WO2020021153A1 - Moisture sensor - Google Patents

Moisture sensor Download PDF

Info

Publication number
WO2020021153A1
WO2020021153A1 PCT/ES2019/070531 ES2019070531W WO2020021153A1 WO 2020021153 A1 WO2020021153 A1 WO 2020021153A1 ES 2019070531 W ES2019070531 W ES 2019070531W WO 2020021153 A1 WO2020021153 A1 WO 2020021153A1
Authority
WO
WIPO (PCT)
Prior art keywords
opal
spheres
sensor according
moisture sensor
responsive element
Prior art date
Application number
PCT/ES2019/070531
Other languages
Spanish (es)
French (fr)
Inventor
Álvaro BLANCO MONTES
Miguel Ángel FERNÁNDEZ MORALES
Francisco GALLEGO GÓMEZ
Ceferino López Fernández
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2020021153A1 publication Critical patent/WO2020021153A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Definitions

  • the object of the invention is framed in the technical field of physics.
  • the object of the invention is directed to a humidity sensor that makes use of optical means to determine and / or quantify the degree of humidity in the environment in which it is located.
  • a photonic crystal is a material in which there is a periodic modulation of the refractive index in one, two or the three directions of space; in such a way that once an electromagnetic radiation is emitted from its interior or affects its surface, the interference that occurs between the different waves reflected in each interface between the means of different refractive index results in certain frequency ranges cannot be transmitted on the glass; said frequency ranges that cannot be transmitted, more specifically, the energy ranges related thereto are called photonic gaps.
  • the value of the dielectric constants of the photonic crystal components and the spatial period of their variation determine the position and width of these gaps; having in a three-dimensional photonic crystal the gaps are associated to each direction of propagation.
  • relative humidity is, together with temperature, the physical magnitude most frequently measured today.
  • the interest in humidity monitoring and control is so extensive and concerns such a variety of purposes, that it has generated a large number of different transduction methods.
  • the most common transducers are currently MEM (MicroElectroMechanical).
  • MEM MicroElectroMechanical
  • Capacitive sensors typically base their response on the intrusion of air into a polymer of the sensor and on the change in the capacity of the system that it produces, the transduction process being on the scale of ten seconds being also sensitive to electromagnetic radiation and not allowing remote measurements.
  • document W02007027792A2 details a method and a humidity detection apparatus using a multilayer photonic material with structures that have a photonic hollow.
  • Said structure has a series of photonic gaps that are formed in the reflection spectrum from the alternation of layers of materials of different index of refraction which can be deposited or arranged on an optically transparent substrate or a reflecting face of a prism.
  • the light directed towards the prism is directed to the multilayer structure and reflected from the prism, where it is captured and analyzed.
  • sensor configurations are described in which the fixed wavelength or coupling angle is maintained, while monitoring the change in the other parameter.
  • Document JP2008232925 details a refractive index sensor and a refractive index measuring device that allows reducing the number of components and reduce the cost in the refractive index sensor since it uses a photonic crystal; Likewise, the refractive index measuring device having said refractive index sensor is detailed.
  • the refractive index sensor is formed by a collection (matrix) of 2D photonic crystals (resonators) in which laser radiation is affected. The spectral variation of each resonator depends on the change in refractive index.
  • the refractive index measuring apparatus described in JP2008232925 comprises said refractive index sensor, an image forming means for capturing an image of the matrix that includes a near-field visual image of the resonator and measuring means for determining the variation of the image generated by the imaging device and from there being able to carry out a measurement of the refractive index of the medium to be measured from this image variation, the described sensor being based on the emission of light from a two-dimensional Si photonic crystal that only works in the infrared spectrum.
  • the object of the invention is a humidity sensor, which is based on a responsive element based on a photonic crystal whose dielectric material contains interstitial voids that are filled with air, said photonic crystal being preferably based on an artificial opal.
  • Artificial opals are three-dimensional periodic arrangements of dielectric spheres of varying sizes and compositions. Its response to electromagnetic radiation depends on the ordering of these spheres, their size and composition, and this response can be scaled according to these parameters (and, for this reason, be extensible to any electromagnetic range).
  • Inverse opals are known as the structures resulting from filling the gaps between spheres with some other material and eliminating those spheres.
  • the possible structural variations (two-dimensional or 1-dimensional arrangements), although they are no longer commonly called opals, their optical properties and electromagnetic responses are essentially similar to three-dimensional ones.
  • the sensor described here is based on the effect of optical transduction and allows moisture to be measured by analyzing the optical response to obtain the value of the light intensity at wavelengths of the flanks of the photonic gap (from now, Bragg diffraction peak or simply Bragg peak) where the variation in intensity with humidity is maximized.
  • the humidity sensor described here is based on optical measurements, the detection and possible quantification of humidity is carried out wirelessly, which makes the sensor object of the invention and its possible implementation immune to radioelectric noise, Likewise, the sensor object of the invention provides detections with response times below a second given that the responsive element (an artificial opal) is wireless, miniaturizable to a few cubic microns and its response time is typically less than a second.
  • the humidity sensor object of the invention is based on an optical response to the adsorption of water of a photonic crystal, more specifically of artificial opal to the adsorption of water.
  • it is only necessary to read the Bragg peak (its intensity at a pre-established wavelength or its position) of an artificial opal whose manufacture does not require any post-processing (surface functionalization, infiltration, curing, etc. .) in this way the humidity sensor responds directly to the adsorption of water molecules in the artificial opal and therefore does not require intermediate phenomena (such as imbibition, hydration dilation, chemical reactions, etc.).
  • the sensitivity of the sensor and / or reading region of the Bragg peak can be adjusted.
  • the humidity sensor described herein object of the invention consists mainly of the following elements: •
  • a responsive element such as an artificial opal (or colloidal crystal), which is a type of photonic crystal comprising self-assembled monodispersed hydrophilic material spheres between which interstitial voids are defined that are filled with air.
  • the spheres may be of silica or other similar material.
  • the photonic crystal in a preferred embodiment of the humidity sensor described herein, has a level of reflectance of the Bragg peak equal to greater than 80% and does not require any further processing after its manufacture.
  • a light source that illuminates the opal to examine its optical response.
  • Such a source may consist of low power LED emitters.
  • the humidity sensor object of the invention exceeds in response time to existing sensors of usual use, whose response necessarily involves some intermediate phenomenon
  • the response time in such sensors is determined by the rate of change in capacitance of a polymer (as in capacitive sensors) or in size (as in optical devices based on hydrogels). In such cases, response times range from several seconds to minutes.
  • such differentiation in the physical principle of the humidity sensor object of the invention results in that an increase in its sensitivity does affect the speed of the response. This is a radical advantage over the behavior of existing humidity sensors, which commonly exhibit an inverse relationship between the sensitivity and the speed of response of the sensor.
  • the object of the invention exhibits a high sensitivity (which we call as the "S" value that is defined as the normalized variation of the reflectance, in percent, divided by the variation in relative humidity, in percent, which describes how much the monitored magnitude varies per unit of HR.
  • the opal's response to moisture changes is more sensitive (it shows a higher S value). This wavelength is also selectable based on the availability of the corresponding light source.
  • the nature of the artificial opal composed of typically resistant and very inert materials, and its optical response give the humidity sensor great robustness and durability, and makes it suitable for use in all types of fields, even in those of high radiation Electromagnetic, nuclear, great corrosion, etc.
  • the photonic crystal that acts as a responsive element used can consist of an inverse opal photonic crystal, resulting from the infiltration of the interstices between the opal spheres and the subsequent selective elimination of the spheres, or other structures similar self-assembled lower dimensionality (monocas, bilayers, etc).
  • Figure 1 Shows a graph showing a relative humidity (RH) reading made by the sensor object of the invention during a variation of 10 to 70% RH
  • Figure 2. Shows a graph showing a relative humidity (RH) reading made by the sensor object of the invention during a variation of 70 to 10% RH.
  • Figure 3. Shows a graph showing the sensitivity to very fast wet currents on the surface
  • a humidity sensor based on a responsive element comprising a photonic crystal, which in turn comprises self-assembled monodispersed spheres of hydrophilic material, such as a silica-based material, a source of light that illuminates the photonic crystal to examine its optical response, such as a light source based on low-power LED emitters whose wavelength of the light source preferably overlaps with the Bragg peak of the responsive element and a transducer of the optical response to signal, signal that can be analog electrical or digital.
  • a responsive element comprising a photonic crystal, which in turn comprises self-assembled monodispersed spheres of hydrophilic material, such as a silica-based material, a source of light that illuminates the photonic crystal to examine its optical response, such as a light source based on low-power LED emitters whose wavelength of the light source preferably overlaps with the Bragg peak of the responsive element and a transducer of the optical response to signal, signal that can be analog electrical or digital.
  • the humidity sensor object of the present invention is based on the dependence of the optical response of the photonic crystal with the relative humidity of the environment.
  • the sensitivity and speed of variation of the optical response to a change in humidity results in a very sensitive and ultrafast humidity sensor.
  • the characteristics of the photonic crystal (its manufacture, range of application, sensitivity to moisture, etc.) determine the distinctive qualities of the sensor, for this example of preferred embodiment of the invention and non-limiting use is made artificial opal, which can be both direct and inverse, as photonic crystal of the responsive element
  • the wavelength at which the Bragg peak appears depends, in addition to the relative humidity of the air, on the size and composition of the constituent spheres.
  • the easy availability of a wide range of types of monodisperse spheres allows a great versatility in the selection of the detection range of the Bragg peak (depending on, for example, from the light source or, by extension, any electromagnetic wave chosen).
  • the photonic crystal is an artificial opal.
  • the appearance of the high reflectance Bragg peak in an artificial opal only requires a lateral area of a few periodicities (each determined by the diameter of the spheres) and a thickness of about fifteen layers of spheres.
  • the humidity sensor's ability to detect moisture is given by how it affects opal optics.
  • the physical principle is that the humidity of the surrounding air, which also fills the interstices of the opal, determines the number of water molecules adsorbed on the surfaces of the opal (both internal and external).
  • the amount of water in the liquid phase determines the refractive index in the interstices of the water and, consequently, the position and intensity of the Bragg peak. Once the size and refractive index of the spheres are known, the Bragg peak is determined by the adsorbed water and, therefore, is highly correlated with the humidity of the surroundings.
  • the sensitivity of the optical response of the sensor to humidity is given by the hydrophilicity of the opal: the greater the hydrophilicity, the greater the adsorbed water (for any value of the humidity) and the greater dependence of the Bragg peak with the ambient humidity. Therefore, the materials to be used to make the opal will be essentially oxides such as silica (Si0 2 ), alumina (Al 2 0 3 ), zircona, (ZnO), etc. Even in the case of polymer opals (significantly hydrophobic), their sensitivity could be increased by coating hydrophilic material (e.g., oxides) by techniques known as atomic layer deposition (ALD) or chemical vapor deposition (CVD ).
  • ALD atomic layer deposition
  • CVD chemical vapor deposition
  • the hydrophilicity of the material could be reduced.
  • silica for example, the concentration of silanoles, chemical groups that determine the affinity of the material to water, on the surface of the spheres is easily adjustable by different thermal processes.
  • the sensitivity to moisture can increase if, together with the phenomenon of adsorption, the condensation of hair is present. The latter appears when the pore size is small enough for a given humidity range.
  • a strategy to increase sensitivity for example, in the range of very low RH ( ⁇ 1%) is to use an opal formed by microporous spheres (with pores of diameters smaller than 2 nm).
  • the appearance of capillary condensation in the micropores in the range 0-1% RH causes an abrupt change in the refractive index of the sphere and induces a response Opal optics much more pronounced.
  • opals formed by mesoporous spheres could be used, such as Carbon.
  • the speed of the response of the sensor object of the invention is fundamentally determined by the optical response speed of the opal.
  • the response of the artificial opal to changes in ambient humidity depends directly on the dynamics of adsorption / desorption of water molecules in the interstices of the artificial opal, which instantly causes the change in refractive index and, consequently, the Bragg peak. Therefore, the response of the artificial opal is delimited by the process of diffusion of the air from the outside of the artificial opal to its interstices.
  • the response time is less than 1 s for a change of 10 to 70% RH, as shown in Figure 1 or vice versa of 70 to 10% RH, as seen in figure 2, from said figures 1 and 2 it follows that the response time (considered as 1 / e of the total signal increase) is less than 1 second having used an artificial opal comprising silica spheres of ⁇ 280 nm.
  • the reading of RH, under identical conditions, of a traditional capacitive silicon-based sensor is also shown in FIG.
  • the humidity sensor object of the invention even shorter response times can be obtained.
  • interstices are provided. larger to favor the diffusion of air into the artificial opal (by means of, for example, larger spheres or by using inverse opals); while in a still more preferred embodiment of the humidity sensor object of the invention there is a smaller opal volume, reducing both the lateral extent and the thickness (in this respect, it should be noted that optical response times of ⁇ 50 ms in an opal of silica spheres of ⁇ 330 nm against temperature changes - and, therefore, of water adsorption - minimizing the volume affected.
  • a light source is directed to the responsive element to examine its optical response once the light strikes the latter (by extension, any electromagnetic wave that covers the spectral range of the Bragg peak ). It is sufficient that the wavelength (or lengths) of the light source overlap with the Bragg peak.
  • the sensitivity of the humidity sensor will increase if a wavelength coinciding with the flanks of the Bragg peak is used, where the intensity of the peak is much more sensitive to any humidity change.
  • a monochromatic light can be used or, alternatively, an optical filter can be used to select the working wavelength (all these elements are economical and available in a wide range); in any case the wavelength of the light source must have a wavelength value comprised in the Bragg peak values of the responsive element.
  • the light that examines the optic of the opal has to be collected and converted by, for example, a photosensitive cell that transforms the optical signal into an electrical signal operating as an optical response transducer to an electrical signal. Since the Bragg peak is detectable in transmission or reflection, light source and transducer can be arranged, respectively, in opposite or coincident planes of the opal. If the intensity of the light source requires amplification, optical collection elements (lenses) or electronic amplifiers can also be used if necessary.
  • an ADC Analog to Digital Converter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The invention relates to a moisture sensor based on the optical response of an artificial opal to water adsorption. The basic design only needs to read the Bragg diffraction band (its intensity at a predetermined wavelength or its position) of an artificial opal whose manufacture does not require any post-processing (surface functionalisation, infiltration, curing, etc.). The sensor responds directly to the adsorption of water molecules on the opal and therefore does not require intermediate phenomena (such as imbibition, hydration expansion, chemical reactions, etc.). Optionally, controlling the hydrophilicity, porosity, periodicity or fill fraction of the opal makes it possible to adjust the sensitivity of the sensor and/or Bragg peak reading frame. The responsive element (opal) is wireless, can be miniaturised to a few cubic microns and has a response time of typically less than one second.

Description

SENSOR DE HUMEDAD  HUMIDITY SENSOR
DESCRIPCIÓN DESCRIPTION
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
El objeto de la invención se enmarca en el campo técnico de la física. The object of the invention is framed in the technical field of physics.
Más concretamente, el objeto de la invención va dirigido a un sensor de humedad que hace uso de medios ópticos para determinar y/o cuantificar el grado de humedad en el entorno en el que se encuentra. More specifically, the object of the invention is directed to a humidity sensor that makes use of optical means to determine and / or quantify the degree of humidity in the environment in which it is located.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
Primeramente, se tiene que un cristal fotónico es un material en el que existe una modulación periódica del índice de refracción en una, dos o las tres direcciones del espacio; de tal manera que una vez que una radiación electromagnética es emitida desde su interior o incide en su superficie, la interferencia que se produce entre las distintas ondas reflejadas en cada interfaz entre los medios de diferente índice de refracción da lugar a que ciertos rangos de frecuencias no puedan transmitirse en el cristal; dichos rangos de frecuencias que no pueden transmitirse, más concretamente, lo intervalos de energía relacionados con los mismos se denominan gaps fotónicos. El valor de las constantes dieléctricas de los componentes del cristal fotónico y el periodo espacial de su variación determinan la posición y anchura de estos gaps; teniendo que en un cristal fotónico tridimensional los gaps se encuentran asociados a cada dirección de propagación. First, a photonic crystal is a material in which there is a periodic modulation of the refractive index in one, two or the three directions of space; in such a way that once an electromagnetic radiation is emitted from its interior or affects its surface, the interference that occurs between the different waves reflected in each interface between the means of different refractive index results in certain frequency ranges cannot be transmitted on the glass; said frequency ranges that cannot be transmitted, more specifically, the energy ranges related thereto are called photonic gaps. The value of the dielectric constants of the photonic crystal components and the spatial period of their variation determine the position and width of these gaps; having in a three-dimensional photonic crystal the gaps are associated to each direction of propagation.
Por otra parte, la humedad relativa es, junto a la temperatura, la magnitud física más frecuentemente medida hoy en día. El interés por la monitorización y el control de la humedad es tan extensivo y atañe a tanta variedad de propósitos, que ha generado un gran número de métodos de transducción diferentes. Los transductores más comunes actualmente son de tipo MEM ( MicroElectroMechanical ). Entre los MEMS, los de tipo capacitivo están reemplazando a los resistivos dadas sus mejores prestaciones. Los sensores capacitivos típicamente basan su respuesta en la intrusión del aire en un polímero del sensor y en el cambio en la capacidad del sistema que éste produce, siendo el proceso de transducción en la escala de la decena de segundos siendo además sensibles a radiaciones electromagnéticas y no permitiendo realizar medidas a distancia. On the other hand, relative humidity is, together with temperature, the physical magnitude most frequently measured today. The interest in humidity monitoring and control is so extensive and concerns such a variety of purposes, that it has generated a large number of different transduction methods. The most common transducers are currently MEM (MicroElectroMechanical). Among the MEMS, the capacitive type are replacing the resistives given their better performance. Capacitive sensors typically base their response on the intrusion of air into a polymer of the sensor and on the change in the capacity of the system that it produces, the transduction process being on the scale of ten seconds being also sensitive to electromagnetic radiation and not allowing remote measurements.
De este tipo de sensores de humedad existen multitud de subtipos basados en distintas propiedades físicas, como condensación en un espejo ( chilled mirrors), hidratación de polímeros, variación optomecánica de redes, etc. cuyos tiempos de respuesta se extienden típicamente de varios segundos a minutos. Otros sensores ópticos de arquitecturas complejas (interferometría en fibras fotónicas, tecnologías de inducción de acoplamiento lateral, resonancia plasmónica de superficie, etc.) pueden poseer tiempos de respuesta en torno al segundo o menores, pero son de fabricación e implementación costosas y requieren instrumentación avanzada. There are many subtypes of this type of humidity sensors based on different physical properties, such as condensation in a mirror (chilled mirrors), polymer hydration, optomechanical network variation, etc. whose response times typically range from several seconds to minutes. Other optical sensors of complex architectures (photometric fiber interferometry, side-coupling induction technologies, surface plasmonic resonance, etc.) may have response times around the second or less, but they are expensive to manufacture and implement and require advanced instrumentation. .
La determinación de niveles de humedad es de vital importancia en algunos entornos que requieren un control minucioso de las condiciones de trabajo. The determination of humidity levels is of vital importance in some environments that require careful monitoring of working conditions.
En Mathew, J. et al Humidity sensor based on photonic crystal fibre interferometer Electronics Letters, vol. 46, no. 19, pp. 1341-1343, 2010, se detalla un dispositivo sensor para la humedad que permite prescindir del uso de cualquier material higroscópico estando el mismo basado en un interferómetro basado en una fibra de cristal fotónico que funciona en modo de reflexión y que está fabricado en un material basado en Si; el sensor descrito funciona en modo reflexión y permite llevar a cabo medidas de humedad relativa. In Mathew, J. et al Humidity sensor based on photonic crystal fiber interferometer Electronics Letters, vol. 46, no. 19, pp. 1341-1343, 2010, a moisture sensing device is detailed that makes it possible to dispense with the use of any hygroscopic material being based on an interferometer based on a photonic glass fiber that works in reflection mode and is made of a material based on Si; The described sensor works in reflection mode and allows relative humidity measurements.
Por otra parte, el documento W02007027792A2 detalla un método y un aparato de detección de humedad que utilizan un material fotónico multicapa con estructuras que presenta hueco fotónico. Dicha estructura presenta una serie de gaps fotónicos que se forman en el espectro de reflexión a partir de la alternancia de capas de materiales de índice distinto de refracción las cuales pueden depositarse o disponerse sobre un sustrato ópticamente transparente o una cara reflectante de un prisma. Mediante esta disposición, la luz dirigida hacia el prisma es dirigida a la estructura multicapa y reflejada desde el prisma, donde es capturada y analizada. Asimismo, en W02007027792A2 se describen configuraciones del sensor en las que se mantiene la longitud de onda o el ángulo de acoplamiento fijados, mientras que monitorean el cambio en el otro parámetro. On the other hand, document W02007027792A2 details a method and a humidity detection apparatus using a multilayer photonic material with structures that have a photonic hollow. Said structure has a series of photonic gaps that are formed in the reflection spectrum from the alternation of layers of materials of different index of refraction which can be deposited or arranged on an optically transparent substrate or a reflecting face of a prism. Through this arrangement, the light directed towards the prism is directed to the multilayer structure and reflected from the prism, where it is captured and analyzed. Also, in W02007027792A2, sensor configurations are described in which the fixed wavelength or coupling angle is maintained, while monitoring the change in the other parameter.
El documento JP2008232925 detalla un sensor de índice de refracción y un aparato de medición de índice de refracción que permite reducir el número de componentes y reducir el coste en el sensor de índice de refracción dado que emplea un cristal fotónico; así mismo se detalla el aparato de medición de índice de refracción que tiene dicho sensor de índice de refracción. El sensor de índice de refracción, está formado por una colección (matriz) de cristales fotónicos 2D (resonadores) en los que se hace incidir radiación láser. La variación espectral de cada resonador depende del cambio en el índice de refracción. El aparato de medición de índice de refracción descrito en JP2008232925 comprende el citado sensor de índice de refracción, un medio de formación de imágenes para capturar una imagen de la matriz que incluye una imagen de campo visual cercano del resonador y unos medios de medición para determinar la variación de la imagen generada por el dispositivo de formación de imágenes y a partir de ahí poder llevar a cabo una medición del índice de refracción del medio a medir a partir de esta variación de imagen, estando el sensor descrito basado en la emisión de luz de un cristal fotónico bidimensional de Si que sólo funciona en el espectro infrarrojo. Document JP2008232925 details a refractive index sensor and a refractive index measuring device that allows reducing the number of components and reduce the cost in the refractive index sensor since it uses a photonic crystal; Likewise, the refractive index measuring device having said refractive index sensor is detailed. The refractive index sensor is formed by a collection (matrix) of 2D photonic crystals (resonators) in which laser radiation is affected. The spectral variation of each resonator depends on the change in refractive index. The refractive index measuring apparatus described in JP2008232925 comprises said refractive index sensor, an image forming means for capturing an image of the matrix that includes a near-field visual image of the resonator and measuring means for determining the variation of the image generated by the imaging device and from there being able to carry out a measurement of the refractive index of the medium to be measured from this image variation, the described sensor being based on the emission of light from a two-dimensional Si photonic crystal that only works in the infrared spectrum.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
El objeto de la invención es un sensor de humedad, el cual está basado en un elemento responsivo basado en un cristal fotónico cuyo material dieléctrico contiene huecos intersticiales que están llenos de aire, estando dicho cristal fotónico preferiblemente basado en un ópalo artificial. Los ópalos artificiales son ordenaciones periódicas tridimensionales de esferas dieléctricas de tamaños y composiciones variadas. Su respuesta a la radiación electromagnética depende de la ordenación de estas esferas, su tamaño y su composición, pudiendo ser dicha respuesta escalada en función de dichos parámetros (y ser, por este motivo, extensible a cualquier rango electromagnético). Se conoce como ópalos inversos a las estructuras resultantes de rellenar los huecos entre esferas con algún otro material y eliminar dichas esferas. Las posibles variaciones estructurales (ordenaciones en dos dimensiones, o en 1 dimensión), aunque ya no se las llama comúnmente ópalos, sus propiedades ópticas y sus repuestas electromagnéticas son en esencia similares a las tridimensionales. The object of the invention is a humidity sensor, which is based on a responsive element based on a photonic crystal whose dielectric material contains interstitial voids that are filled with air, said photonic crystal being preferably based on an artificial opal. Artificial opals are three-dimensional periodic arrangements of dielectric spheres of varying sizes and compositions. Its response to electromagnetic radiation depends on the ordering of these spheres, their size and composition, and this response can be scaled according to these parameters (and, for this reason, be extensible to any electromagnetic range). Inverse opals are known as the structures resulting from filling the gaps between spheres with some other material and eliminating those spheres. The possible structural variations (two-dimensional or 1-dimensional arrangements), although they are no longer commonly called opals, their optical properties and electromagnetic responses are essentially similar to three-dimensional ones.
El sensor aquí descrito se basa en el efecto de transducción óptica y permite medir humedad por mediante el análisis de la respuesta óptica para obtener así el valor de la intensidad de luz en longitudes de onda de los flancos del gap fotónico (a partir de ahora, pico de difracción Bragg o simplemente pico Bragg) donde la variación de la intensidad con la humedad se maximiza. The sensor described here is based on the effect of optical transduction and allows moisture to be measured by analyzing the optical response to obtain the value of the light intensity at wavelengths of the flanks of the photonic gap (from now, Bragg diffraction peak or simply Bragg peak) where the variation in intensity with humidity is maximized.
Dado que el sensor de humedad aquí descrito se basa en medidas ópticas, la detección y posible cuantificación de la humedad se lleva a cabo de manera inalámbrica, lo cual hace que el sensor objeto de la invención y su eventual implementación sean inmunes a ruido radioeléctrico, asimismo el sensor objeto de la invención provee detecciones con unos tiempos de respuesta por debajo de un segundo dado que elemento responsivo (un ópalo artificial) es inalámbrico, miniaturizable a pocas mieras cúbicas y su tiempo de respuesta es típicamente inferior a un segundo. Since the humidity sensor described here is based on optical measurements, the detection and possible quantification of humidity is carried out wirelessly, which makes the sensor object of the invention and its possible implementation immune to radioelectric noise, Likewise, the sensor object of the invention provides detections with response times below a second given that the responsive element (an artificial opal) is wireless, miniaturizable to a few cubic microns and its response time is typically less than a second.
Tal y como se ha indicado, el sensor de humedad objeto de la invención se basa en respuesta óptica a la adsorción de agua de un cristal fotónico, más concretamente de ópalo artificial a la adsorción de agua. En diseño básico del mismo se precisa únicamente de la lectura del pico Bragg (su intensidad a una longitud de onda preestablecida o su posición) de un ópalo artificial cuya fabricación no necesita de ningún post-procesamiento (funcionalización de superficies, infiltración, curado, etc.) de esta manera el sensor de humedad responde directamente a la adsorción de moléculas de agua en el ópalo artificial y no requiere, por tanto, de fenómenos intermedios (tales como imbibición, dilatación por hidratación, reacciones químicas, etc.). As indicated, the humidity sensor object of the invention is based on an optical response to the adsorption of water of a photonic crystal, more specifically of artificial opal to the adsorption of water. In its basic design, it is only necessary to read the Bragg peak (its intensity at a pre-established wavelength or its position) of an artificial opal whose manufacture does not require any post-processing (surface functionalization, infiltration, curing, etc. .) in this way the humidity sensor responds directly to the adsorption of water molecules in the artificial opal and therefore does not require intermediate phenomena (such as imbibition, hydration dilation, chemical reactions, etc.).
Opcionalmente, mediante control de la hidrofilicidad, porosidad, periodicidad o fracción de llenado del ópalo se puede ajustar la sensibilidad del sensor y/o región de lectura del pico Bragg. Optionally, by controlling the hydrophilicity, porosity, periodicity or filling fraction of the opal, the sensitivity of the sensor and / or reading region of the Bragg peak can be adjusted.
En una realización del objeto de la invención se tiene un sensor óptico de humedad con transducción basada en la lectura de una cualidad distintiva del pico Bragg (en adelante, pico Bragg) exhibida por un ópalo artificial. In an embodiment of the object of the invention there is an optical humidity sensor with transduction based on the reading of a distinctive quality of the Bragg peak (hereinafter, Bragg peak) exhibited by an artificial opal.
El sensor de humedad aquí descrito objeto de la invención se compone principalmente de los siguientes elementos: • Un elemento responsivo, como puede ser un ópalo artificial (o cristal coloidal), que es un tipo de cristal fotónico que comprende esferas de material hidrófilo monodispersas autoensambladas entre las cuales se definen huecos intersticiales que están llenos de aire. Las esferas de pueden ser de sílice u otro material similar. El cristal fotónico, en una realización preferente del sensor de humedad aquí descrito, tiene un nivel de reflectancia del pico Bragg igual a superior a 80% y no requiere procesamiento alguno posterior a su fabricación.The humidity sensor described herein object of the invention consists mainly of the following elements: • A responsive element, such as an artificial opal (or colloidal crystal), which is a type of photonic crystal comprising self-assembled monodispersed hydrophilic material spheres between which interstitial voids are defined that are filled with air. The spheres may be of silica or other similar material. The photonic crystal, in a preferred embodiment of the humidity sensor described herein, has a level of reflectance of the Bragg peak equal to greater than 80% and does not require any further processing after its manufacture.
• Una fuente de luz que ilumina el ópalo para examinar su respuesta óptica. Tal fuente puede consistir en emisores LED de bajo consumo. • A light source that illuminates the opal to examine its optical response. Such a source may consist of low power LED emitters.
• Un transductor de la respuesta óptica a señal eléctrica, ya sea analógico o digital.  • An optical response transducer to electrical signal, either analog or digital.
Dado que la respuesta del ópalo artificial a la humedad requiere únicamente de adsorción/desorción de moléculas de agua en su superficie, el sensor de humedad objeto de la invención supera en tiempo de respuesta a los sensores existentes de uso habitual, cuya respuesta involucra necesariamente algún fenómeno intermedio. Así, por ejemplo, el tiempo de respuesta en tales sensores viene determinada por la velocidad de cambio de capacitancia de un polímero (como en los sensores capacitivos) o de tamaño (como en dispositivos ópticos basados en hidrogeles). En tales casos, los tiempos de respuestas van desde varios segundos a minutos. En última instancia, tal diferenciación en el principio físico del sensor de humedad objeto de la invención redunda en que un aumento de su sensibilidad sí que se vea afectada la rapidez en la respuesta. Esto supone una ventaja radical con respecto al comportamiento de los sensores de humedad existentes, que comúnmente exhiben una relación inversa entre la sensibilidad y la rapidez de respuesta del sensor. Since the response of the artificial opal to moisture requires only adsorption / desorption of water molecules on its surface, the humidity sensor object of the invention exceeds in response time to existing sensors of usual use, whose response necessarily involves some intermediate phenomenon Thus, for example, the response time in such sensors is determined by the rate of change in capacitance of a polymer (as in capacitive sensors) or in size (as in optical devices based on hydrogels). In such cases, response times range from several seconds to minutes. Ultimately, such differentiation in the physical principle of the humidity sensor object of the invention results in that an increase in its sensitivity does affect the speed of the response. This is a radical advantage over the behavior of existing humidity sensors, which commonly exhibit an inverse relationship between the sensitivity and the speed of response of the sensor.
El objeto de la invención exhibe una alta sensibilidad (que denominamos como valor “S” que se define como la variación normalizada de la reflectancia, en porcentaje, dividida por la variación de la humedad relativa, en porcentaje, que describe cuánto varía la magnitud monitorizada por unidad de RH. The object of the invention exhibits a high sensitivity (which we call as the "S" value that is defined as the normalized variation of the reflectance, in percent, divided by the variation in relative humidity, in percent, which describes how much the monitored magnitude varies per unit of HR.
Midiendo la reflectancia a una longitud de onda situada en uno de los flancos del pico de Bragg, la respuesta del ópalo a cambios de humedad es más sensible (muestra un valor de S mayor). Esta longitud de onda es asimismo seleccionable en función de la disponibilidad de la fuente de luz correspondiente. Al ser el pico de Bragg mucho más definido que en otros sistemas conocidos en el arte previo (reflectores de multicapas, cristales fotónicos de dos dimensiones, cristales fotónicos de tres dimensiones infiltrados por hidrogeles, etc.), la sensibilidad del objeto de la invención es significativamente mayor. Dado que S se define como la variación normalizada de la reflectancia (en %) dividida por la variación de la humedad relativa (en %), un ópalo de esferas de sílice de 370 nm exhibe un valor aproximado de S=30 en el rango de humedades bajas (0-20% RH). En los mejores sensores de humedad basados en respuesta fotónica se han reportado valores de S en el rango 0.5-15. By measuring the reflectance at a wavelength located on one of the flanks of the Bragg peak, the opal's response to moisture changes is more sensitive (it shows a higher S value). This wavelength is also selectable based on the availability of the corresponding light source. To the being the Bragg peak much more defined than in other systems known in the prior art (multilayer reflectors, two-dimensional photonic crystals, three-dimensional photonic crystals infiltrated by hydrogels, etc.), the sensitivity of the object of the invention is significantly higher. Since S is defined as the normalized variation of the reflectance (in%) divided by the variation in relative humidity (in%), an opal of 370 nm silica spheres exhibits an approximate value of S = 30 in the range of low humidity (0-20% RH). Values of S in the range 0.5-15 have been reported in the best humidity sensors based on photonic response.
La naturaleza del ópalo artificial, compuesto de materiales típicamente resistentes y muy inertes, y de su respuesta óptica otorgan al sensor de humedad una gran robustez y durabilidad, y lo hace apto para su uso en todo tipo de ámbitos, incluso en aquellos de alta radiación electromagnética, nuclear, gran corrosión, etc. The nature of the artificial opal, composed of typically resistant and very inert materials, and its optical response give the humidity sensor great robustness and durability, and makes it suitable for use in all types of fields, even in those of high radiation Electromagnetic, nuclear, great corrosion, etc.
Como alternativas al ópalo artificial descrito, el cristal fotónico que actúa como elemento responsivo utilizado puede consistir en un cristal fotónico tipo ópalo inverso, resultante de la infiltración de los intersticios entre las esferas del ópalo y la posterior eliminación selectiva de las esferas, u otras estructuras similares autoensambladas de dimensionalidad inferior (monocas, bicapas, etc). As alternatives to the artificial opal described, the photonic crystal that acts as a responsive element used can consist of an inverse opal photonic crystal, resulting from the infiltration of the interstices between the opal spheres and the subsequent selective elimination of the spheres, or other structures similar self-assembled lower dimensionality (monocas, bilayers, etc).
DESCRIPCIÓN DE LOS DIBUJOS DESCRIPTION OF THE DRAWINGS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente: To complement the description that is being made and in order to help a better understanding of the characteristics of the invention, according to a preferred example of practical implementation thereof, a set of drawings is attached as an integral part of said description. where, for illustrative and non-limiting purposes, the following has been represented:
Figura 1.- Muestra una gráfica donde se aprecia una lectura de humedad relativa (RH) realizada por el sensor objeto de la invención durante una variación de 10 a 70% RH Figure 1.- Shows a graph showing a relative humidity (RH) reading made by the sensor object of the invention during a variation of 10 to 70% RH
Figura 2.- Muestra una gráfica donde se aprecia una lectura de humedad relativa (RH) realizada por el sensor objeto de la invención durante una variación de 70 a 10% RH. Figura 3.- Muestra una gráfica donde se aprecia la sensibilidad a corrientes húmedas muy rápidas sobre la superficie Figure 2.- Shows a graph showing a relative humidity (RH) reading made by the sensor object of the invention during a variation of 70 to 10% RH. Figure 3.- Shows a graph showing the sensitivity to very fast wet currents on the surface
REALIZACIÓN PREFERENTE DE LA INVENCIÓN PREFERRED EMBODIMENT OF THE INVENTION
En una realización preferente del objeto de la invención se tiene un sensor de humedad basado en un elemento responsivo que comprende un cristal fotónico, el cual a su vez comprende esferas monodispersas autoensambladas de material hidrófilo, como puede ser una material basado en Sílice, una fuente de luz que ilumina el cristal fotónico para examinar su respuesta óptica, como puede ser una fuente de luz basada en emisores LED de bajo consumo cuya la longitud de onda de la fuente de luz preferentemente se solapa con el pico de Bragg del elemento responsivo y un transductor de la respuesta óptica a señal, señal que puede ser analógica eléctrica o digital. In a preferred embodiment of the object of the invention there is a humidity sensor based on a responsive element comprising a photonic crystal, which in turn comprises self-assembled monodispersed spheres of hydrophilic material, such as a silica-based material, a source of light that illuminates the photonic crystal to examine its optical response, such as a light source based on low-power LED emitters whose wavelength of the light source preferably overlaps with the Bragg peak of the responsive element and a transducer of the optical response to signal, signal that can be analog electrical or digital.
El sensor de humedad objeto de la presente invención se basa en la dependencia de la respuesta óptica del cristal fotónico con la humedad relativa del entorno. La sensibilidad y rapidez de variación de la respuesta óptica ante un cambio de humedad redunda en un sensor de humedad muy sensible y ultrarrápido. Como elemento responsivo, las características del cristal fotónico (su fabricación, rango de aplicación, sensibilidad a la humedad, etc.) determinan las cualidades distintivas del sensor, para este ejemplo de realización preferente de la invención y con carácter no limitativo se hace uso un ópalo artificial, que puede ser tanto directo como inverso, como cristal fotónico del elemento responsivo The humidity sensor object of the present invention is based on the dependence of the optical response of the photonic crystal with the relative humidity of the environment. The sensitivity and speed of variation of the optical response to a change in humidity results in a very sensitive and ultrafast humidity sensor. As a responsive element, the characteristics of the photonic crystal (its manufacture, range of application, sensitivity to moisture, etc.) determine the distinctive qualities of the sensor, for this example of preferred embodiment of the invention and non-limiting use is made artificial opal, which can be both direct and inverse, as photonic crystal of the responsive element
La longitud de onda en la que aparece el pico Bragg depende, además de la humedad relativa del aire, del tamaño y composición de las esferas constituyentes. La fácil disponibilidad de una amplia gama de tipos de esferas monodispersas (de pocos nanómetros a muchas mieras, compactas o porosas, de óxidos, polímeros, etc.) permite una gran versatilidad en la selección del rango de detección del pico Bragg (en función, por ejemplo, de la fuente de luz o, por extensión, cualquier onda electromagnética elegida). La posición del pico Bragg se puede estimar muy aproximadamente por la sencilla ecuación de Bragg (de ahí su nombre): ]=2-n-d (siendo n el índice de refracción promedio de la estructura, fácilmente calculable, y d la periodicidad, que depende solamente del tamaño de esfera elegida, D, de la forma d=0.816 D). Esta sencilla relación nos permite sintonizar la respuesta del sensor sin más que variar el diámetro de la esfera constituyente. The wavelength at which the Bragg peak appears depends, in addition to the relative humidity of the air, on the size and composition of the constituent spheres. The easy availability of a wide range of types of monodisperse spheres (from few nanometers to many microns, compact or porous, of oxides, polymers, etc.) allows a great versatility in the selection of the detection range of the Bragg peak (depending on, for example, from the light source or, by extension, any electromagnetic wave chosen). The position of the Bragg peak can be estimated very roughly by the simple Bragg equation (hence its name):] = 2-nd (where n is the average index of refraction of the structure, easily calculable, and d the periodicity, which depends only of the chosen sphere size, D, of the shape d = 0.816 D). This simple relationship allows us to tune the sensor response without varying the diameter of the constituent sphere.
Así, en una realización preferente del sensor de humedad objeto de la invención el cristal fotónico es un ópalo artificial. La aparición del pico Bragg de alta reflectancia en un ópalo artificial sólo requiere un área lateral de unas pocas periodicidades (cada una de ellas determinada por el diámetro de las esferas) y un espesor de unas quince capas de esferas. Así, por ejemplo, si se requiere un pico Bragg en el espectro visible (400-700 nm), el ópalo artificial deberá consistir en esferas de ~ 250-350 nm (por la ecuación de Bragg descrita arriba, 2- 1.3 0.816-300=636, aproximadamente la longitud de onda del láser de He-Ne, rojo), de modo que la extensión mínima del elemento responsivo será de ~ 15 pm2 y un espesor de ~ 4 pm. Esta cualidad permite una alta miniaturización del sensor de humedad. Thus, in a preferred embodiment of the humidity sensor object of the invention, the photonic crystal is an artificial opal. The appearance of the high reflectance Bragg peak in an artificial opal only requires a lateral area of a few periodicities (each determined by the diameter of the spheres) and a thickness of about fifteen layers of spheres. Thus, for example, if a Bragg peak in the visible spectrum (400-700 nm) is required, the artificial opal should consist of spheres of ~ 250-350 nm (by the Bragg equation described above, 2- 1.3 0.816-300 = 636, approximately the wavelength of the He-Ne laser, red), so that the minimum extension of the responsive element will be ~ 15 pm2 and a thickness of ~ 4 pm. This quality allows a high miniaturization of the humidity sensor.
La capacidad del sensor de humedad para detectar la humedad viene dada por cómo afecta ésta a la óptica del ópalo. El principio físico radica en que la humedad del aire circundante, que también llena los intersticios del ópalo, determina el número de moléculas de agua adsorbidas sobre las superficies del ópalo (tanto internas como externas). La cantidad de agua en fase líquida determina el índice de refracción en los intersticios del agua y, consiguientemente, la posición e intensidad del pico Bragg. Conocidos el tamaño e índice de refracción de las esferas, el pico Bragg viene determinado por el agua adsorbida y, por tanto, está correlacionado con alta precisión con la humedad del entorno. The humidity sensor's ability to detect moisture is given by how it affects opal optics. The physical principle is that the humidity of the surrounding air, which also fills the interstices of the opal, determines the number of water molecules adsorbed on the surfaces of the opal (both internal and external). The amount of water in the liquid phase determines the refractive index in the interstices of the water and, consequently, the position and intensity of the Bragg peak. Once the size and refractive index of the spheres are known, the Bragg peak is determined by the adsorbed water and, therefore, is highly correlated with the humidity of the surroundings.
La sensibilidad de la respuesta óptica del sensor a la humedad viene dada por la hidrofilicidad del ópalo: a mayor hidrofilicidad, mayor agua adsorbida (para cualquier valor de la humedad) y mayor dependencia del pico Bragg con la humedad ambiente. Por ello, los materiales a utilizar para fabricar el ópalo serán fundamentalmente óxidos como la sílice (Si02), alúmina (Al203), zircona, (ZnO), etc. Incluso en el caso de disponer de ópalos de polímero (significativamente hidrófobos), podría aumentarse su sensibilidad mediante recubrimiento de material hidrófilo (por ej., óxidos) mediante técnicas conocidas como deposición por capas atómicas (ALD) o deposición química en fase vapor (CVD). Inversamente, si se quisiera reducir la sensibilidad del ópalo, podría reducirse la hidrofilicidad del material. En el caso de la sílice, por ejemplo, la concentración de silanoles, grupos químicos que determinan la afinidad del material al agua, en la superficie de las esferas es fácilmente ajustable por distintos procesos térmicos. The sensitivity of the optical response of the sensor to humidity is given by the hydrophilicity of the opal: the greater the hydrophilicity, the greater the adsorbed water (for any value of the humidity) and the greater dependence of the Bragg peak with the ambient humidity. Therefore, the materials to be used to make the opal will be essentially oxides such as silica (Si0 2 ), alumina (Al 2 0 3 ), zircona, (ZnO), etc. Even in the case of polymer opals (significantly hydrophobic), their sensitivity could be increased by coating hydrophilic material (e.g., oxides) by techniques known as atomic layer deposition (ALD) or chemical vapor deposition (CVD ). Conversely, if one wanted to reduce the sensitivity of the opal, the hydrophilicity of the material could be reduced. In the case of silica, for example, the concentration of silanoles, chemical groups that determine the affinity of the material to water, on the surface of the spheres is easily adjustable by different thermal processes.
Por otra parte, la sensibilidad con la humedad puede aumentar si, junto al fenómeno de adsorción concurre el de condensación capilar. Ésta última aparece cuando el tamaño de poro es suficientemente pequeño para un rango de humedad determinado. Así, una estrategia para aumentar la sensibilidad, por ejemplo, en el rango de muy baja RH (< 1 %) es utilizar un ópalo formado por esferas microporosas (con poros de diámetros inferiores a 2 nm). De este modo, además de mantener la sensibilidad a la humedad en el resto de rango, la aparición de condensación capilar en los microporos en el rango 0-1% RH ocasiona un cambio abrupto en el índice de refracción de la esfera e induce una respuesta óptica del ópalo mucho más acusada. Si se requiriera una sensibilidad aumentada en un intervalo determinado del rango de humedad, podrían utilizarse ópalos formados por esferas mesoporosas (de tamaño de poro seleccionable), como por ejemplo de Carbono. On the other hand, the sensitivity to moisture can increase if, together with the phenomenon of adsorption, the condensation of hair is present. The latter appears when the pore size is small enough for a given humidity range. Thus, a strategy to increase sensitivity, for example, in the range of very low RH (<1%) is to use an opal formed by microporous spheres (with pores of diameters smaller than 2 nm). Thus, in addition to maintaining the sensitivity to moisture in the rest of the range, the appearance of capillary condensation in the micropores in the range 0-1% RH causes an abrupt change in the refractive index of the sphere and induces a response Opal optics much more pronounced. If increased sensitivity is required within a certain range of the humidity range, opals formed by mesoporous spheres (of selectable pore size) could be used, such as Carbon.
La rapidez de la respuesta del sensor objeto de la invención viene determinada fundamentalmente por la velocidad de respuesta óptica del ópalo. Dado el principio físico de este sensor, la respuesta del ópalo artificial frente a cambios en la humedad ambiente depende directamente de la dinámica de adsorción/desorción de moléculas de agua en los intersticios del ópalo artificial, la cual ocasiona instantáneamente el cambio de índice de refracción y, consiguientemente, el pico Bragg. Por ende, la respuesta del ópalo artificial viene delimitada por el proceso de difusión del aire desde el exterior del ópalo artificial a sus intersticios. En un ópalo artificial con pico Bragg en el rango visible, cuyo espesor es de ~ 5 mieras, el tiempo de respuesta es inferior a 1 s para un cambio de 10 a 70% RH tal y como se observa en la Figura 1 o viceversa de 70 a 10% RH, tal y como se observa en figura 2, de dichas figuras 1 y 2 se desprende que el tiempo de respuesta (considerado como 1/e del incremento total de señal) es inferior a 1 segundo habiendo utilizado un ópalo artificial que comprende esferas de sílice de ~ 280 nm. Por comparación, se muestra también en dicha Figura 1 la lectura de RH, en idénticas condiciones, de un sensor tradicional capacitivo basado en silicio. The speed of the response of the sensor object of the invention is fundamentally determined by the optical response speed of the opal. Given the physical principle of this sensor, the response of the artificial opal to changes in ambient humidity depends directly on the dynamics of adsorption / desorption of water molecules in the interstices of the artificial opal, which instantly causes the change in refractive index and, consequently, the Bragg peak. Therefore, the response of the artificial opal is delimited by the process of diffusion of the air from the outside of the artificial opal to its interstices. In an artificial opal with a Bragg peak in the visible range, whose thickness is ~ 5 microns, the response time is less than 1 s for a change of 10 to 70% RH, as shown in Figure 1 or vice versa of 70 to 10% RH, as seen in figure 2, from said figures 1 and 2 it follows that the response time (considered as 1 / e of the total signal increase) is less than 1 second having used an artificial opal comprising silica spheres of ~ 280 nm. By comparison, the reading of RH, under identical conditions, of a traditional capacitive silicon-based sensor is also shown in FIG.
En posibles realizaciones alternativas del sensor de humedad objeto de la invención se pueden obtener tiempos de respuesta aún más cortos. Para ello en una realización aún preferente del sensor de humedad objeto de la invención se tienen intersticios más grandes para favorecer la difusión del aire al interior del ópalo artificial (mediante, por ejemplo, esferas mayores o utilizando ópalos inversos); mientras que en una realización todavía más preferente del sensor de humedad objeto de la invención se tiene un volumen del ópalo más pequeño, reduciendo tanto la extensión lateral como el espesor (a este respecto, cabe destacar que se han reportado tiempos de respuesta óptica de < 50 ms en un ópalo de esferas de sílice de ~ 330 nm frente a cambios de temperatura -y, por ende, de adsorción del agua- minimizando el volumen afectado. In possible alternative embodiments of the humidity sensor object of the invention, even shorter response times can be obtained. For this purpose, in an even preferred embodiment of the humidity sensor object of the invention, interstices are provided. larger to favor the diffusion of air into the artificial opal (by means of, for example, larger spheres or by using inverse opals); while in a still more preferred embodiment of the humidity sensor object of the invention there is a smaller opal volume, reducing both the lateral extent and the thickness (in this respect, it should be noted that optical response times of < 50 ms in an opal of silica spheres of ~ 330 nm against temperature changes - and, therefore, of water adsorption - minimizing the volume affected.
Una vez determinadas las características del ópalo artificial, se procede a acoplar una fuente de luz dirigida al elemento responsivo para examinar su respuesta óptica una vez la luz incide sobre este último (por extensión, cualquier onda electromagnética que abarque el rango espectral del pico de Bragg). Es suficiente con que la longitud (o longitudes) de onda de la fuente de luz solape con el pico de Bragg. La sensibilidad del sensor de humedad aumentará si se utiliza una longitud de onda coincidente con los flancos del pico de Bragg, donde la intensidad del pico es mucho más sensible a cualquier cambio de humedad. Para ello puede utilizarse una luz monocromática o, alternativamente, emplearse un filtro óptico para seleccionar la longitud de onda de trabajo (todos estos elementos son económicos y están disponibles en una amplia gama); en cualquier caso la longitud de onda de la fuente de luz debe tener un valor de longitud de onda comprendido en los valores del pico de Bragg del elemento responsivo. Once the characteristics of the artificial opal have been determined, a light source is directed to the responsive element to examine its optical response once the light strikes the latter (by extension, any electromagnetic wave that covers the spectral range of the Bragg peak ). It is sufficient that the wavelength (or lengths) of the light source overlap with the Bragg peak. The sensitivity of the humidity sensor will increase if a wavelength coinciding with the flanks of the Bragg peak is used, where the intensity of the peak is much more sensitive to any humidity change. For this, a monochromatic light can be used or, alternatively, an optical filter can be used to select the working wavelength (all these elements are economical and available in a wide range); in any case the wavelength of the light source must have a wavelength value comprised in the Bragg peak values of the responsive element.
La luz que examina la óptica del ópalo ha de ser recolectada y convertida mediante, por ejemplo, una célula fotosensible que transforme la señal óptica en señal eléctrica funcionando a modo de transductor de respuesta óptica a señal eléctrica. Dado que el pico de Bragg es detectable en transmisión o reflexión, fuente de luz y transductor pueden ser dispuestos, respectivamente, en planos opuestos o coincidentes del ópalo. Si la intensidad de la fuente de luz requiriera amplificación, elementos recolectores ópticos (lentes) o amplificadores electrónicos pueden ser también empleados si fuera necesario. The light that examines the optic of the opal has to be collected and converted by, for example, a photosensitive cell that transforms the optical signal into an electrical signal operating as an optical response transducer to an electrical signal. Since the Bragg peak is detectable in transmission or reflection, light source and transducer can be arranged, respectively, in opposite or coincident planes of the opal. If the intensity of the light source requires amplification, optical collection elements (lenses) or electronic amplifiers can also be used if necessary.
Por último, opcionalmente, puede disponerse de un convertidor analógico digital ADC ( Analogic to Digital Converter) para digitalizar las señales eléctricas y ser tratadas por un software de calibración y visualización. Finally, optionally, an ADC (Analog to Digital Converter) digital analog converter can be available to digitize the electrical signals and be treated by a calibration and visualization software.

Claims

REIVINDICACIONES
1. Sensor de humedad caracterizado por que comprende: 1. Humidity sensor characterized by comprising:
a. un elemento responsivo que comprende un cristal fotónico que a su vez comprende esferas monodispersas autoensambladas material hidrófilo entre las cuales se definen huecos intersticiales,  to. a responsive element comprising a photonic crystal which in turn comprises self-assembled monodisperse spheres hydrophilic material between which interstitial voids are defined,
b. una fuente de luz destinada a iluminar el elemento responsivo para examinar su respuesta óptica, y  b. a light source intended to illuminate the responsive element to examine its optical response, and
c. un transductor de respuesta óptica a señal eléctrica, destinado a recolectar y convertir la respuesta óptica del elemento responsivo en una señal.  c. an optical response transducer to an electrical signal, intended to collect and convert the optical response of the responsive element into a signal.
2. Sensor de humedad según reivindicación 1 caracterizado por que el cristal fotónico es un ópalo artificial. 2. Moisture sensor according to claim 1 characterized in that the photonic crystal is an artificial opal.
3. Sensor de humedad según reivindicación 1 caracterizado por que el cristal fotónico es un ópalo artificial inverso. 3. Moisture sensor according to claim 1 characterized in that the photonic crystal is a reverse artificial opal.
4. Sensor de humedad según una cualquiera de las reivindicaciones 1 a 3 caracterizado por que el cristal fotónico tiene una reflectancia del pico Bragg igual a superior a 80% en toda su extensión. 4. Moisture sensor according to any one of claims 1 to 3 characterized in that the photonic crystal has a reflectance of the Bragg peak equal to greater than 80% in its entire length.
5. Sensor de humedad según una cualquiera de las reivindicaciones anteriores caracterizado por que el material hidrófilo de las esferas se selecciona de entre: sílice (Si02), alúmina (Al203), zircona, (ZnO) o cualquier óxido o compuesto hidrófilo o cualquiera no hidrófilo hidrofilizado mediante recubrimiento de material hidrófilo. 5. Moisture sensor according to any one of the preceding claims characterized in that the hydrophilic material of the spheres is selected from: silica (Si0 2 ), alumina (Al 2 0 3 ), zircona, (ZnO) or any oxide or compound hydrophilic or any non-hydrophilic hydrophilized by coating hydrophilic material.
6. Sensor de humedad según una cualquiera de las reivindicaciones anteriores caracterizado porque las esferas tienen un diámetro comprendido entre aproximadamente 250 nm y aproximadamente 350 nm, de tal manera que el elemento responsivo tiene una extensión de aproximadamente 15 pm2 con un espesor de aproximadamente 4 pm. 6. Humidity sensor according to any one of the preceding claims characterized in that the spheres have a diameter between about 250 nm and about 350 nm, such that the responsive element has an extension of about 15 pm2 with a thickness of about 4 pm .
7. Sensor de humedad según una cualquiera de las reivindicaciones 1 a 6 anteriores caracterizado porque las esferas tienen un diámetro de 330nm. 7. Moisture sensor according to any one of claims 1 to 6 above characterized in that the spheres have a diameter of 330 nm.
8. Sensor de humedad según una cualquiera de las reivindicaciones anteriores caracterizado por que las esferas son microporosas. 8. Moisture sensor according to any one of the preceding claims characterized in that the spheres are microporous.
9. Sensor de humedad según reivindicación 8 caracterizado por que las esferas son microporosas con poros de diámetro inferior a 2 nm. 9. Moisture sensor according to claim 8 characterized in that the spheres are microporous with pores of diameter less than 2 nm.
10. Sensor de humedad según una cualquiera de las reivindicaciones 1 a 7 caracterizado porque las esferas son mesoporosas. 10. Humidity sensor according to any one of claims 1 to 7 characterized in that the spheres are mesoporous.
11. Sensor de humedad según una cualquiera de las reivindicaciones anteriores caracterizado porque la longitud de onda de la fuente de luz tiene un valor de longitud de onda comprendido en los valores del pico de Bragg del elemento responsivo. 11. Humidity sensor according to any one of the preceding claims characterized in that the wavelength of the light source has a wavelength value comprised in the Bragg peak values of the responsive element.
PCT/ES2019/070531 2018-07-26 2019-07-26 Moisture sensor WO2020021153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201830767A ES2738913A1 (en) 2018-07-26 2018-07-26 HUMIDITY SENSOR (Machine-translation by Google Translate, not legally binding)
ESP201830767 2018-07-26

Publications (1)

Publication Number Publication Date
WO2020021153A1 true WO2020021153A1 (en) 2020-01-30

Family

ID=69174679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070531 WO2020021153A1 (en) 2018-07-26 2019-07-26 Moisture sensor

Country Status (2)

Country Link
ES (1) ES2738913A1 (en)
WO (1) WO2020021153A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225939A (en) * 2020-09-04 2021-01-15 大连民族大学 Humidity response type composite inverse opal photonic crystal film and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BARRY, R. ET AL.: "Humidity-sensing inverse opal hydrogels", LANGMUIR, vol. 22, no. 3, 23 December 2005 (2005-12-23), pages 1369 - 1374, XP055522984, ISSN: 0743-7463, DOI: 10.1021/la0519094 *
GALLEGO-GOMEZ, F ET AL.: "Water-dependent photonic bandgap in silica artificial opals", SMALL, vol. 7, no. 13, 7 April 2011 (2011-04-07), pages 1838 - 1845, XP055681669, ISSN: 1613-6810 *
NI, H. ET AL.: "Photonic-Crystal-Based Optical Fiber Bundles and Their Applications", IEEE PHOTONICS JOURNAL, vol. 5, no. 4, 8 September 2013 (2013-09-08), pages 2400213, XP011526125, ISSN: 1943-0655, DOI: 10.1109/JPHOT.2013.2267534 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225939A (en) * 2020-09-04 2021-01-15 大连民族大学 Humidity response type composite inverse opal photonic crystal film and preparation method thereof
CN112225939B (en) * 2020-09-04 2023-02-10 大连民族大学 Humidity response type composite inverse opal photonic crystal film and preparation method thereof

Also Published As

Publication number Publication date
ES2738913A1 (en) 2020-01-27

Similar Documents

Publication Publication Date Title
JP6153950B2 (en) Critical angle light sensor device
Santos et al. Characterisation of a Nafion film by optical fibre Fabry–Perot interferometry for humidity sensing
US7872233B2 (en) Thermo-optic infrared pixel and focal plane array
EP1031828B1 (en) Integrated-optical sensor and method for integrated-optically sensing a substance
JP5366982B2 (en) Angle sensor, system, and method utilizing guided mode resonance
ES2543464T3 (en) Surface plasmon resonance detection procedure and detection system
Zhao et al. Optical fiber Fabry–Perot humidity sensor based on polyimide membrane: Sensitivity and adsorption kinetics
WO2012159238A1 (en) Optical phase device as well as application method and system thereof
Kim et al. Fibre-optic interferometric immuno-sensor using long period grating
US11169027B2 (en) Interferometer systems and methods thereof
Bao et al. Temperature-insensitive 2-D pendulum clinometer using two fiber Bragg gratings
WO2020021153A1 (en) Moisture sensor
JP2018096984A (en) Photo-detection system, and light-emitting device
KR20180126584A (en) Waveguide sensor with nanoporous surface layer
Zhang et al. Mixed-gas CH 4/CO 2/CO detection based on linear variable optical filter and thermopile detector array
US11408824B2 (en) Biological material measurement device
CN103926218B (en) High-sensitivity refractive index sensor based on surface plasma resonance
Maleki et al. Analytical investigation and systematic design approach for high-sensitivity guided mode resonance sensors with graphene-enabled tunability
Xing et al. An ultrahigh sensitivity acoustic sensor system for weak signal detection based on an ultrahigh-Q CaF2 resonator
CN111947791B (en) Infrared radiation detection device and dark field backscattering optical reading method
JP6541921B1 (en) Biological substance measuring device
CN104568839B (en) Biosensor based on cascade connection of optical resonant cavity and reflective polarization converter
JP2004245674A (en) Radiation temperature measuring apparatus
US11680908B2 (en) Assembly having nanoporous surface layer with hydrophobic layer
WO2019162554A1 (en) Dew formation detector and use of same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841719

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841719

Country of ref document: EP

Kind code of ref document: A1