JP2019197736A - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP2019197736A
JP2019197736A JP2019134647A JP2019134647A JP2019197736A JP 2019197736 A JP2019197736 A JP 2019197736A JP 2019134647 A JP2019134647 A JP 2019134647A JP 2019134647 A JP2019134647 A JP 2019134647A JP 2019197736 A JP2019197736 A JP 2019197736A
Authority
JP
Japan
Prior art keywords
bushing
battery case
lid
battery
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019134647A
Other languages
Japanese (ja)
Other versions
JP6697699B2 (en
Inventor
直生 藤本
Tadao Fujimoto
藤本  直生
壮右 藤田
Sosuke Fujita
壮右 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Publication of JP2019197736A publication Critical patent/JP2019197736A/en
Application granted granted Critical
Publication of JP6697699B2 publication Critical patent/JP6697699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)

Abstract

To inhibit pole column corrosion.SOLUTION: The corrosion of a pole 45 that protrudes downward from the lower surface of a bushing 41 is suppressed by setting the level of an electrolyte U filled in a battery case 20 to be higher than the lower surface of the bushing 41 that penetrates a lid member 50 that seals the battery case 20, and immersing the pole 45 in the electrolyte U. In this method, since the pole 45 protruding downward from the lower surface of the bushing 41 is immersed in the electrolyte U, the pole 45 is difficult to touch the air. Therefore, corrosion of the pole 45 can be suppressed.SELECTED DRAWING: Figure 3

Description

本発明は、鉛蓄電池の極柱の腐食を抑制する技術に関する。   The present invention relates to a technique for suppressing corrosion of a pole column of a lead storage battery.

例えば、自動車用などに用いられる鉛蓄電池は、極板群と電解液を収容する電槽と、電槽を封口する蓋部材と、端子部とを備えている。端子部は、インサート成形により蓋部材に一体化された鉛合金製のブッシングと、ブッシング内に挿通される極柱とで構成されている(下記、特許文献1参照)。   For example, a lead storage battery used for automobiles or the like includes an electrode plate group and a battery case that contains an electrolytic solution, a lid member that seals the battery case, and a terminal portion. The terminal portion is composed of a lead alloy bushing integrated with the lid member by insert molding and a pole post inserted into the bushing (see Patent Document 1 below).

ところで、電槽内に充填される電解液は、接続体を含む極板群の全体が液面下に浸漬した状態になるように、液面の高さを、通常は、接続体の上端付近に設定している(下記特許文献2の図2参照)。そのため、極柱のうち、接続体よりも上側は、電解液から露出した状態となっている。   By the way, the electrolyte filled in the battery case has a liquid surface height, usually near the upper end of the connection body, so that the entire electrode plate group including the connection body is immersed under the liquid surface. (See FIG. 2 of Patent Document 2 below). For this reason, the upper side of the pole column is exposed from the electrolytic solution.

特開2012−94372号公報JP 2012-94372 A

特開2010−267507号公報JP 2010-267507 A

電解液の液面は振動等により波打つことから、上記のように電槽内において極柱の一部が露出していると、振動により飛散した電解液が極柱の表面に付着することがある。表面が電解液に触れる状態と空気に触れる状態を交互に繰り返すと、極柱は腐食し易い傾向になることから、対策が求められていた。
本発明は上記のような事情に基づいて完成されたものであって、極柱の腐食を抑制することを目的とする。
Since the liquid level of the electrolytic solution undulates due to vibration or the like, if a part of the polar column is exposed in the battery case as described above, the electrolytic solution scattered by the vibration may adhere to the surface of the polar column. . Countermeasures have been sought because the pole column tends to corrode when the surface is in contact with the electrolyte and the air is alternately repeated.
The present invention has been completed based on the above-described circumstances, and an object thereof is to suppress the corrosion of the pole column.

本明細書によって開示される、本発明の鉛蓄電池は、発電要素と、前記発電要素を収容する電槽と、前記電槽内に収容される電解液と、前記電槽を封口する蓋部材と、前記蓋部材に埋め込まれた筒状のブッシングと、前記発電要素に接続され、前記ブッシングの内側に位置する極柱と、を備え、前記電槽内の電解液の液面を、前記ブッシングの下面以上の高さにする。   The lead storage battery of the present invention disclosed by the present specification includes a power generation element, a battery case that houses the power generation element, an electrolytic solution that is housed in the battery case, and a lid member that seals the battery case. A cylindrical bushing embedded in the lid member, and a pole column connected to the power generation element and positioned inside the bushing, and the level of the electrolyte in the battery case Make the height higher than the lower surface.

尚、「電解液の液面がブッシングの下面以上の高さ」であるか否かは、底壁を下にして電槽を水平面上においた使用状態(すなわち、電槽に傾きがない状態)において、判断するものとする。すなわち、底壁を下にして電槽を水平面上においた使用状態で、電解液の液面がブッシングの下面より高い場合は、本発明の鉛蓄電池に該当する。   Whether or not “the level of the electrolyte is higher than the lower surface of the bushing” depends on whether the battery case is on a horizontal surface with the bottom wall down (ie, the battery case is not tilted). In this case, it shall be judged. That is, when the battery case is on the horizontal surface with the bottom wall facing down and the liquid level of the electrolytic solution is higher than the lower surface of the bushing, it corresponds to the lead storage battery of the present invention.

また、電解液の液面は、ブッシングの下面以上の高さを、常に維持している必要はなく、一時期でも、ブッシングの下面以上となっていればよい。例えば、メーカー出荷時の初期状態や補水後の状態において、電解液の液面がブッシングの下面より高い場合は、その後の使用により、電解液の液面がブッシングの下面より下がったとしても、本発明の鉛蓄電池に該当する。   Further, the liquid level of the electrolytic solution need not always maintain a height higher than the lower surface of the bushing, and may be higher than the lower surface of the bushing even at one time. For example, if the electrolyte level is higher than the bottom surface of the bushing in the initial state at the time of shipment from the manufacturer or after refilling, even if the electrolyte level drops below the bottom surface of the bushing after use, Corresponds to the lead-acid battery of the invention.

本明細書によって開示される、本発明の鉛蓄電池によれば、電解液中に浸漬させるため、極柱が空気に触れ難くなる。そのため、極柱の腐食を抑制することが出来る。   According to the lead storage battery of the present invention disclosed by the present specification, since the electrode is immersed in the electrolytic solution, it becomes difficult for the pole column to touch the air. Therefore, corrosion of the pole can be suppressed.

本発明の一実施形態に係る鉛蓄電池の斜視図The perspective view of the lead storage battery which concerns on one Embodiment of this invention. 電槽の平面図Top view of the battery case 鉛蓄電池の垂直断面図(図1中のA−A線断面図)Vertical sectional view of lead-acid battery (cross-sectional view taken along line AA in FIG. 1) 中蓋の平面図Top view of the inner lid 上蓋の平面図Top view of the top lid 上蓋の底面図Bottom view of top lid 図4の一部を拡大した図(ガスの排気通路を示す)Fig. 4 is a partially enlarged view (showing the gas exhaust passage) 図4の一部を拡大した図(電解液の還流経路を示す)Fig. 4 is an enlarged view of part of Fig. 4 (showing the electrolyte reflux path) 本発明の他の実施形態に係る鉛蓄電池の垂直断面図Vertical sectional view of a lead storage battery according to another embodiment of the present invention.

(本実施形態の概要)
初めに、本実施形態の鉛蓄電池の概要について説明する。本鉛蓄電池は、発電要素と、前記発電要素を収容する電槽と、前記電槽内に収容される電解液と、前記電槽を封口する蓋部材と、前記蓋部材に埋め込まれた筒状のブッシングと、前記発電要素に接続され、前記ブッシングの内側に位置する極柱と、を備え、前記電槽内の電解液の液面を、前記ブッシングの下面以上の高さにする。この構成では、ブッシングの下面から下方に突出する極柱を電解液中に浸漬させるため、極柱が空気に触れ難くなる。そのため、極柱の腐食を抑制することが出来る。
(Outline of this embodiment)
First, an outline of the lead storage battery of the present embodiment will be described. The lead storage battery includes a power generation element, a battery case that houses the power generation element, an electrolytic solution that is accommodated in the battery case, a lid member that seals the battery case, and a cylindrical shape embedded in the lid member. And a pole column connected to the power generation element and positioned inside the bushing, and the liquid level of the electrolyte in the battery case is made higher than the lower surface of the bushing. In this configuration, since the pole column protruding downward from the lower surface of the bushing is immersed in the electrolyte, the pole column is difficult to touch the air. Therefore, corrosion of the pole can be suppressed.

本鉛蓄電池では、前記蓋部材は、前記電槽を封口する中蓋と、前記中蓋の上面に重ねて装着される上蓋とを含み、前記中蓋と前記上蓋との間には、前記電槽内で発生したガスを外部に排気する排気通路が形成され、前記中蓋には、前記排気通路内の電解液を前記電槽内に還流させる還流孔が設けられている。   In the lead storage battery, the lid member includes an inner lid that seals the battery case, and an upper lid that is mounted on the upper surface of the inner lid, and the electric battery is interposed between the inner lid and the upper lid. An exhaust passage for exhausting the gas generated in the tank to the outside is formed, and the inner lid is provided with a reflux hole for returning the electrolytic solution in the exhaust passage into the electric tank.

極柱を電解液に浸漬させるためには、電解液の液面を通常よりも上げる必要がある。液面を上げると、ガス排気孔までの距離が近くなることから、電槽内の電解液の一部が、走行等の振動により飛散して、ガス排気孔から外部に逸出し易くなる。この点、本構成では、中蓋と上蓋との間に排気通路を設け、更に、排気通路内の電解液を還流孔を通じて電槽に戻す構造としている。そのため、例えば、電槽の電解液の一部が、走行等の振動により飛散して、ガス排気孔に入り込んだとしても、その電解液は、排気通路、還流孔を通って電槽に還流する。そのため、電解液の逸出を抑制することが出来る。   In order to immerse the pole column in the electrolyte, it is necessary to raise the level of the electrolyte more than usual. When the liquid level is raised, the distance to the gas exhaust hole is reduced, so that a part of the electrolytic solution in the battery case is scattered due to vibrations such as traveling and easily escapes from the gas exhaust hole to the outside. In this regard, in this configuration, an exhaust passage is provided between the inner lid and the upper lid, and the electrolytic solution in the exhaust passage is returned to the battery case through the reflux hole. Therefore, for example, even if a part of the electrolytic solution in the battery case is scattered due to vibration during traveling or the like and enters the gas exhaust hole, the electrolytic solution returns to the battery case through the exhaust passage and the return hole. . Therefore, escape of the electrolytic solution can be suppressed.

本鉛蓄電池では、前記上蓋の上面は、前記ブッシングの上面よりも上方に位置しており、前記中蓋は、上方に突出した突出部を有しており、前記排気通路は、前記突出部に形成されている。本構成では、上蓋がブッシングよりも高い位置まで設けられていることで、仮に、金属部材などが電池上部に置かれたとしても、ブッシングと接触しにくくして、導通するのを防止することができる。そして、上蓋をブッシングよりも高い位置まで設けることにより形成された上部スペースに突出部を配置して、この突出部内に排気通路を形成する。これにより、排気通路を電槽から上方に離れた位置に形成することができ、電解液の逸出をより抑制することが出来る。   In the present lead storage battery, the upper surface of the upper lid is located above the upper surface of the bushing, the inner lid has a protruding portion protruding upward, and the exhaust passage is connected to the protruding portion. Is formed. In this configuration, the upper lid is provided to a position higher than the bushing, so that even if a metal member or the like is placed on the upper part of the battery, it is difficult to contact the bushing and prevent conduction. it can. And a protrusion part is arrange | positioned in the upper space formed by providing an upper cover to a position higher than a bushing, and an exhaust passage is formed in this protrusion part. Thereby, an exhaust passage can be formed in the position away from the battery case upward, and escape of electrolyte solution can be controlled more.

本鉛蓄電池では、発電要素と、外壁を有し前記発電要素を収容する電槽と、前記電槽内に収容される電解液と、前記電槽を封口する蓋部材と、前記蓋部材に埋め込まれた筒状のブッシングと、前記発電要素に接続され、前記ブッシングの内側に位置する極柱と、を備え、前記電槽の前記外壁のうち、高さ方向で前記ブッシングの下面以上の位置に、電解液の最高液面位置を示す最高液面線を設けている。最高液面線がブッシングの下面以上である場合、電解液が最高液面位置に達している状態では、電解液の液面はブッシングの下面より高くなる。そのため、極柱が空気に触れ難くなり、極柱の腐食を抑制することが出来る。   In this lead storage battery, a power generation element, a battery case having an outer wall and containing the power generation element, an electrolyte solution accommodated in the battery case, a lid member for sealing the battery case, and embedded in the lid member A cylindrical bushing that is connected to the power generation element and located on the inside of the bushing, and the outer wall of the battery case is at a position that is higher than the lower surface of the bushing in the height direction. The highest liquid level line indicating the highest liquid level position of the electrolytic solution is provided. When the highest liquid level line is equal to or higher than the lower surface of the bushing, the liquid surface of the electrolytic solution is higher than the lower surface of the bushing when the electrolytic solution reaches the highest liquid surface position. Therefore, it becomes difficult for the pole column to come into contact with air, and corrosion of the pole column can be suppressed.

本鉛蓄電池では、発電要素と、前記発電要素を収容する電槽と、前記電槽内に収容される電解液と、前記電槽を封口する蓋部材と、前記蓋部材に埋め込まれた筒状のブッシングと、前記発電要素に接続され、前記ブッシングの内側に位置する極柱と、を備え、前記蓋部材は、前記電槽内に電解液を注液する注液孔と、前記注液孔の周囲に設けられ、前記電槽側に延在するスリーブと、を有し、前記スリーブの下端位置は、高さ方向で前記ブッシングの下面以上である。スリーブは、電解液の液面が最高液面位置に達しているかを視認するために設けられており、下端位置は電解液の最高液面位置と対応している。そのため、スリーブの下端位置がブッシングの下面以上である場合、その電池は、電解液が最高液面位置に達している状態では、電解液の液面がブッシングの下面より高くなる。そのため、極柱が空気に触れ難くなり、極柱の腐食を抑制することが出来る。   In this lead storage battery, a power generation element, a battery case that houses the power generation element, an electrolytic solution that is housed in the battery case, a lid member that seals the battery case, and a cylindrical shape embedded in the lid member And a pole column connected to the power generation element and positioned inside the bushing, the lid member injecting electrolyte into the battery case, and the injection hole , And a lower end position of the sleeve is equal to or higher than the lower surface of the bushing in the height direction. The sleeve is provided for visually confirming whether the liquid level of the electrolytic solution has reached the highest liquid level position, and the lower end position corresponds to the highest liquid level position of the electrolytic solution. Therefore, when the lower end position of the sleeve is equal to or higher than the lower surface of the bushing, the battery has a higher electrolyte level than the lower surface of the bushing when the electrolytic solution reaches the highest liquid level position. Therefore, it becomes difficult for the pole column to come into contact with air, and corrosion of the pole column can be suppressed.

<実施形態>
実施形態1を図1ないし図8によって説明する。
1.鉛蓄電池10の構造
鉛蓄電池10は、図1から図3に示すように電槽20と、発電要素である極板群30と、電解液Uと、蓋部材50とを備える。尚、以下の説明において、電槽20の横幅方向(端子部40A、40Bの並び方向)をX方向とし、電槽20の高さ方向をY方向とし、奥行方向をZ方向とする。
<Embodiment>
The first embodiment will be described with reference to FIGS.
1. Structure of the lead storage battery 10 The lead storage battery 10 includes a battery case 20, an electrode plate group 30, which is a power generation element, an electrolytic solution U, and a lid member 50, as shown in FIGS. In the following description, the horizontal width direction (the arrangement direction of the terminal portions 40A and 40B) of the battery case 20 is the X direction, the height direction of the battery case 20 is the Y direction, and the depth direction is the Z direction.

電槽20は合成樹脂製である。電槽20は4枚の外壁21と底壁22と備え、上面が開放した箱型をなす。電槽20の内部は、図2に示すように隔壁23により複数のセル室25に仕切られている。セル室25は、電槽20の横幅方向(図2のX方向)に6室設けられており、各セル室25には、希硫酸からなる電解液Uと共に極板群30が収容されている。   The battery case 20 is made of synthetic resin. The battery case 20 includes four outer walls 21 and a bottom wall 22 and has a box shape with an open upper surface. The interior of the battery case 20 is partitioned into a plurality of cell chambers 25 by partition walls 23 as shown in FIG. Six cell chambers 25 are provided in the lateral width direction (X direction in FIG. 2) of the battery case 20, and each cell chamber 25 accommodates an electrode plate group 30 together with an electrolyte U made of dilute sulfuric acid. .

極板群30は、図3に示すように、正極板30Aと、負極板30Bと、両極板30A、30Bを仕切るセパレータ30Cとから構成されている。各極板30A、30Bは、格子体に活物質が充填されて構成されており、上部には耳部31A、31Bが設けられている。耳部31A、31Bは、ストラップ32を介して、同じ極性の極板30A、30Bをセル室25内にて連結するために設けられている。   As shown in FIG. 3, the electrode plate group 30 includes a positive electrode plate 30A, a negative electrode plate 30B, and a separator 30C that partitions the electrode plates 30A and 30B. Each of the electrode plates 30A and 30B is configured by filling a lattice body with an active material, and ears 31A and 31B are provided in the upper part. The ears 31 </ b> A and 31 </ b> B are provided to connect the electrode plates 30 </ b> A and 30 </ b> B having the same polarity through the strap 32 in the cell chamber 25.

ストラップ32は例えばX方向に長い板状であり、各セル室25ごとに正極用と負極用の2組が設けられている。そして、隣接するセル室25の正負のストラップ32同士を、ストラップ32上に形成された接続部33を介して電気的に接続することにより、各セル室25の極板群30を直列に接続する構造となっている。   The strap 32 has, for example, a plate shape that is long in the X direction, and two sets for a positive electrode and a negative electrode are provided for each cell chamber 25. Then, the positive and negative straps 32 of the adjacent cell chambers 25 are electrically connected to each other via a connection portion 33 formed on the strap 32 to connect the electrode plate groups 30 of the cell chambers 25 in series. It has a structure.

蓋部材50は中蓋60と上蓋100とを備える。中蓋60は合成樹脂製であって、電槽20の上面を封口可能な大きさとされる。中蓋60の裏面には、隔壁23に対応して蓋隔壁(図略)が形成されている。中蓋60は電槽20に重ねるように取り付けられ、電槽20の上面を封口すると共に、電槽20内の各セル室25を気密する構造となっている。上蓋100は中蓋60と同様、合成樹脂製であり、中蓋60の上面から突出して形成された台状部65に対して重ねて取り付けられる。そして、上蓋100の上面100Aは、図3に示すように、ブッシング41の上面よりも上方に位置している。尚、台状部65が本発明の「突出部」の一例である。   The lid member 50 includes an inner lid 60 and an upper lid 100. The inner lid 60 is made of synthetic resin and has a size capable of sealing the upper surface of the battery case 20. A lid partition wall (not shown) is formed on the back surface of the inner lid 60 corresponding to the partition wall 23. The inner lid 60 is attached so as to overlap the battery case 20, and has a structure that seals the upper surface of the battery case 20 and hermetically seals each cell chamber 25 in the battery case 20. Similar to the inner lid 60, the upper lid 100 is made of synthetic resin, and is attached to the base portion 65 formed so as to protrude from the upper surface of the inner lid 60. The upper surface 100A of the upper lid 100 is located above the upper surface of the bushing 41 as shown in FIG. The platform 65 is an example of the “projection” in the present invention.

中蓋60の台状部65と上蓋100との間には、セル室25内に発生したガスを外部に排気する排気通路Rや、排気通路R内の電解液Uや水蒸気を各セル室25に還流させる還流孔95が設けられているが、これらの構造については、後に詳しく説明する。   Between the trapezoidal portion 65 of the inner lid 60 and the upper lid 100, the exhaust passage R that exhausts the gas generated in the cell chamber 25 to the outside, and the electrolyte U and water vapor in the exhaust passage R are supplied to each cell chamber 25. A reflux hole 95 for refluxing is provided, and these structures will be described in detail later.

尚、中蓋60は電槽20に対して熱溶着されている。また、上蓋100は中蓋60に対して熱溶着されている。   The inner lid 60 is thermally welded to the battery case 20. Further, the upper lid 100 is thermally welded to the inner lid 60.

また、鉛蓄電池10には、正極側の端子部40Aと、負極側の端子部40Bとが設けられている。図1に示すように、正極側の端子部40Aと負極側の端子部40Bは、中蓋60のX方向両側に配置されている。正極側の端子部40Aと、負極側の端子部40Bの構造は、同一であるため、以下、正極側の端子部40Aを例にとって構造を説明する。   In addition, the lead storage battery 10 is provided with a positive terminal portion 40A and a negative terminal portion 40B. As shown in FIG. 1, the positive terminal portion 40 </ b> A and the negative terminal portion 40 </ b> B are disposed on both sides of the inner lid 60 in the X direction. Since the structure of the positive terminal portion 40A and the negative terminal portion 40B is the same, the structure will be described below taking the positive terminal portion 40A as an example.

図3に示すように、正極側の端子部40Aは、ブッシング41と、極柱45とを含む。ブッシング41は鉛合金等の金属製であり中空の円筒状をなす。ブッシング41は、図3に示すように、中蓋60に対して一体形成された筒型の装着部63を貫通しており、上半分が中蓋60の上面から突出している。ブッシング41のうち、中蓋60の上面から露出する上半部は端子接続部であり、ハーネス端子などの接続端子(図略)が組み付けされる。   As shown in FIG. 3, the positive terminal portion 40 </ b> A includes a bushing 41 and a pole column 45. The bushing 41 is made of a metal such as a lead alloy and has a hollow cylindrical shape. As shown in FIG. 3, the bushing 41 passes through a cylindrical mounting portion 63 formed integrally with the inner lid 60, and the upper half protrudes from the upper surface of the inner lid 60. In the bushing 41, the upper half exposed from the upper surface of the inner lid 60 is a terminal connection portion, and a connection terminal (not shown) such as a harness terminal is assembled.

尚、中蓋60はブッシング41をインサートした金型に樹脂を流して一体成形することから、装着部63はブッシング41と一体化され、ブッシング41の下部外周を隙間なく覆う構造となっている。すなわち、ブッシング41のうち、中蓋60の上面から突出する上半部を除くそれ以外の部分が、中蓋60の装着部63に埋め込まれる構造となっている。また、装着部63には、ブッシング41の下面を囲う底壁64が形成されている。   In addition, since the inner lid 60 is integrally formed by pouring resin into a mold in which the bushing 41 is inserted, the mounting portion 63 is integrated with the bushing 41 so that the lower outer periphery of the bushing 41 is covered without a gap. That is, the bushing 41 has a structure in which the other part except the upper half protruding from the upper surface of the inner lid 60 is embedded in the mounting portion 63 of the inner lid 60. Further, a bottom wall 64 that surrounds the lower surface of the bushing 41 is formed in the mounting portion 63.

極柱45は鉛合金等の金属製であり、円柱形状をしている。極柱45は、ブッシング41の内側に下方より挿入されている。極柱45はブッシング41に比べて長く、極柱45の上部はブッシング41の内側に位置し、下部はブッシング41の下面41Aから下向きに突出している。極柱45の上端部46は、ブッシング41に対して溶接により接合され、極柱45の基端部47は極板群30のストラップ32に接合されている。   The pole column 45 is made of a metal such as a lead alloy and has a cylindrical shape. The pole 45 is inserted into the bushing 41 from below. The pole column 45 is longer than the bushing 41, the upper portion of the pole column 45 is located inside the bushing 41, and the lower portion projects downward from the lower surface 41 </ b> A of the bushing 41. An upper end portion 46 of the pole column 45 is joined to the bushing 41 by welding, and a base end portion 47 of the pole column 45 is joined to the strap 32 of the electrode plate group 30.

2.電解液Uの液面高さ
本実施形態の鉛蓄電池10では、図3に示すように、電槽20の各セル室25内に充填される電解液Uの液面Lを、ブッシング41の下面41Aと同じ高さに設定する。具体的には、図3に示すように底壁22を下にして電槽20を水平面上においた使用状態において、液面Lがブッシング41の下面41Aと同じ高さになるように、電槽20に対する電解液Uの液量を設定する。電解液Uの液面Lを、ブッシング41の下面41Aと同じ高さにすると、ブッシング41の下面41Aから下方に突出する極柱45は、電解液U中に浸漬した状態となる。電解液U中に浸漬していれば、電槽20内において、極柱45の表面が空気に触れることがないので、極柱45が腐食することを抑制出来る。
2. Liquid Level Height of Electrolytic Solution U In the lead storage battery 10 of the present embodiment, as shown in FIG. 3, the liquid level L of the electrolytic solution U filled in each cell chamber 25 of the battery case 20 is changed to the lower surface of the bushing 41. Set to the same height as 41A. Specifically, as shown in FIG. 3, the battery case so that the liquid level L is the same height as the lower surface 41 </ b> A of the bushing 41 in the use state in which the battery case 20 is on a horizontal surface with the bottom wall 22 facing down. The amount of the electrolytic solution U with respect to 20 is set. When the liquid surface L of the electrolytic solution U is made to be the same height as the lower surface 41A of the bushing 41, the pole column 45 protruding downward from the lower surface 41A of the bushing 41 is immersed in the electrolytic solution U. If immersed in the electrolytic solution U, the surface of the pole column 45 does not come into contact with air in the battery case 20, so that the pole column 45 can be prevented from corroding.

尚、電解液Uの液面Lをブッシング41の下面41Aと同じ高さに設定した場合、ブッシング41の外側を覆う装着部63の下部が電解液Uに浸かることから、ブッシング41と装着部63の隙間を電解液Uが這い上がることが懸念される。しかし、電解液Uの這い上がりは、電解液Uの液面Lをブッシング41の下面41Aより低い高さにした場合と比べて同等であり、ブッシング41の外側を覆う装着部63の下部が電解液Uに浸かっているか否かは、電解液Uの這い上がりやすさに影響を及ぼさない。   When the liquid level L of the electrolytic solution U is set to the same height as the lower surface 41A of the bushing 41, the lower part of the mounting part 63 that covers the outside of the bushing 41 is immersed in the electrolytic solution U. Therefore, the bushing 41 and the mounting part 63 There is a concern that the electrolyte U creeps through the gap. However, the creeping up of the electrolytic solution U is equivalent to the case where the liquid level L of the electrolytic solution U is lower than the lower surface 41A of the bushing 41, and the lower portion of the mounting portion 63 that covers the outside of the bushing 41 is electrolyzed. Whether or not it is immersed in the liquid U does not affect the ease with which the electrolytic solution U can be rolled up.

3.ガスの排気と電解液Uの逸出防止構造
図4は、中蓋60を上方から見た平面図である。中蓋60の上面のうちZ方向奥側(図4の上側)には、台状部65が設けられている。台状部65は、中蓋60の基部(端子部40Aや端子部40Bが形成された部位)61よりも一段高くなっており、電槽20に設けられた6つのセル室25を横断するようにX方向に延設されている。
3. FIG. 4 is a plan view of the inner lid 60 as viewed from above. A table-like portion 65 is provided on the upper side of the inner lid 60 on the back side in the Z direction (upper side in FIG. 4). The trapezoidal portion 65 is one step higher than the base 61 (the portion where the terminal portion 40A and the terminal portion 40B are formed) 61 of the inner lid 60, and crosses the six cell chambers 25 provided in the battery case 20. Extending in the X direction.

図4に示すように、台状部65の上面65Aには、6つのセル室25に対応してX方向に6つの注液室71と6つの排気室81が形成されている。具体的に説明すると、台状部65の上面65Aには、6つの注液室71の周りを囲うようにして周壁72が形成されている。周壁72の内側には、5つの隔壁73がX方向に形成されており、周壁72の内側の領域を6つの注液室71に仕切っている。そして、各注液室71には各セル室25に連通する注液孔75が形成されており、注液孔75を通じて、補充液を各セル室25に注液することが出来る。   As shown in FIG. 4, six liquid injection chambers 71 and six exhaust chambers 81 are formed in the X direction corresponding to the six cell chambers 25 on the upper surface 65 </ b> A of the platform 65. More specifically, a peripheral wall 72 is formed on the upper surface 65 </ b> A of the platform 65 so as to surround the six liquid injection chambers 71. Inside the peripheral wall 72, five partition walls 73 are formed in the X direction, and the region inside the peripheral wall 72 is partitioned into six liquid injection chambers 71. Each liquid injection chamber 71 is formed with a liquid injection hole 75 communicating with each cell chamber 25, and the replenisher can be injected into each cell chamber 25 through the liquid injection hole 75.

一方、各排気室81は各注液室71の前方(図4の下側)に形成されている。排気室81も注液室71と同様、6つの排気室81を囲うようにして周壁82が形成されており、周壁の内側領域を、X方向に形成された5つの隔壁83により、6つの排気室81に仕切る構造になっている。   On the other hand, each exhaust chamber 81 is formed in front of each liquid injection chamber 71 (lower side in FIG. 4). Similarly to the liquid injection chamber 71, the exhaust chamber 81 is formed with a peripheral wall 82 so as to surround the six exhaust chambers 81, and the inner region of the peripheral wall is divided into six exhausts by five partition walls 83 formed in the X direction. The chamber 81 is partitioned.

また、各排気室81には2つの仕切板85、86と、周壁92により仕切られた小室91が形成されている。2つの仕切板85、86は、X方向に向かい合う左右の隔壁83から排気室81の内側に向かって互い違いに形成されている。   Each exhaust chamber 81 is formed with a small chamber 91 partitioned by two partition plates 85 and 86 and a peripheral wall 92. The two partition plates 85 and 86 are formed alternately from the left and right partition walls 83 facing in the X direction toward the inside of the exhaust chamber 81.

小室91は、仕切板85、86の前方(図4の下側)に形成されており、内部が仕切壁93により2室に仕切られている。仕切られた小室91の一方側には、ガス排出孔94が形成され、もう一方には還流孔95が設けられている。ガス排出孔94と還流孔95は中蓋60を上下に貫通しており、電槽20内の各セル室25に連通する構造となっている。尚、周壁92には、切り欠き92Aが形成されており、小室91は、切り欠き92Aを通じて排気室81と連通する構造になっている。   The small chamber 91 is formed in front of the partition plates 85 and 86 (lower side in FIG. 4), and the inside is partitioned into two chambers by a partition wall 93. A gas discharge hole 94 is formed on one side of the partitioned small chamber 91, and a reflux hole 95 is provided on the other side. The gas discharge hole 94 and the reflux hole 95 pass through the inner lid 60 in the vertical direction, and are configured to communicate with each cell chamber 25 in the battery case 20. A cutout 92A is formed in the peripheral wall 92, and the small chamber 91 is structured to communicate with the exhaust chamber 81 through the cutout 92A.

また、X方向の両端に位置する排気室81には、集中排気部97が形成されている。集中排気部97は弧状の周壁98を備え、切り欠き98Aを通じて、X方向の端部に位置する排気室81とそれぞれ連通している。   Concentrated exhaust portions 97 are formed in the exhaust chambers 81 located at both ends in the X direction. The concentrated exhaust part 97 includes an arc-shaped peripheral wall 98, and communicates with the exhaust chamber 81 located at the end in the X direction through the notch 98A.

一方、上蓋100は、図1、図5に示すように、中蓋60の台状部65の形状と同じく、電槽20に設けられた6つのセル室25を横断するようにX方向に延設されている。上蓋100の外縁には、外周壁110が形成されている。外周壁110は下向きに延びており、上蓋100の全周に亘って形成されている。   On the other hand, as shown in FIGS. 1 and 5, the upper lid 100 extends in the X direction so as to cross the six cell chambers 25 provided in the battery case 20, similarly to the shape of the base portion 65 of the inner lid 60. It is installed. An outer peripheral wall 110 is formed on the outer edge of the upper lid 100. The outer peripheral wall 110 extends downward and is formed over the entire periphery of the upper lid 100.

上蓋100の裏面には、図6に示すように、台状部65に設けられた各周壁72、82や各隔壁73、83に対応して、同じ形状の周壁172、182や、各隔壁173、183が形成されている。そのため、上蓋100の装着により、台状部65上に形成された各注液室71と、各排気室81の上面を密閉することが出来る。また、上蓋100の裏面には、2つの仕切板85、86に対応して2つの仕切板185、186が形成され、集中排気部97を形成する周壁98に対応して周壁198が形成されている。更に、小室91を仕切る仕切壁93に対応して仕切壁193が形成されている。仕切壁193には、切り欠き部193Aが形成されており、ガスや電解液が、小室91内にて流通出来る構造になっている。   On the back surface of the upper lid 100, as shown in FIG. 6, the peripheral walls 172 and 182 having the same shape and the respective partition walls 173 corresponding to the respective peripheral walls 72 and 82 and the respective partition walls 73 and 83 provided on the platform 65. , 183 are formed. Therefore, by mounting the upper lid 100, the top surfaces of the liquid injection chambers 71 and the exhaust chambers 81 formed on the platform 65 can be sealed. In addition, two partition plates 185 and 186 corresponding to the two partition plates 85 and 86 are formed on the rear surface of the upper lid 100, and a peripheral wall 198 is formed corresponding to the peripheral wall 98 forming the concentrated exhaust portion 97. Yes. Furthermore, a partition wall 193 is formed corresponding to the partition wall 93 that partitions the small chamber 91. The partition wall 193 is formed with a notch 193 </ b> A so that a gas or an electrolyte can flow in the small chamber 91.

図7に示すように、各排気室81は迷路状の排気通路Rを構成しており、ガス排出孔94から小室91に進入したガスは、排気室81の排気通路Rを進んで、注液室71との境界部分に至る構造となっている。   As shown in FIG. 7, each exhaust chamber 81 constitutes a maze-like exhaust passage R, and the gas that has entered the small chamber 91 from the gas exhaust hole 94 proceeds through the exhaust passage R of the exhaust chamber 81 to inject liquid. The structure reaches the boundary with the chamber 71.

そして、図6に示すように、上蓋100に形成された各隔壁183には、スリット183Aが形成されており、注液室71との境界部分で、各スリット183Aを通じて各排気室81が互いに連通する。以上のことから、各排気室81のガスは、図7に示すように台状部65の上面65Aに形成された排気通路Rを経由して注液室71との境界部分に至った後、スリット183Aを通じてX方向の両側に位置する集中排気部97へと送られる。   As shown in FIG. 6, slits 183A are formed in each partition wall 183 formed in the upper lid 100, and the exhaust chambers 81 communicate with each other through the slits 183A at the boundary with the liquid injection chamber 71. To do. From the above, after the gas in each exhaust chamber 81 reaches the boundary portion with the liquid injection chamber 71 via the exhaust passage R formed in the upper surface 65A of the base portion 65 as shown in FIG. It is sent to the concentrated exhaust part 97 located on both sides in the X direction through the slit 183A.

また、上蓋100には、外周壁110に開口するトンネル状の排出ダクト200が形成されている。排気ダクト200は、図6に示すように、集中排気部97の周壁198に連通しており、集中排気部97に送られたガスは、排気ダクト200を通じて上壁100の外面壁110から外部に排気される構造になっている。尚、上記により、本発明の「前記排気通路Rは、前記突出部(本例では、台状部65の上面65A)に形成されている」が実現されている。   Further, the upper lid 100 is formed with a tunnel-shaped discharge duct 200 that opens to the outer peripheral wall 110. As shown in FIG. 6, the exhaust duct 200 communicates with the peripheral wall 198 of the concentrated exhaust part 97, and the gas sent to the concentrated exhaust part 97 passes from the outer surface wall 110 of the upper wall 100 to the outside through the exhaust duct 200. It is structured to be exhausted. Note that, according to the present invention, “the exhaust passage R is formed in the protruding portion (in this example, the upper surface 65A of the base portion 65)” is realized.

また、各排気室81の床面は還流孔95に近い程、低くなるように傾斜が付けられている。そのため、ガスに含まれる電解液Uや水蒸気を、還流孔95を通じて、各セル室25に還流させることが出来る。すなわち、セル室25で発生したガスに含まれる電解液Uや水蒸気は、ガスが排気通路Rを通過する際に、排気通路R内にて結露する。その後、結露した電解液Uや水蒸気は、図8に示にて破線矢印で示すように、還流孔95に向かって流れてゆく。そのため、ガスに含まれる電解液Uや水蒸気を、各セル室25に還流させることが出来る。   Further, the floor surface of each exhaust chamber 81 is inclined so as to become lower as it is closer to the reflux hole 95. Therefore, the electrolytic solution U and water vapor contained in the gas can be refluxed to each cell chamber 25 through the reflux hole 95. That is, the electrolytic solution U and water vapor contained in the gas generated in the cell chamber 25 are condensed in the exhaust passage R when the gas passes through the exhaust passage R. Thereafter, the condensed electrolyte U and water vapor flow toward the reflux hole 95 as shown by the broken line arrows in FIG. Therefore, the electrolytic solution U and water vapor contained in the gas can be refluxed to each cell chamber 25.

4.効果説明
本鉛蓄電池10では、電解液U中に浸漬させるため、極柱45が空気に触れ難くなる。そのため、極柱45の腐食を抑制することが出来る。また、極柱45を電解液Uに浸漬させるためには、電解液Uの液面Lを、通常よりも上げる必要がある。尚、通常とは、図3にてライン「Lo」で示すように、電解液Uの液面を接続部33の上端に合せた状態を意味する。
4). Description of Effect In the lead storage battery 10, since the electrode column 45 is immersed in the electrolytic solution U, the pole column 45 is difficult to touch the air. Therefore, corrosion of the pole column 45 can be suppressed. Further, in order to immerse the pole column 45 in the electrolytic solution U, it is necessary to raise the liquid level L of the electrolytic solution U more than usual. In addition, normal means the state which match | combined the liquid level of the electrolyte solution U with the upper end of the connection part 33, as shown by line "Lo" in FIG.

液面Lを上げると、ガス排気孔94までの距離が近くなることから、セル室25内の電解液Uの一部が、走行等の振動により飛散して、ガス排気孔94から外部に逸出し易くなる。この点、本鉛蓄電池10では、中蓋60と上蓋100との間に排気通路Rを設け、更に、排気通路R内の電解液Uを還流孔95を通じてセル室25に戻す構造としている。そのため、例えば、電解液Uの一部が、走行等の振動により飛散して、ガス排気孔94に入り込んだとしても、その電解液Uは、還流孔95からセル室25に還流する。そのため、電解液Uの逸出を抑制することが出来る。   When the liquid level L is raised, the distance to the gas exhaust hole 94 becomes closer, and therefore, a part of the electrolyte U in the cell chamber 25 is scattered by vibrations such as running, and is dissipated from the gas exhaust hole 94 to the outside. It becomes easy to take out. In this regard, the lead storage battery 10 has a structure in which an exhaust passage R is provided between the inner lid 60 and the upper lid 100 and the electrolyte U in the exhaust passage R is returned to the cell chamber 25 through the reflux hole 95. Therefore, for example, even if a part of the electrolytic solution U is scattered by vibration such as traveling and enters the gas exhaust hole 94, the electrolytic solution U is refluxed from the reflux hole 95 to the cell chamber 25. Therefore, escape of the electrolyte solution U can be suppressed.

また、上蓋100がブッシング41よりも高い位置まで設けられていることで、仮に、金属部材などが電池上部に置かれたとしても、ブッシング41と接触しにくくして、導通するのを防止することができる。そして、上蓋100をブッシング41よりも高い位置まで設けることにより形成された上部スペースに台状部65を配置して、この台状部65内に排気通路Rを形成する。これにより、排気通路Rを電槽20から上方に離れた位置に形成することができ、電解液の逸出をより抑制することが出来る。   Further, since the upper lid 100 is provided to a position higher than the bushing 41, even if a metal member or the like is placed on the upper part of the battery, it is difficult to contact the bushing 41 and prevent conduction. Can do. Then, the base portion 65 is disposed in the upper space formed by providing the upper lid 100 to a position higher than the bushing 41, and the exhaust passage R is formed in the base portion 65. Thereby, the exhaust passage R can be formed at a position away from the battery case 20 upward, and the escape of the electrolyte can be further suppressed.

また、本鉛蓄電池10は極柱45を浸漬させるため電解液Uの液面を高く保つ必要があり、極柱45が一部露出する通常の電池に比べて、電槽20に多くの電解液Uを充填する必要がある。しかし、電解液Uの液面Lが高ければ、極板30A、30Bのサイズ(Y方向の寸法)をその分大きく設定することが可能である。従って、本鉛蓄電池10は、極柱45が一部露出する通常の電池に比べて、電池性能を高くすることが可能である。   In addition, since the lead storage battery 10 immerses the pole column 45, it is necessary to keep the liquid level of the electrolyte U high. Compared to a normal battery in which the pole column 45 is partially exposed, the battery case 20 has more electrolyte solution. U needs to be filled. However, if the liquid level L of the electrolytic solution U is high, the size of the electrode plates 30A and 30B (dimension in the Y direction) can be set larger. Therefore, the lead storage battery 10 can improve battery performance as compared with a normal battery in which the pole column 45 is partially exposed.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態では、電解液Uの液面Lをブッシング41の下面41Aと同じ高さに設定したが、電槽20内の極柱45が電解液U中に浸漬した状態になればよく、電解液Uの液面Lを、ブッシング41の下面41Aよりも高く設定してもよい。   (1) In the said embodiment, although the liquid level L of the electrolyte solution U was set to the same height as 41 A of lower surfaces of the bushing 41, if the pole column 45 in the battery case 20 will be in the state immersed in the electrolyte solution U. The liquid level L of the electrolytic solution U may be set higher than the lower surface 41A of the bushing 41.

(2)また、電解液Uの液面Lは、ブッシング41の下面41A以上の高さを、常に維持している必要はなく、一時期でも、ブッシング41の下面41A以上であればよい。例えば、メーカー出荷時の初期状態や補水後の状態において、電解液Uの液面Lがブッシング41の下面41Aより高い場合は、その後の使用により、電解液Uの液面Lがブッシング41の下面41Aより下がったとしても、本発明の技術的範囲に含まれる。理由は、メーカー出荷時の初期状態や補水後など一時期でも、電解液Uの液面Lがブッシング41の下面41Aより高ければ、極柱45を空気に触れ難くして、極柱45の腐食を抑制することに他ならないためである。   (2) Further, the liquid level L of the electrolytic solution U does not always need to maintain a height equal to or higher than the lower surface 41A of the bushing 41, and may be higher than the lower surface 41A of the bushing 41 even at one time. For example, when the liquid level L of the electrolytic solution U is higher than the lower surface 41A of the bushing 41 in the initial state at the time of shipment from the manufacturer or in the state after refilling, the liquid level L of the electrolytic solution U is lowered from the lower surface of the bushing 41 by subsequent use. Even if it falls below 41A, it is included in the technical scope of the present invention. The reason is that if the liquid level L of the electrolytic solution U is higher than the lower surface 41A of the bushing 41 even at one time such as the initial state at the time of shipment from the manufacturer or after refilling, it is difficult to touch the pole 45 with the air and the pole 45 is corroded. This is because it is none other than suppression.

(3)また、本発明の技術的範囲には、図9に示すように、電槽420の外壁421に設けられた最高液面線ULVの位置が、高さ方向(Y方向)で、ブッシング41の下面41A以上である鉛蓄電池410も含まれる。これは、メーカー製造時や使用時の補水により、電解液Uは、液面Lが最高液面線ULVに達するように液量調整される。そのため、電解液Uの最高液面位置を示す最高液面線ULVがブッシング41の下面41A以上である場合、その鉛蓄電池電池410は、電解液Uの液面Lがブッシング41の下面41Aより高い状態で使用されることになる結果、極柱45が空気に触れ難くなり、極柱45の腐食を抑制することが出来るからである。   (3) Further, in the technical scope of the present invention, as shown in FIG. 9, the position of the highest liquid level line ULV provided on the outer wall 421 of the battery case 420 is in the height direction (Y direction), and the bushing The lead acid battery 410 which is 41 A or more of lower surfaces of 41 is also included. This is because the amount of the electrolyte U is adjusted so that the liquid level L reaches the maximum liquid level line ULV by replenishing water during manufacture or use by the manufacturer. Therefore, when the highest liquid level line ULV indicating the highest liquid level position of the electrolytic solution U is equal to or higher than the lower surface 41A of the bushing 41, the lead storage battery 410 has a higher liquid level L of the electrolytic solution U than the lower surface 41A of the bushing 41. This is because, as a result of being used in a state, the pole column 45 is less likely to come into contact with air, and corrosion of the pole column 45 can be suppressed.

尚、図9において、符号「LLV」は電解液Uの最低液面線を示している。また、図9中、上記実施形態にて説明した鉛蓄電池10と共通する部品については、同一符号を付している。また、図9は、最高液面線ULVと最低液面線LLVを分かり易く表示するため、電解液Uは省略した図としてある。   In FIG. 9, the symbol “LLV” indicates the lowest liquid level line of the electrolytic solution U. Moreover, in FIG. 9, the same code | symbol is attached | subjected about the component which is common in the lead storage battery 10 demonstrated in the said embodiment. FIG. 9 is a diagram in which the electrolytic solution U is omitted in order to easily display the highest liquid level line ULV and the lowest liquid level line LLV.

(4)また、例えば、蓋部材450に対して注液孔463とスリーブ465が設けられた鉛蓄電池410において、図9に示すように、スリーブ465の下端465Aの位置が、高さ方向(Y方向)で、ブッシング41の下面41A以上である場合も、本発明の技術範囲に含まれる。具体的に説明すると、スリーブ465は、図9に示すように、注液孔463の周囲に設けられ、注液孔463の孔縁から電槽420に向かって延在している。スリーブ465は、周側面にスリット467を設けた筒型であり、電解液Uの液面Lの高さを視認するために設けられている。すなわち、スリーブ465の下端に電解液Uが達していると、電解液中の極板30A、30Bが歪んで見えるので、スリーブ465を通して極板30A、30Bを視認することで、電解液Uの液面Lがスリーブ465の下端、すなわち最高液面位置に届いているかを視認することが出来る。そして、メーカー出荷時や補水により、電解液Uは、液面Lがスリーブ465の下端465Aに達するように液量調整される。従って、スリーブ465の下端465Aの位置がブッシング41の下面41A以上である場合、その鉛蓄電池410は、電解液Uの液面Lがブッシング41の下面41Aより高い状態で使用されることになる結果、極柱45が空気に触れ難くなり、極柱45の腐食を抑制することが出来るからである。   (4) Further, for example, in the lead storage battery 410 in which the liquid injection hole 463 and the sleeve 465 are provided in the lid member 450, as shown in FIG. 9, the position of the lower end 465A of the sleeve 465 is in the height direction (Y In the direction), it is also included in the technical scope of the present invention if it is equal to or greater than the lower surface 41A of the bushing 41. Specifically, as shown in FIG. 9, the sleeve 465 is provided around the liquid injection hole 463, and extends from the hole edge of the liquid injection hole 463 toward the battery case 420. The sleeve 465 has a cylindrical shape in which a slit 467 is provided on the peripheral side surface, and is provided for visually confirming the height of the liquid surface L of the electrolytic solution U. That is, when the electrolytic solution U reaches the lower end of the sleeve 465, the electrode plates 30A and 30B in the electrolytic solution appear to be distorted. Therefore, by visually recognizing the electrode plates 30A and 30B through the sleeve 465, the electrolyte solution U It can be visually confirmed whether the surface L reaches the lower end of the sleeve 465, that is, the highest liquid surface position. Then, the amount of the electrolytic solution U is adjusted so that the liquid level L reaches the lower end 465A of the sleeve 465 at the time of shipment from the manufacturer or by replenishing water. Therefore, when the position of the lower end 465A of the sleeve 465 is equal to or higher than the lower surface 41A of the bushing 41, the lead storage battery 410 is used in a state where the liquid level L of the electrolyte U is higher than the lower surface 41A of the bushing 41. This is because the pole 45 becomes difficult to touch the air and corrosion of the pole 45 can be suppressed.

尚、図9の例では、蓋部材450を、中蓋460と上蓋470の二重構造としており、電槽420の上面を封口する中蓋460側に、各セル室25に対応して、注液孔463とスリーブ465をそれぞれ設けている。また、上蓋470には、中蓋460側の各注液孔463に対応して、各注液孔473を設けており、電解液Uは、上蓋470の注液孔473、中蓋469の注液孔463、スリーブ465を通じて、電槽420内の各セル室25に補充される構造になっている。   In the example of FIG. 9, the lid member 450 has a double structure of the inner lid 460 and the upper lid 470, and the inner lid 460 side that seals the upper surface of the battery case 420 corresponds to each cell chamber 25. A liquid hole 463 and a sleeve 465 are provided. In addition, the upper lid 470 is provided with respective liquid injection holes 473 corresponding to the respective liquid injection holes 463 on the inner lid 460 side, and the electrolytic solution U is injected into the liquid injection holes 473 of the upper lid 470 and the inner lid 469. Each cell chamber 25 in the battery case 420 is replenished through the liquid hole 463 and the sleeve 465.

(5)上記実施形態では、蓋部材50を、中蓋60と上蓋100の二重蓋構造とし、両間にガスの排気通路Rと、排気通路R内の電解液Uをセル室25に還流させる還流孔95とを設けるようにしたが、電解液Uを還流させる構造は必ずしも設ける必要はない。すなわち、蓋部材を一枚蓋構造にして、電解液Uを還流させる構造を廃止してもよい。   (5) In the above embodiment, the lid member 50 has a double lid structure of the inner lid 60 and the upper lid 100, and the gas exhaust passage R and the electrolyte U in the exhaust passage R are refluxed to the cell chamber 25 between them. Although the holes 95 are provided, it is not always necessary to provide a structure for refluxing the electrolytic solution U. That is, a structure in which the lid member has a single lid structure and the electrolyte U is refluxed may be eliminated.

尚、電解液Uを還流させる構造を廃止する場合、電槽内で発生するガスに混ざって水蒸気や電解液Uが外部に排出され易くなるので、充放電反応により、電解液Uの液面が変動しやすくなる。このような場合には、電解液Uの「下限にあたる最低液面位置」がブッシング41の下面41Aよりも高くなるように設定するとよい。   When the structure for refluxing the electrolytic solution U is abolished, water vapor and the electrolytic solution U are easily discharged to the outside by mixing with the gas generated in the battery case. It tends to fluctuate. In such a case, the “lowest liquid level position corresponding to the lower limit” of the electrolyte U may be set higher than the lower surface 41A of the bushing 41.

また、電解液Uの「下限にあたる最低液面位置」をブッシング41の下面41Aよりも高く設定すると、上限にあたる最高液面位置側で、蓋部材50までの距離が近くなって、電解液Uが外部に逸出し易くなることがある。そのため、このような場合には、電解液Uの「上限にあたる最高液面位置」をブッシング41の下面41Aと同じ高さに設定して、液面から蓋部材50までの距離を確保するようにしてもよい。尚、電解液Uの「上限にあたる最高液面位置」をブッシング41の下面41Aと同じ高さにすると、液面が下がった時に、極柱45の一部が液面から露出することになるが、電解液Uの液面は、いずれ補充液の補充により「上限にあたる最高液面位置」に戻される。そのため、極柱45の一部が露出する期間は、従来に比べて短くなるので、極柱45の腐食の進行を遅くすることが出来る。   Further, if the “minimum liquid level position corresponding to the lower limit” of the electrolytic solution U is set higher than the lower surface 41A of the bushing 41, the distance to the lid member 50 becomes closer on the highest liquid level position side corresponding to the upper limit, and the electrolytic solution U is reduced. It may be easy to escape to the outside. Therefore, in such a case, the “maximum liquid surface position corresponding to the upper limit” of the electrolytic solution U is set to the same height as the lower surface 41A of the bushing 41 so as to ensure the distance from the liquid surface to the lid member 50. May be. If the “maximum liquid level position corresponding to the upper limit” of the electrolytic solution U is set to the same height as the lower surface 41A of the bushing 41, a part of the pole column 45 is exposed from the liquid level when the liquid level drops. The liquid level of the electrolyte U is eventually returned to the “maximum liquid level position corresponding to the upper limit” by replenishment of the replenisher. For this reason, the period during which a part of the pole column 45 is exposed is shorter than that in the prior art, so that the progress of corrosion of the pole column 45 can be delayed.

10...鉛蓄電池
20...電槽
30...電極群(本発明の「発電要素」の一例)
41...ブッシング
45...極柱
50...蓋部材
60...中蓋
65...台状部(本発明の「突出部」の一例)
94...ガス排気孔
95...還流孔
100...上蓋
R...排気通路
U...電解液
DESCRIPTION OF SYMBOLS 10 ... Lead storage battery 20 ... Battery case 30 ... Electrode group (an example of "power generation element" of the present invention)
41 ... Bushing 45 ... Polar pole 50 ... Lid member 60 ... Middle lid 65 ... Base part (an example of the "protruding part" of the present invention)
94 ... Gas exhaust hole 95 ... Recirculation hole 100 ... Upper lid R ... Exhaust passage U ... Electrolyte

Claims (6)

発電要素と、
前記発電要素を収容する電槽と、
前記電槽内に収容される電解液と、
前記電槽を封口する蓋部材と、
前記蓋部材に埋め込まれた金属製である筒状のブッシング、および前記発電要素に接続され、前記ブッシングの内側に位置する極柱を含む端子部と、を備え、
前記端子部は、接続端子が組み付けされる端子接続部を1つのみ備え、
前記電槽内の電解液の液面を、前記ブッシングの下面以上の高さにする鉛蓄電池。
Power generation elements,
A battery case containing the power generation element;
An electrolyte contained in the battery case;
A lid member for sealing the battery case;
A cylindrical bushing made of metal embedded in the lid member, and a terminal portion connected to the power generation element and including a pole column located inside the bushing,
The terminal portion includes only one terminal connection portion to which the connection terminal is assembled,
The lead acid battery which makes the liquid level of the electrolyte solution in the said battery case the height more than the lower surface of the said bushing.
発電要素と、
前記発電要素を収容する電槽と、
前記電槽内に収容される電解液と、
前記電槽を封口する蓋部材と、
前記蓋部材に埋め込まれた筒状のブッシング、および前記発電要素に接続され、前記ブッシングの内側に位置する極柱を含む端子部と、を備え、
前記蓋部材は、前記ブッシングの下部外周を覆う装着部を備え、
前記端子部は、接続端子が組み付けされる端子接続部を1つのみ備え、
前記電槽内の電解液の液面を、前記ブッシングの下面以上の高さにする鉛蓄電池。
Power generation elements,
A battery case containing the power generation element;
An electrolyte contained in the battery case;
A lid member for sealing the battery case;
A cylindrical bushing embedded in the lid member, and a terminal portion that is connected to the power generation element and includes a pole column located inside the bushing,
The lid member includes a mounting portion that covers a lower outer periphery of the bushing,
The terminal portion includes only one terminal connection portion to which the connection terminal is assembled,
The lead acid battery which makes the liquid level of the electrolyte solution in the said battery case the height more than the lower surface of the said bushing.
請求項1又は請求項2に記載の鉛蓄電池であって、
前記蓋部材は、
前記電槽を封口する中蓋と、
前記中蓋の上面に重ねて装着される上蓋とを含み、
前記中蓋と前記上蓋との間には、前記電槽内で発生したガスを外部に排気する排気通路が形成され、
前記中蓋には、前記排気通路内の電解液を前記電槽内に還流させる還流孔が設けられている鉛蓄電池。
The lead-acid battery according to claim 1 or 2,
The lid member is
An inner lid for sealing the battery case;
An upper lid mounted on the upper surface of the inner lid,
Between the inner lid and the upper lid, an exhaust passage for exhausting the gas generated in the battery case to the outside is formed,
A lead-acid battery in which the inner lid is provided with a reflux hole for refluxing the electrolytic solution in the exhaust passage into the battery case.
請求項3に記載の鉛蓄電池であって、
前記上蓋の上面は、前記ブッシングの上面よりも上方に位置しており、
前記中蓋は、上方に突出した突出部を有しており、
前記排気通路は、前記突出部に形成されている鉛蓄電池。
The lead acid battery according to claim 3,
The upper surface of the upper lid is located above the upper surface of the bushing,
The inner lid has a protruding portion protruding upward,
The exhaust passage is a lead storage battery formed in the protruding portion.
請求項1又は請求項2に記載の鉛蓄電であって、
前記蓋部材は、
前記電槽内に電解液を注液する注液孔と、
前記注液孔の周囲に設けられ、前記電槽側に延在するスリーブと、を有し、
前記スリーブの下端位置は、高さ方向で、前記ブッシングの下面以上である鉛蓄電池。
The lead storage battery according to claim 1 or 2,
The lid member is
A liquid injection hole for injecting an electrolyte into the battery case;
A sleeve provided around the liquid injection hole and extending toward the battery case;
The lower end position of the said sleeve is a lead acid battery which is more than the lower surface of the said bushing in a height direction.
請求項1〜請求項5のいずれか一項に記載の鉛蓄電池であって、
前記ブッシングの下面から下方に突出する前記極柱を前記電解液中に浸漬させることにより、前記極柱の腐食を抑制する鉛蓄電池。
The lead-acid battery according to any one of claims 1 to 5,
The lead acid battery which suppresses corrosion of the said pole column by immersing the said pole column which protrudes below from the lower surface of the said bushing in the said electrolyte solution.
JP2019134647A 2013-12-18 2019-07-22 Lead acid battery Active JP6697699B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013261556 2013-12-18
JP2013261556 2013-12-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014204558A Division JP6646353B2 (en) 2013-12-18 2014-10-03 Lead storage battery

Publications (2)

Publication Number Publication Date
JP2019197736A true JP2019197736A (en) 2019-11-14
JP6697699B2 JP6697699B2 (en) 2020-05-27

Family

ID=53767512

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014204558A Active JP6646353B2 (en) 2013-12-18 2014-10-03 Lead storage battery
JP2019134647A Active JP6697699B2 (en) 2013-12-18 2019-07-22 Lead acid battery

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2014204558A Active JP6646353B2 (en) 2013-12-18 2014-10-03 Lead storage battery

Country Status (1)

Country Link
JP (2) JP6646353B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657644B2 (en) 2015-08-04 2020-03-04 株式会社Gsユアサ Lead storage battery
KR102081447B1 (en) * 2018-10-18 2020-02-25 주식회사 한국아트라스비엑스 Leakage prevention structure of lead-acid battery with complex vent path

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4116103Y1 (en) * 1964-01-07 1966-07-27
JPS4320326Y1 (en) * 1964-03-25 1968-08-27
US4645725A (en) * 1985-08-30 1987-02-24 Gnb Incorporated Battery comprising dual terminal bushings
IT1224215B (en) * 1987-10-09 1990-09-26 Stocchiero Olimpio COVER FOR LEAD ACCUMULATORS WITH SEAT OF ELASTIC AND DEFORMABLE POLES
JP4029222B2 (en) * 1997-02-07 2008-01-09 株式会社ジーエス・ユアサコーポレーション Method for producing lead-acid battery
JP5360536B2 (en) * 2008-08-08 2013-12-04 株式会社Gsユアサ Lead acid battery

Also Published As

Publication number Publication date
JP6646353B2 (en) 2020-02-14
JP2015135804A (en) 2015-07-27
JP6697699B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
CN106486616B (en) Lead-acid battery
JP7470490B2 (en) Lead-acid battery
JP5336023B1 (en) Prismatic secondary battery
JP2019197736A (en) Lead acid battery
CN104733654B (en) Lead-acid battery and method for suppressing corrosion of electrode post provided in lead-acid battery
JP5742257B2 (en) battery
JP7000844B2 (en) Lead-acid battery
JP7327454B2 (en) lead acid battery
JP6973039B2 (en) Lead-acid battery
JP7151080B2 (en) lead acid battery
JP2005228649A (en) Storage battery gas discharge structure
JPH0427094Y2 (en)
JP7210924B2 (en) lead acid battery
JP6191874B2 (en) Lead acid battery
JP2017068961A (en) Sealed battery
JP2010033993A (en) Storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200408

R150 Certificate of patent or registration of utility model

Ref document number: 6697699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150