WO2023189654A1 - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
WO2023189654A1
WO2023189654A1 PCT/JP2023/010306 JP2023010306W WO2023189654A1 WO 2023189654 A1 WO2023189654 A1 WO 2023189654A1 JP 2023010306 W JP2023010306 W JP 2023010306W WO 2023189654 A1 WO2023189654 A1 WO 2023189654A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
wall
port
lead
acid battery
Prior art date
Application number
PCT/JP2023/010306
Other languages
French (fr)
Japanese (ja)
Inventor
孝智 武光
壮右 藤田
直生 藤本
尚 秋本
Original Assignee
株式会社Gsユアサ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ filed Critical 株式会社Gsユアサ
Publication of WO2023189654A1 publication Critical patent/WO2023189654A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/12Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a technique for suppressing a decrease in electrolyte in a lead-acid battery.
  • a lid member for sealing a battery case has a double lid structure, and an exhaust passage is provided inside.
  • a reflux hole communicating with the battery case is provided through the bottom of the passageway, and the electrolyte in the exhaust passage returns to the inside of the battery case from the reflux hole along the sloping bottom surface.
  • Patent Document 2 a structure of a lead-acid battery is known in which a plurality of cell chambers are arranged in rows and columns in rows and columns.
  • lead-acid batteries in which cell chambers are arranged in rows and columns, sufficient consideration has not been given to the double-lid structure that suppresses electrolyte loss.
  • Patent No. 5521390 Japanese Patent Application Publication No. 2001-236988
  • the present invention prevents electrolyte loss in lead-acid batteries in which cell chambers are arranged in rows and columns by suppressing the discharge of electrolyte to the outside (liquid leakage) and returning the electrolyte to the battery container.
  • the purpose is to suppress.
  • the lead-acid battery has a battery case with an open top, an inner lid that seals the opening of the battery case, and an upper lid that covers the inner lid from above, and the battery case houses electrode plates and an electrolyte.
  • the battery case houses electrode plates and an electrolyte.
  • the partition wall is formed with a first communication port that communicates the adjacent exhaust chambers, and the bottom of the exhaust chamber is provided with an exhaust port that exhausts gas generated in the cell chamber to the exhaust chamber, and a first communication port that communicates the gas generated in the cell chamber with the exhaust chamber.
  • a reflux port for refluxing the electrolyte to the cell chamber
  • at least one of the plurality of exhaust chambers is a first exhaust chamber provided with a collective exhaust port for exhausting gas to the outside of the lead-acid battery.
  • the bottom surface of the first exhaust chamber is provided with a wall corresponding to the collective exhaust port.
  • the electrolytic solution is difficult to be discharged to the outside, and a decrease in the electrolytic solution can be suppressed. Further, the electrolyte can be returned to the cell chamber from the reflux port.
  • FIG. 2 Perspective view of lead acid battery Exploded diagram of lead acid battery Top view of battery case Bottom view of the inner lid Top view of the inner lid Bottom view of top lid A-A sectional view of lead-acid battery Top view of the inner lid (explanatory diagram of the reflux path of droplets) Plan view of the inner lid (Embodiment 2) Plan view of the top lid (Embodiment 2) Enlarged plan view of the inner lid (Embodiment 2)
  • Embodiment 1 A lead acid battery 10 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 8.
  • the lead-acid battery 10 is, for example, a storage battery that is mounted on a vehicle such as an automobile and supplies electric power to the vehicle.
  • the lead-acid battery 10 is a liquid lead-acid battery, and as shown in FIGS. 1 to 3, includes a battery case 15, an electrode plate group 30, an electrolyte W (shown in FIG. 7), and a terminal portion 40 (40P, 40N).
  • the width direction of the battery case 15 when the battery case 15 is placed horizontally without tilting with respect to the installation surface is taken as the X direction
  • the depth direction of the battery case 15 (the arrangement of the terminal parts 40P, 40N) is taken as the X direction. direction) is the Y direction
  • the height direction (vertical direction) of the battery case 15 is the Z direction.
  • the battery case 15 includes a battery case 20 that accommodates the electrode plate group 30 and the electrolyte W, and a lid member 50.
  • the battery case 20 is made of synthetic resin.
  • the battery case 20 has four outer walls 21 and one bottom wall 22, and is box-shaped with an open top.
  • the battery case 20 has a plurality of battery case partition walls 23.
  • the battery case partition 23 is formed of a total of three battery case partitions 23X extending in the X direction and two battery case partitions 23Y extending in the Y direction. It is divided into
  • the cell chambers 25 are arranged in three rows in the X direction (horizontal direction in FIG. 3) and two rows in the Y direction (vertical direction in FIG. 3) in the battery case 20, and a total of six chambers are arranged in a matrix. ing.
  • Each cell chamber 25 accommodates an electrode plate group 30 together with an electrolytic solution W made of dilute sulfuric acid. Note that the outer wall 21 and the battery case partition wall 23 have the same height at their upper ends.
  • the six cell chambers 25 included in the battery case 20 are designated as 25A to 25F, respectively, clockwise from the upper left cell chamber 25 in FIG.
  • the electrode plate group 30 is composed of an electrode plate (including a positive electrode plate and a negative electrode plate) 31 whose lattice body is filled with an active material, and a strap 32 that connects the electrode plates of the same polarity.
  • the positive and negative plates are separated by an insulating separator to prevent short circuits between the plates.
  • the main component of the active material of the positive electrode plate is lead dioxide, and the main component of the active material of the negative electrode plate is metallic lead.
  • the straps 32 are plate-shaped and long in the Y direction, and one set for each cell chamber 25 is provided, one for the positive electrode and one for the negative electrode. By electrically connecting the positive and negative straps 32 of adjacent cell chambers 25 via connecting portions 33 formed on the straps 32, the electrode plate groups 30 of each cell chamber 25 are connected in series.
  • pole columns 45 extending upward (in the Z direction) from the strap 32 are formed.
  • the pole post 45 is welded to a bushing 62, which will be described later.
  • the lid member 50 includes an inner lid 60 and an upper lid 100.
  • 4 is a bottom view of the inner lid 60 seen from below
  • FIG. 5 is a plan view of the inner lid 60 seen from above
  • FIG. 6 is a bottom view of the upper lid 100 seen from below.
  • Both the inner lid 60 and the upper lid 100 are made of synthetic resin.
  • the inner lid 60 is large enough to seal the top surface of the battery case 20.
  • the inner lid 60 includes an inner lid main body 61 and two bushings 62.
  • the bushing 62 is made of metal such as a lead alloy and has a hollow cylindrical shape. Since the inner lid 60 is integrally molded by injecting resin into a mold into which the bushing 62 is inserted, the bushing 62 is embedded in the inner lid main body 61 except for the portion exposed above.
  • the above-mentioned pole post 45 is inserted into the bushing 62, and both are welded to form the terminal portion 40.
  • a harness (not shown) and the like for supplying power to the vehicle are attached to the terminal portion 40.
  • the inner lid main body 61 has an inner wall 91 and a plurality of partition walls 93 on the lower surface side.
  • the inner wall 91 projects downward from the lower surface of the inner lid main body 61.
  • the inner wall 91 is provided along the entire circumference along the opening of the battery case 20, and has an overall rectangular frame shape that is long in the X direction.
  • the partition wall 93 consists of one partition wall 93X extending in the X direction and two partition walls 93Y extending in the Y direction.
  • the partition wall 93 is connected to the inner wall 91 and, like the inner wall 91, protrudes downward from the lower surface of the inner lid main body 61.
  • Each partition 93 is provided corresponding to the battery case partition 23 of the battery case 20, and partitions the inside of the frame-shaped inner wall 91 into six parts corresponding to each of the cell chambers 25A to 25F.
  • the partition wall 93 and the inner wall 91 have the same height at their lower ends.
  • the inner wall 91 of the inner lid 60 overlaps the upper end surface of the outer wall 21 of the battery case 20, and each partition wall 93 of the inner lid 60 is located so as to overlap the upper end surface of each container partition wall 23 of the battery case 20.
  • the battery case 20 and each cell chamber 25 are made airtight.
  • the inner wall 91 and the outer wall 21, and the partition wall 93 and the container partition wall 23 are joined by thermal welding so that airtightness is maintained (see FIG. 7).
  • the inner lid main body 61 has a low surface portion 63 (on the left side in FIG. 5) and a high surface portion 64 (on the right side in the same figure), and has a shape with a height difference. It has become.
  • the lower surface portion 63 has lower exhaust partition walls 71 and 73 that protrude upward.
  • the lower exhaust partition 71 is provided along the outer periphery of the lower surface portion 63.
  • the lower exhaust partition 73 includes a lower exhaust partition 73X extending in the X direction and a lower exhaust partition 73Y extending in the Y direction.
  • the lower exhaust partition 73 is provided inside the lower exhaust partition 71 so as to overlap the battery case partition 23 .
  • the lower surface portion 63 has six lower liquid injection ports 75. These six lower liquid injection ports 75 vertically penetrate the lower surface portion 63.
  • FIG. 6 is a bottom view of the top lid 100.
  • the upper lid 100 is a rectangular plate-shaped member that covers the lower surface portion 63 from above.
  • Upper exhaust partition walls 81 and 83 that protrude downward are provided on the lower surface side of the upper lid 100.
  • the upper exhaust partition 83 includes an upper exhaust partition 83X extending in the X direction and an upper exhaust partition 83Y extending in the Y direction.
  • the upper exhaust partitions 81 and 83 are provided so as to overlap the lower exhaust partitions 71 and 73, respectively.
  • the upper lid 100 is provided with an upper liquid inlet 85 at a position overlapping with the lower liquid inlet 75 of the inner lid 60.
  • the end surfaces of the upper exhaust partition walls 81 and 83 and the lower exhaust partition walls 71 and 73 are joined by thermal welding (see FIG. 7).
  • the upper exhaust partitions 81 and 83 and the lower exhaust partitions 71 and 73 are examples of "exhaust partitions.”
  • the internal space of the lid member 50 is divided into six exhaust chambers 52 by the exhaust partition (see FIG. 5).
  • the six exhaust chambers 52 are designated 52A to 52F clockwise from the upper right of FIG.
  • Each exhaust chamber 52A to 52F corresponds to each cell chamber 25A to 25F on a one-to-one basis.
  • the upper liquid inlet 85 can be closed.
  • the liquid inlet stopper 120 is screwed into the inner peripheral surface of the upper liquid inlet 85 and is detachable.
  • each cell chamber 25 of the battery case 20 can be replenished with the electrolytic solution W through the upper liquid inlet 85.
  • Each exhaust chamber 52 has one exhaust port 65 and one reflux port 66. As shown in FIG. 7, the exhaust port 65 and the recirculation port 66 vertically penetrate the inner lid main body 61 and communicate the exhaust chamber 52 and the cell chamber 25.
  • each exhaust chamber 52 has a reflux wall 67 formed to spirally surround an exhaust port 65 and a reflux port 66.
  • the reflux wall 67 is formed by welding the partition wall on the inner lid main body 61 side and the partition wall on the upper lid 100 side, similarly to the above-mentioned exhaust partition walls (lower exhaust partition walls 71, 73, upper exhaust partition walls 81, 83). (See Figure 7).
  • the inside of the reflux wall 67 where the exhaust port 65 and the reflux port 66 are located is not completely partitioned from the outside of the reflux wall 67.
  • a second communication port 67A that communicates between the inside and outside of the reflux wall 67 is formed in the outer peripheral portion of the reflux wall 67, and liquid and gas can enter and exit the inside and outside of the reflux wall 67 through the second communication port 67A.
  • the gas generated within the cell chamber 25 flows into the exhaust chamber 52 through the exhaust port 65.
  • the gas includes water vapor generated by evaporation of the electrolyte W and droplets of the electrolyte W generated by vibration.
  • droplets D are generated within the exhaust chamber 52.
  • the electrolytic solution W in which a large number of droplets D have gathered may flow inside the exhaust chamber 52 .
  • the reflux port 66 is located at the lowest position within the exhaust chamber 52 and has the function of returning the droplets D within the exhaust chamber 52 to the cell chamber 25 below.
  • the bottom surface 69 of the exhaust chamber 52 is a combination of a plurality of slopes, which are highest at the point where they intersect with the lower exhaust partition walls 71 and 73 outside the recirculation wall 67, and which slope downward as they approach the second communication port 67A. Become. Further, the bottom surface 69 of the exhaust chamber 52 is formed by combining a plurality of slopes that become lower as they approach the recirculation port 66 inside the recirculation wall 67. The droplet D generated in the exhaust chamber 52 flows on the bottom surface 69 according to the slope, and flows back into the cell chamber 25 from the reflux port 66 via the second communication port 67A.
  • the reflux wall 67 and the bottom surface 69 are oblique to the inclination direction of the bottom surface 69 (the direction in which the inclination angle is maximum). Oblique means crossing diagonally. The line of intersection between the reflux wall 67 and the bottom surface 69 is lowered closer to the second communication port 67A. Even if the droplet D flowing in the inclined direction on the bottom surface 69 hits the reflux wall 67, by moving on the bottom surface 69 along the reflux wall 67, the droplet D changes its traveling direction toward the second communication port 67A. It's flowing.
  • the inclination direction of the bottom surface 69 is a direction perpendicular to the lower exhaust partition walls 71 and 73 with which the respective inclined surfaces are in contact, in plan view.
  • the reflux wall 67 is provided so as to be oblique with respect to the lower exhaust partition walls 71 and 73 in plan view (see FIG. 5).
  • the upper lid 100 of this embodiment has five first communication ports 54 in the upper exhaust partition 83.
  • the five first communication ports 54 are designated as first communication ports 54A to 54E in counterclockwise order from the first communication port located at the lower left in FIG.
  • the six exhaust chambers 52A to 52F communicate in a line through first communication ports 54A to 54E. Gas can freely flow between adjacent exhaust chambers 52 through the first communication port 54.
  • the exhaust chambers 52A and 52F have collective exhaust ports 55A and 55F that open toward the outside of the battery case 15, respectively.
  • the exhaust chambers 52A and 52F are examples of "first exhaust chambers.” Since the collective exhaust port 55A of the exhaust chamber 52A and the collective exhaust port 55F of the exhaust chamber 52F have the same configuration, the collective exhaust port 55A will be described below.
  • the collective exhaust port 55A is a hole that communicates the inside and outside of the battery case 15 in a substantially horizontal direction, and has the function of exhausting the gas in the exhaust chamber 52A to the outside.
  • the collective exhaust port 55A has an outer opening located on the side surface of the upper lid 100 (see FIG. 1), and an inner opening located at a corner of the exhaust chamber 52A.
  • the second communication port 67A opens in a direction away from the collective exhaust port 55A or in a direction away from at least one first communication port 54.
  • the second communication port 67A of the exhaust chamber 52A opens toward the right, which is the direction away from the collective exhaust port 55A located at the lower left in FIG.
  • the second communication port 67A of the exhaust chamber 52B opens to the right, which is the direction away from the first communication port 54A located in the lower left direction.
  • the exhaust chamber 52C has a first communication port 54B in the upper left direction and a first communication port 54C in the upper right direction.
  • the second communication port 67A of the exhaust chamber 52C opens toward the lower left, which is the direction away from the first communication ports 54B and 54C.
  • the exhaust chambers 52D, 52E, and 52F have the same configuration as the exhaust chambers 52C, 52B, and 52A, respectively.
  • the exhaust chamber 52A is provided with a maze wall (an example of a "wall") 56 that partitions the inside of the exhaust chamber 52A.
  • the labyrinth wall 56 is formed by joining a lower labyrinth wall projecting upward from the inner lid main body 61 and an upper labyrinth wall projecting downward from the upper lid 100 side.
  • the labyrinth wall 56 is connected from the bottom surface 69 in the exhaust chamber 52A to the ceiling wall, and gas and electrolyte W (including droplets D) cannot flow across the labyrinth wall 56.
  • the electrolyte W moves within the exhaust chamber 52A.
  • the gas or electrolyte W moves and hits the maze wall 56, it is blocked or the direction of movement is changed without exceeding the maze wall 56.
  • the labyrinth wall 56 forms a labyrinth-like passage 57 within the exhaust chamber 52A.
  • the maze-like passage 57 may include branching parts, dead ends, and merging parts.
  • the path length becomes longer than when the gas does not pass through the maze-like passage 57, and the time until it is exhausted to the outside becomes longer. This lowers the temperature of the gas, promotes condensation of water vapor, and easily generates droplets D. Further, droplets of the electrolytic solution W contained in the gas adhere to the inner wall of the exhaust chamber 52A and the labyrinth wall 56, and easily generate droplets D.
  • the maze-like passage 57 makes it difficult for water vapor contained in the gas and droplets of the electrolytic solution W to be discharged from the collective exhaust port 55A, thereby suppressing a decrease in the electrolytic solution W.
  • the exhaust chamber 52F is also provided with a maze wall 56 similar to the exhaust chamber 52A, and a maze-like passage 57 is formed.
  • the exhaust path of the exhaust chamber 52A will be explained.
  • the gas generated in the cell chamber 25A flows into the exhaust chamber 52A from the exhaust port 65, passes through the second communication port 67A, and exits to the outside of the reflux wall 67.
  • the second communication port 67A opens in a direction (to the right) away from the collective exhaust port 55A located in the lower left direction in FIG. 6, and gas is discharged in the direction away from the collective exhaust port 55A. Thereafter, the gas is divided into two parts: gas A1 heading towards the batch exhaust port 55A and gas A2 heading towards the batch exhaust port 55F.
  • the gas A1 is reversed from the discharge direction (right direction) to the opposite direction (left direction), reaches the collective exhaust port 55A via the maze-shaped passage 57, and is exhausted to the outside. Since the gas A1 is once discharged in a direction away from the collective exhaust port 55A, the path length until it reaches the collective exhaust port 55A is longer than when the gas A1 is discharged in a direction approaching the collective exhaust port 55A. Gas A2 heading toward the collective exhaust port 55F flows into the adjacent exhaust chamber 52B through the first communication port 54A, further passes through the exhaust chambers 52C to 52F, and is finally exhausted from the collective exhaust port 55F.
  • the second communication port 67A opens in the direction away from the first communication port 54A (to the right), and the gas is discharged to the right.
  • the discharged gas is divided into two parts: gas B1 heading towards the batch exhaust port 55A and gas B2 heading towards the batch exhaust port 55F.
  • the gas B1 is reversed from the discharged direction (rightward) to the opposite direction (leftward), flows into the exhaust chamber 52A through the first communication port 54A, and is exhausted from the collective exhaust port 55A.
  • the path length becomes longer than when the gas B1 is discharged in a direction approaching the first communication port 54A.
  • Gas B2 flows into the exhaust chamber 52C through the first communication port 54B, further passes through the exhaust chambers 52D to 52F, and is finally exhausted from the collective exhaust port 55F.
  • the path length of the gas B1 until it is discharged to the outside is shorter.
  • the opening of the second communication port 67A in a direction away from the first communication port 54A, the path length of the gas B1, which is relatively short compared to the gas B2, can be increased.
  • the second communication port 67A opens in the direction away from the first communication ports 54B and 54C (lower left direction).
  • the gas is discharged in a direction away from the first communication ports 54B and 54C (lower left direction).
  • the gas discharged in the lower left direction changes direction upward and is divided into two parts: gas C1 that heads toward the collective exhaust port 55A, and gas C2 that goes around the outside of the reflux wall 67 and heads toward the collective exhaust port 55F.
  • the gas C1 flows into the exhaust chamber 52B through the first communication port 54B, and is then exhausted from the collective exhaust port 55A of the exhaust chamber 52A.
  • the gas C2 flows into the exhaust chamber 52D through the first communication port 54C, further passes through the exhaust chambers 52E and 52F, and is finally exhausted from the collective exhaust port 55F. Since the gases C1 and C2 are once discharged in a direction away from the first communication ports 54B and 54C, their path length becomes longer than when they are discharged in a direction approaching the first communication ports 54B and 54C.
  • the shape and arrangement of the exhaust port 65, reflux port 66, reflux wall 67, and labyrinth wall 56 are vertically symmetrical in each figure.
  • the gas exhaust paths of the exhaust chambers 52D, 52E, and 52F are symmetrical to those of the exhaust chambers 52C, 52B, and 52A, respectively, and therefore a description thereof will be omitted.
  • the gas flowing out from the second communication port 67A is finally exhausted from either the collective exhaust port 55A or 55F.
  • the bottom surface 69 of the exhaust chamber 52 is formed by a combination of a plurality of slopes that descend toward the second communication port 67A on the outside of the reflux wall 67, and the bottom surface 69 slopes downward toward the reflux port 66 on the inside of the reflux wall 67. It is a combination of multiple slopes that descend.
  • the line of intersection between the reflux wall 67 and the bottom surface 69 is oblique to the slope of the bottom surface 69, and decreases as it approaches the second communication port 67A.
  • the droplets D near the collective exhaust port 55A reach the second communication port 67A via the labyrinth-shaped passage 57.
  • the path length becomes long because the labyrinth wall 56 must be bypassed, and it takes time for the droplet D to return to the cell chamber 25A.
  • the exhaust chambers 52B and 52C are not provided with a labyrinth wall 56, and a labyrinth-like passage 57 does not exist. Since the droplets D in the exhaust chambers 52B and 52C can reach the second communication port 67A in a shorter distance than the exhaust chamber 52A, they flow back into the cell chamber 25 in a short time. The droplet D returns faster in the exhaust chambers 52B and 52C than in the exhaust chamber 52A.
  • the reflux paths of the exhaust chambers 52D to 52F are symmetrical to the exhaust chambers 52C, 52B, and 52A, so a description thereof will be omitted.
  • the maze wall 56 is provided in the first exhaust chambers 52A, 52F.
  • the maze wall 56 is not provided in the exhaust chambers (52B to 52E) other than the first exhaust chambers 52A and 52F.
  • the labyrinth wall 56 restricts the direction of movement and the movable range of the electrolyte W. Even if the electrolytic solution W attempts to move within the first exhaust chamber 52A due to vibrations of a vehicle or the like in which the lead-acid battery 10 is mounted, the movement is restricted by the labyrinth wall 56. This makes it difficult for the electrolytic solution W to reach the collective exhaust ports 55A and 55F. Since the electrolytic solution W is less likely to be discharged to the outside of the lead storage battery 10 through the collective exhaust ports 55A and 55F, a decrease in the electrolytic solution W can be suppressed.
  • the labyrinth wall 56 does not exist, and the movement of the electrolyte W in the exhaust chambers is not restricted. If the movement of the electrolytic solution W is not restricted, the electrolytic solution W can flow along the slope of the bottom surface 69, and the electrolytic solution W reaches the reflux port 66 in a short time compared to the first exhaust chambers 52A and 52F. . Thereby, the electrolytic solution W can be returned to the cell chamber 25 in a short time.
  • the labyrinth wall 56 forms a labyrinth-shaped passage 57 within the first exhaust chambers 52A, 52F.
  • the presence of the labyrinth-like passage 57 increases the path length until the gas is exhausted, and the time the gas remains in the exhaust chamber increases. Cooling of the water vapor and adhesion of the droplets to the inner wall are promoted, and the electrolytic solution W contained in the gas easily returns to the droplets D. This makes it difficult for the electrolytic solution W to be discharged to the outside, thereby suppressing a decrease in the electrolytic solution W.
  • the droplet D in the exhaust chamber reaches the reflux port 66 through a shorter path than in the exhaust chambers 52A and 52F, so the electrolyte W can be returned to the cell room 25 quickly.
  • the maze-like passage 57 is on the gas path between the first communication port 54A and the collective exhaust port 55A, and on the gas path between the exhaust port 65 and the collective exhaust port 55A. It is formed at at least one position on the route.
  • the exhaust chamber 52F also has a similar configuration.
  • the gas flows into the exhaust chamber 52A through at least one of the first communication port 54A and the exhaust port 65. Since the inflowing gas flows toward the collective exhaust port 55A, which is the outlet, it passes through the maze-like passage 57 before being exhausted. By passing through the maze-like passage 57, the path length becomes longer, and water vapor and the like contained in the gas easily return to the droplet D. Thereby, the electrolytic solution W becomes difficult to be discharged, and the decrease in the electrolytic solution W can be further suppressed.
  • the internal spaces of the exhaust chambers 52A to 52F are connected in a line through the first communication ports 54A to 54E.
  • the exhaust chambers 52 provided with collective exhaust ports 55 for exhausting gas to the outside are exhaust chambers 52A and 52F located at both ends of the row.
  • the gas flowing into the exhaust chamber 52 from the exhaust port 65 is divided into two parts and flows toward the collective exhaust ports 55A and 55F, which are the exits.
  • the flow rate and flow velocity per direction are reduced, and the time it takes for the gas to be exhausted to the outside becomes longer. This promotes condensation of the water vapor contained in the gas, and makes it easier for droplets of the electrolytic solution W to adhere to the inner wall of the exhaust chamber 52, thereby suppressing a decrease in the electrolytic solution W.
  • the exhaust chamber 52 has a reflux wall 67 surrounding the reflux port 66.
  • the reflux wall 67 is formed with a second communication port 67A that communicates between the inside and outside of the reflux wall 67.
  • the second communication port 67A opens in a direction away from the collective exhaust ports 55A and 55F, or in a direction away from at least one first communication port 54 (54A to 54E).
  • the gas exhausted from the second communication port 67A is discharged in a direction away from the collective exhaust ports 55A, 55F or at least one of the first communication ports 54A to 54E in the same exhaust chamber 52. be done.
  • the path length and time required for the gas to move to the outside of the lead-acid battery 10 or to the adjacent exhaust chamber 52 become longer, and the reflux of the electrolyte W in the original exhaust chamber 52 is promoted. This suppresses the decrease in the electrolytic solution W and the movement of the electrolytic solution W from the original exhaust chamber 52 to other exhaust chambers 52, and makes it difficult for the amount of the electrolytic solution W to differ between the cell chambers 25.
  • the bottom surface 69 of the exhaust chamber 52 is composed of a plurality of inclined surfaces that descend toward the second communication port 67A on the outside of the reflux wall 67.
  • the line of intersection between the reflux wall 67 and the bottom surface 69 is oblique to the slope of the bottom surface 69, and decreases as it approaches the second communication port 67A.
  • the structure of the battery case 20 in which the cell chambers 25 are arranged in rows and columns is often applied to large lead acid batteries used in large vehicles.
  • the thickness of the lid member 50 is constant, as the lead-acid battery 10 becomes larger and the area of the exhaust chamber 52 becomes larger, the inclination angle of the bottom surface 69 becomes smaller.
  • the angle of inclination of the bottom surface 69 is small, it becomes difficult for the electrolytic solution W in the exhaust chamber 52 to flow along the inclination, and it becomes difficult for the electrolytic solution W to flow back into the battery container 20.
  • Such problems become particularly noticeable when the area of the exhaust chamber is 6000 mm 2 or more.
  • Embodiment 2 shows a structure of a wall and a lid member that suppresses discharge of the electrolytic solution W from the collective exhaust port without interfering with the flow of the electrolytic solution W along the slope.
  • the lead-acid battery according to the second embodiment differs from the lead-acid battery 10 of the first embodiment in the structure of the lid member 150.
  • the lid member 150 according to the second embodiment will be described below with reference to FIGS. 9 to 11. Description of the same structure as in the first embodiment will be omitted.
  • the lid member 150 includes an inner lid 160 and an upper lid 180.
  • FIG. 9 is a plan view of the inner lid 160 that constitutes the lower side of the lid member 150.
  • FIG. 10 is a bottom view of the upper lid 180 that constitutes the upper side of the lid member 150.
  • the inner lid 160 includes an annular lower exhaust partition 171 projecting upward, a lower exhaust partition 173X extending in the X direction, and a lower exhaust partition 173Y extending in the Y direction.
  • the upper lid 180 includes an annular upper exhaust partition 181 that protrudes downward at a position overlapping with the lower exhaust partitions 171 and 173, an upper exhaust partition 183X extending in the X direction, and an upper exhaust partition 183X extending in the Y direction. It has an exhaust partition wall 183Y.
  • each exhaust chamber 152 has one exhaust port 165, one reflux port 166, and one reflux wall 167.
  • a second communication port 167A that communicates the inside and outside of the reflux wall 167 is formed in the outer peripheral portion of the reflux wall 167.
  • first communication ports 154 are formed in the upper exhaust partition walls 181X and 181Y.
  • the first communication port 154 is a hole penetrating the wall surfaces of the upper exhaust partition walls 181X and 181Y.
  • six first communication ports 154 are provided so as to connect the internal spaces of the exhaust chambers 152A to 152F in an annular manner.
  • the upper lid 180 is provided with collective exhaust ports 155B and 155E.
  • the collective exhaust port 155B communicates the exhaust chamber 152B with the external space, and has a function of exhausting the gas in the exhaust chamber 152B to the outside.
  • the collective exhaust port 155E also discharges the gas in the exhaust chamber 152E to the outside.
  • the exhaust chambers 152B and 152E having the collective exhaust ports 155B and 155E are examples of "first exhaust chambers.”
  • the exhaust chambers 152A, 152B, and 152C are symmetrical to the exhaust chambers 152F, 152E, and 152D, respectively.
  • the exhaust chamber 152B will be explained below.
  • the collective exhaust port 155B communicates with an exhaust passage 153 that is an exhaust route on the internal space side of the exhaust chamber 152B, and an exhaust opening 153P that is an opening on the internal space side that communicates with the exhaust chamber 152B. ,have.
  • the opening width of the exhaust opening 153P is set to W1 (see FIG. 11).
  • the gas in the exhaust chamber 152B is exhausted from the exhaust opening 153P via the exhaust passage 153.
  • baffle wall an example of a "first wall” 158 and a guide wall (an example of a "second wall”) 159 are provided inside the exhaust chamber 152B.
  • the baffle wall 158 and the guide wall 159 are formed by vertically joining a portion formed in the inner lid 160 and a portion formed in the upper lid 180.
  • the baffle wall 158 and the guide wall 159 have a function of regulating the movement of the electrolytic solution W within the exhaust chamber 152B.
  • FIG. 11 shows a partially enlarged view of the exhaust chamber 152B.
  • the baffle wall 158 is erected at a position facing the exhaust opening 153P with a space therebetween. Let the width of the baffle wall 158 be W2.
  • the exhaust opening 153P opens substantially downward in the plane of the paper.
  • the baffle wall 158 is located lower in the drawing (on the open side) with respect to the exhaust opening 153P, and the wall surface of the baffle wall 158 faces the exhaust opening 153P.
  • the width W2 of the baffle wall 158 is larger than the opening width W1 of the exhaust opening 153P.
  • the guide wall 159 is provided on the opposite side of the exhaust opening 153P when viewed from the baffle wall 158.
  • a first guide wall 159A extending in a direction away from the exhaust opening 153P and a second guide wall 159B extending in a direction approaching the second communication port 167A are connected at their respective ends. It is roughly L-shaped.
  • the end of the first guide wall 159A that is not connected to the second guide wall 159B is connected to the baffle wall 158.
  • the baffle wall 158 and the guide wall 159 are integrally formed.
  • the lid member 150 of this embodiment has the above configuration. Next, the effects of this embodiment will be explained.
  • the collective exhaust port 155B has an exhaust opening 153P that communicates with the first exhaust chamber 152B, and the baffle wall 158 is provided at a position facing the exhaust opening 153P with a space therebetween. There is.
  • the gas in the first exhaust chamber 152B reaches the exhaust opening 153P through the gap between the baffle wall 158 and the opening edge of the exhaust opening 153P, and is exhausted to the outside from the collective exhaust port 155B. In this way, since there is a gap between the baffle wall 158 and the exhaust opening 153P, the baffle wall 158 does not hinder gas discharge.
  • the first exhaust chamber 152B has a reflux wall 167 surrounding a reflux port 166, and a second communication port 167A that communicates between the inside and outside of the reflux wall 167 is formed in the reflux wall 167.
  • the bottom surface 69 is composed of a plurality of inclined surfaces that descend toward the second communication port 167A on the outside of the reflux wall 167, and the wall includes a guide wall 159 in addition to the baffle wall 158.
  • a first guide wall 159A or a second communication port that is provided on the opposite side of the exhaust opening 153P and extends in a direction away from the exhaust opening 153P starting from a side close to the exhaust opening 153P when viewed from above. It has a second guide wall 159B extending along at least one of the directions approaching 167A.
  • the first guiding wall 159A guides the electrolytic solution W (arrow line E1) blocked by the baffle wall 158 and other electrolytic solutions W moving in the direction approaching the exhaust opening 153P in the direction away from the exhaust opening 153P. It has a function (FIG. 11, arrow E2). Due to the induction effect of the first guide wall 159A, the electrolytic solution W is less likely to stay near the exhaust opening 153P, so that the amount of electrolytic solution W that moves from the exhaust opening 153P to the exhaust passage 153 can be reduced.
  • the second guide wall 159B allows the electrolyte W guided away from the exhaust opening 153P by the first guide wall 159A (FIG. 11, arrow E2), and other electrolytes moving toward the exhaust opening 153P. It has a function of guiding W in the direction of the second communication port 167A (arrow E3).
  • the electrolytic solution W guided to the second communication port 167A enters inside the reflux wall 167, reaches the reflux port 166, and is finally refluxed to the battery container 20. Since the second guide wall 159B guides the electrolyte W in the direction of the reflux port 167A, the electrolyte W can be refluxed into the battery container 20 in a short time.
  • the guide wall 159 (first guide wall 159A) is connected to the baffle wall 158. Further, the end of the first guide wall 159A that is not connected to the baffle wall 158 is connected to the second guide wall 159B.
  • the maze-like passage 57 is provided in two first exhaust chambers (exhaust chambers 52A and 52F) that are part of the six exhaust chambers 52. did. There may be one first exhaust chamber having the maze-like passage 57, or there may be three or more.
  • the maze-like passage 57 is provided on the gas path between the first communication port 54A and the collective exhaust port 55A; It may be provided at other positions within 52A and 52F.
  • the maze-like passage 57 is provided on the gas path between the exhaust port 65 and the collective exhaust port 55A, but the exhaust chamber 52A, It may be provided at other positions within 52F.
  • the internal spaces of the exhaust chambers 52A to 52F are connected in a line through the first communication port 54.
  • the exhaust chambers 52A to 52F may be connected in a line, or may be connected so as to branch or merge.
  • the exhaust chambers 52A to 52F are connected in a line through the first communication port 54, and the exhaust chambers 52A and 55F located at both ends of the line are provided with collective exhaust ports 55A and 55F, respectively. ing.
  • the exhaust chambers 52 in which the collective exhaust ports 55 are provided may be exhaust chambers 52 other than those at both ends of the row.
  • the lead acid battery 10 is exemplified as having six cells connected in series.
  • the number of cells is not limited to six, and may be five or less, or seven or more. Moreover, a plurality of cells may be connected in parallel.
  • the battery case 20 is illustrated in which two rows of three cells are arranged in each row, but the number of cells per row and the number of rows are not limited to this.
  • the lead acid battery 10 has the reflux wall 67 surrounding the reflux port 66.
  • the lead acid battery 10 does not need to have the reflux wall 67.
  • the walls include a baffle wall (first wall) 158 and a guide wall (second wall) 159.
  • the wall may include only the baffle wall 158 without including the guide wall 159.
  • the second wall includes the first guide wall 159A and the second guide wall 159B.
  • the second wall may include at least one of the first guide wall 159A and the second guide wall 159B.
  • first exhaust chambers 152B and 152E In the above second embodiment, the case where there are two first exhaust chambers having collective exhaust ports, exhaust chambers 152B and 152E, is illustrated, but the number of first exhaust chambers is not limited to two. There may be one, or there may be three or more. Moreover, which exhaust chamber among the plurality of exhaust chambers may be the first exhaust chamber.
  • the guide wall 159 has a substantially L-shaped shape in which the first guide wall 159A and the second guide wall 159B extending in different directions are connected.
  • the guide wall 159 may be either the first guide wall 159A or the second guide wall 159B. Further, the first guide wall 159A and the second guide wall 159B may not be connected.
  • the baffle wall 158 and the guide wall 159 are connected from the bottom to the ceiling wall, but they do not need to be connected to the ceiling wall.
  • the baffle wall 158 and the guide wall 159 are provided to stand upward from the bottom surface, and the flow direction of the electrolytic solution moving on the bottom surface can be limited to the direction along the extension direction of each wall.
  • the wall (maze wall 56) is provided only in the first exhaust chambers 52A and 52F is illustrated.
  • the walls (the baffle wall 158 and the guide wall 159B) are provided only in the first exhaust chambers 152B and 152F.
  • the wall may be provided only in the first exhaust chamber, or may be provided in the other exhaust chambers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

A lead-acid battery 10 has a battery container 20 with an opening at the top, an inner lid 60, and a top lid 100. The battery container 20 has a plurality of cell chambers 25 arranged in a matrix. The space between the top lid 100 and the inner lid 60 is divided into exhaust chambers 52 that correspond one-to-one with each of the cell chambers 25. A bottom surface 69 of each of the exhaust chambers 52 is formed with an exhaust port 65 for exhausting gas generated in the cell chamber 25 to the exhaust chamber 52 and a recirculation port 66 for recirculating electrolyte solution W in the exhaust chamber 52 to the cell chamber 25. At least one of the plurality of exhaust chambers 52 is a first exhaust chamber 52A, 52F in which a collective exhaust port 55 for exhausting the gas to the outside of the lead-acid battery 10 is provided. A wall 56 is provided at the bottom of the first exhaust chamber 52A, 52F among the plurality of exhaust chambers 52 so as to correspond to the collective exhaust port 55.

Description

鉛蓄電池lead acid battery
 本発明は、鉛蓄電池の電解液の減少を抑制する技術に関する。 The present invention relates to a technique for suppressing a decrease in electrolyte in a lead-acid battery.
 自動車等に用いられる鉛蓄電池は、電池内で発生したガスを排気口から排気して内圧の上昇を抑制する。例えば、特許文献1では、電槽を封口する蓋部材を二重蓋構造とし、内部に排気通路を設けている。通路の底面には、電槽と連通する還流孔が貫設され、排気通路内の電解液は、傾斜した底面を伝って還流孔から電槽内に戻るようになっている。 Lead-acid batteries used in automobiles and the like suppress the increase in internal pressure by exhausting gas generated within the battery through the exhaust port. For example, in Patent Document 1, a lid member for sealing a battery case has a double lid structure, and an exhaust passage is provided inside. A reflux hole communicating with the battery case is provided through the bottom of the passageway, and the electrolyte in the exhaust passage returns to the inside of the battery case from the reflux hole along the sloping bottom surface.
 一方、特許文献2のように、セル室を縦横に複数ずつ行列状に配置した鉛蓄電池の構造が知られている。セル室が行列状に配置された鉛蓄電池では、電解液の減少を抑制する二重蓋構造についてこれまで十分に考慮されていなかった。 On the other hand, as in Patent Document 2, a structure of a lead-acid battery is known in which a plurality of cell chambers are arranged in rows and columns in rows and columns. In lead-acid batteries in which cell chambers are arranged in rows and columns, sufficient consideration has not been given to the double-lid structure that suppresses electrolyte loss.
特許第5521390号公報Patent No. 5521390 特開2001-236988号公報Japanese Patent Application Publication No. 2001-236988
 本発明は、セル室が行列状に配置された鉛蓄電池において、電解液の外部への排出(逸液)を抑制し、かつ、電解液を電槽へ還流することで、電解液の減少を抑制することを目的とする。 The present invention prevents electrolyte loss in lead-acid batteries in which cell chambers are arranged in rows and columns by suppressing the discharge of electrolyte to the outside (liquid leakage) and returning the electrolyte to the battery container. The purpose is to suppress.
 鉛蓄電池は、上方が開口した電槽と、前記電槽の開口を封口する中蓋と、上方から中蓋を覆う上蓋と、を有し、前記電槽は、極板及び電解液を収容し、行列状に配置された複数のセル室を有し、前記上蓋と前記中蓋の間の空間は、排気隔壁によって、各前記セル室と1対1で対応する排気室に分割され、前記排気隔壁には、隣り合う前記排気室を連通する第1連通口が形成され、前記排気室の底面には、前記セル室で発生したガスを前記排気室に排気する排気口と、前記排気室内の電解液を前記セル室に還流する還流口と、が形成され、複数の前記排気室のうち、少なくとも1つは、ガスを鉛蓄電池の外部に排気する一括排気口が設けられた第1排気室であり、複数の前記排気室のうち、前記第1排気室の前記底面には、前記一括排気口に対応する壁が設けられている。 The lead-acid battery has a battery case with an open top, an inner lid that seals the opening of the battery case, and an upper lid that covers the inner lid from above, and the battery case houses electrode plates and an electrolyte. , has a plurality of cell chambers arranged in a matrix, a space between the upper lid and the inner lid is divided by an exhaust partition into exhaust chambers corresponding to each cell chamber on a one-to-one basis, The partition wall is formed with a first communication port that communicates the adjacent exhaust chambers, and the bottom of the exhaust chamber is provided with an exhaust port that exhausts gas generated in the cell chamber to the exhaust chamber, and a first communication port that communicates the gas generated in the cell chamber with the exhaust chamber. a reflux port for refluxing the electrolyte to the cell chamber, and at least one of the plurality of exhaust chambers is a first exhaust chamber provided with a collective exhaust port for exhausting gas to the outside of the lead-acid battery. Among the plurality of exhaust chambers, the bottom surface of the first exhaust chamber is provided with a wall corresponding to the collective exhaust port.
 本明細書により開示される鉛蓄電池によれば、一括排気口に対応する壁が設けられているため、電解液が外部に排出されにくくなり、電解液の減少を抑制できる。また、還流口から電解液をセル室に戻すことができる。 According to the lead-acid battery disclosed in this specification, since a wall corresponding to the collective exhaust port is provided, the electrolytic solution is difficult to be discharged to the outside, and a decrease in the electrolytic solution can be suppressed. Further, the electrolyte can be returned to the cell chamber from the reflux port.
鉛蓄電池の斜視図Perspective view of lead acid battery 鉛蓄電池の分解図Exploded diagram of lead acid battery 電槽の平面図Top view of battery case 中蓋の底面図Bottom view of the inner lid 中蓋の平面図Top view of the inner lid 上蓋の底面図Bottom view of top lid 鉛蓄電池のA-A断面図A-A sectional view of lead-acid battery 中蓋の平面図(液滴の還流経路説明図)Top view of the inner lid (explanatory diagram of the reflux path of droplets) 中蓋の平面図(実施形態2)Plan view of the inner lid (Embodiment 2) 上蓋の平面図(実施形態2)Plan view of the top lid (Embodiment 2) 中蓋の拡大平面図(実施形態2)Enlarged plan view of the inner lid (Embodiment 2)
<実施形態1>
 図1から図8を参照して、本発明の実施形態1に係る鉛蓄電池10について説明する。
<Embodiment 1>
A lead acid battery 10 according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 8.
1.鉛蓄電池10の構造
 鉛蓄電池10は、例えば、自動車等の車両に搭載されて車両に電力を供給する蓄電池である。鉛蓄電池10は、液式鉛蓄電池であり、図1から図3に示すように、電池ケース15と、極板群30と、電解液W(図7に示す)と、端子部40(40P、40N)とを備える。なお、以下の説明において、電池ケース15が設置面に対して傾きなく水平に置かれた時の電池ケース15の横幅方向をX方向とし、電池ケース15の奥行方向(端子部40P、40Nの並び方向)をY方向とし、電池ケース15の高さ方向(上下方向)をZ方向とする。
1. Structure of lead-acid battery 10 The lead-acid battery 10 is, for example, a storage battery that is mounted on a vehicle such as an automobile and supplies electric power to the vehicle. The lead-acid battery 10 is a liquid lead-acid battery, and as shown in FIGS. 1 to 3, includes a battery case 15, an electrode plate group 30, an electrolyte W (shown in FIG. 7), and a terminal portion 40 (40P, 40N). In the following description, the width direction of the battery case 15 when the battery case 15 is placed horizontally without tilting with respect to the installation surface is taken as the X direction, and the depth direction of the battery case 15 (the arrangement of the terminal parts 40P, 40N) is taken as the X direction. direction) is the Y direction, and the height direction (vertical direction) of the battery case 15 is the Z direction.
 電池ケース15は、極板群30と電解液Wとを収容する電槽20と、蓋部材50を備える。電槽20は合成樹脂製である。電槽20は4枚の外壁21と1枚の底壁22とを備え、上面が開口する箱型である。 The battery case 15 includes a battery case 20 that accommodates the electrode plate group 30 and the electrolyte W, and a lid member 50. The battery case 20 is made of synthetic resin. The battery case 20 has four outer walls 21 and one bottom wall 22, and is box-shaped with an open top.
 電槽20は、図3に示すように、複数の電槽隔壁23を有している。電槽隔壁23はX方向に延びる1枚の電槽隔壁23Xと、Y方向に延びる2枚の電槽隔壁23Yの、合計3枚形成されており、電槽20の内部を複数のセル室25に仕切っている。セル室25は、電槽20内において、X方向(図3の左右方向)に3列、Y方向(図3の上下方向)には2列並んでおり、合計6室が行列状に配置されている。各セル室25には、希硫酸からなる電解液Wと共に極板群30が収容される。なお、外壁21と電槽隔壁23は、上端の高さが揃っている。 As shown in FIG. 3, the battery case 20 has a plurality of battery case partition walls 23. The battery case partition 23 is formed of a total of three battery case partitions 23X extending in the X direction and two battery case partitions 23Y extending in the Y direction. It is divided into The cell chambers 25 are arranged in three rows in the X direction (horizontal direction in FIG. 3) and two rows in the Y direction (vertical direction in FIG. 3) in the battery case 20, and a total of six chambers are arranged in a matrix. ing. Each cell chamber 25 accommodates an electrode plate group 30 together with an electrolytic solution W made of dilute sulfuric acid. Note that the outer wall 21 and the battery case partition wall 23 have the same height at their upper ends.
 電槽20が有する6つのセル室25を、図3中の左上のセル室25から時計回りに、それぞれ25A~25Fとする。 The six cell chambers 25 included in the battery case 20 are designated as 25A to 25F, respectively, clockwise from the upper left cell chamber 25 in FIG.
 極板群30は、格子体に活物質が充填された極板(正極板及び負極板を含む)31と、同じ極性の極板を連結するストラップ32と、から構成されている。正極板と負極板の間は絶縁体のセパレータにより仕切られ、極板間の短絡を防いでいる。なお、正極板の活物質の主成分は二酸化鉛、負極板の活物質の主成分は金属鉛である。 The electrode plate group 30 is composed of an electrode plate (including a positive electrode plate and a negative electrode plate) 31 whose lattice body is filled with an active material, and a strap 32 that connects the electrode plates of the same polarity. The positive and negative plates are separated by an insulating separator to prevent short circuits between the plates. The main component of the active material of the positive electrode plate is lead dioxide, and the main component of the active material of the negative electrode plate is metallic lead.
 ストラップ32はY方向に長い板状であり、セル室25ごとに正極用と負極用の1組が設けられている。隣接するセル室25の正負のストラップ32同士を、ストラップ32上に形成された接続部33を介して電気的に接続することにより、各セル室25の極板群30が直列に接続される。 The straps 32 are plate-shaped and long in the Y direction, and one set for each cell chamber 25 is provided, one for the positive electrode and one for the negative electrode. By electrically connecting the positive and negative straps 32 of adjacent cell chambers 25 via connecting portions 33 formed on the straps 32, the electrode plate groups 30 of each cell chamber 25 are connected in series.
 直列に接続された極板群30の両端に位置する極板群30では、ストラップ32から上方(Z方向)に延びる極柱45が形成されている。極柱45は、後述するブッシング62と溶接される。 In the electrode plate groups 30 located at both ends of the electrode plate groups 30 connected in series, pole columns 45 extending upward (in the Z direction) from the strap 32 are formed. The pole post 45 is welded to a bushing 62, which will be described later.
 蓋部材50は、中蓋60と上蓋100とを備える。図4は、中蓋60を下方から見た底面図、図5は中蓋60を上方から見た平面図、図6は、上蓋100を下方から見た底面図である。中蓋60及び上蓋100はともに合成樹脂製である。 The lid member 50 includes an inner lid 60 and an upper lid 100. 4 is a bottom view of the inner lid 60 seen from below, FIG. 5 is a plan view of the inner lid 60 seen from above, and FIG. 6 is a bottom view of the upper lid 100 seen from below. Both the inner lid 60 and the upper lid 100 are made of synthetic resin.
 中蓋60は、電槽20の上面を封口可能な大きさである。図5に示すように、中蓋60は、中蓋本体61と、2つのブッシング62と、を有する。ブッシング62は、鉛合金等の金属製であり、中空の円筒状である。中蓋60は、ブッシング62をインサートした金型に樹脂を射出して一体成形することから、ブッシング62は上方に露出している部分を除き中蓋本体61に埋め込まれている。鉛蓄電池10を組み立てる際に、上述した極柱45がブッシング62の内部に挿入され、両者は溶接されて端子部40となる。端子部40には、車両に電力を供給するためのハーネス(図示しない)等が組み付けられる。 The inner lid 60 is large enough to seal the top surface of the battery case 20. As shown in FIG. 5, the inner lid 60 includes an inner lid main body 61 and two bushings 62. The bushing 62 is made of metal such as a lead alloy and has a hollow cylindrical shape. Since the inner lid 60 is integrally molded by injecting resin into a mold into which the bushing 62 is inserted, the bushing 62 is embedded in the inner lid main body 61 except for the portion exposed above. When assembling the lead-acid battery 10, the above-mentioned pole post 45 is inserted into the bushing 62, and both are welded to form the terminal portion 40. A harness (not shown) and the like for supplying power to the vehicle are attached to the terminal portion 40.
 中蓋本体61は、図4に示すように、下面側に、内壁91と複数の隔壁93とを有している。内壁91は、中蓋本体61の下面から下向きに突出している。内壁91は、電槽20の開口に沿って全周に亘って設けられており、全体としてX方向に長い矩形枠状をしている。 As shown in FIG. 4, the inner lid main body 61 has an inner wall 91 and a plurality of partition walls 93 on the lower surface side. The inner wall 91 projects downward from the lower surface of the inner lid main body 61. The inner wall 91 is provided along the entire circumference along the opening of the battery case 20, and has an overall rectangular frame shape that is long in the X direction.
 隔壁93は、X方向に延びる1枚の隔壁93Xと、Y方向に延びる2枚の隔壁93Yと、からなる。隔壁93は、内壁91と連結され、内壁91と同様に、中蓋本体61の下面から下向きに突出している。 The partition wall 93 consists of one partition wall 93X extending in the X direction and two partition walls 93Y extending in the Y direction. The partition wall 93 is connected to the inner wall 91 and, like the inner wall 91, protrudes downward from the lower surface of the inner lid main body 61.
 各隔壁93は、電槽20の電槽隔壁23に対応して設けられており、枠状をなす内壁91の内側を、各セル室25A~25Fに対応するように6つに仕切っている。これら隔壁93と内壁91は、下端の高さが揃っている。 Each partition 93 is provided corresponding to the battery case partition 23 of the battery case 20, and partitions the inside of the frame-shaped inner wall 91 into six parts corresponding to each of the cell chambers 25A to 25F. The partition wall 93 and the inner wall 91 have the same height at their lower ends.
 中蓋60の内壁91は、電槽20の外壁21の上端面に重なり、中蓋60の各隔壁93は、電槽20の各電槽隔壁23の上端面に重なって位置する。このように、中蓋60側の内壁91や隔壁93を、電槽20側の各壁21、23に重ねることで、電槽20及び各セル室25を気密する構造になっている。なお、内壁91と外壁21、及び隔壁93と電槽隔壁23は、気密性が保持されるように、熱溶着により接合されている(図7参照)。 The inner wall 91 of the inner lid 60 overlaps the upper end surface of the outer wall 21 of the battery case 20, and each partition wall 93 of the inner lid 60 is located so as to overlap the upper end surface of each container partition wall 23 of the battery case 20. In this way, by overlapping the inner wall 91 and partition wall 93 on the inner lid 60 side with the walls 21 and 23 on the battery case 20 side, the battery case 20 and each cell chamber 25 are made airtight. Note that the inner wall 91 and the outer wall 21, and the partition wall 93 and the container partition wall 23 are joined by thermal welding so that airtightness is maintained (see FIG. 7).
 図2、図5に示すように、中蓋本体61は、低面部63(図5の左側)と、高面部64(同図右側)と、を有しており、高低差を付けた形状となっている。 As shown in FIGS. 2 and 5, the inner lid main body 61 has a low surface portion 63 (on the left side in FIG. 5) and a high surface portion 64 (on the right side in the same figure), and has a shape with a height difference. It has become.
 低面部63は、上向きに突出した下側排気隔壁71、73を有している。下側排気隔壁71は、低面部63の外周に沿って設けられている。下側排気隔壁73は、X方向に延びる下側排気隔壁73Xと、Y方向に延びる下側排気隔壁73Yと、からなる。下側排気隔壁73は、下側排気隔壁71の内側において、電槽隔壁23に重なるように設けられている。 The lower surface portion 63 has lower exhaust partition walls 71 and 73 that protrude upward. The lower exhaust partition 71 is provided along the outer periphery of the lower surface portion 63. The lower exhaust partition 73 includes a lower exhaust partition 73X extending in the X direction and a lower exhaust partition 73Y extending in the Y direction. The lower exhaust partition 73 is provided inside the lower exhaust partition 71 so as to overlap the battery case partition 23 .
 低面部63は、6つの下側注液口75を有している。これら6つの下側注液口75は、低面部63を上下に貫通している。 The lower surface portion 63 has six lower liquid injection ports 75. These six lower liquid injection ports 75 vertically penetrate the lower surface portion 63.
 図6は上蓋100の底面図である。上蓋100は、低面部63を上方から覆う、矩形板状の部材である。上蓋100の下面側には、下向きに突出した上側排気隔壁81、83が設けられている。上側排気隔壁83は、X方向に延びる上側排気隔壁83Xと、Y方向に延びる上側排気隔壁83Yと、からなる。上側排気隔壁81、83は、それぞれ下側排気隔壁71、73と重なるように設けられている。上蓋100には、中蓋60の下側注液口75と重なる位置に、上側注液口85が設けられている。 FIG. 6 is a bottom view of the top lid 100. The upper lid 100 is a rectangular plate-shaped member that covers the lower surface portion 63 from above. Upper exhaust partition walls 81 and 83 that protrude downward are provided on the lower surface side of the upper lid 100. The upper exhaust partition 83 includes an upper exhaust partition 83X extending in the X direction and an upper exhaust partition 83Y extending in the Y direction. The upper exhaust partitions 81 and 83 are provided so as to overlap the lower exhaust partitions 71 and 73, respectively. The upper lid 100 is provided with an upper liquid inlet 85 at a position overlapping with the lower liquid inlet 75 of the inner lid 60.
 上側排気隔壁81、83と、下側排気隔壁71、73は、端面同士が熱溶着により接合される(図7参照)。上側排気隔壁81、83、及び下側排気隔壁71、73は、「排気隔壁」の一例である。 The end surfaces of the upper exhaust partition walls 81 and 83 and the lower exhaust partition walls 71 and 73 are joined by thermal welding (see FIG. 7). The upper exhaust partitions 81 and 83 and the lower exhaust partitions 71 and 73 are examples of "exhaust partitions."
 排気隔壁により、蓋部材50の内部空間は、6つの排気室52に分割される(図5参照)。6つの排気室52を、図5の右上から時計回りに、52A~52Fとする。各排気室52A~52Fは、それぞれ各セル室25A~25Fに1対1で対応している。 The internal space of the lid member 50 is divided into six exhaust chambers 52 by the exhaust partition (see FIG. 5). The six exhaust chambers 52 are designated 52A to 52F clockwise from the upper right of FIG. Each exhaust chamber 52A to 52F corresponds to each cell chamber 25A to 25F on a one-to-one basis.
 図1に示すように、上蓋100に液口栓120を装着すると、上側注液口85を閉じることができる。液口栓120は上側注液口85の内周面に対して螺合しており、着脱可能である。液口栓120を外すと、上側注液口85から電槽20の各セル室25に対して電解液Wの補充を行うことができる。 As shown in FIG. 1, when the liquid inlet plug 120 is attached to the upper lid 100, the upper liquid inlet 85 can be closed. The liquid inlet stopper 120 is screwed into the inner peripheral surface of the upper liquid inlet 85 and is detachable. When the liquid inlet stopper 120 is removed, each cell chamber 25 of the battery case 20 can be replenished with the electrolytic solution W through the upper liquid inlet 85.
2.排気室52について
 各排気室52は、排気口65及び還流口66をそれぞれ1つずつ有している。図7に示すように、排気口65及び還流口66は、中蓋本体61を上下方向に貫通し、排気室52とセル室25とを連通している。
2. About the exhaust chamber 52 Each exhaust chamber 52 has one exhaust port 65 and one reflux port 66. As shown in FIG. 7, the exhaust port 65 and the recirculation port 66 vertically penetrate the inner lid main body 61 and communicate the exhaust chamber 52 and the cell chamber 25.
 図5に示すように、各排気室52は、排気口65及び還流口66の周囲を渦巻き状に囲むように形成された還流壁67を有している。還流壁67は、上述した排気隔壁(下側排気隔壁71、73、上側排気隔壁81、83)と同様に、中蓋本体61側の隔壁と上蓋100側の隔壁とが溶着により接合されてなる(図7参照)。 As shown in FIG. 5, each exhaust chamber 52 has a reflux wall 67 formed to spirally surround an exhaust port 65 and a reflux port 66. The reflux wall 67 is formed by welding the partition wall on the inner lid main body 61 side and the partition wall on the upper lid 100 side, similarly to the above-mentioned exhaust partition walls (lower exhaust partition walls 71, 73, upper exhaust partition walls 81, 83). (See Figure 7).
 排気口65及び還流口66が位置する還流壁67の内側と、還流壁67の外側とは完全には仕切られていない。還流壁67の外周部分において、還流壁67の内外を連通する第2連通口67Aが形成されており、液体や気体は、第2連通口67Aを通じて還流壁67の内外を出入り可能である。 The inside of the reflux wall 67 where the exhaust port 65 and the reflux port 66 are located is not completely partitioned from the outside of the reflux wall 67. A second communication port 67A that communicates between the inside and outside of the reflux wall 67 is formed in the outer peripheral portion of the reflux wall 67, and liquid and gas can enter and exit the inside and outside of the reflux wall 67 through the second communication port 67A.
 セル室25内で発生したガスは、排気口65を通って排気室52に流入する。ガスには、電解液Wが蒸発して発生した水蒸気や、振動により生じた電解液Wの飛沫が含まれる。排気室52内において、ガスが冷却されて水蒸気が凝縮(結露)したり、飛沫が多数集合したりすると、排気室52内で液滴Dが発生する。液滴Dが多数集合した電解液Wが排気室52内を流れる場合もある。 The gas generated within the cell chamber 25 flows into the exhaust chamber 52 through the exhaust port 65. The gas includes water vapor generated by evaporation of the electrolyte W and droplets of the electrolyte W generated by vibration. In the exhaust chamber 52, when the gas is cooled and water vapor condenses (dew condensation) or a large number of droplets gather, droplets D are generated within the exhaust chamber 52. The electrolytic solution W in which a large number of droplets D have gathered may flow inside the exhaust chamber 52 .
 還流口66は、排気室52内の最も低い位置にあり、排気室52内の液滴Dを下方のセル室25に戻す機能を有している。排気室52の底面69は、還流壁67の外側では、下側排気隔壁71、73と交わる箇所において最も高く、第2連通口67Aに近付くにつれて下がるように傾斜した、複数の斜面が組み合わされてなる。また、排気室52の底面69は、還流壁67の内側において、還流口66に近付くにつれて低くなる複数の斜面が組み合わされてなる。排気室52で発生した液滴Dは、傾斜に従って底面69上を流れ、第2連通口67Aを経由して、還流口66からセル室25に還流する。 The reflux port 66 is located at the lowest position within the exhaust chamber 52 and has the function of returning the droplets D within the exhaust chamber 52 to the cell chamber 25 below. The bottom surface 69 of the exhaust chamber 52 is a combination of a plurality of slopes, which are highest at the point where they intersect with the lower exhaust partition walls 71 and 73 outside the recirculation wall 67, and which slope downward as they approach the second communication port 67A. Become. Further, the bottom surface 69 of the exhaust chamber 52 is formed by combining a plurality of slopes that become lower as they approach the recirculation port 66 inside the recirculation wall 67. The droplet D generated in the exhaust chamber 52 flows on the bottom surface 69 according to the slope, and flows back into the cell chamber 25 from the reflux port 66 via the second communication port 67A.
 還流壁67と底面69は、底面69の傾斜方向(傾斜角度が最大となる方向)に対して斜交している。斜行とは、斜めに交差することをいう。還流壁67と底面69の交線は、第2連通口67Aに近いほど下がっている。底面69の上を傾斜方向に流れる液滴Dが、還流壁67に突き当たっても、還流壁67に沿って底面69上を移動することで、第2連通口67Aに向かって進行方向を変えて流れるようになっている。 The reflux wall 67 and the bottom surface 69 are oblique to the inclination direction of the bottom surface 69 (the direction in which the inclination angle is maximum). Oblique means crossing diagonally. The line of intersection between the reflux wall 67 and the bottom surface 69 is lowered closer to the second communication port 67A. Even if the droplet D flowing in the inclined direction on the bottom surface 69 hits the reflux wall 67, by moving on the bottom surface 69 along the reflux wall 67, the droplet D changes its traveling direction toward the second communication port 67A. It's flowing.
 本実施形態では、底面69の傾斜方向は、各傾斜面が接している下側排気隔壁71、73に対して平面視にて垂直な方向である。このとき、還流壁67は、下側排気隔壁71、73に対して平面視にて斜めになるように設けられる(図5参照)。 In this embodiment, the inclination direction of the bottom surface 69 is a direction perpendicular to the lower exhaust partition walls 71 and 73 with which the respective inclined surfaces are in contact, in plan view. At this time, the reflux wall 67 is provided so as to be oblique with respect to the lower exhaust partition walls 71 and 73 in plan view (see FIG. 5).
 図6に示すように、本実施形態の上蓋100は、上側排気隔壁83に5つの第1連通口54を有している。5つの第1連通口54は、図6の左下に位置する第1連通口から反時計回りの順に、第1連通口54A~54Eとする。6つの排気室52A~52Fは、第1連通口54A~54Eによって、一列に連通している。ガスは、第1連通口54を通って、隣り合う排気室52間を自由に行き来できる。 As shown in FIG. 6, the upper lid 100 of this embodiment has five first communication ports 54 in the upper exhaust partition 83. The five first communication ports 54 are designated as first communication ports 54A to 54E in counterclockwise order from the first communication port located at the lower left in FIG. The six exhaust chambers 52A to 52F communicate in a line through first communication ports 54A to 54E. Gas can freely flow between adjacent exhaust chambers 52 through the first communication port 54.
 排気室52A、52Fは、電池ケース15の外部に向かって開口する一括排気口55A、55Fをそれぞれ有している。排気室52A、52Fは、「第1排気室」の一例である。排気室52Aが有する一括排気口55Aと、排気室52Fが有する一括排気口55Fは同一の構成であるため、一括排気口55Aについて以下に説明する。 The exhaust chambers 52A and 52F have collective exhaust ports 55A and 55F that open toward the outside of the battery case 15, respectively. The exhaust chambers 52A and 52F are examples of "first exhaust chambers." Since the collective exhaust port 55A of the exhaust chamber 52A and the collective exhaust port 55F of the exhaust chamber 52F have the same configuration, the collective exhaust port 55A will be described below.
 図6に示すように、一括排気口55Aは、電池ケース15の内外を略水平方向に連通する孔であり、排気室52Aのガスを外部に排出する機能を有している。一括排気口55Aは、外側の開口が上蓋100の側面に位置し(図1参照)、内側の開口は排気室52Aの角部に位置している。 As shown in FIG. 6, the collective exhaust port 55A is a hole that communicates the inside and outside of the battery case 15 in a substantially horizontal direction, and has the function of exhausting the gas in the exhaust chamber 52A to the outside. The collective exhaust port 55A has an outer opening located on the side surface of the upper lid 100 (see FIG. 1), and an inner opening located at a corner of the exhaust chamber 52A.
 各排気室52A~52Fにおいて、第2連通口67Aは、一括排気口55Aから離れる方向、又は少なくとも一つの第1連通口54から離れる方向に向かって開口している。排気室52Aの場合、排気室52Aの第2連通口67Aは、図6の左下方向に位置する一括排気口55Aから離れる方向である、右方向に向かって開口している。 In each of the exhaust chambers 52A to 52F, the second communication port 67A opens in a direction away from the collective exhaust port 55A or in a direction away from at least one first communication port 54. In the case of the exhaust chamber 52A, the second communication port 67A of the exhaust chamber 52A opens toward the right, which is the direction away from the collective exhaust port 55A located at the lower left in FIG.
 また、排気室52Bの場合、排気室52Bの第2連通口67Aは、左下方向に位置する第1連通口54Aから離れる方向である、右方向に開口している。 Furthermore, in the case of the exhaust chamber 52B, the second communication port 67A of the exhaust chamber 52B opens to the right, which is the direction away from the first communication port 54A located in the lower left direction.
 また、排気室52Cは左上方向に第1連通口54B、右上方向に第1連通口54Cをそれぞれ有している。排気室52Cの第2連通口67Aは、第1連通口54B、54Cから離れる方向である、左下方向に開口している。排気室52D、52E、52Fについては、排気室52C、52B、52Aとそれぞれ同様の構成である。 Furthermore, the exhaust chamber 52C has a first communication port 54B in the upper left direction and a first communication port 54C in the upper right direction. The second communication port 67A of the exhaust chamber 52C opens toward the lower left, which is the direction away from the first communication ports 54B and 54C. The exhaust chambers 52D, 52E, and 52F have the same configuration as the exhaust chambers 52C, 52B, and 52A, respectively.
 図5に示すように、排気室52Aには、排気室52Aの内部を仕切る迷路壁(「壁」の一例)56が設けられている。迷路壁56は、上述した還流壁67と同様に、中蓋本体61から上向きに突出している下側迷路壁と、上蓋100側から下向きに突出している上側迷路壁とが接合されてなる。迷路壁56は、排気室52A内の底面69から天井壁まで繋がっており、ガスや電解液W(液滴Dを含む)は迷路壁56を跨いで流れることはできない。例えば、車両の走行に伴って鉛蓄電池10が揺動すると、排気室52A内において電解液Wが移動する。ガスや電解液Wが移動して迷路壁56に当たると、迷路壁56を超えずに、せき止められたり移動する方向を変えられたりする。 As shown in FIG. 5, the exhaust chamber 52A is provided with a maze wall (an example of a "wall") 56 that partitions the inside of the exhaust chamber 52A. Like the reflux wall 67 described above, the labyrinth wall 56 is formed by joining a lower labyrinth wall projecting upward from the inner lid main body 61 and an upper labyrinth wall projecting downward from the upper lid 100 side. The labyrinth wall 56 is connected from the bottom surface 69 in the exhaust chamber 52A to the ceiling wall, and gas and electrolyte W (including droplets D) cannot flow across the labyrinth wall 56. For example, when the lead acid battery 10 swings as the vehicle travels, the electrolyte W moves within the exhaust chamber 52A. When the gas or electrolyte W moves and hits the maze wall 56, it is blocked or the direction of movement is changed without exceeding the maze wall 56.
 迷路壁56は、排気室52A内に迷路状の通路57を形成する。迷路状の通路57には、分岐する部分や、袋小路や、合流する部分が含まれていてもよい。 The labyrinth wall 56 forms a labyrinth-like passage 57 within the exhaust chamber 52A. The maze-like passage 57 may include branching parts, dead ends, and merging parts.
 ガスが迷路状の通路57を通過する場合は、迷路状の通路57を通過しない場合と比べて経路長が長くなり、外部に排気されるまでの時間が長くなる。これにより、ガスの温度が下がって水蒸気の凝縮が促進され、液滴Dが生成しやすい。また、ガスに含まれる電解液Wの飛沫が排気室52Aの内壁や迷路壁56に付着して液滴Dを生成しやすい。迷路状の通路57により、ガスに含まれる水蒸気や電解液Wの飛沫が一括排気口55Aから排出されにくくなり、電解液Wの減少を抑制できる。 When the gas passes through the maze-like passage 57, the path length becomes longer than when the gas does not pass through the maze-like passage 57, and the time until it is exhausted to the outside becomes longer. This lowers the temperature of the gas, promotes condensation of water vapor, and easily generates droplets D. Further, droplets of the electrolytic solution W contained in the gas adhere to the inner wall of the exhaust chamber 52A and the labyrinth wall 56, and easily generate droplets D. The maze-like passage 57 makes it difficult for water vapor contained in the gas and droplets of the electrolytic solution W to be discharged from the collective exhaust port 55A, thereby suppressing a decrease in the electrolytic solution W.
 なお、排気室52Fにも、排気室52Aと同様の迷路壁56が設けられており、迷路状の通路57が形成されている。 Note that the exhaust chamber 52F is also provided with a maze wall 56 similar to the exhaust chamber 52A, and a maze-like passage 57 is formed.
3.ガスの排気経路について
 図6を参照して、各排気室52におけるガスの排気経路について説明する。
3. Regarding Gas Exhaust Routes The gas exhaust routes in each exhaust chamber 52 will be described with reference to FIG.
 排気室52Aの排気経路について説明する。図6の矢線で示すように、セル室25Aで発生したガスは、排気口65から排気室52Aに流入し、第2連通口67Aを通過して還流壁67の外側に出る。第2連通口67Aは、図6中の左下方向に位置する一括排気口55Aから離れる方向(右方向)に向かって開口しており、ガスは、一括排気口55Aから遠ざかる方向に排出される。その後一括排気口55Aに向かうガスA1と、一括排気口55Fに向かうガスA2の二手に分かれる。 The exhaust path of the exhaust chamber 52A will be explained. As shown by the arrow in FIG. 6, the gas generated in the cell chamber 25A flows into the exhaust chamber 52A from the exhaust port 65, passes through the second communication port 67A, and exits to the outside of the reflux wall 67. The second communication port 67A opens in a direction (to the right) away from the collective exhaust port 55A located in the lower left direction in FIG. 6, and gas is discharged in the direction away from the collective exhaust port 55A. Thereafter, the gas is divided into two parts: gas A1 heading towards the batch exhaust port 55A and gas A2 heading towards the batch exhaust port 55F.
 ガスA1は、排出された方向(右方向)から逆向き(左方向)に反転し、迷路状の通路57を経由して一括排気口55Aに到達し、外部に排気される。ガスA1は、一旦一括排気口55Aから離れる方向に排出されるため、一括排気口55Aに近付く方向に排出される場合と比べて、一括排気口55Aに到達するまでの経路長は長くなる。一括排気口55Fに向かうガスA2は、第1連通口54Aを通って隣の排気室52Bに流入し、さらに排気室52C~52Fを経由して、最終的に一括排気口55Fから排気される。 The gas A1 is reversed from the discharge direction (right direction) to the opposite direction (left direction), reaches the collective exhaust port 55A via the maze-shaped passage 57, and is exhausted to the outside. Since the gas A1 is once discharged in a direction away from the collective exhaust port 55A, the path length until it reaches the collective exhaust port 55A is longer than when the gas A1 is discharged in a direction approaching the collective exhaust port 55A. Gas A2 heading toward the collective exhaust port 55F flows into the adjacent exhaust chamber 52B through the first communication port 54A, further passes through the exhaust chambers 52C to 52F, and is finally exhausted from the collective exhaust port 55F.
 排気室52Bにおいては、第2連通口67Aは、第1連通口54Aから離れる方向(右方向)に向かって開口しており、ガスは、右方向に排出される。排出されたガスは、一括排気口55Aに向かうガスB1と、一括排気口55Fに向かうガスB2の二手に分かれる。ガスB1は、排出された方向(右方向)から逆向き(左方向)に反転し、第1連通口54Aを通って排気室52Aに流入し、一括排気口55Aから排気される。 In the exhaust chamber 52B, the second communication port 67A opens in the direction away from the first communication port 54A (to the right), and the gas is discharged to the right. The discharged gas is divided into two parts: gas B1 heading towards the batch exhaust port 55A and gas B2 heading towards the batch exhaust port 55F. The gas B1 is reversed from the discharged direction (rightward) to the opposite direction (leftward), flows into the exhaust chamber 52A through the first communication port 54A, and is exhausted from the collective exhaust port 55A.
 ガスB1は、一旦第1連通口54Aから離れる方向に排出されるため、第1連通口54Aに近付く方向に排出される場合と比べて経路長が長くなる。ガスB2は、第1連通口54Bを通って排気室52Cに流入し、さらに排気室52D~52Fを経由して、最終的に一括排気口55Fから排気される。 Since the gas B1 is once discharged in a direction away from the first communication port 54A, the path length becomes longer than when the gas B1 is discharged in a direction approaching the first communication port 54A. Gas B2 flows into the exhaust chamber 52C through the first communication port 54B, further passes through the exhaust chambers 52D to 52F, and is finally exhausted from the collective exhaust port 55F.
 一括排気口55Aから排出されるガスB1と、一括排気口55Fから排出されるガスB2とでは、ガスB1の方が、外部に排出されるまでの経路長は短い。第2連通口67Aの開口を、第1連通口54Aから離れる方向に向けることにより、ガスB2と比べて相対的に短いガスB1の経路長を長くすることができる。 Between the gas B1 discharged from the collective exhaust port 55A and the gas B2 discharged from the collective exhaust port 55F, the path length of the gas B1 until it is discharged to the outside is shorter. By orienting the opening of the second communication port 67A in a direction away from the first communication port 54A, the path length of the gas B1, which is relatively short compared to the gas B2, can be increased.
 排気室52Cにおいては、第2連通口67Aは、第1連通口54B、54Cから離れる方向(左下方向)に向かって開口している。ガスは、第1連通口54B及び54Cから離れる方向(左下方向)に排出される。左下方向に排出されたガスは、上方向へと向きを変え、一括排気口55Aに向かうガスC1と、還流壁67の外側を回り込んで一括排気口55Fに向かうガスC2の二手に分かれる。 In the exhaust chamber 52C, the second communication port 67A opens in the direction away from the first communication ports 54B and 54C (lower left direction). The gas is discharged in a direction away from the first communication ports 54B and 54C (lower left direction). The gas discharged in the lower left direction changes direction upward and is divided into two parts: gas C1 that heads toward the collective exhaust port 55A, and gas C2 that goes around the outside of the reflux wall 67 and heads toward the collective exhaust port 55F.
 ガスC1は第1連通口54Bを通って排気室52Bに流入し、その後排気室52Aの一括排気口55Aから排出される。ガスC2は、第1連通口54Cを通って排気室52Dに流入し、さらに排気室52E、52Fを経由して、最終的に一括排気口55Fから排気される。ガスC1、C2は、一旦第1連通口54B、54Cから離れる方向に排出されるため、第1連通口54B、54Cに近付く方向に排出される場合と比べて経路長が長くなる。 The gas C1 flows into the exhaust chamber 52B through the first communication port 54B, and is then exhausted from the collective exhaust port 55A of the exhaust chamber 52A. The gas C2 flows into the exhaust chamber 52D through the first communication port 54C, further passes through the exhaust chambers 52E and 52F, and is finally exhausted from the collective exhaust port 55F. Since the gases C1 and C2 are once discharged in a direction away from the first communication ports 54B and 54C, their path length becomes longer than when they are discharged in a direction approaching the first communication ports 54B and 54C.
 図5、図6に示すように排気室52A~52Fにおいて、排気口65、還流口66、還流壁67、迷路壁56の形状及び配置は各図中において上下対称である。排気室52D、52E、52Fのガスの排出経路は、それぞれ排気室52C、52B、52Aと対称になるため、説明を省略する。排気室52A~52Fのいずれにおいても、第2連通口67Aから流出したガスは、最終的に一括排気口55A、55Fのいずれかから排気される。 As shown in FIGS. 5 and 6, in the exhaust chambers 52A to 52F, the shape and arrangement of the exhaust port 65, reflux port 66, reflux wall 67, and labyrinth wall 56 are vertically symmetrical in each figure. The gas exhaust paths of the exhaust chambers 52D, 52E, and 52F are symmetrical to those of the exhaust chambers 52C, 52B, and 52A, respectively, and therefore a description thereof will be omitted. In any of the exhaust chambers 52A to 52F, the gas flowing out from the second communication port 67A is finally exhausted from either the collective exhaust port 55A or 55F.
4.液滴Dの還流経路について
 図8を参照して、各排気室52A~52Fにおける液滴Dの還流経路を説明する。図8中の矢線は液滴Dの経路を表している。
4. Regarding the reflux path of the droplet D The reflux path of the droplet D in each of the exhaust chambers 52A to 52F will be described with reference to FIG. The arrow in FIG. 8 represents the path of the droplet D.
 上述したように、排気室52の底面69は、還流壁67の外側では、第2連通口67Aに向かって下がる複数の斜面が組み合わされてなり、還流壁67の内側では、還流口66に向かって下がる複数の斜面が組み合わされてなる。還流壁67と底面69との交線は、底面69の傾斜に対して斜行しており、第2連通口67Aに近付くにつれて下がっている。 As described above, the bottom surface 69 of the exhaust chamber 52 is formed by a combination of a plurality of slopes that descend toward the second communication port 67A on the outside of the reflux wall 67, and the bottom surface 69 slopes downward toward the reflux port 66 on the inside of the reflux wall 67. It is a combination of multiple slopes that descend. The line of intersection between the reflux wall 67 and the bottom surface 69 is oblique to the slope of the bottom surface 69, and decreases as it approaches the second communication port 67A.
 このようにすると、底面69の傾斜に沿って流れる液滴Dが還流壁67に突き当たった場合、還流壁67に沿って下がる方向、つまり、第2連通口67Aに近付く方向に向きを変えて流れる。液滴Dは第2連通口67Aに到達すると、第2連通口67Aを通過して還流壁67の内側に入り込み、底面69の傾斜に沿って還流口66まで流れ、還流口66を通過してセル室25に還流する。 In this way, when a droplet D flowing along the slope of the bottom surface 69 hits the reflux wall 67, the droplet D changes direction and flows downward along the reflux wall 67, that is, in a direction approaching the second communication port 67A. . When the droplet D reaches the second communication port 67A, it passes through the second communication port 67A, enters the inside of the reflux wall 67, flows along the slope of the bottom surface 69 to the reflux port 66, passes through the reflux port 66, and enters the reflux wall 67. It is refluxed to the cell chamber 25.
 迷路壁56が設けられている排気室52Aでは、一括排気口55A近傍の液滴Dは、迷路状の通路57を経由して第2連通口67Aに到達する。迷路状の通路57では、迷路壁56を迂回しなければならないため、経路長は長くなり、液滴Dがセル室25Aに戻るのに時間がかかる。 In the exhaust chamber 52A in which the labyrinth wall 56 is provided, the droplets D near the collective exhaust port 55A reach the second communication port 67A via the labyrinth-shaped passage 57. In the labyrinth-like passage 57, the path length becomes long because the labyrinth wall 56 must be bypassed, and it takes time for the droplet D to return to the cell chamber 25A.
 排気室52B、52Cには、迷路壁56が設けられておらず、迷路状の通路57は存在しない。排気室52B、52C内の液滴Dは、排気室52Aと比べて短い距離で第2連通口67Aに到達することができるため、短時間でセル室25に還流する。排気室52B、52Cでは、排気室52Aと比べて液滴Dの戻りが早い。 The exhaust chambers 52B and 52C are not provided with a labyrinth wall 56, and a labyrinth-like passage 57 does not exist. Since the droplets D in the exhaust chambers 52B and 52C can reach the second communication port 67A in a shorter distance than the exhaust chamber 52A, they flow back into the cell chamber 25 in a short time. The droplet D returns faster in the exhaust chambers 52B and 52C than in the exhaust chamber 52A.
 排気室52D~52Fの還流経路は、排気室52C、52B、52Aと対称であるため、説明を省略する。 The reflux paths of the exhaust chambers 52D to 52F are symmetrical to the exhaust chambers 52C, 52B, and 52A, so a description thereof will be omitted.
5.効果説明
 (1)本実施形態の鉛蓄電池10では、第1排気室52A、52Fに、迷路壁56が設けられている。第1排気室52A、52F以外の排気室(52B~52E)には、迷路壁56は設けられていない。
5. Effect Description (1) In the lead-acid battery 10 of this embodiment, the maze wall 56 is provided in the first exhaust chambers 52A, 52F. The maze wall 56 is not provided in the exhaust chambers (52B to 52E) other than the first exhaust chambers 52A and 52F.
 第1排気室52A、52F内では、迷路壁56が電解液Wの移動の方向や移動可能な範囲を制限する。鉛蓄電池10を搭載した車両等が振動して、電解液Wが第1排気室52A内を移動しようとしても、迷路壁56により移動が制限される。これにより、電解液Wは一括排気口55A、55Fまで到達しにくくなる。電解液Wが一括排気口55A、55Fを通って鉛蓄電池10の外部に排出されにくくなるため、電解液Wの減少を抑制できる。 Inside the first exhaust chambers 52A and 52F, the labyrinth wall 56 restricts the direction of movement and the movable range of the electrolyte W. Even if the electrolytic solution W attempts to move within the first exhaust chamber 52A due to vibrations of a vehicle or the like in which the lead-acid battery 10 is mounted, the movement is restricted by the labyrinth wall 56. This makes it difficult for the electrolytic solution W to reach the collective exhaust ports 55A and 55F. Since the electrolytic solution W is less likely to be discharged to the outside of the lead storage battery 10 through the collective exhaust ports 55A and 55F, a decrease in the electrolytic solution W can be suppressed.
 また、一括排気口55A、55Fを有しない排気室52B~52Eにおいては、迷路壁56が存在せず、排気室内における電解液Wの移動が制限されない。電解液Wの移動が制限されなければ、電解液Wは底面69の傾斜に沿って流れることができ、第1排気室52A、52Fと比べて短時間で電解液Wが還流口66に到達する。これにより、電解液Wを短時間でセル室25に戻すことができる。 Further, in the exhaust chambers 52B to 52E that do not have the collective exhaust ports 55A and 55F, the labyrinth wall 56 does not exist, and the movement of the electrolyte W in the exhaust chambers is not restricted. If the movement of the electrolytic solution W is not restricted, the electrolytic solution W can flow along the slope of the bottom surface 69, and the electrolytic solution W reaches the reflux port 66 in a short time compared to the first exhaust chambers 52A and 52F. . Thereby, the electrolytic solution W can be returned to the cell chamber 25 in a short time.
 (2)本実施形態の鉛蓄電池10では、迷路壁56は、第1排気室52A、52F内に迷路状の通路57を形成する。 (2) In the lead-acid battery 10 of this embodiment, the labyrinth wall 56 forms a labyrinth-shaped passage 57 within the first exhaust chambers 52A, 52F.
 迷路壁56が設けられている排気室52A、52Fにおいては、迷路状の通路57の存在により、ガスが排気されるまでの経路長が長くなり、排気室内に滞留する時間が延びる。水蒸気の冷却や飛沫の内壁への付着が促進されて、ガスに含まれる電解液Wが液滴Dに戻りやすい。これにより、電解液Wが外部に排出されにくくなり、電解液Wの減少を抑制できる。一方、迷路壁56が設けられていない他の排気室52B~52Eにおいては、排気室内の液滴Dは、排気室52A、52Fと比べて短い経路で還流口66に到達するため、電解液Wのセル室25への戻りを早くすることができる。 In the exhaust chambers 52A and 52F in which the labyrinth wall 56 is provided, the presence of the labyrinth-like passage 57 increases the path length until the gas is exhausted, and the time the gas remains in the exhaust chamber increases. Cooling of the water vapor and adhesion of the droplets to the inner wall are promoted, and the electrolytic solution W contained in the gas easily returns to the droplets D. This makes it difficult for the electrolytic solution W to be discharged to the outside, thereby suppressing a decrease in the electrolytic solution W. On the other hand, in the other exhaust chambers 52B to 52E in which the labyrinth wall 56 is not provided, the droplet D in the exhaust chamber reaches the reflux port 66 through a shorter path than in the exhaust chambers 52A and 52F, so the electrolyte W can be returned to the cell room 25 quickly.
 (3)排気室52Aでは、迷路状の通路57は、第1連通口54Aと一括排気口55Aとの間のガスの経路上、及び、排気口65と一括排気口55Aとの間のガスの経路上の、少なくともいずれかの位置に形成されている。排気室52Fも同様の構成である。 (3) In the exhaust chamber 52A, the maze-like passage 57 is on the gas path between the first communication port 54A and the collective exhaust port 55A, and on the gas path between the exhaust port 65 and the collective exhaust port 55A. It is formed at at least one position on the route. The exhaust chamber 52F also has a similar configuration.
 ガスは、第1連通口54A及び排気口65の少なくとも一方を通って、排気室52A内に流入する。流入したガスは、出口である一括排気口55Aに向かって流れるため、排出されるまでの間に迷路状の通路57を経由する。迷路状の通路57を経由することで経路長が長くなり、ガスに含まれる水蒸気等が液滴Dに戻りやすい。これにより、電解液Wが排出されにくくなり、電解液Wの減少をさらに抑制できる。 The gas flows into the exhaust chamber 52A through at least one of the first communication port 54A and the exhaust port 65. Since the inflowing gas flows toward the collective exhaust port 55A, which is the outlet, it passes through the maze-like passage 57 before being exhausted. By passing through the maze-like passage 57, the path length becomes longer, and water vapor and the like contained in the gas easily return to the droplet D. Thereby, the electrolytic solution W becomes difficult to be discharged, and the decrease in the electrolytic solution W can be further suppressed.
 (4)排気室52A~52Fは、第1連通口54A~54Eを介して、それぞれの内部空間が一列に接続されている。ガスを外部に排気する一括排気口55が設けられている排気室52は、列の両端に位置する排気室52Aと52Fである。 (4) The internal spaces of the exhaust chambers 52A to 52F are connected in a line through the first communication ports 54A to 54E. The exhaust chambers 52 provided with collective exhaust ports 55 for exhausting gas to the outside are exhaust chambers 52A and 52F located at both ends of the row.
 いずれの排気室52においても、排気口65から排気室52に流入したガスは二手に分かれて、出口である一括排気口55A及び55Fに向かってそれぞれ流れる。ガスが二手に分かれることで、一方向あたりの流量及び流速は低下し、ガスが外部に排気されるまでの時間が長くなる。これにより、ガスに含まれる水蒸気の凝縮が促されるとともに、電解液Wの飛沫が排気室52の内壁に付着しやすくなり、電解液Wの減少を抑制できる。 In either exhaust chamber 52, the gas flowing into the exhaust chamber 52 from the exhaust port 65 is divided into two parts and flows toward the collective exhaust ports 55A and 55F, which are the exits. By dividing the gas into two parts, the flow rate and flow velocity per direction are reduced, and the time it takes for the gas to be exhausted to the outside becomes longer. This promotes condensation of the water vapor contained in the gas, and makes it easier for droplets of the electrolytic solution W to adhere to the inner wall of the exhaust chamber 52, thereby suppressing a decrease in the electrolytic solution W.
 また、二つの一括排気口55A、55Fのうちいずれか一方が詰まる等して排気不能になったとしても、もう一方の一括排気口から排気が可能になる。これにより、電池ケース15の内圧の上昇を抑制できる。 Furthermore, even if one of the two collective exhaust ports 55A, 55F becomes clogged or otherwise unable to exhaust air, it becomes possible to exhaust air from the other collective exhaust port. Thereby, an increase in the internal pressure of the battery case 15 can be suppressed.
 (5)排気室52は、還流口66を囲む還流壁67を有している。還流壁67には、還流壁67の内外を連通する第2連通口67Aが形成されている。第2連通口67Aは、一括排気口55A、55Fから離れる方向、又は、少なくとも一つの第1連通口54(54A~54E)から離れる方向に開口している。 (5) The exhaust chamber 52 has a reflux wall 67 surrounding the reflux port 66. The reflux wall 67 is formed with a second communication port 67A that communicates between the inside and outside of the reflux wall 67. The second communication port 67A opens in a direction away from the collective exhaust ports 55A and 55F, or in a direction away from at least one first communication port 54 (54A to 54E).
 ある排気室52において、第2連通口67Aから排出されるガスは、同一の排気室52内にある一括排気口55A、55F、又は、少なくとも一つの第1連通口54A~54Eから離れる方向に排出される。ガスが鉛蓄電池10の外部、又は隣接する排気室52へ移動するまでの経路長及び時間が長くなり、元の排気室52における電解液Wの還流が促進される。これにより、電解液Wの減少や、元の排気室52から他の排気室52への電解液Wの移動が抑制され、電解液Wの量に各セル室25間で差が生じにくくなる。 In a certain exhaust chamber 52, the gas exhausted from the second communication port 67A is discharged in a direction away from the collective exhaust ports 55A, 55F or at least one of the first communication ports 54A to 54E in the same exhaust chamber 52. be done. The path length and time required for the gas to move to the outside of the lead-acid battery 10 or to the adjacent exhaust chamber 52 become longer, and the reflux of the electrolyte W in the original exhaust chamber 52 is promoted. This suppresses the decrease in the electrolytic solution W and the movement of the electrolytic solution W from the original exhaust chamber 52 to other exhaust chambers 52, and makes it difficult for the amount of the electrolytic solution W to differ between the cell chambers 25.
 (6)排気室52の底面69は、還流壁67の外側において、第2連通口67Aに向かって下がる複数の傾斜面からなる。還流壁67と底面69との交線は、底面69の傾斜に対して斜行し、かつ、第2連通口67A近付くにつれて下がっている。 (6) The bottom surface 69 of the exhaust chamber 52 is composed of a plurality of inclined surfaces that descend toward the second communication port 67A on the outside of the reflux wall 67. The line of intersection between the reflux wall 67 and the bottom surface 69 is oblique to the slope of the bottom surface 69, and decreases as it approaches the second communication port 67A.
 傾斜した底面69の上を第2連通口67Aに向かって流れる液滴Dは、還流壁67に突き当たると、底面69と還流壁67との交線に沿って下方に流れ、第2連通口67Aまで到達する。第2連通口67Aに到達した液滴Dは、還流壁67の内側に入り、還流口66を通ってセル室25に還流する。これにより、電解液Wがセル室25に戻り易くなる。 When the droplet D flowing toward the second communication port 67A on the inclined bottom surface 69 hits the reflux wall 67, it flows downward along the intersection line of the bottom surface 69 and the reflux wall 67, and flows toward the second communication port 67A. reach up to. The droplet D that has reached the second communication port 67A enters the inside of the reflux wall 67 and flows back into the cell chamber 25 through the reflux port 66. This makes it easier for the electrolytic solution W to return to the cell chamber 25.
<実施形態2>
 上述した実施形態1の鉛蓄電池10のように、セル室25が行列状に配列された電槽20の構造は、大型車両に用いられる大型の鉛蓄電池に適用されることが多い。蓋部材50の厚みが一定の場合、鉛蓄電池10が大型になって排気室52の面積が大きくなると、底面69の傾斜角度は小さくなる。底面69の傾斜角度が小さいと、排気室52内の電解液Wが傾斜に沿って流れにくくなり、電解液Wが電槽20に還流しにくくなる。このような問題は、排気室の面積が6000mm以上の場合に、特に顕著になる。
<Embodiment 2>
Like the lead acid battery 10 of the first embodiment described above, the structure of the battery case 20 in which the cell chambers 25 are arranged in rows and columns is often applied to large lead acid batteries used in large vehicles. When the thickness of the lid member 50 is constant, as the lead-acid battery 10 becomes larger and the area of the exhaust chamber 52 becomes larger, the inclination angle of the bottom surface 69 becomes smaller. When the angle of inclination of the bottom surface 69 is small, it becomes difficult for the electrolytic solution W in the exhaust chamber 52 to flow along the inclination, and it becomes difficult for the electrolytic solution W to flow back into the battery container 20. Such problems become particularly noticeable when the area of the exhaust chamber is 6000 mm 2 or more.
 上述した実施形態1の鉛蓄電池10では、排気室52に迷路壁56を設けることで、ガスに含まれる水蒸気の凝縮が促進され、ガスとともに排出される電解液Wを減らすことができる。一方、排気室52内の迷路壁56によって、傾斜に沿った電解液Wの流れが妨げられてしまい、電解液Wが還流しにくくなることがある。実施形態2では、傾斜に沿った電解液Wの流れを妨げずに、一括排気口から電解液Wが排出されることを抑制するような壁および蓋部材の構造を示す。 In the lead-acid battery 10 of the first embodiment described above, by providing the labyrinth wall 56 in the exhaust chamber 52, condensation of water vapor contained in the gas is promoted, and the electrolytic solution W discharged together with the gas can be reduced. On the other hand, the labyrinth wall 56 in the exhaust chamber 52 may obstruct the flow of the electrolytic solution W along the slope, making it difficult for the electrolytic solution W to flow back. Embodiment 2 shows a structure of a wall and a lid member that suppresses discharge of the electrolytic solution W from the collective exhaust port without interfering with the flow of the electrolytic solution W along the slope.
 実施形態2に係る鉛蓄電池は、実施形態1の鉛蓄電池10に対し、蓋部材150の構造が異なっている。以下、図9~図11を参照して、実施形態2に係る蓋部材150について説明する。実施形態1と同じ構造については説明を省略する。 The lead-acid battery according to the second embodiment differs from the lead-acid battery 10 of the first embodiment in the structure of the lid member 150. The lid member 150 according to the second embodiment will be described below with reference to FIGS. 9 to 11. Description of the same structure as in the first embodiment will be omitted.
 蓋部材150は、中蓋160と上蓋180とを備える。図9は、蓋部材150の下方側を構成する中蓋160の平面図である。図10は、蓋部材150の上方側を構成する上蓋180の底面図である。 The lid member 150 includes an inner lid 160 and an upper lid 180. FIG. 9 is a plan view of the inner lid 160 that constitutes the lower side of the lid member 150. FIG. 10 is a bottom view of the upper lid 180 that constitutes the upper side of the lid member 150.
 図9に示すように、中蓋160は、上向きに突出した環状の下側排気隔壁171と、X方向に延びる下側排気隔壁173Xと、Y方向に延びる下側排気隔壁173Yと、を有している。図10に示すように、上蓋180は、下側排気隔壁171、173と重なる位置に、下向きに突出した環状の上側排気隔壁181と、X方向に延びる上側排気隔壁183Xと、Y方向に延びる上側排気隔壁183Yと、を有している。 As shown in FIG. 9, the inner lid 160 includes an annular lower exhaust partition 171 projecting upward, a lower exhaust partition 173X extending in the X direction, and a lower exhaust partition 173Y extending in the Y direction. ing. As shown in FIG. 10, the upper lid 180 includes an annular upper exhaust partition 181 that protrudes downward at a position overlapping with the lower exhaust partitions 171 and 173, an upper exhaust partition 183X extending in the X direction, and an upper exhaust partition 183X extending in the Y direction. It has an exhaust partition wall 183Y.
 中蓋160と上蓋180の端面同士を接合することにより、蓋部材150の内部は、6つの排気室152(152A~152F)に分割される。図9に示すように、各排気室152は、排気口165、還流口166、還流壁167をそれぞれ1つずつ有している。還流壁167の外周部分には、還流壁167の内外を連通する第2連通口167Aが形成されている。 By joining the end surfaces of the inner lid 160 and the upper lid 180, the interior of the lid member 150 is divided into six exhaust chambers 152 (152A to 152F). As shown in FIG. 9, each exhaust chamber 152 has one exhaust port 165, one reflux port 166, and one reflux wall 167. A second communication port 167A that communicates the inside and outside of the reflux wall 167 is formed in the outer peripheral portion of the reflux wall 167.
 図10に示すように、上側排気隔壁181X、181Yには、第1連通口154が合計6個形成されている。第1連通口154は、上側排気隔壁181X、181Yの壁面を貫通する孔である。本実施形態の例では、排気室152A~152Fの内部空間を環状に接続するように、6つの第1連通口154が設けられている。 As shown in FIG. 10, a total of six first communication ports 154 are formed in the upper exhaust partition walls 181X and 181Y. The first communication port 154 is a hole penetrating the wall surfaces of the upper exhaust partition walls 181X and 181Y. In the example of this embodiment, six first communication ports 154 are provided so as to connect the internal spaces of the exhaust chambers 152A to 152F in an annular manner.
 上蓋180には、一括排気口155B、155Eが設けられている。一括排気口155Bは、排気室152Bと外部空間とを連通しており、排気室152B内のガスを外部に排出する機能を有している。一括排気口155Eも同様に、排気室152E内のガスを外部に排出する。一括排気口155B、155Eを有する排気室152B、152Eは、「第1排気室」の一例である。排気室152A、152B、152Cは、それぞれ排気室152F、152E、152Dと対称である。以下、排気室152Bについて説明する。 The upper lid 180 is provided with collective exhaust ports 155B and 155E. The collective exhaust port 155B communicates the exhaust chamber 152B with the external space, and has a function of exhausting the gas in the exhaust chamber 152B to the outside. Similarly, the collective exhaust port 155E also discharges the gas in the exhaust chamber 152E to the outside. The exhaust chambers 152B and 152E having the collective exhaust ports 155B and 155E are examples of "first exhaust chambers." The exhaust chambers 152A, 152B, and 152C are symmetrical to the exhaust chambers 152F, 152E, and 152D, respectively. The exhaust chamber 152B will be explained below.
 図9に示すように、一括排気口155Bは、排気室152Bの内部空間側の排気の経路である排気通路153と、排気室152Bと連通し、内部空間側の開口である排気開口部153Pと、を有している。排気開口部153Pの開口幅を、W1とする(図11参照)。排気室152B内のガスは、排気開口部153Pから排気通路153を経由して排出される。 As shown in FIG. 9, the collective exhaust port 155B communicates with an exhaust passage 153 that is an exhaust route on the internal space side of the exhaust chamber 152B, and an exhaust opening 153P that is an opening on the internal space side that communicates with the exhaust chamber 152B. ,have. The opening width of the exhaust opening 153P is set to W1 (see FIG. 11). The gas in the exhaust chamber 152B is exhausted from the exhaust opening 153P via the exhaust passage 153.
 排気室152Bの内部には、邪魔壁(「第1壁」の一例)158と、誘導壁(「第2壁」の一例)159と、が設けられている。邪魔壁158および誘導壁159は、中蓋160に形成された部分と上蓋180に形成された部分とが上下に接合することにより形成される。 Inside the exhaust chamber 152B, a baffle wall (an example of a "first wall") 158 and a guide wall (an example of a "second wall") 159 are provided. The baffle wall 158 and the guide wall 159 are formed by vertically joining a portion formed in the inner lid 160 and a portion formed in the upper lid 180.
 邪魔壁158および誘導壁159は、排気室152B内において電解液Wの移動を規制する機能を有している。図11に、排気室152Bの部分拡大図を示す。邪魔壁158は、排気開口部153Pに対して間隔を空けて、向かい合う位置に立設されている。邪魔壁158の幅を、W2とする。 The baffle wall 158 and the guide wall 159 have a function of regulating the movement of the electrolytic solution W within the exhaust chamber 152B. FIG. 11 shows a partially enlarged view of the exhaust chamber 152B. The baffle wall 158 is erected at a position facing the exhaust opening 153P with a space therebetween. Let the width of the baffle wall 158 be W2.
 図11に示すように、排気開口部153Pは紙面中において略下方に向かって開口している。邪魔壁158は、排気開口部153Pに対して、紙面中下方(開口している側)に位置し、邪魔壁158の壁面が排気開口部153Pと向かい合っている。邪魔壁158の幅W2は、排気開口部153Pの開口幅W1よりも大きい。 As shown in FIG. 11, the exhaust opening 153P opens substantially downward in the plane of the paper. The baffle wall 158 is located lower in the drawing (on the open side) with respect to the exhaust opening 153P, and the wall surface of the baffle wall 158 faces the exhaust opening 153P. The width W2 of the baffle wall 158 is larger than the opening width W1 of the exhaust opening 153P.
 誘導壁159は、邪魔壁158から見て排気開口部153Pとは反対側に設けられている。誘導壁159は、排気開口部153Pから離れる方向に延在する第1誘導壁159Aと、第2連通口167Aに近付く方向に延在する第2誘導壁159Bとが、それぞれの端部で接続された略L字状をなす。第1誘導壁159Aの、第2誘導壁159Bに接続されていない方の端部は邪魔壁158に接続されている。邪魔壁158と、誘導壁159とは一体的に形成されている。 The guide wall 159 is provided on the opposite side of the exhaust opening 153P when viewed from the baffle wall 158. In the guide wall 159, a first guide wall 159A extending in a direction away from the exhaust opening 153P and a second guide wall 159B extending in a direction approaching the second communication port 167A are connected at their respective ends. It is roughly L-shaped. The end of the first guide wall 159A that is not connected to the second guide wall 159B is connected to the baffle wall 158. The baffle wall 158 and the guide wall 159 are integrally formed.
 本実施形態の蓋部材150は以上のような構成である。次に、本実施形態の効果について説明する。 The lid member 150 of this embodiment has the above configuration. Next, the effects of this embodiment will be explained.
 実施形態2の鉛蓄電池では、一括排気口155Bは、第1排気室152Bと連通する排気開口部153Pを有し、邪魔壁158は、排気開口部153Pと間隔を空けて向かい合う位置に設けられている。 In the lead-acid battery of the second embodiment, the collective exhaust port 155B has an exhaust opening 153P that communicates with the first exhaust chamber 152B, and the baffle wall 158 is provided at a position facing the exhaust opening 153P with a space therebetween. There is.
 このような構成では、図11の紙面中で下方から上方に向かって移動する電解液W、言い換えると、紙面下方から排気開口部153Pに向かう電解液Wを、邪魔壁158によってせき止めることができる(矢線E1)。そのため、電解液Wが排気開口部153Pに到達しにくくなり、電解液Wが一括排気口155Bから外部に排出されることを抑制できる。 In such a configuration, the electrolytic solution W moving from the bottom to the top in the paper of FIG. Arrow E1). Therefore, it becomes difficult for the electrolytic solution W to reach the exhaust opening 153P, and it is possible to suppress the electrolytic solution W from being discharged to the outside from the collective exhaust port 155B.
 第1排気室152Bのガスは、邪魔壁158と、排気開口部153Pの開口縁との間の隙間を通って排気開口部153Pに到達し、一括排気口155Bから外部に排出される。このように、邪魔壁158と排気開口部153Pとの間に隙間があるため、邪魔壁158はガスの排出を妨げない。 The gas in the first exhaust chamber 152B reaches the exhaust opening 153P through the gap between the baffle wall 158 and the opening edge of the exhaust opening 153P, and is exhausted to the outside from the collective exhaust port 155B. In this way, since there is a gap between the baffle wall 158 and the exhaust opening 153P, the baffle wall 158 does not hinder gas discharge.
 実施形態2の鉛蓄電池では、第1排気室152Bは、還流口166を囲む還流壁167を有し、還流壁167には、還流壁167の内外を連通する第2連通口167Aが形成され、底面69は、還流壁167の外側において、第2連通口167Aに向かって下がる複数の傾斜面からなり、壁は、邪魔壁158に加え、誘導壁159を含み、誘導壁159は、邪魔壁158から見て、排気開口部153Pとは反対側に設けられ、排気開口部153Pに近い側を起点として、排気開口部153Pから離れる方向に延在する第1誘導壁159A、または、第2連通口167Aに近付く方向のうち、少なくとも1つの方向に沿って延在する第2誘導壁159Bを有している。 In the lead-acid battery of the second embodiment, the first exhaust chamber 152B has a reflux wall 167 surrounding a reflux port 166, and a second communication port 167A that communicates between the inside and outside of the reflux wall 167 is formed in the reflux wall 167. The bottom surface 69 is composed of a plurality of inclined surfaces that descend toward the second communication port 167A on the outside of the reflux wall 167, and the wall includes a guide wall 159 in addition to the baffle wall 158. A first guide wall 159A or a second communication port that is provided on the opposite side of the exhaust opening 153P and extends in a direction away from the exhaust opening 153P starting from a side close to the exhaust opening 153P when viewed from above. It has a second guide wall 159B extending along at least one of the directions approaching 167A.
 第1誘導壁159Aは、邪魔壁158にせき止められた電解液W(矢線E1)や、その他排気開口部153Pに近付く方向に移動する電解液Wを、排気開口部153Pから離れる方向に誘導する機能を有している(図11、矢線E2)。第1誘導壁159Aの誘導効果により、電解液Wが排気開口部153Pの近傍に滞留しにくくなるため、排気開口部153Pから排気通路153に移動する電解液Wを減らすことができる。 The first guiding wall 159A guides the electrolytic solution W (arrow line E1) blocked by the baffle wall 158 and other electrolytic solutions W moving in the direction approaching the exhaust opening 153P in the direction away from the exhaust opening 153P. It has a function (FIG. 11, arrow E2). Due to the induction effect of the first guide wall 159A, the electrolytic solution W is less likely to stay near the exhaust opening 153P, so that the amount of electrolytic solution W that moves from the exhaust opening 153P to the exhaust passage 153 can be reduced.
 第2誘導壁159Bは、第1誘導壁159Aによって排気開口部153Pから離れる方向に誘導された電解液W(図11、矢線E2)や、その他排気開口部153Pに近付く方向に移動する電解液Wを、第2連通口167Aの方向に誘導する機能を有している(矢線E3)。第2連通口167Aに誘導された電解液Wは、還流壁167の内側に入って還流口166に到達し、最終的に電槽20に還流される。第2誘導壁159Bが、電解液Wを還流口167Aの方向に誘導するため、電解液Wを短時間で電槽20に還流させることができる。 The second guide wall 159B allows the electrolyte W guided away from the exhaust opening 153P by the first guide wall 159A (FIG. 11, arrow E2), and other electrolytes moving toward the exhaust opening 153P. It has a function of guiding W in the direction of the second communication port 167A (arrow E3). The electrolytic solution W guided to the second communication port 167A enters inside the reflux wall 167, reaches the reflux port 166, and is finally refluxed to the battery container 20. Since the second guide wall 159B guides the electrolyte W in the direction of the reflux port 167A, the electrolyte W can be refluxed into the battery container 20 in a short time.
 実施形態2の鉛蓄電池では、誘導壁159(第1誘導壁159A)は、邪魔壁158と接続している。また、第1誘導壁159Aの、邪魔壁158に接続されていない方の端部は、第2誘導壁159Bと接続されている。 In the lead-acid battery of the second embodiment, the guide wall 159 (first guide wall 159A) is connected to the baffle wall 158. Further, the end of the first guide wall 159A that is not connected to the baffle wall 158 is connected to the second guide wall 159B.
 邪魔壁158と第1誘導壁159Aとが接続されているため、邪魔壁158がせき止めた電解液W(矢線E1)の多くは、第1誘導壁159Aによって排気開口部153Pから離れる方向に誘導される(矢線E2)。さらに、第1誘導壁159Aと第2誘導壁159Bとが接続されているため、第1誘導壁159Aによって誘導された電解液W(矢線E2)の多くは、第2連通口167Aの方向に誘導される(矢線E3)。これにより、電解液Wを排気開口部153Pからスムーズに遠ざけることができるため、電解液Wの減少を抑制できる。 Since the baffle wall 158 and the first guide wall 159A are connected, most of the electrolyte W (arrow line E1) blocked by the baffle wall 158 is guided away from the exhaust opening 153P by the first guide wall 159A. (arrow line E2). Furthermore, since the first guide wall 159A and the second guide wall 159B are connected, most of the electrolyte W (arrow E2) guided by the first guide wall 159A is directed toward the second communication port 167A. guided (arrow E3). Thereby, the electrolytic solution W can be smoothly moved away from the exhaust opening 153P, so that reduction in the electrolytic solution W can be suppressed.
<他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
<Other embodiments>
The present invention is not limited to the embodiments described above and illustrated in the drawings; for example, the following embodiments are also included within the technical scope of the present invention; It can be implemented with various modifications.
 (1)上記実施形態1では、迷路状の通路57は、6つの排気室52のうちの一部である、2つの第1排気室(排気室52A、52F)に設けられている場合を例示した。迷路状の通路57を有する第1排気室は1つでもよいし、3つ以上でもよい。 (1) In Embodiment 1, the maze-like passage 57 is provided in two first exhaust chambers ( exhaust chambers 52A and 52F) that are part of the six exhaust chambers 52. did. There may be one first exhaust chamber having the maze-like passage 57, or there may be three or more.
 (2)上記実施形態1では、排気室52A、52Fにおいて、迷路状の通路57は、第1連通口54Aと一括排気口55Aとの間のガスの経路上に設けられているが、排気室52A、52F内の他の位置に設けられていてもよい。 (2) In the first embodiment, in the exhaust chambers 52A and 52F, the maze-like passage 57 is provided on the gas path between the first communication port 54A and the collective exhaust port 55A; It may be provided at other positions within 52A and 52F.
 (3)上記実施形態1では、排気室52A、52Fにおいて、迷路状の通路57は、排気口65と一括排気口55Aとの間のガスの経路上に設けられているが、排気室52A、52F内の他の位置に設けられていてもよい。 (3) In the first embodiment described above, in the exhaust chambers 52A and 52F, the maze-like passage 57 is provided on the gas path between the exhaust port 65 and the collective exhaust port 55A, but the exhaust chamber 52A, It may be provided at other positions within 52F.
 (4)上記実施形態1では、排気室52A~52Fは第1連通口54を介して内部空間が一列に接続されている場合を例示した。排気室52A~52Fは、一列に接続されている場合の他、分岐や合流を含むように接続されていてもよい。 (4) In the first embodiment, the internal spaces of the exhaust chambers 52A to 52F are connected in a line through the first communication port 54. The exhaust chambers 52A to 52F may be connected in a line, or may be connected so as to branch or merge.
 (5)上記実施形態1では、排気室52A~52Fは第1連通口54を介して一列に接続され、列の両端に位置する排気室52A、55Fにそれぞれ一括排気口55A、55Fが設けられている。一括排気口55が設けられる排気室52は、列の両端以外の排気室52であってもよい。 (5) In the first embodiment, the exhaust chambers 52A to 52F are connected in a line through the first communication port 54, and the exhaust chambers 52A and 55F located at both ends of the line are provided with collective exhaust ports 55A and 55F, respectively. ing. The exhaust chambers 52 in which the collective exhaust ports 55 are provided may be exhaust chambers 52 other than those at both ends of the row.
 (6)上記実施形態1では、鉛蓄電池10は、6つのセルが直列に接続されている場合を例示した。セルの数は、6つに限らず5つ以下でもよいし、7つ以上であってもよい。また、複数のセルが並列に接続されていてもよい。 (6) In the first embodiment, the lead acid battery 10 is exemplified as having six cells connected in series. The number of cells is not limited to six, and may be five or less, or seven or more. Moreover, a plurality of cells may be connected in parallel.
 (7)上記実施形態1、2では、1列あたり3つのセルが2列配置されている電槽20を例示したが、一列あたりのセルの数や、列の数はこれに限られない。 (7) In the first and second embodiments described above, the battery case 20 is illustrated in which two rows of three cells are arranged in each row, but the number of cells per row and the number of rows are not limited to this.
 (8)上記実施形態1、2では、還流口66を囲む還流壁67を有する鉛蓄電池10を例示した。鉛蓄電池10は、還流壁67を有していなくてもよい。 (8) In the first and second embodiments, the lead acid battery 10 has the reflux wall 67 surrounding the reflux port 66. The lead acid battery 10 does not need to have the reflux wall 67.
 (9)上記実施形態2では、排気通路153を形成する壁の一部が、還流壁167の一部および注液口175の周囲の壁の一部からなる場合を例示した。排気通路153を構成する壁は、排気室152内の他の構成要素(還流壁167など)とは独立した壁から形成されていてもよい。 (9) In Embodiment 2 above, the case where a part of the wall forming the exhaust passage 153 is made up of a part of the reflux wall 167 and a part of the wall around the liquid injection port 175 is exemplified. The wall constituting the exhaust passage 153 may be formed from a wall independent of other components in the exhaust chamber 152 (recirculation wall 167, etc.).
 (10)上記実施形態2では、壁として、邪魔壁(第1壁)158および誘導壁(第2壁)159を備える場合を例示した。壁は、誘導壁159を含まず、邪魔壁158のみでもよい。 (10) In Embodiment 2 above, the case is illustrated in which the walls include a baffle wall (first wall) 158 and a guide wall (second wall) 159. The wall may include only the baffle wall 158 without including the guide wall 159.
 (11)上記実施形態2では、第2壁として、第1誘導壁159Aおよび第2誘導壁159Bを備える場合を例示した。第2壁は、第1誘導壁159Aまたは第2誘導壁159Bのうちの少なくとも一方を備えていてもよい。 (11) In the second embodiment, the second wall includes the first guide wall 159A and the second guide wall 159B. The second wall may include at least one of the first guide wall 159A and the second guide wall 159B.
 (12)上記実施形態2では、一括排気口を有する第1排気室が、排気室152B、152Eの2つである場合を例示したが、第1排気室の数は2つに限られない。1つであってもよいし、3つ以上であってもよい。また、複数の排気室のうち、どの排気室を第1排気室としてもよい。 (12) In the above second embodiment, the case where there are two first exhaust chambers having collective exhaust ports, exhaust chambers 152B and 152E, is illustrated, but the number of first exhaust chambers is not limited to two. There may be one, or there may be three or more. Moreover, which exhaust chamber among the plurality of exhaust chambers may be the first exhaust chamber.
 (13)上記実施形態2において、誘導壁159が邪魔壁158と接続されている場合を例示して説明したが、両者は接続されていなくてもよい。邪魔壁158と誘導壁159とが、排気室152B内で間隔を空けてそれぞれ独立に存在していてもよい。 (13) In the second embodiment, the case where the guide wall 159 is connected to the baffle wall 158 has been described as an example, but the two may not be connected. The baffle wall 158 and the guide wall 159 may exist independently at intervals within the exhaust chamber 152B.
 (14)上記実施形態2では、誘導壁159として、異なる方向に延びる第1誘導壁159Aと第2誘導壁159Bとが接続された略L字状の形状を例示した。誘導壁159は、第1誘導壁159Aまたは第2誘導壁159Bのいずれか一方であってもよい。また、第1誘導壁159Aと第2誘導壁159Bとが接続されていなくてもよい。 (14) In the second embodiment, the guide wall 159 has a substantially L-shaped shape in which the first guide wall 159A and the second guide wall 159B extending in different directions are connected. The guide wall 159 may be either the first guide wall 159A or the second guide wall 159B. Further, the first guide wall 159A and the second guide wall 159B may not be connected.
 (15)上記実施形態2では、邪魔壁158および誘導壁159が底面から天井壁まで繋がっている場合を例示したが、天井壁まで繋がっていなくてもよい。邪魔壁158および誘導壁159は、底面から上方に向かって立設されていて、底面上を移動する電解液の流れる方向を、各壁の延出方向に沿う方向に限定できればよい。 (15) In the second embodiment, the baffle wall 158 and the guide wall 159 are connected from the bottom to the ceiling wall, but they do not need to be connected to the ceiling wall. The baffle wall 158 and the guide wall 159 are provided to stand upward from the bottom surface, and the flow direction of the electrolytic solution moving on the bottom surface can be limited to the direction along the extension direction of each wall.
 (16)上記実施形態1では、第1排気室52A、52Fにのみ、壁(迷路壁56)が設けられている場合を例示した。また、上記実施形態2では、第1排気室152B、152Fにのみ、壁(邪魔壁158、誘導壁159B)が設けられている場合を例示した。壁は、第1排気室にのみ設けられていてもよいし、他の排気室に設けられていてもよい。 (16) In the first embodiment described above, the case where the wall (maze wall 56) is provided only in the first exhaust chambers 52A and 52F is illustrated. Further, in the second embodiment, a case is illustrated in which the walls (the baffle wall 158 and the guide wall 159B) are provided only in the first exhaust chambers 152B and 152F. The wall may be provided only in the first exhaust chamber, or may be provided in the other exhaust chambers.
10: 鉛蓄電池
20: 電槽
25: セル室
52: 排気室
54: 第1連通口
55: 一括排気口
56: 迷路壁
57: 迷路状の通路
60: 中蓋
65: 排気口
66: 還流口
69: 底面
W: 電解液
 
10: Lead-acid battery 20: Battery case 25: Cell chamber 52: Exhaust chamber 54: First communication port 55: Bulk exhaust port 56: Maze wall 57: Maze-shaped passage 60: Inner lid 65: Exhaust port 66: Reflux port 69 : Bottom W: Electrolyte

Claims (9)

  1.  上方が開口した電槽と、前記電槽の開口を封口する中蓋と、上方から中蓋を覆う上蓋と、を有する鉛蓄電池であって、
     前記電槽は、極板及び電解液を収容し、行列状に配置された複数のセル室を有し、
     前記上蓋と前記中蓋の間の空間は、排気隔壁によって、各前記セル室と1対1で対応する排気室に分割され、
     前記排気隔壁には、隣り合う前記排気室を連通する第1連通口が形成され、
     前記排気室の底面には、前記セル室で発生したガスを前記排気室に排気する排気口と、前記排気室内の電解液を前記セル室に還流する還流口と、が形成され、
     複数の前記排気室のうち、少なくとも1つは、ガスを鉛蓄電池の外部に排気する一括排気口が設けられた第1排気室であり、
     複数の前記排気室のうち、前記第1排気室の前記底面には、前記一括排気口に対応する壁が設けられている、鉛蓄電池
    A lead-acid battery comprising a battery case with an open top, an inner cover that seals the opening of the battery case, and an upper cover that covers the inner cover from above,
    The battery case houses an electrode plate and an electrolyte, and has a plurality of cell chambers arranged in a matrix,
    The space between the upper lid and the inner lid is divided by an exhaust partition into exhaust chambers corresponding to each of the cell chambers on a one-to-one basis,
    A first communication port that communicates the adjacent exhaust chambers is formed in the exhaust partition,
    An exhaust port for exhausting gas generated in the cell chamber to the exhaust chamber, and a reflux port for refluxing the electrolyte in the exhaust chamber to the cell chamber are formed on the bottom surface of the exhaust chamber,
    At least one of the plurality of exhaust chambers is a first exhaust chamber provided with a collective exhaust port for exhausting gas to the outside of the lead acid battery;
    Among the plurality of exhaust chambers, the bottom surface of the first exhaust chamber is provided with a wall corresponding to the collective exhaust port.
  2.  請求項1に記載の鉛蓄電池であって、
     前記壁は、前記第1排気室内に迷路状の通路を形成する迷路壁である、鉛蓄電池。
    The lead acid battery according to claim 1,
    The lead-acid battery, wherein the wall is a labyrinth wall forming a labyrinth-like passage within the first exhaust chamber.
  3.  請求項2に記載の鉛蓄電池であって、
     前記迷路状の通路は、前記第1連通口と前記一括排気口との間のガスの経路上、及び前記排気口と前記一括排気口との間のガスの経路上の、少なくともいずれかの位置に形成されている、鉛蓄電池。
    The lead acid battery according to claim 2,
    The labyrinth-like passage is located at least at any position on the gas path between the first communication port and the collective exhaust port, and on the gas path between the exhaust port and the collective exhaust port. A lead-acid battery made of
  4.  請求項2又は請求項3に記載の鉛蓄電池であって、
     複数の前記排気室は、前記第1連通口を介してそれぞれの内部空間が一列に接続されており、
     前記第1排気室は、前記排気室の列の両端に1つずつ位置している、鉛蓄電池。
    The lead acid battery according to claim 2 or 3,
    The internal spaces of the plurality of exhaust chambers are connected in a line through the first communication port,
    The first exhaust chambers are located at each end of the row of exhaust chambers in the lead-acid battery.
  5.  請求項2から請求項4のいずれか一項に記載の鉛蓄電池であって、
     前記排気室は、前記還流口を囲む還流壁を有し、
     前記還流壁には、前記還流壁の内外を連通する第2連通口が形成され、
     前記第2連通口は、前記一括排気口から離れる方向、又は少なくとも一つの前記第1連通口から離れる方向に開口している、鉛蓄電池。
    The lead-acid battery according to any one of claims 2 to 4,
    The exhaust chamber has a reflux wall surrounding the reflux port,
    A second communication port is formed in the reflux wall, and the second communication port communicates between the inside and outside of the reflux wall.
    In the lead-acid battery, the second communication port opens in a direction away from the collective exhaust port or in a direction away from at least one of the first communication ports.
  6.  請求項5に記載の鉛蓄電池であって、
     前記底面は、前記還流壁の外側において、前記第2連通口に向かって下がる複数の傾斜面からなり、
     前記還流壁と前記底面との交線は、前記底面の傾斜に対して斜行し、かつ、前記第2連通口に近付くにつれて下がっている、鉛蓄電池。
    The lead acid battery according to claim 5,
    The bottom surface is formed of a plurality of inclined surfaces that descend toward the second communication port on the outside of the reflux wall,
    In the lead-acid battery, the line of intersection between the reflux wall and the bottom surface is oblique to the slope of the bottom surface, and lowers as it approaches the second communication port.
  7.  請求項1に記載の鉛蓄電池であって、
     前記一括排気口は、前記第1排気室と連通する排気開口部を有し、
     前記壁は、前記排気開口部と間隔を空けて向かい合う位置に設けられている第1壁を有する、鉛蓄電池。
    The lead acid battery according to claim 1,
    The collective exhaust port has an exhaust opening that communicates with the first exhaust chamber,
    The lead-acid battery, wherein the wall includes a first wall spaced apart from and facing the exhaust opening.
  8.  請求項7に記載の鉛蓄電池であって、
     前記第1排気室は、前記還流口を囲む還流壁を有し、
     前記還流壁には、前記還流壁の内外を連通する第2連通口が形成され、
     前記底面は、前記還流壁の外側において、前記第2連通口に向かって下がる複数の傾斜面からなり、
     前記壁は、前記第1壁に加え、第2壁を含み、
     前記第2壁は、前記第1壁から見て、前記排気開口部とは反対側に設けられ、前記排気開口部に近い側を起点として、前記排気開口部から離れる方向、または、前記第2連通口に近付く方向のうち、少なくとも1つの方向に沿って延在している、鉛蓄電池。
    The lead acid battery according to claim 7,
    The first exhaust chamber has a reflux wall surrounding the reflux port,
    A second communication port is formed in the reflux wall, and the second communication port communicates between the inside and outside of the reflux wall.
    The bottom surface is formed of a plurality of inclined surfaces that descend toward the second communication port on the outside of the reflux wall,
    The wall includes a second wall in addition to the first wall,
    The second wall is provided on the opposite side of the exhaust opening when viewed from the first wall, and is arranged in a direction away from the exhaust opening starting from a side closer to the exhaust opening, or in a direction away from the exhaust opening, or A lead-acid battery extending along at least one of the directions approaching the communication port.
  9.  請求項8に記載の鉛蓄電池であって、
     前記第2壁は、前記第1壁と接続している、鉛蓄電池。
    The lead acid battery according to claim 8,
    The second wall is a lead-acid battery connected to the first wall.
PCT/JP2023/010306 2022-03-28 2023-03-16 Lead-acid battery WO2023189654A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-051376 2022-03-28
JP2022051376 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023189654A1 true WO2023189654A1 (en) 2023-10-05

Family

ID=88201760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010306 WO2023189654A1 (en) 2022-03-28 2023-03-16 Lead-acid battery

Country Status (1)

Country Link
WO (1) WO2023189654A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059419A (en) * 2015-09-17 2017-03-23 株式会社Gsユアサ Lead storage battery
CN206864510U (en) * 2017-06-28 2018-01-09 重庆万里新能源股份有限公司 Lead-acid battery lid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017059419A (en) * 2015-09-17 2017-03-23 株式会社Gsユアサ Lead storage battery
CN206864510U (en) * 2017-06-28 2018-01-09 重庆万里新能源股份有限公司 Lead-acid battery lid

Similar Documents

Publication Publication Date Title
TWI382575B (en) Multi-cell battery assembly
US10333122B2 (en) Energy storage apparatus
JP6756093B2 (en) Lead-acid battery
CN106025111B (en) Lead-acid battery and method for manufacturing lid member of lead-acid battery
JP4715089B2 (en) Lead acid battery
JP2020017461A (en) Lead acid battery
US20230299415A1 (en) Battery pack having gas venting path
JP2017033900A (en) Lead-acid battery
CN113228365B (en) Bipolar battery and power storage device
US20170279099A1 (en) Battery Cover
WO2023189654A1 (en) Lead-acid battery
JP2017059419A (en) Lead storage battery
JP2009238631A (en) Lead storage cell
JP2009016063A (en) Storage battery
JP4246600B2 (en) Battery exhaust structure
JP7000844B2 (en) Lead-acid battery
JP7210925B2 (en) lead acid battery
JP6973039B2 (en) Lead-acid battery
JP7327454B2 (en) lead acid battery
WO2020021909A1 (en) Lead storage battery
JP7151080B2 (en) lead acid battery
JP6885481B2 (en) Lead-acid battery
JP7110794B2 (en) lead acid battery
JP2020017463A (en) Lead acid battery
JP2019197663A (en) Power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779672

Country of ref document: EP

Kind code of ref document: A1