JP6697699B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP6697699B2
JP6697699B2 JP2019134647A JP2019134647A JP6697699B2 JP 6697699 B2 JP6697699 B2 JP 6697699B2 JP 2019134647 A JP2019134647 A JP 2019134647A JP 2019134647 A JP2019134647 A JP 2019134647A JP 6697699 B2 JP6697699 B2 JP 6697699B2
Authority
JP
Japan
Prior art keywords
bushing
electrolytic solution
battery case
lid
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019134647A
Other languages
Japanese (ja)
Other versions
JP2019197736A (en
Inventor
直生 藤本
藤本  直生
壮右 藤田
壮右 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Publication of JP2019197736A publication Critical patent/JP2019197736A/en
Application granted granted Critical
Publication of JP6697699B2 publication Critical patent/JP6697699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Description

本発明は、鉛蓄電池の極柱の腐食を抑制する技術に関する。   The present invention relates to a technique for suppressing corrosion of a pole of a lead storage battery.

例えば、自動車用などに用いられる鉛蓄電池は、極板群と電解液を収容する電槽と、電槽を封口する蓋部材と、端子部とを備えている。端子部は、インサート成形により蓋部材に一体化された鉛合金製のブッシングと、ブッシング内に挿通される極柱とで構成されている(下記、特許文献1参照)。   For example, a lead storage battery used for an automobile or the like includes an electrode group, a battery case containing an electrolytic solution, a lid member for sealing the battery container, and a terminal portion. The terminal portion is composed of a lead alloy bushing integrated with the lid member by insert molding, and a pole that is inserted into the bushing (see Patent Document 1 below).

ところで、電槽内に充填される電解液は、接続体を含む極板群の全体が液面下に浸漬した状態になるように、液面の高さを、通常は、接続体の上端付近に設定している(下記特許文献2の図2参照)。そのため、極柱のうち、接続体よりも上側は、電解液から露出した状態となっている。   By the way, the electrolytic solution filled in the battery case has a height of the liquid surface, usually near the upper end of the connection body, so that the whole electrode plate group including the connection body is immersed below the liquid surface. (See FIG. 2 of Patent Document 2 below). Therefore, of the pole columns, the upper side of the connection body is exposed from the electrolytic solution.

特開2012−94372号公報JP2012-94372A

特開2010−267507号公報JP, 2010-267507, A

電解液の液面は振動等により波打つことから、上記のように電槽内において極柱の一部が露出していると、振動により飛散した電解液が極柱の表面に付着することがある。表面が電解液に触れる状態と空気に触れる状態を交互に繰り返すと、極柱は腐食し易い傾向になることから、対策が求められていた。
本発明は上記のような事情に基づいて完成されたものであって、極柱の腐食を抑制することを目的とする。
Since the liquid surface of the electrolyte is wavy due to vibration, etc., if a part of the pole column is exposed in the battery case as described above, the electrolyte scattered by the vibration may adhere to the surface of the pole column. .. When the state in which the surface is in contact with the electrolytic solution and the state in which it is in contact with the air are alternately repeated, the poles tend to be corroded, so that countermeasures have been required.
The present invention has been completed based on the above circumstances, and an object thereof is to suppress corrosion of a pole.

本明細書によって開示される、本発明の鉛蓄電池は、発電要素と、前記発電要素を収容する電槽と、前記電槽内に収容される電解液と、前記電槽を封口する蓋部材と、前記蓋部材に埋め込まれた筒状のブッシングと、前記発電要素に接続され、前記ブッシングの内側に位置する極柱と、を備え、前記電槽内の電解液の液面を、前記ブッシングの下面以上の高さにする。   The lead acid battery of the present invention disclosed by the present specification includes a power generation element, a battery case that houses the power generation element, an electrolyte solution that is housed in the battery case, and a lid member that seals the battery case. A cylindrical bushing embedded in the lid member, and a pole column that is connected to the power generating element and is located inside the bushing, and the liquid level of the electrolytic solution in the battery case is Make it higher than the bottom surface.

尚、「電解液の液面がブッシングの下面以上の高さ」であるか否かは、底壁を下にして電槽を水平面上においた使用状態(すなわち、電槽に傾きがない状態)において、判断するものとする。すなわち、底壁を下にして電槽を水平面上においた使用状態で、電解液の液面がブッシングの下面より高い場合は、本発明の鉛蓄電池に該当する。   Whether or not the level of the electrolyte is higher than the bottom surface of the bushing is determined by the bottom wall down and the battery case on a horizontal surface (that is, the battery container is not tilted). In, it shall be judged. That is, when the liquid level of the electrolytic solution is higher than the lower surface of the bushing in a state where the battery case is placed on a horizontal surface with the bottom wall facing downward, the lead storage battery of the present invention is considered.

また、電解液の液面は、ブッシングの下面以上の高さを、常に維持している必要はなく、一時期でも、ブッシングの下面以上となっていればよい。例えば、メーカー出荷時の初期状態や補水後の状態において、電解液の液面がブッシングの下面より高い場合は、その後の使用により、電解液の液面がブッシングの下面より下がったとしても、本発明の鉛蓄電池に該当する。   Further, the liquid level of the electrolytic solution does not have to be constantly maintained at a height higher than the lower surface of the bushing, and may be higher than the lower surface of the bushing even at a time. For example, if the liquid level of the electrolytic solution is higher than the lower surface of the bushing in the initial state after shipment from the manufacturer or after replenishing water, even if the liquid level of the electrolytic solution falls below the lower surface of the bushing due to subsequent use, the It corresponds to the lead acid battery of the invention.

本明細書によって開示される、本発明の鉛蓄電池によれば、電解液中に浸漬させるため、極柱が空気に触れ難くなる。そのため、極柱の腐食を抑制することが出来る。   According to the lead-acid battery of the present invention disclosed in the present specification, the pole column is less likely to come into contact with air because it is immersed in the electrolytic solution. Therefore, the corrosion of the poles can be suppressed.

本発明の一実施形態に係る鉛蓄電池の斜視図1 is a perspective view of a lead storage battery according to an embodiment of the present invention. 電槽の平面図Top view of battery case 鉛蓄電池の垂直断面図(図1中のA−A線断面図)Vertical sectional view of lead-acid battery (sectional view taken along the line AA in FIG. 1) 中蓋の平面図Top view of inner lid 上蓋の平面図Top view of the lid 上蓋の底面図Bottom view of the top lid 図4の一部を拡大した図(ガスの排気通路を示す)FIG. 4 is an enlarged view of a part of FIG. 4 (showing a gas exhaust passage) 図4の一部を拡大した図(電解液の還流経路を示す)FIG. 4 is an enlarged view of a part of FIG. 4 (showing the electrolyte circulation path). 本発明の他の実施形態に係る鉛蓄電池の垂直断面図Vertical sectional view of a lead-acid battery according to another embodiment of the present invention

(本実施形態の概要)
初めに、本実施形態の鉛蓄電池の概要について説明する。本鉛蓄電池は、発電要素と、前記発電要素を収容する電槽と、前記電槽内に収容される電解液と、前記電槽を封口する蓋部材と、前記蓋部材に埋め込まれた筒状のブッシングと、前記発電要素に接続され、前記ブッシングの内側に位置する極柱と、を備え、前記電槽内の電解液の液面を、前記ブッシングの下面以上の高さにする。この構成では、ブッシングの下面から下方に突出する極柱を電解液中に浸漬させるため、極柱が空気に触れ難くなる。そのため、極柱の腐食を抑制することが出来る。
(Outline of this embodiment)
First, the outline of the lead storage battery of the present embodiment will be described. The present lead acid battery includes a power generation element, a battery case that houses the power generation element, an electrolyte solution that is housed in the battery case, a lid member that seals the battery case, and a tubular shape embedded in the lid member. And a pole that is connected to the power generating element and is located inside the bushing, and the liquid level of the electrolytic solution in the battery case is higher than the lower surface of the bushing. In this configuration, the pole pillar projecting downward from the lower surface of the bushing is immersed in the electrolytic solution, so that the pole pillar is less likely to come into contact with air. Therefore, the corrosion of the poles can be suppressed.

本鉛蓄電池では、前記蓋部材は、前記電槽を封口する中蓋と、前記中蓋の上面に重ねて装着される上蓋とを含み、前記中蓋と前記上蓋との間には、前記電槽内で発生したガスを外部に排気する排気通路が形成され、前記中蓋には、前記排気通路内の電解液を前記電槽内に還流させる還流孔が設けられている。   In the lead acid battery of the present invention, the lid member includes an inner lid that seals the battery case, and an upper lid that is mounted so as to overlap the upper surface of the inner lid. An exhaust passage is formed to exhaust the gas generated in the tank to the outside, and the inner lid is provided with a return hole for returning the electrolytic solution in the exhaust passage into the battery case.

極柱を電解液に浸漬させるためには、電解液の液面を通常よりも上げる必要がある。液面を上げると、ガス排気孔までの距離が近くなることから、電槽内の電解液の一部が、走行等の振動により飛散して、ガス排気孔から外部に逸出し易くなる。この点、本構成では、中蓋と上蓋との間に排気通路を設け、更に、排気通路内の電解液を還流孔を通じて電槽に戻す構造としている。そのため、例えば、電槽の電解液の一部が、走行等の振動により飛散して、ガス排気孔に入り込んだとしても、その電解液は、排気通路、還流孔を通って電槽に還流する。そのため、電解液の逸出を抑制することが出来る。   In order to immerse the poles in the electrolytic solution, it is necessary to raise the liquid level of the electrolytic solution higher than usual. When the liquid level is raised, the distance to the gas exhaust hole becomes shorter, so that part of the electrolytic solution in the battery case scatters due to vibration such as running and easily escapes from the gas exhaust hole to the outside. In this respect, in this configuration, an exhaust passage is provided between the inner lid and the upper lid, and further, the electrolytic solution in the exhaust passage is returned to the battery case through the reflux hole. Therefore, for example, even if a part of the electrolytic solution in the battery case is scattered by vibration such as traveling and enters the gas exhaust hole, the electrolytic solution is returned to the battery case through the exhaust passage and the return hole. .. Therefore, the escape of the electrolytic solution can be suppressed.

本鉛蓄電池では、前記上蓋の上面は、前記ブッシングの上面よりも上方に位置しており、前記中蓋は、上方に突出した突出部を有しており、前記排気通路は、前記突出部に形成されている。本構成では、上蓋がブッシングよりも高い位置まで設けられていることで、仮に、金属部材などが電池上部に置かれたとしても、ブッシングと接触しにくくして、導通するのを防止することができる。そして、上蓋をブッシングよりも高い位置まで設けることにより形成された上部スペースに突出部を配置して、この突出部内に排気通路を形成する。これにより、排気通路を電槽から上方に離れた位置に形成することができ、電解液の逸出をより抑制することが出来る。   In the present lead acid battery, the upper surface of the upper lid is located above the upper surface of the bushing, the inner lid has a protruding portion protruding upward, and the exhaust passage is formed in the protruding portion. Has been formed. In this configuration, since the upper lid is provided to a position higher than the bushing, even if a metal member or the like is placed on the upper portion of the battery, it is difficult to contact the bushing and it is possible to prevent conduction. it can. Then, the protrusion is arranged in the upper space formed by providing the upper lid to a position higher than the bushing, and the exhaust passage is formed in the protrusion. Accordingly, the exhaust passage can be formed at a position separated upward from the battery case, and the escape of the electrolytic solution can be further suppressed.

本鉛蓄電池では、発電要素と、外壁を有し前記発電要素を収容する電槽と、前記電槽内に収容される電解液と、前記電槽を封口する蓋部材と、前記蓋部材に埋め込まれた筒状のブッシングと、前記発電要素に接続され、前記ブッシングの内側に位置する極柱と、を備え、前記電槽の前記外壁のうち、高さ方向で前記ブッシングの下面以上の位置に、電解液の最高液面位置を示す最高液面線を設けている。最高液面線がブッシングの下面以上である場合、電解液が最高液面位置に達している状態では、電解液の液面はブッシングの下面より高くなる。そのため、極柱が空気に触れ難くなり、極柱の腐食を抑制することが出来る。   In the present lead acid battery, a power generation element, a battery case having an outer wall for housing the power generation element, an electrolytic solution housed in the battery case, a lid member for sealing the battery case, and embedded in the lid member. A cylindrical bushing that is connected to the power generating element, and a pole that is located inside the bushing and that is located at a position above the lower surface of the bushing in the height direction of the outer wall of the battery case. , The maximum liquid level line that indicates the maximum liquid level position of the electrolytic solution is provided. When the maximum liquid level line is above the lower surface of the bushing, the liquid level of the electrolytic solution is higher than the lower surface of the bushing when the electrolytic solution reaches the maximum liquid level position. Therefore, it becomes difficult for the poles to come into contact with air, and corrosion of the poles can be suppressed.

本鉛蓄電池では、発電要素と、前記発電要素を収容する電槽と、前記電槽内に収容される電解液と、前記電槽を封口する蓋部材と、前記蓋部材に埋め込まれた筒状のブッシングと、前記発電要素に接続され、前記ブッシングの内側に位置する極柱と、を備え、前記蓋部材は、前記電槽内に電解液を注液する注液孔と、前記注液孔の周囲に設けられ、前記電槽側に延在するスリーブと、を有し、前記スリーブの下端位置は、高さ方向で前記ブッシングの下面以上である。スリーブは、電解液の液面が最高液面位置に達しているかを視認するために設けられており、下端位置は電解液の最高液面位置と対応している。そのため、スリーブの下端位置がブッシングの下面以上である場合、その電池は、電解液が最高液面位置に達している状態では、電解液の液面がブッシングの下面より高くなる。そのため、極柱が空気に触れ難くなり、極柱の腐食を抑制することが出来る。   In the present lead acid battery, a power generation element, a battery case that houses the power generation element, an electrolyte solution that is housed in the battery case, a lid member that seals the battery case, and a tubular shape embedded in the lid member. Of the bushing and a pole that is connected to the power generating element and is located inside the bushing, and the lid member includes an injection hole for injecting an electrolytic solution into the battery case, and the injection hole. And a sleeve that is provided around the sleeve and extends toward the battery case, and the lower end position of the sleeve is higher than or equal to the lower surface of the bushing in the height direction. The sleeve is provided for visually recognizing whether the liquid level of the electrolytic solution reaches the maximum liquid level position, and the lower end position corresponds to the maximum liquid level position of the electrolytic solution. Therefore, when the lower end position of the sleeve is above the lower surface of the bushing, in the battery, the liquid level of the electrolytic solution is higher than the lower surface of the bushing when the electrolytic solution reaches the maximum liquid level position. Therefore, it becomes difficult for the poles to come into contact with air, and corrosion of the poles can be suppressed.

<実施形態>
実施形態1を図1ないし図8によって説明する。
1.鉛蓄電池10の構造
鉛蓄電池10は、図1から図3に示すように電槽20と、発電要素である極板群30と、電解液Uと、蓋部材50とを備える。尚、以下の説明において、電槽20の横幅方向(端子部40A、40Bの並び方向)をX方向とし、電槽20の高さ方向をY方向とし、奥行方向をZ方向とする。
<Embodiment>
The first embodiment will be described with reference to FIGS.
1. Structure of Lead Acid Battery 10 As shown in FIGS. 1 to 3, the lead acid battery 10 includes a battery case 20, an electrode plate group 30 which is a power generating element, an electrolytic solution U, and a lid member 50. In the following description, the lateral direction of the battery case 20 (the direction in which the terminals 40A and 40B are arranged) is the X direction, the height direction of the battery case 20 is the Y direction, and the depth direction is the Z direction.

電槽20は合成樹脂製である。電槽20は4枚の外壁21と底壁22と備え、上面が開放した箱型をなす。電槽20の内部は、図2に示すように隔壁23により複数のセル室25に仕切られている。セル室25は、電槽20の横幅方向(図2のX方向)に6室設けられており、各セル室25には、希硫酸からなる電解液Uと共に極板群30が収容されている。   The battery case 20 is made of synthetic resin. The battery case 20 includes four outer walls 21 and a bottom wall 22, and has a box shape with an open top surface. The inside of the battery case 20 is divided into a plurality of cell chambers 25 by partition walls 23 as shown in FIG. Six cell chambers 25 are provided in the widthwise direction of the battery case 20 (X direction in FIG. 2 ), and the electrode plate group 30 is accommodated in each cell chamber 25 together with the electrolytic solution U made of dilute sulfuric acid. ..

極板群30は、図3に示すように、正極板30Aと、負極板30Bと、両極板30A、30Bを仕切るセパレータ30Cとから構成されている。各極板30A、30Bは、格子体に活物質が充填されて構成されており、上部には耳部31A、31Bが設けられている。耳部31A、31Bは、ストラップ32を介して、同じ極性の極板30A、30Bをセル室25内にて連結するために設けられている。   As shown in FIG. 3, the electrode plate group 30 includes a positive electrode plate 30A, a negative electrode plate 30B, and a separator 30C that partitions the both electrode plates 30A and 30B. Each of the electrode plates 30A and 30B is formed by filling a lattice body with an active material, and ear portions 31A and 31B are provided on the upper portions thereof. The ears 31A and 31B are provided to connect the polar plates 30A and 30B of the same polarity in the cell chamber 25 via the strap 32.

ストラップ32は例えばX方向に長い板状であり、各セル室25ごとに正極用と負極用の2組が設けられている。そして、隣接するセル室25の正負のストラップ32同士を、ストラップ32上に形成された接続部33を介して電気的に接続することにより、各セル室25の極板群30を直列に接続する構造となっている。   The strap 32 has, for example, a plate shape that is long in the X direction, and two sets for the positive electrode and the negative electrode are provided for each cell chamber 25. Then, the positive and negative straps 32 of the adjacent cell chambers 25 are electrically connected to each other via the connection portion 33 formed on the strap 32, so that the electrode plate groups 30 of the cell chambers 25 are connected in series. It has a structure.

蓋部材50は中蓋60と上蓋100とを備える。中蓋60は合成樹脂製であって、電槽20の上面を封口可能な大きさとされる。中蓋60の裏面には、隔壁23に対応して蓋隔壁(図略)が形成されている。中蓋60は電槽20に重ねるように取り付けられ、電槽20の上面を封口すると共に、電槽20内の各セル室25を気密する構造となっている。上蓋100は中蓋60と同様、合成樹脂製であり、中蓋60の上面から突出して形成された台状部65に対して重ねて取り付けられる。そして、上蓋100の上面100Aは、図3に示すように、ブッシング41の上面よりも上方に位置している。尚、台状部65が本発明の「突出部」の一例である。   The lid member 50 includes an inner lid 60 and an upper lid 100. The inner lid 60 is made of synthetic resin and has a size capable of sealing the upper surface of the battery case 20. A lid partition wall (not shown) is formed on the back surface of the inner lid 60 so as to correspond to the partition wall 23. The inner lid 60 is attached so as to overlap the battery case 20, seals the upper surface of the battery case 20, and hermetically seals the cell chambers 25 in the battery case 20. Similar to the inner lid 60, the upper lid 100 is made of synthetic resin, and is attached to the trapezoidal portion 65 formed so as to project from the upper surface of the inner lid 60 in an overlapping manner. The upper surface 100A of the upper lid 100 is located above the upper surface of the bushing 41, as shown in FIG. The trapezoidal portion 65 is an example of the “projecting portion” in the present invention.

中蓋60の台状部65と上蓋100との間には、セル室25内に発生したガスを外部に排気する排気通路Rや、排気通路R内の電解液Uや水蒸気を各セル室25に還流させる還流孔95が設けられているが、これらの構造については、後に詳しく説明する。   Between the trapezoidal portion 65 of the inner lid 60 and the upper lid 100, an exhaust passage R for exhausting gas generated in the cell chamber 25 to the outside, an electrolytic solution U in the exhaust passage R, and steam are provided in each cell chamber 25. A reflux hole 95 for refluxing is provided, and these structures will be described in detail later.

尚、中蓋60は電槽20に対して熱溶着されている。また、上蓋100は中蓋60に対して熱溶着されている。   The inner lid 60 is heat-welded to the battery case 20. The upper lid 100 is heat-welded to the inner lid 60.

また、鉛蓄電池10には、正極側の端子部40Aと、負極側の端子部40Bとが設けられている。図1に示すように、正極側の端子部40Aと負極側の端子部40Bは、中蓋60のX方向両側に配置されている。正極側の端子部40Aと、負極側の端子部40Bの構造は、同一であるため、以下、正極側の端子部40Aを例にとって構造を説明する。   Further, the lead storage battery 10 is provided with a positive electrode side terminal portion 40A and a negative electrode side terminal portion 40B. As shown in FIG. 1, the terminal portion 40A on the positive electrode side and the terminal portion 40B on the negative electrode side are arranged on both sides of the inner lid 60 in the X direction. Since the positive electrode side terminal portion 40A and the negative electrode side terminal portion 40B have the same structure, the structure will be described below taking the positive electrode side terminal portion 40A as an example.

図3に示すように、正極側の端子部40Aは、ブッシング41と、極柱45とを含む。ブッシング41は鉛合金等の金属製であり中空の円筒状をなす。ブッシング41は、図3に示すように、中蓋60に対して一体形成された筒型の装着部63を貫通しており、上半分が中蓋60の上面から突出している。ブッシング41のうち、中蓋60の上面から露出する上半部は端子接続部であり、ハーネス端子などの接続端子(図略)が組み付けされる。   As shown in FIG. 3, the terminal portion 40A on the positive electrode side includes a bushing 41 and a pole 45. The bushing 41 is made of metal such as lead alloy and has a hollow cylindrical shape. As shown in FIG. 3, the bushing 41 penetrates a cylindrical mounting portion 63 integrally formed with the inner lid 60, and an upper half thereof projects from the upper surface of the inner lid 60. An upper half portion of the bushing 41 exposed from the upper surface of the inner lid 60 is a terminal connecting portion, and a connecting terminal (not shown) such as a harness terminal is assembled.

尚、中蓋60はブッシング41をインサートした金型に樹脂を流して一体成形することから、装着部63はブッシング41と一体化され、ブッシング41の下部外周を隙間なく覆う構造となっている。すなわち、ブッシング41のうち、中蓋60の上面から突出する上半部を除くそれ以外の部分が、中蓋60の装着部63に埋め込まれる構造となっている。また、装着部63には、ブッシング41の下面を囲う底壁64が形成されている。   Since the inner lid 60 is integrally molded by pouring resin into a mold into which the bushing 41 is inserted, the mounting portion 63 is integrated with the bushing 41 and has a structure that covers the lower outer periphery of the bushing 41 without a gap. That is, the bushing 41 has a structure in which the other portion except the upper half portion projecting from the upper surface of the inner lid 60 is embedded in the mounting portion 63 of the inner lid 60. A bottom wall 64 that surrounds the lower surface of the bushing 41 is formed in the mounting portion 63.

極柱45は鉛合金等の金属製であり、円柱形状をしている。極柱45は、ブッシング41の内側に下方より挿入されている。極柱45はブッシング41に比べて長く、極柱45の上部はブッシング41の内側に位置し、下部はブッシング41の下面41Aから下向きに突出している。極柱45の上端部46は、ブッシング41に対して溶接により接合され、極柱45の基端部47は極板群30のストラップ32に接合されている。   The pole 45 is made of metal such as lead alloy and has a columnar shape. The pole 45 is inserted into the bushing 41 from below. The pole 45 is longer than the bushing 41, the upper part of the pole 45 is located inside the bushing 41, and the lower part projects downward from the lower surface 41A of the bushing 41. The upper end 46 of the pole 45 is joined to the bushing 41 by welding, and the base 47 of the pole 45 is joined to the strap 32 of the pole group 30.

2.電解液Uの液面高さ
本実施形態の鉛蓄電池10では、図3に示すように、電槽20の各セル室25内に充填される電解液Uの液面Lを、ブッシング41の下面41Aと同じ高さに設定する。具体的には、図3に示すように底壁22を下にして電槽20を水平面上においた使用状態において、液面Lがブッシング41の下面41Aと同じ高さになるように、電槽20に対する電解液Uの液量を設定する。電解液Uの液面Lを、ブッシング41の下面41Aと同じ高さにすると、ブッシング41の下面41Aから下方に突出する極柱45は、電解液U中に浸漬した状態となる。電解液U中に浸漬していれば、電槽20内において、極柱45の表面が空気に触れることがないので、極柱45が腐食することを抑制出来る。
2. Liquid Level of Electrolyte U In the lead storage battery 10 of the present embodiment, as shown in FIG. 3, the liquid level L of the electrolyte U filled in each cell chamber 25 of the battery case 20 is set to the lower surface of the bushing 41. Set the same height as 41A. Specifically, as shown in FIG. 3, the battery case 20 is placed on a horizontal surface with the bottom wall 22 facing downward so that the liquid level L is the same as the lower surface 41A of the bushing 41. The amount of the electrolytic solution U with respect to 20 is set. When the liquid level L of the electrolytic solution U is set to the same height as the lower surface 41A of the bushing 41, the pole columns 45 protruding downward from the lower surface 41A of the bushing 41 are immersed in the electrolytic solution U. If the electrode 45 is immersed in the electrolytic solution U, the surface of the pole 45 does not come into contact with air in the battery case 20, so that the pole 45 can be prevented from corroding.

尚、電解液Uの液面Lをブッシング41の下面41Aと同じ高さに設定した場合、ブッシング41の外側を覆う装着部63の下部が電解液Uに浸かることから、ブッシング41と装着部63の隙間を電解液Uが這い上がることが懸念される。しかし、電解液Uの這い上がりは、電解液Uの液面Lをブッシング41の下面41Aより低い高さにした場合と比べて同等であり、ブッシング41の外側を覆う装着部63の下部が電解液Uに浸かっているか否かは、電解液Uの這い上がりやすさに影響を及ぼさない。   When the liquid level L of the electrolytic solution U is set to the same height as the lower surface 41A of the bushing 41, the lower portion of the mounting portion 63 that covers the outside of the bushing 41 is submerged in the electrolytic solution U. There is concern that the electrolytic solution U may creep up through the gap. However, the rising of the electrolytic solution U is equivalent to that when the liquid level L of the electrolytic solution U is lower than the lower surface 41A of the bushing 41, and the lower portion of the mounting portion 63 that covers the outside of the bushing 41 is electrolyzed. Whether or not it is submerged in the liquid U does not affect the ease with which the electrolytic solution U climbs up.

3.ガスの排気と電解液Uの逸出防止構造
図4は、中蓋60を上方から見た平面図である。中蓋60の上面のうちZ方向奥側(図4の上側)には、台状部65が設けられている。台状部65は、中蓋60の基部(端子部40Aや端子部40Bが形成された部位)61よりも一段高くなっており、電槽20に設けられた6つのセル室25を横断するようにX方向に延設されている。
3. Structure for Preventing Gas Exhaust and Escape of Electrolyte U FIG. 4 is a plan view of the inner lid 60 seen from above. A trapezoidal portion 65 is provided on the back side in the Z direction (upper side in FIG. 4) of the upper surface of the inner lid 60. The trapezoidal portion 65 is one step higher than the base portion (the portion where the terminal portion 40A and the terminal portion 40B are formed) 61 of the inner lid 60, and crosses the six cell chambers 25 provided in the battery case 20. In the X direction.

図4に示すように、台状部65の上面65Aには、6つのセル室25に対応してX方向に6つの注液室71と6つの排気室81が形成されている。具体的に説明すると、台状部65の上面65Aには、6つの注液室71の周りを囲うようにして周壁72が形成されている。周壁72の内側には、5つの隔壁73がX方向に形成されており、周壁72の内側の領域を6つの注液室71に仕切っている。そして、各注液室71には各セル室25に連通する注液孔75が形成されており、注液孔75を通じて、補充液を各セル室25に注液することが出来る。   As shown in FIG. 4, on the upper surface 65A of the trapezoidal portion 65, six liquid injection chambers 71 and six exhaust chambers 81 are formed in the X direction corresponding to the six cell chambers 25. More specifically, a peripheral wall 72 is formed on the upper surface 65A of the trapezoidal portion 65 so as to surround the six liquid injection chambers 71. Five partition walls 73 are formed in the X direction inside the peripheral wall 72, and divide the region inside the peripheral wall 72 into six liquid injection chambers 71. Then, a liquid injection hole 75 communicating with each cell chamber 25 is formed in each liquid injection chamber 71, and a replenisher can be injected into each cell chamber 25 through the liquid injection hole 75.

一方、各排気室81は各注液室71の前方(図4の下側)に形成されている。排気室81も注液室71と同様、6つの排気室81を囲うようにして周壁82が形成されており、周壁の内側領域を、X方向に形成された5つの隔壁83により、6つの排気室81に仕切る構造になっている。   On the other hand, each exhaust chamber 81 is formed in front of each liquid injection chamber 71 (lower side in FIG. 4). Similar to the liquid injection chamber 71, the exhaust chamber 81 is also formed with a peripheral wall 82 so as to surround the six exhaust chambers 81, and the inner region of the peripheral wall is formed by five partition walls 83 formed in the X direction to form six exhaust chambers. The structure is divided into chambers 81.

また、各排気室81には2つの仕切板85、86と、周壁92により仕切られた小室91が形成されている。2つの仕切板85、86は、X方向に向かい合う左右の隔壁83から排気室81の内側に向かって互い違いに形成されている。   Further, each exhaust chamber 81 is formed with two partition plates 85 and 86 and a small chamber 91 partitioned by a peripheral wall 92. The two partition plates 85 and 86 are formed alternately from the left and right partition walls 83 facing each other in the X direction toward the inside of the exhaust chamber 81.

小室91は、仕切板85、86の前方(図4の下側)に形成されており、内部が仕切壁93により2室に仕切られている。仕切られた小室91の一方側には、ガス排出孔94が形成され、もう一方には還流孔95が設けられている。ガス排出孔94と還流孔95は中蓋60を上下に貫通しており、電槽20内の各セル室25に連通する構造となっている。尚、周壁92には、切り欠き92Aが形成されており、小室91は、切り欠き92Aを通じて排気室81と連通する構造になっている。   The small chamber 91 is formed in front of the partition plates 85 and 86 (lower side in FIG. 4), and the inside is partitioned into two chambers by a partition wall 93. A gas discharge hole 94 is formed on one side of the partitioned small chamber 91, and a return hole 95 is provided on the other side. The gas discharge hole 94 and the recirculation hole 95 penetrate the inner lid 60 in the vertical direction, and are configured to communicate with the respective cell chambers 25 in the battery case 20. A cutout 92A is formed in the peripheral wall 92, and the small chamber 91 is structured to communicate with the exhaust chamber 81 through the cutout 92A.

また、X方向の両端に位置する排気室81には、集中排気部97が形成されている。集中排気部97は弧状の周壁98を備え、切り欠き98Aを通じて、X方向の端部に位置する排気室81とそれぞれ連通している。   Further, concentrated exhaust portions 97 are formed in the exhaust chambers 81 located at both ends in the X direction. The concentrated exhaust part 97 includes an arc-shaped peripheral wall 98, and communicates with the exhaust chamber 81 located at the end in the X direction through the notch 98A.

一方、上蓋100は、図1、図5に示すように、中蓋60の台状部65の形状と同じく、電槽20に設けられた6つのセル室25を横断するようにX方向に延設されている。上蓋100の外縁には、外周壁110が形成されている。外周壁110は下向きに延びており、上蓋100の全周に亘って形成されている。   On the other hand, as shown in FIGS. 1 and 5, the upper lid 100 extends in the X direction so as to traverse the six cell chambers 25 provided in the battery case 20, like the shape of the trapezoidal portion 65 of the inner lid 60. It is set up. An outer peripheral wall 110 is formed on the outer edge of the upper lid 100. The outer peripheral wall 110 extends downward and is formed over the entire circumference of the upper lid 100.

上蓋100の裏面には、図6に示すように、台状部65に設けられた各周壁72、82や各隔壁73、83に対応して、同じ形状の周壁172、182や、各隔壁173、183が形成されている。そのため、上蓋100の装着により、台状部65上に形成された各注液室71と、各排気室81の上面を密閉することが出来る。また、上蓋100の裏面には、2つの仕切板85、86に対応して2つの仕切板185、186が形成され、集中排気部97を形成する周壁98に対応して周壁198が形成されている。更に、小室91を仕切る仕切壁93に対応して仕切壁193が形成されている。仕切壁193には、切り欠き部193Aが形成されており、ガスや電解液が、小室91内にて流通出来る構造になっている。   As shown in FIG. 6, on the back surface of the upper lid 100, the peripheral walls 172 and 182 having the same shape and the partition walls 173 corresponding to the peripheral walls 72 and 82 and the partition walls 73 and 83 provided in the trapezoidal portion 65, respectively. , 183 are formed. Therefore, by mounting the upper lid 100, it is possible to seal the liquid injection chambers 71 formed on the platform 65 and the upper surfaces of the exhaust chambers 81. Further, on the back surface of the upper lid 100, two partition plates 185, 186 are formed corresponding to the two partition plates 85, 86, and a peripheral wall 198 is formed corresponding to the peripheral wall 98 forming the concentrated exhaust part 97. There is. Further, a partition wall 193 is formed corresponding to the partition wall 93 that partitions the small chamber 91. A notch 193A is formed in the partition wall 193, so that the gas and the electrolytic solution can flow in the small chamber 91.

図7に示すように、各排気室81は迷路状の排気通路Rを構成しており、ガス排出孔94から小室91に進入したガスは、排気室81の排気通路Rを進んで、注液室71との境界部分に至る構造となっている。   As shown in FIG. 7, each exhaust chamber 81 constitutes a labyrinth-shaped exhaust passage R, and the gas that has entered the small chamber 91 from the gas exhaust hole 94 advances through the exhaust passage R of the exhaust chamber 81 to inject liquid. The structure reaches the boundary with the chamber 71.

そして、図6に示すように、上蓋100に形成された各隔壁183には、スリット183Aが形成されており、注液室71との境界部分で、各スリット183Aを通じて各排気室81が互いに連通する。以上のことから、各排気室81のガスは、図7に示すように台状部65の上面65Aに形成された排気通路Rを経由して注液室71との境界部分に至った後、スリット183Aを通じてX方向の両側に位置する集中排気部97へと送られる。   As shown in FIG. 6, slits 183A are formed in each partition wall 183 formed on the upper lid 100, and the exhaust chambers 81 communicate with each other through the slits 183A at the boundary with the liquid injection chamber 71. To do. From the above, after the gas in each exhaust chamber 81 reaches the boundary with the liquid injection chamber 71 via the exhaust passage R formed in the upper surface 65A of the trapezoidal portion 65 as shown in FIG. It is sent to the concentrated exhaust portions 97 located on both sides in the X direction through the slit 183A.

また、上蓋100には、外周壁110に開口するトンネル状の排出ダクト200が形成されている。排気ダクト200は、図6に示すように、集中排気部97の周壁198に連通しており、集中排気部97に送られたガスは、排気ダクト200を通じて上壁100の外面壁110から外部に排気される構造になっている。尚、上記により、本発明の「前記排気通路Rは、前記突出部(本例では、台状部65の上面65A)に形成されている」が実現されている。   Further, a tunnel-shaped discharge duct 200 that opens to the outer peripheral wall 110 is formed on the upper lid 100. As shown in FIG. 6, the exhaust duct 200 communicates with the peripheral wall 198 of the central exhaust part 97, and the gas sent to the central exhaust part 97 is discharged from the outer wall 110 of the upper wall 100 to the outside through the exhaust duct 200. It is structured to be exhausted. Note that, as described above, "the exhaust passage R is formed in the projecting portion (in this example, the upper surface 65A of the trapezoidal portion 65)" of the present invention is realized.

また、各排気室81の床面は還流孔95に近い程、低くなるように傾斜が付けられている。そのため、ガスに含まれる電解液Uや水蒸気を、還流孔95を通じて、各セル室25に還流させることが出来る。すなわち、セル室25で発生したガスに含まれる電解液Uや水蒸気は、ガスが排気通路Rを通過する際に、排気通路R内にて結露する。その後、結露した電解液Uや水蒸気は、図8に示にて破線矢印で示すように、還流孔95に向かって流れてゆく。そのため、ガスに含まれる電解液Uや水蒸気を、各セル室25に還流させることが出来る。   Further, the floor surface of each exhaust chamber 81 is inclined so that it becomes lower as it approaches the return hole 95. Therefore, the electrolytic solution U and water vapor contained in the gas can be returned to each cell chamber 25 through the return hole 95. That is, the electrolytic solution U and water vapor contained in the gas generated in the cell chamber 25 are condensed in the exhaust passage R when the gas passes through the exhaust passage R. After that, the condensed electrolytic solution U and water vapor flow toward the reflux hole 95 as shown by the broken line arrow in FIG. Therefore, the electrolytic solution U and water vapor contained in the gas can be recirculated to each cell chamber 25.

4.効果説明
本鉛蓄電池10では、電解液U中に浸漬させるため、極柱45が空気に触れ難くなる。そのため、極柱45の腐食を抑制することが出来る。また、極柱45を電解液Uに浸漬させるためには、電解液Uの液面Lを、通常よりも上げる必要がある。尚、通常とは、図3にてライン「Lo」で示すように、電解液Uの液面を接続部33の上端に合せた状態を意味する。
4. Description of Effect In the present lead acid battery 10, since it is immersed in the electrolytic solution U, it is difficult for the poles 45 to come into contact with air. Therefore, the corrosion of the poles 45 can be suppressed. Further, in order to immerse the pole 45 in the electrolytic solution U, it is necessary to raise the liquid level L of the electrolytic solution U higher than usual. The normal state means a state in which the liquid level of the electrolytic solution U is aligned with the upper end of the connecting portion 33, as indicated by the line “Lo” in FIG.

液面Lを上げると、ガス排気孔94までの距離が近くなることから、セル室25内の電解液Uの一部が、走行等の振動により飛散して、ガス排気孔94から外部に逸出し易くなる。この点、本鉛蓄電池10では、中蓋60と上蓋100との間に排気通路Rを設け、更に、排気通路R内の電解液Uを還流孔95を通じてセル室25に戻す構造としている。そのため、例えば、電解液Uの一部が、走行等の振動により飛散して、ガス排気孔94に入り込んだとしても、その電解液Uは、還流孔95からセル室25に還流する。そのため、電解液Uの逸出を抑制することが出来る。   When the liquid level L is raised, the distance to the gas exhaust hole 94 becomes shorter, so that part of the electrolytic solution U in the cell chamber 25 scatters due to vibrations such as running and escapes from the gas exhaust hole 94 to the outside. It becomes easy to put out. In this respect, the lead-acid battery 10 has a structure in which the exhaust passage R is provided between the inner lid 60 and the upper lid 100, and the electrolytic solution U in the exhaust passage R is returned to the cell chamber 25 through the reflux hole 95. Therefore, for example, even if a part of the electrolytic solution U is scattered by vibration such as traveling and enters the gas exhaust hole 94, the electrolytic solution U is recirculated to the cell chamber 25 from the recirculation hole 95. Therefore, the escape of the electrolytic solution U can be suppressed.

また、上蓋100がブッシング41よりも高い位置まで設けられていることで、仮に、金属部材などが電池上部に置かれたとしても、ブッシング41と接触しにくくして、導通するのを防止することができる。そして、上蓋100をブッシング41よりも高い位置まで設けることにより形成された上部スペースに台状部65を配置して、この台状部65内に排気通路Rを形成する。これにより、排気通路Rを電槽20から上方に離れた位置に形成することができ、電解液の逸出をより抑制することが出来る。   Further, since the upper lid 100 is provided to a position higher than the bushing 41, even if a metal member or the like is placed on the upper portion of the battery, it is difficult to contact the bushing 41 and to prevent conduction. You can Then, the trapezoidal portion 65 is arranged in the upper space formed by providing the upper lid 100 to a position higher than the bushing 41, and the exhaust passage R is formed in the trapezoidal portion 65. As a result, the exhaust passage R can be formed at a position separated upward from the battery case 20, and the escape of the electrolytic solution can be further suppressed.

また、本鉛蓄電池10は極柱45を浸漬させるため電解液Uの液面を高く保つ必要があり、極柱45が一部露出する通常の電池に比べて、電槽20に多くの電解液Uを充填する必要がある。しかし、電解液Uの液面Lが高ければ、極板30A、30Bのサイズ(Y方向の寸法)をその分大きく設定することが可能である。従って、本鉛蓄電池10は、極柱45が一部露出する通常の電池に比べて、電池性能を高くすることが可能である。   Further, the lead storage battery 10 is required to keep the liquid surface of the electrolytic solution U high in order to immerse the poles 45 therein. Must be filled with U. However, if the liquid level L of the electrolytic solution U is high, it is possible to set the sizes (dimensions in the Y direction) of the electrode plates 30A and 30B larger accordingly. Therefore, the lead-acid battery 10 can have higher battery performance than an ordinary battery in which the poles 45 are partially exposed.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other Embodiments>
The present invention is not limited to the embodiments described by the above description and drawings, and the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態では、電解液Uの液面Lをブッシング41の下面41Aと同じ高さに設定したが、電槽20内の極柱45が電解液U中に浸漬した状態になればよく、電解液Uの液面Lを、ブッシング41の下面41Aよりも高く設定してもよい。   (1) In the above-described embodiment, the liquid level L of the electrolytic solution U is set to the same height as the lower surface 41A of the bushing 41. However, when the pole 45 in the battery case 20 is immersed in the electrolytic solution U, Of course, the liquid level L of the electrolytic solution U may be set higher than the lower surface 41A of the bushing 41.

(2)また、電解液Uの液面Lは、ブッシング41の下面41A以上の高さを、常に維持している必要はなく、一時期でも、ブッシング41の下面41A以上であればよい。例えば、メーカー出荷時の初期状態や補水後の状態において、電解液Uの液面Lがブッシング41の下面41Aより高い場合は、その後の使用により、電解液Uの液面Lがブッシング41の下面41Aより下がったとしても、本発明の技術的範囲に含まれる。理由は、メーカー出荷時の初期状態や補水後など一時期でも、電解液Uの液面Lがブッシング41の下面41Aより高ければ、極柱45を空気に触れ難くして、極柱45の腐食を抑制することに他ならないためである。   (2) Further, the liquid level L of the electrolytic solution U does not need to always maintain a height equal to or higher than the lower surface 41A of the bushing 41, and may be equal to or higher than the lower surface 41A of the bushing 41 even at a time. For example, when the liquid level L of the electrolytic solution U is higher than the lower surface 41A of the bushing 41 in the initial state at the time of shipment from the manufacturer or after replenishing water, the liquid level L of the electrolytic solution U becomes the lower surface of the bushing 41 by subsequent use. Even if it is lower than 41A, it is included in the technical scope of the present invention. The reason is that if the liquid level L of the electrolytic solution U is higher than the lower surface 41A of the bushing 41 even during the initial state at the time of shipment from the manufacturer or after replenishing water, the pole 45 is hard to come into contact with air and corrosion of the pole 45 is prevented. This is because it is nothing but suppression.

(3)また、本発明の技術的範囲には、図9に示すように、電槽420の外壁421に設けられた最高液面線ULVの位置が、高さ方向(Y方向)で、ブッシング41の下面41A以上である鉛蓄電池410も含まれる。これは、メーカー製造時や使用時の補水により、電解液Uは、液面Lが最高液面線ULVに達するように液量調整される。そのため、電解液Uの最高液面位置を示す最高液面線ULVがブッシング41の下面41A以上である場合、その鉛蓄電池電池410は、電解液Uの液面Lがブッシング41の下面41Aより高い状態で使用されることになる結果、極柱45が空気に触れ難くなり、極柱45の腐食を抑制することが出来るからである。   (3) Further, in the technical scope of the present invention, as shown in FIG. 9, the position of the maximum liquid level line ULV provided on the outer wall 421 of the battery case 420 is the bushing in the height direction (Y direction). A lead storage battery 410 having a lower surface 41A or more of 41 is also included. This is because the liquid amount of the electrolytic solution U is adjusted such that the liquid level L reaches the maximum liquid level line ULV by replenishing water at the time of manufacture by the manufacturer and during use. Therefore, when the maximum liquid level line ULV indicating the maximum liquid level position of the electrolytic solution U is equal to or higher than the lower surface 41A of the bushing 41, the lead storage battery battery 410 has a liquid level L of the electrolytic solution U higher than the lower surface 41A of the bushing 41. This is because, as a result of being used in a state, it becomes difficult for the pole 45 to come into contact with air, and corrosion of the pole 45 can be suppressed.

尚、図9において、符号「LLV」は電解液Uの最低液面線を示している。また、図9中、上記実施形態にて説明した鉛蓄電池10と共通する部品については、同一符号を付している。また、図9は、最高液面線ULVと最低液面線LLVを分かり易く表示するため、電解液Uは省略した図としてある。   Note that, in FIG. 9, the symbol “LLV” indicates the minimum liquid level line of the electrolytic solution U. Further, in FIG. 9, parts common to those of the lead storage battery 10 described in the above embodiment are designated by the same reference numerals. Further, in FIG. 9, the electrolytic solution U is omitted in order to clearly show the maximum liquid level line ULV and the minimum liquid level line LLV.

(4)また、例えば、蓋部材450に対して注液孔463とスリーブ465が設けられた鉛蓄電池410において、図9に示すように、スリーブ465の下端465Aの位置が、高さ方向(Y方向)で、ブッシング41の下面41A以上である場合も、本発明の技術範囲に含まれる。具体的に説明すると、スリーブ465は、図9に示すように、注液孔463の周囲に設けられ、注液孔463の孔縁から電槽420に向かって延在している。スリーブ465は、周側面にスリット467を設けた筒型であり、電解液Uの液面Lの高さを視認するために設けられている。すなわち、スリーブ465の下端に電解液Uが達していると、電解液中の極板30A、30Bが歪んで見えるので、スリーブ465を通して極板30A、30Bを視認することで、電解液Uの液面Lがスリーブ465の下端、すなわち最高液面位置に届いているかを視認することが出来る。そして、メーカー出荷時や補水により、電解液Uは、液面Lがスリーブ465の下端465Aに達するように液量調整される。従って、スリーブ465の下端465Aの位置がブッシング41の下面41A以上である場合、その鉛蓄電池410は、電解液Uの液面Lがブッシング41の下面41Aより高い状態で使用されることになる結果、極柱45が空気に触れ難くなり、極柱45の腐食を抑制することが出来るからである。   (4) Further, for example, in the lead storage battery 410 in which the liquid injection hole 463 and the sleeve 465 are provided in the lid member 450, as shown in FIG. Direction), it is also included in the technical scope of the present invention when it is the lower surface 41A or more of the bushing 41. Specifically, as shown in FIG. 9, the sleeve 465 is provided around the liquid injection hole 463 and extends from the edge of the liquid injection hole 463 toward the battery case 420. The sleeve 465 is a cylindrical type having a slit 467 on the peripheral side surface, and is provided to visually recognize the height of the liquid surface L of the electrolytic solution U. That is, when the electrolytic solution U reaches the lower end of the sleeve 465, the electrode plates 30A and 30B in the electrolytic solution appear distorted. Therefore, by visually observing the electrode plates 30A and 30B through the sleeve 465, the electrolytic solution U It is possible to visually confirm whether the surface L reaches the lower end of the sleeve 465, that is, the maximum liquid surface position. The amount of the electrolytic solution U is adjusted so that the liquid level L reaches the lower end 465A of the sleeve 465 at the time of shipment from the manufacturer or by replenishing water. Therefore, when the position of the lower end 465A of the sleeve 465 is higher than or equal to the lower surface 41A of the bushing 41, the lead storage battery 410 is used with the liquid level L of the electrolytic solution U higher than the lower surface 41A of the bushing 41. This is because the poles 45 are less likely to come into contact with air, and corrosion of the poles 45 can be suppressed.

尚、図9の例では、蓋部材450を、中蓋460と上蓋470の二重構造としており、電槽420の上面を封口する中蓋460側に、各セル室25に対応して、注液孔463とスリーブ465をそれぞれ設けている。また、上蓋470には、中蓋460側の各注液孔463に対応して、各注液孔473を設けており、電解液Uは、上蓋470の注液孔473、中蓋469の注液孔463、スリーブ465を通じて、電槽420内の各セル室25に補充される構造になっている。   Note that in the example of FIG. 9, the lid member 450 has a double structure of an inner lid 460 and an upper lid 470, and is provided on the inner lid 460 side for sealing the upper surface of the battery case 420 in correspondence with each cell chamber 25. A liquid hole 463 and a sleeve 465 are provided respectively. Further, the upper lid 470 is provided with respective liquid injection holes 473 corresponding to the respective liquid injection holes 463 on the inner lid 460 side, and the electrolytic solution U is filled with the liquid injection holes 473 of the upper lid 470 and the inner lid 469. Each cell chamber 25 in the battery case 420 is replenished through the liquid hole 463 and the sleeve 465.

(5)上記実施形態では、蓋部材50を、中蓋60と上蓋100の二重蓋構造とし、両間にガスの排気通路Rと、排気通路R内の電解液Uをセル室25に還流させる還流孔95とを設けるようにしたが、電解液Uを還流させる構造は必ずしも設ける必要はない。すなわち、蓋部材を一枚蓋構造にして、電解液Uを還流させる構造を廃止してもよい。   (5) In the above embodiment, the lid member 50 has a double lid structure of the inner lid 60 and the upper lid 100, and the gas exhaust passage R and the electrolytic solution U in the exhaust passage R are recirculated to the cell chamber 25 between them. Although the holes 95 are provided, the structure for refluxing the electrolytic solution U does not necessarily have to be provided. That is, the lid member may have a single lid structure, and the structure for refluxing the electrolytic solution U may be omitted.

尚、電解液Uを還流させる構造を廃止する場合、電槽内で発生するガスに混ざって水蒸気や電解液Uが外部に排出され易くなるので、充放電反応により、電解液Uの液面が変動しやすくなる。このような場合には、電解液Uの「下限にあたる最低液面位置」がブッシング41の下面41Aよりも高くなるように設定するとよい。   When the structure for refluxing the electrolytic solution U is abolished, water vapor and the electrolytic solution U easily mix with the gas generated in the battery case and are easily discharged to the outside. It tends to fluctuate. In such a case, the “minimum liquid level position that is the lower limit” of the electrolytic solution U may be set higher than the lower surface 41A of the bushing 41.

また、電解液Uの「下限にあたる最低液面位置」をブッシング41の下面41Aよりも高く設定すると、上限にあたる最高液面位置側で、蓋部材50までの距離が近くなって、電解液Uが外部に逸出し易くなることがある。そのため、このような場合には、電解液Uの「上限にあたる最高液面位置」をブッシング41の下面41Aと同じ高さに設定して、液面から蓋部材50までの距離を確保するようにしてもよい。尚、電解液Uの「上限にあたる最高液面位置」をブッシング41の下面41Aと同じ高さにすると、液面が下がった時に、極柱45の一部が液面から露出することになるが、電解液Uの液面は、いずれ補充液の補充により「上限にあたる最高液面位置」に戻される。そのため、極柱45の一部が露出する期間は、従来に比べて短くなるので、極柱45の腐食の進行を遅くすることが出来る。   Further, when the “minimum liquid level position that is the lower limit” of the electrolytic solution U is set higher than the lower surface 41A of the bushing 41, the distance to the lid member 50 becomes closer on the maximum liquid level position that is the upper limit, and the electrolytic solution U becomes It may easily escape to the outside. Therefore, in such a case, the "maximum liquid surface position that is the upper limit" of the electrolytic solution U is set to the same height as the lower surface 41A of the bushing 41 to ensure the distance from the liquid surface to the lid member 50. May be. If the "highest liquid level position corresponding to the upper limit" of the electrolytic solution U is set to the same height as the lower surface 41A of the bushing 41, when the liquid level is lowered, a part of the pole 45 will be exposed from the liquid level. The liquid surface of the electrolytic solution U is eventually returned to the “maximum liquid surface position corresponding to the upper limit” by replenishing the replenishing liquid. Therefore, the period in which a part of the pole 45 is exposed becomes shorter than that in the conventional case, so that the progress of corrosion of the pole 45 can be delayed.

10...鉛蓄電池
20...電槽
30...電極群(本発明の「発電要素」の一例)
41...ブッシング
45...極柱
50...蓋部材
60...中蓋
65...台状部(本発明の「突出部」の一例)
94...ガス排気孔
95...還流孔
100...上蓋
R...排気通路
U...電解液
10... Lead-acid battery 20... Battery case 30... Electrode group (an example of “power generation element” of the present invention)
41... Bushing 45... Pole pole 50... Lid member 60... Inner lid 65... Trapezoidal portion (an example of "protruding portion" of the present invention)
94... Gas exhaust hole 95... Reflux hole 100... Top lid R... Exhaust passage U... Electrolyte

Claims (6)

発電要素と、
前記発電要素を収容する電槽と、
前記電槽内に収容される電解液と、
前記電槽を封口する蓋部材と、
前記蓋部材に埋め込まれた金属製である筒状のブッシング、および前記発電要素に接続され、前記ブッシングの内側に位置する極柱を含む端子部と、を備え、
前記端子部は、接続端子が組み付けされる端子接続部を1つのみ備え、
前記電槽内の電解液の液面を、前記ブッシングの下面以上の高さにする鉛蓄電池。
Power generation element,
A battery case containing the power generation element,
An electrolytic solution contained in the battery case,
A lid member for sealing the battery case,
A tubular bushing made of metal embedded in the lid member, and a terminal portion that is connected to the power generation element and includes a pole that is located inside the bushing,
The terminal portion includes only one terminal connecting portion to which a connecting terminal is assembled,
A lead acid battery in which the liquid level of the electrolytic solution in the battery case is higher than the lower surface of the bushing.
発電要素と、
前記発電要素を収容する電槽と、
前記電槽内に収容される電解液と、
前記電槽を封口する蓋部材と、
前記蓋部材に埋め込まれた筒状のブッシング、および前記発電要素に接続され、前記ブッシングの内側に位置する極柱を含む端子部と、を備え、
前記蓋部材は、前記ブッシングの下部外周を覆う装着部を備え、
前記端子部は、接続端子が組み付けされる端子接続部を1つのみ備え、
前記電槽内の電解液の液面を、前記ブッシングの下面以上の高さにする鉛蓄電池。
Power generation element,
A battery case containing the power generation element,
An electrolytic solution contained in the battery case,
A lid member for sealing the battery case,
A tubular bushing embedded in the lid member, and a terminal portion connected to the power generation element and including a pole located inside the bushing,
The lid member includes a mounting portion that covers a lower outer periphery of the bushing,
The terminal portion includes only one terminal connecting portion to which a connecting terminal is assembled,
A lead acid battery in which the liquid level of the electrolytic solution in the battery case is higher than the lower surface of the bushing.
請求項1又は請求項2に記載の鉛蓄電池であって、
前記蓋部材は、
前記電槽を封口する中蓋と、
前記中蓋の上面に重ねて装着される上蓋とを含み、
前記中蓋と前記上蓋との間には、前記電槽内で発生したガスを外部に排気する排気通路が形成され、
前記中蓋には、前記排気通路内の電解液を前記電槽内に還流させる還流孔が設けられている鉛蓄電池。
The lead acid battery according to claim 1 or 2, wherein
The lid member is
An inner lid for sealing the battery case,
Including an upper lid that is mounted on the upper surface of the inner lid,
An exhaust passage for exhausting the gas generated in the battery case to the outside is formed between the inner lid and the upper lid,
The lead-acid battery in which the inner lid is provided with a recirculation hole for recirculating the electrolytic solution in the exhaust passage into the battery case.
請求項3に記載の鉛蓄電池であって、
前記上蓋の上面は、前記ブッシングの上面よりも上方に位置しており、
前記中蓋は、上方に突出した突出部を有しており、
前記排気通路は、前記突出部に形成されている鉛蓄電池。
The lead acid battery according to claim 3,
The upper surface of the upper lid is located above the upper surface of the bushing,
The inner lid has a protruding portion protruding upward,
The lead-acid battery in which the exhaust passage is formed in the protrusion.
請求項1又は請求項2に記載の鉛蓄電であって、
前記蓋部材は、
前記電槽内に電解液を注液する注液孔と、
前記注液孔の周囲に設けられ、前記電槽側に延在するスリーブと、を有し、
前記スリーブの下端位置は、高さ方向で、前記ブッシングの下面以上である鉛蓄電池。
The lead storage according to claim 1 or 2, wherein
The lid member is
An injection hole for injecting an electrolytic solution into the battery case,
A sleeve provided around the liquid injection hole and extending to the battery case side,
A lead storage battery in which the lower end position of the sleeve is higher than or equal to the lower surface of the bushing in the height direction.
請求項1〜請求項5のいずれか一項に記載の鉛蓄電池であって、
前記ブッシングの下面から下方に突出する前記極柱を前記電解液中に浸漬させることにより、前記極柱の腐食を抑制する鉛蓄電池。
The lead acid battery according to any one of claims 1 to 5,
A lead acid battery that suppresses corrosion of the poles by immersing the poles protruding downward from the lower surface of the bushing in the electrolytic solution.
JP2019134647A 2013-12-18 2019-07-22 Lead acid battery Active JP6697699B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013261556 2013-12-18
JP2013261556 2013-12-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014204558A Division JP6646353B2 (en) 2013-12-18 2014-10-03 Lead storage battery

Publications (2)

Publication Number Publication Date
JP2019197736A JP2019197736A (en) 2019-11-14
JP6697699B2 true JP6697699B2 (en) 2020-05-27

Family

ID=53767512

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014204558A Active JP6646353B2 (en) 2013-12-18 2014-10-03 Lead storage battery
JP2019134647A Active JP6697699B2 (en) 2013-12-18 2019-07-22 Lead acid battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014204558A Active JP6646353B2 (en) 2013-12-18 2014-10-03 Lead storage battery

Country Status (1)

Country Link
JP (2) JP6646353B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657644B2 (en) * 2015-08-04 2020-03-04 株式会社Gsユアサ Lead storage battery
KR102081447B1 (en) * 2018-10-18 2020-02-25 주식회사 한국아트라스비엑스 Leakage prevention structure of lead-acid battery with complex vent path

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4116103Y1 (en) * 1964-01-07 1966-07-27
JPS4320326Y1 (en) * 1964-03-25 1968-08-27
US4645725A (en) * 1985-08-30 1987-02-24 Gnb Incorporated Battery comprising dual terminal bushings
IT1224215B (en) * 1987-10-09 1990-09-26 Stocchiero Olimpio COVER FOR LEAD ACCUMULATORS WITH SEAT OF ELASTIC AND DEFORMABLE POLES
JP4029222B2 (en) * 1997-02-07 2008-01-09 株式会社ジーエス・ユアサコーポレーション Method for producing lead-acid battery
JP5360536B2 (en) * 2008-08-08 2013-12-04 株式会社Gsユアサ Lead acid battery

Also Published As

Publication number Publication date
JP2019197736A (en) 2019-11-14
JP2015135804A (en) 2015-07-27
JP6646353B2 (en) 2020-02-14

Similar Documents

Publication Publication Date Title
JP6756093B2 (en) Lead-acid battery
JP7470490B2 (en) Lead-acid battery
JP5336023B1 (en) Prismatic secondary battery
JP6697699B2 (en) Lead acid battery
JP2017033900A (en) Lead-acid battery
CN104733654B (en) Lead-acid battery and method for suppressing corrosion of electrode post provided in lead-acid battery
JP7110773B2 (en) Liquid spout plug for lead-acid battery and lead-acid battery
JP2008177042A (en) Double-lid exhaust structure for storage battery
JP7000844B2 (en) Lead-acid battery
JP7327454B2 (en) lead acid battery
JP7151080B2 (en) lead acid battery
JP6973039B2 (en) Lead-acid battery
JP6213769B2 (en) Lead acid battery
JP7210924B2 (en) lead acid battery
JP6191874B2 (en) Lead acid battery
JPH0427094Y2 (en)
JP2020074334A (en) Lead storage battery
JP2021140918A (en) Liquid type lead storage battery
JP2020017463A (en) Lead acid battery
JP2020017462A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200408

R150 Certificate of patent or registration of utility model

Ref document number: 6697699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150