WO2020021909A1 - Lead storage battery - Google Patents

Lead storage battery Download PDF

Info

Publication number
WO2020021909A1
WO2020021909A1 PCT/JP2019/023908 JP2019023908W WO2020021909A1 WO 2020021909 A1 WO2020021909 A1 WO 2020021909A1 JP 2019023908 W JP2019023908 W JP 2019023908W WO 2020021909 A1 WO2020021909 A1 WO 2020021909A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
rib
space
cell chamber
communication port
Prior art date
Application number
PCT/JP2019/023908
Other languages
French (fr)
Japanese (ja)
Inventor
小島 優
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018140983A external-priority patent/JP7110794B2/en
Priority claimed from JP2018140984A external-priority patent/JP7107063B2/en
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2020021909A1 publication Critical patent/WO2020021909A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lead storage battery provided with a lid having an exhaust port.
  • Patent Document 1 describes a lead storage battery provided with a lid member having an exhaust duct.
  • the lid member has a passage wall forming a passage therein.
  • the passage wall forms a passage that guides the gas generated in the battery case to the exhaust duct and guides the liquid in the cover member to a return hole provided in the cover member.
  • the inventor of the present invention formed a space communicating with the passage, through which the liquid flows in and out, inside the lid member, and further devised the configuration of the space, whereby the space from the exhaust port of the lid was formed. It has been found that the effect of suppressing liquid leakage (hereinafter also referred to as overflow performance) can be enhanced.
  • the present invention has been made in view of the above circumstances, and has an object to improve overflow performance.
  • the lead storage battery includes a battery case having an opening at an upper portion and containing an electrode group and an electrolytic solution, and a lid member closing the opening and forming an exhaust port.
  • the lid member has a bottom wall formed with a return hole communicating with the inside of the battery case, a top wall facing the bottom wall, and a rib erected on the bottom wall.
  • the rib forms a passage extending from the return hole to the exhaust port, and a first space that communicates with the passage through one communication port and through which the electrolyte can flow in and out through the communication port.
  • the width of the communication port is less than 1.5 times the width of the passage in a portion adjacent to the communication port.
  • the overflow performance can be improved.
  • FIG. 1 is a perspective view of a lead-acid battery according to a first embodiment.
  • Vertical sectional view of the lead storage battery II-II sectional view in FIG. 1
  • Top view of battery case Exploded perspective view of the lid body Exploded perspective view of the lid body Perspective view of inner lid Top view of inner lid Bottom view of top lid
  • Partial enlarged view of the top view of the inner lid Partial enlarged view of the top view of the inner lid Partial enlarged view of the top view of the inner lid Partial enlarged view of the top view of the inner lid Partial enlarged view of the top view of the inner lid Partial enlarged view of the top view of the inner lid
  • the pressure inside the battery case may increase due to the gas consisting of water vapor and mist generated in the battery case.
  • the lid of the lead storage battery is provided with, for example, an exhaust port for discharging gas in the battery case to the outside.
  • lids of lead-acid batteries are box-shaped with a space inside, so-called double lids.
  • a vent is provided on the bottom
  • an exhaust port is provided on a side wall
  • a passage from the vent to the exhaust port is provided.
  • the gas generated in the battery case enters the lid from the ventilation port, reaches the exhaust port through the passage, and is discharged from the exhaust port to the outside.
  • a reflux hole is provided in the passage, and the liquid in the lid is guided to the reflux hole through the passage, and returns from the reflux hole into the battery case.
  • the electrolyte may enter the lid from the return hole into the lid.
  • the passage provided in the lid is provided, for example, in a bent shape so that the electrolyte that has entered the lid from the reflux hole can be prevented from leaking from the exhaust port. Further, a space into which a liquid flows may be provided in the middle of the passage.
  • the space is communicated with the passage so that the liquid that enters the lid from the return hole and flows backward through the passage can be smoothly introduced into the space.
  • two communication ports a communication port through which the liquid flows in, and a communication port through which the liquid flows out through the passage.
  • a communication port having a width of 1.5 times or more the width of the passage in the space it is conceivable to provide a communication port having a width of 1.5 times or more the width of the passage in the space.
  • the inventor of the present application has found that lowering the flow velocity of the liquid in the passage (hereinafter, also referred to as the force of the liquid) can improve the overflow performance that suppresses leakage of the liquid from the exhaust port.
  • the force of the liquid In order to weaken the momentum of the liquid in the passage, it is effective to limit the number of communication ports of the space to one and to make the width of the communication port less than 1.5 times the width of the passage. I got the knowledge.
  • a lead storage battery according to one embodiment of the present invention includes a battery case having an opening at an upper portion and containing an electrode group and an electrolytic solution, and a lid member closing the opening and forming an exhaust port.
  • the lid member has a bottom wall formed with a return hole communicating with the inside of the battery case, a top wall facing the bottom wall, and a rib erected on the bottom wall.
  • the rib forms a passage extending from the return hole to the exhaust port, and a first space that communicates with the passage through one communication port and through which the electrolyte can flow in and out through the communication port.
  • the width of the communication port is less than 1.5 times the width of the passage in a portion adjacent to the communication port.
  • the liquid flowing through the passage flows into the first space from the communication port, and is temporarily stored in the first space.
  • the liquid that has flowed into the first space flows out of the first space due to vibration or shaking applied to the lead storage battery, or liquid that has flowed further into the first space from the communication port. Since there is only one communication port in the first space, the liquid flows into the first space from the communication port, and the liquid flows out from the communication port. Therefore, the liquid flowing out of the communication port collides with the liquid flowing in the passage, so that the force of the liquid flowing in the passage and the force of the liquid flowing out of the communication port can both be reduced.
  • the width of the communication port of the first space is less than 1.5 times the width of the passage, the liquid flowing out of the first space through the communication port is strong enough to reduce the force of the liquid flowing through the passage. Now you can drain it. As a result, the overflow performance can be improved.
  • the width of the communication port may be at least half the width of the passage in a portion adjacent to the communication port.
  • the width of the communication port of the first space is equal to or more than half of the width of the passage, an amount of liquid that can sufficiently reduce the force of the liquid flowing through the passage can flow into the first space from the communication port. . As a result, the overflow performance can be further improved.
  • the rib may communicate with the passage to further form a second space into which the liquid flows.
  • the second space communicates with the passage through at least one of a plurality of communication openings and one communication opening having a width of 1.5 times or more the width of the passage, and does not directly communicate with the return hole.
  • the first space is located at a position closer to the return hole in the passage than the second space.
  • the first space having only one narrow communication port is located at a position closer to the return hole in the passage than the second space having a plurality of communication ports or the wide one communication port.
  • the liquid that has entered the space is weakened by the liquid flowing out of the first space, and then smoothly flows into the second space. As a result, the overflow performance can be further improved.
  • the rib may be a part of the passage, and form a first linear passage that is linear and a second passage that intersects the first linear passage.
  • the communication port of the first space is provided on an extension of the first straight passage portion and facing an intersection of the first straight passage portion and the second passage portion.
  • the liquid can be guided to the communication port of the first space by the straight first linear passage portion, the liquid flows into the first space in an amount sufficient to sufficiently reduce the force of the liquid flowing out of the communication port. be able to. As a result, the overflow performance can be further improved.
  • the first straight passage portion and the second passage may be orthogonal to each other. Even if there is a difference between the amount and the force of the liquid flowing through the first straight passage portion and the amount and the force of the liquid flowing out from the communication port, it is possible to suppress a large change in the overflow performance due to the difference. it can. As a result, the overflow performance can be stabilized.
  • the ribs may include linear ribs that define a part of the first straight passage and a part of the first space.
  • the communication port is located in the middle of the linear rib.
  • the width of the communication port in the first space may be wider than the width of the passage in a portion adjacent to the communication port. Since the width of the communication port is wider than the width of the passage in a portion adjacent to the communication port, a sufficient amount of liquid can flow into the first space 1 through the communication port.
  • the area of the first space may be 1.5 times or more a value obtained by squaring the width of the communication port of the first space. Since the area of the first space is at least 1.5 times the value obtained by squaring the width of the communication port, it is possible to prevent the liquid that has flowed into the first space from immediately flowing out of the first space.
  • the rib may form at least two of the first spaces in the passage. Since the rib forms at least two first spaces in the passage, the overflow performance can be further improved.
  • the communication port of the first space may be formed at a position near the return hole in the passage. Since the communication port of the first space is formed at a position near the return hole in the passage, the overflow performance can be further improved.
  • the lead storage battery 10 includes a rectangular box-shaped battery case 20 having an opening on one surface, and a lid member 30 for closing the opening of the battery case 20.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, and is a cross-sectional view of the lead storage battery 10 cut along a plane passing through a central axis of a negative electrode post 33 described later.
  • the vertical direction 7 is defined as one surface of the battery case 20 provided with the opening is the upper surface
  • the direction along the short side of the rectangular box-shaped battery case 20 is defined as the front-back direction 8
  • the long side is defined.
  • a description will be given by defining a direction along the horizontal direction 9.
  • the vertical direction 7, the front-back direction 8, and the left-right direction 9 are orthogonal to each other.
  • the battery case 20 includes four front, rear, left and right side plates 21 and a bottom plate 22.
  • An internal space 23 surrounded by the four side plates 21 and the bottom plate 22 stores the electrolytic solution 6 made of diluted sulfuric acid. That is, the lead storage battery 10 is a so-called liquid storage battery.
  • the battery case 20 is a resin molded product molded using, for example, a synthetic resin having corrosion resistance and insulation properties.
  • the battery case 20 includes five partition plates 24 that partition the internal space 23 into six.
  • the partition plate 24 has a plate shape having a thickness in the left-right direction 9.
  • the partition plate 24 is formed integrally with the side plate 21 and the bottom plate 22 and is connected to the bottom plate 22 and the front and rear side plates 21.
  • the left and right side plates 21 and the five partition plates 24 are separated from each other at substantially equal intervals in the left-right direction 9.
  • the upper end of the partition plate 24 is located at substantially the same height as the upper end of the side plate 21.
  • the five partition plates 24 partition the internal space 23 of the battery case 20 into six cell chambers 11 to 16. Each of the cell chambers 11 to 16 stores the electrolytic solution 6 respectively.
  • Each of the cell chambers 11 to 16 contains a positive electrode plate 25, a negative electrode plate 26, and a separator 27, respectively, as shown in FIG.
  • the positive electrode plate 25, the negative electrode plate 26, and the separator 27 have a plate shape having a thickness in the left-right direction 9, and are separated from each other in the right-left direction 9.
  • the separator 27 is located between the positive electrode plate 25 and the negative electrode plate 26 and separates the positive electrode plate 25 from the negative electrode plate 26.
  • the positive electrode plate 25 and the negative electrode plate 26 are, for example, a lattice body filled with an active material.
  • the main component of the active material of the positive electrode plate 25 is lead dioxide.
  • the main component of the active material of the negative electrode plate 26 is lead.
  • Each positive electrode plate 25 and each negative electrode plate 26 housed in each of the cell chambers 11 to 16 are connected to each other by a conductive strap 28. More specifically, the positive electrode plate 25 accommodated in one cell chamber is connected via a strap 28 to a negative electrode plate 26 accommodated in an adjacent cell room. The negative electrode plate 26 accommodated in one cell room is connected to the positive electrode plate 25 accommodated in the adjacent cell room via another strap 28. For example, the positive electrode plate 25 accommodated in the cell chamber 12 is connected via a strap 28 to the negative electrode plate 26 accommodated in the cell chambers 11 and 13. The other strap 28 is connected to the positive electrode plate 25 accommodated in the cell chambers 11 and 13. That is, the cell chambers 11 to 16 are connected in series.
  • the lid member 30 includes a rectangular box-shaped lid main body 31, a positive pole 32 and a negative pole 33 penetrating the lid main body 31 in the up-down direction 7, bushings 38 and 39, Is provided.
  • the lid body 31 is in the shape of a rectangular box.
  • the thickness of the lid body 31 in the up-down direction 7 is shorter than a short side along the front-rear direction 8 and a long side along the left-right direction 9. That is, the lid main body 31 has a flat rectangular box shape.
  • Lid body 31 has a lower surface that is larger than the upper surface of battery case 20.
  • a peripheral wall 35 that covers the upper part of the outer surface of the side plate 21 of the battery case 20 protrudes downward from the peripheral end of the lower surface.
  • the lid main body 31 is arranged by fitting the upper part of the side plate 21 of the battery case 20 inside the peripheral wall 35.
  • the lid body 31 is fixed to the battery case 20. More specifically, the lid main body 31 has a rectangular frame-shaped contact surface 36 provided along the peripheral wall 35. The contact surface 36 is a part of the lower surface of the lid main body 31. The contact surface 36 is in contact with the upper end of the side plate 21 of the battery case 20. The contact surface 36 and the upper end of the side plate 21 of the battery case 20 are fixed to each other by heat welding or the like. That is, the lid main body 31 is fixed to the battery case 20.
  • the lid main body 31 is fixed to the battery case 20 so that the electrolytic solution 6 can be prevented from mutually moving between the cell chambers 11 to 16 of the battery case 20. More specifically, as shown in FIG. 5, the lid main body 31 has five ribs 37 protruding downward from the lower surface. Each rib 37 has a thickness in the left-right direction 9 and is provided along the front-back direction 8. The lower end of each rib 37 is in contact with the upper end of each partition plate 24 of the battery case 20. The lower end of the rib 37 of the lid body 31 and the upper end of the partition plate 24 of the battery case 20 are fixed to each other by heat welding or the like. The partition plate 24 and the rib 37 prevent the electrolyte solution 6 from mutually moving between the cell chambers 11 to 16.
  • the lid main body 31 and the bushings 38 and 39 shown in FIG. 1 are integrally formed by, for example, so-called insert molding. That is, the bushings 38 and 39 are fixed to the lid main body 31.
  • the bushing 38 and the bushing 39 are both cylindrical and made of a conductive metal such as a lead alloy.
  • the bushing 38 will be mainly described, but the same applies to the bushing 39.
  • the bushing 38 and the bushing 39 may have different shapes, or may have the same shape but different sizes (similar shapes).
  • the upper part of the bushing 38 protrudes upward from the upper surface of the lid body 31 and is exposed to the outside. That is, the bushing 38 functions as an external connection terminal.
  • the upper end of the positive pole 32 made of a conductive metal is inserted into the bushing 38.
  • the positive pole 32 is fixed to the bushing 38 by, for example, welding.
  • the lower end of the positive pole 32 is connected to the strap 28 shown in FIG.
  • the lower end of the negative pole 33 is connected to another strap 28.
  • the lead storage battery 10 outputs a DC voltage from a pair of positive and negative bushings 38 and 39.
  • the lid main body 31 has an exhaust port 45 for exhausting gas composed of mist and water vapor generated in the battery case 20 to the outside in order to prevent the internal pressure in the battery case 20 from becoming too high.
  • the lid main body 31 has a configuration for preventing liquid from leaking from the exhaust port 45.
  • the configuration of the lid body 31 will be described in detail.
  • the lid main body 31 includes an inner lid 40 and an upper lid 50.
  • the inner lid 40 and the upper lid 50 are molded products of synthetic resin.
  • the inner lid 40 has the above-described peripheral wall 35 that is thermally welded to the battery case 20, and is fixed to the battery case 20.
  • the above-mentioned bushings 38 and 39 are located at the rear of the inner lid 40 and are separated in the left-right direction 9.
  • the inner lid 40 has six inlets 431 to 436 for injecting the electrolyte 6 into the respective cell chambers 11 to 16 of the battery case 20 at the front.
  • the six inlets 431 to 436 are separated from each other in the left-right direction 9.
  • the inlets 431 to 436 are closed by the stoppers 60, respectively.
  • Each stopper 60 is fixed to the upper lid 50, respectively. Details will be described later.
  • the front upper surface 41 which is the upper surface of the front part of the inner lid 40 is located at a position lower than the rear upper surface 42 which is the upper surface of the rear part.
  • An upper lid 50 is arranged on the front upper surface 41 of the inner lid 40.
  • the difference in height between the rear upper surface 42 and the front upper surface 41 of the inner lid 40 is substantially equal to the length of the upper lid 50 in the vertical direction 7. That is, in the lid body 31, the rear upper surface 42 of the inner lid 40 and the upper surface of the upper lid 50 are substantially flush.
  • the front part of the inner lid 40 forms a bottom wall of the lid member 30.
  • the upper lid 50 has a rectangular plate-like portion 51 whose length along the left-right direction 9 is longer than the length along the front-rear direction 8 and has a thickness in the up-down direction 7, and a lower portion from the periphery of the lower surface of the plate-like portion 51. And a peripheral wall 52 that protrudes.
  • the lower end of the peripheral wall 52 is fixed to the front upper surface 41 of the inner lid 40 by heat welding. That is, the upper lid 50 is fixed to the inner lid 40.
  • the plate-shaped portion 51 of the upper lid 50 forms a top wall of the lid member 30.
  • the plate portion 51 and the peripheral wall 52 of the upper lid 50 constitute an outer wall of the lid member 30.
  • the upper lid 50 has six injection openings 531 to 536 at the front thereof, which overlap with the injection ports 431 to 436 of the inner lid 40 in the vertical direction 7.
  • Screw grooves 54 are provided on the inner peripheral surfaces of the injection openings 531 to 536, respectively.
  • the screw groove 54 is screwed with a screw groove 61 provided on the outer peripheral surface of the cylindrical plug 60. That is, the upper lid 50 fixes the six stoppers 60 respectively.
  • the upper lid 50 has the above-described exhaust port 45 on the peripheral wall 52.
  • the exhaust port 45 penetrates the peripheral wall 52 in the left-right direction 9. Passages 151 to 156 (see FIG. 7) through which gas flows and which returns the liquid into the battery case 20 are formed in the space 5 surrounded by the front part of the inner lid 40 and the upper lid 50. The details will be described below.
  • the inner lid 40 has six ventilation holes 161 to 166 that are the starting points of the passages 151 to 156.
  • the ventilation holes 161 to 166 penetrate the front part of the inner lid 40 in the vertical direction 7 respectively.
  • the vents 161 to 166 communicate the cell chambers 11 to 16 with the space 5, respectively. Specifically, the vent 161 connects the cell chamber 11 and the space 5, the vent 162 connects the cell chamber 12 and the space 5, and the vent 163 connects the cell chamber 13 and the space 5.
  • the communication, the vent 164 connects the cell chamber 14 and the space 5, the vent 165 connects the cell chamber 15 and the space 5, and the vent 166 connects the cell chamber 16 and the space 5. .
  • passages 151 to 156 are formed in the space 5 with the vents 161 to 166 as starting points.
  • the passage 151 is a passage from the ventilation port 161 communicating with the cell chamber 11 to the exhaust port 45.
  • the passage 152 is a passage from the vent 162 communicating with the cell chamber 12 to the exhaust port 45.
  • the passage 153 is a passage from the ventilation port 163 communicating with the cell chamber 13 to the exhaust port 45.
  • the passage 154 is a passage from the ventilation port 164 communicating with the cell chamber 14 to the exhaust port 45.
  • the passage 155 is a passage from the ventilation port 165 communicating with the cell chamber 15 to the exhaust port 45.
  • the passage 156 is a passage from the ventilation port 166 communicating with the cell chamber 16 to the exhaust port 45.
  • the channel 151 is formed by the ribs 101 to 127 shown in FIG. 7 and the ribs 171 to 197 shown in FIG.
  • the ribs 101 to 127 project upward from the front upper surface 41 of the inner lid 40.
  • the ribs 171 to 197 project downward from the lower surface of the upper lid 50.
  • the upper ends of the ribs 101 to 127 are in contact with the lower ends of the ribs 171 to 197, and are fixed to each other by heat welding. In FIGS. 7 and 8, a region to be thermally welded is indicated by hatching.
  • the ribs 101 to 127 and the shapes of the ribs 171 to 197 in plan view are substantially the same, the ribs 101 to 127 provided on the inner lid 40 will be described below with reference to FIG. Description of the shapes of the ribs 171 to 197 provided on the 50 is omitted.
  • the rib 127 is located to the right of the vent 161 and extends along the front-rear direction 8.
  • the rib 101 is located behind the vent 161 and extends along the left-right direction 9.
  • the rib 102 is located in front of the vent 161 and extends along the left-right direction 9. Part of the passage 151 is formed between the rib 101 and the rib 102. The gas that has entered the space 5 from the battery case 20 through the vent 161 advances to the left from the vent 161.
  • the rib 103 extends obliquely rightward and rearward from the left end of the rib 102.
  • the rear end of the rib 103 is separated from the rib 101.
  • Part of the passage 151 is formed between the rear end of the rib 103 and the rib 101.
  • the gas that has entered the space 5 from the battery case 20 through the vent 161 advances to the left from the vent 161 and passes between the rear end of the rib 103 and the rib 101 toward the left.
  • the rib 104 is located to the left of the rib 103, and extends along the front-back direction 8.
  • the rear end of the rib 104 is connected to the left end of the rib 101.
  • Part of the passage 151 is formed between the rib 103 and the rib 104.
  • the gas that has passed between the rear end of the rib 103 and the rib 101 passes forward between the rib 103 and the rib 104.
  • a rib 110, a rib 105, and a rib 106 are formed before the rib 102.
  • the rib 110 has an arc shape.
  • the left end of the rib 110 is connected to the rib 104.
  • the rib 105 extends rearward from the center of the rib 110 in the left-right direction 9.
  • the rear end of the rib 105 is separated from the rib 102.
  • Part of the passage is formed between the rear end of the rib 105 and the rib 102.
  • the rib 106 extends rightward from the center of the rib 105 in the front-rear direction 8.
  • Part of the passage 151 is formed between the rib 106 and the rib 102.
  • the gas that has passed between the rib 103 and the rib 104 passes between the rear end of the rib 105 and the rib 102, and then passes between the rib 106 and the rib 102 rightward.
  • a rib 107 is formed on the right side of the rib 106.
  • the rib 107 is separated from the rib 106 and extends along the front-back direction 8.
  • Part of the passage 151 is formed between the rib 106 and the rib 107.
  • the gas that has passed between the ribs 106 and 102 passes forward between the right end of the rib 106 and the rib 107.
  • a rib 108 is formed before the rib 107.
  • the rib 108 extends in the left-right direction 9 and is connected to the front end of the rib 107.
  • a rib 109 extends rearward from the left end of the rib 108. The rear end of the rib 109 is separated from the rib 106.
  • a part of the passage 151 is formed between the rib 109 and the rib 106. The gas that has passed between the right end of the rib 106 and the rib 107 passes between the rib 109 and the rib 106 toward the left.
  • a portion of the passage 151 is formed by the ribs 109, 105, and 110 described above.
  • the gas that has passed between the ribs 109 and 106 passes forward between the ribs 109 and the ribs 105 and 110.
  • a rib 111 is formed before the rib 110.
  • the rib 111 extends along the periphery of the inlet 431.
  • the right end of the rib 110 is connected to the rib 111.
  • a part of the passage 151 is formed between the rib 111 and the ribs 109 and 108.
  • the gas that has passed between the rib 109 and the ribs 105 and 110 passes generally between the rib 111 and the ribs 127 and 108 obliquely rightward and forward.
  • a rib 112 is formed on the right side of the rib 111.
  • the rib 112 extends along the left-right direction 9.
  • the left end of the rib 112 is connected to the rib 111.
  • the front end of the above-described rib 127 is not thermally welded to the rib 197 (see FIG. 8) provided on the upper lid 50.
  • a portion of the passage 151 is formed in a portion of the rib 127 where heat welding is not performed.
  • the gas that has passed between the rib 111 and the rib 108 passes rightward through a portion of the rib 127 where heat welding is not performed.
  • the right end of the rib 112 is connected to the rib 113.
  • the rib 113 extends along the periphery of the inlet 432.
  • a rib 124 is formed.
  • the rib 124 extends along the left-right direction 9. Part of the passage is formed between the ribs 124 and 113.
  • the gas that has passed through the portion of the rib 127 that is not thermally welded passes between the rib 124 and the rib 113 toward the right. Note that the left end of the rib 124 is separated from the rib 127. Between the left end of the rib 124 and the rib 127 is a connection point where the passage 151 and a passage 152 to be described later merge.
  • a rib 114 is formed on the right side of the rib 113.
  • the rib 114 extends along the left-right direction 9.
  • the left end of the rib 114 is connected to the rib 113.
  • the front end of the rib 227 is not thermally welded to the rib 297 (see FIG. 8) provided on the upper lid 50.
  • a portion of the passage 151 is formed in a portion of the rib 227 that is not thermally welded.
  • the gas that has passed between the ribs 113 and 124 passes rightward through a portion of the rib 227 that is not thermally welded.
  • the right end of the rib 114 is connected to the rib 115.
  • the rib 115 extends along the periphery of the inlet 433.
  • a rib 125 is formed.
  • the rib 125 extends along the left-right direction 9.
  • Part of the passage 151 is formed between the rib 125 and the rib 115.
  • the gas that has passed between the ribs 114 and 124 passes rightward between the ribs 125 and 115.
  • the left end of the rib 125 is separated from the rib 227. Between the left end of the rib 125 and the rib 227 is a connection point where the passage 151 and a passage 153 described later merge.
  • a rib 126 is formed on the right side of the rib 115.
  • the rib 126 extends along the front-back direction 8.
  • the rear end of the rib 126 is connected to the right end of the rib 125.
  • Part of the passage 151 is formed between the rib 115 and the rib 126.
  • the gas that has passed between the ribs 125 and 115 passes between the ribs 115 and 126 substantially diagonally right forward.
  • a rib 116 is formed on the right side of the rib 126.
  • the rib 116 extends along the periphery of the inlet 434.
  • the rib 116 is separated from the rib 115 and the rib 126.
  • Part of the passage 151 is formed between the rib 115 and the rib 116.
  • the gas that has passed between the ribs 115 and 126 passes forward between the ribs 115 and 116.
  • between the rib 115 and the rib 116 is a connection point where the passage 151 and a passage 156 described later merge.
  • ⁇ ⁇ Ribs 117, 118, 119 and 120 are formed on the right of the rib 116 in order from the left.
  • the rib 117 extends in the left-right direction 9. The left end of the rib 117 is connected to the rib 116. The right end of the rib 117 is connected to the rib 118.
  • the rib 118 extends along the periphery of the inlet 435.
  • the rib 119 extends along the left-right direction 9. The left end of the rib 119 is connected to the rib 118. The right end of the rib 119 is connected to the rib 120.
  • the rib 120 extends along the periphery of the inlet 436.
  • a rib 121 is formed before the ribs 116, 118, and 120.
  • the rib 121 extends in the left-right direction 9.
  • Part of the passage 151 is formed between the rib 121 and the ribs 116, 117, 118, 119, 120.
  • the gas that has passed between the ribs 115 and 116 passes rightward between the ribs 121 and the ribs 116, 117, 118, 119, and 120.
  • a rib 122 is formed on the right side of the rib 120.
  • the rib 122 extends in the front-rear direction 8.
  • the front end of the rib 122 is connected to the right end of the rib 121.
  • the rib 122 is separated from the rib 120.
  • Part of the passage 151 is formed between the rib 120 and the rib 122.
  • the gas that has passed between the rib 120 and the ribs 116, 117, 118, 119, and 120 passes rearward between the rib 120 and the rib 122.
  • a rib 123 is formed after the rib 120.
  • the left end of the rib 123 is connected to the rib 120, and the right end of the rib 123 is connected to the rib 122.
  • the rib 192 (see FIG. 8) of the upper lid 50 that is thermally welded to the upper end of the rib 122 has an opening 63.
  • the opening 63 communicates the passage 151 with the exhaust port 45. That is, the passage 151 starting from the ventilation port 161 communicates with the outside through the opening 63 and the exhaust port 45.
  • a filter 64 (see FIG. 8) is arranged in a region surrounded by the ribs 120, 122, and 123.
  • the filter 64 prevents a spark from entering the space 5 from the exhaust port 45.
  • the vent 162 serving as the starting point of the passage 152 is located to the right of the rib 127 described above.
  • the rib 201 is formed behind the vent 162.
  • the rib 201 extends in the left-right direction 9.
  • a rib 202 is formed in front of the ventilation port 162.
  • the rib 202 extends in the left-right direction 9.
  • Part of the passage 152 is formed between the rib 201 and the rib 202.
  • the gas that has entered the space 5 from the cell chamber 12 through the vent 162 advances rightward from the vent 162.
  • the rib 203 extends from the right end of the rib 202 obliquely rearward to the left.
  • the rear end of the rib 203 is separated from the rib 201.
  • Part of the passage 152 is formed between the rear end of the rib 203 and the rib 201.
  • the gas that has entered the space 5 from the cell chamber 12 through the vent 162 advances rightward from the vent 162 and passes rightward between the rear end of the rib 203 and the rib 201.
  • the rib 227 is located to the right of the rib 203 and extends along the front-rear direction 8.
  • the rear end of the rib 227 is connected to the right end of the rib 201.
  • Part of the passage 152 is formed between the rib 203 and the rib 227.
  • the gas that has passed between the rear end of the rib 203 and the rib 201 passes forward between the rib 203 and the rib 227.
  • a rib 205 and a rib 206 are formed before the rib 202.
  • the rib 206 extends in the left-right direction 9.
  • the right end of the rib 206 is connected to the rib 227.
  • the rib 205 extends in the front-rear direction 8.
  • the front end of the rib 205 is connected to the rib 206.
  • a portion of the passage 152 is formed between the ribs 205 and 206 and the rib 202.
  • the gas passing between the ribs 203 and 227 passes between the ribs 202 and the rear end of the rib 205 toward the left, and then passes between the ribs 202 and 206 toward the left. pass.
  • a rib 207 is formed on the left side of the rib 206.
  • the rib 207 is separated from the rib 206 and extends along the front-rear direction 8.
  • a part of the passage 152 is formed between the rib 206 and the rib 207.
  • the gas that has passed between the ribs 206 and 202 passes forward between the left end of the rib 206 and the rib 207.
  • a rib 208 is formed before the rib 207.
  • the rib 208 extends in the left-right direction 9 and is connected to the front end of the rib 207.
  • a part of the passage 152 is formed between the rib 208 and the rib 206.
  • the gas that has passed between the left end of the rib 206 and the rib 207 passes rightward between the rib 208 and the rib 206.
  • the right end of the rib 208 is separated from the rib 227. Part of the passage 152 is formed between the right end of the rib 208 and the rib 227. The gas that has passed between the ribs 208 and 206 passes forward between the right end of the rib 208 and the rib 227.
  • the rib 208 is located after the above-mentioned rib 124 and is separated from the rib 124. Part of the passage 152 is formed between the rib 208 and the rib 124. The gas that has passed between the right end of the rib 208 and the rib 227 passes to the left between the rib 208 and the rib 124, and at a connection point between the left end of the rib 124 and the rib 127, the passage 151 To join.
  • a plurality of ribs that are thermally welded to the ribs 201 and the like forming the passage 152 project downward.
  • the rib forms a passage 152 together with the rib 201 and the like.
  • the passage 153 has the same configuration as the passage 152. Specifically, the shapes of the ribs 301, 302, 303, 305, 306, 307, 308, and 327 that form the passage 153 are the same as those of the ribs 201, 202, 203, 205, 206, and 207 that form the passage 152. 208 and 227, respectively.
  • the passage 153 joins the passage 151 at a connection point between the left end of the rib 125 and the rib 227.
  • a plurality of ribs that are thermally welded to the ribs 301 and the like forming the passage 153 project downward from the lower surface of the upper lid 50.
  • the shape of the rib of the upper lid 50 that is thermally welded to the rib 301 and the like is the same as the shape of the rib 301 and the like forming the passage 153, and a description thereof will be omitted.
  • the passage 154 is symmetrical to the passage 153. Specifically, the ribs 401, 402, 403, 405, 406, 407, 408, and 427 that form the passage 154 and the ribs 301, 302, 303, 305, 306, 307, and 308 that form the passage 153 are described above. 327 is symmetric with respect to the rib 327 as the axis of symmetry.
  • the passage 154 joins the passage 156 at a connection point between the right end of the rib 410 extending in the left-right direction 9 and the front end of the rib 427 extending in the front-rear direction 8.
  • a plurality of ribs that are thermally welded to the ribs 401 and the like forming the passage 154 project downward.
  • the shape of the rib of the upper lid 50 that is thermally welded to the rib 401 and the like is the same as the shape of the rib 401 and the like forming the passage 154, and thus the description is omitted.
  • the passage 155 is symmetrical to the passage 152. Specifically, the ribs 501, 502, 503, 505, 506, 507, 508, and 527 forming the passage 155 and the ribs 201, 202, 203, 205, 206, 207, 208, and 208 forming the passage 152 are described above. 227 is bilaterally symmetric with the rib 327 as the axis of symmetry.
  • the passage 155 joins the passage 156 at a connection point between the right end of the rib 510 extending in the left-right direction 9 and the front end of the rib 527 extending in the front-rear direction 8.
  • a plurality of ribs that are thermally welded to the ribs 501 and the like forming the passage 155 project downward.
  • the shape of the rib of the upper lid 50 that is heat-welded to the rib 501 and the like is the same as the shape of the rib 501 and the like forming the passage 155, and thus the description is omitted.
  • the passage 156 has a symmetrical structure with the passage 151 from the ventilation port 161 to the connection point between the rib 115 and the rib 116.
  • the ribs 601, 602, 603, 605, 606, 607, 608, 122, 123, and 527 forming the passage 156, and the above-described ribs 101, 102, 103, 105, and 106 forming the passage 151 are formed.
  • 107, 108, 104, 110, and 127 are symmetric with respect to the rib 327 as the axis of symmetry.
  • the passage 151 and the passage 156 join at a connection point between the rib 115 and the rib 116.
  • a plurality of ribs that are thermally welded to the ribs 601 and the like forming the passage 156 project downward. Since the shape of the rib of the upper lid 50 that is thermally welded to the rib 601 and the like is the same as the shape of the rib 601 and the like forming the passage 156, the description is omitted.
  • the passages 151 to 156 also function as passages for returning the liquid in the space 5 from the return holes 231 to 236 into the cell chambers 11 to 16.
  • the return holes 231 to 236 penetrate the front part of the inner lid 40 in the vertical direction 7.
  • the return hole 231 communicates the cell chamber 11 with the passage 151.
  • the return hole 232 connects the cell chamber 12 and the passage 152.
  • the return hole 233 connects the cell chamber 13 and the passage 153.
  • the return hole 234 connects the cell chamber 14 and the passage 154.
  • the reflux hole 235 connects the cell chamber 15 and the passage 155.
  • the return hole 236 connects the cell chamber 16 and the passage 156.
  • peripheral wall ribs 66 respectively surrounding the return holes 231 to 236 project downward from the lower surface of the front part of the inner lid 40.
  • the peripheral wall rib 66 suppresses the electrolyte 6 in the battery case 20 from reaching the return holes 231 to 236 due to shaking or vibration.
  • Each peripheral wall rib 66 has a notch 67 cut out upward from the lower end. The notch 67 suppresses the electrolyte 6 from reaching the return holes 231 to 236 along the peripheral wall rib 66.
  • the front upper surface 41 of the inner lid 40 forming the passages 151 to 156 shown in FIG. 7 is inclined toward the return holes 231 to 236.
  • the liquid composed of the gas liquefied in the space 5 or the liquid composed of the electrolytic solution 6 which has entered the passages 151 to 156 from the return holes 231 to 236 due to shaking or vibration is inclined forward toward the return holes 231 to 236.
  • the upper surface 41 guides the liquid to the return holes 231 to 236, and returns to the cell chambers 11 to 16 from the return holes 231 to 236.
  • the first spaces 130 to 141 and the second spaces 240 to 243 are connected to the space 5. Is formed.
  • the first space 130 is a space surrounded by the rib 104, the rib 110, and the rib 105.
  • the first spaces 130 and 131 and the second spaces 240 and 241 are indicated by hatching.
  • a communication port 142 of the first space 130 is formed between the rear end of the rib 105 and the rib 104. That is, the first space 130 communicates with the passage 151 by only one communication port 142.
  • the liquid flows from the passage 151 into the first space 130 through the communication port 142, and the liquid flows from the first space 130 to the passage 151.
  • the liquid in the first space 130 is pushed out by the liquid flowing into the first space 130 from the communication port 142, or the liquid in the first space 130 is shaken or vibrated. It flows out from 130 to the passage 151.
  • the liquid flowing out of the first space 130 into the passage 151 collides with the liquid flowing through the passage 151.
  • the communication port 142 is formed in the passage 151 at a position closer to the recirculation hole 231 than the exhaust port 45. Thereby, leakage of the liquid from the exhaust port 45 can be more effectively suppressed.
  • the rib 103, the rib 104, the front upper surface 41 of the inner lid 40, and the lower surface of the upper lid 50 are a part of the passage 151 and are substantially in the front-rear direction 8.
  • a first linear passage portion 261 extending in a straight line is formed.
  • the first straight passage portion 261 is indicated by an alternate long and short dash line.
  • the communication port 142 of the first space 130 is on an extension of the first straight passage 261.
  • the communication port 142 is located in the middle in the front-back direction 8 of the linear rib 104 extending in the front-back direction 8.
  • the first straight passage portion 261 guides the liquid toward the communication port 142 of the first space 130.
  • the rib 102, the rib 106, the front upper surface 41 of the inner lid 40, and the lower surface of the upper lid 50 form a second passage 262 that is a part of the passage 151.
  • the second passage portion 262 is indicated by a two-dot chain line.
  • the second passage portion 262 is substantially linear and extends along the left-right direction 9.
  • the communication port 142 of the first space 130 is provided facing an intersection 263 between the first straight passage 261 and the second passage 262 which are orthogonal to each other.
  • the liquid that has entered the passage 151 from the return hole 231 flows to the left from the return hole 231, partially collides with the rib 103, and after its momentum is weakened, The vehicle travels leftward between the rear end of the rib 103 and the rib 101, and then collides with the rib 104 to further reduce its momentum. After that, the liquid flows forward along the rib 104 and flows into the first space 130 from the communication port 142. The liquid that has flowed into the first space 130 is pushed out by the liquid that has flowed further into the first space 130, or flows out of the first space 130 through the communication port 142 due to shaking or vibration. The liquid flowing out of the communication port 142 flows backward along the linear rib 104.
  • the linear rib 104 guides the liquid forward toward the communication port 142 and guides the liquid flowing out of the first space 130 through the communication port 142 rearward.
  • the liquid that has flowed backward from the communication port 142 collides with the liquid that flows forward along the rib 104 in front.
  • the liquid flowing backward from the communication port 142 and the liquid flowing forward along the rib 104 collide head-on, so that the force of the liquid flowing through the passage 151 is reduced.
  • the length between the rib 104 and the front end of the rib 103 in the left-right direction 9 is the passage width L1 of the passage 151 immediately before being connected to the first space 130.
  • the passage width L1 is an example of the “width of the passage in a portion adjacent to the communication port” in the present invention. That is, the “width of the passage in the portion adjacent to the communication port” in the present invention refers to the width of the narrowest portion of the passage in the direction orthogonal to the direction in which the liquid flows, of the passage near the return hole and the communication port. means.
  • the width L2 of the communication port 142 is about 1.4 times the width L1 of the passage. That is, the width L2 of the communication port 142 is wider than the passage width L1 so that a sufficient amount of liquid can flow into the first space 130 through the communication port 142, and weakens the momentum of the liquid flowing through the passage 151.
  • the passage width L1 is set to less than 1.5 times so that the liquid flows out of the first space 130 through the communication port 142 with as much force as possible.
  • the liquid whose momentum has been weakened flows rightward between the rear end of the rib 105 and the rib 102. Then, the liquid flows rightward along the rib 102 extending in the left-right direction 9 and flows into the first space 131.
  • the area of the first space 130 as viewed in the up-down direction 7 is preferably at least 1.5 times the value obtained by squaring the width L2 of the communication port 142. Accordingly, it is possible to prevent the liquid that has flowed into the first space 130 from immediately flowing out of the first space 130. The same applies to the other first spaces 131 to 141.
  • the first space 131 is a space surrounded by the rib 102, the rib 127, and the rib 107.
  • a communication port 143 of the first space 131 is formed between the rear end of the rib 107 and the rib 102.
  • the first space 131 communicates with the passage 151 through only one communication port 143. That is, the liquid flows from the passage 151 into the first space 131 through the communication port 143, and the liquid flows out of the first space 131 to the passage 151.
  • the liquid in the first space 131 is pushed out by the liquid that has flowed into the first space 131 from the communication port 143, or the liquid flows from the first space 131 to the passage 151 by shaking or vibration. leak.
  • the liquid flowing out of the first space 131 into the passage 151 collides with the liquid flowing through the passage 151.
  • the momentum of the liquid flowing out of the first space 131 to the passage 151 is weakened, and the momentum of the liquid flowing through the passage 151 is weakened.
  • the rib 102 and the rib 106, the front upper surface 41 of the inner lid 40, and the lower surface of the upper lid 50 are a part of the passage 151 and have a linear first shape.
  • a straight passage portion 264 is formed.
  • the first straight passage portion 264 is indicated by a dashed line.
  • the communication port 143 of the first space 131 is on an extension of the first straight passage portion 264. Specifically, the communication port 143 is located in the middle in the left-right direction 9 of the linear rib 102 extending in the left-right direction 9.
  • the first straight passage portion 264 guides the liquid toward the first space 131.
  • the right end of the rib 106, the rib 107, the front upper surface 41 of the inner lid 40, and the lower surface of the upper lid 50 form a second passage 265 that is a part of the passage 151.
  • the second passage portion 265 is indicated by a two-dot chain line. That is, the communication port 143 of the first space 131 is provided so as to face the intersection 266 of the orthogonal first straight passage 264 and the second passage 265.
  • the liquid flowing rightward along the first straight passage portion 264 along the rib 102 flows into the first space 131 from the communication port 143.
  • the liquid that has flowed into the first space 131 is pushed out by the liquid that has flowed further into the first space 131, or flows out of the first space 131 through the communication port 143 due to shaking or vibration.
  • the liquid flowing out of the communication port 143 flows out of the communication port 143 to the left along the linear rib 102. That is, the linear rib 102 guides the liquid to the right toward the communication port 143, and guides the liquid flowing out of the first space 131 through the communication port 143 to the left.
  • the liquid that has flowed leftward from the communication port 143 collides with the liquid that flows rightward in the passage 151 along the rib 102.
  • the liquid flowing to the left from the communication port 143 and the liquid flowing to the right along the rib 104 collide with each other, so that the force of the liquid flowing through the passage 151 is weakened.
  • the length between the rear end of the rib 102 and the rear end of the rib 106 in the front-rear direction 8 is the passage width L3 of the passage 151 immediately before being connected to the first space 131.
  • the width L4 of the communication port 143 is substantially the same as the passage width L3. That is, the width L4 of the communication port 143 is such that the liquid can flow into the first space 131 through the communication port 143, and the force of the liquid flowing through the passage 151 can be reduced by the liquid flowing out of the first space 131.
  • the passage width L3 is substantially the same as the passage width L3.
  • both the force of the liquid flowing rightward in the passage 151 and the force of the liquid flowing leftward from the first space 131 can be reduced.
  • the weakened liquid flows forward along the rib 107 extending in the front-rear direction 8 and flows into the second space 240.
  • the second space 240 is a space surrounded by the rib 107, the rib 108, and the rib 109.
  • the second spaces 240 and 241 are indicated by solid oblique lines (hatched lines).
  • a communication port 144 through which the liquid flows in and out is formed between the rear end of the rib 109 and the rear end of the rib 107.
  • the width L6 of the communication port 144 is at least 1.5 times the width L5 of the passage 151 immediately before being connected to the second space 240. That is, the width L6 of the communication port 144 is set to be 1.5 times or more the width L5 of the passage 151 in order to smoothly guide the liquid weakened by the first spaces 130 and 131 to the second space 240. In the illustrated example, the width L6 of the communication port 144 is about 2.8 times the width L5 of the passage 151.
  • the first spaces 130 and 131 are spaces for suppressing the overflow by weakening the momentum of the liquid flowing through the passage, and the second space 240 is configured to temporarily store the liquid and remove the overflow. It is a space to suppress.
  • the liquid that cannot be temporarily stored in the second space 240 and overflows from the second space 240 flows out from the communication port 144, flows toward the left, and flows into the second space 241.
  • the second space 241 is a space surrounded by the rib 105, the rib 106, and the rib 110.
  • a communication port 145 through which liquid flows in and out is formed between the right end of the rib 106 and the rib 110.
  • the width L8 of the communication port 145 is 1.5 times or more the passage width L7 of the passage 151 immediately before being connected to the second space 241. That is, in order to smoothly guide the liquid flowing out of the second space 240 to the second space 241, the width L8 of the communication port 145 is 1.5 times or more the width L7 of the passage 151. In the illustrated example, the width L8 of the communication port 145 is about 2.8 times the width L7 of the passage 151.
  • the first space 132 is a space surrounded by the rib 227, the rib 206, and the rib 205.
  • the first space 132 communicates with the passage 152 through only one communication port 146. That is, the liquid flows into the first space 132 from the passage 152 through the communication port 146, and the liquid flows out of the first space 132 to the passage 152. Specifically, the liquid in the first space 132 is pushed out by the liquid flowing into the first space 132 from the communication port 146, or the liquid in the first space 132 is shaken or vibrated. It flows out from 132 to the passage 152.
  • the liquid flowing out of the first space 132 into the passage 152 collides with the liquid flowing through the passage 152. As a result, the momentum of the liquid flowing out of the first space 132 into the passage 152 is weakened, and the momentum of the liquid flowing through the passage 152 is weakened.
  • the length between the rib 203 and the front end of the rib 205 in the left-right direction 9 is the passage width L9 of the passage 152 immediately before being connected to the first space 132.
  • the width L10 of the communication port 146 is about 1.4 times the width L9 of the passage. That is, the width L10 of the communication port 146 is wider than the passage width L9 so that a sufficient amount of liquid can flow into the first space 132 through the communication port 146, and weakens the momentum of the liquid flowing through the passage 152.
  • the passage width L9 is set to less than 1.5 times so that the liquid flows out of the first space 132 through the communication port 146 with as much force as possible.
  • the liquid whose flow has been weakened flows between the rear end of the rib 205 and the rib 202 toward the left. Then, the liquid flows leftward along the rib 202 extending in the left-right direction 9 and flows into the first space 133.
  • the first space 133 is a space surrounded by the rib 202, the rib 127, the rib 208, and the rib 207.
  • the first space 133 communicates with the passage 152 by only one communication port 147. That is, the liquid flows from the passage 152 into the first space 133 through the communication port 147, and the liquid flows from the first space 133 to the passage 152. Specifically, the liquid in the first space 133 is pushed out by the liquid flowing into the first space 133 from the communication port 147, or the liquid in the first space 133 is shaken or vibrated. 133 flows out to the passage 152. The liquid flowing out of the first space 133 into the passage 152 collides with the liquid flowing through the passage 152. As a result, the momentum of the liquid flowing out of the first space 133 into the passage 152 is weakened, and the momentum of the liquid flowing through the passage 152 is weakened.
  • the length between the left end of the rib 206 and the rib 202 is the passage width L11 of the passage 152 immediately before being connected to the first space 133.
  • the width L12 of the communication port 147 is substantially the same as the passage width L11. That is, the width L12 of the communication port 147 is such that the liquid can flow into the first space 133 through the communication port 147 and that the liquid flowing through the passage 152 can be weakened by the liquid flowing out of the first space 133.
  • the passage width L11 is substantially the same as the passage width L11. As a result, both the momentum of the liquid flowing rightward in the passage 152 and the momentum of the liquid flowing leftward from the first space 133 can be reduced.
  • the shapes of the ribs 301 to 303, 305 to 308, 327, and 125 that form the passage 153 are the same as the shapes of the ribs 201 to 203, 205 to 208, 227, and 124 that form the passage 152. Therefore, the shapes of the first spaces 134 and 135 communicating with the passage 153 are the same as those of the first spaces 132 and 133, and the description is omitted.
  • the shapes of the ribs 401 to 403, 405 to 408, 427, and 126 forming the passage 154 are symmetrical with the shapes of the ribs 301 to 303, 305 to 308, 327, and 125 forming the passage 153. It is. Therefore, the shapes of the first spaces 136 and 137 communicating with the passage 154 are also symmetrical with the shapes of the first spaces 134 and 135, and thus the description thereof is omitted.
  • the shapes of the ribs 501 to 503, 505 to 508, 527, and 126 forming the passage 155 are symmetrical with the shapes of the ribs 201 to 203, 205 to 208, 227, and 124 forming the passage 152. It is. Therefore, the shapes of the first spaces 138 and 139 communicating with the passage 155 are also bilaterally symmetric with the first spaces 132 and 133, and a description thereof will be omitted.
  • the shapes of the ribs 601 to 603, 605 to 609, 123, and 122 forming the passage 156 are symmetrical to the shapes of the ribs 101 to 110 forming the passage 151. Therefore, the shapes of the first spaces 140 and 141 communicating with the passage 156 are the same, and the description is omitted.
  • the first spaces 130 and 131 are formed to communicate with the passage 151.
  • the first space 130 has only one communication port 142 communicating with the passage 151
  • the first space 131 has only one communication port 143 communicating with the passage 151.
  • the width of the communication ports 142 and 143 is at least half the width of the passage 151 to which the communication ports 142 and 143 are connected.
  • the width of the communication ports 142 and 143 is less than 1.5 times the width of the passage 151 to which the communication ports 142 and 143 are connected.
  • the liquid can be made to flow out of the first spaces 130 and 131 with a momentum and an amount capable of weakening the momentum of the liquid flowing through the passage 151.
  • the overflow performance can be improved as compared with a lid member in which only the space having the same configuration as the second spaces 240 and 241 is provided in the passage 151.
  • the first spaces 130 and 131 for weakening the momentum of the liquid are located closer to the return hole 231 in the passage 151 than the second spaces 240 and 241 for temporarily storing the liquid. It is located in. Therefore, the overflow performance can be improved as compared with the case where the first spaces 130 and 131 are located farther from the return hole 231 in the passage 151 than the second spaces 240 and 241.
  • the communication ports 142 and 143 of the first spaces 130 and 131 are on an extension of the linear first linear passage portions 261 and 264 and are orthogonal to the first linear passage portions 261. It is provided facing the intersection 263 with the two passages 262. Therefore, the liquid flowing through the passage 151 and the liquid flowing out of the first spaces 130 and 131 through the communication ports 142 and 143 can collide head-on. As a result, the liquid overflowing performance can be improved as compared with a case where the liquid flowing through the passage 151 and the liquid flowing out of the first spaces 130 and 131 through the communication ports 142 and 143 do not collide with each other.
  • the first straight passage 261 and the second passage 262 are orthogonal to each other, so that the overflow performance can be stabilized. More specifically, if there is a difference between the amount and the force of the liquid flowing toward the communication port 142 and the amount and the force of the liquid flowing out of the first space 130 through the communication port 142, the first straight passage portion 261 and The momentum of the liquid flowing from the intersection 263 to the second passage 262 changes depending on the angle formed by the second passage 262. Then, the overflow performance changes according to the difference between the amount and the force of the liquid flowing toward the communication port 142 and the amount and the force of the liquid flowing out of the first space 130 through the communication port 142.
  • the amount and the force of the liquid flowing toward the communication port 142 and the amount and the force of the liquid flowing out of the first space 130 through the communication port 142 are determined.
  • the change in the overflow performance due to the difference between the two can be reduced. That is, the overflow performance can be stabilized.
  • the width of the communication port 142 of the first space 130 closer to the return hole 231 is set to the width of the communication port 143 of the first space 131 far from the return hole 231.
  • the overflow performance can be further improved. More specifically, the amount of liquid flowing through the passage 151 is larger near the return hole 231.
  • a sufficient amount of liquid that can reduce the force of the liquid flowing through the passage 151 can flow into the first space 130. As a result, the overflow performance can be further improved.
  • the width of the communication port 142 of the first space 130 is about 1.4 times the width of the passage 151, and the width of the communication port 143 of the first space 131 is substantially the same as the width of the passage 151.
  • the width of the communication ports 142 and 143 of the first spaces 130 and 131 may be substantially equal to or greater than the width of the passage 151 and less than 1.2 times.
  • the width of the communication port 142 of the first space 130 that is closer to the return hole 231 is set to the first space that is farther from the return hole 231.
  • the example in which the width is larger than the width of the communication port 143 of the 131 has been described.
  • the width of the communication port 142 of the first space 130 and the width of the communication port 143 of the first space 131 may be substantially the same. Also in this case, it was confirmed that only the space having the same configuration as the second spaces 240 and 241 had higher overflow performance than the lid member formed in the passage.
  • the example in which the first straight passage 261 and the second passage 262 for guiding the liquid to the communication ports 142 and 143 are orthogonal to each other has been described.
  • the first straight passage 261 and the second passage 262 do not have to be orthogonal.
  • the overflow performance is improved as compared with the lid member having the same space as the second spaces 240 and 241 formed in the passage. It was confirmed that.
  • first straight passage 261 and the second passage 262 are both linear.
  • first straight passage portion 261 and the second passage portion 262 may be curved, such as in an arc shape. Also in this case, it was confirmed that only the space having the same configuration as the second spaces 240 and 241 had higher overflow performance than the lid member formed in the passage.
  • the exhaust port 45 may be provided on the peripheral wall 52 of the upper lid 50 that forms the side wall of the lid member 30.
  • the exhaust port 45 may be provided in the plate-shaped portion 51 of the upper lid 50 that constitutes the top wall of the lid member 30, or the front part of the inner lid 40 may be expanded left and right or back and forth, and the expanded portion may be provided. May be provided.
  • the first spaces 130 and 131 may be in communication with the passage 151 through an opening, a slit, or a hole having a width that does not allow the liquid to pass, in addition to the communication ports 142 and 143.
  • the “openings, slits, and holes having a width that does not allow liquid to pass through” are not included in “one communication port” in the present invention.
  • a container having an opening at the top and containing an electrode group and an electrolytic solution, Closing the opening, and a lid member formed with an exhaust port,
  • the lid member A bottom wall formed with a return hole communicating with the inside of the battery case, A top wall facing the bottom wall, A rib erected on the bottom wall, The rib is A passage from the return hole to the exhaust port, A first space through which the electrolyte solution can flow in and out through the communication port and the communication port through one communication port, A lead-acid battery, wherein the width of the communication port is less than 1.5 times the width of the passage in a portion adjacent to the communication port.
  • the rib is A second space that communicates with the passage and into which the liquid flows, is further formed;
  • the second space communicates with the passage through at least one of a plurality of communication openings and one communication opening having a width of 1.5 times or more the width of the passage, and does not directly communicate with the return hole.
  • the rib is A first straight passage portion which is a part of the passage and is linear; A second passage section intersecting with the first straight passage section, The communication port of the first space is provided on the extension of the first straight passage portion and facing the intersection of the first straight passage portion and the second passage portion.
  • the lead storage battery according to any one of 3).
  • the rib includes a linear rib that defines a part of the first straight passage portion and a part of the first space,
  • Lead storage batteries are equipped with a battery case for storing electrolyte.
  • the battery case has a plurality of cell chambers for storing the electrolytic solution, respectively.
  • the lead storage battery is mounted on a vehicle or the like, and is heated by heat from an engine or the like mounted on the vehicle. When the lead storage battery is heated, the temperature of the electrolyte stored in each cell chamber rises.
  • the electrolytic solution having an increased temperature generates a gas composed of mist and water vapor. The generated gas increases the internal pressure of the cell chamber. When the internal pressure in the cell chamber increases, the gas in the cell chamber is discharged to the outside from an exhaust port provided in a lid member that closes the opening of the battery case.
  • the amount of electrolyte in the cell chamber is reduced by discharging the gas in the cell chamber to the outside through the exhaust port of the lid member.
  • the amount of decrease in the electrolytic solution differs for each cell chamber.
  • the inventor of the present application has found that, as a result of the experiment, among the cell chambers of the battery case, the outer cell chamber that is easily heated by the heat from the engine has a larger reduction amount of the electrolyte than the inner cell chamber. Obtained knowledge.
  • the inventor of the present application has thought that the amount of reduction of the electrolyte in the cell chamber may be different depending on the length of the passage from the vent port to the exhaust port provided in the lid member. Obtained. More specifically, when the driving of the engine is stopped and the lead storage battery is cooled by the outside air temperature, the internal pressure in the cell chamber decreases as the temperature of the electrolyte decreases. As the internal pressure in the cell chamber decreases, gas remaining on the passage is drawn into the cell chamber. The gas drawn into the cell chamber liquefies as the temperature decreases and returns to the electrolyte.
  • the inventor of the present application concluded that the longer the length of the passage, the larger the amount of gas stagnating on the passage, and the longer the length of the passage, the more the amount of gas drawn into the cell chamber with a decrease in temperature. , And as a result, the decrease in the amount of the electrolytic solution is considered to decrease.
  • the inventor of the present application reduced the difference in the amount of reduction in the electrolyte in each cell chamber by the difference in the lengths of the plurality of passages from the ventilation port to the exhaust port in each cell chamber, and stored the respective cell chambers respectively.
  • the present invention has been made to reduce the difference in the amount of electrolyte solution to be used.
  • the lead storage battery of one embodiment of the present invention has an opening, and a partition plate is provided in an internal space continuous with the opening, so that the first cell chamber partitioned on the outer edge side and the inner side of the first cell chamber.
  • a battery case having a second cell chamber partitioned into a cell, a first ventilation opening that seals the opening, a relay space is partitioned inside, and a communication port between the first cell chamber and the relay space;
  • a lid member having a second vent that communicates the second cell chamber with the relay space, and an exhaust port that communicates the relay space with the outside is provided.
  • the lid member has a rib that forms a first passage from the first vent to the exhaust port and a second passage from the second vent to the exhaust port. The length of the first passage is set longer than the length of the second passage.
  • the temperature of the electrolyte stored in the cell chamber rises due to the rise in outside air temperature.
  • the electrolytic solution having an increased temperature generates a gas composed of mist and water vapor.
  • the gas generated in the first cell chamber enters the first passage from the first vent.
  • the gas generated in the second cell chamber enters the second passage from the second vent. The gas that has entered the first passage and the second passage is discharged to the outside from the exhaust port.
  • the gas in the cell chamber liquefies, and the gas liquefies, so that the internal pressure in the cell chamber decreases.
  • the first cell chamber having a reduced internal pressure draws the gas remaining in the first passage.
  • the second cell chamber having a reduced internal pressure draws the gas remaining in the second passage.
  • the length of the first passage is longer than the length of the second passage. Therefore, the amount of gas staying in the first passage is larger than the amount of gas staying in the second passage. Then, the amount of gas drawn into the first cell chamber becomes larger than the amount of gas drawn into the second cell chamber.
  • the first cell chamber that generates more gas than the second cell chamber draws in more gas than the second cell chamber as the outside air temperature decreases. Therefore, the electrolyte stored in the first cell chamber is smaller than the configuration in which the length of the first passage is equal to the length of the second passage or the configuration in which the length of the first passage is shorter than the length of the second passage.
  • the difference between the decrease amount of the electrolyte solution and the decrease amount of the electrolyte stored in the second cell chamber is reduced.
  • a temporal difference between the amount of the electrolyte stored in the first cell chamber and the amount of the electrolyte stored in the second cell chamber can be reduced as compared with the above configuration.
  • first passage and the second passage are merged, and the length from the first vent to the merging position of the first passage and the second passage is from the second vent.
  • the length may be set to be longer than the length to the merging position.
  • Part of the gas that has entered the first passage and the second passage is cooled and liquefied in the first passage and the second passage.
  • the liquid composed of the liquefied gas flows through the first passage and the second passage, and returns to the first cell chamber and the second cell chamber. Since the length from the first vent to the junction of the first passage and the second passage is set longer than the length from the second vent to the junction, the length within the lid member is limited. In the closed space, the length of the first passage and the length of the second passage can be made longer than when the first passage and the second passage do not merge. Since the length of the first passage and the length of the second passage can be increased, the amount of gas liquefied in the relay space can be increased. As a result, it is possible to reduce the amount of reduction of the electrolyte in the first cell chamber and the second cell chamber.
  • the third cell chamber may be partitioned by the partition plate inside the second cell chamber.
  • the lid member has a third vent that communicates the relay space with the third cell chamber.
  • the rib forms a third passage from the third ventilation port to the exhaust port.
  • the length of the second passage is set longer than the length of the third passage.
  • the battery case has a first cell chamber, a second cell chamber, and a third cell chamber in order from the outside.
  • the electrolyte stored in the first cell chamber generates a larger amount of gas than the electrolyte stored in the second cell chamber.
  • the electrolyte stored in the second cell chamber generates a larger amount of gas than the electrolyte stored in the third cell chamber.
  • the length of the first passage of the first cell chamber is longer than the length of the second passage of the second cell chamber, and the length of the second passage of the second cell chamber is equal to the length of the third passage of the third cell chamber. Longer than the length.
  • the difference between the reduced amount of the electrolyte stored in the first cell chamber, the reduced amount of the electrolyte stored in the second cell chamber, and the reduced amount of the electrolyte stored in the third cell chamber is reduced. can do.
  • the lid member may define the relay space and have a protrusion projecting from a bottom surface, and a wall surface of the protrusion may be an inclined surface that is gradually inclined toward the exhaust port.
  • the vehicle on which the lead-acid battery is mounted travels on a slope, and the lead-acid battery is inclined such that the exhaust port side of the convex portion is downward, the liquid is formed by the step formed by the rib. Over the exhaust port side is suppressed.
  • the lead storage battery is inclined such that the vent side of the convex portion is downward, the liquid can flow to the vent side beyond the convex portion due to the inclined surface. As a result, the leakage of the electrolyte from the exhaust port can be suppressed, and the amount of reduction of the electrolyte can be further reduced.
  • the tip of the projection may have a protruding piece projecting toward the vent.
  • the lead storage battery 10 shown in FIGS. 1 and 2 is mounted on, for example, a vehicle and used as a power source for starting an engine.
  • the lead storage battery 10 includes a rectangular box-shaped battery case 20 having an opening on one surface, and a lid member 30 for closing the opening of the battery case 20.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, and is a cross-sectional view of the lead storage battery 10 cut along a plane passing through a central axis of a negative electrode post 33 described later.
  • the vertical direction 7 is defined as one surface of the battery case 20 provided with the opening is the upper surface
  • the direction along the short side of the rectangular box-shaped battery case 20 is defined as the front-back direction 8
  • the long side is defined.
  • a description will be given by defining a direction along the horizontal direction 9.
  • the vertical direction 7, the front-back direction 8, and the left-right direction 9 are orthogonal to each other.
  • the battery case 20 includes four front, rear, left and right side plates 21 and a bottom plate 22.
  • An internal space 23 surrounded by the four side plates 21 and the bottom plate 22 stores the electrolytic solution 6 made of diluted sulfuric acid. That is, the lead storage battery 10 is a so-called liquid storage battery.
  • the battery case 20 is a resin molded product molded using, for example, a synthetic resin having corrosion resistance and insulation properties.
  • the battery case 20 includes five partition plates 24 that partition the internal space 23 into six.
  • the partition plate 24 has a plate shape having a thickness in the left-right direction 9.
  • the partition plate 24 is formed integrally with the side plate 21 and the bottom plate 22 and is connected to the bottom plate 22 and the front and rear side plates 21.
  • the left and right side plates 21 and the five partition plates 24 are separated from each other at substantially equal intervals in the left-right direction 9.
  • the upper end of the partition plate 24 is located at substantially the same height as the upper end of the side plate 21.
  • the five partition plates 24 partition the internal space 23 of the battery case 20 into six first to sixth cell chambers 11 to 16.
  • the first cell chamber 11 is located at the leftmost position in the battery case 20.
  • the second cell chamber 12, the third cell chamber 13, the fourth cell chamber 14, the fifth cell chamber 15, and the sixth cell chamber 16 are formed in the battery case 20.
  • Each of the first to sixth cell chambers 11 to 16 stores the electrolytic solution 6 respectively.
  • the first cell chamber 11 and the sixth cell chamber 16 are examples of the first cell chamber of the present invention.
  • the second cell chamber 12 and the fifth cell chamber 15 are examples of the second cell chamber of the present invention.
  • the third cell chamber 13 and the fourth cell chamber 14 are examples of the third cell chamber of the present invention.
  • Each of the first to sixth cell chambers 11 to 16 contains a positive electrode plate 25, a negative electrode plate 26, and a separator 27, respectively, as shown in FIG.
  • the positive electrode plate 25, the negative electrode plate 26, and the separator 27 have a plate shape having a thickness in the left-right direction 9, and are separated from each other in the right-left direction 9.
  • the separator 27 is located between the positive electrode plate 25 and the negative electrode plate 26 and separates the positive electrode plate 25 from the negative electrode plate 26.
  • the positive electrode plate 25 and the negative electrode plate 26 are, for example, a lattice body filled with an active material.
  • the main component of the active material of the positive electrode plate 25 is lead dioxide.
  • the main component of the active material of the negative electrode plate 26 is lead.
  • the positive electrode plates 25 and the negative electrode plates 26 accommodated in the first to sixth cell chambers 11 to 16 are connected to each other by conductive straps 28. More specifically, the positive electrode plate 25 accommodated in one cell chamber is connected via a strap 28 to a negative electrode plate 26 accommodated in an adjacent cell room. The negative electrode plate 26 accommodated in one cell room is connected to the positive electrode plate 25 accommodated in the adjacent cell room via another strap 28.
  • the positive electrode plate 25 accommodated in the second cell chamber 12 is connected via a strap 28 to the negative electrode plate 26 accommodated in the first cell chamber 11 and the third cell chamber 13, and the second cell chamber
  • the negative electrode plate 26 accommodated in 12 is connected to the positive electrode plate 25 accommodated in the first cell chamber 11 and the third cell chamber 13 via another strap 28. That is, the first cell chamber 11 to the sixth cell chamber 16 are connected in series.
  • the lid member 30 includes a rectangular box-shaped lid main body 31, a positive pole 32 and a negative pole 33 penetrating the lid main body 31 in the up-down direction 7, bushings 38 and 39, Is provided.
  • the lid body 31 is in the shape of a rectangular box.
  • the thickness of the lid body 31 in the up-down direction 7 is shorter than a short side along the front-rear direction 8 and a long side along the left-right direction 9. That is, the lid main body 31 has a flat rectangular box shape.
  • Lid body 31 has a lower surface that is larger than the upper surface of battery case 20.
  • a peripheral wall 35 that covers the upper part of the outer surface of the side plate 21 of the battery case 20 protrudes downward from the peripheral end of the lower surface.
  • the lid main body 31 is arranged by fitting the upper part of the side plate 21 of the battery case 20 inside the peripheral wall 35.
  • the lid body 31 is fixed to the battery case 20. More specifically, the lid main body 31 has a rectangular frame-shaped contact surface 36 provided along the peripheral wall 35. The contact surface 36 is a part of the lower surface of the lid main body 31. The contact surface 36 is in contact with the upper end of the side plate 21 of the battery case 20. The contact surface 36 and the upper end of the side plate 21 of the battery case 20 are fixed to each other by heat welding or the like. That is, the lid main body 31 is fixed to the battery case 20.
  • the lid main body 31 is fixed to the battery case 20 so as to prevent the electrolyte solution 6 from mutually moving between the first cell room 11 to the sixth cell room 16 of the battery case 20. More specifically, as shown in FIG. 5, the lid main body 31 has five ribs 37 protruding downward from the lower surface. Each rib 37 has a thickness in the left-right direction 9 and is provided along the front-back direction 8. The lower end of each rib 37 is in contact with the upper end of each partition plate 24 of the battery case 20. The lower end of the rib 37 of the lid body 31 and the upper end of the partition plate 24 of the battery case 20 are fixed to each other by heat welding or the like. The partition plate 24 and the rib 37 prevent the electrolyte solution 6 from mutually moving between the first cell chamber 11 to the sixth cell chamber 16.
  • the lid main body 31 and the bushings 38 and 39 shown in FIG. 1 are integrally formed by, for example, so-called insert molding. That is, the bushings 38 and 39 are fixed to the lid main body 31.
  • the bushing 38 and the bushing 39 are both cylindrical and made of a conductive metal such as a lead alloy.
  • the bushing 38 will be mainly described, but the same applies to the bushing 39.
  • the bushing 38 and the bushing 39 may have different shapes, or may have the same shape but different sizes (similar shapes).
  • the upper part of the bushing 38 protrudes upward from the upper surface of the lid body 31 and is exposed to the outside. That is, the bushing 38 functions as an external connection terminal.
  • the upper end of the positive pole 32 made of a conductive metal is inserted into the bushing 38.
  • the positive pole 32 is fixed to the bushing 38 by, for example, welding.
  • the lower end of the positive pole 32 is connected to the strap 28 shown in FIG.
  • the lower end of the negative pole 33 is connected to another strap 28.
  • the lead storage battery 10 outputs a DC voltage from a pair of positive and negative bushings 38 and 39.
  • the lid main body 31 has an exhaust port 45 for exhausting gas composed of mist and water vapor generated in the battery case 20 to the outside in order to prevent the internal pressure in the battery case 20 from becoming too high.
  • the lid main body 31 has a configuration for preventing liquid from leaking from the exhaust port 45.
  • the configuration of the lid body 31 will be described in detail.
  • the lid main body 31 includes an inner lid 40 and an upper lid 50.
  • the inner lid 40 and the upper lid 50 are molded products of synthetic resin.
  • the inner lid 40 has the above-described peripheral wall 35 that is thermally welded to the battery case 20, and is fixed to the battery case 20.
  • the above-mentioned bushings 38 and 39 are located at the rear of the inner lid 40 and are separated in the left-right direction 9.
  • the inner lid 40 has six inlets 431 to 436 for injecting the electrolyte 6 into the first cell chamber 11 to the sixth cell chamber 16 of the battery case 20 at the front, respectively.
  • the six inlets 431 to 436 are separated from each other in the left-right direction 9.
  • the inlets 431 to 436 are closed by the stoppers 60, respectively.
  • Each stopper 60 is fixed to the upper lid 50, respectively. Details will be described later.
  • the front upper surface 41 which is the upper surface of the front part of the inner lid 40 is located at a position lower than the rear upper surface 42 which is the upper surface of the rear part.
  • An upper lid 50 is arranged on the front upper surface 41 of the inner lid 40.
  • the difference in height between the rear upper surface 42 and the front upper surface 41 of the inner lid 40 is substantially equal to the length of the upper lid 50 in the vertical direction 7. That is, in the lid body 31, the rear upper surface 42 of the inner lid 40 and the upper surface of the upper lid 50 are substantially flush.
  • the front part of the inner lid 40 forms a bottom wall of the lid member 30.
  • the upper lid 50 has a rectangular plate-like portion 51 whose length along the left-right direction 9 is longer than the length along the front-rear direction 8 and has a thickness in the up-down direction 7, and a lower portion from the periphery of the lower surface of the plate-like portion 51. And a peripheral wall 52 that protrudes. The lower end of the peripheral wall 52 is fixed to the front upper surface 41 of the inner lid 40 by heat welding. That is, the upper lid 50 is fixed to the inner lid 40.
  • the upper lid 50 constitutes a top wall and a side wall of the lid main body 31.
  • the upper lid 50 has six injection openings 531 to 536 at the front thereof, which overlap with the injection ports 431 to 436 of the inner lid 40 in the vertical direction 7.
  • Screw grooves 54 are provided on the inner peripheral surfaces of the injection openings 531 to 536, respectively.
  • the screw groove 54 is screwed with a screw groove 61 provided on the outer peripheral surface of the cylindrical plug 60. That is, the upper lid 50 fixes the six stoppers 60 respectively.
  • the above-described exhaust port 45 is formed in the peripheral wall 52 of the upper lid 50.
  • the exhaust port 45 penetrates the peripheral wall 52 in the left-right direction 9.
  • gas flows, and the first passage 151 to the sixth passage 156 (return the liquid composed of the liquefied gas into the battery case 20).
  • FIG. 13 is formed. The details will be described below.
  • the inner lid 40 has six first to sixth vents 161 to 166 that are the starting points of the first to sixth passages 151 to 156.
  • the first ventilation port 161 to the sixth ventilation port 166 respectively penetrate the front part of the inner lid 40 in the vertical direction 7.
  • the first ventilation port 161 to the sixth ventilation port 166 communicate the first cell chamber 11 to the sixth cell chamber 16 with the relay space 5, respectively.
  • the first vent 161 communicates the first cell chamber 11 with the relay space 5
  • the second vent 162 communicates the second cell chamber 12 with the relay space 5
  • the port 163 connects the third cell chamber 13 to the relay space 5
  • the fourth vent 164 connects the fourth cell chamber 14 to the relay space 5
  • the fifth vent 165 connects the fifth cell chamber.
  • the sixth vent 166 connects the sixth cell chamber 16 and the relay space 5.
  • the first vent 161 and the sixth vent 166 are examples of the first vent of the present invention.
  • the second vent 162 and the fifth vent 165 are examples of the second vent of the present invention.
  • the third vent 163 and the fourth vent 164 are examples of the third vent of the present invention.
  • first to sixth passages 151 to 156 are formed in the relay space 5 with the first to sixth vents 161 to 166 as starting points.
  • the first passage 151 is a passage from the first ventilation port 161 communicating with the first cell chamber 11 to the exhaust port 45.
  • the second passage 152 is a passage from the second vent 162 communicating with the second cell chamber 12 to the exhaust port 45.
  • the third passage 153 is a passage from the third ventilation port 163 communicating with the third cell chamber 13 to the exhaust port 45.
  • the fourth passage 154 is a passage from the fourth ventilation port 164 communicating with the fourth cell chamber 14 to the exhaust port 45.
  • the fifth passage 155 is a passage extending from the fifth ventilation port 165 communicating with the fifth cell chamber 15 to the exhaust port 45.
  • the sixth passage 156 is a passage from the sixth vent 166 communicating with the sixth cell chamber 16 to the exhaust port 45.
  • the first passage 151 and the sixth passage 156 are examples of the first passage of the present invention.
  • the second passage 152 and the fifth passage 155 are examples of the second passage of the present invention.
  • the third passage 153 and the fourth passage 154 are examples of the third passage of the present invention.
  • the first passage 151 is formed by a plurality of ribs 101 to 127 shown in FIG. 13 and a plurality of ribs 171 to 197 shown in FIG.
  • the ribs 101 to 127 project upward from the front upper surface 41 of the inner lid 40.
  • the ribs 171 to 197 project downward from the lower surface of the upper lid 50.
  • the upper ends of the ribs 101 to 127 are in contact with the lower ends of the ribs 171 to 197, and are fixed to each other by heat welding. In FIG. 13 and FIG. 8, the region to be thermally welded is indicated by hatching.
  • the ribs 101 to 127 and the shapes of the ribs 171 to 197 in plan view are substantially the same, the ribs 101 to 127 provided on the inner lid 40 will be described below with reference to FIG. Description of the shapes of the ribs 171 to 197 provided on the 50 is omitted.
  • the rib 127 is located to the right of the first ventilation port 161 and extends along the front-rear direction 8.
  • the rib 101 is located behind the first vent 161 and extends along the left-right direction 9.
  • the rib 102 is located in front of the first vent 161 and extends along the left-right direction 9.
  • a part of the first passage 151 is formed between the rib 101 and the rib 102. The gas that has entered the relay space 5 from the battery case 20 through the first vent 161 advances to the left from the first vent 161.
  • the rib 103 extends obliquely rightward and rearward from the left end of the rib 102.
  • the rear end of the rib 103 is separated from the rib 101.
  • Part of the first passage 151 is formed between the rear end of the rib 103 and the rib 101.
  • the gas passes between the rear end of the rib 103 and the rib 101 toward the left.
  • the rib 104 is located to the left of the rib 103, and extends along the front-back direction 8. The rear end of the rib 104 is connected to the left end of the rib 101. Part of the first passage 151 is formed between the rib 103 and the rib 104. The gas passes forward between the rib 103 and the rib 104.
  • a rib 110, a rib 105, and a rib 106 are formed before the rib 102.
  • the rib 110 has an arc shape.
  • the left end of the rib 110 is connected to the rib 104.
  • the rib 105 extends rearward from the center of the rib 110 in the left-right direction 9.
  • the rear end of the rib 105 is separated from the rib 102.
  • a part of the first passage 151 is formed between the rear end of the rib 105 and the rib 102.
  • the rib 106 extends rightward from the center of the rib 105 in the front-rear direction 8. Part of the first passage 151 is formed between the rib 106 and the rib 102.
  • the gas passes between the rear end of the rib 105 and the rib 102 and then passes between the rib 106 and the rib 102 to the right.
  • a rib 107 is formed on the right side of the rib 106.
  • the rib 107 is separated from the rib 106 and extends along the front-back direction 8.
  • a part of the first passage 151 is formed between the rib 106 and the rib 107. The gas passes forward between the right end of the rib 106 and the rib 107.
  • a rib 108 is formed before the rib 107.
  • the rib 108 extends in the left-right direction 9 and is connected to the front end of the rib 107.
  • a rib 109 extends rearward from the left end of the rib 108. The rear end of the rib 109 is separated from the rib 106.
  • a part of the first passage 151 is formed between the rib 109 and the rib 106. The gas passes between the ribs 109 and 106 toward the left.
  • a part of the first passage 151 is formed by the ribs 109, 105, and 110 described above.
  • the gas passes forward between the rib 109 and the ribs 105 and 110.
  • a rib 111 is formed before the rib 110.
  • the rib 111 extends along the periphery of the inlet 431.
  • the right end of the rib 110 is connected to the rib 111.
  • a part of the first passage 151 is formed between the rib 111 and the ribs 109 and 108.
  • the gas passes between the rib 111 and the ribs 127 and 108 generally obliquely rightward and forward.
  • a rib 112 is formed on the right side of the rib 111.
  • the rib 112 extends along the left-right direction 9.
  • the left end of the rib 112 is connected to the rib 111.
  • the front end of the rib 127 is spaced apart from the rib 112.
  • Part of the first passage 151 is formed between the front end of the rib 127 and the rib 112. The gas passes between the ribs 127 and 112 toward the right.
  • the right end of the rib 112 is connected to the rib 113.
  • the rib 113 extends along the periphery of the inlet 432.
  • a rib 124 is formed.
  • the rib 124 extends along the left-right direction 9. Part of the first passage is formed between the rib 124 and the rib 113. The gas passes between the ribs 124 and 113 to the right.
  • the left end of the rib 124 is separated from the rib 127. Between the left end of the rib 124 and the rib 127 is a first junction position 55 where the first passage 151 and a later-described second passage 152 merge.
  • the passage from the first vent 161 to the first junction position 55 constitutes a first individual passage of the first passage 151.
  • a passage from the first junction position 55 to the exhaust port 45 described below forms a common passage between the first passage 151 and the second passage 152.
  • a rib 114 is formed on the right side of the rib 113.
  • the rib 114 extends along the left-right direction 9.
  • the left end of the rib 114 is connected to the rib 113.
  • the front end of the rib 227 is spaced from the rib 114, as indicated by hatching.
  • Part of the first passage 151 is formed between the front end of the rib 227 and the rib 114.
  • the gas passes between the front end of the rib 127 and the rib 114 toward the right.
  • the right end of the rib 114 is connected to the rib 115.
  • the rib 115 extends along the periphery of the inlet 433.
  • a rib 125 is formed.
  • the rib 125 extends along the left-right direction 9.
  • the gas passes between the ribs 125 and 115 to the right.
  • the left end of the rib 125 is separated from the rib 227.
  • Between the left end of the rib 125 and the rib 124 is a second merging position 56 where the first passage 151 and a third passage 153 described later merge.
  • a rib 126 is formed on the right side of the rib 115.
  • the rib 126 extends along the front-back direction 8.
  • the rear end of the rib 126 is connected to the right end of the rib 125.
  • a part of the first passage 151 is formed between the rib 115 and the rib 126.
  • the gas passes between the rib 115 and the rib 126 generally obliquely rightward and forward.
  • a rib 116 is formed on the right side of the rib 126.
  • the rib 116 extends along the periphery of the inlet 434.
  • the rib 116 is separated from the rib 115 and the rib 126.
  • a part of the first passage 151 is formed between the rib 115 and the rib 116.
  • the gas passes forward between the ribs 115 and 116. Note that a third junction 57 between the first passage 151 and a sixth passage 156 described below is provided between the rib 115 and the rib 116.
  • ⁇ ⁇ Ribs 117, 118, 119 and 120 are formed on the right of the rib 116 in order from the left.
  • the rib 117 extends in the left-right direction 9. The left end of the rib 117 is connected to the rib 116. The right end of the rib 117 is connected to the rib 118.
  • the rib 118 extends along the periphery of the inlet 435.
  • the rib 119 extends along the left-right direction 9. The left end of the rib 119 is connected to the rib 118. The right end of the rib 119 is connected to the rib 120.
  • the rib 120 extends along the periphery of the inlet 436.
  • a rib 121 is formed before the ribs 116, 118, and 120.
  • the rib 121 extends in the left-right direction 9.
  • a part of the first passage 151 is formed between the rib 121 and the ribs 116, 117, 118, 119, 120.
  • the gas passes between the rib 121 and the ribs 116, 117, 118, 119, 120 toward the right.
  • a rib 122 is formed on the right side of the rib 120.
  • the rib 122 extends in the front-rear direction 8.
  • the front end of the rib 122 is connected to the right end of the rib 121.
  • the rib 122 is separated from the rib 120.
  • Part of the first passage 151 is formed between the rib 120 and the rib 122. The gas passes rearward between the ribs 120 and 122.
  • a rib 123 is formed after the rib 120.
  • the left end of the rib 123 is connected to the rib 120, and the right end of the rib 123 is connected to the rib 122.
  • the rib 192 (see FIG. 8) of the upper lid 50 that is thermally welded to the upper end of the rib 122 has an opening 63.
  • the opening 63 connects the first passage 151 and the exhaust port 45. That is, the first passage 151 starting from the first ventilation port 161 communicates with the outside through the opening 63 and the exhaust port 45.
  • a filter 64 (see FIG. 8) is arranged in a region surrounded by the ribs 120, 122, and 123.
  • the filter 64 prevents sparks from entering the relay space 5 from the exhaust port 45.
  • the second vent 162 serving as a starting point of the second passage 152 is located to the right of the rib 127 described above.
  • the rib 201 is formed after the second ventilation port 162.
  • the rib 201 extends in the left-right direction 9.
  • a rib 202 is formed in front of the second vent 162.
  • the rib 202 extends in the left-right direction 9.
  • a part of the second passage 152 is formed between the rib 201 and the rib 202.
  • the gas that has entered the relay space 5 from the second cell chamber 12 through the second vent 162 advances rightward from the second vent 162.
  • the rib 203 extends from the right end of the rib 202 obliquely rearward to the left.
  • the rear end of the rib 203 is separated from the rib 201.
  • Part of the second passage 152 is formed between the rear end of the rib 203 and the rib 201.
  • the gas that has entered the relay space 5 from the second cell chamber 12 through the second vent 162 advances rightward from the second vent 162 and passes rightward between the rear end of the rib 203 and the rib 201. I do.
  • the rib 227 is located to the right of the rib 203 and extends along the front-rear direction 8. The rear end of the rib 227 is connected to the right end of the rib 201. A part of the second passage 152 is formed between the rib 203 and the rib 227. The gas passes forward between the ribs 203 and 227.
  • a rib 205 and a rib 206 are formed before the rib 202.
  • the rib 206 extends in the left-right direction 9.
  • the right end of the rib 206 is connected to the rib 227.
  • the rib 205 extends in the front-rear direction 8.
  • the front end of the rib 205 is connected to the rib 206.
  • a part of the second passage 152 is formed between the rib 205 and the rib 206 and the rib 202. The gas passes between the rib 202 and the rear end of the rib 205 to the left, and then passes between the rib 202 and the rib 206 to the left.
  • a rib 207 is formed on the left side of the rib 206.
  • the rib 207 is separated from the rib 206 and extends along the front-rear direction 8.
  • Part of the second passage 152 is formed between the rib 206 and the rib 207. The gas passes forward between the left end of the rib 206 and the rib 207.
  • a rib 208 is formed before the rib 207.
  • the rib 208 extends in the left-right direction 9 and is connected to the front end of the rib 207.
  • Part of the second passage 152 is formed between the rib 208 and the rib 206. The gas passes between the ribs 208 and 206 to the right.
  • the right end of the rib 208 is separated from the rib 227. Part of the second passage 152 is formed between the right end of the rib 208 and the rib 227. The gas passes forward between the right end of the rib 208 and the rib 227.
  • the rib 208 is located after the above-mentioned rib 124 and is separated from the rib 124. Part of the second passage 152 is formed between the rib 208 and the rib 124. The gas passes between the rib 208 and the rib 124 toward the left, and merges with the first passage 151 at a first junction position 55 between the left end of the rib 124 and the rib 127.
  • a plurality of ribs that are thermally welded to the ribs 201 and the like forming the second passage 152 project downward.
  • the rib forms a second passage 152 together with the rib 201 and the like.
  • the third passage 153 has the same configuration as the second passage 152. Specifically, the shapes of the ribs 301 to 303, 305 to 308, 327, and 125 that form the third passage 153 are the same as those of the ribs 201 to 203, 205 to 208, 227, and 124 that form the second passage 152. Each has the same shape.
  • the third passage 153 joins the first passage 151 at the above-described second joining position 56. Note that a plurality of ribs that are thermally welded to the ribs 301 and the like forming the third passage 153 project downward from the lower surface of the upper lid 50.
  • the shape of the rib of the upper lid 50 that is thermally welded to the rib 301 and the like is the same as the shape of the rib 301 and the like forming the third passage 153, and a description thereof is omitted.
  • the fourth passage 154 is symmetrical to the third passage 153 with the rib 327 as the target axis. Specifically, the ribs 401 to 403, 405 to 408, 427, and 410 that form the fourth passage 154 are the same as the ribs 301 to 303, 305 to 308, 327, and 125 that form the third passage 153, respectively. It is symmetrical.
  • the fourth passage 154 joins a later-described sixth passage 156 at a fifth junction position 58 between the right end of the rib 410 extending in the left-right direction 9 and the front end of the rib 427 extending in the front-rear direction 8.
  • a plurality of ribs that are thermally welded to the ribs 401 and the like forming the fourth passage 154 project downward.
  • the shape of the rib of the upper lid 50 that is thermally welded to the rib 401 and the like is the same as the shape of the rib 401 and the like forming the fourth passage 154, and thus the description is omitted.
  • the fifth passage 155 is symmetrical to the second passage 152 with the rib 327 as a target axis. Specifically, the ribs 501 to 503, 505 to 508, 527, and 510 that form the fifth passage 155 are the same as the ribs 201 to 203, 205 to 208, 227, and 124 that form the second passage 152, respectively. It is symmetrical.
  • the fifth passage 155 merges with a later-described sixth passage 156 at a fourth junction position 59 between the right end of the rib 510 extending in the left-right direction 9 and the rib 527 extending in the front-rear direction 8.
  • a plurality of ribs that are thermally welded to the ribs 501 and the like forming the fifth passage 155 project downward.
  • the shape of the rib of the upper lid 50 that is thermally welded to the rib 501 and the like is the same as the shape of the rib 501 and the like forming the fifth passage 155, and thus the description is omitted.
  • the sixth passage 156 has a symmetrical configuration with respect to the first passage 151 from the first ventilation port 161 to the third junction position 57 and the rib 327 as a target axis.
  • the ribs 601 to 603, 605 to 609, 122, 123, and 527 that form the sixth passage 156 are the same as the ribs 101 to 103, 105 to 109, 104, and 110 that form the first passage 151. 127, respectively.
  • the first passage 151 and the sixth passage 156 join at a third joining position 57. From the lower surface of the upper lid 50, a plurality of ribs that are thermally welded to the ribs 601 and the like forming the sixth passage 156 project downward. Since the shape of the rib of the upper lid 50 that is thermally welded to the rib 601 and the like is the same as the shape of the rib 601 and the like forming the sixth passage 156, the description is omitted.
  • the first passage 151 to the sixth passage 156 transfer the liquid generated by liquefying the gas in the relay space 5 from the first return hole 231 to the sixth return hole 236 shown in FIG. It also functions as a passage returning into the sixth cell chamber 16.
  • the first return hole 231 to the sixth return hole 236 penetrate the front part of the inner lid 40 in the vertical direction 7.
  • the first return hole 231 communicates the first cell chamber 11 with the first passage 151.
  • the second return hole 232 communicates the second cell chamber 12 with the second passage 152.
  • the third return hole 233 connects the third cell chamber 13 and the third passage 153.
  • the fourth reflux hole 234 connects the fourth cell chamber 14 and the fourth passage 154.
  • the fifth return hole 235 connects the fifth cell chamber 15 and the fifth passage 155.
  • the sixth reflux hole 236 connects the sixth cell chamber 16 and the sixth passage 156.
  • peripheral wall ribs 66 respectively surrounding the first to sixth return holes 231 to 236 project downward from the lower surface of the front part of the inner lid 40.
  • the peripheral wall ribs 66 prevent the electrolytic solution 6 in the battery case 20 from reaching the first reflux hole 231 to the sixth reflux hole 236 due to shaking or vibration.
  • Each peripheral wall rib 66 has a notch 67 cut out upward from the lower end. The notch 67 prevents the electrolytic solution 6 from reaching the first return hole 231 to the sixth return hole 236 along the peripheral wall rib 66.
  • the front upper surface 41 of the inner lid 40 forming the first to sixth passages 151 to 156 is inclined toward the first to sixth return holes 231 to 236.
  • the slanted front upper surface 41 guides the first return hole 231 to the sixth return hole 236 and returns from the first return hole 231 to the sixth return hole 236 to the first cell chamber 11 to the sixth cell chamber 16.
  • first to fourth ribs 731 to 734 projecting upward from the front upper surface 41 of the inner lid 40, which is the bottom surface of the lid main body 31, are provided.
  • the first rib 731 and the second rib 732 have the same shape, and the first rib 731, the second rib 732, the third rib 733, and the fourth rib 734 are bilaterally symmetric with respect to the rib 327 as a target axis. Therefore, the first rib 731 will be described, and the description of the second rib 732 to the fourth rib 734 will be omitted.
  • the ribs 731 to 734 are an example of the projection of the present invention.
  • the first rib 731 has a step surface 735 on the first vent 161 side (left side) and an inclined surface 736 on the exhaust port 45 side (right side).
  • the first rib 731 has a protruding piece 737 that protrudes from the upper end of the step surface 735 toward the first vent 161.
  • the projecting piece 737 can be formed, for example, by melting a part of the first rib 731 when the inner lid 40 and the upper lid 50 are thermally welded.
  • the ribs 731 to 734 are formed by a liquid composed of a gas liquefied in the first cell chamber 11 to the sixth cell chamber 16 or the first passage 151 to the sixth passage from the first reflux hole 231 to the sixth reflux hole 236 by shaking or vibration.
  • the liquid that has entered the passage 156 is prevented from reaching the exhaust port 45, and the liquid in the passage from the ribs 731 to 734 to the exhaust port 45 is easily returned to the first return hole 231 to the sixth return hole 236.
  • the amount of gas generated in the first cell chamber 11 to the sixth cell chamber 16 until the temperature of the first cell chamber 11 to the sixth cell chamber 16 becomes substantially constant depends on the amount of the first cell chamber 11 to the sixth cell. It depends on the degree of temperature rise in the chamber 16.
  • the degree of temperature rise is a value of temperature rise per unit time. The greater the degree of temperature rise, the greater the amount of gas generated.
  • the degree of temperature rise in the first cell chamber 11 to the sixth cell chamber 16 is greatest in the outer first cell chamber 11 and the sixth cell chamber 16 which are apt to receive heat from the engine. Further, the degree of temperature rise in the third and fourth cell chambers 13 and 14 on the inside is the smallest.
  • the degree of temperature rise in the second cell chamber 12 and the fifth cell chamber 15 depends on the degree of temperature rise in the third cell chamber 13 and the fourth cell chamber 14 and the degree of temperature rise in the first cell chamber 11 and the sixth cell chamber 16. Is in the middle of the degree. Note that “inside” and “outside” are positions based on the center position of the battery case 20. That is, the third cell room 13 and the fourth cell room 14 closest to the center position of the container 20 are the innermost cell rooms, and the first cell room 11 farthest to the center position of the container 20, The sixth cell chamber 16 is the outermost cell chamber.
  • the gas generated in the first cell chamber 11 enters the first passage 151 through the first ventilation port 161, passes through the first passage 151, and is exhausted from the exhaust port 45 to the outside.
  • the gas generated in the second cell chamber 12 enters the second passage 152 through the second ventilation port 162, joins the first passage 151 at the first junction position 55, passes through the first passage 151, and passes through the exhaust port 45. Is discharged to the outside.
  • the gas generated in the third cell chamber 13 enters the third passage 153 through the third vent 163, joins the first passage 151 at the second junction position 56, passes through the first passage 151, and passes through the exhaust port 45. Is discharged to the outside.
  • the gas generated in the sixth cell chamber 16 enters the sixth passage 156 through the sixth ventilation port 166, joins the first passage 151 at the third junction 57, passes through the first passage 151, and passes through the exhaust port 45. Is discharged to the outside.
  • the gas generated in the fifth cell chamber 15 enters the fifth passage 155 through the fifth vent 165, joins the sixth passage 156 at the fourth junction 59, and enters the first passage 151 at the third junction 57. They merge and pass through the first passage 151 and are discharged from the exhaust port 45 to the outside.
  • the gas generated in the fourth cell chamber 14 enters the fourth passage 154 through the fourth vent 164, joins the sixth passage 156 at the fifth junction 58, and enters the first passage 151 at the third junction 57. They merge and pass through the first passage 151 and are discharged from the exhaust port 45 to the outside.
  • the gas in the first cell chamber 11 to the sixth cell chamber 16 is liquefied. Then, the internal pressure in the first cell chamber 11 to the sixth cell chamber 16 decreases. When the internal pressure in the first cell chamber 11 to the sixth cell chamber 16 decreases, the gas remaining in the first passage 151 to the sixth passage 156 is drawn into the first cell chamber 11 to the sixth cell chamber 16 and the first cell It liquefies in the chamber 11 to the sixth cell chamber 16 and returns to the electrolytic solution 6.
  • the amount of gas drawn into each of the first to sixth cell chambers 11 to 16 will be described in detail with reference to FIG.
  • the gas remaining in the first passage 151 from the third junction position 57 to the exhaust port 45 is divided into a first passage 151 on the left and a sixth passage 156 on the right at the third junction 57, and
  • the cells are drawn into the cell chambers 11 to 13 and the fourth to sixth cell chambers 14, respectively. Since the left passage and the right passage at the third junction position 57 have a symmetrical shape, the amount of gas drawn into the first cell chamber 11 to the third cell chamber 13 and the fourth cell chamber 14 to The amount of gas drawn into the six-cell chamber 16 is almost the same.
  • the left passage and the right passage at the third junction position 57 have a symmetrical shape, the first cell chamber 11 to the third cell chamber 13 on the left will be described below, and the fourth cell chamber on the right will be described.
  • the description of the fourteenth to sixth cell chambers 16 is omitted.
  • the gas remaining in the first passage 151 from the second junction position 56 to the exhaust port 45 is drawn into the third cell chamber 13 through the third passage 153, and is discharged through the first passage 151 and the second passage 152. It is drawn into the first cell chamber 11 and the second cell chamber 12.
  • the amount of gas drawn into the first cell chamber 11 and the second cell chamber 12 through the first passage 151 and the second passage 152 is much larger than the amount of gas drawn into the third cell chamber 13 through the third passage 153. Many.
  • the first cell chamber 11 is located on the outermost side of the battery case 20, and has a larger contact area with the outside air via the side plate 21 of the battery case 20 than the second cell room 12 and the third cell room 13. . Therefore, the first cell chamber 11 has a greater degree of temperature drop than the second cell chamber 12 and the third cell chamber 13.
  • the degree of temperature drop is a value of temperature drop per unit time.
  • the first cell chamber 11 having the largest degree of temperature drop has a larger suction force than the second cell chamber 12 and the third cell chamber 13.
  • the second cell chamber 12 has the same contact area with the outside air via the side plate 21 of the battery case 20 as the third cell chamber 13, but is adjacent to the first cell chamber 11 where the degree of temperature drop is the largest. Thus, the degree of temperature drop is greater than in the third cell chamber 13. Therefore, the second cell chamber 12 has a larger suction force than the third cell chamber 13. That is, the suction force of the first cell chamber 11 to the third cell chamber 13 is larger in the order of the first cell chamber 11, the second cell chamber 12, and the third cell chamber 13.
  • gas is generated by the suction power of the first cell chamber 11 and the suction power of the second cell chamber 12 that combine the suction power of the second cell chamber 12 and the suction power of the third cell chamber 13. And it is drawn into the 2nd cell room 12 side and the 3rd cell room 13 side. Therefore, the amount of gas drawn into the first cell chamber 11 and the second cell chamber 12 is much larger than the amount of gas drawn into the third cell chamber 13.
  • the gas drawn into the first cell chamber 11 and the second cell chamber 12 from the second merging position 56 is drawn into the first cell chamber 11 and the second cell chamber 12 at the first merging position 55.
  • the amount of gas drawn into the first cell chamber 11 at the first junction position 55 is It is larger than the amount of gas drawn into the two-cell chamber 12.
  • the length of the first passage 151 from the first vent 161 to the first merging position 55 is the length of the first passage 151 from the second vent 162 to the first merging position 55. It is longer than the length of the two passages 152. The longer the length of the passage, the greater the amount of stagnant gas. Further, the length of the passage from the second vent 162 to the second junction position 56 is longer than the length of the passage from the third vent 163 to the second junction position 56. The longer the length of the passage, the greater the amount of stagnant gas.
  • the gas remaining in the common portion of the first passage 151 to the third passage 153 is removed. More cells are drawn into the first cell chamber 11 than the two cell chambers 12 and the third cell chamber 13. Further, the length of the first passage 151 from the first vent 161 to the first junction position 55 is made longer than the length of the second passage 152 from the second vent 162 to the first junction position 55. Thus, the amount of gas drawn into the first cell chamber 11 is made larger than the amount of gas drawn into the second cell chamber 12 and the third cell chamber 13.
  • the degree of the temperature drop of the second cell chamber 12 after the engine is stopped is greater than the degree of the temperature drop of the third cell chamber 13
  • a common portion of the first passage 151 to the third passage 153 is used.
  • the retained gas is drawn into the second cell chamber 12 more than the third cell chamber 13.
  • the length of the passage from the second vent 162 to the second junction position 56 is longer than the length of the third passage 153 from the third vent 163 to the second junction 56, and
  • the amount of gas drawn into the second cell chamber 12 is set to be larger than the amount of gas drawn into the third cell chamber 13.
  • the first cell chamber 11, which generates the most gas after the engine is started draws the most gas after the engine is stopped.
  • the second cell chamber 12 that generates more gas than the third cell chamber 13 after the engine is started draws more gas than the third cell chamber 13 after the engine is stopped.
  • the gas drawn into the cell chambers 11 to 13 is liquefied in the cell chambers 11 to 13 and returned to the electrolyte 6. Therefore, the difference in the amount of electrolyte solution 6 reduced in the first cell chamber 11 to the third cell chamber 13 is reduced. That is, the difference in the amount of the electrolytic solution 6 stored in the first cell chamber 11 to the third cell chamber 13 over time is reduced.
  • the length of the first passage 151 from the first vent 161 to the first junction position 55 is the same as the length of the second passage 152 from the second vent 162 to the first junction position 55. Longer than the length. Therefore, a larger amount of gas can be drawn into the first cell chamber 11 that generates a larger amount of gas than the second cell chamber 12. Therefore, the difference in the amount of liquid reduction between the first cell chamber 11 and the second cell chamber 12 can be reduced. As a result, the difference in the amount of the electrolytic solution 6 between the first cell chamber 11 and the second cell chamber 12 over time can be reduced.
  • the first passage 151 and the second passage 152 join at the first junction position 55, and a part of the passage from the first ventilation port 161 to the exhaust port 45, A part of the passage from the two ventilation ports 162 to the exhaust port 45 is common. Therefore, in the relay space 5 in the lid main body 31, the length of the first passage 151 and the second passage 152 can be made longer than in a configuration in which the first passage 151 and the second passage 152 do not merge. As the length of the passage increases, the amount of gas cooled and liquefied in the relay space 5 of the lid body 31 increases. As a result, the amount of reduction of the electrolytic solution 6 in the first to sixth cell chambers 11 to 16 can be reduced.
  • the length of the passage from the second vent 162 to the second junction position 56 is equal to the length of the third passage 153 from the third vent 163 to the second junction 56. Longer than it is. Therefore, a larger amount of gas can be drawn into the second cell chamber 12 that generates a larger amount of gas than the third cell chamber 13. Therefore, the difference in the amount of liquid reduction between the second cell chamber 12 and the third cell chamber 13 can be reduced. As a result, the difference in the amount of the electrolytic solution 6 between the second cell chamber 12 and the third cell chamber 13 over time can be reduced.
  • the ribs 731 to 734 have the step surface 735 on the first ventilation port 161 to the sixth ventilation port 166 side and the inclined surface 736 on the exhaust port 45 side. Therefore, for example, when the vehicle on which the lead storage battery 10 is mounted travels on a slope, it is possible to suppress the electrolyte 6 from leaking out of the exhaust port 45 to the outside. Further, the liquid in the first to sixth passages 151 to 156 can be returned to the first to sixth return holes 231 to 236. As a result, the amount of the electrolyte solution 6 stored in the first cell chamber 11 to the sixth cell chamber 16 can be reduced.
  • the ribs 731 to 734 have the protruding pieces 737 projecting from the upper end of the step surface 735 toward the first return hole 231 to the sixth return hole 236. Therefore, it is possible to further suppress the liquid from going over the ribs 731 to 734. As a result, it is possible to further suppress the electrolyte 6 from leaking out of the exhaust port 45 to the outside.
  • the amount of gas drawn into the first passage 151 by utilizing the difference in the degree of temperature drop between the first cell chamber 11 to the third cell chamber 13. Can be increased more than when the first to third passages 151 to 153 do not merge. As a result, the difference in the amount of the electrolytic solution 6 stored in the first cell chamber 11 to the third cell chamber 13 over time can be further reduced.
  • both the first reflux hole 231 to the sixth reflux hole 236 and the first ventilation port 161 to the sixth ventilation port 166 are provided in each of the first cell chamber 11 to the sixth cell chamber 16. Examples have been described. However, only the first to sixth return holes 231 to 236 may be provided in each of the first to sixth cell chambers 11 to 16. In this case, the first reflux hole 231 to the sixth reflux hole 236 also have the function of the first ventilation port 161 to the sixth ventilation port 166. That is, the gas generated in the first to sixth cell chambers 11 to 16 flows out to the first to sixth passages 151 to 156 through the first to sixth return holes 231 to 236.
  • the length of the first passage 151 from the first vent 161 to the first junction position 55 is the length of the second passage 152 from the second vent 162 to the first junction position 55.
  • the example in which the ribs 731 to 734 are provided in the configuration longer than the length has been described. However, the ribs 731 to 734 may be provided irrespective of the length of the first passage 151 and the second passage 152.
  • the number of the exhaust ports 45 is one has been described.
  • the number of exhaust ports 45 may be two or more.
  • An electrode having an opening and a partition plate provided in an internal space continuous with the opening has a first cell chamber partitioned on the outer edge side and a second cell chamber partitioned inside the first cell chamber.
  • Tank and The opening is closed, a relay space is defined inside, a first vent communicating the first cell chamber and the relay space, and a first vent communicating the second cell chamber and the relay space.
  • a cover member having 2 vents, and an exhaust port communicating the relay space with the outside,
  • the lid member has a first passage from the first vent to the exhaust port, and a rib forming a second passage from the second vent to the exhaust port,
  • the lead storage battery wherein the length of the first passage is set longer than the length of the second passage.
  • a third cell chamber is defined inside the second cell chamber by the partition plate,
  • the lid member has a third vent that communicates the relay space with the third cell chamber,
  • the rib forms a third passage from the third ventilation port to the exhaust port,
  • the lid member partitions the relay space, and has a projection projecting from the bottom surface,

Abstract

In order to improve the overflow performance of a lead storage battery, this lead storage battery comprises: a battery case having an opening in an upper section thereof and housing an electrode group and an electrolyte; and a lid member sealing the opening and having an exhaust port formed therein. The lid member has: a bottom wall having a recirculation hole 231 connected to inside the battery case; a top wall facing the bottom wall; and ribs 101–110 erected on the bottom wall. The ribs 101–110 form: a passage 151 from the recirculation hole 231 to the exhaust port; and first spaces 130 (131) connected to the passage 151 via one communication port 142 (143) and having electrolyte able to flow to and from said first spaces through the communication port 142 (143). The width L2 (L4) of the communication port 142 (143) is less than 1.5 times the width L1 (L3) of the passage 151 in a section adjacent to the communication port 142 (143).

Description

鉛蓄電池Lead storage battery
 本発明は、排気口を有する蓋を備えた鉛蓄電池に関する。 (4) The present invention relates to a lead storage battery provided with a lid having an exhaust port.
 特許文献1には、排気ダクトを有する蓋部材を備えた鉛蓄電池が記載されている。この蓋部材は、通路を形成する通路壁を内部に有している。通路壁は、電槽内で発生したガスを排気ダクトに導き、また、蓋部材内の液体を蓋部材に設けられた還流孔へ導く通路を形成する。 Patent Document 1 describes a lead storage battery provided with a lid member having an exhaust duct. The lid member has a passage wall forming a passage therein. The passage wall forms a passage that guides the gas generated in the battery case to the exhaust duct and guides the liquid in the cover member to a return hole provided in the cover member.
特開2016-189290号公報JP 2016-189290 A
 本願発明の発明者は、実験の結果、通路と連通し、液体が流入及び流出する空間を蓋部材の内部に形成し、さらに、当該空間の構成を工夫することにより、蓋の排気口からの液体の漏れを抑制できる効果(以下では、溢液性能とも記載する)を高めることができるとの知見を得た。 As a result of the experiment, the inventor of the present invention formed a space communicating with the passage, through which the liquid flows in and out, inside the lid member, and further devised the configuration of the space, whereby the space from the exhaust port of the lid was formed. It has been found that the effect of suppressing liquid leakage (hereinafter also referred to as overflow performance) can be enhanced.
 本発明は、前記の事情に鑑みてなされ、溢液性能を高めることを目的とする。 The present invention has been made in view of the above circumstances, and has an object to improve overflow performance.
 本発明の一態様に係る鉛蓄電池は、上部に開口を有し、電極群及び電解液を収容する電槽と、上記開口を封口し、且つ排気口が形成された蓋部材とを備える。上記蓋部材は、上記電槽内と連通する還流孔が形成された底壁と、上記底壁と対向する天壁と、上記底壁に立設されたリブと、を有する。上記リブは、上記還流孔から上記排気口に至る通路と、当該通路と1つの連通口を介して連通し、当該連通口を通じて上記電解液が流入及び流出可能な第1空間と、を形成する。上記連通口の幅は、当該連通口に隣接する部分における上記通路の幅の1.5倍未満である。 鉛 The lead storage battery according to one embodiment of the present invention includes a battery case having an opening at an upper portion and containing an electrode group and an electrolytic solution, and a lid member closing the opening and forming an exhaust port. The lid member has a bottom wall formed with a return hole communicating with the inside of the battery case, a top wall facing the bottom wall, and a rib erected on the bottom wall. The rib forms a passage extending from the return hole to the exhaust port, and a first space that communicates with the passage through one communication port and through which the electrolyte can flow in and out through the communication port. . The width of the communication port is less than 1.5 times the width of the passage in a portion adjacent to the communication port.
 本発明の一態様に係る鉛蓄電池によれば、溢液性能を高めることができる。 According to the lead storage battery of one embodiment of the present invention, the overflow performance can be improved.
第1実施形態の鉛蓄電池の斜視図1 is a perspective view of a lead-acid battery according to a first embodiment. 鉛蓄電池の垂直断面図(図1中のII-II断面図)Vertical sectional view of the lead storage battery (II-II sectional view in FIG. 1) 電槽の平面図Top view of battery case 蓋本体の分解斜視図Exploded perspective view of the lid body 蓋本体の分解斜視図Exploded perspective view of the lid body 中蓋の斜視図Perspective view of inner lid 中蓋の平面図Top view of inner lid 上蓋の底面図Bottom view of top lid 中蓋の平面図の一部拡大図Partial enlarged view of the top view of the inner lid 中蓋の平面図の一部拡大図Partial enlarged view of the top view of the inner lid 中蓋の平面図の一部拡大図Partial enlarged view of the top view of the inner lid 中蓋の平面図の一部拡大図Partial enlarged view of the top view of the inner lid 第2実施形態の鉛蓄電池の中蓋の平面図Plan view of the inner lid of the lead-acid battery of the second embodiment 中蓋におけるリブの断面図Cross section of rib in inner lid リブの説明図Illustration of rib
[鉛蓄電池の第1課題] [First issue of lead-acid battery]
 鉛蓄電池では、電槽内で生じた水蒸気やミストからなるガスによって電槽内の圧力が高くなることがある。鉛蓄電池の蓋には、例えば、電槽内のガスを外部へ排出する排気口が設けられる。 In a lead-acid battery, the pressure inside the battery case may increase due to the gas consisting of water vapor and mist generated in the battery case. The lid of the lead storage battery is provided with, for example, an exhaust port for discharging gas in the battery case to the outside.
 鉛蓄電池の蓋には、内部に空間を有する箱状であって、いわゆる二重蓋と称されるものがある。この種の蓋では、例えば、底に通気口が設けられ、側壁に排気口が設けられ、通気口から排気口に至る通路が設けられる。電槽内で発生したガスは、通気口から蓋内に進入し、通路を通じて排気口に至り、排気口から外部に排出される。上記通路には、例えば、還流孔が設けられ、蓋内の液体は、通路を通じて還流孔に導かれ、還流孔から電槽内に戻る。 Some of the lids of lead-acid batteries are box-shaped with a space inside, so-called double lids. In this type of lid, for example, a vent is provided on the bottom, an exhaust port is provided on a side wall, and a passage from the vent to the exhaust port is provided. The gas generated in the battery case enters the lid from the ventilation port, reaches the exhaust port through the passage, and is discharged from the exhaust port to the outside. For example, a reflux hole is provided in the passage, and the liquid in the lid is guided to the reflux hole through the passage, and returns from the reflux hole into the battery case.
 車両等に搭載されて使用される鉛蓄電池では、揺れや振動が加えられると、還流孔から蓋内に電解液が進入することがある。蓋内に設けられる通路は、還流孔から蓋内に進入した電解液が排気口から漏れ出ることを抑制できるように、例えば、曲折して設けられる。また、通路の途上には、例えば、液体が流入する空間が設けられることがある。 (4) In a lead storage battery mounted and used in a vehicle or the like, when shaking or vibration is applied, the electrolyte may enter the lid from the return hole into the lid. The passage provided in the lid is provided, for example, in a bent shape so that the electrolyte that has entered the lid from the reflux hole can be prevented from leaking from the exhaust port. Further, a space into which a liquid flows may be provided in the middle of the passage.
 そして、上記空間に液体が容易に流入できる構成にするため、例えば、還流孔から蓋内に進入し、通路を逆流する液体を上記空間にスムースに導けるように、当該空間に、通路に連通して液体が流入する連通口と、通路に連通して液体が流出する連通口との2つの連通口を設けることが考えられる。或いは、通路の幅の1.5倍以上の幅広の連通口を上記空間に設けることが考えられる。 Then, in order to allow the liquid to easily flow into the space, for example, the space is communicated with the passage so that the liquid that enters the lid from the return hole and flows backward through the passage can be smoothly introduced into the space. It is conceivable to provide two communication ports: a communication port through which the liquid flows in, and a communication port through which the liquid flows out through the passage. Alternatively, it is conceivable to provide a communication port having a width of 1.5 times or more the width of the passage in the space.
 このような蓋の構成では、液体を上記空間にスムースに導くことができる。しかしながら、その反面、上記空間から液体がスムースに流出する。そうすると、上記空間に流入した液体が、当該空間にさらに流入した液体によって、当該空間から勢いよく流出してしまう。当該空間から勢いよく流出した液体は、排気口まで到達するおそれを生じさせる。 で は With such a lid configuration, the liquid can be smoothly guided into the space. However, on the other hand, the liquid smoothly flows out of the space. Then, the liquid that has flowed into the space will vigorously flow out of the space due to the liquid that has flowed further into the space. The liquid that vigorously flows out of the space causes a possibility of reaching the exhaust port.
 本願の発明者は、試行錯誤の結果、通路における液体の流速(以下、液体の勢いとも記載する)を低下させることが、排気口から液体が漏れ出ることを抑制する溢液性能を高めることになり、通路における液体の勢いを弱めるためには、上記空間の連通口を1つに限定し、かつ、当該連通口の幅を通路の幅の1.5倍未満にすることが効果的であるとの知見を得た。 As a result of trial and error, the inventor of the present application has found that lowering the flow velocity of the liquid in the passage (hereinafter, also referred to as the force of the liquid) can improve the overflow performance that suppresses leakage of the liquid from the exhaust port. In order to weaken the momentum of the liquid in the passage, it is effective to limit the number of communication ports of the space to one and to make the width of the communication port less than 1.5 times the width of the passage. I got the knowledge.
[第1概要説明] [First outline explanation]
 初めに、本発明の一実施形態に係る鉛蓄電池の概要について説明する。本発明の一実施形態に係る鉛蓄電池は、上部に開口を有し、電極群及び電解液を収容する電槽と、上記開口を封口し、且つ排気口が形成された蓋部材とを備える。上記蓋部材は、上記電槽内と連通する還流孔が形成された底壁と、上記底壁と対向する天壁と、上記底壁に立設されたリブと、を有する。上記リブは、上記還流孔から上記排気口に至る通路と、当該通路と1つの連通口を介して連通し、当該連通口を通じて上記電解液が流入及び流出可能な第1空間と、を形成する。上記連通口の幅は、当該連通口に隣接する部分における上記通路の幅の1.5倍未満である。 First, an outline of a lead storage battery according to an embodiment of the present invention will be described. A lead storage battery according to one embodiment of the present invention includes a battery case having an opening at an upper portion and containing an electrode group and an electrolytic solution, and a lid member closing the opening and forming an exhaust port. The lid member has a bottom wall formed with a return hole communicating with the inside of the battery case, a top wall facing the bottom wall, and a rib erected on the bottom wall. The rib forms a passage extending from the return hole to the exhaust port, and a first space that communicates with the passage through one communication port and through which the electrolyte can flow in and out through the communication port. . The width of the communication port is less than 1.5 times the width of the passage in a portion adjacent to the communication port.
 通路を流れる液体は、連通口から第1空間に流入し、第1空間に一時的に貯留される。第1空間に流入した液体は、鉛蓄電池に加えられた振動や揺れ、或いは、連通口から第1空間にさらに流入した液体により、第1空間から流出する。第1空間の連通口は、ただ1つであるので、この連通口から液体が第1空間内に流入し、この連通口から液体が流出する。したがって、連通口から流出する液体と通路を流れる液体とを衝突させて、通路を流れる液体の勢いと、連通口から流出する液体の勢いとを、ともに弱めることができる。また、第1空間の連通口の幅は、通路の幅の1.5倍未満であるので、連通口を通じて第1空間から流出する液体を、通路を流れる液体の勢いを弱めることができるだけの強さで流出させることができる。その結果、溢液性能を高めることができる。 液体 The liquid flowing through the passage flows into the first space from the communication port, and is temporarily stored in the first space. The liquid that has flowed into the first space flows out of the first space due to vibration or shaking applied to the lead storage battery, or liquid that has flowed further into the first space from the communication port. Since there is only one communication port in the first space, the liquid flows into the first space from the communication port, and the liquid flows out from the communication port. Therefore, the liquid flowing out of the communication port collides with the liquid flowing in the passage, so that the force of the liquid flowing in the passage and the force of the liquid flowing out of the communication port can both be reduced. Further, since the width of the communication port of the first space is less than 1.5 times the width of the passage, the liquid flowing out of the first space through the communication port is strong enough to reduce the force of the liquid flowing through the passage. Now you can drain it. As a result, the overflow performance can be improved.
 ここで、上記連通口の幅は、当該連通口に隣接する部分における上記通路の幅の半分以上であってもよい。 Here, the width of the communication port may be at least half the width of the passage in a portion adjacent to the communication port.
 第1空間の連通口の幅が通路の幅の半分以上であるので、通路を流れる液体の勢いを十分に弱めることができるだけの量の液体を連通口から第1空間内に流入させることができる。その結果、溢液性能をさらに高めることができる。 Since the width of the communication port of the first space is equal to or more than half of the width of the passage, an amount of liquid that can sufficiently reduce the force of the liquid flowing through the passage can flow into the first space from the communication port. . As a result, the overflow performance can be further improved.
 また、上記リブは、上記通路と連通し、液体が流入する第2空間をさらに形成していてもよい。上記第2空間は、複数の連通口と、上記通路の幅の1.5倍以上の幅の1つの連通口との少なくとも一方を通じて上記通路と連通し、かつ、上記還流孔と直接連通しない。上記第1空間は、上記第2空間よりも、上記通路における上記還流孔に近い位置に位置する。 The rib may communicate with the passage to further form a second space into which the liquid flows. The second space communicates with the passage through at least one of a plurality of communication openings and one communication opening having a width of 1.5 times or more the width of the passage, and does not directly communicate with the return hole. The first space is located at a position closer to the return hole in the passage than the second space.
 幅の狭い1つの連通口のみを有する第1空間は、複数の連通口或いは幅広の1つの連通口を有する第2空間よりも、通路における還流孔に近い位置に位置するので、還流孔から通路に進入した液体は、第1空間から流出した液体によって勢いを弱められた後、第2空間にスムースに流入する。その結果、溢液性能をさらに高めることができる。 The first space having only one narrow communication port is located at a position closer to the return hole in the passage than the second space having a plurality of communication ports or the wide one communication port. The liquid that has entered the space is weakened by the liquid flowing out of the first space, and then smoothly flows into the second space. As a result, the overflow performance can be further improved.
 また、上記リブは、上記通路の一部であって、直線状の第1直線通路部と、上記第1直線通路部と交差する第2通路部と、を形成していてもよい。上記第1空間の連通口は、上記第1直線通路部の延長上であって、上記第1直線通路部と上記第2通路部との交差部に面して設けられている。 The rib may be a part of the passage, and form a first linear passage that is linear and a second passage that intersects the first linear passage. The communication port of the first space is provided on an extension of the first straight passage portion and facing an intersection of the first straight passage portion and the second passage portion.
 直線状の第1直線通路部により、第1空間の連通口に液体を導くことができるので、連通口から流出する液体の勢いを十分に弱め得るだけの量の液体を第1空間に流入させることができる。その結果、溢液性能をさらに高めることができる。 Since the liquid can be guided to the communication port of the first space by the straight first linear passage portion, the liquid flows into the first space in an amount sufficient to sufficiently reduce the force of the liquid flowing out of the communication port. be able to. As a result, the overflow performance can be further improved.
 また、上記第1直線通路部と、上記第2通路とは、直交してもよい。第1直線通路部を流れる液体の量や勢いと、連通口から流出する液体の量や勢いとの間に差があっても、当該差によって溢液性能が大きく変化することを抑制することができる。その結果、溢液性能を安定させることができる。 The first straight passage portion and the second passage may be orthogonal to each other. Even if there is a difference between the amount and the force of the liquid flowing through the first straight passage portion and the amount and the force of the liquid flowing out from the communication port, it is possible to suppress a large change in the overflow performance due to the difference. it can. As a result, the overflow performance can be stabilized.
 また、上記リブは、上記第1直線通路部の一部及び上記第1空間の一部を区画する直線状のリブを含んでいてもよい。上記連通口は、上記直線状のリブの中間に位置する。 The ribs may include linear ribs that define a part of the first straight passage and a part of the first space. The communication port is located in the middle of the linear rib.
 第1直線状通路部を流れる液体は、直線状のリブに沿って、第1空間の連通口に案内される。一方、第1空間(貯留空間)から流出する液体も、直線状のリブに沿って連通口に案内される。したがって、第1直線通路部を流れる液体と、連通口から流出する液体とを、正面衝突させることができる。その結果、通路を流れる液体の勢いをさらに弱めて、溢液性能をさらに高めることができる。 (4) The liquid flowing through the first linear passage is guided to the communication port of the first space along the linear rib. On the other hand, the liquid flowing out of the first space (storage space) is also guided to the communication port along the linear rib. Therefore, the liquid flowing through the first straight passage portion and the liquid flowing out from the communication port can collide head-on. As a result, the momentum of the liquid flowing through the passage can be further reduced, and the overflow performance can be further improved.
 また、上記第1空間の連通口の幅は、当該連通口に隣接する部分における上記通路の幅より広くてもよい。連通口の幅が、当該連通口に隣接する部分における上記通路の幅より広いので、十分な量の液体を、連通口を通じて第1空間1に流入させることができる。 The width of the communication port in the first space may be wider than the width of the passage in a portion adjacent to the communication port. Since the width of the communication port is wider than the width of the passage in a portion adjacent to the communication port, a sufficient amount of liquid can flow into the first space 1 through the communication port.
 また、上記第1空間の面積は、当該第1空間の連通口の幅を二乗した値の1.5倍以上であってもよい。第1空間の面積が連通口の幅を二乗した値の1.5倍以上であるので、第1空間内に流入した液体が直ぐに第1空間から流出することを抑制することができる。 The area of the first space may be 1.5 times or more a value obtained by squaring the width of the communication port of the first space. Since the area of the first space is at least 1.5 times the value obtained by squaring the width of the communication port, it is possible to prevent the liquid that has flowed into the first space from immediately flowing out of the first space.
 また、上記リブは、上記通路において上記第1空間を少なくとも2つ形成していてもよい。リブが、通路において第1空間を少なくとも2つ形成しているので、溢液性能をさらに高めることができる。 The rib may form at least two of the first spaces in the passage. Since the rib forms at least two first spaces in the passage, the overflow performance can be further improved.
 また、上記第1空間の連通口は、上記通路における上記還流孔寄りの位置に形成されていてもよい。第1空間の連通口が通路における還流孔寄りの位置に形成されているので、溢液性能をさらに高めることができる。 The communication port of the first space may be formed at a position near the return hole in the passage. Since the communication port of the first space is formed at a position near the return hole in the passage, the overflow performance can be further improved.
[第1実施形態] [First Embodiment]
 第1実施形態の鉛蓄電池を適宜図面を参照しながら説明する。 鉛 The lead storage battery of the first embodiment will be described with reference to the drawings as appropriate.
 図1及び図2に示されるように、鉛蓄電池10は、一面に開口を有する矩形箱状の電槽20と、電槽20の開口を閉塞する蓋部材30と、を備える。図2は、図1におけるII-II断面図であって、後述の負極柱33の中心軸を通る平面で鉛蓄電池10を切断した断面図である。以下では、開口が設けられた電槽20の一面が上面であるものとして上下方向7を定義し、矩形箱状の電槽20の短辺に沿う方向を前後方向8と定義し、長辺に沿う方向を左右方向9と定義して説明する。上下方向7と、前後方向8と、左右方向9とは、互いに直交する。 As shown in FIGS. 1 and 2, the lead storage battery 10 includes a rectangular box-shaped battery case 20 having an opening on one surface, and a lid member 30 for closing the opening of the battery case 20. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, and is a cross-sectional view of the lead storage battery 10 cut along a plane passing through a central axis of a negative electrode post 33 described later. In the following, the vertical direction 7 is defined as one surface of the battery case 20 provided with the opening is the upper surface, the direction along the short side of the rectangular box-shaped battery case 20 is defined as the front-back direction 8, and the long side is defined. A description will be given by defining a direction along the horizontal direction 9. The vertical direction 7, the front-back direction 8, and the left-right direction 9 are orthogonal to each other.
 電槽20は、前後左右の4つの側板21及び底板22を備える。4つの側板21及び底板22に囲まれた内部空間23は、希硫酸からなる電解液6を貯留する。すなわち、鉛蓄電池10は、いわゆる液式蓄電池である。電槽20は、例えば、耐蝕性及び絶縁性を有する合成樹脂を用いて成形された樹脂成型品である。 The battery case 20 includes four front, rear, left and right side plates 21 and a bottom plate 22. An internal space 23 surrounded by the four side plates 21 and the bottom plate 22 stores the electrolytic solution 6 made of diluted sulfuric acid. That is, the lead storage battery 10 is a so-called liquid storage battery. The battery case 20 is a resin molded product molded using, for example, a synthetic resin having corrosion resistance and insulation properties.
 図3に示されるように、電槽20は、内部空間23を6つに仕切る5つの仕切板24を備える。仕切板24は、左右方向9を厚みとする板状である。仕切板24は、側板21及び底板22と一体に成形されており、底板22及び前後の側板21と連結している。 電 As shown in FIG. 3, the battery case 20 includes five partition plates 24 that partition the internal space 23 into six. The partition plate 24 has a plate shape having a thickness in the left-right direction 9. The partition plate 24 is formed integrally with the side plate 21 and the bottom plate 22 and is connected to the bottom plate 22 and the front and rear side plates 21.
 左右の側板21と、5つの仕切板24とは、左右方向9において、ほぼ等間隔で互いに離間している。仕切板24の上端は、側板21の上端とほぼ同じ高さに位置する。5つの仕切板24は、電槽20の内部空間23を、6つのセル室11~16に仕切る。各セル室11~16は、電解液6をそれぞれ貯留する。 The left and right side plates 21 and the five partition plates 24 are separated from each other at substantially equal intervals in the left-right direction 9. The upper end of the partition plate 24 is located at substantially the same height as the upper end of the side plate 21. The five partition plates 24 partition the internal space 23 of the battery case 20 into six cell chambers 11 to 16. Each of the cell chambers 11 to 16 stores the electrolytic solution 6 respectively.
 各セル室11~16は、図2に示されるように、正極板25と、負極板26と、セパレータ27とをそれぞれ収容している。正極板25と、負極板26と、セパレータ27とは、左右方向9を厚みとする板状であって、左右方向9において、互いに離間している。セパレータ27は、正極板25と負極板26との間に位置しており、正極板25と、負極板26との間を仕切る。 (2) Each of the cell chambers 11 to 16 contains a positive electrode plate 25, a negative electrode plate 26, and a separator 27, respectively, as shown in FIG. The positive electrode plate 25, the negative electrode plate 26, and the separator 27 have a plate shape having a thickness in the left-right direction 9, and are separated from each other in the right-left direction 9. The separator 27 is located between the positive electrode plate 25 and the negative electrode plate 26 and separates the positive electrode plate 25 from the negative electrode plate 26.
 正極板25及び負極板26は、例えば、格子体に活物質が充填されたものである。正極板25の活物質の主成分は二酸化鉛である。負極板26の活物質の主成分は鉛である。 The positive electrode plate 25 and the negative electrode plate 26 are, for example, a lattice body filled with an active material. The main component of the active material of the positive electrode plate 25 is lead dioxide. The main component of the active material of the negative electrode plate 26 is lead.
 各セル室11~16にそれぞれ収容された各正極板25及び各負極板26は、導電性のストラップ28によって、相互に接続されている。詳しく説明すると、一のセル室に収容された正極板25は、ストラップ28を介して、隣のセル室に収容された負極板26と接続されている。一のセル室に収容された負極板26は、他のストラップ28を介して、隣のセル室に収容された正極板25と接続されている。例えば、セル室12に収容された正極板25は、ストラップ28を介して、セル室11、13に収容された負極板26と接続されており、セル室12に収容された負極板26は、他のストラップ28を介して、セル室11、13に収容された正極板25と接続されている。すなわち、セル室11~16は、直列接続されている。 各 Each positive electrode plate 25 and each negative electrode plate 26 housed in each of the cell chambers 11 to 16 are connected to each other by a conductive strap 28. More specifically, the positive electrode plate 25 accommodated in one cell chamber is connected via a strap 28 to a negative electrode plate 26 accommodated in an adjacent cell room. The negative electrode plate 26 accommodated in one cell room is connected to the positive electrode plate 25 accommodated in the adjacent cell room via another strap 28. For example, the positive electrode plate 25 accommodated in the cell chamber 12 is connected via a strap 28 to the negative electrode plate 26 accommodated in the cell chambers 11 and 13. The other strap 28 is connected to the positive electrode plate 25 accommodated in the cell chambers 11 and 13. That is, the cell chambers 11 to 16 are connected in series.
 図1及び図2に示されるように、蓋部材30は、矩形箱状の蓋本体31と、蓋本体31を上下方向7に貫通する正極柱32及び負極柱33と、ブッシング38、39と、を備える。 As shown in FIGS. 1 and 2, the lid member 30 includes a rectangular box-shaped lid main body 31, a positive pole 32 and a negative pole 33 penetrating the lid main body 31 in the up-down direction 7, bushings 38 and 39, Is provided.
 蓋本体31は、矩形箱状である。蓋本体31の上下方向7の厚みは、前後方向8に沿う短辺及び左右方向9に沿う長辺よりも短い。すなわち、蓋本体31は、扁平な矩形箱状である。蓋本体31は、電槽20の上面よりも大きな下面を有する。当該下面の周端部からは、電槽20の側板21の外面の上部を覆う周壁35が下向きに突出している。蓋本体31は、周壁35の内側に電槽20の側板21の上部を嵌め込んで配置されている。 The lid body 31 is in the shape of a rectangular box. The thickness of the lid body 31 in the up-down direction 7 is shorter than a short side along the front-rear direction 8 and a long side along the left-right direction 9. That is, the lid main body 31 has a flat rectangular box shape. Lid body 31 has a lower surface that is larger than the upper surface of battery case 20. A peripheral wall 35 that covers the upper part of the outer surface of the side plate 21 of the battery case 20 protrudes downward from the peripheral end of the lower surface. The lid main body 31 is arranged by fitting the upper part of the side plate 21 of the battery case 20 inside the peripheral wall 35.
 蓋本体31は、電槽20に固着されている。詳しく説明すると、蓋本体31は、周壁35に沿って設けられた矩形枠状の当接面36を有している。当接面36は、蓋本体31の下面の一部である。当接面36は、電槽20の側板21の上端と当接している。当接面36と電槽20の側板21の上端とは、熱溶着などによって、相互に固着されている。すなわち、蓋本体31は、電槽20に固着されている。 The lid body 31 is fixed to the battery case 20. More specifically, the lid main body 31 has a rectangular frame-shaped contact surface 36 provided along the peripheral wall 35. The contact surface 36 is a part of the lower surface of the lid main body 31. The contact surface 36 is in contact with the upper end of the side plate 21 of the battery case 20. The contact surface 36 and the upper end of the side plate 21 of the battery case 20 are fixed to each other by heat welding or the like. That is, the lid main body 31 is fixed to the battery case 20.
 また、蓋本体31は、電槽20の各セル室11~16間で電解液6が相互に移動することを防止可能なように、電槽20に固着されている。詳しく説明すると、蓋本体31は、図5に示されるように、下面から下向きに突出する5つのリブ37を有する。各リブ37は、左右方向9を厚みとし、前後方向8に沿って設けられている。各リブ37の下端は、電槽20の各仕切板24の上端とそれぞれ当接している。蓋本体31のリブ37の下端と電槽20の仕切板24の上端とは、熱溶着などによって相互に固着されている。仕切板24及びリブ37は、各セル室11~16間で電解液6が相互に移動することを防止する。 蓋 Furthermore, the lid main body 31 is fixed to the battery case 20 so that the electrolytic solution 6 can be prevented from mutually moving between the cell chambers 11 to 16 of the battery case 20. More specifically, as shown in FIG. 5, the lid main body 31 has five ribs 37 protruding downward from the lower surface. Each rib 37 has a thickness in the left-right direction 9 and is provided along the front-back direction 8. The lower end of each rib 37 is in contact with the upper end of each partition plate 24 of the battery case 20. The lower end of the rib 37 of the lid body 31 and the upper end of the partition plate 24 of the battery case 20 are fixed to each other by heat welding or the like. The partition plate 24 and the rib 37 prevent the electrolyte solution 6 from mutually moving between the cell chambers 11 to 16.
 図1に示される蓋本体31と、ブッシング38、39とは、例えば、いわゆるインサート成形によって一体に成形されている。すなわち、ブッシング38、39は、蓋本体31に固定されている。 蓋 The lid main body 31 and the bushings 38 and 39 shown in FIG. 1 are integrally formed by, for example, so-called insert molding. That is, the bushings 38 and 39 are fixed to the lid main body 31.
 ブッシング38とブッシング39とは、ともに、鉛合金等の導電性の金属からなる円筒状であって、同形状である。以下では、主にブッシング38について説明するが、ブッシング39についても同様である。なお、ブッシング38とブッシング39とは、別形状であってもよいし、同形状で大きさが相違(相似形)していてもよい。 The bushing 38 and the bushing 39 are both cylindrical and made of a conductive metal such as a lead alloy. Hereinafter, the bushing 38 will be mainly described, but the same applies to the bushing 39. The bushing 38 and the bushing 39 may have different shapes, or may have the same shape but different sizes (similar shapes).
 ブッシング38の上部は、蓋本体31の上面から上向きに突出しており、外部に露出している。すなわち、ブッシング38は、外部接続端子として機能する。ブッシング38の内部には、導電性の金属からなる正極柱32の上端部が挿入されている。正極柱32は、たとえば溶接によって、ブッシング38に固定されている。正極柱32の下端は、図2に示されるストラップ28と接続されている。同様に、負極柱33の下端は、他のストラップ28と接続されている。鉛蓄電池10は、正負一対のブッシング38、39から直流電圧を出力する。 The upper part of the bushing 38 protrudes upward from the upper surface of the lid body 31 and is exposed to the outside. That is, the bushing 38 functions as an external connection terminal. The upper end of the positive pole 32 made of a conductive metal is inserted into the bushing 38. The positive pole 32 is fixed to the bushing 38 by, for example, welding. The lower end of the positive pole 32 is connected to the strap 28 shown in FIG. Similarly, the lower end of the negative pole 33 is connected to another strap 28. The lead storage battery 10 outputs a DC voltage from a pair of positive and negative bushings 38 and 39.
 図1に示されるように、蓋本体31は、電槽20内の内圧が高くなり過ぎるのを防止するため、電槽20内で発生したミストや水蒸気からなるガスを外部に排気する排気口45を側壁に有する。また、蓋本体31は、排気口45から液体が漏れ出ることを防止する構成を有する。以下、蓋本体31の構成について、詳しく説明する。 As shown in FIG. 1, the lid main body 31 has an exhaust port 45 for exhausting gas composed of mist and water vapor generated in the battery case 20 to the outside in order to prevent the internal pressure in the battery case 20 from becoming too high. On the side wall. The lid main body 31 has a configuration for preventing liquid from leaking from the exhaust port 45. Hereinafter, the configuration of the lid body 31 will be described in detail.
[蓋本体31] [Lid body 31]
 図4、図5に示されるように、蓋本体31は、中蓋40及び上蓋50を備える。中蓋40及び上蓋50は、合成樹脂成型品である。 蓋 As shown in FIGS. 4 and 5, the lid main body 31 includes an inner lid 40 and an upper lid 50. The inner lid 40 and the upper lid 50 are molded products of synthetic resin.
 中蓋40は、電槽20に熱溶着される上述の周壁35を有しており、電槽20に固着されている。上述のブッシング38、39は、中蓋40の後部に、左右方向9において離間して位置している。 The inner lid 40 has the above-described peripheral wall 35 that is thermally welded to the battery case 20, and is fixed to the battery case 20. The above-mentioned bushings 38 and 39 are located at the rear of the inner lid 40 and are separated in the left-right direction 9.
 中蓋40は、電槽20の各セル室11~16にそれぞれ電解液6を注入するための6個の注入口431~436を前部に有している。6個の注入口431~436は、左右方向9において相互に離間している。注入口431~436は、栓60によってそれぞれ閉塞される。各栓60は、上蓋50にそれぞれ固定される。詳しくは後述する。 The inner lid 40 has six inlets 431 to 436 for injecting the electrolyte 6 into the respective cell chambers 11 to 16 of the battery case 20 at the front. The six inlets 431 to 436 are separated from each other in the left-right direction 9. The inlets 431 to 436 are closed by the stoppers 60, respectively. Each stopper 60 is fixed to the upper lid 50, respectively. Details will be described later.
 中蓋40の前部の上面である前部上面41は、後部の上面である後部上面42よりも低い位置にある。中蓋40の前部上面41の上に、上蓋50が配置される。中蓋40の後部上面42と前部上面41との間の高さの差と、上蓋50の上下方向7における長さとは、ほぼ等しい。すなわち、蓋本体31において、中蓋40の後部上面42と、上蓋50の上面とは、ほぼ面一である。中蓋40の前部は、蓋部材30の底壁を構成する。 前 The front upper surface 41 which is the upper surface of the front part of the inner lid 40 is located at a position lower than the rear upper surface 42 which is the upper surface of the rear part. An upper lid 50 is arranged on the front upper surface 41 of the inner lid 40. The difference in height between the rear upper surface 42 and the front upper surface 41 of the inner lid 40 is substantially equal to the length of the upper lid 50 in the vertical direction 7. That is, in the lid body 31, the rear upper surface 42 of the inner lid 40 and the upper surface of the upper lid 50 are substantially flush. The front part of the inner lid 40 forms a bottom wall of the lid member 30.
 上蓋50は、左右方向9に沿う長さが前後方向8に沿う長さよりも長く、上下方向7を厚みとする矩形板状の板状部51と、板状部51の下面の周縁から下向きに突出する周壁52とを備える。周壁52の下端は、中蓋40の前部上面41に熱溶着によって固着される。すなわち、上蓋50は、中蓋40に固定される。上蓋50の板状部51は、蓋部材30の天壁を構成する。上蓋50の板状部51及び周壁52は、蓋部材30の外壁を構成する。 The upper lid 50 has a rectangular plate-like portion 51 whose length along the left-right direction 9 is longer than the length along the front-rear direction 8 and has a thickness in the up-down direction 7, and a lower portion from the periphery of the lower surface of the plate-like portion 51. And a peripheral wall 52 that protrudes. The lower end of the peripheral wall 52 is fixed to the front upper surface 41 of the inner lid 40 by heat welding. That is, the upper lid 50 is fixed to the inner lid 40. The plate-shaped portion 51 of the upper lid 50 forms a top wall of the lid member 30. The plate portion 51 and the peripheral wall 52 of the upper lid 50 constitute an outer wall of the lid member 30.
 上蓋50は、中蓋40の注入口431~436と上下方向7において重なる6個の注入開口531~536を前部に有する。注入開口531~536の内周面には、ネジ溝54がそれぞれ設けられている。ネジ溝54は、円柱状である栓60の外周面に設けられたネジ溝61と螺合する。すなわち、上蓋50は、6個の栓60をそれぞれ固定する。 The upper lid 50 has six injection openings 531 to 536 at the front thereof, which overlap with the injection ports 431 to 436 of the inner lid 40 in the vertical direction 7. Screw grooves 54 are provided on the inner peripheral surfaces of the injection openings 531 to 536, respectively. The screw groove 54 is screwed with a screw groove 61 provided on the outer peripheral surface of the cylindrical plug 60. That is, the upper lid 50 fixes the six stoppers 60 respectively.
 上蓋50は、上述の排気口45を周壁52に有している。排気口45は、周壁52を左右方向9において貫通している。中蓋40の前部と上蓋50とに囲まれた空間5に、ガスが流通し、かつ、液体を電槽内20内に戻す通路151~156(図7参照)が形成されている。以下、詳しく説明する。 The upper lid 50 has the above-described exhaust port 45 on the peripheral wall 52. The exhaust port 45 penetrates the peripheral wall 52 in the left-right direction 9. Passages 151 to 156 (see FIG. 7) through which gas flows and which returns the liquid into the battery case 20 are formed in the space 5 surrounded by the front part of the inner lid 40 and the upper lid 50. The details will be described below.
 図6に示されるように、中蓋40は、通路151~156の起点となる6個の通気口161~166を有している。通気口161~166は、中蓋40の前部を上下方向7にそれぞれ貫通している。通気口161~166は、各セル室11~16と空間5とをそれぞれ連通する。具体的には、通気口161は、セル室11と空間5とを連通し、通気口162は、セル室12と空間5とを連通し、通気口163は、セル室13と空間5とを連通し、通気口164は、セル室14と空間5とを連通し、通気口165は、セル室15と空間5とを連通し、通気口166は、セル室16と空間5とを連通する。 中 As shown in FIG. 6, the inner lid 40 has six ventilation holes 161 to 166 that are the starting points of the passages 151 to 156. The ventilation holes 161 to 166 penetrate the front part of the inner lid 40 in the vertical direction 7 respectively. The vents 161 to 166 communicate the cell chambers 11 to 16 with the space 5, respectively. Specifically, the vent 161 connects the cell chamber 11 and the space 5, the vent 162 connects the cell chamber 12 and the space 5, and the vent 163 connects the cell chamber 13 and the space 5. The communication, the vent 164 connects the cell chamber 14 and the space 5, the vent 165 connects the cell chamber 15 and the space 5, and the vent 166 connects the cell chamber 16 and the space 5. .
 図7に示されるように、空間5内には、通気口161~166をそれぞれ起点とする通路151~156が形成されている。通路151は、セル室11と連通する通気口161から排気口45に至る通路である。通路152は、セル室12と連通する通気口162から排気口45に至る通路である。通路153は、セル室13と連通する通気口163から排気口45に至る通路である。通路154は、セル室14と連通する通気口164から排気口45に至る通路である。通路155は、セル室15と連通する通気口165から排気口45に至る通路である。通路156は、セル室16と連通する通気口166から排気口45に至る通路である。 通路 As shown in FIG. 7, passages 151 to 156 are formed in the space 5 with the vents 161 to 166 as starting points. The passage 151 is a passage from the ventilation port 161 communicating with the cell chamber 11 to the exhaust port 45. The passage 152 is a passage from the vent 162 communicating with the cell chamber 12 to the exhaust port 45. The passage 153 is a passage from the ventilation port 163 communicating with the cell chamber 13 to the exhaust port 45. The passage 154 is a passage from the ventilation port 164 communicating with the cell chamber 14 to the exhaust port 45. The passage 155 is a passage from the ventilation port 165 communicating with the cell chamber 15 to the exhaust port 45. The passage 156 is a passage from the ventilation port 166 communicating with the cell chamber 16 to the exhaust port 45.
 通路151は、図7に示されるリブ101~127と、図8に示されるリブ171~197とによって形成されている。リブ101~127は、中蓋40の前部上面41から上向きに突出している。リブ171~197は、上蓋50の下面から下向きに突出している。リブ101~127の上端とリブ171~197の下端とは当接しており、熱溶着によって相互に固着されている。図7及び図8では、熱溶着される領域がハッチングによって示されている。平面視におけるリブ101~127の形状とリブ171~197の形状とは概ね同じであるので、以下では、図7を参照して、中蓋40に設けられたリブ101~127について説明し、上蓋50に設けられたリブ171~197の形状についての説明を省略する。 The channel 151 is formed by the ribs 101 to 127 shown in FIG. 7 and the ribs 171 to 197 shown in FIG. The ribs 101 to 127 project upward from the front upper surface 41 of the inner lid 40. The ribs 171 to 197 project downward from the lower surface of the upper lid 50. The upper ends of the ribs 101 to 127 are in contact with the lower ends of the ribs 171 to 197, and are fixed to each other by heat welding. In FIGS. 7 and 8, a region to be thermally welded is indicated by hatching. Since the shapes of the ribs 101 to 127 and the shapes of the ribs 171 to 197 in plan view are substantially the same, the ribs 101 to 127 provided on the inner lid 40 will be described below with reference to FIG. Description of the shapes of the ribs 171 to 197 provided on the 50 is omitted.
 リブ127は、通気口161の右に位置しており、かつ、前後方向8に沿って延びている。リブ101は、通気口161の後に位置しており、かつ、左右方向9に沿って延びている。リブ102は、通気口161の前に位置しており、かつ、左右方向9に沿って延びている。通路151の一部は、リブ101とリブ102との間に形成されている。通気口161を通じて電槽20から空間5内に進入したガスは、通気口161から左に進む。 The rib 127 is located to the right of the vent 161 and extends along the front-rear direction 8. The rib 101 is located behind the vent 161 and extends along the left-right direction 9. The rib 102 is located in front of the vent 161 and extends along the left-right direction 9. Part of the passage 151 is formed between the rib 101 and the rib 102. The gas that has entered the space 5 from the battery case 20 through the vent 161 advances to the left from the vent 161.
 リブ103は、リブ102の左端から右斜め後方に向かって延びている。リブ103の後端は、リブ101から離間している。通路151の一部は、リブ103の後端とリブ101との間に形成されている。通気口161を通じて電槽20から空間5内に進入したガスは、通気口161から左に進み、リブ103の後端とリブ101との間を左方へ向かって通過する。 The rib 103 extends obliquely rightward and rearward from the left end of the rib 102. The rear end of the rib 103 is separated from the rib 101. Part of the passage 151 is formed between the rear end of the rib 103 and the rib 101. The gas that has entered the space 5 from the battery case 20 through the vent 161 advances to the left from the vent 161 and passes between the rear end of the rib 103 and the rib 101 toward the left.
 リブ104は、リブ103の左に位置しており、かつ、前後方向8に沿って延びている。リブ104の後端は、リブ101の左端と接続している。通路151の一部は、リブ103とリブ104との間に形成されている。リブ103の後端とリブ101との間を通過したガスは、リブ103とリブ104との間を前方へ向かって通過する。 The rib 104 is located to the left of the rib 103, and extends along the front-back direction 8. The rear end of the rib 104 is connected to the left end of the rib 101. Part of the passage 151 is formed between the rib 103 and the rib 104. The gas that has passed between the rear end of the rib 103 and the rib 101 passes forward between the rib 103 and the rib 104.
 リブ102の前に、リブ110、リブ105、及びリブ106が形成されている。リブ110は、円弧状である。リブ110の左端は、リブ104と接続している。リブ110の左右方向9における中央部から後方に向かって、リブ105が延びている。リブ105の後端は、リブ102から離間している。通路の一部は、リブ105の後端とリブ102との間に形成されている。リブ106は、前後方向8におけるリブ105の中央部から右方に向かって延びている。通路151の一部は、リブ106とリブ102との間に形成されている。リブ103とリブ104との間を通過したガスは、リブ105の後端とリブ102との間を通過した後、リブ106とリブ102との間を右方へ向かって通過する。 リ ブ A rib 110, a rib 105, and a rib 106 are formed before the rib 102. The rib 110 has an arc shape. The left end of the rib 110 is connected to the rib 104. The rib 105 extends rearward from the center of the rib 110 in the left-right direction 9. The rear end of the rib 105 is separated from the rib 102. Part of the passage is formed between the rear end of the rib 105 and the rib 102. The rib 106 extends rightward from the center of the rib 105 in the front-rear direction 8. Part of the passage 151 is formed between the rib 106 and the rib 102. The gas that has passed between the rib 103 and the rib 104 passes between the rear end of the rib 105 and the rib 102, and then passes between the rib 106 and the rib 102 rightward.
 リブ106の右には、リブ107が形成されている。リブ107は、リブ106から離間しており、かつ、前後方向8に沿って延びている。通路151の一部は、リブ106とリブ107との間に形成されている。リブ106とリブ102との間を通過したガスは、リブ106の右端とリブ107との間を前方へ向かって通過する。 リ ブ A rib 107 is formed on the right side of the rib 106. The rib 107 is separated from the rib 106 and extends along the front-back direction 8. Part of the passage 151 is formed between the rib 106 and the rib 107. The gas that has passed between the ribs 106 and 102 passes forward between the right end of the rib 106 and the rib 107.
 リブ107の前には、リブ108が形成されている。リブ108は、左右方向9に沿って延びており、かつ、リブ107の前端と接続している。リブ108の左端からは、リブ109が後方に向かって延びている。リブ109の後端は、リブ106と離間している。通路151の一部は、リブ109とリブ106との間に形成されている。リブ106の右端とリブ107との間を通過したガスは、リブ109とリブ106との間を左方へ向かって通過する。 リ ブ A rib 108 is formed before the rib 107. The rib 108 extends in the left-right direction 9 and is connected to the front end of the rib 107. A rib 109 extends rearward from the left end of the rib 108. The rear end of the rib 109 is separated from the rib 106. A part of the passage 151 is formed between the rib 109 and the rib 106. The gas that has passed between the right end of the rib 106 and the rib 107 passes between the rib 109 and the rib 106 toward the left.
 通路151の一部は、上述のリブ109とリブ105とリブ110とによって形成されている。リブ109とリブ106との間を通過したガスは、リブ109と、リブ105及びリブ110との間を前方へ向かって通過する。 一部 A portion of the passage 151 is formed by the ribs 109, 105, and 110 described above. The gas that has passed between the ribs 109 and 106 passes forward between the ribs 109 and the ribs 105 and 110.
 リブ110の前には、リブ111が形成されている。リブ111は、注入口431の周縁に沿って延びている。リブ110の右端は、リブ111と接続している。通路151の一部は、リブ111と、リブ109及びリブ108との間に形成されている。リブ109と、リブ105及びリブ110との間を通過したガスは、リブ111と、リブ127及びリブ108との間を、概ね右斜め前方へ向かって通過する。 リ ブ A rib 111 is formed before the rib 110. The rib 111 extends along the periphery of the inlet 431. The right end of the rib 110 is connected to the rib 111. A part of the passage 151 is formed between the rib 111 and the ribs 109 and 108. The gas that has passed between the rib 109 and the ribs 105 and 110 passes generally between the rib 111 and the ribs 127 and 108 obliquely rightward and forward.
 リブ111の右には、リブ112が形成されている。リブ112は、左右方向9に沿って延びている。リブ112の左端は、リブ111と接続している。ハッチングで示されているように、上述のリブ127の前端は、上蓋50に設けられたリブ197(図8参照)と熱溶着されていない。通路151の一部は、リブ127における熱溶着されない部分に形成されている。リブ111とリブ108との間を通過したガスは、リブ127における熱溶着されない部分を右方へ向かって通過する。 リ ブ A rib 112 is formed on the right side of the rib 111. The rib 112 extends along the left-right direction 9. The left end of the rib 112 is connected to the rib 111. As shown by hatching, the front end of the above-described rib 127 is not thermally welded to the rib 197 (see FIG. 8) provided on the upper lid 50. A portion of the passage 151 is formed in a portion of the rib 127 where heat welding is not performed. The gas that has passed between the rib 111 and the rib 108 passes rightward through a portion of the rib 127 where heat welding is not performed.
 リブ112の右端は、リブ113と接続している。リブ113は、注入口432の周縁に沿って延びている。リブ113の後には、リブ124が形成されている。リブ124は、左右方向9に沿って延びている。通路の一部はリブ124とリブ113との間に形成されている。リブ127における熱溶着されない部分を通過したガスは、リブ124とリブ113との間を右方へ向かって通過する。なお、リブ124の左端は、リブ127から離間している。リブ124の左端とリブ127との間は、通路151と、後述の通路152とが合流する接続ポイントとなっている。 右 The right end of the rib 112 is connected to the rib 113. The rib 113 extends along the periphery of the inlet 432. After the rib 113, a rib 124 is formed. The rib 124 extends along the left-right direction 9. Part of the passage is formed between the ribs 124 and 113. The gas that has passed through the portion of the rib 127 that is not thermally welded passes between the rib 124 and the rib 113 toward the right. Note that the left end of the rib 124 is separated from the rib 127. Between the left end of the rib 124 and the rib 127 is a connection point where the passage 151 and a passage 152 to be described later merge.
 リブ113の右には、リブ114が形成されている。リブ114は、左右方向9に沿って延びている。リブ114の左端は、リブ113と接続している。ハッチングで示されているように、リブ227の前端は、上蓋50に設けられたリブ297(図8参照)と熱溶着されていない。通路151の一部は、リブ227における熱溶着されない部分に形成されている。リブ113とリブ124との間を通過したガスは、リブ227における熱溶着されない部分を右方へ向かって通過する。 リ ブ A rib 114 is formed on the right side of the rib 113. The rib 114 extends along the left-right direction 9. The left end of the rib 114 is connected to the rib 113. As shown by hatching, the front end of the rib 227 is not thermally welded to the rib 297 (see FIG. 8) provided on the upper lid 50. A portion of the passage 151 is formed in a portion of the rib 227 that is not thermally welded. The gas that has passed between the ribs 113 and 124 passes rightward through a portion of the rib 227 that is not thermally welded.
 リブ114の右端は、リブ115と接続している。リブ115は、注入口433の周縁に沿って延びている。リブ115の後には、リブ125が形成されている。リブ125は、左右方向9に沿って延びている。通路151の一部はリブ125とリブ115との間に形成されている。リブ114とリブ124との間を通過したガスは、リブ125とリブ115との間を右方へ向かって通過する。なお、リブ125の左端は、リブ227から離間している。リブ125の左端とリブ227との間は、通路151と、後述の通路153とが合流する接続ポイントとなっている。 右 The right end of the rib 114 is connected to the rib 115. The rib 115 extends along the periphery of the inlet 433. After the rib 115, a rib 125 is formed. The rib 125 extends along the left-right direction 9. Part of the passage 151 is formed between the rib 125 and the rib 115. The gas that has passed between the ribs 114 and 124 passes rightward between the ribs 125 and 115. The left end of the rib 125 is separated from the rib 227. Between the left end of the rib 125 and the rib 227 is a connection point where the passage 151 and a passage 153 described later merge.
 リブ115の右には、リブ126が形成されている。リブ126は、前後方向8に沿って延びている。リブ126の後端は、リブ125の右端と接続している。通路151の一部は、リブ115とリブ126との間に形成されている。リブ125とリブ115との間を通過したガスは、リブ115とリブ126との間を、概ね右斜め前方へ向かって通過する。 リ ブ A rib 126 is formed on the right side of the rib 115. The rib 126 extends along the front-back direction 8. The rear end of the rib 126 is connected to the right end of the rib 125. Part of the passage 151 is formed between the rib 115 and the rib 126. The gas that has passed between the ribs 125 and 115 passes between the ribs 115 and 126 substantially diagonally right forward.
 リブ126の右には、リブ116が形成されている。リブ116は、注入口434の周縁に沿って延びている。リブ116は、リブ115及びリブ126と離間している。通路151の一部は、リブ115とリブ116との間に形成されている。リブ115とリブ126との間を通過したガスは、リブ115とリブ116との間を前方へ向かって通過する。なお、リブ115とリブ116との間は、通路151と、後述の通路156とが合流する接続ポイントとなっている。 リ ブ A rib 116 is formed on the right side of the rib 126. The rib 116 extends along the periphery of the inlet 434. The rib 116 is separated from the rib 115 and the rib 126. Part of the passage 151 is formed between the rib 115 and the rib 116. The gas that has passed between the ribs 115 and 126 passes forward between the ribs 115 and 116. In addition, between the rib 115 and the rib 116 is a connection point where the passage 151 and a passage 156 described later merge.
 リブ116の右には、左から順に、リブ117、118、119、120が形成されている。リブ117は、左右方向9に沿って延びている。リブ117の左端は、リブ116と接続している。リブ117の右端は、リブ118と接続している。リブ118は、注入口435の周縁に沿って延びている。リブ119は、左右方向9に沿って延びている。リブ119の左端は、リブ118と接続している。リブ119の右端は、リブ120と接続している。リブ120は、注入口436の周縁に沿って延びている。また、リブ116、118、120の前には、リブ121が形成されている。リブ121は、左右方向9に沿って延びている。通路151の一部は、リブ121と、リブ116、117、118、119、120との間に形成されている。リブ115とリブ116との間を通過したガスは、リブ121と、リブ116、117、118、119、120との間を右方へ向かって通過する。 リ ブ Ribs 117, 118, 119 and 120 are formed on the right of the rib 116 in order from the left. The rib 117 extends in the left-right direction 9. The left end of the rib 117 is connected to the rib 116. The right end of the rib 117 is connected to the rib 118. The rib 118 extends along the periphery of the inlet 435. The rib 119 extends along the left-right direction 9. The left end of the rib 119 is connected to the rib 118. The right end of the rib 119 is connected to the rib 120. The rib 120 extends along the periphery of the inlet 436. A rib 121 is formed before the ribs 116, 118, and 120. The rib 121 extends in the left-right direction 9. Part of the passage 151 is formed between the rib 121 and the ribs 116, 117, 118, 119, 120. The gas that has passed between the ribs 115 and 116 passes rightward between the ribs 121 and the ribs 116, 117, 118, 119, and 120.
 リブ120の右には、リブ122が形成されている。リブ122は、前後方向8に沿って延びている。リブ122の前端は、リブ121の右端と接続している。リブ122は、リブ120と離間している。通路151の一部は、リブ120とリブ122との間に形成されている。リブ120と、リブ116、117、118、119、120との間を通過したガスは、リブ120とリブ122との間を後方へ向かって通過する。 リ ブ A rib 122 is formed on the right side of the rib 120. The rib 122 extends in the front-rear direction 8. The front end of the rib 122 is connected to the right end of the rib 121. The rib 122 is separated from the rib 120. Part of the passage 151 is formed between the rib 120 and the rib 122. The gas that has passed between the rib 120 and the ribs 116, 117, 118, 119, and 120 passes rearward between the rib 120 and the rib 122.
 リブ120の後には、リブ123が形成されている。リブ123の左端は、リブ120と接続し、リブ123の右端は、リブ122と接続している。リブ122の上端と熱溶着される上蓋50のリブ192(図8参照)は、開口63を有する。開口63は、通路151と排気口45とを連通する。すなわち、通気口161を起点とする通路151は、開口63及び排気口45を通じて外部と連通している。 リ ブ A rib 123 is formed after the rib 120. The left end of the rib 123 is connected to the rib 120, and the right end of the rib 123 is connected to the rib 122. The rib 192 (see FIG. 8) of the upper lid 50 that is thermally welded to the upper end of the rib 122 has an opening 63. The opening 63 communicates the passage 151 with the exhaust port 45. That is, the passage 151 starting from the ventilation port 161 communicates with the outside through the opening 63 and the exhaust port 45.
 リブ120、リブ122、及びリブ123に囲まれた領域には、フィルタ64(図8参照)が配置されている。フィルタ64は、排気口45から火花が空間5内に進入することを防止する。 フ ィ ル タ A filter 64 (see FIG. 8) is arranged in a region surrounded by the ribs 120, 122, and 123. The filter 64 prevents a spark from entering the space 5 from the exhaust port 45.
 次に、通路152について説明する。通路152の起点となる通気口162は、上述のリブ127の右に位置している。通気口162の後には、リブ201が形成されている。リブ201は、左右方向9に沿って延びている。通気口162の前には、リブ202が形成されている。リブ202は、左右方向9に沿って延びている。通路152の一部は、リブ201とリブ202との間に形成されている。通気口162を通じてセル室12から空間5内に進入したガスは、通気口162から右に進む。 Next, the passage 152 will be described. The vent 162 serving as the starting point of the passage 152 is located to the right of the rib 127 described above. The rib 201 is formed behind the vent 162. The rib 201 extends in the left-right direction 9. A rib 202 is formed in front of the ventilation port 162. The rib 202 extends in the left-right direction 9. Part of the passage 152 is formed between the rib 201 and the rib 202. The gas that has entered the space 5 from the cell chamber 12 through the vent 162 advances rightward from the vent 162.
 リブ203は、リブ202の右端から左斜め後方に向かって延びている。リブ203の後端は、リブ201から離間している。通路152の一部は、リブ203の後端とリブ201との間に形成されている。通気口162を通じてセル室12から空間5内に進入したガスは、通気口162から右に進み、リブ203の後端とリブ201との間を右方へ向かって通過する。 The rib 203 extends from the right end of the rib 202 obliquely rearward to the left. The rear end of the rib 203 is separated from the rib 201. Part of the passage 152 is formed between the rear end of the rib 203 and the rib 201. The gas that has entered the space 5 from the cell chamber 12 through the vent 162 advances rightward from the vent 162 and passes rightward between the rear end of the rib 203 and the rib 201.
 リブ227は、リブ203の右に位置しており、かつ、前後方向8に沿って延びている。リブ227の後端は、リブ201の右端と接続している。通路152の一部は、リブ203とリブ227との間に形成されている。リブ203の後端とリブ201との間を通過したガスは、リブ203とリブ227との間を前方へ向かって通過する。 The rib 227 is located to the right of the rib 203 and extends along the front-rear direction 8. The rear end of the rib 227 is connected to the right end of the rib 201. Part of the passage 152 is formed between the rib 203 and the rib 227. The gas that has passed between the rear end of the rib 203 and the rib 201 passes forward between the rib 203 and the rib 227.
 リブ202の前に、リブ205及びリブ206が形成されている。リブ206は、左右方向9に沿って延びている。リブ206の右端は、リブ227と接続している。リブ205は、前後方向8に沿って延びている。リブ205の前端は、リブ206と接続している。通路152の一部は、リブ205及びリブ206と、リブ202との間に形成されている。リブ203とリブ227との間を通過したガスは、リブ202とリブ205の後端との間を左方へ向かって通過し、次いで、リブ202とリブ206との間を左方へ向かって通過する。 リ ブ A rib 205 and a rib 206 are formed before the rib 202. The rib 206 extends in the left-right direction 9. The right end of the rib 206 is connected to the rib 227. The rib 205 extends in the front-rear direction 8. The front end of the rib 205 is connected to the rib 206. A portion of the passage 152 is formed between the ribs 205 and 206 and the rib 202. The gas passing between the ribs 203 and 227 passes between the ribs 202 and the rear end of the rib 205 toward the left, and then passes between the ribs 202 and 206 toward the left. pass.
 リブ206の左には、リブ207が形成されている。リブ207は、リブ206から離間しており、かつ、前後方向8に沿って延びている。通路152の一部は、リブ206とリブ207との間に形成されている。リブ206とリブ202との間を通過したガスは、リブ206の左端とリブ207との間を前方へ向かって通過する。 リ ブ A rib 207 is formed on the left side of the rib 206. The rib 207 is separated from the rib 206 and extends along the front-rear direction 8. A part of the passage 152 is formed between the rib 206 and the rib 207. The gas that has passed between the ribs 206 and 202 passes forward between the left end of the rib 206 and the rib 207.
 リブ207の前には、リブ208が形成されている。リブ208は、左右方向9に沿って延びており、かつ、リブ207の前端と接続している。通路152の一部は、リブ208とリブ206との間に形成されている。リブ206の左端とリブ207との間を通過したガスは、リブ208とリブ206との間を右方へ向かって通過する。 リ ブ A rib 208 is formed before the rib 207. The rib 208 extends in the left-right direction 9 and is connected to the front end of the rib 207. A part of the passage 152 is formed between the rib 208 and the rib 206. The gas that has passed between the left end of the rib 206 and the rib 207 passes rightward between the rib 208 and the rib 206.
 リブ208の右端は、リブ227から離間している。通路152の一部は、リブ208の右端とリブ227との間に形成されている。リブ208とリブ206との間を通過したガスは、リブ208の右端とリブ227との間を前方へ向かって通過する。 右 The right end of the rib 208 is separated from the rib 227. Part of the passage 152 is formed between the right end of the rib 208 and the rib 227. The gas that has passed between the ribs 208 and 206 passes forward between the right end of the rib 208 and the rib 227.
 また、リブ208は、上述のリブ124の後に位置しており、リブ124と離間している。通路152の一部は、リブ208とリブ124との間に形成されている。リブ208の右端とリブ227との間を通過したガスは、リブ208とリブ124との間を左方へ向かって通過し、リブ124の左端とリブ127との間の接続ポイントにおいて、通路151と合流する。 リ ブ The rib 208 is located after the above-mentioned rib 124 and is separated from the rib 124. Part of the passage 152 is formed between the rib 208 and the rib 124. The gas that has passed between the right end of the rib 208 and the rib 227 passes to the left between the rib 208 and the rib 124, and at a connection point between the left end of the rib 124 and the rib 127, the passage 151 To join.
 なお、上蓋50の下面からは、通路152を形成するリブ201等と熱溶着される複数のリブが下向きに突出している。このリブは、リブ201等とともに、通路152を形成する。 From the lower surface of the upper lid 50, a plurality of ribs that are thermally welded to the ribs 201 and the like forming the passage 152 project downward. The rib forms a passage 152 together with the rib 201 and the like.
 通路153は、通路152と同構成である。具体的には、通路153を形成するリブ301、302、303、305、306、307、308、327の形状は、通路152を形成する上述のリブ201、202、203、205、206、207、208、227の形状と、それぞれ同一である。通路153は、リブ125の左端とリブ227との間の接続ポイントにおいて、通路151と合流している。なお、上蓋50の下面からは、通路153を形成するリブ301等と熱溶着される複数のリブが下向きに突出している。リブ301等と熱溶着される上蓋50のリブの形状は、通路153を形成するリブ301等と同形状であるので、説明を省略する。 The passage 153 has the same configuration as the passage 152. Specifically, the shapes of the ribs 301, 302, 303, 305, 306, 307, 308, and 327 that form the passage 153 are the same as those of the ribs 201, 202, 203, 205, 206, and 207 that form the passage 152. 208 and 227, respectively. The passage 153 joins the passage 151 at a connection point between the left end of the rib 125 and the rib 227. In addition, a plurality of ribs that are thermally welded to the ribs 301 and the like forming the passage 153 project downward from the lower surface of the upper lid 50. The shape of the rib of the upper lid 50 that is thermally welded to the rib 301 and the like is the same as the shape of the rib 301 and the like forming the passage 153, and a description thereof will be omitted.
 通路154は、通路153と左右対称な構成である。具体的には、通路154を形成するリブ401、402、403、405、406、407、408、427と、通路153を形成する上述のリブ301、302、303、305、306、307、308、327とは、リブ327を対称軸として、左右対称である。通路154は、左右方向9に延びるリブ410の右端と前後方向8に延びるリブ427の前端との間の接続ポイントにおいて、通路156と合流している。なお、上蓋50の下面からは、通路154を形成するリブ401等と熱溶着される複数のリブが下向きに突出している。リブ401等と熱溶着される上蓋50のリブの形状は、通路154を形成するリブ401等と同形状であるので、説明を省略する。 The passage 154 is symmetrical to the passage 153. Specifically, the ribs 401, 402, 403, 405, 406, 407, 408, and 427 that form the passage 154 and the ribs 301, 302, 303, 305, 306, 307, and 308 that form the passage 153 are described above. 327 is symmetric with respect to the rib 327 as the axis of symmetry. The passage 154 joins the passage 156 at a connection point between the right end of the rib 410 extending in the left-right direction 9 and the front end of the rib 427 extending in the front-rear direction 8. From the lower surface of the upper lid 50, a plurality of ribs that are thermally welded to the ribs 401 and the like forming the passage 154 project downward. The shape of the rib of the upper lid 50 that is thermally welded to the rib 401 and the like is the same as the shape of the rib 401 and the like forming the passage 154, and thus the description is omitted.
 通路155は、通路152と左右対称な構成である。具体的には、通路155を形成するリブ501、502、503、505、506、507、508、527と、通路152を形成する上述のリブ201、202、203、205、206、207、208、227とは、リブ327を対称軸として、左右対称である。通路155は、左右方向9に延びるリブ510の右端と前後方向8に延びるリブ527の前端との間の接続ポイントにおいて、通路156と合流している。なお、上蓋50の下面からは、通路155を形成するリブ501等と熱溶着される複数のリブが下向きに突出している。リブ501等と熱溶着される上蓋50のリブの形状は、通路155を形成するリブ501等と同形状であるので、説明を省略する。 The passage 155 is symmetrical to the passage 152. Specifically, the ribs 501, 502, 503, 505, 506, 507, 508, and 527 forming the passage 155 and the ribs 201, 202, 203, 205, 206, 207, 208, and 208 forming the passage 152 are described above. 227 is bilaterally symmetric with the rib 327 as the axis of symmetry. The passage 155 joins the passage 156 at a connection point between the right end of the rib 510 extending in the left-right direction 9 and the front end of the rib 527 extending in the front-rear direction 8. From the lower surface of the upper lid 50, a plurality of ribs that are thermally welded to the ribs 501 and the like forming the passage 155 project downward. The shape of the rib of the upper lid 50 that is heat-welded to the rib 501 and the like is the same as the shape of the rib 501 and the like forming the passage 155, and thus the description is omitted.
 通路156は、通気口161から、リブ115とリブ116との間の接続ポイントまでの通路151と、左右対称な構成である。具体的には、通路156を形成するリブ601、602、603、605、606、607、608、122、123、527と、通路151を形成する上述のリブ101、102、103、105、106、107、108、104、110、127とは、リブ327を対称軸として、左右対称である。通路151と通路156とは、リブ115とリブ116との間の接続ポイントで合流している。なお、上蓋50の下面からは、通路156を形成するリブ601等と熱溶着される複数のリブが下向きに突出している。リブ601等と熱溶着される上蓋50のリブの形状は、通路156を形成するリブ601等と同形状であるので、説明を省略する。 The passage 156 has a symmetrical structure with the passage 151 from the ventilation port 161 to the connection point between the rib 115 and the rib 116. Specifically, the ribs 601, 602, 603, 605, 606, 607, 608, 122, 123, and 527 forming the passage 156, and the above-described ribs 101, 102, 103, 105, and 106 forming the passage 151 are formed. 107, 108, 104, 110, and 127 are symmetric with respect to the rib 327 as the axis of symmetry. The passage 151 and the passage 156 join at a connection point between the rib 115 and the rib 116. From the lower surface of the upper lid 50, a plurality of ribs that are thermally welded to the ribs 601 and the like forming the passage 156 project downward. Since the shape of the rib of the upper lid 50 that is thermally welded to the rib 601 and the like is the same as the shape of the rib 601 and the like forming the passage 156, the description is omitted.
 通路151~156は、空間5内の液体を、還流孔231~236からセル室11~16内に戻す通路としても機能する。還流孔231~236は、中蓋40の前部を上下方向7に貫通する。還流孔231は、セル室11と通路151とを連通する。還流孔232は、セル室12と通路152とを連通する。還流孔233は、セル室13と通路153とを連通する。還流孔234は、セル室14と通路154とを連通する。還流孔235は、セル室15と通路155とを連通する。還流孔236は、セル室16と通路156とを連通する。 The passages 151 to 156 also function as passages for returning the liquid in the space 5 from the return holes 231 to 236 into the cell chambers 11 to 16. The return holes 231 to 236 penetrate the front part of the inner lid 40 in the vertical direction 7. The return hole 231 communicates the cell chamber 11 with the passage 151. The return hole 232 connects the cell chamber 12 and the passage 152. The return hole 233 connects the cell chamber 13 and the passage 153. The return hole 234 connects the cell chamber 14 and the passage 154. The reflux hole 235 connects the cell chamber 15 and the passage 155. The return hole 236 connects the cell chamber 16 and the passage 156.
 図6に示されるように、中蓋40の前部の下面からは、還流孔231~236をそれぞれ囲む6個の周壁リブ66が下向きに突出している。周壁リブ66は、揺れや振動によって電槽20内の電解液6が還流孔231~236に到達することを抑制する。各周壁リブ66は、下端から上方に切り欠かれた切欠67をそれぞれ有している。切欠67は、周壁リブ66を伝って電解液6が還流孔231~236に到達することを抑制する。 6As shown in FIG. 6, six peripheral wall ribs 66 respectively surrounding the return holes 231 to 236 project downward from the lower surface of the front part of the inner lid 40. The peripheral wall rib 66 suppresses the electrolyte 6 in the battery case 20 from reaching the return holes 231 to 236 due to shaking or vibration. Each peripheral wall rib 66 has a notch 67 cut out upward from the lower end. The notch 67 suppresses the electrolyte 6 from reaching the return holes 231 to 236 along the peripheral wall rib 66.
 図7に示す通路151~156を形成する中蓋40の前部上面41は、還流孔231~236に向かって傾斜している。空間5内で液化したガスからなる液体、或いは、揺れや振動によって還流孔231~236から通路151~156に進入した電解液6からなる液体は、還流孔231~236に向かって傾斜する前部上面41によって、還流孔231~236に導かれ、還流孔231~236からセル室11~16に戻る。 前 The front upper surface 41 of the inner lid 40 forming the passages 151 to 156 shown in FIG. 7 is inclined toward the return holes 231 to 236. The liquid composed of the gas liquefied in the space 5 or the liquid composed of the electrolytic solution 6 which has entered the passages 151 to 156 from the return holes 231 to 236 due to shaking or vibration is inclined forward toward the return holes 231 to 236. The upper surface 41 guides the liquid to the return holes 231 to 236, and returns to the cell chambers 11 to 16 from the return holes 231 to 236.
 揺れや振動によって還流孔231~236から通路151~156に進入した液体が排気口45に到達することを防止するため、第1空間130~141と、第2空間240~243とが空間5に形成されている。 In order to prevent the liquid that has entered the passages 151 to 156 from the return holes 231 to 236 due to shaking or vibration from reaching the exhaust port 45, the first spaces 130 to 141 and the second spaces 240 to 243 are connected to the space 5. Is formed.
 図9に示されるように、第1空間130は、リブ104と、リブ110と、リブ105とで囲まれた空間である。なお、図9では、第1空間130、131及び第2空間240、241は、ハッチングで示されている。 1As shown in FIG. 9, the first space 130 is a space surrounded by the rib 104, the rib 110, and the rib 105. In FIG. 9, the first spaces 130 and 131 and the second spaces 240 and 241 are indicated by hatching.
 リブ105の後端と、リブ104との間は、第1空間130の連通口142を形成する。すなわち、第1空間130は、1つの連通口142のみで通路151と連通している。連通口142を通じて、液体が通路151から第1空間130内に流入し、液体が第1空間130内から通路151に流出する。具体的には、連通口142から第1空間130内に流入した液体によって第1空間130内の液体が押し出されることにより、或いは、揺れや振動によって、第1空間130内の液体が第1空間130から通路151に流出する。第1空間130内から通路151に流出した液体は、通路151を流れる液体と衝突する。その結果、第1空間130内から通路151に流出した液体の勢いが弱められ、かつ、通路151を流れる液体の勢いが弱められる。連通口142は、通路151において、排気口45より還流孔231寄りの位置に形成されている。これにより、排気口45からの液体の漏れを、より効果的に抑制することができる。 A communication port 142 of the first space 130 is formed between the rear end of the rib 105 and the rib 104. That is, the first space 130 communicates with the passage 151 by only one communication port 142. The liquid flows from the passage 151 into the first space 130 through the communication port 142, and the liquid flows from the first space 130 to the passage 151. Specifically, the liquid in the first space 130 is pushed out by the liquid flowing into the first space 130 from the communication port 142, or the liquid in the first space 130 is shaken or vibrated. It flows out from 130 to the passage 151. The liquid flowing out of the first space 130 into the passage 151 collides with the liquid flowing through the passage 151. As a result, the momentum of the liquid flowing out of the first space 130 into the passage 151 is weakened, and the momentum of the liquid flowing through the passage 151 is weakened. The communication port 142 is formed in the passage 151 at a position closer to the recirculation hole 231 than the exhaust port 45. Thereby, leakage of the liquid from the exhaust port 45 can be more effectively suppressed.
 詳しく説明すると、図10に示されるように、リブ103と、リブ104と、中蓋40の前部上面41と、上蓋50の下面とは、通路151の一部であって、概ね前後方向8に沿って延びる直線状の第1直線通路部261を形成する。図10において、第1直線通路部261は、一点鎖線の斜線で示されている。第1空間130の連通口142は第1直線通路部261の延長線上にある。具体的には、連通口142は、前後方向8に延びる直線状のリブ104の前後方向8における中間に位置している。第1直線通路部261は、液体を第1空間130の連通口142に向かって導く。 More specifically, as shown in FIG. 10, the rib 103, the rib 104, the front upper surface 41 of the inner lid 40, and the lower surface of the upper lid 50 are a part of the passage 151 and are substantially in the front-rear direction 8. A first linear passage portion 261 extending in a straight line is formed. In FIG. 10, the first straight passage portion 261 is indicated by an alternate long and short dash line. The communication port 142 of the first space 130 is on an extension of the first straight passage 261. Specifically, the communication port 142 is located in the middle in the front-back direction 8 of the linear rib 104 extending in the front-back direction 8. The first straight passage portion 261 guides the liquid toward the communication port 142 of the first space 130.
 また、リブ102と、リブ106と、中蓋40の前部上面41と、上蓋50の下面とは、通路151の一部である第2通路部262を形成する。図10において、第2通路部262は、二点鎖線の斜線で示されている。第2通路部262は、概ね左右方向9に沿って延びる直線状である。第1空間130の連通口142は、直交する第1直線通路部261と第2通路部262との交差部263に面して設けられている。 The rib 102, the rib 106, the front upper surface 41 of the inner lid 40, and the lower surface of the upper lid 50 form a second passage 262 that is a part of the passage 151. In FIG. 10, the second passage portion 262 is indicated by a two-dot chain line. The second passage portion 262 is substantially linear and extends along the left-right direction 9. The communication port 142 of the first space 130 is provided facing an intersection 263 between the first straight passage 261 and the second passage 262 which are orthogonal to each other.
 図9に示されるように、還流孔231から通路151に進入した液体は、還流孔231から左方に向かって流れ、リブ103に一部が衝突して、その勢いを弱められた後、リブ103の後端とリブ101との間を左方に向かって進み、次いで、リブ104に衝突して、その勢いをさらに弱められる。その後、液体は、リブ104に沿って前方へ向かって流れ、連通口142から第1空間130内に流入する。第1空間130内に流入した液体は、第1空間130内にさらに流入した液体によって押し出され、或いは、揺れや振動によって、第1空間130内から、連通口142を通じて流出する。連通口142から流出する液体は、直線状のリブ104に沿って後方へ向かって流出する。すなわち、直線状のリブ104は、液体を連通口142に向かって前方に導き、かつ、連通口142を通じて第1空間130から流出する液体を後方に向かって導く。連通口142から後方へ向かって流出した液体は、リブ104に沿って前方へ向かって流れる液体と正面衝突する。連通口142から後方へ向かって流出した液体と、リブ104に沿って前方へ向かって流れる液体とが正面衝突することにより、通路151を流れる液体の勢いが弱められる。 As shown in FIG. 9, the liquid that has entered the passage 151 from the return hole 231 flows to the left from the return hole 231, partially collides with the rib 103, and after its momentum is weakened, The vehicle travels leftward between the rear end of the rib 103 and the rib 101, and then collides with the rib 104 to further reduce its momentum. After that, the liquid flows forward along the rib 104 and flows into the first space 130 from the communication port 142. The liquid that has flowed into the first space 130 is pushed out by the liquid that has flowed further into the first space 130, or flows out of the first space 130 through the communication port 142 due to shaking or vibration. The liquid flowing out of the communication port 142 flows backward along the linear rib 104. That is, the linear rib 104 guides the liquid forward toward the communication port 142 and guides the liquid flowing out of the first space 130 through the communication port 142 rearward. The liquid that has flowed backward from the communication port 142 collides with the liquid that flows forward along the rib 104 in front. The liquid flowing backward from the communication port 142 and the liquid flowing forward along the rib 104 collide head-on, so that the force of the liquid flowing through the passage 151 is reduced.
 また、左右方向9におけるリブ104とリブ103の前端との間の長さは、第1空間130に繋がる直前の通路151の通路幅L1である。通路幅L1は、本発明における「連通口に隣接する部分における通路の幅」の一例である。すなわち、本発明における「連通口に隣接する部分における通路の幅」とは、還流孔側かつ連通口近傍の通路のうち、液体が流れる向きに直交する方向における通路の一番狭い部分の幅を意味する。 の 長 The length between the rib 104 and the front end of the rib 103 in the left-right direction 9 is the passage width L1 of the passage 151 immediately before being connected to the first space 130. The passage width L1 is an example of the “width of the passage in a portion adjacent to the communication port” in the present invention. That is, the “width of the passage in the portion adjacent to the communication port” in the present invention refers to the width of the narrowest portion of the passage in the direction orthogonal to the direction in which the liquid flows, of the passage near the return hole and the communication port. means.
 連通口142の幅L2は、通路幅L1の約1.4倍である。すなわち、連通口142の幅L2は、十分な量の液体が連通口142を通じて第1空間130に流入できるように、通路幅L1より広くされており、かつ、通路151を流れる液体の勢いを弱めることができるだけの勢いで連通口142を通じて第1空間130から液体が流出するように、通路幅L1の1.5倍未満とされている。勢いを弱められた液体は、リブ105の後端とリブ102との間を右方に向かって流れる。そして、液体は、左右方向9に延びるリブ102に沿って、右方へ流れ、第1空間131内に流入する。なお、第1空間130の上下方向7視での面積は、連通口142の幅L2を二乗した値の1.5倍以上であることが好ましい。これにより、第1空間130内に流入した液体が直ぐに第1空間130から流出することを抑制することができる。他の第1空間131~141についても同様である。 幅 The width L2 of the communication port 142 is about 1.4 times the width L1 of the passage. That is, the width L2 of the communication port 142 is wider than the passage width L1 so that a sufficient amount of liquid can flow into the first space 130 through the communication port 142, and weakens the momentum of the liquid flowing through the passage 151. The passage width L1 is set to less than 1.5 times so that the liquid flows out of the first space 130 through the communication port 142 with as much force as possible. The liquid whose momentum has been weakened flows rightward between the rear end of the rib 105 and the rib 102. Then, the liquid flows rightward along the rib 102 extending in the left-right direction 9 and flows into the first space 131. Note that the area of the first space 130 as viewed in the up-down direction 7 is preferably at least 1.5 times the value obtained by squaring the width L2 of the communication port 142. Accordingly, it is possible to prevent the liquid that has flowed into the first space 130 from immediately flowing out of the first space 130. The same applies to the other first spaces 131 to 141.
 第1空間131は、リブ102と、リブ127と、リブ107とで囲まれた空間である。リブ107の後端と、リブ102との間は、第1空間131の連通口143を形成する。第1空間131は、1つの連通口143のみで通路151と連通している。すなわち、連通口143を通じて、液体が通路151から第1空間131内に流入し、液体が第1空間131内から通路151に流出する。具体的には、連通口143から第1空間131内に流入した液体によって第1空間131内の液体が押し出されることにより、或いは、揺れや振動によって、液体が第1空間131内から通路151に流出する。第1空間131内から通路151に流出した液体は、通路151を流れる液体と衝突する。その結果、第1空間131内から通路151に流出した液体の勢いが弱められ、かつ、通路151を流れる液体の勢いが弱められる。 The first space 131 is a space surrounded by the rib 102, the rib 127, and the rib 107. A communication port 143 of the first space 131 is formed between the rear end of the rib 107 and the rib 102. The first space 131 communicates with the passage 151 through only one communication port 143. That is, the liquid flows from the passage 151 into the first space 131 through the communication port 143, and the liquid flows out of the first space 131 to the passage 151. Specifically, the liquid in the first space 131 is pushed out by the liquid that has flowed into the first space 131 from the communication port 143, or the liquid flows from the first space 131 to the passage 151 by shaking or vibration. leak. The liquid flowing out of the first space 131 into the passage 151 collides with the liquid flowing through the passage 151. As a result, the momentum of the liquid flowing out of the first space 131 to the passage 151 is weakened, and the momentum of the liquid flowing through the passage 151 is weakened.
 詳しく説明すると、図10に示されるように、リブ102とリブ106と、中蓋40の前部上面41と、上蓋50の下面とは、通路151の一部であって、直線状の第1直線通路部264を形成する。図10において、第1直線通路部264は、一点鎖線の斜線で示されている。 More specifically, as shown in FIG. 10, the rib 102 and the rib 106, the front upper surface 41 of the inner lid 40, and the lower surface of the upper lid 50 are a part of the passage 151 and have a linear first shape. A straight passage portion 264 is formed. In FIG. 10, the first straight passage portion 264 is indicated by a dashed line.
 第1空間131の連通口143は第1直線通路部264の延長線上にある。具体的には、連通口143は、左右方向9に延びる直線状のリブ102における左右方向9の中間に位置する。第1直線通路部264は、液体を第1空間131に向かって導く。また、リブ106の右端と、リブ107と、中蓋40の前部上面41と、上蓋50の下面とは、通路151の一部である第2通路部265を形成する。図10において、第2通路部265は、二点鎖線の斜線で示されている。すなわち、第1空間131の連通口143は、直交する第1直線通路部264と第2通路部265との交差部266に面して設けられている。 連 The communication port 143 of the first space 131 is on an extension of the first straight passage portion 264. Specifically, the communication port 143 is located in the middle in the left-right direction 9 of the linear rib 102 extending in the left-right direction 9. The first straight passage portion 264 guides the liquid toward the first space 131. The right end of the rib 106, the rib 107, the front upper surface 41 of the inner lid 40, and the lower surface of the upper lid 50 form a second passage 265 that is a part of the passage 151. In FIG. 10, the second passage portion 265 is indicated by a two-dot chain line. That is, the communication port 143 of the first space 131 is provided so as to face the intersection 266 of the orthogonal first straight passage 264 and the second passage 265.
 第1直線通路部264をリブ102に沿って右方へ向かって流れる液体は、連通口143から第1空間131内に流入する。第1空間131内に流入した液体は、第1空間131内にさらに流入した液体によって押し出され、或いは、揺れや振動によって、第1空間131内から、連通口143を通じて流出する。連通口143から流出する液体は、直線状のリブ102に沿って左方へ向かって連通口143から流出する。すなわち、直線状のリブ102は、液体を連通口143に向かって右方に導き、かつ、連通口143を通じて第1空間131から流出する液体を左方に向かって導く。連通口143から左方へ向かって流出した液体は、リブ102に沿って通路151を右方へ向かって流れる液体と正面衝突する。連通口143から左方へ向かって流出した液体と、リブ104に沿って右方へ向かって流れる液体とが正面衝突することにより、通路151を流れる液体の勢いが弱められる。 The liquid flowing rightward along the first straight passage portion 264 along the rib 102 flows into the first space 131 from the communication port 143. The liquid that has flowed into the first space 131 is pushed out by the liquid that has flowed further into the first space 131, or flows out of the first space 131 through the communication port 143 due to shaking or vibration. The liquid flowing out of the communication port 143 flows out of the communication port 143 to the left along the linear rib 102. That is, the linear rib 102 guides the liquid to the right toward the communication port 143, and guides the liquid flowing out of the first space 131 through the communication port 143 to the left. The liquid that has flowed leftward from the communication port 143 collides with the liquid that flows rightward in the passage 151 along the rib 102. The liquid flowing to the left from the communication port 143 and the liquid flowing to the right along the rib 104 collide with each other, so that the force of the liquid flowing through the passage 151 is weakened.
 また、図9に示されるように、前後方向8におけるリブ102とリブ106の後端との間の長さは、第1空間131に繋がる直前の通路151の通路幅L3である。連通口143の幅L4は、通路幅L3と略同一である。すなわち、連通口143の幅L4は、液体が連通口143を通じて第1空間131に流入できるように、かつ、第1空間131から流出する液体によって通路151を流れる液体の勢いを弱めることができるように、通路幅L3と略同一にされている。その結果、通路151を右方に向かって流れる液体の勢いと、第1空間131から左方に向かって流出する液体の勢いの双方を弱めることができる。勢いを弱められた液体は、前後方向8に延びるリブ107に沿って前方へ流れ、第2空間240内に流入する。 As shown in FIG. 9, the length between the rear end of the rib 102 and the rear end of the rib 106 in the front-rear direction 8 is the passage width L3 of the passage 151 immediately before being connected to the first space 131. The width L4 of the communication port 143 is substantially the same as the passage width L3. That is, the width L4 of the communication port 143 is such that the liquid can flow into the first space 131 through the communication port 143, and the force of the liquid flowing through the passage 151 can be reduced by the liquid flowing out of the first space 131. In addition, the passage width L3 is substantially the same as the passage width L3. As a result, both the force of the liquid flowing rightward in the passage 151 and the force of the liquid flowing leftward from the first space 131 can be reduced. The weakened liquid flows forward along the rib 107 extending in the front-rear direction 8 and flows into the second space 240.
 図11に示されるように、第2空間240は、リブ107と、リブ108と、リブ109とで囲まれた空間である。なお、図11では、第2空間240、241は、実線の斜線(ハッチング)で示されている。 As shown in FIG. 11, the second space 240 is a space surrounded by the rib 107, the rib 108, and the rib 109. In FIG. 11, the second spaces 240 and 241 are indicated by solid oblique lines (hatched lines).
 リブ109の後端とリブ107の後端との間は、液体が流出入する連通口144を形成する。連通口144の幅L6は、第2空間240に繋がる直前の通路151の通路幅L5の1.5倍以上である。すなわち、第1空間130、131によって勢いを弱められた液体をスムースに第2空間240に導くため、連通口144の幅L6は、通路151の幅L5の1.5倍以上とされている。なお、図示例では、連通口144の幅L6は、通路151の幅L5の約2.8倍である。 連 A communication port 144 through which the liquid flows in and out is formed between the rear end of the rib 109 and the rear end of the rib 107. The width L6 of the communication port 144 is at least 1.5 times the width L5 of the passage 151 immediately before being connected to the second space 240. That is, the width L6 of the communication port 144 is set to be 1.5 times or more the width L5 of the passage 151 in order to smoothly guide the liquid weakened by the first spaces 130 and 131 to the second space 240. In the illustrated example, the width L6 of the communication port 144 is about 2.8 times the width L5 of the passage 151.
 上述のように、第1空間130、131は、通路を流れる液体の勢いを弱めて溢液を抑制するための空間であり、第2空間240は、液体を一時的に貯留して溢液を抑制するための空間である。 As described above, the first spaces 130 and 131 are spaces for suppressing the overflow by weakening the momentum of the liquid flowing through the passage, and the second space 240 is configured to temporarily store the liquid and remove the overflow. It is a space to suppress.
 第2空間240で一時的に貯留できずに第2空間240から溢れた液体は、連通口144から流出して左方に向かって流れ、第2空間241に流入する。 液体 The liquid that cannot be temporarily stored in the second space 240 and overflows from the second space 240 flows out from the communication port 144, flows toward the left, and flows into the second space 241.
 第2空間241は、リブ105と、リブ106と、リブ110とで囲まれた空間である。リブ106の右端とリブ110との間は、液体が流出入する連通口145を形成する。連通口145の幅L8は、第2空間241に繋がる直前の通路151の通路幅L7の1.5倍以上である。すなわち、第2空間240から流出した液体をスムースに第2空間241に導くため、連通口145の幅L8は、通路151の幅L7の1.5倍以上とされている。なお、図示例では、連通口145の幅L8は、通路151の幅L7の約2.8倍である。 The second space 241 is a space surrounded by the rib 105, the rib 106, and the rib 110. A communication port 145 through which liquid flows in and out is formed between the right end of the rib 106 and the rib 110. The width L8 of the communication port 145 is 1.5 times or more the passage width L7 of the passage 151 immediately before being connected to the second space 241. That is, in order to smoothly guide the liquid flowing out of the second space 240 to the second space 241, the width L8 of the communication port 145 is 1.5 times or more the width L7 of the passage 151. In the illustrated example, the width L8 of the communication port 145 is about 2.8 times the width L7 of the passage 151.
 次に、図12を参照して、通路152と連通する第1空間132、133を説明する。第1空間132は、リブ227と、リブ206と、リブ205とで囲まれた空間である。第1空間132は、1つの連通口146のみで通路152と連通している。すなわち、連通口146を通じて、液体が通路152から第1空間132内に流入し、液体が第1空間132内から通路152に流出する。具体的には、連通口146から第1空間132内に流入した液体によって第1空間132内の液体が押し出されることにより、或いは、揺れや振動によって、第1空間132内の液体が第1空間132から通路152に流出する。第1空間132内から通路152に流出した液体は、通路152を流れる液体と衝突する。その結果、第1空間132内から通路152に流出した液体の勢いが弱められ、かつ、通路152を流れる液体の勢いが弱められる。 Next, the first spaces 132 and 133 communicating with the passage 152 will be described with reference to FIG. The first space 132 is a space surrounded by the rib 227, the rib 206, and the rib 205. The first space 132 communicates with the passage 152 through only one communication port 146. That is, the liquid flows into the first space 132 from the passage 152 through the communication port 146, and the liquid flows out of the first space 132 to the passage 152. Specifically, the liquid in the first space 132 is pushed out by the liquid flowing into the first space 132 from the communication port 146, or the liquid in the first space 132 is shaken or vibrated. It flows out from 132 to the passage 152. The liquid flowing out of the first space 132 into the passage 152 collides with the liquid flowing through the passage 152. As a result, the momentum of the liquid flowing out of the first space 132 into the passage 152 is weakened, and the momentum of the liquid flowing through the passage 152 is weakened.
 左右方向9におけるリブ203とリブ205の前端との間の長さは、第1空間132に繋がる直前の通路152の通路幅L9である。連通口146の幅L10は、通路幅L9の約1.4倍である。すなわち、連通口146の幅L10は、十分な量の液体が連通口146を通じて第1空間132に流入できるように、通路幅L9より広くされており、かつ、通路152を流れる液体の勢いを弱めることができるだけの勢いで連通口146を通じて第1空間132から液体が流出するように、通路幅L9の1.5倍未満とされている。勢いを弱められた液体は、リブ205の後端とリブ202との間を左方に向かって流れる。そして、液体は、左右方向9に延びるリブ202に沿って、左方へ流れ、第1空間133内に流入する。 の 長 The length between the rib 203 and the front end of the rib 205 in the left-right direction 9 is the passage width L9 of the passage 152 immediately before being connected to the first space 132. The width L10 of the communication port 146 is about 1.4 times the width L9 of the passage. That is, the width L10 of the communication port 146 is wider than the passage width L9 so that a sufficient amount of liquid can flow into the first space 132 through the communication port 146, and weakens the momentum of the liquid flowing through the passage 152. The passage width L9 is set to less than 1.5 times so that the liquid flows out of the first space 132 through the communication port 146 with as much force as possible. The liquid whose flow has been weakened flows between the rear end of the rib 205 and the rib 202 toward the left. Then, the liquid flows leftward along the rib 202 extending in the left-right direction 9 and flows into the first space 133.
 第1空間133は、リブ202と、リブ127と、リブ208と、リブ207とで囲まれた空間である。第1空間133は、1つの連通口147のみで通路152と連通している。すなわち、連通口147を通じて、液体が通路152から第1空間133内に流入し、液体が第1空間133内から通路152に流出する。具体的には、連通口147から第1空間133内に流入した液体によって第1空間133内の液体が押し出されることにより、或いは、揺れや振動によって、第1空間133内の液体が第1空間133から通路152に流出する。第1空間133内から通路152に流出した液体は、通路152を流れる液体と衝突する。その結果、第1空間133内から通路152に流出した液体の勢いが弱められ、かつ、通路152を流れる液体の勢いが弱められる。 The first space 133 is a space surrounded by the rib 202, the rib 127, the rib 208, and the rib 207. The first space 133 communicates with the passage 152 by only one communication port 147. That is, the liquid flows from the passage 152 into the first space 133 through the communication port 147, and the liquid flows from the first space 133 to the passage 152. Specifically, the liquid in the first space 133 is pushed out by the liquid flowing into the first space 133 from the communication port 147, or the liquid in the first space 133 is shaken or vibrated. 133 flows out to the passage 152. The liquid flowing out of the first space 133 into the passage 152 collides with the liquid flowing through the passage 152. As a result, the momentum of the liquid flowing out of the first space 133 into the passage 152 is weakened, and the momentum of the liquid flowing through the passage 152 is weakened.
 リブ206の左端とリブ202との間の長さは、第1空間133に繋がる直前の通路152の通路幅L11である。連通口147の幅L12は、通路幅L11と略同一である。すなわち、連通口147の幅L12は、液体が連通口147を通じて第1空間133に流入できるように、かつ、第1空間133から流出する液体によって通路152を流れる液体の勢いを弱めることができるように、通路幅L11と略同一にされている。その結果、通路152を右方に向かって流れる液体の勢いと、第1空間133から左方に向かって流出する液体の勢いの双方を弱めることができる。 The length between the left end of the rib 206 and the rib 202 is the passage width L11 of the passage 152 immediately before being connected to the first space 133. The width L12 of the communication port 147 is substantially the same as the passage width L11. That is, the width L12 of the communication port 147 is such that the liquid can flow into the first space 133 through the communication port 147 and that the liquid flowing through the passage 152 can be weakened by the liquid flowing out of the first space 133. In addition, the passage width L11 is substantially the same as the passage width L11. As a result, both the momentum of the liquid flowing rightward in the passage 152 and the momentum of the liquid flowing leftward from the first space 133 can be reduced.
 上述のように、通路153を形成するリブ301~303、305~308、327、125の形状は、通路152を形成するリブ201~203、205~208、227、124の形状と同じである。したがって、通路153と連通する第1空間134、135の形状も第1空間132、133と同じであるので、説明を省略する。 As described above, the shapes of the ribs 301 to 303, 305 to 308, 327, and 125 that form the passage 153 are the same as the shapes of the ribs 201 to 203, 205 to 208, 227, and 124 that form the passage 152. Therefore, the shapes of the first spaces 134 and 135 communicating with the passage 153 are the same as those of the first spaces 132 and 133, and the description is omitted.
 また、上述のように、通路154を形成するリブ401~403、405~408、427、126の形状は、通路153を形成するリブ301~303、305~308、327、125の形状と左右対称である。したがって、通路154と連通する第1空間136、137の形状も、第1空間134、135の形状と左右対称であるので、説明を省略する。 Further, as described above, the shapes of the ribs 401 to 403, 405 to 408, 427, and 126 forming the passage 154 are symmetrical with the shapes of the ribs 301 to 303, 305 to 308, 327, and 125 forming the passage 153. It is. Therefore, the shapes of the first spaces 136 and 137 communicating with the passage 154 are also symmetrical with the shapes of the first spaces 134 and 135, and thus the description thereof is omitted.
 また、上述のように、通路155を形成するリブ501~503、505~508、527、126の形状は、通路152を形成するリブ201~203、205~208、227、124の形状と左右対称である。したがって、通路155と連通する第1空間138、139の形状も第1空間132、133と左右対称であるので、説明を省略する。 Further, as described above, the shapes of the ribs 501 to 503, 505 to 508, 527, and 126 forming the passage 155 are symmetrical with the shapes of the ribs 201 to 203, 205 to 208, 227, and 124 forming the passage 152. It is. Therefore, the shapes of the first spaces 138 and 139 communicating with the passage 155 are also bilaterally symmetric with the first spaces 132 and 133, and a description thereof will be omitted.
 また、上述のように、通路156を形成するリブ601~603、605~609、123、122の形状は、通路151を形成するリブ101~110の形状と左右対称である。したがって、通路156と連通する第1空間140、141の形状も同じであるので、説明を省略する。 As described above, the shapes of the ribs 601 to 603, 605 to 609, 123, and 122 forming the passage 156 are symmetrical to the shapes of the ribs 101 to 110 forming the passage 151. Therefore, the shapes of the first spaces 140 and 141 communicating with the passage 156 are the same, and the description is omitted.
[第1実施形態の効果]
 上述の実施形態では、連通口144、145の幅が通路151の幅の1.5倍以上である第2空間240、241に加え、第1空間130、131が通路151に連通して形成されている。第1空間130は、通路151に通じる1つの連通口142のみを有し、第1空間131は、通路151に通じる1つの連通口143のみを有している。また、連通口142、143の幅は、連通口142、143が繋がる通路151の幅の半分以上である。さらにまた、連通口142、143の幅は、連通口142、143が繋がる通路151の幅の1.5倍未満である。したがって、通路151を流れる液体の勢いを弱めることができるだけの勢い及び量で第1空間130、131から液体を流出させることができる。その結果、通路151に第2空間240、241と同構成の空間のみが設けられた蓋部材に比べ、溢液性能を高めることができる。
[Effects of First Embodiment]
In the above-described embodiment, in addition to the second spaces 240 and 241 in which the width of the communication ports 144 and 145 is 1.5 times or more the width of the passage 151, the first spaces 130 and 131 are formed to communicate with the passage 151. ing. The first space 130 has only one communication port 142 communicating with the passage 151, and the first space 131 has only one communication port 143 communicating with the passage 151. Further, the width of the communication ports 142 and 143 is at least half the width of the passage 151 to which the communication ports 142 and 143 are connected. Furthermore, the width of the communication ports 142 and 143 is less than 1.5 times the width of the passage 151 to which the communication ports 142 and 143 are connected. Therefore, the liquid can be made to flow out of the first spaces 130 and 131 with a momentum and an amount capable of weakening the momentum of the liquid flowing through the passage 151. As a result, the overflow performance can be improved as compared with a lid member in which only the space having the same configuration as the second spaces 240 and 241 is provided in the passage 151.
 また、上述の実施形態では、液体の勢いを弱めるための第1空間130、131は、液体を一時的に貯留するための第2空間240、241よりも、通路151における還流孔231に近い位置に位置している。したがって、第1空間130、131が第2空間240、241よりも、通路151における還流孔231から遠い位置に位置している場合に比べ、溢液性能を高めることができる。 Further, in the above-described embodiment, the first spaces 130 and 131 for weakening the momentum of the liquid are located closer to the return hole 231 in the passage 151 than the second spaces 240 and 241 for temporarily storing the liquid. It is located in. Therefore, the overflow performance can be improved as compared with the case where the first spaces 130 and 131 are located farther from the return hole 231 in the passage 151 than the second spaces 240 and 241.
 また、上述の実施形態では、第1空間130、131の連通口142、143は、直線状の第1直線通路部261、264の延長線上であって、直交する第1直線通路部261と第2通路部262との交差部263に面して設けられている。したがって、通路151を流れる液体と、連通口142、143を通じて第1空間130、131から流出する液体とを、正面衝突させることができる。その結果、通路151を流れる液体と、連通口142、143を通じて第1空間130、131から流出する液体とが、正面衝突しない場合に比べ、溢液性能を高めることができる。 Further, in the above-described embodiment, the communication ports 142 and 143 of the first spaces 130 and 131 are on an extension of the linear first linear passage portions 261 and 264 and are orthogonal to the first linear passage portions 261. It is provided facing the intersection 263 with the two passages 262. Therefore, the liquid flowing through the passage 151 and the liquid flowing out of the first spaces 130 and 131 through the communication ports 142 and 143 can collide head-on. As a result, the liquid overflowing performance can be improved as compared with a case where the liquid flowing through the passage 151 and the liquid flowing out of the first spaces 130 and 131 through the communication ports 142 and 143 do not collide with each other.
 また、上述の実施形態では、第1直線通路部261と第2通路部262とは直交するので、溢液性能を安定させることができる。詳しく説明すると、連通口142に向かって流れる液体の量や勢いと、連通口142を通じて第1空間130から流出する液体の量や勢いとの間に差があると、第1直線通路部261と第2通路部262とのなす角度によって、交差部263から第2通路部262に流れ込む液体の勢いが変化する。そうすると、連通口142に向かって流れる液体の量や勢いと、連通口142を通じて第1空間130から流出する液体の量や勢いとの間に差に応じて溢液性能が変化することになる。第1直線通路部261と第2通路部262とを直交させることにより、連通口142に向かって流れる液体の量や勢いと、連通口142を通じて第1空間130から流出する液体の量や勢いとの間の差による溢液性能の変化を低減させることができる。すなわち、溢液性能を安定させることができる。第1直線通路部264、第2通路部265、第1空間131についても同様である。 In addition, in the above-described embodiment, the first straight passage 261 and the second passage 262 are orthogonal to each other, so that the overflow performance can be stabilized. More specifically, if there is a difference between the amount and the force of the liquid flowing toward the communication port 142 and the amount and the force of the liquid flowing out of the first space 130 through the communication port 142, the first straight passage portion 261 and The momentum of the liquid flowing from the intersection 263 to the second passage 262 changes depending on the angle formed by the second passage 262. Then, the overflow performance changes according to the difference between the amount and the force of the liquid flowing toward the communication port 142 and the amount and the force of the liquid flowing out of the first space 130 through the communication port 142. By making the first straight passage portion 261 and the second passage portion 262 orthogonal, the amount and the force of the liquid flowing toward the communication port 142 and the amount and the force of the liquid flowing out of the first space 130 through the communication port 142 are determined. The change in the overflow performance due to the difference between the two can be reduced. That is, the overflow performance can be stabilized. The same applies to the first straight passage 264, the second passage 265, and the first space 131.
 また、第1空間130と第1空間131とのうち、還流孔231に近い方の第1空間130の連通口142の幅を、還流孔231から遠い方の第1空間131の連通口143の幅よりも広くすることにより、溢液性能をさらに高めることができる。詳しく説明すると、還流孔231に近い方が、通路151を流れる液体の量が多い。還流孔231に近く、より多くの液体が通路を流れる第1空間130の連通口142の幅を、還流孔231から遠い方の第1空間131の連通口143の幅よりも広くすることにより、通路151を流れる液体の勢いを弱めることができるだけの十分な量の液体を第1空間130に流入させることができる。その結果、溢液性能をさらに高めることができる。 Further, of the first space 130 and the first space 131, the width of the communication port 142 of the first space 130 closer to the return hole 231 is set to the width of the communication port 143 of the first space 131 far from the return hole 231. By making the width wider than the width, the overflow performance can be further improved. More specifically, the amount of liquid flowing through the passage 151 is larger near the return hole 231. By making the width of the communication port 142 of the first space 130 close to the return hole 231 and through which more liquid flows through the passage larger than the width of the communication port 143 of the first space 131 far from the return hole 231, A sufficient amount of liquid that can reduce the force of the liquid flowing through the passage 151 can flow into the first space 130. As a result, the overflow performance can be further improved.
 なお、上述では、通路151における第1空間130、131の効果について説明したが、通路152~156についても、上述と同様の効果が得られる。 In the above description, the effects of the first spaces 130 and 131 in the passage 151 have been described. However, the same effects as described above can be obtained in the passages 152 to 156.
[第1課題を解決するための他の実施形態]
 上述の実施形態では、第1空間130の連通口142の幅が、通路151の幅の約1.4倍であり、第1空間131の連通口143の幅が、通路151の幅と略同一である例を説明した。しかしながら、第1空間130、131の連通口142、143の幅は、通路151の幅と略同一以上、かつ、1.2倍未満であってもよい。
[Another embodiment for solving the first problem]
In the embodiment described above, the width of the communication port 142 of the first space 130 is about 1.4 times the width of the passage 151, and the width of the communication port 143 of the first space 131 is substantially the same as the width of the passage 151. Has been described. However, the width of the communication ports 142 and 143 of the first spaces 130 and 131 may be substantially equal to or greater than the width of the passage 151 and less than 1.2 times.
 また、上述の実施形態では、第1空間130と第1空間131とのうち、還流孔231に近い方の第1空間130の連通口142の幅を、還流孔231から遠い方の第1空間131の連通口143の幅よりも広くする例を説明した。しかしながら、第1空間130の連通口142の幅と、第1空間131の連通口143の幅とは、略同一であってもよい。その場合も、第2空間240、241と同構成の空間のみが通路に形成された蓋部材よりも、溢液性能が向上することが確認された。 Further, in the above-described embodiment, of the first space 130 and the first space 131, the width of the communication port 142 of the first space 130 that is closer to the return hole 231 is set to the first space that is farther from the return hole 231. The example in which the width is larger than the width of the communication port 143 of the 131 has been described. However, the width of the communication port 142 of the first space 130 and the width of the communication port 143 of the first space 131 may be substantially the same. Also in this case, it was confirmed that only the space having the same configuration as the second spaces 240 and 241 had higher overflow performance than the lid member formed in the passage.
 また、上述の実施形態では、液体を連通口142、143に導く第1直線通路部261と第2通路部262とが直交する例を説明した。しかしながら、第1直線通路部261と第2通路部262とは直交していなくてもよい。第1直線通路部261と第2通路部262とが直交しない場合であっても、第2空間240、241と同構成の空間みが通路に形成された蓋部材よりも、溢液性能が向上することが確認された。 In the above embodiment, the example in which the first straight passage 261 and the second passage 262 for guiding the liquid to the communication ports 142 and 143 are orthogonal to each other has been described. However, the first straight passage 261 and the second passage 262 do not have to be orthogonal. Even when the first straight passage portion 261 and the second passage portion 262 are not orthogonal to each other, the overflow performance is improved as compared with the lid member having the same space as the second spaces 240 and 241 formed in the passage. It was confirmed that.
 また、上述の実施形態では、第1直線通路部261と第2通路部262とが共に直線状である例を説明した。しかしながら、第1直線通路部261と第2通路部262とは、円弧状など、湾曲していてもよい。その場合も、第2空間240、241と同構成の空間のみが通路に形成された蓋部材よりも、溢液性能が向上することが確認された。 In the above-described embodiment, an example in which the first straight passage 261 and the second passage 262 are both linear has been described. However, the first straight passage portion 261 and the second passage portion 262 may be curved, such as in an arc shape. Also in this case, it was confirmed that only the space having the same configuration as the second spaces 240 and 241 had higher overflow performance than the lid member formed in the passage.
 上述の実施形態では、排気口45が蓋部材30の側壁を構成する上蓋50の周壁52に設けられた例を説明した。しかしながら、排気口45は、蓋部材30の天壁を構成する上蓋50の板状部51に設けられていてもよいし、中蓋40の前部を左右或いは前後に広げて、当該広げた部分に設けられていてもよい。 In the above-described embodiment, the example in which the exhaust port 45 is provided on the peripheral wall 52 of the upper lid 50 that forms the side wall of the lid member 30 has been described. However, the exhaust port 45 may be provided in the plate-shaped portion 51 of the upper lid 50 that constitutes the top wall of the lid member 30, or the front part of the inner lid 40 may be expanded left and right or back and forth, and the expanded portion may be provided. May be provided.
 上述の実施形態では、第1空間130、131は、1つの連通口142、143を通じて通路151と連通する例を説明した。しかしながら、第1空間130、131は、連通口142、143に加え、液体が通過しない程度の幅の開口やスリットや孔を通じて通路151と連通していてもよい。当該「液体が通過しない程度の幅の開口、スリット、孔」は、本発明における「1つの連通口」には含まれない。 In the above-described embodiment, an example in which the first spaces 130 and 131 communicate with the passage 151 through one communication port 142 or 143 has been described. However, the first spaces 130 and 131 may be in communication with the passage 151 through an opening, a slit, or a hole having a width that does not allow the liquid to pass, in addition to the communication ports 142 and 143. The “openings, slits, and holes having a width that does not allow liquid to pass through” are not included in “one communication port” in the present invention.
 なお、本発明の一実施形態は、以下の形で実施することができる。 Note that one embodiment of the present invention can be implemented in the following forms.
(1)
 上部に開口を有し、電極群及び電解液を収容する電槽と、
 上記開口を封口し、且つ排気口が形成された蓋部材とを備え、
 上記蓋部材は、
 上記電槽内と連通する還流孔が形成された底壁と、
 上記底壁と対向する天壁と、
 上記底壁に立設されたリブと、を有し、
 上記リブは、
 上記還流孔から上記排気口に至る通路と、
 当該通路と1つの連通口を介して連通し、当該連通口を通じて上記電解液が流入及び流出可能な第1空間と、を形成し、
 上記連通口の幅は、当該連通口に隣接する部分における上記通路の幅の1.5倍未満である鉛蓄電池。
(1)
A container having an opening at the top and containing an electrode group and an electrolytic solution,
Closing the opening, and a lid member formed with an exhaust port,
The lid member,
A bottom wall formed with a return hole communicating with the inside of the battery case,
A top wall facing the bottom wall,
A rib erected on the bottom wall,
The rib is
A passage from the return hole to the exhaust port,
A first space through which the electrolyte solution can flow in and out through the communication port and the communication port through one communication port,
A lead-acid battery, wherein the width of the communication port is less than 1.5 times the width of the passage in a portion adjacent to the communication port.
(2)
 上記連通口の幅は、当該連通口に隣接する部分における上記通路の幅の半分以上である(1)に記載の鉛蓄電池。
(2)
The lead storage battery according to (1), wherein a width of the communication port is at least half a width of the passage in a portion adjacent to the communication port.
(3)
 上記リブは、
 上記通路と連通し、液体が流入する第2空間をさらに形成し、
 上記第2空間は、複数の連通口と、上記通路の幅の1.5倍以上の幅の1つの連通口との少なくとも一方を通じて上記通路と連通し、かつ、上記還流孔と直接連通せず、
 上記第1空間は、上記第2空間よりも、上記通路における上記還流孔に近い位置に位置する(1)または(2)に記載の鉛蓄電池。
(3)
The rib is
A second space that communicates with the passage and into which the liquid flows, is further formed;
The second space communicates with the passage through at least one of a plurality of communication openings and one communication opening having a width of 1.5 times or more the width of the passage, and does not directly communicate with the return hole. ,
The lead storage battery according to (1) or (2), wherein the first space is located closer to the return hole in the passage than the second space.
(4)
 上記リブは、
 上記通路の一部であって、直線状の第1直線通路部と、
 上記第1直線通路部と交差する第2通路部と、を形成し、
 上記第1空間の連通口は、上記第1直線通路部の延長上であって、上記第1直線通路部と上記第2通路部との交差部に面して設けられた(1)から(3)のいずれかに記載の鉛蓄電池。
(4)
The rib is
A first straight passage portion which is a part of the passage and is linear;
A second passage section intersecting with the first straight passage section,
The communication port of the first space is provided on the extension of the first straight passage portion and facing the intersection of the first straight passage portion and the second passage portion. The lead storage battery according to any one of 3).
(5)
 上記第1直線通路部と、上記第2通路とは、直交する(4)に記載の鉛蓄電池。
(5)
The lead storage battery according to (4), wherein the first straight passage portion and the second passage are orthogonal to each other.
(6)
 上記リブは、上記第1直線通路部の一部及び上記第1空間の一部を区画する直線状のリブを含み、
 上記連通口は、上記直線状のリブの中間に位置する(4)または(5)に記載の鉛蓄電池。
(6)
The rib includes a linear rib that defines a part of the first straight passage portion and a part of the first space,
The lead-acid battery according to (4) or (5), wherein the communication port is located in the middle of the linear rib.
[鉛蓄電池の第2課題] [Second problem of lead storage battery]
 鉛蓄電池は、電解液を貯留する電槽を備える。電槽は、電解液をそれぞれ貯留する複数のセル室を有する。鉛蓄電池は、車両などに搭載され、車両に搭載されたエンジン等からの熱によって加熱される。鉛蓄電池が加熱されると、各セル室にそれぞれ貯留された電解液の温度が上昇する。温度が上昇した電解液は、ミストや水蒸気からなるガスを生成する。生成されたガスによってセル室の内圧が高くなる。セル室内の内圧が高くなると、セル室内のガスは、電槽の開口を閉塞する蓋部材に設けられた排気口から外部に排出される。 Lead storage batteries are equipped with a battery case for storing electrolyte. The battery case has a plurality of cell chambers for storing the electrolytic solution, respectively. The lead storage battery is mounted on a vehicle or the like, and is heated by heat from an engine or the like mounted on the vehicle. When the lead storage battery is heated, the temperature of the electrolyte stored in each cell chamber rises. The electrolytic solution having an increased temperature generates a gas composed of mist and water vapor. The generated gas increases the internal pressure of the cell chamber. When the internal pressure in the cell chamber increases, the gas in the cell chamber is discharged to the outside from an exhaust port provided in a lid member that closes the opening of the battery case.
 セル室内のガスが蓋部材の排気口から外部に排出されることによって、セル室内の電解液の量が減少する。電解液の減少量は、セル室ごとに相違する。その結果、鉛蓄電池の使用に伴って、各セル室にそれぞれ貯留された電解液の量に差が生じる。 (4) The amount of electrolyte in the cell chamber is reduced by discharging the gas in the cell chamber to the outside through the exhaust port of the lid member. The amount of decrease in the electrolytic solution differs for each cell chamber. As a result, with the use of the lead storage battery, there is a difference in the amount of the electrolyte stored in each cell chamber.
 本願発明者は、実験の結果、電槽の各セル室のうち、エンジンからの熱によって暖められやすい外側のセル室の方が、内側のセル室よりも、電解液の減少量が多いとの知見を得た。 The inventor of the present application has found that, as a result of the experiment, among the cell chambers of the battery case, the outer cell chamber that is easily heated by the heat from the engine has a larger reduction amount of the electrolyte than the inner cell chamber. Obtained knowledge.
 また、本願発明者は、実験の結果、蓋部材に設けられた通気口から排気口に至る通路の長さの長短によって、セル室内の電解液の減少量が相違するのではないかとの考えを得た。詳しく説明すると、エンジンの駆動が停止され、鉛蓄電池が外気温によって冷却されると、電解液の温度の低下に伴ってセル室内の内圧が低下する。セル室内の内圧が低下することにより、通路上に滞留するガスがセル室内に引き込まれる。セル室内に引き込まれたガスは、温度の低下に伴って液化し、電解液に戻る。したがって、本願発明者は、通路の長さが長いほど、通路上に滞留するガスの量が多くなるので、通路の長さが長いほど、温度の低下に伴ってセル室内に引き込まれるガスの量が多くなり、その結果、電解液の減少量が低下すると考えた。 In addition, as a result of the experiment, the inventor of the present application has thought that the amount of reduction of the electrolyte in the cell chamber may be different depending on the length of the passage from the vent port to the exhaust port provided in the lid member. Obtained. More specifically, when the driving of the engine is stopped and the lead storage battery is cooled by the outside air temperature, the internal pressure in the cell chamber decreases as the temperature of the electrolyte decreases. As the internal pressure in the cell chamber decreases, gas remaining on the passage is drawn into the cell chamber. The gas drawn into the cell chamber liquefies as the temperature decreases and returns to the electrolyte. Therefore, the inventor of the present application concluded that the longer the length of the passage, the larger the amount of gas stagnating on the passage, and the longer the length of the passage, the more the amount of gas drawn into the cell chamber with a decrease in temperature. , And as a result, the decrease in the amount of the electrolytic solution is considered to decrease.
 そこで、本願発明者は、各セル室の通気口から排気口にそれぞれ至る複数の通路の長さの差によって、各セル室における電解液の減少量の差を低減し、各セル室がそれぞれ貯留する電解液の量の差を低減する本願発明をなした。 Therefore, the inventor of the present application reduced the difference in the amount of reduction in the electrolyte in each cell chamber by the difference in the lengths of the plurality of passages from the ventilation port to the exhaust port in each cell chamber, and stored the respective cell chambers respectively. The present invention has been made to reduce the difference in the amount of electrolyte solution to be used.
[第2概要説明] [Second outline explanation]
 初めに、本発明の一実施形態の鉛蓄電池の概要について説明する。本発明の一実施形態の鉛蓄電池は、開口を有し、当該開口に連続する内部空間に仕切板が設けられることによって、外縁側に区画された第1セル室及び当該第1セル室より内側に区画された第2セル室を有する電槽と、上記開口を封口しており、中継空間が内部に区画されており、上記第1セル室と当該中継空間とを連通する第1通気口、上記第2セル室と当該中継空間とを連通する第2通気口、及び当該中継空間と外部とを連通する排気口と、を有する蓋部材と、を備える。上記蓋部材は、上記第1通気口から上記排気口に至る第1通路、及び上記第2通気口から上記排気口に至る第2通路を形成するリブを有する。上記第1通路の長さは、上記第2通路の長さより長く設定されている。 First, an outline of the lead storage battery of one embodiment of the present invention will be described. The lead storage battery of one embodiment of the present invention has an opening, and a partition plate is provided in an internal space continuous with the opening, so that the first cell chamber partitioned on the outer edge side and the inner side of the first cell chamber. A battery case having a second cell chamber partitioned into a cell, a first ventilation opening that seals the opening, a relay space is partitioned inside, and a communication port between the first cell chamber and the relay space; A lid member having a second vent that communicates the second cell chamber with the relay space, and an exhaust port that communicates the relay space with the outside is provided. The lid member has a rib that forms a first passage from the first vent to the exhaust port and a second passage from the second vent to the exhaust port. The length of the first passage is set longer than the length of the second passage.
 外気温の上昇によってセル室に貯留された電解液の温度が上昇する。温度が上昇した電解液は、ミストや水蒸気からなるガスを生成する。生成されたガスによって第1セル室内の内圧が上昇すると、第1セル室において生成されガスは、第1通気口から第1通路に進入する。生成されたガスによって第2セル室内の内圧が上昇すると、第2セル室において生成されたガスは、第2通気口から第2通路に進入する。第1通路及び第2通路に進入したガスは、排気口から外部に排出される。外気温の低下によってセル室内に貯留された電解液の温度が低下すると、セル室内のガスが液化し、ガスが液化することにより、セル室内の内圧が低下する。内圧が低下した第1セル室は、第1通路に滞留するガスを引き込む。内圧が低下した第2セル室は、第2通路に滞留するガスを引き込む。第1通路の長さは、第2通路の長さよりも長い。したがって、第1通路に滞留するガスの量は、第2通路に滞留するガスの量よりも多い。そうすると、第1セル室が引き込むガスの量は、第2セル室が引き込むガスの量よりも多くなる。すなわち、第2セル室よりも多くのガスを生成する第1セル室は、外気温の低下に伴って、第2セル室よりも多くのガスを引き込む。したがって、第1通路の長さと第2通路の長さとが同じである構成や、第1通路の長さが第2通路の長さよりも短い構成よりも、第1セル室に貯留された電解液の減少量と、第2セル室に貯留された電解液の減少量との差が低減する。その結果、上記構成よりも、第1セル室に貯留された電解液の量と、第2セル室に貯留された電解液の量との間の経時的な差を低減することができる。 温度 The temperature of the electrolyte stored in the cell chamber rises due to the rise in outside air temperature. The electrolytic solution having an increased temperature generates a gas composed of mist and water vapor. When the internal pressure in the first cell chamber is increased by the generated gas, the gas generated in the first cell chamber enters the first passage from the first vent. When the internal pressure in the second cell chamber is increased by the generated gas, the gas generated in the second cell chamber enters the second passage from the second vent. The gas that has entered the first passage and the second passage is discharged to the outside from the exhaust port. When the temperature of the electrolyte stored in the cell chamber decreases due to a decrease in the outside air temperature, the gas in the cell chamber liquefies, and the gas liquefies, so that the internal pressure in the cell chamber decreases. The first cell chamber having a reduced internal pressure draws the gas remaining in the first passage. The second cell chamber having a reduced internal pressure draws the gas remaining in the second passage. The length of the first passage is longer than the length of the second passage. Therefore, the amount of gas staying in the first passage is larger than the amount of gas staying in the second passage. Then, the amount of gas drawn into the first cell chamber becomes larger than the amount of gas drawn into the second cell chamber. That is, the first cell chamber that generates more gas than the second cell chamber draws in more gas than the second cell chamber as the outside air temperature decreases. Therefore, the electrolyte stored in the first cell chamber is smaller than the configuration in which the length of the first passage is equal to the length of the second passage or the configuration in which the length of the first passage is shorter than the length of the second passage. The difference between the decrease amount of the electrolyte solution and the decrease amount of the electrolyte stored in the second cell chamber is reduced. As a result, a temporal difference between the amount of the electrolyte stored in the first cell chamber and the amount of the electrolyte stored in the second cell chamber can be reduced as compared with the above configuration.
 ここで、上記第1通路と上記第2通路とは合流しており、上記第1通気口から上記第1通路と上記第2通路との合流位置までの長さは、上記第2通気口から当該合流位置までの長さよりも長く設定されていてもよい。 Here, the first passage and the second passage are merged, and the length from the first vent to the merging position of the first passage and the second passage is from the second vent. The length may be set to be longer than the length to the merging position.
 第1通路及び第2通路に進入したガスの一部は、第1通路及び第2通路において冷やされ、液化する。液化したガスからなる液体は、第1通路及び第2通路を流れ、第1セル室及び第2セル室に戻る。第1通気口から上記第1通路と上記第2通路との合流位置までの長さは、第2通気口から当該合流位置までの長さよりも長く設定されているので、蓋部材内の限られた空間内において、第1通路と第2通路とが合流しない場合に比べ、第1通路の長さ及び第2通路の長さを長くすることができる。第1通路の長さ及び第2通路の長さを長くすることができるので、中継空間で液化するガスの量を増やすことができる。その結果、第1セル室及び第2セル室における電解液の減少量を低減することができる。 一部 Part of the gas that has entered the first passage and the second passage is cooled and liquefied in the first passage and the second passage. The liquid composed of the liquefied gas flows through the first passage and the second passage, and returns to the first cell chamber and the second cell chamber. Since the length from the first vent to the junction of the first passage and the second passage is set longer than the length from the second vent to the junction, the length within the lid member is limited. In the closed space, the length of the first passage and the length of the second passage can be made longer than when the first passage and the second passage do not merge. Since the length of the first passage and the length of the second passage can be increased, the amount of gas liquefied in the relay space can be increased. As a result, it is possible to reduce the amount of reduction of the electrolyte in the first cell chamber and the second cell chamber.
 また、上記仕切板によって、上記第2セル室よりも内側に第3セル室が区画されていてもよい。上記蓋部材は、上記中継空間と上記第3セル室とを連通する第3通気口を有する。上記リブは、上記第3通気口から上記排気口に至る第3通路を形成する。上記第2通路の長さは、上記第3通路の長さより長く設定されている。 The third cell chamber may be partitioned by the partition plate inside the second cell chamber. The lid member has a third vent that communicates the relay space with the third cell chamber. The rib forms a third passage from the third ventilation port to the exhaust port. The length of the second passage is set longer than the length of the third passage.
 電槽は、外側から順に、第1セル室、第2セル室、及び第3セル室を有する。外気温の上昇に伴って、第1セル室に貯留された電解液は、第2セル室に貯留された電解液よりも多くの量のガスを生成する。外気温の上昇に伴って、第2セル室に貯留された電解液は、第3セル室に貯留された電解液よりも多くの量のガスを生成する。一方、第1セル室の第1通路の長さは、第2セル室の第2通路の長さよりも長く、第2セル室の第2通路の長さは、第3セル室の第3通路の長さよりも長い。したがって、第1セル室に貯留された電解液の減少量と、第2セル室に貯留された電解液の減少量と、第3セル室に貯留された電解液の減少量との差を低減することができる。その結果、第1セル室に貯留された電解液の量と、第2セル室に貯留された電解液の量と、第3セル室に貯留された電解液の量との間の経時的な差を低減することができる。 The battery case has a first cell chamber, a second cell chamber, and a third cell chamber in order from the outside. As the outside air temperature rises, the electrolyte stored in the first cell chamber generates a larger amount of gas than the electrolyte stored in the second cell chamber. As the outside air temperature rises, the electrolyte stored in the second cell chamber generates a larger amount of gas than the electrolyte stored in the third cell chamber. On the other hand, the length of the first passage of the first cell chamber is longer than the length of the second passage of the second cell chamber, and the length of the second passage of the second cell chamber is equal to the length of the third passage of the third cell chamber. Longer than the length. Therefore, the difference between the reduced amount of the electrolyte stored in the first cell chamber, the reduced amount of the electrolyte stored in the second cell chamber, and the reduced amount of the electrolyte stored in the third cell chamber is reduced. can do. As a result, there is a temporal change in the amount of the electrolyte stored in the first cell chamber, the amount of the electrolyte stored in the second cell chamber, and the amount of the electrolyte stored in the third cell chamber. The difference can be reduced.
 また、上記蓋部材は、上記中継空間を区画し、底面から突出する凸部を有し、上記凸部の壁面は、当該排気口側へ漸次傾斜する傾斜面であってもよい。 The lid member may define the relay space and have a protrusion projecting from a bottom surface, and a wall surface of the protrusion may be an inclined surface that is gradually inclined toward the exhaust port.
 例えば、鉛蓄電池が車両に搭載され、鉛蓄電池を搭載する車両が坂道を走行し、凸部の排気口側が下になるように鉛蓄電池が傾斜した場合、リブが形成する段差によって、液体がリブを超えて排気口側に流れることが抑制される。一方、凸部の通気口側が下になるように鉛蓄電池が傾斜した場合、傾斜面によって、液体が凸部を超えて通気口側に流れ得る。その結果、電解液が排気口から漏れ出ることを抑制できるとともに、電解液の減液量をさらに低減することができる。 For example, when a lead-acid battery is mounted on a vehicle, the vehicle on which the lead-acid battery is mounted travels on a slope, and the lead-acid battery is inclined such that the exhaust port side of the convex portion is downward, the liquid is formed by the step formed by the rib. Over the exhaust port side is suppressed. On the other hand, when the lead storage battery is inclined such that the vent side of the convex portion is downward, the liquid can flow to the vent side beyond the convex portion due to the inclined surface. As a result, the leakage of the electrolyte from the exhaust port can be suppressed, and the amount of reduction of the electrolyte can be further reduced.
 また、上記凸部の先端は、上記通気口側に突出する突出片を有していてもよい。 先端 Furthermore, the tip of the projection may have a protruding piece projecting toward the vent.
 通気口側における凸部の先端部に突出片が設けられることにより、液体が凸部を超えて排気口側に流れることがさらに抑制される。その結果、電解液の減液量をさらに低減することができる。 (4) Since the protruding piece is provided at the tip of the projection on the ventilation port side, the flow of the liquid beyond the projection to the exhaust port side is further suppressed. As a result, the amount of reduction of the electrolytic solution can be further reduced.
[第2実施形態] [Second embodiment]
 第2実施形態の鉛蓄電池を、適宜図面を参照しながら説明する。なお、上記第1実施形態と共通する構成については、該第1実施形態で用いた図面を流用する。 鉛 The lead storage battery of the second embodiment will be described with reference to the drawings as appropriate. In addition, about the structure common to the said 1st Embodiment, the drawing used in the said 1st Embodiment is diverted.
 図1及び図2に示される鉛蓄電池10は、例えば、車両に搭載され、エンジンを始動させる動力源等に用いられる。 The lead storage battery 10 shown in FIGS. 1 and 2 is mounted on, for example, a vehicle and used as a power source for starting an engine.
 鉛蓄電池10は、一面に開口を有する矩形箱状の電槽20と、電槽20の開口を閉塞する蓋部材30と、を備える。図2は、図1におけるII-II断面図であって、後述の負極柱33の中心軸を通る平面で鉛蓄電池10を切断した断面図である。以下では、開口が設けられた電槽20の一面が上面であるものとして上下方向7を定義し、矩形箱状の電槽20の短辺に沿う方向を前後方向8と定義し、長辺に沿う方向を左右方向9と定義して説明する。上下方向7と、前後方向8と、左右方向9とは、互いに直交する。 (4) The lead storage battery 10 includes a rectangular box-shaped battery case 20 having an opening on one surface, and a lid member 30 for closing the opening of the battery case 20. FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, and is a cross-sectional view of the lead storage battery 10 cut along a plane passing through a central axis of a negative electrode post 33 described later. In the following, the vertical direction 7 is defined as one surface of the battery case 20 provided with the opening is the upper surface, the direction along the short side of the rectangular box-shaped battery case 20 is defined as the front-back direction 8, and the long side is defined. A description will be given by defining a direction along the horizontal direction 9. The vertical direction 7, the front-back direction 8, and the left-right direction 9 are orthogonal to each other.
 電槽20は、前後左右の4つの側板21及び底板22を備える。4つの側板21及び底板22に囲まれた内部空間23は、希硫酸からなる電解液6を貯留する。すなわち、鉛蓄電池10は、いわゆる液式蓄電池である。電槽20は、例えば、耐蝕性及び絶縁性を有する合成樹脂を用いて成形された樹脂成型品である。 The battery case 20 includes four front, rear, left and right side plates 21 and a bottom plate 22. An internal space 23 surrounded by the four side plates 21 and the bottom plate 22 stores the electrolytic solution 6 made of diluted sulfuric acid. That is, the lead storage battery 10 is a so-called liquid storage battery. The battery case 20 is a resin molded product molded using, for example, a synthetic resin having corrosion resistance and insulation properties.
 図3に示されるように、電槽20は、内部空間23を6つに仕切る5つの仕切板24を備える。仕切板24は、左右方向9を厚みとする板状である。仕切板24は、側板21及び底板22と一体に成形されており、底板22及び前後の側板21と連結している。 電 As shown in FIG. 3, the battery case 20 includes five partition plates 24 that partition the internal space 23 into six. The partition plate 24 has a plate shape having a thickness in the left-right direction 9. The partition plate 24 is formed integrally with the side plate 21 and the bottom plate 22 and is connected to the bottom plate 22 and the front and rear side plates 21.
 左右の側板21と、5つの仕切板24とは、左右方向9において、ほぼ等間隔で互いに離間している。仕切板24の上端は、側板21の上端とほぼ同じ高さに位置する。5つの仕切板24は、電槽20の内部空間23を、6つの第1セル室11~第6セル室16に仕切る。第1セル室11は、電槽20内における最も左に位置する。次いで、左から順に、第2セル室12、第3セル室13、第4セル室14、第5セル室15、第6セル室16が電槽20内に形成されている。各第1セル室11~第6セル室16は、電解液6をそれぞれ貯留する。第1セル室11及び第6セル室16は、本発明の第1セル室の一例である。第2セル室12及び第5セル室15は、本発明の第2セル室の一例である。第3セル室13及び第4セル室14は、本発明の第3セル室の一例である。 The left and right side plates 21 and the five partition plates 24 are separated from each other at substantially equal intervals in the left-right direction 9. The upper end of the partition plate 24 is located at substantially the same height as the upper end of the side plate 21. The five partition plates 24 partition the internal space 23 of the battery case 20 into six first to sixth cell chambers 11 to 16. The first cell chamber 11 is located at the leftmost position in the battery case 20. Next, in order from the left, the second cell chamber 12, the third cell chamber 13, the fourth cell chamber 14, the fifth cell chamber 15, and the sixth cell chamber 16 are formed in the battery case 20. Each of the first to sixth cell chambers 11 to 16 stores the electrolytic solution 6 respectively. The first cell chamber 11 and the sixth cell chamber 16 are examples of the first cell chamber of the present invention. The second cell chamber 12 and the fifth cell chamber 15 are examples of the second cell chamber of the present invention. The third cell chamber 13 and the fourth cell chamber 14 are examples of the third cell chamber of the present invention.
 各第1セル室11~第6セル室16は、図2に示されるように、正極板25と、負極板26と、セパレータ27とをそれぞれ収容している。正極板25と、負極板26と、セパレータ27とは、左右方向9を厚みとする板状であって、左右方向9において、互いに離間している。セパレータ27は、正極板25と負極板26との間に位置しており、正極板25と、負極板26との間を仕切る。 (2) Each of the first to sixth cell chambers 11 to 16 contains a positive electrode plate 25, a negative electrode plate 26, and a separator 27, respectively, as shown in FIG. The positive electrode plate 25, the negative electrode plate 26, and the separator 27 have a plate shape having a thickness in the left-right direction 9, and are separated from each other in the right-left direction 9. The separator 27 is located between the positive electrode plate 25 and the negative electrode plate 26 and separates the positive electrode plate 25 from the negative electrode plate 26.
 正極板25及び負極板26は、例えば、格子体に活物質が充填されたものである。正極板25の活物質の主成分は二酸化鉛である。負極板26の活物質の主成分は鉛である。 The positive electrode plate 25 and the negative electrode plate 26 are, for example, a lattice body filled with an active material. The main component of the active material of the positive electrode plate 25 is lead dioxide. The main component of the active material of the negative electrode plate 26 is lead.
 第1セル室11~第6セル室16にそれぞれ収容された各正極板25及び各負極板26は、導電性のストラップ28によって、相互に接続されている。詳しく説明すると、一のセル室に収容された正極板25は、ストラップ28を介して、隣のセル室に収容された負極板26と接続されている。一のセル室に収容された負極板26は、他のストラップ28を介して、隣のセル室に収容された正極板25と接続されている。例えば、第2セル室12に収容された正極板25は、ストラップ28を介して、第1セル室11及び第3セル室13に収容された負極板26と接続されており、第2セル室12に収容された負極板26は、他のストラップ28を介して、第1セル室11及び第3セル室13に収容された正極板25と接続されている。すなわち、第1セル室11~第6セル室16は、直列接続されている。 正極 The positive electrode plates 25 and the negative electrode plates 26 accommodated in the first to sixth cell chambers 11 to 16 are connected to each other by conductive straps 28. More specifically, the positive electrode plate 25 accommodated in one cell chamber is connected via a strap 28 to a negative electrode plate 26 accommodated in an adjacent cell room. The negative electrode plate 26 accommodated in one cell room is connected to the positive electrode plate 25 accommodated in the adjacent cell room via another strap 28. For example, the positive electrode plate 25 accommodated in the second cell chamber 12 is connected via a strap 28 to the negative electrode plate 26 accommodated in the first cell chamber 11 and the third cell chamber 13, and the second cell chamber The negative electrode plate 26 accommodated in 12 is connected to the positive electrode plate 25 accommodated in the first cell chamber 11 and the third cell chamber 13 via another strap 28. That is, the first cell chamber 11 to the sixth cell chamber 16 are connected in series.
 図1及び図2に示されるように、蓋部材30は、矩形箱状の蓋本体31と、蓋本体31を上下方向7に貫通する正極柱32及び負極柱33と、ブッシング38、39と、を備える。 As shown in FIGS. 1 and 2, the lid member 30 includes a rectangular box-shaped lid main body 31, a positive pole 32 and a negative pole 33 penetrating the lid main body 31 in the up-down direction 7, bushings 38 and 39, Is provided.
 蓋本体31は、矩形箱状である。蓋本体31の上下方向7の厚みは、前後方向8に沿う短辺及び左右方向9に沿う長辺よりも短い。すなわち、蓋本体31は、扁平な矩形箱状である。蓋本体31は、電槽20の上面よりも大きな下面を有する。当該下面の周端部からは、電槽20の側板21の外面の上部を覆う周壁35が下向きに突出している。蓋本体31は、周壁35の内側に電槽20の側板21の上部を嵌め込んで配置されている。 The lid body 31 is in the shape of a rectangular box. The thickness of the lid body 31 in the up-down direction 7 is shorter than a short side along the front-rear direction 8 and a long side along the left-right direction 9. That is, the lid main body 31 has a flat rectangular box shape. Lid body 31 has a lower surface that is larger than the upper surface of battery case 20. A peripheral wall 35 that covers the upper part of the outer surface of the side plate 21 of the battery case 20 protrudes downward from the peripheral end of the lower surface. The lid main body 31 is arranged by fitting the upper part of the side plate 21 of the battery case 20 inside the peripheral wall 35.
 蓋本体31は、電槽20に固着されている。詳しく説明すると、蓋本体31は、周壁35に沿って設けられた矩形枠状の当接面36を有している。当接面36は、蓋本体31の下面の一部である。当接面36は、電槽20の側板21の上端と当接している。当接面36と電槽20の側板21の上端とは、熱溶着などによって、相互に固着されている。すなわち、蓋本体31は、電槽20に固着されている。 The lid body 31 is fixed to the battery case 20. More specifically, the lid main body 31 has a rectangular frame-shaped contact surface 36 provided along the peripheral wall 35. The contact surface 36 is a part of the lower surface of the lid main body 31. The contact surface 36 is in contact with the upper end of the side plate 21 of the battery case 20. The contact surface 36 and the upper end of the side plate 21 of the battery case 20 are fixed to each other by heat welding or the like. That is, the lid main body 31 is fixed to the battery case 20.
 また、蓋本体31は、電槽20の各第1セル室11~第6セル室16間で電解液6が相互に移動することを防止可能なように、電槽20に固着されている。詳しく説明すると、蓋本体31は、図5に示されるように、下面から下向きに突出する5つのリブ37を有する。各リブ37は、左右方向9を厚みとし、前後方向8に沿って設けられている。各リブ37の下端は、電槽20の各仕切板24の上端とそれぞれ当接している。蓋本体31のリブ37の下端と電槽20の仕切板24の上端とは、熱溶着などによって相互に固着されている。仕切板24及びリブ37は、第1セル室11~第6セル室16間で電解液6が相互に移動することを防止する。 蓋 Furthermore, the lid main body 31 is fixed to the battery case 20 so as to prevent the electrolyte solution 6 from mutually moving between the first cell room 11 to the sixth cell room 16 of the battery case 20. More specifically, as shown in FIG. 5, the lid main body 31 has five ribs 37 protruding downward from the lower surface. Each rib 37 has a thickness in the left-right direction 9 and is provided along the front-back direction 8. The lower end of each rib 37 is in contact with the upper end of each partition plate 24 of the battery case 20. The lower end of the rib 37 of the lid body 31 and the upper end of the partition plate 24 of the battery case 20 are fixed to each other by heat welding or the like. The partition plate 24 and the rib 37 prevent the electrolyte solution 6 from mutually moving between the first cell chamber 11 to the sixth cell chamber 16.
 図1に示される蓋本体31と、ブッシング38、39とは、例えば、いわゆるインサート成形によって一体に成形されている。すなわち、ブッシング38、39は、蓋本体31に固定されている。 蓋 The lid main body 31 and the bushings 38 and 39 shown in FIG. 1 are integrally formed by, for example, so-called insert molding. That is, the bushings 38 and 39 are fixed to the lid main body 31.
 ブッシング38とブッシング39とは、ともに、鉛合金等の導電性の金属からなる円筒状であって、同形状である。以下では、主にブッシング38について説明するが、ブッシング39についても同様である。なお、ブッシング38とブッシング39とは、別形状であってもよいし、同形状で大きさが相違(相似形)していてもよい。 The bushing 38 and the bushing 39 are both cylindrical and made of a conductive metal such as a lead alloy. Hereinafter, the bushing 38 will be mainly described, but the same applies to the bushing 39. The bushing 38 and the bushing 39 may have different shapes, or may have the same shape but different sizes (similar shapes).
 ブッシング38の上部は、蓋本体31の上面から上向きに突出しており、外部に露出している。すなわち、ブッシング38は、外部接続端子として機能する。ブッシング38の内部には、導電性の金属からなる正極柱32の上端部が挿入されている。正極柱32は、たとえば溶接によって、ブッシング38に固定されている。正極柱32の下端は、図2に示されるストラップ28と接続されている。同様に、負極柱33の下端は、他のストラップ28と接続されている。鉛蓄電池10は、正負一対のブッシング38、39から直流電圧を出力する。 The upper part of the bushing 38 protrudes upward from the upper surface of the lid body 31 and is exposed to the outside. That is, the bushing 38 functions as an external connection terminal. The upper end of the positive pole 32 made of a conductive metal is inserted into the bushing 38. The positive pole 32 is fixed to the bushing 38 by, for example, welding. The lower end of the positive pole 32 is connected to the strap 28 shown in FIG. Similarly, the lower end of the negative pole 33 is connected to another strap 28. The lead storage battery 10 outputs a DC voltage from a pair of positive and negative bushings 38 and 39.
 図1に示されるように、蓋本体31は、電槽20内の内圧が高くなり過ぎるのを防止するため、電槽20内で発生したミストや水蒸気からなるガスを外部に排気する排気口45を側壁に有する。また、蓋本体31は、排気口45から液体が漏れ出ることを防止する構成を有する。以下、蓋本体31の構成について、詳しく説明する。 As shown in FIG. 1, the lid main body 31 has an exhaust port 45 for exhausting gas composed of mist and water vapor generated in the battery case 20 to the outside in order to prevent the internal pressure in the battery case 20 from becoming too high. On the side wall. The lid main body 31 has a configuration for preventing liquid from leaking from the exhaust port 45. Hereinafter, the configuration of the lid body 31 will be described in detail.
[蓋本体31] [Lid body 31]
 図4、図5に示されるように、蓋本体31は、中蓋40及び上蓋50を備える。中蓋40及び上蓋50は、合成樹脂成型品である。 蓋 As shown in FIGS. 4 and 5, the lid main body 31 includes an inner lid 40 and an upper lid 50. The inner lid 40 and the upper lid 50 are molded products of synthetic resin.
 中蓋40は、電槽20に熱溶着される上述の周壁35を有しており、電槽20に固着されている。上述のブッシング38、39は、中蓋40の後部に、左右方向9において離間して位置している。 The inner lid 40 has the above-described peripheral wall 35 that is thermally welded to the battery case 20, and is fixed to the battery case 20. The above-mentioned bushings 38 and 39 are located at the rear of the inner lid 40 and are separated in the left-right direction 9.
 中蓋40は、電槽20の各第1セル室11~第6セル室16にそれぞれ電解液6を注入するための6個の注入口431~436を前部に有している。6個の注入口431~436は、左右方向9において相互に離間している。注入口431~436は、栓60によってそれぞれ閉塞される。各栓60は、上蓋50にそれぞれ固定される。詳しくは後述する。 The inner lid 40 has six inlets 431 to 436 for injecting the electrolyte 6 into the first cell chamber 11 to the sixth cell chamber 16 of the battery case 20 at the front, respectively. The six inlets 431 to 436 are separated from each other in the left-right direction 9. The inlets 431 to 436 are closed by the stoppers 60, respectively. Each stopper 60 is fixed to the upper lid 50, respectively. Details will be described later.
 中蓋40の前部の上面である前部上面41は、後部の上面である後部上面42よりも低い位置にある。中蓋40の前部上面41の上に、上蓋50が配置される。中蓋40の後部上面42と前部上面41との間の高さの差と、上蓋50の上下方向7における長さとは、ほぼ等しい。すなわち、蓋本体31において、中蓋40の後部上面42と、上蓋50の上面とは、ほぼ面一である。中蓋40の前部は、蓋部材30の底壁を構成する。 前 The front upper surface 41 which is the upper surface of the front part of the inner lid 40 is located at a position lower than the rear upper surface 42 which is the upper surface of the rear part. An upper lid 50 is arranged on the front upper surface 41 of the inner lid 40. The difference in height between the rear upper surface 42 and the front upper surface 41 of the inner lid 40 is substantially equal to the length of the upper lid 50 in the vertical direction 7. That is, in the lid body 31, the rear upper surface 42 of the inner lid 40 and the upper surface of the upper lid 50 are substantially flush. The front part of the inner lid 40 forms a bottom wall of the lid member 30.
 上蓋50は、左右方向9に沿う長さが前後方向8に沿う長さよりも長く、上下方向7を厚みとする矩形板状の板状部51と、板状部51の下面の周縁から下向きに突出する周壁52とを備える。周壁52の下端は、中蓋40の前部上面41に熱溶着によって固着される。すなわち、上蓋50は、中蓋40に固定される。上蓋50は、蓋本体31の天壁及び側壁を構成する。 The upper lid 50 has a rectangular plate-like portion 51 whose length along the left-right direction 9 is longer than the length along the front-rear direction 8 and has a thickness in the up-down direction 7, and a lower portion from the periphery of the lower surface of the plate-like portion 51. And a peripheral wall 52 that protrudes. The lower end of the peripheral wall 52 is fixed to the front upper surface 41 of the inner lid 40 by heat welding. That is, the upper lid 50 is fixed to the inner lid 40. The upper lid 50 constitutes a top wall and a side wall of the lid main body 31.
 上蓋50は、中蓋40の注入口431~436と上下方向7において重なる6個の注入開口531~536を前部に有する。注入開口531~536の内周面には、ネジ溝54がそれぞれ設けられている。ネジ溝54は、円柱状である栓60の外周面に設けられたネジ溝61と螺合する。すなわち、上蓋50は、6個の栓60をそれぞれ固定する。 The upper lid 50 has six injection openings 531 to 536 at the front thereof, which overlap with the injection ports 431 to 436 of the inner lid 40 in the vertical direction 7. Screw grooves 54 are provided on the inner peripheral surfaces of the injection openings 531 to 536, respectively. The screw groove 54 is screwed with a screw groove 61 provided on the outer peripheral surface of the cylindrical plug 60. That is, the upper lid 50 fixes the six stoppers 60 respectively.
 上蓋50の周壁52には、上述の排気口45が形成されている。排気口45は、周壁52を左右方向9において貫通している。中蓋40の前部と上蓋50とに囲まれた中継空間5に、ガスが流通し、かつ、液化したガスからなる液体を電槽内20内に戻す第1通路151~第6通路156(図13参照)が形成されている。以下、詳しく説明する。 排 気 The above-described exhaust port 45 is formed in the peripheral wall 52 of the upper lid 50. The exhaust port 45 penetrates the peripheral wall 52 in the left-right direction 9. In the relay space 5 surrounded by the front portion of the inner lid 40 and the upper lid 50, gas flows, and the first passage 151 to the sixth passage 156 (return the liquid composed of the liquefied gas into the battery case 20). FIG. 13) is formed. The details will be described below.
 図6に示されるように、中蓋40は、第1通路151~第6通路156の起点となる6個の第1通気口161~第6通気口166を有している。第1通気口161~第6通気口166は、中蓋40の前部を上下方向7にそれぞれ貫通している。第1通気口161~第6通気口166は、各第1セル室11~第6セル室16と中継空間5とをそれぞれ連通する。具体的には、第1通気口161は、第1セル室11と中継空間5とを連通し、第2通気口162は、第2セル室12と中継空間5とを連通し、第3通気口163は、第3セル室13と中継空間5とを連通し、第4通気口164は、第4セル室14と中継空間5とを連通し、第5通気口165は、第5セル室15と中継空間5とを連通し、第6通気口166は、第6セル室16と中継空間5とを連通する。第1通気口161及び第6通気口166は、本発明の第1通気口の一例である。第2通気口162及び第5通気口165は、本発明の第2通気口の一例である。第3通気口163及び第4通気口164は、本発明の第3通気口の一例である。 中 As shown in FIG. 6, the inner lid 40 has six first to sixth vents 161 to 166 that are the starting points of the first to sixth passages 151 to 156. The first ventilation port 161 to the sixth ventilation port 166 respectively penetrate the front part of the inner lid 40 in the vertical direction 7. The first ventilation port 161 to the sixth ventilation port 166 communicate the first cell chamber 11 to the sixth cell chamber 16 with the relay space 5, respectively. Specifically, the first vent 161 communicates the first cell chamber 11 with the relay space 5, the second vent 162 communicates the second cell chamber 12 with the relay space 5, and the third vent The port 163 connects the third cell chamber 13 to the relay space 5, the fourth vent 164 connects the fourth cell chamber 14 to the relay space 5, and the fifth vent 165 connects the fifth cell chamber. 15 and the relay space 5, and the sixth vent 166 connects the sixth cell chamber 16 and the relay space 5. The first vent 161 and the sixth vent 166 are examples of the first vent of the present invention. The second vent 162 and the fifth vent 165 are examples of the second vent of the present invention. The third vent 163 and the fourth vent 164 are examples of the third vent of the present invention.
 図13に示されるように、中継空間5内には、第1通気口161~第6通気口166をそれぞれ起点とする第1通路151~第6通路156が形成されている。第1通路151は、第1セル室11と連通する第1通気口161から排気口45に至る通路である。第2通路152は、第2セル室12と連通する第2通気口162から排気口45に至る通路である。第3通路153は、第3セル室13と連通する第3通気口163から排気口45に至る通路である。第4通路154は、第4セル室14と連通する第4通気口164から排気口45に至る通路である。第5通路155は、第5セル室15と連通する第5通気口165から排気口45に至る通路である。第6通路156は、第6セル室16と連通する第6通気口166から排気口45に至る通路である。第1通路151及び第6通路156は、本発明の第1通路の一例である。第2通路152及び第5通路155は、本発明の第2通路の一例である。第3通路153及び第4通路154は、本発明の第3通路の一例である。 As shown in FIG. 13, first to sixth passages 151 to 156 are formed in the relay space 5 with the first to sixth vents 161 to 166 as starting points. The first passage 151 is a passage from the first ventilation port 161 communicating with the first cell chamber 11 to the exhaust port 45. The second passage 152 is a passage from the second vent 162 communicating with the second cell chamber 12 to the exhaust port 45. The third passage 153 is a passage from the third ventilation port 163 communicating with the third cell chamber 13 to the exhaust port 45. The fourth passage 154 is a passage from the fourth ventilation port 164 communicating with the fourth cell chamber 14 to the exhaust port 45. The fifth passage 155 is a passage extending from the fifth ventilation port 165 communicating with the fifth cell chamber 15 to the exhaust port 45. The sixth passage 156 is a passage from the sixth vent 166 communicating with the sixth cell chamber 16 to the exhaust port 45. The first passage 151 and the sixth passage 156 are examples of the first passage of the present invention. The second passage 152 and the fifth passage 155 are examples of the second passage of the present invention. The third passage 153 and the fourth passage 154 are examples of the third passage of the present invention.
 第1通路151は、図13に示される複数のリブ101~127と、図8に示される複数のリブ171~197とによって形成されている。リブ101~127は、中蓋40の前部上面41から上向きに突出している。リブ171~197は、上蓋50の下面から下向きに突出している。リブ101~127の上端とリブ171~197の下端とは当接しており、熱溶着によって相互に固着されている。図13及び図8では、熱溶着される領域がハッチングによって示されている。平面視におけるリブ101~127の形状とリブ171~197の形状とは概ね同じであるので、以下では、図13を参照して、中蓋40に設けられたリブ101~127について説明し、上蓋50に設けられたリブ171~197の形状についての説明を省略する。 The first passage 151 is formed by a plurality of ribs 101 to 127 shown in FIG. 13 and a plurality of ribs 171 to 197 shown in FIG. The ribs 101 to 127 project upward from the front upper surface 41 of the inner lid 40. The ribs 171 to 197 project downward from the lower surface of the upper lid 50. The upper ends of the ribs 101 to 127 are in contact with the lower ends of the ribs 171 to 197, and are fixed to each other by heat welding. In FIG. 13 and FIG. 8, the region to be thermally welded is indicated by hatching. Since the shapes of the ribs 101 to 127 and the shapes of the ribs 171 to 197 in plan view are substantially the same, the ribs 101 to 127 provided on the inner lid 40 will be described below with reference to FIG. Description of the shapes of the ribs 171 to 197 provided on the 50 is omitted.
 リブ127は、第1通気口161の右に位置しており、かつ、前後方向8に沿って延びている。リブ101は、第1通気口161の後に位置しており、かつ、左右方向9に沿って延びている。リブ102は、第1通気口161の前に位置しており、かつ、左右方向9に沿って延びている。第1通路151の一部は、リブ101とリブ102との間に形成されている。第1通気口161を通じて電槽20から中継空間5内に進入したガスは、第1通気口161から左に進む。 The rib 127 is located to the right of the first ventilation port 161 and extends along the front-rear direction 8. The rib 101 is located behind the first vent 161 and extends along the left-right direction 9. The rib 102 is located in front of the first vent 161 and extends along the left-right direction 9. A part of the first passage 151 is formed between the rib 101 and the rib 102. The gas that has entered the relay space 5 from the battery case 20 through the first vent 161 advances to the left from the first vent 161.
 リブ103は、リブ102の左端から右斜め後方に向かって延びている。リブ103の後端は、リブ101から離間している。第1通路151の一部は、リブ103の後端とリブ101との間に形成されている。ガスは、リブ103の後端とリブ101との間を左方へ向かって通過する。 The rib 103 extends obliquely rightward and rearward from the left end of the rib 102. The rear end of the rib 103 is separated from the rib 101. Part of the first passage 151 is formed between the rear end of the rib 103 and the rib 101. The gas passes between the rear end of the rib 103 and the rib 101 toward the left.
 リブ104は、リブ103の左に位置しており、かつ、前後方向8に沿って延びている。リブ104の後端は、リブ101の左端と接続している。第1通路151の一部は、リブ103とリブ104との間に形成されている。ガスは、リブ103とリブ104との間を前方へ向かって通過する。 The rib 104 is located to the left of the rib 103, and extends along the front-back direction 8. The rear end of the rib 104 is connected to the left end of the rib 101. Part of the first passage 151 is formed between the rib 103 and the rib 104. The gas passes forward between the rib 103 and the rib 104.
 リブ102の前に、リブ110、リブ105、及びリブ106が形成されている。リブ110は、円弧状である。リブ110の左端は、リブ104と接続している。リブ110の左右方向9における中央部から後方に向かって、リブ105が延びている。リブ105の後端は、リブ102から離間している。第1通路151の一部は、リブ105の後端とリブ102との間に形成されている。リブ106は、前後方向8におけるリブ105の中央部から右方に向かって延びている。第1通路151の一部は、リブ106とリブ102との間に形成されている。ガスは、リブ105の後端とリブ102との間を通過した後、リブ106とリブ102との間を右方へ向かって通過する。 リ ブ A rib 110, a rib 105, and a rib 106 are formed before the rib 102. The rib 110 has an arc shape. The left end of the rib 110 is connected to the rib 104. The rib 105 extends rearward from the center of the rib 110 in the left-right direction 9. The rear end of the rib 105 is separated from the rib 102. A part of the first passage 151 is formed between the rear end of the rib 105 and the rib 102. The rib 106 extends rightward from the center of the rib 105 in the front-rear direction 8. Part of the first passage 151 is formed between the rib 106 and the rib 102. The gas passes between the rear end of the rib 105 and the rib 102 and then passes between the rib 106 and the rib 102 to the right.
 リブ106の右には、リブ107が形成されている。リブ107は、リブ106から離間しており、かつ、前後方向8に沿って延びている。第1通路151の一部は、リブ106とリブ107との間に形成されている。ガスは、リブ106の右端とリブ107との間を前方へ向かって通過する。 リ ブ A rib 107 is formed on the right side of the rib 106. The rib 107 is separated from the rib 106 and extends along the front-back direction 8. A part of the first passage 151 is formed between the rib 106 and the rib 107. The gas passes forward between the right end of the rib 106 and the rib 107.
 リブ107の前には、リブ108が形成されている。リブ108は、左右方向9に沿って延びており、かつ、リブ107の前端と接続している。リブ108の左端からは、リブ109が後方に向かって延びている。リブ109の後端は、リブ106と離間している。第1通路151の一部は、リブ109とリブ106との間に形成されている。ガスは、リブ109とリブ106との間を左方へ向かって通過する。 リ ブ A rib 108 is formed before the rib 107. The rib 108 extends in the left-right direction 9 and is connected to the front end of the rib 107. A rib 109 extends rearward from the left end of the rib 108. The rear end of the rib 109 is separated from the rib 106. A part of the first passage 151 is formed between the rib 109 and the rib 106. The gas passes between the ribs 109 and 106 toward the left.
 第1通路151の一部は、上述のリブ109とリブ105とリブ110とによって形成されている。ガスは、リブ109と、リブ105及びリブ110との間を前方へ向かって通過する。 一部 A part of the first passage 151 is formed by the ribs 109, 105, and 110 described above. The gas passes forward between the rib 109 and the ribs 105 and 110.
 リブ110の前には、リブ111が形成されている。リブ111は、注入口431の周縁に沿って延びている。リブ110の右端は、リブ111と接続している。第1通路151の一部は、リブ111と、リブ109及びリブ108との間に形成されている。ガスは、リブ111と、リブ127及びリブ108との間を、概ね右斜め前方へ向かって通過する。 リ ブ A rib 111 is formed before the rib 110. The rib 111 extends along the periphery of the inlet 431. The right end of the rib 110 is connected to the rib 111. A part of the first passage 151 is formed between the rib 111 and the ribs 109 and 108. The gas passes between the rib 111 and the ribs 127 and 108 generally obliquely rightward and forward.
 リブ111の右には、リブ112が形成されている。リブ112は、左右方向9に沿って延びている。リブ112の左端は、リブ111と接続している。ハッチングで示されているように、上述のリブ127の前端は、リブ112と離間している。第1通路151の一部は、リブ127の前端とリブ112との間に形成されている。ガスは、リブ127とリブ112との間を右方へ向かって通過する。 リ ブ A rib 112 is formed on the right side of the rib 111. The rib 112 extends along the left-right direction 9. The left end of the rib 112 is connected to the rib 111. As indicated by hatching, the front end of the rib 127 is spaced apart from the rib 112. Part of the first passage 151 is formed between the front end of the rib 127 and the rib 112. The gas passes between the ribs 127 and 112 toward the right.
 リブ112の右端は、リブ113と接続している。リブ113は、注入口432の周縁に沿って延びている。リブ113の後には、リブ124が形成されている。リブ124は、左右方向9に沿って延びている。第1通路の一部はリブ124とリブ113との間に形成されている。ガスは、リブ124とリブ113との間を右方へ向かって通過する。 右 The right end of the rib 112 is connected to the rib 113. The rib 113 extends along the periphery of the inlet 432. After the rib 113, a rib 124 is formed. The rib 124 extends along the left-right direction 9. Part of the first passage is formed between the rib 124 and the rib 113. The gas passes between the ribs 124 and 113 to the right.
 リブ124の左端は、リブ127から離間している。リブ124の左端とリブ127との間は、第1通路151と、後述の第2通路152とが合流する第1合流位置55である。第1通気口161から第1合流位置55までの通路は、第1通路151の第1個別通路を構成する。以下で説明する第1合流位置55から排気口45までの通路は、第1通路151と第2通路152との共通通路を構成する。 左 The left end of the rib 124 is separated from the rib 127. Between the left end of the rib 124 and the rib 127 is a first junction position 55 where the first passage 151 and a later-described second passage 152 merge. The passage from the first vent 161 to the first junction position 55 constitutes a first individual passage of the first passage 151. A passage from the first junction position 55 to the exhaust port 45 described below forms a common passage between the first passage 151 and the second passage 152.
 リブ113の右には、リブ114が形成されている。リブ114は、左右方向9に沿って延びている。リブ114の左端は、リブ113と接続している。ハッチングで示されているように、リブ227の前端は、リブ114から離間している。第1通路151の一部は、リブ227の前端とリブ114との間に形成されている。ガスは、リブ127の前端とリブ114との間を右方へ向かって通過する。 リ ブ A rib 114 is formed on the right side of the rib 113. The rib 114 extends along the left-right direction 9. The left end of the rib 114 is connected to the rib 113. The front end of the rib 227 is spaced from the rib 114, as indicated by hatching. Part of the first passage 151 is formed between the front end of the rib 227 and the rib 114. The gas passes between the front end of the rib 127 and the rib 114 toward the right.
 リブ114の右端は、リブ115と接続している。リブ115は、注入口433の周縁に沿って延びている。リブ115の後には、リブ125が形成されている。リブ125は、左右方向9に沿って延びている。ガスは、リブ125とリブ115との間を右方へ向かって通過する。なお、リブ125の左端は、リブ227から離間している。リブ125の左端とリブ124との間は、第1通路151と、後述の第3通路153とが合流する第2合流位置56となっている。 右 The right end of the rib 114 is connected to the rib 115. The rib 115 extends along the periphery of the inlet 433. After the rib 115, a rib 125 is formed. The rib 125 extends along the left-right direction 9. The gas passes between the ribs 125 and 115 to the right. The left end of the rib 125 is separated from the rib 227. Between the left end of the rib 125 and the rib 124 is a second merging position 56 where the first passage 151 and a third passage 153 described later merge.
 リブ115の右には、リブ126が形成されている。リブ126は、前後方向8に沿って延びている。リブ126の後端は、リブ125の右端と接続している。第1通路151の一部は、リブ115とリブ126との間に形成されている。ガスは、リブ115とリブ126との間を、概ね右斜め前方へ向かって通過する。 リ ブ A rib 126 is formed on the right side of the rib 115. The rib 126 extends along the front-back direction 8. The rear end of the rib 126 is connected to the right end of the rib 125. A part of the first passage 151 is formed between the rib 115 and the rib 126. The gas passes between the rib 115 and the rib 126 generally obliquely rightward and forward.
 リブ126の右には、リブ116が形成されている。リブ116は、注入口434の周縁に沿って延びている。リブ116は、リブ115及びリブ126と離間している。第1通路151の一部は、リブ115とリブ116との間に形成されている。ガスは、リブ115とリブ116との間を前方へ向かって通過する。なお、リブ115とリブ116との間は、第1通路151と、後述の第6通路156との第3合流位置57となっている。 リ ブ A rib 116 is formed on the right side of the rib 126. The rib 116 extends along the periphery of the inlet 434. The rib 116 is separated from the rib 115 and the rib 126. A part of the first passage 151 is formed between the rib 115 and the rib 116. The gas passes forward between the ribs 115 and 116. Note that a third junction 57 between the first passage 151 and a sixth passage 156 described below is provided between the rib 115 and the rib 116.
 リブ116の右には、左から順に、リブ117、118、119、120が形成されている。リブ117は、左右方向9に沿って延びている。リブ117の左端は、リブ116と接続している。リブ117の右端は、リブ118と接続している。リブ118は、注入口435の周縁に沿って延びている。リブ119は、左右方向9に沿って延びている。リブ119の左端は、リブ118と接続している。リブ119の右端は、リブ120と接続している。リブ120は、注入口436の周縁に沿って延びている。また、リブ116、118、120の前には、リブ121が形成されている。リブ121は、左右方向9に沿って延びている。第1通路151の一部は、リブ121と、リブ116、117、118、119、120との間に形成されている。ガスは、リブ121と、リブ116、117、118、119、120との間を右方へ向かって通過する。 リ ブ Ribs 117, 118, 119 and 120 are formed on the right of the rib 116 in order from the left. The rib 117 extends in the left-right direction 9. The left end of the rib 117 is connected to the rib 116. The right end of the rib 117 is connected to the rib 118. The rib 118 extends along the periphery of the inlet 435. The rib 119 extends along the left-right direction 9. The left end of the rib 119 is connected to the rib 118. The right end of the rib 119 is connected to the rib 120. The rib 120 extends along the periphery of the inlet 436. A rib 121 is formed before the ribs 116, 118, and 120. The rib 121 extends in the left-right direction 9. A part of the first passage 151 is formed between the rib 121 and the ribs 116, 117, 118, 119, 120. The gas passes between the rib 121 and the ribs 116, 117, 118, 119, 120 toward the right.
 リブ120の右には、リブ122が形成されている。リブ122は、前後方向8に沿って延びている。リブ122の前端は、リブ121の右端と接続している。リブ122は、リブ120と離間している。第1通路151の一部は、リブ120とリブ122との間に形成されている。ガスは、リブ120とリブ122との間を後方へ向かって通過する。 リ ブ A rib 122 is formed on the right side of the rib 120. The rib 122 extends in the front-rear direction 8. The front end of the rib 122 is connected to the right end of the rib 121. The rib 122 is separated from the rib 120. Part of the first passage 151 is formed between the rib 120 and the rib 122. The gas passes rearward between the ribs 120 and 122.
 リブ120の後には、リブ123が形成されている。リブ123の左端は、リブ120と接続し、リブ123の右端は、リブ122と接続している。リブ122の上端と熱溶着される上蓋50のリブ192(図8参照)は、開口63を有する。開口63は、第1通路151と排気口45とを連通する。すなわち、第1通気口161を起点とする第1通路151は、開口63及び排気口45を通じて外部と連通している。 リ ブ A rib 123 is formed after the rib 120. The left end of the rib 123 is connected to the rib 120, and the right end of the rib 123 is connected to the rib 122. The rib 192 (see FIG. 8) of the upper lid 50 that is thermally welded to the upper end of the rib 122 has an opening 63. The opening 63 connects the first passage 151 and the exhaust port 45. That is, the first passage 151 starting from the first ventilation port 161 communicates with the outside through the opening 63 and the exhaust port 45.
 リブ120、リブ122、及びリブ123に囲まれた領域には、フィルタ64(図8参照)が配置されている。フィルタ64は、排気口45から火花が中継空間5内に進入することを防止する。 フ ィ ル タ A filter 64 (see FIG. 8) is arranged in a region surrounded by the ribs 120, 122, and 123. The filter 64 prevents sparks from entering the relay space 5 from the exhaust port 45.
 次に、第2通路152について説明する。第2通路152の起点となる第2通気口162は、上述のリブ127の右に位置している。第2通気口162の後には、リブ201が形成されている。リブ201は、左右方向9に沿って延びている。第2通気口162の前には、リブ202が形成されている。リブ202は、左右方向9に沿って延びている。第2通路152の一部は、リブ201とリブ202との間に形成されている。第2通気口162を通じて第2セル室12から中継空間5内に進入したガスは、第2通気口162から右に進む。 Next, the second passage 152 will be described. The second vent 162 serving as a starting point of the second passage 152 is located to the right of the rib 127 described above. The rib 201 is formed after the second ventilation port 162. The rib 201 extends in the left-right direction 9. A rib 202 is formed in front of the second vent 162. The rib 202 extends in the left-right direction 9. A part of the second passage 152 is formed between the rib 201 and the rib 202. The gas that has entered the relay space 5 from the second cell chamber 12 through the second vent 162 advances rightward from the second vent 162.
 リブ203は、リブ202の右端から左斜め後方に向かって延びている。リブ203の後端は、リブ201から離間している。第2通路152の一部は、リブ203の後端とリブ201との間に形成されている。第2通気口162を通じて第2セル室12から中継空間5内に進入したガスは、第2通気口162から右に進み、リブ203の後端とリブ201との間を右方へ向かって通過する。 The rib 203 extends from the right end of the rib 202 obliquely rearward to the left. The rear end of the rib 203 is separated from the rib 201. Part of the second passage 152 is formed between the rear end of the rib 203 and the rib 201. The gas that has entered the relay space 5 from the second cell chamber 12 through the second vent 162 advances rightward from the second vent 162 and passes rightward between the rear end of the rib 203 and the rib 201. I do.
 リブ227は、リブ203の右に位置しており、かつ、前後方向8に沿って延びている。リブ227の後端は、リブ201の右端と接続している。第2通路152の一部は、リブ203とリブ227との間に形成されている。ガスは、リブ203とリブ227との間を前方へ向かって通過する。 The rib 227 is located to the right of the rib 203 and extends along the front-rear direction 8. The rear end of the rib 227 is connected to the right end of the rib 201. A part of the second passage 152 is formed between the rib 203 and the rib 227. The gas passes forward between the ribs 203 and 227.
 リブ202の前に、リブ205及びリブ206が形成されている。リブ206は、左右方向9に沿って延びている。リブ206の右端は、リブ227と接続している。リブ205は、前後方向8に沿って延びている。リブ205の前端は、リブ206と接続している。第2通路152の一部は、リブ205及びリブ206と、リブ202との間に形成されている。ガスは、リブ202とリブ205の後端との間を左方へ向かって通過し、次いで、リブ202とリブ206との間を左方へ向かって通過する。 リ ブ A rib 205 and a rib 206 are formed before the rib 202. The rib 206 extends in the left-right direction 9. The right end of the rib 206 is connected to the rib 227. The rib 205 extends in the front-rear direction 8. The front end of the rib 205 is connected to the rib 206. A part of the second passage 152 is formed between the rib 205 and the rib 206 and the rib 202. The gas passes between the rib 202 and the rear end of the rib 205 to the left, and then passes between the rib 202 and the rib 206 to the left.
 リブ206の左には、リブ207が形成されている。リブ207は、リブ206から離間しており、かつ、前後方向8に沿って延びている。第2通路152の一部は、リブ206とリブ207との間に形成されている。ガスは、リブ206の左端とリブ207との間を前方へ向かって通過する。 リ ブ A rib 207 is formed on the left side of the rib 206. The rib 207 is separated from the rib 206 and extends along the front-rear direction 8. Part of the second passage 152 is formed between the rib 206 and the rib 207. The gas passes forward between the left end of the rib 206 and the rib 207.
 リブ207の前には、リブ208が形成されている。リブ208は、左右方向9に沿って延びており、かつ、リブ207の前端と接続している。第2通路152の一部は、リブ208とリブ206との間に形成されている。ガスは、リブ208とリブ206との間を右方へ向かって通過する。 リ ブ A rib 208 is formed before the rib 207. The rib 208 extends in the left-right direction 9 and is connected to the front end of the rib 207. Part of the second passage 152 is formed between the rib 208 and the rib 206. The gas passes between the ribs 208 and 206 to the right.
 リブ208の右端は、リブ227から離間している。第2通路152の一部は、リブ208の右端とリブ227との間に形成されている。ガスは、リブ208の右端とリブ227との間を前方へ向かって通過する。 右 The right end of the rib 208 is separated from the rib 227. Part of the second passage 152 is formed between the right end of the rib 208 and the rib 227. The gas passes forward between the right end of the rib 208 and the rib 227.
 また、リブ208は、上述のリブ124の後に位置しており、リブ124と離間している。第2通路152の一部は、リブ208とリブ124との間に形成されている。ガスは、リブ208とリブ124との間を左方へ向かって通過し、リブ124の左端とリブ127との間の第1合流位置55において、第1通路151と合流する。 リ ブ The rib 208 is located after the above-mentioned rib 124 and is separated from the rib 124. Part of the second passage 152 is formed between the rib 208 and the rib 124. The gas passes between the rib 208 and the rib 124 toward the left, and merges with the first passage 151 at a first junction position 55 between the left end of the rib 124 and the rib 127.
 なお、上蓋50の下面からは、第2通路152を形成するリブ201等と熱溶着される複数のリブが下向きに突出している。このリブは、リブ201等とともに、第2通路152を形成する。 From the lower surface of the upper lid 50, a plurality of ribs that are thermally welded to the ribs 201 and the like forming the second passage 152 project downward. The rib forms a second passage 152 together with the rib 201 and the like.
 第3通路153は、第2通路152と同構成である。具体的には、第3通路153を形成するリブ301~303、305~308、327、125の形状は、第2通路152を形成する上述のリブ201~203、205~208、227、124の形状と、それぞれ同一である。第3通路153は、上述の第2合流位置56において、第1通路151と合流している。なお、上蓋50の下面からは、第3通路153を形成するリブ301等と熱溶着される複数のリブが下向きに突出している。リブ301等と熱溶着される上蓋50のリブの形状は、第3通路153を形成するリブ301等と同形状であるので、説明を省略する。 3The third passage 153 has the same configuration as the second passage 152. Specifically, the shapes of the ribs 301 to 303, 305 to 308, 327, and 125 that form the third passage 153 are the same as those of the ribs 201 to 203, 205 to 208, 227, and 124 that form the second passage 152. Each has the same shape. The third passage 153 joins the first passage 151 at the above-described second joining position 56. Note that a plurality of ribs that are thermally welded to the ribs 301 and the like forming the third passage 153 project downward from the lower surface of the upper lid 50. The shape of the rib of the upper lid 50 that is thermally welded to the rib 301 and the like is the same as the shape of the rib 301 and the like forming the third passage 153, and a description thereof is omitted.
 第4通路154は、リブ327を対象軸として、第3通路153と左右対称な構成である。具体的には、第4通路154を形成するリブ401~403、405~408、427、410は、第3通路153を形成する上述のリブ301~303、305~308、327、125と、それぞれ左右対称である。第4通路154は、左右方向9に延びるリブ410の右端と前後方向8に延びるリブ427の前端との間の第5合流位置58において、後述の第6通路156と合流している。なお、上蓋50の下面からは、第4通路154を形成するリブ401等と熱溶着される複数のリブが下向きに突出している。リブ401等と熱溶着される上蓋50のリブの形状は、第4通路154を形成するリブ401等と同形状であるので、説明を省略する。 4The fourth passage 154 is symmetrical to the third passage 153 with the rib 327 as the target axis. Specifically, the ribs 401 to 403, 405 to 408, 427, and 410 that form the fourth passage 154 are the same as the ribs 301 to 303, 305 to 308, 327, and 125 that form the third passage 153, respectively. It is symmetrical. The fourth passage 154 joins a later-described sixth passage 156 at a fifth junction position 58 between the right end of the rib 410 extending in the left-right direction 9 and the front end of the rib 427 extending in the front-rear direction 8. From the lower surface of the upper lid 50, a plurality of ribs that are thermally welded to the ribs 401 and the like forming the fourth passage 154 project downward. The shape of the rib of the upper lid 50 that is thermally welded to the rib 401 and the like is the same as the shape of the rib 401 and the like forming the fourth passage 154, and thus the description is omitted.
 第5通路155は、リブ327を対象軸として、第2通路152と左右対称な構成である。具体的には、第5通路155を形成するリブ501~503、505~508、527、510は、第2通路152を形成する上述のリブ201~203、205~208、227、124と、それぞれ左右対称である。第5通路155は、左右方向9に延びるリブ510の右端と前後方向8に延びるリブ527との間の第4合流位置59において、後述の第6通路156と合流している。なお、上蓋50の下面からは、第5通路155を形成するリブ501等と熱溶着される複数のリブが下向きに突出している。リブ501等と熱溶着される上蓋50のリブの形状は、第5通路155を形成するリブ501等と同形状であるので、説明を省略する。 5The fifth passage 155 is symmetrical to the second passage 152 with the rib 327 as a target axis. Specifically, the ribs 501 to 503, 505 to 508, 527, and 510 that form the fifth passage 155 are the same as the ribs 201 to 203, 205 to 208, 227, and 124 that form the second passage 152, respectively. It is symmetrical. The fifth passage 155 merges with a later-described sixth passage 156 at a fourth junction position 59 between the right end of the rib 510 extending in the left-right direction 9 and the rib 527 extending in the front-rear direction 8. From the lower surface of the upper lid 50, a plurality of ribs that are thermally welded to the ribs 501 and the like forming the fifth passage 155 project downward. The shape of the rib of the upper lid 50 that is thermally welded to the rib 501 and the like is the same as the shape of the rib 501 and the like forming the fifth passage 155, and thus the description is omitted.
 第6通路156は、第1通気口161から第3合流位置57までの第1通路151と、リブ327を対象軸として、左右対称な構成である。具体的には、第6通路156を形成するリブ601~603、605~609、122、123、527は、第1通路151を形成する上述のリブ101~103、105~109、104、110、127と、それぞれ左右対称である。第1通路151と第6通路156とは、第3合流位置57で合流している。なお、上蓋50の下面からは、第6通路156を形成するリブ601等と熱溶着される複数のリブが下向きに突出している。リブ601等と熱溶着される上蓋50のリブの形状は、第6通路156を形成するリブ601等と同形状であるので、説明を省略する。 The sixth passage 156 has a symmetrical configuration with respect to the first passage 151 from the first ventilation port 161 to the third junction position 57 and the rib 327 as a target axis. Specifically, the ribs 601 to 603, 605 to 609, 122, 123, and 527 that form the sixth passage 156 are the same as the ribs 101 to 103, 105 to 109, 104, and 110 that form the first passage 151. 127, respectively. The first passage 151 and the sixth passage 156 join at a third joining position 57. From the lower surface of the upper lid 50, a plurality of ribs that are thermally welded to the ribs 601 and the like forming the sixth passage 156 project downward. Since the shape of the rib of the upper lid 50 that is thermally welded to the rib 601 and the like is the same as the shape of the rib 601 and the like forming the sixth passage 156, the description is omitted.
 第1通路151~第6通路156は、中継空間5内でガスが液化して生成された液体を、図6に示される第1還流孔231~第6還流孔236から第1セル室11~第6セル室16内に戻す通路としても機能する。第1還流孔231~第6還流孔236は、中蓋40の前部を上下方向7に貫通する。第1還流孔231は、第1セル室11と第1通路151とを連通する。第2還流孔232は、第2セル室12と第2通路152とを連通する。第3還流孔233は、第3セル室13と第3通路153とを連通する。第4還流孔234は、第4セル室14と第4通路154とを連通する。第5還流孔235は、第5セル室15と第5通路155とを連通する。第6還流孔236は、第6セル室16と第6通路156とを連通する。 The first passage 151 to the sixth passage 156 transfer the liquid generated by liquefying the gas in the relay space 5 from the first return hole 231 to the sixth return hole 236 shown in FIG. It also functions as a passage returning into the sixth cell chamber 16. The first return hole 231 to the sixth return hole 236 penetrate the front part of the inner lid 40 in the vertical direction 7. The first return hole 231 communicates the first cell chamber 11 with the first passage 151. The second return hole 232 communicates the second cell chamber 12 with the second passage 152. The third return hole 233 connects the third cell chamber 13 and the third passage 153. The fourth reflux hole 234 connects the fourth cell chamber 14 and the fourth passage 154. The fifth return hole 235 connects the fifth cell chamber 15 and the fifth passage 155. The sixth reflux hole 236 connects the sixth cell chamber 16 and the sixth passage 156.
 図6に示されるように、中蓋40の前部の下面からは、第1還流孔231~第6還流孔236をそれぞれ囲む6個の周壁リブ66が下向きに突出している。周壁リブ66は、揺れや振動によって電槽20内の電解液6が第1還流孔231~第6還流孔236に到達することを抑制する。各周壁リブ66は、下端から上方に切り欠かれた切欠67をそれぞれ有している。切欠67は、周壁リブ66を伝って電解液6が第1還流孔231~第6還流孔236に到達することを抑制する。 As shown in FIG. 6, six peripheral wall ribs 66 respectively surrounding the first to sixth return holes 231 to 236 project downward from the lower surface of the front part of the inner lid 40. The peripheral wall ribs 66 prevent the electrolytic solution 6 in the battery case 20 from reaching the first reflux hole 231 to the sixth reflux hole 236 due to shaking or vibration. Each peripheral wall rib 66 has a notch 67 cut out upward from the lower end. The notch 67 prevents the electrolytic solution 6 from reaching the first return hole 231 to the sixth return hole 236 along the peripheral wall rib 66.
 第1通路151~第6通路156を形成する中蓋40の前部上面41は、第1還流孔231~第6還流孔236に向かって傾斜している。中継空間5内で液化したガスからなる液体、或いは、揺れや振動によって第1還流孔231~第6還流孔236から第1通路151~第6通路156に進入した電解液6からなる液体は、傾斜する前部上面41によって、第1還流孔231~第6還流孔236に導かれ、第1還流孔231~第6還流孔236から第1セル室11~第6セル室16に戻る。 前 The front upper surface 41 of the inner lid 40 forming the first to sixth passages 151 to 156 is inclined toward the first to sixth return holes 231 to 236. The liquid composed of the gas liquefied in the relay space 5 or the liquid composed of the electrolytic solution 6 that has entered the first passage 151 to the sixth passage 156 from the first reflux hole 231 to the sixth reflux hole 236 by shaking or vibration, The slanted front upper surface 41 guides the first return hole 231 to the sixth return hole 236 and returns from the first return hole 231 to the sixth return hole 236 to the first cell chamber 11 to the sixth cell chamber 16.
 図13に示されるリブ127、227、427、527の前には、蓋本体31の底面である中蓋40の前部上面41から上向きに突出する第1リブ731~第4リブ734がそれぞれ設けられている。第1リブ731と第2リブ732とは同形状であり、第1リブ731及び第2リブ732と第3リブ733及び第4リブ734とは、リブ327を対象軸として、左右対称な形状であるので、第1リブ731について説明し、第2リブ732~第4リブ734についての説明は省略する。リブ731~734は、本発明の凸部の一例である。 In front of the ribs 127, 227, 427, and 527 shown in FIG. 13, first to fourth ribs 731 to 734 projecting upward from the front upper surface 41 of the inner lid 40, which is the bottom surface of the lid main body 31, are provided. Have been. The first rib 731 and the second rib 732 have the same shape, and the first rib 731, the second rib 732, the third rib 733, and the fourth rib 734 are bilaterally symmetric with respect to the rib 327 as a target axis. Therefore, the first rib 731 will be described, and the description of the second rib 732 to the fourth rib 734 will be omitted. The ribs 731 to 734 are an example of the projection of the present invention.
 第1リブ731は、図14に示されるように、段差面735を第1通気口161側(左側)に有し、傾斜面736を排気口45側(右側)に有する。また、第1リブ731は、段差面735の上端から第1通気口161側に突出する突出片737を有する。突出片737は、例えば、中蓋40と上蓋50とを熱溶着する際に、第1リブ731の一部を溶かすことによって形成することができる。 As shown in FIG. 14, the first rib 731 has a step surface 735 on the first vent 161 side (left side) and an inclined surface 736 on the exhaust port 45 side (right side). The first rib 731 has a protruding piece 737 that protrudes from the upper end of the step surface 735 toward the first vent 161. The projecting piece 737 can be formed, for example, by melting a part of the first rib 731 when the inner lid 40 and the upper lid 50 are thermally welded.
 リブ731~734は、第1セル室11~第6セル室16内で液化したガスからなる液体や、揺れや振動によって第1還流孔231~第6還流孔236から第1通路151~第6通路156に進入した液体が排気口45に至ることを抑制し、かつ、リブ731~734から排気口45までの通路にある液体が第1還流孔231~第6還流孔236に戻り易くする。 The ribs 731 to 734 are formed by a liquid composed of a gas liquefied in the first cell chamber 11 to the sixth cell chamber 16 or the first passage 151 to the sixth passage from the first reflux hole 231 to the sixth reflux hole 236 by shaking or vibration. The liquid that has entered the passage 156 is prevented from reaching the exhaust port 45, and the liquid in the passage from the ribs 731 to 734 to the exhaust port 45 is easily returned to the first return hole 231 to the sixth return hole 236.
 図15を参照して詳しく説明する。鉛蓄電池10を搭載した車両が上り坂(下り坂)を走行すると、鉛蓄電池10が傾く(図15の上図)。リブ731~734は、段差面735を第1通気口161~第6通気口166側に有するので、図において点線のハッチングで示された液体は、段差面735により、リブ731~734を乗り越えて排気口45側に流れることを抑制される。また、段差面735の上端からは、突出片737が第1通気口161~第6通気口166側に突出している。突出片737は、液体がリブ731~734を乗り越えて排気口45側に流れることをさらに抑制する。 説明 A detailed description will be given with reference to FIG. When a vehicle equipped with the lead storage battery 10 travels uphill (downhill), the lead storage battery 10 tilts (upper view in FIG. 15). Since the ribs 731 to 734 have the step surfaces 735 on the first ventilation port 161 to the sixth ventilation port 166 side, the liquid shown by the dotted hatching in the figure passes over the ribs 731 to 734 by the step surfaces 735. Flow to the exhaust port 45 side is suppressed. Further, from the upper end of the step surface 735, a protruding piece 737 protrudes toward the first ventilation port 161 to the sixth ventilation port 166. The protruding pieces 737 further suppress the liquid from flowing over the ribs 731 to 734 toward the exhaust port 45.
 一方、鉛蓄電池10を搭載した車両が下り坂(上り坂)を走行すると、鉛蓄電池10は、反対向きに傾く(図15の下図)。リブ731~734は、傾斜面736を排気口45側に有するので、リブ731~734から排気口45に至るまでの通路にある液体は、傾斜面736により、リブ731~734を乗り越えて第1還流孔231~第6還流孔236側に流れ易くなる。 On the other hand, when the vehicle equipped with the lead storage battery 10 travels downhill (uphill), the lead storage battery 10 tilts in the opposite direction (lower view in FIG. 15). Since the ribs 731 to 734 have the inclined surface 736 on the exhaust port 45 side, the liquid in the passage from the ribs 731 to 734 to the exhaust port 45 passes over the ribs 731 to 734 by the inclined surface 736 and the first liquid. It is easy to flow from the reflux hole 231 to the sixth reflux hole 236.
[動作] [motion]
 以下では、鉛蓄電池10が車両に搭載されて使用された場合における、第1セル室11~第6セル室16におけるガスの発生と、発生したガスが第1セル室11~第6セル室16に引き込まれることについて、図13を参照して説明する。 In the following, when the lead storage battery 10 is mounted on a vehicle and used, generation of gas in the first cell chamber 11 to the sixth cell chamber 16 and generation of the gas by the first cell chamber 11 to the sixth cell chamber 16 will be described. Will be described with reference to FIG.
 車両に搭載されたエンジンが始動され、エンジンが発熱すると、エンジンからの熱によって鉛蓄電池10の電槽20の第1セル室11~第6セル室16内の電解液6の温度が上昇する。温度が上昇した電解液6は、水蒸気やミストからなるガスを生じさせる。 (4) When the engine mounted on the vehicle is started and the engine generates heat, the temperature of the electrolyte 6 in the first cell chamber 11 to the sixth cell chamber 16 of the battery case 20 of the lead storage battery 10 increases due to the heat from the engine. The electrolyte 6 whose temperature has risen generates a gas composed of water vapor and mist.
 第1セル室11~第6セル室16の温度がほぼ一定になるまでの間に第1セル室11~第6セル室16において発生するガスの量は、第1セル室11~第6セル室16における温度上昇の度合に依存する。温度上昇の度合とは、単位時間当たりの温度上昇の値である。温度上昇の度合が大きいほど、ガスの発生量が多い。第1セル室11~第6セル室16における温度上昇の度合は、エンジンからの熱を受けやすい外側の第1セル室11、第6セル室16が一番大きい。また、内側の第3セル室13、第4セル室14の温度上昇の度合が一番小さい。第2セル室12、第5セル室15の温度上昇の度合は、第3セル室13、第4セル室14の温度上昇の度合と、第1セル室11、第6セル室16の温度上昇の度合の中間である。なお、「内側」、「外側」とは、電槽20の中心位置を基準にした位置である。すなわち、電槽20の中心位置に一番近い第3セル室13、第4セル室14が、一番内側のセル室であり、電槽20の中心位置に一番遠い第1セル室11、第6セル室16が一番外側のセル室である。 The amount of gas generated in the first cell chamber 11 to the sixth cell chamber 16 until the temperature of the first cell chamber 11 to the sixth cell chamber 16 becomes substantially constant depends on the amount of the first cell chamber 11 to the sixth cell. It depends on the degree of temperature rise in the chamber 16. The degree of temperature rise is a value of temperature rise per unit time. The greater the degree of temperature rise, the greater the amount of gas generated. The degree of temperature rise in the first cell chamber 11 to the sixth cell chamber 16 is greatest in the outer first cell chamber 11 and the sixth cell chamber 16 which are apt to receive heat from the engine. Further, the degree of temperature rise in the third and fourth cell chambers 13 and 14 on the inside is the smallest. The degree of temperature rise in the second cell chamber 12 and the fifth cell chamber 15 depends on the degree of temperature rise in the third cell chamber 13 and the fourth cell chamber 14 and the degree of temperature rise in the first cell chamber 11 and the sixth cell chamber 16. Is in the middle of the degree. Note that “inside” and “outside” are positions based on the center position of the battery case 20. That is, the third cell room 13 and the fourth cell room 14 closest to the center position of the container 20 are the innermost cell rooms, and the first cell room 11 farthest to the center position of the container 20, The sixth cell chamber 16 is the outermost cell chamber.
 第1セル室11で発生したガスは、第1通気口161を通じて第1通路151に進入し、第1通路151を通過して、排気口45から外部に排出される。 The gas generated in the first cell chamber 11 enters the first passage 151 through the first ventilation port 161, passes through the first passage 151, and is exhausted from the exhaust port 45 to the outside.
 第2セル室12で発生したガスは、第2通気口162を通じて第2通路152に進入し、第1合流位置55で第1通路151に合流し、第1通路151を通過して排気口45から外部に排出される。 The gas generated in the second cell chamber 12 enters the second passage 152 through the second ventilation port 162, joins the first passage 151 at the first junction position 55, passes through the first passage 151, and passes through the exhaust port 45. Is discharged to the outside.
 第3セル室13で発生したガスは、第3通気口163を通じて第3通路153に進入し、第2合流位置56で第1通路151に合流し、第1通路151を通過して排気口45から外部に排出される。 The gas generated in the third cell chamber 13 enters the third passage 153 through the third vent 163, joins the first passage 151 at the second junction position 56, passes through the first passage 151, and passes through the exhaust port 45. Is discharged to the outside.
 第6セル室16で発生したガスは、第6通気口166を通じて第6通路156に進入し、第3合流位置57で第1通路151に合流し、第1通路151を通過して排気口45から外部に排出される。 The gas generated in the sixth cell chamber 16 enters the sixth passage 156 through the sixth ventilation port 166, joins the first passage 151 at the third junction 57, passes through the first passage 151, and passes through the exhaust port 45. Is discharged to the outside.
 第5セル室15で発生したガスは、第5通気口165を通じて第5通路155に進入し、第4合流位置59で第6通路156に合流し、第3合流位置57で第1通路151に合流し、第1通路151を通過して排気口45から外部に排出される。 The gas generated in the fifth cell chamber 15 enters the fifth passage 155 through the fifth vent 165, joins the sixth passage 156 at the fourth junction 59, and enters the first passage 151 at the third junction 57. They merge and pass through the first passage 151 and are discharged from the exhaust port 45 to the outside.
 第4セル室14で発生したガスは、第4通気口164を通じて第4通路154に進入し、第5合流位置58で第6通路156に合流し、第3合流位置57で第1通路151に合流し、第1通路151を通過して排気口45から外部に排出される。 The gas generated in the fourth cell chamber 14 enters the fourth passage 154 through the fourth vent 164, joins the sixth passage 156 at the fifth junction 58, and enters the first passage 151 at the third junction 57. They merge and pass through the first passage 151 and are discharged from the exhaust port 45 to the outside.
 エンジンが停止され、外気温によって鉛蓄電池10の電槽20内の第1セル室11~第6セル室16が冷却されると、第1セル室11~第6セル室16内のガスが液化し、第1セル室11~第6セル室16内の内圧が低下する。第1セル室11~第6セル室16内の内圧が低下すると、第1通路151~第6通路156に滞留するガスが第1セル室11~第6セル室16に引き込まれ、第1セル室11~第6セル室16において液化し、電解液6に戻る。 When the engine is stopped and the first cell chamber 11 to the sixth cell chamber 16 in the battery case 20 of the lead storage battery 10 are cooled by the outside temperature, the gas in the first cell chamber 11 to the sixth cell chamber 16 is liquefied. Then, the internal pressure in the first cell chamber 11 to the sixth cell chamber 16 decreases. When the internal pressure in the first cell chamber 11 to the sixth cell chamber 16 decreases, the gas remaining in the first passage 151 to the sixth passage 156 is drawn into the first cell chamber 11 to the sixth cell chamber 16 and the first cell It liquefies in the chamber 11 to the sixth cell chamber 16 and returns to the electrolytic solution 6.
 各第1セル室11~第6セル室16に引き込まれるガスの量について、図13を参照して詳しく説明する。第3合流位置57から排気口45に至るまでの第1通路151に滞留するガスは、第3合流位置57において、左側の第1通路151と右側の第6通路156とに分かれて、第1セル室11~第3セル室13と、第4セル室14~第6セル室16とにそれぞれ引き込まれる。第3合流位置57における左側の通路と右側の通路とは、左右対称な形状であるので、第1セル室11~第3セル室13に引き込まれるガスの量と、第4セル室14~第6セル室16に引き込まれるガスの量とは、ほぼ同じである。第3合流位置57における左側の通路と右側の通路とは、左右対称な形状であるので、以下では、左側の第1セル室11~第3セル室13について説明し、右側の第4セル室14~第6セル室16についての説明を省略する。 (4) The amount of gas drawn into each of the first to sixth cell chambers 11 to 16 will be described in detail with reference to FIG. The gas remaining in the first passage 151 from the third junction position 57 to the exhaust port 45 is divided into a first passage 151 on the left and a sixth passage 156 on the right at the third junction 57, and The cells are drawn into the cell chambers 11 to 13 and the fourth to sixth cell chambers 14, respectively. Since the left passage and the right passage at the third junction position 57 have a symmetrical shape, the amount of gas drawn into the first cell chamber 11 to the third cell chamber 13 and the fourth cell chamber 14 to The amount of gas drawn into the six-cell chamber 16 is almost the same. Since the left passage and the right passage at the third junction position 57 have a symmetrical shape, the first cell chamber 11 to the third cell chamber 13 on the left will be described below, and the fourth cell chamber on the right will be described. The description of the fourteenth to sixth cell chambers 16 is omitted.
 第2合流位置56から排気口45に至るまでの第1通路151に滞留するガスは、第3通路153を通じて第3セル室13に引き込まれ、また、第1通路151及び第2通路152を通じて第1セル室11及び第2セル室12に引き込まれる。第1通路151及び第2通路152を通じて第1セル室11及び第2セル室12に引き込まれるガスの量は、第3通路153を通じて第3セル室13に引き込まれるガスの量よりも、はるかに多い。 The gas remaining in the first passage 151 from the second junction position 56 to the exhaust port 45 is drawn into the third cell chamber 13 through the third passage 153, and is discharged through the first passage 151 and the second passage 152. It is drawn into the first cell chamber 11 and the second cell chamber 12. The amount of gas drawn into the first cell chamber 11 and the second cell chamber 12 through the first passage 151 and the second passage 152 is much larger than the amount of gas drawn into the third cell chamber 13 through the third passage 153. Many.
 詳しく説明する。まず、第1セル室11、第2セル室12、第3セル室13におけるガスを引き込む力(以下、吸引力とも記載する)について説明する。第1セル室11は、電槽20における一番外側に位置しており、電槽20の側板21を介した外気との接触面積が第2セル室12及び第3セル室13に比べて大きい。したがって、第1セル室11は、第2セル室12及び第3セル室13に比べて、温度降下の度合が大きい。温度降下の度合とは、単位時間当たりの温度降下の値である。温度降下の度合が最も大きい第1セル室11は、第2セル室12及び第3セル室13に比べて、吸引力が大きい。第2セル室12は、電槽20の側板21を介した外気との接触面積は第3セル室13と同じであるが、温度降下の度合が最も大きい第1セル室11と隣接していることより、第3セル室13に比べ、温度降下の度合が大きい。したがって、第2セル室12は、第3セル室13に比べ、吸引力が大きい。すなわち、第1セル室11~第3セル室13の吸引力は、第1セル室11、第2セル室12、第3セル室13の順に大きい。 explain in detail. First, the force of drawing gas in the first cell chamber 11, the second cell chamber 12, and the third cell chamber 13 (hereinafter, also referred to as a suction force) will be described. The first cell chamber 11 is located on the outermost side of the battery case 20, and has a larger contact area with the outside air via the side plate 21 of the battery case 20 than the second cell room 12 and the third cell room 13. . Therefore, the first cell chamber 11 has a greater degree of temperature drop than the second cell chamber 12 and the third cell chamber 13. The degree of temperature drop is a value of temperature drop per unit time. The first cell chamber 11 having the largest degree of temperature drop has a larger suction force than the second cell chamber 12 and the third cell chamber 13. The second cell chamber 12 has the same contact area with the outside air via the side plate 21 of the battery case 20 as the third cell chamber 13, but is adjacent to the first cell chamber 11 where the degree of temperature drop is the largest. Thus, the degree of temperature drop is greater than in the third cell chamber 13. Therefore, the second cell chamber 12 has a larger suction force than the third cell chamber 13. That is, the suction force of the first cell chamber 11 to the third cell chamber 13 is larger in the order of the first cell chamber 11, the second cell chamber 12, and the third cell chamber 13.
 第2合流位置56では、第1セル室11の吸引力及び第2セル室12の吸引力を合わせた吸引力と、第3セル室13の吸引力とで、ガスが、第1セル室11及び第2セル室12側と、第3セル室13側とに引き込まれる。したがって、第1セル室11及び第2セル室12側に引き込まれるガスの量は、第3セル室13側に引き込まれるガスの量よりも、はるかに多い。 At the second merging position 56, gas is generated by the suction power of the first cell chamber 11 and the suction power of the second cell chamber 12 that combine the suction power of the second cell chamber 12 and the suction power of the third cell chamber 13. And it is drawn into the 2nd cell room 12 side and the 3rd cell room 13 side. Therefore, the amount of gas drawn into the first cell chamber 11 and the second cell chamber 12 is much larger than the amount of gas drawn into the third cell chamber 13.
 第2合流位置56から第1セル室11及び第2セル室12側に引き込まれたガスは、第1合流位置55において、第1セル室11側と、第2セル室12側とに引き込まれる。上述したように、第1セル室11の吸引力は、第2セル室12の吸引力よりも大きいので、第1合流位置55において、第1セル室11側に引き込まれるガスの量は、第2セル室12側に引き込まれるガスの量よりも多い。 The gas drawn into the first cell chamber 11 and the second cell chamber 12 from the second merging position 56 is drawn into the first cell chamber 11 and the second cell chamber 12 at the first merging position 55. . As described above, since the suction force of the first cell chamber 11 is larger than the suction force of the second cell chamber 12, the amount of gas drawn into the first cell chamber 11 at the first junction position 55 is It is larger than the amount of gas drawn into the two-cell chamber 12.
 また、図13に示されるように、第1通気口161から第1合流位置55に至るまでの第1通路151の長さは、第2通気口162から第1合流位置55に至るまでの第2通路152の長さよりも長い。通路の長さが長い方が、滞留するガスの量も多い。また、第2通気口162から第2合流位置56に至るまでの通路の長さは、第3通気口163から第2合流位置56に至るまでの通路の長さよりも長い。通路の長さが長い方が、滞留するガスの量も多い。 As shown in FIG. 13, the length of the first passage 151 from the first vent 161 to the first merging position 55 is the length of the first passage 151 from the second vent 162 to the first merging position 55. It is longer than the length of the two passages 152. The longer the length of the passage, the greater the amount of stagnant gas. Further, the length of the passage from the second vent 162 to the second junction position 56 is longer than the length of the passage from the third vent 163 to the second junction position 56. The longer the length of the passage, the greater the amount of stagnant gas.
 上述のように、エンジンが停止した後の第1セル室11の温度降下の度合が一番大きいことを利用して、第1通路151~第3通路153の共通部分に滞留するガスを、第2セル室12、第3セル室13よりも多く、第1セル室11に引き込ませる。また、第1通気口161から第1合流位置55に至るまでの第1通路151の長さを第2通気口162から第1合流位置55に至るまでの第2通路152の長さよりも長くして、第1セル室11に引き込まれるガスの量を、第2セル室12、第3セル室13に引き込まれるガスの量よりも多くしている。 As described above, by utilizing the fact that the degree of the temperature drop of the first cell chamber 11 after the engine is stopped is the largest, the gas remaining in the common portion of the first passage 151 to the third passage 153 is removed. More cells are drawn into the first cell chamber 11 than the two cell chambers 12 and the third cell chamber 13. Further, the length of the first passage 151 from the first vent 161 to the first junction position 55 is made longer than the length of the second passage 152 from the second vent 162 to the first junction position 55. Thus, the amount of gas drawn into the first cell chamber 11 is made larger than the amount of gas drawn into the second cell chamber 12 and the third cell chamber 13.
 また、エンジンが停止した後の第2セル室12の温度降下の度合が第3セル室13の温度降下の度合より大きいことを利用して、第1通路151~第3通路153の共通部分に滞留するガスを、第3セル室13よりも多く、第2セル室12に引き込ませる。また、第2通気口162から第2合流位置56に至るまでの通路の長さを第3通気口163から第2合流位置56に至るまでの第3通路153の長さよりも長くして、第2セル室12に引き込まれるガスの量を、第3セル室13に引き込まれるガスの量よりも多くしている。 Further, by utilizing the fact that the degree of the temperature drop of the second cell chamber 12 after the engine is stopped is greater than the degree of the temperature drop of the third cell chamber 13, a common portion of the first passage 151 to the third passage 153 is used. The retained gas is drawn into the second cell chamber 12 more than the third cell chamber 13. In addition, the length of the passage from the second vent 162 to the second junction position 56 is longer than the length of the third passage 153 from the third vent 163 to the second junction 56, and The amount of gas drawn into the second cell chamber 12 is set to be larger than the amount of gas drawn into the third cell chamber 13.
 したがって、エンジンが始動された後、最も多くのガスを発生させる第1セル室11は、エンジンが停止された後、最も多くのガスを引き込む。また、エンジンが始動された後、第3セル室13よりも多くのガスを発生させる第2セル室12は、エンジンが停止された後、第3セル室13よりも多くのガスを引き込む。セル室11~13に引き込まれたガスは、セル室11~13内で液化し、電解液6に戻される。したがって、第1セル室11~第3セル室13における電解液6の減液量の差が低減する。すなわち、第1セル室11~第3セル室13に貯留される電解液6の経時的な量の差が低減する。 Therefore, the first cell chamber 11, which generates the most gas after the engine is started, draws the most gas after the engine is stopped. In addition, the second cell chamber 12 that generates more gas than the third cell chamber 13 after the engine is started draws more gas than the third cell chamber 13 after the engine is stopped. The gas drawn into the cell chambers 11 to 13 is liquefied in the cell chambers 11 to 13 and returned to the electrolyte 6. Therefore, the difference in the amount of electrolyte solution 6 reduced in the first cell chamber 11 to the third cell chamber 13 is reduced. That is, the difference in the amount of the electrolytic solution 6 stored in the first cell chamber 11 to the third cell chamber 13 over time is reduced.
[第2実施形態の効果] [Effect of Second Embodiment]
 上述の実施形態では、第1通気口161から第1合流位置55に至るまでの第1通路151の長さは、第2通気口162から第1合流位置55に至るまでの第2通路152の長さよりも長い。したがって、第2セル室12よりも多くの量のガスを発生させる第1セル室11に、第2セル室12よりも多くの量のガスを引き込ませることができる。したがって、第1セル室11と第2セル室12との間の減液量の差を低減することができる。その結果、第1セル室11と第2セル室12との間の電解液6の経時的な量の差を低減することができる。 In the above-described embodiment, the length of the first passage 151 from the first vent 161 to the first junction position 55 is the same as the length of the second passage 152 from the second vent 162 to the first junction position 55. Longer than the length. Therefore, a larger amount of gas can be drawn into the first cell chamber 11 that generates a larger amount of gas than the second cell chamber 12. Therefore, the difference in the amount of liquid reduction between the first cell chamber 11 and the second cell chamber 12 can be reduced. As a result, the difference in the amount of the electrolytic solution 6 between the first cell chamber 11 and the second cell chamber 12 over time can be reduced.
 また、上述の実施形態では、第1通路151と第2通路152とが第1合流位置55で合流しており、第1通気口161から排気口45に至るまでの通路の一部と、第2通気口162から排気口45に至るまでの通路の一部とが共通となっている。したがって、蓋本体31内の中継空間5内において、第1通路151と第2通路152とが合流しない構成に比べ、第1通路151及び第2通路152の長さを長くすることができる。通路の長さが長くなることにより、蓋本体31の中継空間5内において冷やされて液化するガスの量が増える。その結果、第1セル室11~第6セル室16における電解液6の減液量を低減することができる。 Further, in the above-described embodiment, the first passage 151 and the second passage 152 join at the first junction position 55, and a part of the passage from the first ventilation port 161 to the exhaust port 45, A part of the passage from the two ventilation ports 162 to the exhaust port 45 is common. Therefore, in the relay space 5 in the lid main body 31, the length of the first passage 151 and the second passage 152 can be made longer than in a configuration in which the first passage 151 and the second passage 152 do not merge. As the length of the passage increases, the amount of gas cooled and liquefied in the relay space 5 of the lid body 31 increases. As a result, the amount of reduction of the electrolytic solution 6 in the first to sixth cell chambers 11 to 16 can be reduced.
 また、上述の実施形態では、第2通気口162から第2合流位置56に至るまでの通路の長さは、第3通気口163から第2合流位置56に至るまでの第3通路153の長さよりも長い。したがって、第3セル室13よりも多くの量のガスを発生させる第2セル室12に、第3セル室13よりも多くの量のガスを引き込ませることができる。したがって、第2セル室12と第3セル室13との間の減液量の差を低減することができる。その結果、第2セル室12と第3セル室13との間の電解液6の経時的な量の差を低減することができる。 In the above-described embodiment, the length of the passage from the second vent 162 to the second junction position 56 is equal to the length of the third passage 153 from the third vent 163 to the second junction 56. Longer than it is. Therefore, a larger amount of gas can be drawn into the second cell chamber 12 that generates a larger amount of gas than the third cell chamber 13. Therefore, the difference in the amount of liquid reduction between the second cell chamber 12 and the third cell chamber 13 can be reduced. As a result, the difference in the amount of the electrolytic solution 6 between the second cell chamber 12 and the third cell chamber 13 over time can be reduced.
 また、上述の実施形態では、リブ731~734は、段差面735を第1通気口161~第6通気口166側に有し、傾斜面736を排気口45側に有する。したがって、鉛蓄電池10を搭載した車両が坂道を走行する場合などにおいて、電解液6が排気口45から外部に漏れ出ることを抑制することができる。また、第1通路151~第6通路156にある液体を第1還流孔231~第6還流孔236に戻すことができる。その結果、第1セル室11~第6セル室16に貯留された電解液6の減液量を低減することができる。 In the above-described embodiment, the ribs 731 to 734 have the step surface 735 on the first ventilation port 161 to the sixth ventilation port 166 side and the inclined surface 736 on the exhaust port 45 side. Therefore, for example, when the vehicle on which the lead storage battery 10 is mounted travels on a slope, it is possible to suppress the electrolyte 6 from leaking out of the exhaust port 45 to the outside. Further, the liquid in the first to sixth passages 151 to 156 can be returned to the first to sixth return holes 231 to 236. As a result, the amount of the electrolyte solution 6 stored in the first cell chamber 11 to the sixth cell chamber 16 can be reduced.
 また、上述の実施形態では、リブ731~734は、段差面735の上端から第1還流孔231~第6還流孔236側に突出する突出片737を有する。したがって、液体がリブ731~734を乗り越えることをさらに抑制することができる。その結果、電解液6が排気口45から外部に漏れ出ることをさらに抑制することができる。 In the above-described embodiment, the ribs 731 to 734 have the protruding pieces 737 projecting from the upper end of the step surface 735 toward the first return hole 231 to the sixth return hole 236. Therefore, it is possible to further suppress the liquid from going over the ribs 731 to 734. As a result, it is possible to further suppress the electrolyte 6 from leaking out of the exhaust port 45 to the outside.
 また、第1通路151~第3通路153を合流させることにより、第1セル室11~第3セル室13の温度降下の度合の差を利用して、第1通路151に引き込まれるガスの量を、第1通路151~第3通路153が合流しない場合よりも多くすることができる。その結果、第1セル室11~第3セル室13に貯留される電解液6の経時的な量の差を、さらに低減することができる。 Also, by merging the first passage 151 to the third passage 153, the amount of gas drawn into the first passage 151 by utilizing the difference in the degree of temperature drop between the first cell chamber 11 to the third cell chamber 13. Can be increased more than when the first to third passages 151 to 153 do not merge. As a result, the difference in the amount of the electrolytic solution 6 stored in the first cell chamber 11 to the third cell chamber 13 over time can be further reduced.
[第2課題を解決するための他の実施形態] [Another embodiment for solving the second problem]
 上述の実施形態では、第1還流孔231~第6還流孔236と、第1通気口161~第6通気口166との両方が各第1セル室11~第6セル室16に設けられた例を説明した。しかしながら、第1還流孔231~第6還流孔236のみが各第1セル室11~第6セル室16に設けられていてもよい。その場合、第1還流孔231~第6還流孔236は、第1通気口161~第6通気口166の機能を兼ねる。すなわち、第1セル室11~第6セル室16で発生したガスは、第1還流孔231~第6還流孔236を通じて第1通路151~第6通路156に流出する。 In the above-described embodiment, both the first reflux hole 231 to the sixth reflux hole 236 and the first ventilation port 161 to the sixth ventilation port 166 are provided in each of the first cell chamber 11 to the sixth cell chamber 16. Examples have been described. However, only the first to sixth return holes 231 to 236 may be provided in each of the first to sixth cell chambers 11 to 16. In this case, the first reflux hole 231 to the sixth reflux hole 236 also have the function of the first ventilation port 161 to the sixth ventilation port 166. That is, the gas generated in the first to sixth cell chambers 11 to 16 flows out to the first to sixth passages 151 to 156 through the first to sixth return holes 231 to 236.
 また、上述の実施形態では、第1通気口161から第1合流位置55に至るまでの第1通路151の長さが第2通気口162から第1合流位置55に至るまでの第2通路152の長さよりも長い構成において、リブ731~734が設けられた例を説明した。しかしながら、リブ731~734は、第1通路151と第2通路152の長さの長短に拘わらず設けられていてもよい。 In the above-described embodiment, the length of the first passage 151 from the first vent 161 to the first junction position 55 is the length of the second passage 152 from the second vent 162 to the first junction position 55. The example in which the ribs 731 to 734 are provided in the configuration longer than the length has been described. However, the ribs 731 to 734 may be provided irrespective of the length of the first passage 151 and the second passage 152.
 また、上述の実施形態では、排気口45が1つである例を説明した。しかしながら、排気口45は、2つ以上であってもよい。 In the above-described embodiment, the example in which the number of the exhaust ports 45 is one has been described. However, the number of exhaust ports 45 may be two or more.
 また、上述の実施形態では、第1通路151~第6通路156が合流する例を説明した。しかしながら、第1通路151~第6通路156は、合流していなくてもよい。 In the above-described embodiment, an example in which the first passage 151 to the sixth passage 156 join each other has been described. However, the first to sixth passages 151 to 156 need not be merged.
 なお、本発明の一実施形態は、以下の形で実施することができる。
(1)
 開口を有し、当該開口に連続する内部空間に仕切板が設けられることによって、外縁側に区画された第1セル室及び当該第1セル室より内側に区画された第2セル室を有する電槽と、
 上記開口を封口しており、中継空間が内部に区画されており、上記第1セル室と当該中継空間とを連通する第1通気口、上記第2セル室と当該中継空間とを連通する第2通気口、及び当該中継空間と外部とを連通する排気口と、を有する蓋部材と、を備え、
 上記蓋部材は、上記第1通気口から上記排気口に至る第1通路、及び上記第2通気口から上記排気口に至る第2通路を形成するリブを有し、
 上記第1通路の長さは、上記第2通路の長さより長く設定されている鉛蓄電池。
Note that one embodiment of the present invention can be implemented in the following forms.
(1)
An electrode having an opening and a partition plate provided in an internal space continuous with the opening has a first cell chamber partitioned on the outer edge side and a second cell chamber partitioned inside the first cell chamber. Tank and
The opening is closed, a relay space is defined inside, a first vent communicating the first cell chamber and the relay space, and a first vent communicating the second cell chamber and the relay space. A cover member having 2 vents, and an exhaust port communicating the relay space with the outside,
The lid member has a first passage from the first vent to the exhaust port, and a rib forming a second passage from the second vent to the exhaust port,
The lead storage battery wherein the length of the first passage is set longer than the length of the second passage.
(2)
 上記第1通路と上記第2通路とは合流しており、
 上記第1通気口から上記第1通路と上記第2通路との合流位置までの長さは、上記第2通気口から当該合流位置までの長さよりも長く設定されている(1)に記載の鉛蓄電池。
(2)
The first passage and the second passage are joined,
(1) The length from the first vent to the junction of the first passage and the second passage is set longer than the length from the second vent to the junction. Lead storage battery.
(3)
 上記仕切板によって、上記第2セル室よりも内側に第3セル室が区画されており、
 上記蓋部材は、上記中継空間と上記第3セル室とを連通する第3通気口を有しており、
 上記リブは、上記第3通気口から上記排気口に至る第3通路を形成しており、
 上記第2通路の長さは、上記第3通路の長さより長く設定されている(1)または(2)に記載の鉛蓄電池。
(3)
A third cell chamber is defined inside the second cell chamber by the partition plate,
The lid member has a third vent that communicates the relay space with the third cell chamber,
The rib forms a third passage from the third ventilation port to the exhaust port,
The lead storage battery according to (1) or (2), wherein the length of the second passage is set to be longer than the length of the third passage.
(4)
 上記蓋部材は、上記中継空間を区画し、底面から突出する凸部を有し、
 上記凸部の壁面は、当該排気口側へ漸次傾斜する傾斜面である(1)から(3)のいずれかに記載の鉛蓄電池。
(4)
The lid member partitions the relay space, and has a projection projecting from the bottom surface,
The lead-acid battery according to any one of (1) to (3), wherein the wall surface of the convex portion is an inclined surface that is gradually inclined toward the exhaust port side.
(5)
 上記凸部の先端は、上記通気口側に突出する突出片を有する(4)に記載の鉛蓄電池。
(5)
(4) The lead-acid battery according to (4), wherein a tip of the protrusion has a protruding piece protruding toward the vent.
10・・・鉛蓄電池
11~16・・・セル室
20・・・電槽
30・・・蓋部材
31・・・蓋本体
40・・・中蓋
45・・・排気口
50・・・上蓋
55~59・・・合流位置
101~127・・・リブ
130~141・・・第1空間
142、143・・・連通口
144、145・・・連通口
151~156・・・通路
161~166・・・通気口
231~236・・・還流孔
240~243・・・第2空間
731~734・・・リブ
735・・・段差面
736・・・傾斜面
737・・・突出片
DESCRIPTION OF SYMBOLS 10 ... Lead storage batteries 11-16 ... Cell room 20 ... Battery case 30 ... Lid member 31 ... Lid body 40 ... Inner lid 45 ... Exhaust port 50 ... Upper lid 55 ... 59 ... converging positions 101-127 ... ribs 130-141 ... first spaces 142, 143 ... communication ports 144, 145 ... communication ports 151-156 ... passages 161-166 ... ..Vent holes 231 to 236 reflux holes 240 to 243 second spaces 731 to 734 rib 735 step surface 736 inclined surface 737 projecting piece

Claims (15)

  1.  上部に開口を有し、電極群及び電解液を収容する電槽と、
     上記開口を封口し、且つ排気口が形成された蓋部材とを備え、
     上記蓋部材は、
     上記電槽内と連通する還流孔が形成された底壁と、
     上記底壁と対向する天壁と、
     上記底壁に立設されたリブと、を有し、
     上記リブは、
     上記還流孔から上記排気口に至る通路と、
     当該通路と1つの連通口を介して連通し、当該連通口を通じて上記電解液が流入及び流出可能な第1空間と、を形成し、
     上記連通口の幅は、当該連通口に隣接する部分における上記通路の幅の1.5倍未満である鉛蓄電池。
    A container having an opening at the top and containing an electrode group and an electrolytic solution,
    Closing the opening, and a lid member formed with an exhaust port,
    The lid member,
    A bottom wall formed with a return hole communicating with the inside of the battery case,
    A top wall facing the bottom wall,
    A rib erected on the bottom wall,
    The rib is
    A passage from the return hole to the exhaust port,
    A first space that communicates with the passage through one communication port and through which the electrolyte can flow in and out through the communication port;
    The lead storage battery, wherein the width of the communication port is less than 1.5 times the width of the passage in a portion adjacent to the communication port.
  2.  上記連通口の幅は、当該連通口に隣接する部分における上記通路の幅の半分以上である請求項1に記載の鉛蓄電池。 The lead-acid battery according to claim 1, wherein the width of the communication port is at least half the width of the passage in a portion adjacent to the communication port.
  3.  上記リブは、
     上記通路と連通し、液体が流入する第2空間をさらに形成し、
     上記第2空間は、複数の連通口と、上記通路の幅の1.5倍以上の幅の1つの連通口との少なくとも一方を通じて上記通路と連通し、かつ、上記還流孔と直接連通せず、
     上記第1空間は、上記第2空間よりも、上記通路における上記還流孔に近い位置に位置する請求項1または2に記載の鉛蓄電池。
    The rib is
    A second space that communicates with the passage and into which the liquid flows, is further formed;
    The second space communicates with the passage through at least one of a plurality of communication openings and one communication opening having a width of 1.5 times or more the width of the passage, and does not directly communicate with the return hole. ,
    The lead-acid battery according to claim 1, wherein the first space is located at a position closer to the return hole in the passage than the second space.
  4.  上記リブは、
     上記通路の一部であって、直線状の第1直線通路部と、
     上記第1直線通路部と交差する第2通路部と、を形成し、
     上記第1空間の連通口は、上記第1直線通路部の延長上であって、上記第1直線通路部と上記第2通路部との交差部に面して設けられた請求項1から3のいずれかに記載の鉛蓄電池。
    The rib is
    A first straight passage portion which is a part of the passage and is linear;
    A second passage section intersecting with the first straight passage section,
    The communication port of the first space is provided on an extension of the first straight passage portion and facing an intersection of the first straight passage portion and the second passage portion. The lead-acid battery according to any one of the above.
  5.  上記第1直線通路部と、上記第2通路とは、直交する請求項4に記載の鉛蓄電池。 The lead-acid battery according to claim 4, wherein the first straight passage portion and the second passage are orthogonal to each other.
  6.  上記リブは、上記第1直線通路部の一部及び上記第1空間の一部を区画する直線状のリブを含み、
     上記第1空間の連通口は、上記直線状のリブの中間に位置する請求項4または5に記載の鉛蓄電池。
    The rib includes a linear rib that defines a part of the first straight passage portion and a part of the first space,
    The lead-acid battery according to claim 4, wherein the communication port of the first space is located in the middle of the linear rib.
  7.  上記第1空間の連通口の幅は、当該連通口に隣接する部分における上記通路の幅より広い請求項1から6のいずれかに記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 6, wherein a width of the communication port in the first space is wider than a width of the passage in a portion adjacent to the communication port.
  8.  上記第1空間の面積は、当該第1空間の連通口の幅を二乗した値の1.5倍以上である請求項1から7のいずれかに記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 7, wherein the area of the first space is at least 1.5 times the square of the width of the communication port of the first space.
  9.  上記リブは、上記通路において上記第1空間を少なくとも2つ形成する請求項1から8のいずれかに記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 8, wherein the rib forms at least two of the first spaces in the passage.
  10.  上記第1空間の連通口は、上記通路における上記還流孔寄りの位置に形成されている請求項1から9のいずれかに記載の鉛蓄電池。 The lead-acid battery according to any one of claims 1 to 9, wherein the communication port of the first space is formed at a position near the return hole in the passage.
  11.  上記電槽は、上記開口に連続する内部空間に仕切板が設けられることによって、外縁側に区画された第1セル室及び当該第1セル室より内側に区画された第2セル室を有し、
     上記蓋部材は、中継空間が内部に区画されており、上記第1セル室と当該中継空間とを連通する第1通気口、上記第2セル室と当該中継空間とを連通する第2通気口、及び当該中継空間と外部とを連通する排気口と、を有し、
     上記蓋部材は、さらに、上記第1通気口から上記排気口に至る第1通路、及び上記第2通気口から上記排気口に至る第2通路を形成するリブを有し、
     上記第1通路の長さは、上記第2通路の長さより長く設定されている請求項1から10のいずれかに記載の鉛蓄電池。
    The battery case has a first cell chamber partitioned on the outer edge side and a second cell chamber partitioned inside the first cell chamber by providing a partition plate in an internal space continuous with the opening. ,
    In the lid member, a relay space is defined inside, and a first vent that communicates the first cell chamber and the relay space, and a second vent that communicates the second cell chamber and the relay space. And an exhaust port for communicating the relay space with the outside,
    The lid member further includes a rib that forms a first passage from the first vent to the exhaust port, and a second passage from the second vent to the exhaust port,
    The lead-acid battery according to any one of claims 1 to 10, wherein the length of the first passage is set longer than the length of the second passage.
  12.  上記第1通路と上記第2通路とは合流しており、
     上記第1通気口から上記第1通路と上記第2通路との合流位置までの長さは、上記第2通気口から当該合流位置までの長さよりも長く設定されている請求項11に記載の鉛蓄電池。
    The first passage and the second passage are joined,
    The length from the first vent to the junction of the first passage and the second passage is set to be longer than the length from the second vent to the junction. Lead storage battery.
  13.  上記仕切板によって、上記第2セル室よりも内側に第3セル室が区画されており、
     上記蓋部材は、上記中継空間と上記第3セル室とを連通する第3通気口を有しており、
     上記リブは、上記第3通気口から上記排気口に至る第3通路を形成しており、
     上記第2通路の長さは、上記第3通路の長さより長く設定されている請求項11または12に記載の鉛蓄電池。
    A third cell chamber is defined inside the second cell chamber by the partition plate,
    The lid member has a third vent that communicates the relay space with the third cell chamber,
    The rib forms a third passage from the third ventilation port to the exhaust port,
    The lead-acid battery according to claim 11, wherein the length of the second passage is set to be longer than the length of the third passage.
  14.  上記蓋部材は、上記中継空間を区画し、底面から突出する凸部を有し、
     上記凸部の壁面は、上記排気口側へ漸次傾斜する傾斜面である請求項11から13のいずれかに記載の鉛蓄電池。
    The lid member partitions the relay space, and has a projection projecting from the bottom surface,
    The lead-acid battery according to any one of claims 11 to 13, wherein a wall surface of the projection is an inclined surface that is gradually inclined toward the exhaust port.
  15.  上記凸部の先端は、上記通気口側に突出する突出片を有する請求項14に記載の鉛蓄電池。 The lead-acid battery according to claim 14, wherein a tip of the projection has a projecting piece projecting toward the vent.
PCT/JP2019/023908 2018-07-27 2019-06-17 Lead storage battery WO2020021909A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018140983A JP7110794B2 (en) 2018-07-27 2018-07-27 lead acid battery
JP2018140984A JP7107063B2 (en) 2018-07-27 2018-07-27 lead acid battery
JP2018-140983 2018-07-27
JP2018-140984 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020021909A1 true WO2020021909A1 (en) 2020-01-30

Family

ID=69181557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023908 WO2020021909A1 (en) 2018-07-27 2019-06-17 Lead storage battery

Country Status (1)

Country Link
WO (1) WO2020021909A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840439A (en) * 1997-02-06 1998-11-24 Douglas Battery Manufacturing Company Battery cover
US5843593A (en) * 1997-02-06 1998-12-01 Douglas Battery Manufacturing Company Leak resistant battery cover
US6277517B1 (en) * 1999-07-12 2001-08-21 Johnson Controls Technology Company Electrolyte baffling plug
JP2016189290A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery and method of manufacturing lid member of lead acid storage battery
JP2017033900A (en) * 2015-08-06 2017-02-09 株式会社Gsユアサ Lead-acid battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840439A (en) * 1997-02-06 1998-11-24 Douglas Battery Manufacturing Company Battery cover
US5843593A (en) * 1997-02-06 1998-12-01 Douglas Battery Manufacturing Company Leak resistant battery cover
US6277517B1 (en) * 1999-07-12 2001-08-21 Johnson Controls Technology Company Electrolyte baffling plug
JP2016189290A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Lead acid storage battery and method of manufacturing lid member of lead acid storage battery
JP2017033900A (en) * 2015-08-06 2017-02-09 株式会社Gsユアサ Lead-acid battery

Similar Documents

Publication Publication Date Title
JP6756093B2 (en) Lead-acid battery
JP5121395B2 (en) Battery pack and battery pack separator
JP7470490B2 (en) Lead-acid battery
US10319969B2 (en) Lead-acid battery and method of manufacturing lid member of lead-acid battery
US20160254510A1 (en) Lead-acid battery
JP2015002166A (en) Lead storage battery
JP2017033900A (en) Lead-acid battery
JP2017059419A (en) Lead storage battery
WO2020021909A1 (en) Lead storage battery
JP6697699B2 (en) Lead acid battery
JP7110794B2 (en) lead acid battery
JP2008198453A (en) Battery structure
JP7107063B2 (en) lead acid battery
JP7000844B2 (en) Lead-acid battery
WO2023189654A1 (en) Lead-acid battery
JP2021140967A (en) Lead-acid battery
JP2006040706A (en) Storage battery
JP7327454B2 (en) lead acid battery
JP6973039B2 (en) Lead-acid battery
JP7385500B2 (en) liquid lead acid battery
JP6303960B2 (en) Lead acid battery
JP2020004635A (en) Lead storage battery
JP2020074334A (en) Lead storage battery
JP6349668B2 (en) Sealed lead acid battery
JP2006040706A5 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840471

Country of ref document: EP

Kind code of ref document: A1