで、導通損失のみで電力を供給し、入力電圧が負荷許容電圧よりも高い場合は、シリーズレギュレータとして動作させる。チャージポンプ回路は、いずれの状態においても、MOSFETのゲート駆動電圧を生成するために用いる。 According to the technology described in Patent Literature 1, by combining the series regulator circuit and the charge pump circuit, power efficiency is optimized at low cost even when power supply fluctuation occurs. In the technology described in Patent Document 1, when the input voltage is lower than the load allowable voltage, the MOSFET used in the series regulator control is turned on to supply power only by conduction loss, and the input voltage is lower than the load allowable voltage. If it is too high, operate as a series regulator. The charge pump circuit is used for generating a gate drive voltage of the MOSFET in any state.
特開2003-108243号公報JP 2003-108243 A
 しかしながら、特許文献1に記載された技術では、電源変動が発生しても、電力効率を最適化できるが、エンジン停止中のバッテリの低消費電流化のような着想はなかった。 However, with the technology described in Patent Document 1, power efficiency can be optimized even when power supply fluctuations occur, but there was no idea of reducing the current consumption of the battery while the engine was stopped.
 本発明は、上記事情に鑑みなされたものであり、その目的は、エンジン停止中にバッテリから供給される電流を低減させることが可能な電子制御装置を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electronic control device capable of reducing a current supplied from a battery while an engine is stopped.
 上記目的を達成するため、第1の観点に係る電子制御装置は、電源端子と負荷との間に設けられたDCDCコンバータを備え、前記DCDCコンバータは、エンジン動作状態ではスイッチング動作せずに前記負荷に電圧を印加し、エンジン停止状態ではスイッチング動作に基づいて前記負荷に電圧を印加する。 To achieve the above object, an electronic control device according to a first aspect includes a DCDC converter provided between a power supply terminal and a load, and the DCDC converter does not perform a switching operation in an engine operating state and does not perform the switching operation. And when the engine is stopped, a voltage is applied to the load based on a switching operation.
 本発明によれば、エンジン停止中にバッテリから供給される電流を低減させることが可能な電子制御装置を提供することができる。 According to the present invention, it is possible to provide an electronic control device capable of reducing the current supplied from the battery while the engine is stopped.
図1は、第1実施形態に係る電子制御装置の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration of the electronic control device according to the first embodiment. 図2は、図1のDCDCコンバータの構成を示すブロック図である。FIG. 2 is a block diagram showing a configuration of the DCDC converter of FIG. 図3は、図1のDCDCコンバータのバッテリ接続とスイッチング動作の切替時の波形を示す図である。FIG. 3 is a diagram showing waveforms at the time of switching between the battery connection and the switching operation of the DCDC converter of FIG. 図4は、図1のDCDCコンバータのスイッチング動作時の波形を示す図である。FIG. 4 is a diagram showing waveforms during the switching operation of the DCDC converter of FIG. 図5は、第2実施形態に係る電子制御装置に適用されるDCDCコンバータの構成を示すブロック図である。FIG. 5 is a block diagram illustrating a configuration of a DCDC converter applied to the electronic control device according to the second embodiment. 図6は、図5のDCDCコンバータのレギュレータ動作とスイッチング動作の切替時の波形を示す図である。FIG. 6 is a diagram showing waveforms at the time of switching between the regulator operation and the switching operation of the DCDC converter of FIG. 図7は、第3実施形態に係る電子制御装置の構成を示すブロック図である。FIG. 7 is a block diagram illustrating a configuration of an electronic control device according to the third embodiment.
 実施形態について、図面を参照して説明する。なお、以下に説明する実施形態は特許請求の範囲に係る発明を限定するものではなく、また、実施形態の中で説明されている諸要素およびその組み合わせの全てが発明の解決手段に必須であるとは限らない。 The embodiment will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the invention according to the claims, and all the elements and combinations thereof described in the embodiments are essential for solving the invention. Not necessarily.
 図1は、第1実施形態に係る電子制御装置の構成を示すブロック図である。
 図1において、ECU2は、電源端子3、IC制御電源4、DCDCコンバータ5および負荷6を備える。
FIG. 1 is a block diagram illustrating a configuration of the electronic control device according to the first embodiment.
1, the ECU 2 includes a power supply terminal 3, an IC control power supply 4, a DCDC converter 5, and a load 6.
 電源端子3は、バッテリ1に接続されている。エンジン動作状態では、バッテリ1のバッテリ電圧Vbatは、例えば、12Vである。DCDCコンバータ5は、電源端子3と負荷6との間に接続されている。この時、DCDCコンバータ5の入力側は、電源端子3およびIC制御電源4に接続され、DCDCコンバータ5の出力側は、負荷6に接続される。 The power supply terminal 3 is connected to the battery 1. In the engine operating state, the battery voltage Vbat of the battery 1 is, for example, 12V. The DCDC converter 5 is connected between the power supply terminal 3 and the load 6. At this time, the input side of the DCDC converter 5 is connected to the power supply terminal 3 and the IC control power supply 4, and the output side of the DCDC converter 5 is connected to the load 6.
 ECU2は、車両の車載機器を電子制御する。車載機器は、例えば、動力装置、操舵装置、制動装置または変速装置である。車両の動力装置として、エンジンまたは電動機を用いることができる。車載機器は、ヘッドライト、パワーウィンドウ、ドアロック、電動シート、インストルメントパネルなどであってもよい。 (4) The ECU 2 electronically controls on-vehicle devices of the vehicle. The on-vehicle device is, for example, a power device, a steering device, a braking device, or a transmission. An engine or an electric motor can be used as a vehicle power unit. The vehicle-mounted device may be a headlight, a power window, a door lock, an electric seat, an instrument panel, or the like.
 IC制御電源4は、バッテリ1のバッテリ電圧Vbatを検出したり、DCDCコンバータ5を駆動制御したりする。DCDCコンバータ5は、エンジン動作状態ではスイッチング動作せずに負荷6に電圧を印加し、エンジン停止状態ではスイッチング動作に基づいて負荷6に電圧を印加する。例えば、エンジン動作状態では、DCDCコンバータ5は、バッテリ電圧Vbatを負荷6に印加する。 The IC control power supply 4 detects the battery voltage Vbat of the battery 1 and controls the drive of the DCDC converter 5. The DCDC converter 5 applies a voltage to the load 6 without performing a switching operation in the engine operating state, and applies a voltage to the load 6 based on the switching operation in the engine stopped state. For example, in the engine operating state, the DCDC converter 5 applies the battery voltage Vbat to the load 6.
 エンジン停止状態でのスイッチング動作の駆動周波数は300Hz以下である。特に好ましくは、エンジン停止状態でのスイッチング動作の駆動周波数は100~300Hzの範囲内である。また、DCDCコンバータの出力電圧Voutは、エンジン動作状態に対して、エンジン停止状態の方が高リプルである。この時、エンジン停止状態の出力電圧Voutのリプルは、1~2Vの範囲内である。出力電圧Voutのリプル周波数は、スイッチング動作の駆動周波数と等しい。DCDCコンバータ5は、降圧チャージポンプを用いることができる。 駆 動 The driving frequency of the switching operation when the engine is stopped is 300 Hz or less. Particularly preferably, the driving frequency of the switching operation when the engine is stopped is in the range of 100 to 300 Hz. Further, the output voltage Vout of the DCDC converter has a higher ripple in the engine stop state than in the engine operation state. At this time, the ripple of the output voltage Vout in the engine stopped state is in the range of 1 to 2V. The ripple frequency of the output voltage Vout is equal to the driving frequency of the switching operation. As the DCDC converter 5, a step-down charge pump can be used.
 負荷6に関して、その種別および形態は特定されない。負荷6は、ECU2の内部負荷であってもよいし、ECU2の外部負荷であってもよい。図1では、負荷6は、通信ウェイクアップ部7、シリーズレギュレータ8、10、RAMバックアップ電源9およびタイマ11を備える例を示した。 The type and form of the load 6 are not specified. The load 6 may be an internal load of the ECU 2, or may be an external load of the ECU 2. FIG. 1 shows an example in which the load 6 includes a communication wake-up unit 7, series regulators 8, 10, a RAM backup power supply 9, and a timer 11.
 通信ウェイクアップ部7は、CANなどの通信機能を起動する。RAMバックアップ電源9は、RAM電源のバックアップを行う。RAMバックアップ電源9は、例えば、5Vで動作する。タイマ11は、エンジン停止時間を測定する。タイマ11は、例えば、3.3Vで動作する。シリーズレギュレータ8は、バッテリ電圧VbatをRAMバックアップ電源9の動作保証電圧まで降下させる。シリーズレギュレータ10は、バッテリ電圧Vbatをタイマ11の動作保証電圧まで降下させる。 (4) The communication wake-up unit 7 activates a communication function such as CAN. The RAM backup power supply 9 backs up the RAM power supply. The RAM backup power supply 9 operates at, for example, 5V. The timer 11 measures the engine stop time. The timer 11 operates at, for example, 3.3V. The series regulator 8 lowers the battery voltage Vbat to the operation guarantee voltage of the RAM backup power supply 9. The series regulator 10 lowers the battery voltage Vbat to the operation guarantee voltage of the timer 11.
 ここで、DCDCコンバータ5は、エンジン停止状態ではスイッチング動作に基づいて負荷6に電圧を印加することにより、エンジン停止中にバッテリ1から供給される電流Ibatを低減させることができる。このため、エンジン停止中にバッテリ1の充電ができない場合においても、バッテリ上がりに起因する車両始動の不具合の発生を防止することができる。また、DCDCコンバータ5は、エンジン動作状態ではスイッチング動作せずに負荷6に電圧を印加することにより、スイッチング動作に伴う損失やノイズを低減することができる。 Here, the DCDC converter 5 can reduce the current Ibat supplied from the battery 1 while the engine is stopped by applying a voltage to the load 6 based on the switching operation when the engine is stopped. For this reason, even when the battery 1 cannot be charged while the engine is stopped, it is possible to prevent the occurrence of a trouble in starting the vehicle due to the dead battery. Further, the DCDC converter 5 can reduce the loss and noise accompanying the switching operation by applying the voltage to the load 6 without performing the switching operation in the engine operating state.
 図2は、図1のDCDCコンバータの構成を示すブロック図である。
 図2において、DCDCコンバータ5は、端子N1~N4、スイッチング素子SW1~SW4、チャージポンプ制御部12および電圧検出回路13を備える。スイッチング素子SW1~SW4は、MOSFETもしくはバイポーラトランジスタを用いることができる。スイッチング素子SW1~SW4は、IGBT(Insulated Gate Bipolar Transistor)であってもよい。
FIG. 2 is a block diagram showing a configuration of the DCDC converter of FIG.
2, the DCDC converter 5 includes terminals N1 to N4, switching elements SW1 to SW4, a charge pump control unit 12, and a voltage detection circuit 13. As the switching elements SW1 to SW4, MOSFETs or bipolar transistors can be used. The switching elements SW1 to SW4 may be IGBTs (Insulated Gate Bipolar Transistors).
 チャージポンプ制御部12は、イグニッションキー信号Sigおよび電圧検出回路13の検出値に基づいて、負荷6へのバッテリ電圧Vbatの印加動作と、スイッチング素子SW1~SW4のスイッチング動作とを切り替える。スイッチング素子SW1~SW4のスイッチング動作では、しきい値Vthに基づいて、各スイッチング素子SW1~SW4のオンとオフとを切り替える。電圧検出回路13は、DCDCコンバータ5の出力電圧Voutを検出する。電圧検出回路13は、出力電圧Voutの低スレッショルド検出のみのコンパレータを用いることができる。 The charge pump control unit 12 switches between the operation of applying the battery voltage Vbat to the load 6 and the switching operation of the switching elements SW1 to SW4 based on the ignition key signal Sig and the detection value of the voltage detection circuit 13. In the switching operation of the switching elements SW1 to SW4, each of the switching elements SW1 to SW4 is switched on and off based on the threshold value Vth. Voltage detection circuit 13 detects output voltage Vout of DCDC converter 5. The voltage detection circuit 13 can use a comparator that detects only the low threshold of the output voltage Vout.
 スイッチング素子SW1は、端子N1に接続されている。スイッチング素子SW3は、スイッチング素子SW1に接続されている。スイッチング素子SW2は、スイッチング素子SW3に接続されている。スイッチング素子SW4は、スイッチング素子SW2に接続されている。 (4) The switching element SW1 is connected to the terminal N1. The switching element SW3 is connected to the switching element SW1. The switching element SW2 is connected to the switching element SW3. The switching element SW4 is connected to the switching element SW2.
 スイッチング素子SW1、SW3の接続点は、端子N2に接続されている。スイッチング素子SW2、SW4の接続点は、端子N3に接続されている。スイッチング素子SW2、SW3の接続点は、端子N4に接続されている。端子N2、N3間には、コンデンサC1が接続されている。端子N4には、コンデンサC2および負荷6が接続されている。コンデンサC1、C2は、DCDCコンバータ5に外付けすることができる。 接 続 The connection point of the switching elements SW1 and SW3 is connected to the terminal N2. The connection point between the switching elements SW2 and SW4 is connected to the terminal N3. The connection point between the switching elements SW2 and SW3 is connected to the terminal N4. The capacitor C1 is connected between the terminals N2 and N3. The capacitor C2 and the load 6 are connected to the terminal N4. The capacitors C1 and C2 can be externally connected to the DCDC converter 5.
 イグニッションキーがオンすると、イグニッションキー信号Sigはハイレベルになり、エンジン動作状態になる。この時、チャージポンプ制御部12は、スイッチング素子SW1、SW3をオン、スイッチング素子SW2、SW4をオフする。この場合、DCDCコンバータ5を介し、図1のバッテリ1と負荷6が直接接続され、バッテリ1のバッテリ電圧Vbatが負荷6に印加される。この時、端子N1→スイッチング素子SW1→スイッチング素子SW3→端子N4という電流経路L1がDCDCコンバータ5に形成される。この場合、スイッチング素子SW1~SW4はスイッチング動作しないので、スイッチング動作に伴う損失やノイズを低減することができる。 (4) When the ignition key is turned on, the ignition key signal Sig goes high, and the engine operates. At this time, the charge pump control unit 12 turns on the switching elements SW1 and SW3 and turns off the switching elements SW2 and SW4. In this case, the battery 1 of FIG. 1 and the load 6 are directly connected via the DCDC converter 5, and the battery voltage Vbat of the battery 1 is applied to the load 6. At this time, a current path L1 of the terminal N1, the switching element SW1, the switching element SW3, and the terminal N4 is formed in the DCDC converter 5. In this case, since the switching elements SW1 to SW4 do not perform the switching operation, it is possible to reduce the loss and noise accompanying the switching operation.
 イグニッションキーがオフすると、イグニッションキー信号Sigはロウレベルになり、エンジン停止状態になる。この時、チャージポンプ制御部12は、スイッチング素子SW1、SW2をオンかつスイッチング素子SW3、SW4をオフした状態と、スイッチング素子SW1、SW2をオフかつスイッチング素子SW3、SW4をオンした状態とを交互に繰り返す。この場合、DCDCコンバータ5のチャージポンプ動作に基づいて生成された電圧が負荷6に印加される。この時、端子N1→スイッチング素子SW1→端子N2→コンデンサC1→端子N3→スイッチング素子SW2→端子N4という電流経路L2と、スイッチング素子SW4→端子N3→コンデンサC1→端子N2→スイッチング素子SW3→端子N4という電流経路L3とがDCDCコンバータ5に交互に形成される。これにより、図1のバッテリ1から供給される電流Ibatを低減させることができ、エンジン停止中にバッテリ1の充電ができない場合においても、バッテリ上がりに起因する車両始動の不具合の発生を防止することができる。 (4) When the ignition key is turned off, the ignition key signal Sig goes low and the engine stops. At this time, the charge pump control unit 12 alternately turns on the switching elements SW1 and SW2 and turns off the switching elements SW3 and SW4, and turns on the switching elements SW1 and SW2 and turns on the switching elements SW3 and SW4. repeat. In this case, the voltage generated based on the charge pump operation of DCDC converter 5 is applied to load 6. At this time, a current path L2 of terminal N1 → switching element SW1 → terminal N2 → capacitor C1 → terminal N3 → switching element SW2 → terminal N4, and switching element SW4 → terminal N3 → capacitor C1 → terminal N2 → switching element SW3 → terminal N4 And the current path L3 is alternately formed in the DCDC converter 5. Thus, the current Ibat supplied from the battery 1 in FIG. 1 can be reduced, and even if the battery 1 cannot be charged while the engine is stopped, it is possible to prevent the occurrence of a trouble in starting the vehicle due to a dead battery. Can be.
 なお、DCDCコンバータの形態のひとつに、インダクタを用いたスイッチングレギュレータがあるが、電流リプルを小さくするために、大きなインダクタンス値が必要となり、コストアップが発生する。これに対して、本実施形態では、出力電流が小さい用途に適したDCDCコンバータ5の形態の一つであるチャージポンプを用いた回路を用いることができ、コストダウンを図ることができる。 ス イ ッ チ ン グ One type of DC-DC converter is a switching regulator using an inductor. However, a large inductance value is required in order to reduce current ripple, resulting in an increase in cost. On the other hand, in the present embodiment, a circuit using a charge pump, which is one of the forms of the DCDC converter 5 suitable for applications having a small output current, can be used, and cost can be reduced.
 スイッチング素子SW1~SW4は、エンジン動作状態では消費電力が許容損失をオーバーせず、エンジン停止状態では電圧降下に伴うスイッチング動作不良が発生しない十分に高いオン抵抗を持たせることができる。例えば、想定している負荷電流が200~300μAの場合、スイッチング素子SW1~SW4のオン抵抗を100~300Ωの範囲内に設定することができる。これにより、スイッチング素子SW1~SW4に用いられるMOSFETなどの半導体スイッチのサイズを小さくすることができ、ゲート駆動に必要な電流を低減することができる。 (4) The switching elements SW1 to SW4 can have a sufficiently high on-resistance that the power consumption does not exceed the allowable loss in the engine operating state and the switching operation failure due to the voltage drop does not occur in the engine stopped state. For example, when the assumed load current is 200 to 300 μA, the on-resistance of the switching elements SW1 to SW4 can be set in the range of 100 to 300Ω. As a result, the size of a semiconductor switch such as a MOSFET used for the switching elements SW1 to SW4 can be reduced, and the current required for gate drive can be reduced.
 図3は、図1のDCDCコンバータのバッテリ接続とスイッチング動作の切替時の波形を示す図である。
 図3において、イグニッションキー信号Sigがハイレベル時のエンジン動作状態では、負荷6の消費電流が大きいため、チャージポンプ制御部12の動作周波数の増加に伴う損失やノイズの増加が懸念される。このため、チャージポンプ制御部12は、スイッチング素子SW1、SW3をオン、スイッチング素子SW2、SW4をオフすることで、バッテリ1と負荷6を接続させる。この時、DCDCコンバータ5の出力電圧Voutは、バッテリ電圧Vbatとほぼ等しくなる。具体的には、DCDCコンバータ5の出力電圧Voutは、バッテリ電圧Vbatからスイッチング素子SW1、SW3のオン抵抗による電圧降下分を引いた値になる。なお、エンジン動作状態では、バッテリ電圧Vbatは、フル充電時のバッテリ電圧Vfulと等しくなる。
FIG. 3 is a diagram showing waveforms at the time of switching between the battery connection and the switching operation of the DCDC converter of FIG.
In FIG. 3, in the engine operating state when the ignition key signal Sig is at the high level, the current consumption of the load 6 is large, and there is a concern that the loss and noise increase with the increase in the operating frequency of the charge pump control unit 12. For this reason, the charge pump control unit 12 connects the battery 1 and the load 6 by turning on the switching elements SW1 and SW3 and turning off the switching elements SW2 and SW4. At this time, the output voltage Vout of the DCDC converter 5 becomes substantially equal to the battery voltage Vbat. Specifically, the output voltage Vout of the DCDC converter 5 has a value obtained by subtracting the voltage drop due to the ON resistance of the switching elements SW1 and SW3 from the battery voltage Vbat. In the engine operating state, the battery voltage Vbat is equal to the battery voltage Vfull at the time of full charge.
 イグニッションキー信号Sigがロウレベル時のエンジン停止状態では、DCDCコンバータ5をスイッチング動作させ、バッテリ1の低消費電流化を図る。この時、DCDCコンバータ5の出力電圧Voutは、DCDCコンバータ5の降圧チャージポンプ動作によりバッテリ電圧Vbatを降下させた電圧Vswになる。DCDCコンバータ5の出力電圧Voutには、DCDCコンバータ5の降圧チャージポンプ動作に起因するリップルLPが発生する。 (4) When the ignition key signal Sig is at the low level and the engine is stopped, the DCDC converter 5 performs a switching operation to reduce the current consumption of the battery 1. At this time, the output voltage Vout of the DCDC converter 5 becomes the voltage Vsw obtained by lowering the battery voltage Vbat by the step-down charge pump operation of the DCDC converter 5. A ripple LP due to the step-down charge pump operation of the DCDC converter 5 occurs in the output voltage Vout of the DCDC converter 5.
 また、エンジン停止状態では、バッテリ電流Ibatは、出力電流Iopとオフセット電流Iofを交互に繰り返す。オフセット電流Iofは、図1のIC制御電源4に供給される電流である。このため、エンジン動作状態のバッテリ電流IbatをIdcとすると、エンジン停止状態では、エンジン動作状態に比べて、バッテリ1から負荷6に供給される電流がIdc-Iopだけ減少する。 (5) In the engine stop state, the battery current Ibat alternates between the output current Iop and the offset current Iof. The offset current Iof is a current supplied to the IC control power supply 4 in FIG. Therefore, assuming that the battery current Ibat in the engine operating state is Idc, the current supplied from the battery 1 to the load 6 in the engine stopped state is smaller by Idc-Iop than in the engine operating state.
 エンジン停止状態が長期間続く場合、バッテリ1に接続された負荷6の総リーク電流に起因して、バッテリ電圧Vbatが、DCDCコンバータ5のスイッチング動作に必要な最低電圧Vbl以下になる。この時、チャージポンプ制御部12は、スイッチング素子SW1、SW3をオン、スイッチング素子SW2、SW4をオフすることで、バッテリ1と負荷6を接続させ、負荷6のスタンバイを継続させるモードに移行させる。この場合、アラーム信号を発信し、バッテリ電圧Vbatが著しく劣化したことをユーザに伝えることも可能である。 When the engine stop state continues for a long time, the battery voltage Vbat falls below the minimum voltage Vbl required for the switching operation of the DCDC converter 5 due to the total leak current of the load 6 connected to the battery 1. At this time, the charge pump control unit 12 connects the battery 1 and the load 6 by turning on the switching elements SW1 and SW3 and turning off the switching elements SW2 and SW4, and shifts to a mode in which the standby of the load 6 is continued. In this case, an alarm signal can be transmitted to inform the user that the battery voltage Vbat has significantly deteriorated.
 このように、上述した第1実施形態によれば、エンジン停止状態のバッテリ電流Ibatを、DCDCコンバータ5のスイッチング動作で低減させるだけでなく、サイズの小さなMOSFETを用い、低電圧閾値検出のコンパレータで制御させることで、駆動電流と制御電流を小さくし、さらなるバッテリ電流Ibatの低減を図ることができる。 As described above, according to the above-described first embodiment, the battery current Ibat in the engine stopped state is not only reduced by the switching operation of the DCDC converter 5, but also a small-sized MOSFET is used and the comparator for detecting the low voltage threshold is used. By performing the control, the drive current and the control current can be reduced, and the battery current Ibat can be further reduced.
 MOSFETのサイズに関しては、エンジン動作状態のバッテリ電流Ibatが流れても、電圧降下が負荷6の保証電圧以下とならない値に設定する。具体的には、エンジン動作状態の負荷電流が5mA、負荷6の保証電圧が4.5Vの場合、バッテリ電圧Vbatが6Vまで低下しても動作可能なMOSFETのオン抵抗は直列で300Ωとなる。従って、オン抵抗が最大で300ΩとなるMOSFETサイズに設定する。MOSFETサイズは、使用条件に従って異なるが、負荷電流に対し、駆動電流が十分小さい構成となっていればよい。また、車両状態に応じてDCDCコンバータ5の駆動を切り替えることで、負荷6に電力を供給し続けることが可能となる。 (4) The size of the MOSFET is set to a value such that the voltage drop does not fall below the guaranteed voltage of the load 6 even when the battery current Ibat flows in the engine operating state. Specifically, when the load current in the engine operating state is 5 mA and the guaranteed voltage of the load 6 is 4.5 V, the on-resistance of the MOSFET that can operate even when the battery voltage Vbat drops to 6 V is 300Ω in series. Therefore, the MOSFET size is set so that the on-resistance becomes 300Ω at the maximum. The MOSFET size varies depending on the use conditions, but it is sufficient if the drive current is sufficiently smaller than the load current. Further, by switching the driving of the DCDC converter 5 according to the vehicle state, it is possible to continue supplying power to the load 6.
 図4は、図1のDCDCコンバータのスイッチング動作時の波形を示す図である。
 図4において、スイッチング素子SW1~SW4の切り替えは、チャージポンプの制御に必要な消費電流を抑制するため、出力電圧Voutの低電圧検出で行う。低電圧検出のしきい値をVthとする。
FIG. 4 is a diagram showing waveforms during the switching operation of the DCDC converter of FIG.
In FIG. 4, switching of the switching elements SW1 to SW4 is performed by detecting a low voltage of the output voltage Vout in order to suppress current consumption required for controlling the charge pump. The threshold value of the low voltage detection is set to Vth.
 図2のスイッチング素子SW1、SW2をオン、スイッチング素子SW3、SW4をオフすると、図1のバッテリ1がコンデンサC1、C2を充電する。負荷6がコンデンサC1、C2から電流を引き出し、出力電圧Voutがしきい値Vthに到達すると、スイッチング素子SW1、SW2をオフ、スイッチング素子SW3、SW4をオンすることで、コンデンサC1がコンデンサC2に充電する。
 以下、チャージポンプ制御部12は、この制御を繰り返すことで、出力電圧Voutを一定に保つことが可能である。ただし、出力電圧VoutにはリップルLPが発生する。
When the switching elements SW1 and SW2 in FIG. 2 are turned on and the switching elements SW3 and SW4 are turned off, the battery 1 in FIG. 1 charges the capacitors C1 and C2. When the load 6 draws current from the capacitors C1 and C2 and the output voltage Vout reaches the threshold value Vth, the capacitor C1 charges the capacitor C2 by turning off the switching elements SW1 and SW2 and turning on the switching elements SW3 and SW4. I do.
Hereinafter, the charge pump control unit 12 can keep the output voltage Vout constant by repeating this control. However, a ripple LP occurs in the output voltage Vout.
 DCDCコンバータ5の出力電圧をVout、出力電流をIout、コンデンサC1の容量をCin、コンデンサC2の容量をCoutとした場合、出力電圧Voutのリプル電圧Vrippleは式(1)で算出できる。 When the output voltage of the DCDC converter 5 is Vout, the output current is Iout, the capacitance of the capacitor C1 is Cin, and the capacitance of the capacitor C2 is Cout, the ripple voltage Vripple of the output voltage Vout can be calculated by Expression (1).
Vripple=(Cout×Vout+Cin×(Vbat-Vout))/
        (Cin+Cout)   ・・・(1)
Vripple = (Cout × Vout + Cin × (Vbat−Vout)) /
(Cin + Cout) (1)
 また、コンデンサC2の充電時間が無視できるほど小さいとすると、出力電圧Voutのリプル周波数fは、式(2)で算出できる。 {Assuming that the charging time of the capacitor C2 is so small that it can be ignored, the ripple frequency f of the output voltage Vout can be calculated by equation (2).
f=((Cin+Cout)×Iout)/Vripple・・・(2) f = ((Cin + Cout) × Iout) / Vripple (2)
 コンデンサC1、C2の容量および出力電流Ioutなどの条件によって値は変化するが、ECU2において、(2)式から算出されるリプル周波数fは、数100Hz程度と非常に小さい値となる。この時、リプル電圧Vrippleも1V程度の大きな値になるが、例えば、ウェイクアップ機能を備えたCANトランシーバICの場合、元来バッテリ電圧に接続する機能のため、問題にはならない。 (4) Although the value changes depending on conditions such as the capacitances of the capacitors C1 and C2 and the output current Iout, the ripple frequency f calculated from the equation (2) in the ECU 2 is a very small value of about several hundred Hz. At this time, the ripple voltage Vripple also has a large value of about 1 V. However, for example, in the case of a CAN transceiver IC having a wake-up function, there is no problem because the function is originally connected to the battery voltage.
 ここで、(2)式から判るように、リプル周波数fを小さくすることにより、DCDCコンバータ5の出力電流Ioutを小さくすることができる。このため、DCDCコンバータ5は、スイッチング動作の駆動周波数を300Hz以下とした低周波駆動することにより、DCDCコンバータ5の出力電流Ioutを小さくすることができる。 Here, as can be seen from the equation (2), the output current Iout of the DCDC converter 5 can be reduced by reducing the ripple frequency f. Therefore, the DCDC converter 5 can reduce the output current Iout of the DCDC converter 5 by driving the switching operation at a low frequency of 300 Hz or less.
 一方、スイッチング動作の駆動周波数を小さくすると、リプル電圧Vrippleが大きくなる。エンジン動作状態においてECU2を安定して動作させるには、リプル電圧Vrippleを数十mV以下に抑える必要がある。リプル電圧Vrippleを数十mVにするには、スイッチング動作の駆動周波数を300~400kHzの範囲内に設定する必要がある。 {On the other hand, when the drive frequency of the switching operation is reduced, the ripple voltage Vripple increases. In order to operate the ECU 2 stably in the engine operating state, it is necessary to suppress the ripple voltage Vripple to several tens mV or less. In order to set the ripple voltage Vripple to several tens of mV, it is necessary to set the driving frequency of the switching operation within a range of 300 to 400 kHz.
 これに対して、本実施形態のエンジン動作状態では、DCDCコンバータ5は、スイッチング動作することなくバッテリ電圧Vdatを負荷6に印加する。これにより、DCDCコンバータ5は、エンジン動作状態では、300~400kHzの高周波駆動させることなく、リプル電圧Vrippleを低く抑えることができる。 On the other hand, in the engine operating state of the present embodiment, the DCDC converter 5 applies the battery voltage Vdat to the load 6 without performing the switching operation. This allows the DCDC converter 5 to keep the ripple voltage Vripple low without driving the high frequency of 300 to 400 kHz in the engine operating state.
 第1実施形態では、エンジン停止状態ではDCDCコンバータ5をスイッチング動作させ、エンジン動作状態ではDCDCコンバータ4を介してバッテリ1と負荷6を直接接続させる。一方で、負荷6の一つであるウェイクアップ機能に関して、低消費電流化のため、バッテリ電源1ではなく、5V電源でスタンバイ状態となる例がある。この場合、第1実施形態のバッテリ1と負荷6の直接接続が使用できないため、第2実施形態では、DCDCコンバータ5のスイッチング素子SW1、SW3をシリーズレギュレータとして用いる。 In the first embodiment, the switching operation of the DCDC converter 5 is performed when the engine is stopped, and the battery 1 and the load 6 are directly connected via the DCDC converter 4 when the engine is operating. On the other hand, there is an example in which the wake-up function, which is one of the loads 6, enters a standby state with a 5V power supply instead of the battery power supply 1 to reduce current consumption. In this case, since the direct connection between the battery 1 and the load 6 in the first embodiment cannot be used, in the second embodiment, the switching elements SW1 and SW3 of the DCDC converter 5 are used as a series regulator.
 図5は、第2実施形態に係る電子制御装置に適用されるDCDCコンバータの構成を示すブロック図である。
 図5において、DCDCコンバータ15は、図2のDCDCコンバータ5のチャージポンプ制御部12の代わりにコンバータ内部制御部14を備える。コンバータ内部制御部14は、チャージポンプ制御部12Aおよびレギュレータ制御部12Bを備える。
FIG. 5 is a block diagram illustrating a configuration of a DCDC converter applied to the electronic control device according to the second embodiment.
5, the DCDC converter 15 includes a converter internal control unit 14 instead of the charge pump control unit 12 of the DCDC converter 5 of FIG. Converter internal control section 14 includes charge pump control section 12A and regulator control section 12B.
 チャージポンプ制御部12Aは、イグニッションキー信号Sigおよび電圧検出回路13の検出値に基づいて、スイッチング素子SW1~SW4をスイッチング動作させる。スイッチング素子SW1~SW4のスイッチング動作では、しきい値Vthに基づいて、各スイッチング素子SW1~SW4のオンとオフとを切り替える。 (4) The charge pump control unit 12A performs switching operation of the switching elements SW1 to SW4 based on the ignition key signal Sig and the detection value of the voltage detection circuit 13. In the switching operation of the switching elements SW1 to SW4, each of the switching elements SW1 to SW4 is switched on and off based on the threshold value Vth.
 レギュレータ制御部12Bは、イグニッションキー信号Sigおよび電圧検出回路13の検出値に基づいて、スイッチング素子SW1、SW3をシリーズレギュレータ動作させる。スイッチング素子SW1、SW3のシリーズレギュレータ動作では、スイッチング素子SW1、SW3に用いられる半導体スイッチをハーフオンさせる。ハーフオンは、半導体スイッチのチャネルがオンとオフの間の中間電位に維持された状態である。 (4) The regulator control unit 12B causes the switching elements SW1 and SW3 to operate as a series regulator based on the ignition key signal Sig and the detection value of the voltage detection circuit 13. In the series regulator operation of the switching elements SW1 and SW3, the semiconductor switches used for the switching elements SW1 and SW3 are turned on half. Half-on is a state in which the channel of the semiconductor switch is maintained at an intermediate potential between on and off.
 エンジン動作状態では、レギュレータ制御部12Bは、スイッチング素子SW1、SW3をハーフオン、スイッチング素子SW2、SW4をオフすることで、DCDCコンバータ15をシリーズレギュレータ動作させる。なお、シリーズレギュレータ動作では、レギュレータ制御部12Bは、スイッチング素子SW1をオン、スイッチング素子SW3をハーフオンさせてもよいし、スイッチング素子SW1をハーフオン、スイッチング素子SW3をオンさせてもよい。 In the engine operating state, the regulator control unit 12B causes the DCDC converter 15 to operate as a series regulator by half-turning on the switching elements SW1 and SW3 and turning off the switching elements SW2 and SW4. In the series regulator operation, the regulator control unit 12B may turn on the switching element SW1, turn on the switching element SW3 half-on, or turn on the switching element SW1 and turn on the switching element SW3.
 この場合、スイッチング素子SW1、SW3を介し、図1のバッテリ1と負荷6が接続され、バッテリ1のバッテリ電圧Vbatからスイッチング素子SW1、SW3による電圧降下分を引いた電圧が負荷6に印加される。この時、端子N1→スイッチング素子SW1→スイッチング素子SW3→端子N4という電流経路L1がDCDCコンバータ15に形成される。 In this case, the battery 1 of FIG. 1 and the load 6 are connected via the switching elements SW1 and SW3, and a voltage obtained by subtracting the voltage drop by the switching elements SW1 and SW3 from the battery voltage Vbat of the battery 1 is applied to the load 6. . At this time, a current path L1 of the terminal N1, the switching element SW1, the switching element SW3, and the terminal N4 is formed in the DCDC converter 15.
 エンジン停止状態では、チャージポンプ制御部12Aは、図2のチャージポンプ制御部12と同様に動作する。 In the engine stop state, the charge pump control unit 12A operates in the same manner as the charge pump control unit 12 in FIG.
 ここで、イグニッションキーのオンおよびオフに関わらず、DCDCコンバータ15を常時動作させて、負荷6に5V電圧を供給することも可能だが、制御回路の低消費電力化を図るため、DCDCコンバータ5は、出力電圧Voutの低電圧検出で制御しているため、大きなリプル電圧が発生する。バッテリ電圧Vbatは、車両動作において一定ではなく、特に、ダンプサージのような大きな電圧変動が発生した場合、式(2)から、出力電圧Voutのリプル電圧Vrippleは16V以上に増加し、負荷6の素子破壊を引き起こすことがある。レギュレータ制御部12Bを追加し、DCDCコンバータ5の回路を流用することで、DCDCコンバータ15の低コスト化を図ることができる。イグニッションキーがオフであれば、車両が停止しているので、電源変動は発生しない。 Here, irrespective of whether the ignition key is on or off, the DCDC converter 15 can always be operated to supply a 5 V voltage to the load 6, but the DCDC converter 5 is required to reduce the power consumption of the control circuit. , The output voltage Vout is controlled by detecting a low voltage, so that a large ripple voltage is generated. The battery voltage Vbat is not constant during the operation of the vehicle. In particular, when a large voltage fluctuation such as a dump surge occurs, from equation (2), the ripple voltage Vripple of the output voltage Vout increases to 16 V or more, and the load 6 This may cause device destruction. By adding the regulator control unit 12B and diverting the circuit of the DCDC converter 5, the cost of the DCDC converter 15 can be reduced. If the ignition key is turned off, the vehicle is at a stop, and no power fluctuation occurs.
 図6は、図5のDCDCコンバータのレギュレータ動作とスイッチング動作の切替時の波形を示す図である。
 図6において、イグニッションキー信号Sigがハイレベル時のエンジン動作状態では、オルタネータ駆動に伴ってバッテリ消費電流低減の要求がなく、バッテリ1の電圧変動が大きい。このため、レギュレータ制御部12Bは、スイッチング素子SW1、SW3をシリーズレギュレータとして制御し、負荷6に電力を供給する。この時、DCDCコンバータ5の出力電圧Voutは、レギュレータ電圧Vregに設定する。レギュレータ電圧Vregは、負荷6の動作保証電圧に設定することができる。エンジン動作状態のバッテリ電流Ibatは、図1のIC制御電源4に供給されるオフセット電流Iofと、DCDCコンバータ5のレギュレータ動作時に負荷6に供給される電流との和になる。
FIG. 6 is a diagram showing waveforms at the time of switching between the regulator operation and the switching operation of the DCDC converter of FIG.
In FIG. 6, in the engine operating state when the ignition key signal Sig is at the high level, there is no request for reduction of the battery current consumption with the alternator driving, and the voltage fluctuation of the battery 1 is large. For this reason, the regulator control unit 12B controls the switching elements SW1 and SW3 as a series regulator and supplies power to the load 6. At this time, the output voltage Vout of the DCDC converter 5 is set to the regulator voltage Vreg. The regulator voltage Vreg can be set to the operation guarantee voltage of the load 6. The battery current Ibat in the engine operating state is the sum of the offset current Iof supplied to the IC control power supply 4 in FIG. 1 and the current supplied to the load 6 when the DCDC converter 5 operates the regulator.
 イグニッションキー信号Sigがロウレベル時のエンジン停止状態では、DCDCコンバータ5をスイッチング動作させ、バッテリ1の低消費電流化を図る。 (4) When the ignition key signal Sig is at the low level and the engine is stopped, the DCDC converter 5 performs a switching operation to reduce the current consumption of the battery 1.
 エンジン停止状態が長期間続く場合、バッテリ1に接続された負荷6の総リーク電流に起因して、バッテリ電圧Vbatが、DCDCコンバータ5のスイッチング動作に必要な最低電圧Vbl以下になる。この時、レギュレータ制御部12Bは、スイッチング素子SW1、SW3をシリーズレギュレータとして制御し、スイッチング素子SW1、SW3を介してバッテリ1と負荷6を接続させ、負荷6のスタンバイを継続させるモードに移行させる。この場合、アラーム信号を発信し、バッテリ電圧Vbatが著しく劣化したことをユーザに伝えることも可能である。 When the engine stop state continues for a long time, the battery voltage Vbat falls below the minimum voltage Vbl required for the switching operation of the DCDC converter 5 due to the total leak current of the load 6 connected to the battery 1. At this time, the regulator control unit 12B controls the switching elements SW1 and SW3 as a series regulator, connects the battery 1 to the load 6 via the switching elements SW1 and SW3, and shifts to a mode in which the standby of the load 6 is continued. In this case, an alarm signal can be transmitted to inform the user that the battery voltage Vbat has significantly deteriorated.
 上述した第1実施形態および第2実施形態では、DCDCコンバータ5の出力を内部負荷に接続した構成について説明したが、DCDCコンバータ5の出力を外部負荷に接続し、車両全体の低消費電流化を図るようにしてもよい。 In the above-described first and second embodiments, the configuration in which the output of the DCDC converter 5 is connected to the internal load has been described. However, the output of the DCDC converter 5 is connected to the external load to reduce the current consumption of the entire vehicle. You may make it aim.
 図7は、第3実施形態に係る電子制御装置の構成を示すブロック図である。
 図7において、ECU2Aは、図2のECU2に出力端子16が追加されている。出力端子16は、DCDCコンバータ5の出力に接続されている。また、出力端子16は、ECU2B、2Cに接続されている。ECU2B、2Cは、IC制御電源およびDCDCコンバータを省略することができる。この時、ECU2B、2Cには、ECU2AのDCDCコンバータ6から電源を供給することができる。
FIG. 7 is a block diagram illustrating a configuration of an electronic control device according to the third embodiment.
7, the ECU 2A has an output terminal 16 added to the ECU 2 of FIG. The output terminal 16 is connected to the output of the DCDC converter 5. The output terminal 16 is connected to the ECUs 2B and 2C. The ECUs 2B and 2C can omit the IC control power supply and the DCDC converter. At this time, power can be supplied to the ECUs 2B and 2C from the DCDC converter 6 of the ECU 2A.
 上述した第1実施形態および第2実施形態では、DCDCコンバータ5の制御電流を低減できるが、出力電流に対するオフセット電流の割合が大きいと、消費電流低減効果が小さくなる。ECU2Aの外部のECU2B、2CにもDCDCコンバータ5から電源を供給することで、出力電流に対するオフセット電流の割合を低減させることができ、低コストでバッテリ低消費電流化を図ることができる。 In the first and second embodiments described above, the control current of the DCDC converter 5 can be reduced. However, when the ratio of the offset current to the output current is large, the effect of reducing the current consumption is reduced. By supplying power from the DCDC converter 5 to the ECUs 2B and 2C outside the ECU 2A, the ratio of the offset current to the output current can be reduced, and the battery can be reduced in current consumption at low cost.
 以上で説明した各実施の形態や各種の変化例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されない。 The embodiments and various modifications described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired.
 1 バッテリ、2 ECU、3 電源端子、4 IC制御電源、5 DCDCコンバータ、6 負荷、7 通信ウェイクアップ部、8、10 シリーズレギュレータ、9 RAMバックアップ電源、11 タイマ {1} battery, 2 ECU, 3 power terminal, 4 IC control power, 5 DCDC converter, 6 load, 7 communication wake-up unit, 8, 10 series regulator, 9 RAM backup power, 11 timer

Claims (15)

  1.  電源端子と負荷との間に設けられたDCDCコンバータを備え、
     前記DCDCコンバータは、エンジン動作状態ではスイッチング動作せずに前記負荷に電圧を印加し、エンジン停止状態ではスイッチング動作に基づいて前記負荷に電圧を印加する電子制御装置。
    A DCDC converter provided between the power supply terminal and the load;
    An electronic control device, wherein the DCDC converter applies a voltage to the load without performing a switching operation in an engine operating state, and applies a voltage to the load based on the switching operation in an engine stopped state.
  2.  前記スイッチング動作の駆動周波数は300Hz以下である請求項1に記載の電子制御装置。 The electronic control device according to claim 1, wherein the driving frequency of the switching operation is 300 Hz or less.
  3.  前記DCDCコンバータは、前記エンジン動作状態ではバッテリ電圧を前記負荷に印加する請求項1に記載の電子制御装置。 The electronic control device according to claim 1, wherein the DCDC converter applies a battery voltage to the load in the engine operating state.
  4.  前記DCDCコンバータは、降圧チャージポンプである請求項1に記載の電子制御装置。 The electronic control device according to claim 1, wherein the DCDC converter is a step-down charge pump.
  5.  前記降圧チャージポンプが備えるスイッチング素子は、前記エンジン動作状態では消費電力が許容損失をオーバーせず、前記エンジン停止状態では電圧降下に伴うスイッチング動作不良が発生しないオン抵抗を有する請求項4に記載の電子制御装置 5. The switching element according to claim 4, wherein the switching element included in the step-down charge pump has an on-resistance such that power consumption does not exceed an allowable loss in the engine operating state and a switching operation failure due to a voltage drop does not occur in the engine stopped state. 6. Electronic control unit
  6.  前記降圧チャージポンプは、前記エンジン停止状態においてバッテリ電圧がしきい値以下に低下した場合、前記バッテリ電圧を前記負荷に印加する請求項4に記載の電子制御装置。 The electronic control device according to claim 4, wherein the step-down charge pump applies the battery voltage to the load when the battery voltage drops below a threshold value in the engine stopped state.
  7.  前記DCDCコンバータは、前記エンジン動作状態ではシリーズレギュレータ動作に基づいて降下させたバッテリ電圧を前記負荷に印加する請求項1に記載の電子制御装置。 The electronic control device according to claim 1, wherein the DCDC converter applies a battery voltage dropped based on a series regulator operation to the load in the engine operating state.
  8.  前記DCDCコンバータが備える半導体スイッチをハーフオンさせることで、前記DCDCコンバータを前記シリーズレギュレータ動作させる請求項7に記載の電子制御装置。 8. The electronic control device according to claim 7, wherein the DCDC converter operates as the series regulator by half-turning on a semiconductor switch included in the DCDC converter.
  9.  前記半導体スイッチは、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)もしくはバイポーラトランジスタである請求項8に記載の電子制御装置。 9. The electronic control device according to claim 8, wherein the semiconductor switch is a MOSFET (Metal Oxide Semiconductor Semiconductor Field Effect Transistor) or a bipolar transistor.
  10.  前記DCDCコンバータの出力は、他の電子制御装置に接続されている請求項1に記載の電子制御装置。 The electronic control device according to claim 1, wherein the output of the DCDC converter is connected to another electronic control device.
  11.  前記DCDCコンバータの出力電圧は、前記エンジン動作状態に対して、前記エンジン停止状態の方が高リプルである請求項1に記載の電子制御装置。 2. The electronic control device according to claim 1, wherein the output voltage of the DCDC converter is higher in the engine stopped state than in the engine operating state.
  12.  前記エンジン停止状態の出力電圧のリプルは、1~2Vの範囲内である請求項11に記載の電子制御装置。 The electronic control device according to claim 11, wherein the ripple of the output voltage in the engine stopped state is in a range of 1 to 2V.
  13.  前記DCDCコンバータは、
     第1スイッチング素子と、
     第2スイッチング素子と、
     第3スイッチング素子と、
     第4スイッチング素子とを備え、
     前記第1スイッチング素子は前記電源端子に接続され、
     前記第3スイッチング素子は前記第1スイッチング素子に接続され、
     前記第2スイッチング素子は前記第3スイッチング素子に接続され、
     前記第4スイッチング素子は前記第2スイッチング素子に接続され、
     前記第1スイッチング素子と前記第3スイッチング素子との接続点と、前記第2スイッチング素子と前記第4スイッチング素子との接続点との間には第1コンデンサが接続され、
     前記第2スイッチング素子と前記第3スイッチング素子との接続点には第2コンデンサおよび前記負荷が接続されている請求項1に記載の電子制御装置。
    The DCDC converter comprises:
    A first switching element;
    A second switching element;
    A third switching element;
    A fourth switching element,
    The first switching element is connected to the power terminal,
    The third switching element is connected to the first switching element;
    The second switching element is connected to the third switching element;
    The fourth switching element is connected to the second switching element;
    A first capacitor is connected between a connection point between the first switching element and the third switching element and a connection point between the second switching element and the fourth switching element,
    The electronic control device according to claim 1, wherein a second capacitor and the load are connected to a connection point between the second switching element and the third switching element.
  14.  前記DCDCコンバータは、
     前記エンジン動作状態では、
     前記第1スイッチング素子および前記第3スイッチング素子をオン、前記第2スイッチング素子および前記第4スイッチング素子をオフした第1状態を継続し、
     前記エンジン停止状態では、
     前記第1スイッチング素子および前記第2スイッチング素子をオン、前記第3スイッチング素子および前記第4スイッチング素子をオフした第2状態と、前記第1スイッチング素子および前記第2スイッチング素子をオフ、前記第3スイッチング素子および前記第4スイッチング素子をオンした第3状態とを交互に繰り返す請求項13に記載の電子制御装置。
    The DCDC converter comprises:
    In the engine operating state,
    A first state in which the first switching element and the third switching element are turned on and the second switching element and the fourth switching element are turned off,
    In the engine stopped state,
    A second state in which the first switching element and the second switching element are turned on, the third switching element and the fourth switching element are turned off, and a state in which the first switching element and the second switching element are turned off; 14. The electronic control device according to claim 13, wherein a switching element and a third state in which the fourth switching element is turned on are alternately repeated.
  15.  前記DCDCコンバータは、前記DCDCコンバータの出力電圧がしきい値以下に低下した場合、前記第3状態から前記第2状態に切り替える請求項14に記載の電子制御装置。 The electronic control device according to claim 14, wherein the DCDC converter switches from the third state to the second state when the output voltage of the DCDC converter falls below a threshold value.
PCT/JP2019/026409 2018-07-25 2019-07-03 Electronic control device WO2020022003A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020532252A JPWO2020022003A1 (en) 2018-07-25 2019-07-03 Electronic control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018139529 2018-07-25
JP2018-139529 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020022003A1 true WO2020022003A1 (en) 2020-01-30

Family

ID=69180626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026409 WO2020022003A1 (en) 2018-07-25 2019-07-03 Electronic control device

Country Status (2)

Country Link
JP (1) JPWO2020022003A1 (en)
WO (1) WO2020022003A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204567A (en) * 2000-10-26 2002-07-19 Rohm Co Ltd Step-down dc-dc converter
JP2004106621A (en) * 2002-09-17 2004-04-08 Nissan Motor Co Ltd Automatic stopping/automatic restarting device for engine
JP2004242387A (en) * 2003-02-04 2004-08-26 Nec Saitama Ltd Step-down dc-dc converter and terminal device
JP2006081238A (en) * 2004-09-07 2006-03-23 Alpine Electronics Inc Power circuit
JP2010136510A (en) * 2008-12-03 2010-06-17 Panasonic Corp Step-down switching regulator
JP2012231580A (en) * 2011-04-25 2012-11-22 Toyota Motor Corp Power supply system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892528B2 (en) * 1997-05-19 2007-03-14 日産自動車株式会社 Auxiliary power supply battery charge control device for hybrid electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204567A (en) * 2000-10-26 2002-07-19 Rohm Co Ltd Step-down dc-dc converter
JP2004106621A (en) * 2002-09-17 2004-04-08 Nissan Motor Co Ltd Automatic stopping/automatic restarting device for engine
JP2004242387A (en) * 2003-02-04 2004-08-26 Nec Saitama Ltd Step-down dc-dc converter and terminal device
JP2006081238A (en) * 2004-09-07 2006-03-23 Alpine Electronics Inc Power circuit
JP2010136510A (en) * 2008-12-03 2010-06-17 Panasonic Corp Step-down switching regulator
JP2012231580A (en) * 2011-04-25 2012-11-22 Toyota Motor Corp Power supply system

Also Published As

Publication number Publication date
JPWO2020022003A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
US20180287494A1 (en) Bidirectional dc-dc converter
US11569654B2 (en) Power control device
US7893673B2 (en) Step-up switching power supply device, and electronic device provided therewith
CN102177644B (en) Vehicular power unit
US7282809B2 (en) Interface circuit between a direct-current voltage source and a circuit for driving a load, particularly for use in motor-vehicles
US11848611B2 (en) Switching power supply device
CN108352784B (en) Step-up/step-down power supply and power supply circuit
CN109196764B (en) Switching regulator, semiconductor integrated circuit, and electronic device
US20110242723A1 (en) Relay driver circuit
WO2020195257A1 (en) In-vehicle power supply device
JP4923831B2 (en) Power supply
WO2020183901A1 (en) Electrification control device
WO2020022003A1 (en) Electronic control device
WO2011040277A1 (en) Load driving device
JP2007288918A (en) Power supply
US11476750B2 (en) Vehicle power supply device with charge circuit section
CN114792970A (en) Protection circuit for preventing reverse connection of power supply
US20190199218A1 (en) Dc/dc converter
WO2014104332A1 (en) Power supply device
WO2020149084A1 (en) Dc-dc converter
JP6379008B2 (en) Power control device
JP2024060182A (en) Semiconductor devices, electronic devices, vehicles
JP4420142B1 (en) Vehicle power supply
JP2021023057A (en) Switching power supply device
KR20080054218A (en) Power system of the car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840391

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020532252

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840391

Country of ref document: EP

Kind code of ref document: A1