WO2020020376A1 - 一种参考信号发送、接收方法、装置及设备 - Google Patents

一种参考信号发送、接收方法、装置及设备 Download PDF

Info

Publication number
WO2020020376A1
WO2020020376A1 PCT/CN2019/098053 CN2019098053W WO2020020376A1 WO 2020020376 A1 WO2020020376 A1 WO 2020020376A1 CN 2019098053 W CN2019098053 W CN 2019098053W WO 2020020376 A1 WO2020020376 A1 WO 2020020376A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
reference point
frequency domain
network device
interval
Prior art date
Application number
PCT/CN2019/098053
Other languages
English (en)
French (fr)
Inventor
费永强
郭志恒
谢信乾
毕文平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19840148.1A priority Critical patent/EP3820070A4/en
Priority to BR112021001532-9A priority patent/BR112021001532A2/pt
Publication of WO2020020376A1 publication Critical patent/WO2020020376A1/zh
Priority to US17/158,274 priority patent/US20210152309A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method, a device, and a device for sending and receiving a reference signal.
  • NR new wireless
  • LTE long term evolution
  • LTE-A evolved LTE
  • a base station BS
  • a base station may generate cross-link interference (CLI).
  • CLI cross-link interference
  • the so-called heterogeneous interference between base stations mainly refers to the downlink (DL) signals sent by one base station will interfere with the uplink (UL) signals of another base station.
  • the uplink signals are, for example, user equipment (UE) Signal sent to the base station.
  • UE user equipment
  • the downlink signal sent by the first base station is generally relatively large in power and may be received by the second base station, which may interfere with the second base station receiving the uplink signal.
  • the CLI between base stations usually occurs when two TDD cells working on the same frequency have different transmission directions. Therefore, if the TDD cells maintain the same transmission direction, the CLI is usually not generated.
  • the two base stations that are far apart in geographical location, even if their transmission directions are the same, that is, the two base stations simultaneously receive uplink signals and send downlink signals at the same time.
  • the geographical distance between them As a result, a significant delay occurs when a downlink signal sent by one base station reaches another base station. It may be that the other base station has switched to the uplink receiving direction. At this time, the two base stations also generate a CLI.
  • the common reference point for determining the reference signal in the frequency domain in the prior art is configured independently for each base station, and different base stations may Configure different common reference points. Therefore, two base stations will determine different reference signals in the same frequency domain position. As a result, the reference signal sent by one base station cannot be detected by another base station. Channel measurement and other tasks cannot be completed.
  • the embodiments of the present application provide a method, an apparatus, and a device for sending and receiving a reference signal, and provide a mechanism for sending or receiving a reference signal.
  • a reference signal transmission method includes: determining at least one frequency domain reference point according to a first frequency band; generating a reference signal according to the at least one frequency domain reference point; Mentioned reference signal.
  • the method may be executed by a first communication device.
  • the first communication device may be a network device or a communication device capable of supporting the functions required by the method for the network device, and of course, it may be another communication device, such as a chip system.
  • a reference signal receiving method includes: determining a second frequency band for receiving a reference signal; and receiving part or all of the reference signal on the second frequency band, wherein the reference signal Generated according to at least one frequency domain reference point, and the at least one frequency domain reference point is determined according to the second frequency band.
  • the method may be executed by a second communication device.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, and of course, it may also be another communication device, such as a chip system.
  • the first frequency band may be a working frequency band of the first communication device, or a frequency band for transmitting a reference signal that is pre-configured or predefined by the protocol
  • the second frequency band may be a working frequency band of the second communication device, or may be a pre-configured frequency band.
  • a protocol-defined frequency band for receiving a reference signal wherein the working frequency band may also be referred to as a carrier frequency band.
  • the first frequency band and the second frequency band may be the same frequency band, or the first frequency band and the second frequency band may not completely overlap, but there is an intersection.
  • the frequency domain reference point is determined according to the frequency band. Then, the first communication device that sends the reference signal and the second communication device that receives the reference signal can both determine the frequency domain reference point according to the frequency band.
  • the frequency domain reference points are the same, the first communication device and the second communication device can determine the same reference signal at the same frequency domain position, so that the reference signal sent by the first communication device can be correctly detected by the second communication device Here. It can be seen that by using the new reference signal sending or receiving mechanism provided in the embodiments of the present application, the reference signal sent by the first communication device can be detected by the second communication device, thereby realizing the correctness of the reference signal between the two communication devices. transmission.
  • determining at least one frequency domain reference point according to the first frequency band includes: determining the at least one frequency domain reference point according to a frequency interval where the first frequency band is located, and the frequency interval is according to a predefined A rule, an interval for dividing frequencies, and the at least one frequency domain reference point is predefined or configured for the frequency interval.
  • the at least one frequency domain reference point is determined according to a frequency interval in which the second frequency band is located.
  • the frequency interval is an interval in which frequencies are divided according to a predefined rule.
  • the at least one frequency domain reference Points are predefined or configured for the frequency interval.
  • the frequencies may be divided according to a predefined rule in advance to obtain at least one frequency interval, and one or more frequency domain reference points may be predefined for each frequency interval in the at least one frequency interval.
  • the first frequency band is determined to belong to After the frequency interval of the frequency band, it can also be determined that at least one frequency domain reference point corresponding to the first frequency band is a frequency domain reference point corresponding to the frequency domain interval to which the first frequency band belongs, and it is the same for the second frequency band.
  • This method can directly predefine frequency domain reference points, and is relatively simple to implement for the device.
  • the determined frequency domain reference point will be consistent for the device sending the reference signal and the device receiving the reference signal, so Both will generate the same reference signal in the same frequency domain position.
  • the reference signal is determined according to a frequency domain reference point, and the frequency of the frequency domain reference point is the lowest frequency in the frequency interval, or a frequency less than the lowest frequency in the frequency interval.
  • the first frequency band belongs to a frequency interval
  • a frequency domain reference point is predefined for a frequency interval
  • the reference signal may be determined according to a frequency domain reference point corresponding to the frequency interval.
  • the frequency of the frequency domain reference point corresponding to the frequency domain interval may be the lowest frequency of the frequency interval, or may be smaller than the lowest frequency of the frequency interval. This method is simple and intuitive, and it can be guaranteed as much as possible. For communication systems deployed in this frequency band, network equipment can correctly determine the reference signal.
  • the first frequency band is located in N frequency intervals, N is an integer greater than or equal to 2
  • the at least one frequency domain reference point is a frequency domain reference point
  • the one frequency domain reference point is A frequency domain reference point corresponding to a frequency interval in which the lowest frequency of the first frequency band is located in the N frequency intervals.
  • the second frequency band is located in N frequency intervals, N is an integer greater than or equal to 2
  • the at least one frequency domain reference point is a frequency domain reference point
  • the one frequency domain reference point is the N number of A frequency domain reference point corresponding to a frequency interval in which the lowest frequency of the second frequency band is located in the frequency interval.
  • the reference signal may be determined according to the frequency domain reference point corresponding to the frequency interval, and the same is also true for the second frequency band.
  • the frequency of the frequency domain reference point corresponding to the frequency interval is the lowest frequency in the frequency interval, or a frequency that is less than the lowest frequency in the frequency interval.
  • the first frequency band is located in N frequency intervals, N is an integer greater than or equal to 2, the at least one frequency domain reference point is N frequency domain reference points, and the N frequency domain references The points include frequency-domain reference points corresponding to each of the N frequency intervals.
  • the second frequency band is located in N frequency intervals, N is greater than or equal to 2, the at least one frequency domain reference point is N frequency domain reference points, and the N frequency domain reference points include the N frequencies A frequency-domain reference point corresponding to each frequency interval in the interval.
  • the corresponding part of the reference signal can also be determined according to each of the frequency intervals, that is, the final reference signal is based on the frequency domain reference points corresponding to the N frequency intervals. OK. If the first frequency band is located in at least two frequency intervals, whether the reference signal is determined according to N frequency intervals or according to one of the N frequency intervals may be specified by an agreement or may be determined through negotiation between network devices. No specific restrictions. The same is true for the second frequency band, and the determination methods adopted for the first frequency band and the second frequency band should be the same.
  • determining at least one frequency domain reference point according to the first frequency band includes: determining the at least one frequency domain reference point configured for the first frequency band. Accordingly, the at least one frequency-domain reference point is configured for the second frequency band.
  • the first network device may also directly determine at least one frequency domain reference point according to the first frequency band. For example, there is no need to divide a frequency interval, but a frequency domain reference point can be predefined for the operating frequency band of at least one network device, for example, one or more frequency domain reference points are predefined for the operating frequency band of each network device in at least one network device Or, it may not be predefined, but one or more frequency domain reference points may be configured for the working frequency band of each network device in at least one network device by way of signaling configuration, and the frequency domain is predefined or configured for the frequency band. In the case of reference points, it may be considered to configure the same frequency domain reference points for the operating frequency bands of the network devices participating in the measurement.
  • the frequency domain reference points can be directly determined for the first frequency band or the second frequency band.
  • the network devices participating in the measurement can generate the same reference signal in the same frequency domain position, thereby enabling the sending and receiving of the reference signal.
  • This method does not need to divide the frequency interval or determine the frequency domain reference point according to the predefined frequency interval, which is more flexible.
  • the reference signal is sent by the first network device to the second network device.
  • the reference signal can be used for measurement between two network devices, or it can also be used for other purposes.
  • a first communication apparatus is provided.
  • the communication apparatus is, for example, a first network device.
  • the communication device has the function of implementing the first network device in the method design. These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform corresponding functions in the first aspect or the method provided by any possible implementation manner of the first aspect.
  • a first communication apparatus is provided, and the communication apparatus is, for example, a second network device.
  • the communication device has the function of implementing the second network device in the method design. These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processing module and a transceiver module.
  • the processing module and the transceiver module may perform corresponding functions in the method provided in the second aspect or any one of the possible implementation manners of the second aspect.
  • a third communication device is provided.
  • the communication device is, for example, a first network device.
  • the communication device has the function of implementing the first network device in the method design. These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processor and a transceiver.
  • the processor and the transceiver may perform corresponding functions in the first aspect or the method provided by any possible implementation manner of the first aspect.
  • the transceiver is implemented as, for example, a communication interface.
  • the communication interface herein can be understood as a radio frequency transceiver component in a network device.
  • a fourth communication device is provided, and the communication device is, for example, a second network device.
  • the communication device has the function of implementing the second network device in the above method design. These functions can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the specific structure of the communication device may include a processor and a transceiver.
  • the processor and the transceiver may perform corresponding functions in the method provided by the second aspect or any one of the possible implementation manners of the second aspect.
  • the transceiver is implemented as, for example, a communication interface.
  • the communication interface herein can be understood as a radio frequency transceiver component in a network device.
  • a fifth communication device is provided.
  • the communication device may be the first network device in the method design, or a chip provided in the first network device.
  • the communication device includes: a memory for storing computer executable program code; and a processor, the processor being coupled to the memory.
  • the program code stored in the memory includes instructions. When the processor executes the instructions, the fifth communication device is caused to execute the foregoing first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the fifth communication device may further include a communication interface. If the fifth communication device is a first network device, the communication interface may be a transceiver in the first network device, such as a radio frequency transceiver component in the first network device. Or, if the fifth communication device is a chip provided in the first network device, the communication interface may be an input / output interface of the chip, such as an input / output pin.
  • a sixth communication device may be a second network device in the above method design, or a chip provided in the second network device.
  • the communication device includes: a memory for storing computer executable program code; and a processor, the processor being coupled to the memory.
  • the program code stored in the memory includes instructions. When the processor executes the instructions, the fifth communication device is caused to execute the method in the second aspect or any one of the possible implementation manners of the second aspect.
  • the sixth communication device may further include a communication interface. If the sixth communication device is a first network device, the communication interface may be a transceiver in the second network device, such as a radio frequency transceiver component in the second network device. Or, if the sixth communication device is a chip provided in the second network device, the communication interface may be an input / output interface of the chip, such as an input / output pin.
  • a first communication system is provided, and the communication system may include the first communication device according to the third aspect and the second communication device according to the fourth aspect.
  • a second communication system may include a third communication device according to the fifth aspect and a fourth communication device according to the sixth aspect.
  • a third communication system is provided, and the communication system may include the fifth communication device according to the seventh aspect and the sixth communication device according to the eighth aspect.
  • a computer storage medium has instructions stored therein, which when run on a computer, cause the computer to execute the first aspect or any one of the possible designs of the first aspect. As described in the method.
  • a computer storage medium has instructions stored therein, which when run on a computer, cause the computer to execute the second aspect or any one of the possible designs of the second aspect. As described in the method.
  • a computer program product containing instructions.
  • the computer program product stores instructions, and when the computer program product runs on a computer, causes the computer to execute the foregoing first aspect or any one of the first aspect. The method described in the design.
  • a computer program product containing instructions.
  • the computer program product stores instructions, and when the computer program product runs on a computer, causes the computer to execute the second aspect or any one of the second aspect. The method described in the design.
  • the reference signal sent by the first communication device can be detected by the second communication device, and the correct transmission of the reference signal between the two communication devices is achieved.
  • FIG. 1 is a schematic diagram of CL1 between two base stations
  • FIG. 2 is a schematic diagram of CL1 between base stations with a long distance
  • FIG. 3 is a schematic diagram of generating a CSI-RS
  • FIG. 4 is a schematic diagram of a network architecture applied to an embodiment of this application.
  • FIG. 5 is a flowchart of a reference signal sending and receiving method according to an embodiment of the present application.
  • FIG. 6A is a schematic diagram of a method for setting a frequency domain reference point assumed in an embodiment of the present application.
  • FIG. 6B is a schematic diagram of a method for setting a frequency domain reference point according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of generating a reference signal in a case of a cross-frequency interval according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a first network device sending a reference signal and a second network device detecting a reference signal according to an embodiment of the present application;
  • FIG. 9 is another schematic diagram of a first network device sending a reference signal and a second network device detecting a reference signal according to an embodiment of the present application;
  • FIG. 10 is a schematic diagram of a communication apparatus capable of implementing a function of a first network device according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a communication apparatus capable of implementing a function of a second network device according to an embodiment of the present application
  • 12A-12B are two schematic diagrams of a communication device according to an embodiment of the present application.
  • Terminal devices including devices that provide voice and / or data connectivity to users, may include, for example, a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal device can communicate with the core network via a radio access network (RAN) and exchange voice and / or data with the RAN.
  • the terminal equipment may include user equipment (UE), wireless terminal equipment, mobile terminal equipment, subscriber unit, subscriber station, mobile station, mobile station, remote Station (remote station), access point (access point (AP)), remote terminal device (remote terminal), access terminal device (access terminal), user terminal device (user terminal), user agent (user agent), or user Equipment (user device) and so on.
  • a mobile phone or a "cellular" phone
  • a computer with a mobile terminal device a portable, pocket, handheld, computer-built or vehicle-mounted mobile device, a smart wearable device, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with lower power consumption, devices with limited storage capabilities, or devices with limited computing capabilities.
  • it includes bar code, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanner, and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanner and other information sensing equipment.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart helmets, smart jewelry, etc. for physical signs monitoring.
  • a network device including, for example, a base station (for example, an access point), may refer to a device in an access network that communicates with a wireless terminal device through one or more cells over an air interface.
  • the network device can be used to convert the received air frame and the Internet Protocol (IP) packet to each other, and serve as a router between the terminal device and the rest of the access network, where the rest of the access network can include an IP network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network device may include an LTE system or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE-A, or may also include a fifth generation mobile communication technology (fifth generation) (5G) NR system
  • the next generation node B (gNB) may also include a centralized unit (CU) and a distributed unit (DU) in a CloudRAN system, which is implemented in this application. Examples are not limited.
  • “Multiple” means two or more. In view of this, in the embodiments of the present application, “multiple” can also be understood as “at least two". "At least one” can be understood as one or more, such as one, two or more. For example, including at least one means including one, two, or more, and without limiting which ones are included, for example, including at least one of A, B, and C, then including A, B, C, A and B, A and C, B and C, or A and B and C. In the same way, the understanding of the description of "at least one" is similar.
  • ordinal numbers such as “first” and “second” are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • a CLI may be generated between the base station and the base station.
  • the first base station sends a downlink signal
  • the second base station is receiving an uplink signal.
  • the downlink signal sent by the first base station is generally relatively large in power and may be received by the second base station, which may interfere with the second base station receiving the uplink signal.
  • the first cell and the second cell (which can be considered as the first base station in the first cell and the second base station in the second cell) in FIG. 1 work in the same frequency band.
  • the first cell A base station is sending a downlink signal to terminal device 1, and in the second cell, the second base station is receiving an uplink (UL) signal sent by terminal device 2.
  • the downlink signal sent by the first base station is generally large in power and may also be Received by the second base station, which will interfere with the second base station receiving the uplink signal sent by the terminal device 2, so the downlink signal of the first cell interferes with the reception of the uplink signal of the second cell.
  • the CLI between base stations usually occurs when two TDD cells working on the same frequency have different transmission directions. Therefore, if the TDD cells maintain the same transmission direction, the CLI is usually not generated.
  • the two base stations that are far apart in geographical location, even if their transmission directions are the same, that is, the two base stations simultaneously receive uplink signals and send downlink signals at the same time.
  • the geographical distance between them As a result, a significant delay occurs when a downlink signal sent by one base station reaches another base station. It may be that the other base station has switched to the uplink receiving direction.
  • the two base stations also generate a CLI. For example, referring to FIG.
  • the transmission directions of the base station 1 and the base station 2 are originally the same, but due to the long distance, there will be a delay when the downlink signal sent by the base station 1 reaches the base station 2, at this time, the base station 2 has started the receiving process of the uplink signal. At this time, the downlink signal sent by the base station 1 still interferes with the reception of the uplink signal of the base station 2.
  • the cause of such ultra-long-distance interference from distant base stations is usually caused by the tropospheric bending phenomenon. Whether or not interference between base stations, interference distance and delay are affected by geographical location and weather, so there is great uncertainty. Sex.
  • the downlink signal sent by a base station at a long distance on a hillside, a lake at a long distance, or a base station on the sea surface may also generate ultra-long-distance interference.
  • the terminal device can measure the downlink channel status between the gNB and the terminal device through a channel-state information reference signal (CSI-RS).
  • CSI-RS channel-state information reference signal
  • the cell indicates a reference point in the frequency domain in the broadcast system message, which can be referred to as a frequency domain reference point.
  • CSI-RS can be generated according to a predefined formula and mapped in a certain order (such as from low frequency to high frequency) according to the position of the reference point in the frequency domain.
  • Both the terminal device and the base station can determine the CSI carried on each subcarrier.
  • -RS the base station sends the CSI-RS at the corresponding position, and the terminal device determines the CSI-RS that it receives according to the bandwidth and position of the CSI-RS that it receives / measures.
  • the base station sends a CSI-RS in the frequency band of the base station.
  • the terminal device 1 determines that the CSI-RS received in the frequency band in which the terminal device 1 receives / measures the CSI-RS is "6 to 17”
  • the terminal device 2 determines The CSI-RS received in the frequency band in which the terminal device 2 receives / measures the CSI-RS is "10-29".
  • the digital number in FIG. 3 may be regarded as the number of the subcarrier, or as the number of the carrier, or as the number of the element included in the CSI-RS sequence.
  • CSI-RS may also be related to other factors such as cell identity (ID) or time domain location.
  • ID cell identity
  • time domain location the generation of CSI-RS may also be related to other factors such as cell identity (ID) or time domain location.
  • ID cell identity
  • time domain location the generation of CSI-RS may also be related to other factors such as cell identity (ID) or time domain location.
  • ID cell identity
  • time domain location the location of reference points in the frequency domain, so it will not introduce more related content.
  • OFDM orthogonal frequency division multiplexing
  • the prior art can support measurement between a base station and a terminal device, the prior art does not support measurement between base stations.
  • the base stations and terminals in the prior art The CSI-RS measurement method between devices is also difficult to apply to the measurement between the base station and the base station. Because in the prior art, the common reference point in the frequency domain is configured independently by each base station for communication between the base station and the terminal equipment served by the base station, that is, different base stations may be configured with different common reference points.
  • two base stations will determine different reference signals in the same frequency domain position, resulting in that the reference signal sent by one base station cannot be detected by another base station, such as the subsequent need to complete signal detection or Channel measurement and other tasks cannot be completed.
  • the first communication device and the second communication device can determine the same reference signal at the same frequency domain position, so that the reference sent by the first communication device The signal can be correctly detected by the second communication device. It can be seen that, by using the new reference signal sending or receiving mechanism provided in the embodiment of the present application, the reference signal sent by the first communication device can be detected by the second communication device, thereby realizing the transmission of the reference signal between the two communication devices. .
  • the embodiments of the present application can be applied to a 5G NR system, or to other communication systems, such as the LTE system. As long as one entity in the communication system needs to send signals and another entity needs to receive or measure signals, the present invention can be applied.
  • FIG. 4 includes a network device 1 and a network device 2.
  • the network device 1 serves the terminal device 1, and the network device 2 serves the terminal device 2.
  • the network device 1 and the network device 2 may be two network devices that are far apart from each other in a geographical position, and measurement needs to be performed between the network device 1 and the network device 2.
  • there may be other network devices and other terminal devices which are not limited in the embodiments of the present application.
  • the embodiments of the present application can also be applied to measurements between neighboring network devices, so the network device 1 and the network device 2 may also be two network devices that are located close to each other.
  • the network device in FIG. 4 is, for example, an access network (AN) device, such as a base station.
  • AN access network
  • FIG. 5 is a flowchart of the method.
  • the method is applied to the network architecture shown in FIG. 4 as an example.
  • the method may be executed by two communication devices, such as a first communication device and a second communication device, where the first communication device may be a network device or capable of supporting the functions required by the network device to implement the method
  • the communication device may of course be another communication device, such as a chip system.
  • the second communication device may be a network device or a communication device capable of supporting the functions required by the network device to implement the method, and of course, it may be another communication device, such as a chip system.
  • the first communication device and the second communication device are network devices, or the first communication device is a network device, and the second communication device is capable of supporting A communication device for a network device to implement the functions required by the method, and so on.
  • the network device is, for example, a base station.
  • the method is performed by a network device and a network device as an example, that is, a first communication device is a first network device and a second communication device is a second network device.
  • a first network device is network device 1 in the network architecture shown in FIG. 4
  • the second network device is network device 2 in the network architecture shown in FIG. 4, or the first network device is shown in FIG. 4.
  • the network device 2 in the network architecture, and the second network device is the network device 1 in the network architecture shown in FIG. 4.
  • the first network device determines at least one frequency domain reference point according to the first frequency band.
  • the first frequency band is, for example, an operating frequency band of the first network device, or the operating frequency band may also be referred to as a carrier frequency band, or a frequency band for transmitting a reference signal that is pre-configured or predefined by a protocol, and is not specifically limited.
  • the first network device determines that the reference signal is to be sent in the first frequency band, and then the first network device may first determine at least one frequency domain reference point according to the first frequency band.
  • the first network device determining at least one frequency domain reference point according to the first frequency band may specifically include that the first network device determines at least one frequency domain reference point according to a frequency interval where the first frequency band is located.
  • the frequency may be divided according to a predefined rule to obtain at least one frequency interval, and one or more frequency domain reference points may be predefined for each frequency interval in the at least one frequency interval. Then, determine the first After the frequency interval to which the frequency band belongs, it can also be determined that at least one frequency domain reference point corresponding to the first frequency band is a frequency domain reference point corresponding to the frequency domain interval to which the first frequency band belongs.
  • a method for dividing a frequency interval may be provided by a 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP), that is, the frequency interval may include a definition in the 3GPP standard, Bands that can be deployed in 5G communication systems.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • the band modes defined in the 3GPP standard for the NR system are shown in Table 1:
  • the NR operating bandwidth in the first column represents a serial number, or is understood as an identification of a frequency band.
  • the frequency band n1 corresponds to an uplink bandwidth of 1920MHz to 1980MHz and a downlink bandwidth corresponding to 2110MHz to 2170MHz.
  • the duplex mode that can be adopted by the communication system deployed on the frequency band n1 is the FDD mode.
  • the frequency band n38 is taken as an example, the duplex mode of the frequency band n38 is a TDD mode, and the corresponding uplink frequency range is 2570MHz to 2620MHz, and the corresponding downlink frequency range is 2570MHz to 2620MHz.
  • the frequency range of the uplink and downlink frequency bands is usually the same, and the duplex of transmission and reception is realized by time division.
  • the frequency range of the uplink and downlink frequency bands is usually different. Received duplex.
  • a row in Table 1 represents a frequency interval.
  • n1 represents a frequency interval
  • n2 represents another frequency interval
  • a frequency-domain reference point for each frequency interval in Table 1, a frequency-domain reference point can be predefined.
  • This article mainly takes a frequency-domain reference point as an example for each frequency interval, which is not limited to one frequency interval.
  • the number of predefined frequency-domain reference points for example, the frequency domain reference points predefined for the frequency band n38, frequency band n41, frequency band n50, and frequency band n51 in Table 1 can refer to Table 2:
  • the last column of reference points in Table 2 is the frequency domain reference point, which is the frequency domain reference point set for the corresponding frequency interval.
  • the frequency of the frequency domain reference point set for the frequency band n38 is 2570MHz.
  • Table 2 only selects a part of frequency intervals as an illustration. In practical applications, one or more frequency domain reference points can be predefined for each frequency interval in Table 1.
  • a frequency domain reference point may be set only for a frequency interval in which the duplex mode is TDD mode, and a frequency domain reference point may not be set in any frequency interval in which the duplex mode is FDD mode, SUL mode, and SDL mode.
  • the communication system in the TDD mode usually generates the same-frequency CLI.
  • the same-frequency CLI is generally not generated. Setting the frequency domain reference point only for the frequency interval in which the duplex mode is the TDD mode can reduce the number of frequency domain reference points that are set.
  • a line in Table 1 is taken as an example of a frequency interval.
  • a row in Table 1 may be further divided to obtain at least one frequency interval in the embodiment of the present application, that is, a frequency band in Table 1 may be further divided.
  • a frequency domain reference point you can still set one or more frequency domain reference points for a frequency interval.
  • the range included in the frequency interval is not limited in the embodiment of the present application.
  • Table 1 may not be borrowed, that is, the frequency band divided in the 3GPP standard may not be borrowed, but the frequency interval may be divided in other ways.
  • a frequency interval may be divided every 100 MHz.
  • one frequency interval can be considered to correspond to two frequency-domain reference points, that is, the lowest frequency and the highest frequency of the frequency interval are the frequencies of the two frequency-domain reference points corresponding to the frequency interval.
  • a frequency interval corresponds to a frequency domain reference point.
  • it can be specified that the lowest frequency corresponding to each frequency interval is the frequency of the frequency domain reference point corresponding to the frequency interval, or it can be specified that the highest frequency corresponding to each frequency interval is the frequency interval.
  • the frequency of the corresponding frequency-domain reference point For example, an example is shown in Table 3:
  • Frequency range Frequency domain reference point 2500MHz ⁇ f ⁇ 2600MHz 2500MHz
  • a row in Table 3 represents a frequency interval, and the frequency domain reference point is the frequency domain reference point corresponding to the corresponding frequency interval.
  • the network device can determine the frequency domain reference point as 2500MHz; or, If a network device operates in the range of 2600MHz-2700MHz, that is, the working bandwidth of the network device is in the frequency range of 2600MHz-2700MHz, then the network device can determine that the frequency domain reference point is 2600MHz.
  • the frequency range (or frequency interval) of a divided frequency interval may be different according to different frequency positions.
  • the deployment bandwidth of the NR system can be adapted.
  • the working frequency band of an NR system is usually not uniform at all frequency points. The higher the frequency, the larger the deployable frequency band. For example, in a frequency range below 6 GHz, the working frequency range of a cell usually does not exceed 100 MHz, but above 6 GHz, the working frequency range of a cell can reach 400 MHz.
  • Defining different frequency intervals at different frequency positions can make the granularity of the frequency domain reference points not too large or too small, and can minimize the possibility that the operating bandwidth of a network device spans two or more frequency intervals. Reduce the complexity of sending / detecting reference signals. Moreover, for network equipment working at low frequencies, if the frequency interval is divided according to a larger frequency interval, the actual operating bandwidth of such network equipment is not large, but because the frequency interval is large, it needs to store an excessively long reference. The signal is used for transmission or detection, which increases the implementation complexity of the network device, and this can be avoided as much as possible by using the solution provided by the embodiment of the present application.
  • the frequency may be first divided into at least two parts, and each part thereof may be further divided into at least one frequency interval.
  • the frequency range of a frequency interval may be different.
  • the frequency is divided into three parts, called the first part, the second part, and the third part, respectively.
  • the frequency range of a frequency interval in the first part is called the first frequency interval
  • the frequency of a frequency interval in the second part is called the second frequency interval
  • the frequency range that is a frequency interval in the third part is called the third frequency interval.
  • the first frequency interval, the second frequency interval, and the third frequency interval are all different.
  • you can refer to a principle when setting the frequency interval the lower the frequency, the smaller the frequency interval can be set, and the higher the frequency, the larger the frequency interval can be set.
  • the frequency is divided into three parts, the first part includes frequencies below 3GHz (excluding 3GHz), the second part includes 3GHz-6GHz (including 3GHz, excluding 6GHz), and the third part includes frequencies of 6GHz and above (including 6GHz).
  • the first part can be regarded as a low frequency part.
  • the range of the frequency interval can be [5MHz, 100MHz], for example, it can be set to 100MHz, that is, a frequency interval can be set every 100MHz and a corresponding frequency domain reference point can be set.
  • the part can be regarded as the middle and high frequency part.
  • the frequency interval can be set to [100MHz, 400MHz], for example, set to 200MHz, that is, a frequency interval and a frequency domain reference point can be set every 200MHz; the third part can be It is regarded as a high-frequency part.
  • the frequency interval can be set to 1 GHz, that is, a frequency interval and a frequency domain reference point can be set every 1 GHz. See Table 4 for this:
  • the frequency range indicates different parts obtained by dividing the frequency. For example, f ⁇ 3GHz indicates the first part, 3GHz ⁇ f ⁇ 6GHz indicates the second part, and 6GHz ⁇ f indicates the third part.
  • Table 4 Represents rounding down X.
  • Table 4 it is equivalent to setting the lowest frequency in each frequency interval as the frequency domain reference point of the frequency interval, that is, Table 4 can be equivalent to Table 5:
  • the first column in Table 5 represents the three parts of the frequency
  • the second column represents the frequency intervals obtained by dividing the three parts of the frequency
  • the third column represents the frequency domain reference points corresponding to the frequency intervals.
  • the frequency of the frequency domain reference point corresponding to the frequency domain interval may be the lowest frequency of the frequency interval (as shown in the example in Table 5)
  • the frequency of the frequency domain reference point corresponding to the domain interval may also be smaller than the lowest frequency of the frequency interval. This rule can be applied to each frequency interval, or it can also be applied to some frequency intervals without specific restrictions.
  • the operating bandwidth of a network device belongs to frequency interval 1.
  • the frequency domain reference point corresponding to frequency interval 1 is, for example, frequency domain reference point 1.
  • the frequency of frequency domain reference point 1 is greater than the lowest frequency of frequency interval 1.
  • the operating bandwidth of the network device also includes frequencies lower than the frequency reference point 1.
  • the network device cannot send the reference signal within this part of the bandwidth, or if the network device is used as the receiving end, the network device cannot receive the reference signal within this part of the bandwidth, which reduces the detection performance.
  • FIG. 6A In FIG.
  • the working bandwidth of the network device includes the frequency of the frequency domain reference point corresponding to the frequency interval in which the working bandwidth is located. Lower frequency, then the part shown by the question mark in FIG. 6A is the part that can not be defined according to the frequency domain reference point, because the existence of this part reduces the detection performance and also leads to the waste of this part of resources.
  • the frequency of the frequency domain reference point corresponding to the frequency domain interval may be the lowest frequency of the frequency interval, or may be lower than the lowest frequency of the frequency interval.
  • This method is simple Intuitive, and can try to ensure that the communication system and network equipment deployed in this frequency band can correctly determine the reference signal.
  • FIG. 6B it can be seen in FIG. 6B that the operating bandwidth of the network device does not include a frequency lower than the frequency of the frequency domain reference point corresponding to the frequency interval in which the operating bandwidth is located. Therefore, the entire operating bandwidth of the network device Within the range, the position can be determined according to the reference point in the frequency domain, and the reference signal can be sent or detected, which improves the detection performance.
  • At least one frequency interval is divided in advance, and a frequency domain reference point is predefined for each of the frequency intervals, so that the first network device can determine at least one according to the frequency interval in which the first frequency band is located.
  • Frequency-domain reference points which can be used as an implementation manner for determining frequency-domain reference points.
  • the first network device may also directly determine at least one frequency domain reference point according to the first frequency band.
  • a frequency domain reference point can be predefined for the operating frequency band of at least one network device, for example, one or more frequency domain reference points are predefined for the operating frequency band of each network device in at least one network device Or, it may not be predefined, but one or more frequency domain reference points may be configured for the working frequency band of each network device in at least one network device by way of signaling configuration, and the frequency domain is predefined or configured for the frequency band.
  • the first network device may directly determine at least one frequency domain reference point that is predefined or configured for the first frequency band according to the first frequency band in which the first network device operates. This method does not need to divide the frequency interval or determine the frequency domain reference point according to the predefined frequency interval, which is more flexible.
  • the first network device and the second network device can determine the same reference signal at the same frequency domain position. Therefore, the reference signal sent by the first network device can be correctly detected by the second network device through blind detection. It can be seen that by using the new reference signal sending or receiving mechanism provided in the embodiments of the present application, the reference signal sent by the first network device can be detected by the second network device, and the reference signal transmission between the two network devices is realized. For example, measurement or channel estimation between the first network device and the second network device can also be implemented because the reference signal can be correctly transmitted.
  • the digital numbers in FIG. 6A and FIG. 6B can be regarded as the numbers of the subcarriers, or the numbers of the carriers, or the numbers of the elements included in the reference signal sequence.
  • the first network device generates a reference signal according to at least one frequency domain reference point.
  • the working bandwidth of the first network device may be located in one frequency interval, or may span two or more frequency intervals. If the working bandwidth of the first network device is within a frequency interval, the first network device may directly determine a frequency domain reference point corresponding to the frequency interval and generate a reference signal according to the frequency domain reference point corresponding to the frequency interval.
  • FIG. 6B is an example of a reference signal generated by a network device. In FIG. 6B, the generated reference signal is 1-12.
  • the network device needs to determine how to generate a reference signal. For example, the first network device determines that the first frequency band is located in N frequency intervals, and N is an integer greater than or equal to 2. Taking each frequency interval corresponding to a frequency domain reference point as an example, N frequency intervals will correspond to N frequency domains. Reference point. Then, as an implementation manner of selecting a reference point in the frequency domain, the first network device may determine a frequency interval in which the lowest frequency of the first frequency band is located in N frequency intervals, for example, a first frequency interval is determined. The number of at least one frequency reference point is 1, that is, only one frequency domain reference point is determined.
  • the frequency domain reference point is a frequency domain reference point corresponding to the first frequency interval, and the first network device determines the frequency domain reference point. Reference signal sent. In this way, the number of reference points in the frequency domain can be reduced, and the complexity of generating reference signals can be reduced to a certain extent.
  • one frequency interval corresponds to one frequency domain reference point as an example. If one frequency domain interval corresponds to multiple frequency domain reference points, the number of at least one frequency domain reference point determined by the first network device may be greater than 1, or If one frequency domain interval corresponds to multiple frequency domain reference points, the first network device may also select one frequency domain reference point from the multiple frequency domain reference points corresponding to the first frequency interval as the determined frequency domain reference point.
  • the first network device determines that the first frequency band is located in N frequency intervals, where N is an integer greater than or equal to 2, and a frequency domain reference point corresponding to each frequency interval is For example, N frequency intervals will correspond to N frequency domain reference points, and then the first network device may determine the frequency domain reference points corresponding to the N frequency intervals.
  • the number of at least one frequency-domain reference point determined by the first network device is N, that is, a total of N frequency-domain reference points are determined, and the N frequency-domain reference points include N frequencies.
  • the frequency domain reference point corresponding to each frequency interval in the interval is of course, one frequency interval corresponds to one frequency domain reference point as an example. If one frequency domain interval corresponds to multiple frequency domain reference points, the number of at least one frequency domain reference point determined by the first network device will be greater than N.
  • the first network device operates at 2680MHz to 2730MHz, spanning the second frequency interval shown in the second line and the third line shown in Table 3.
  • the first network device may determine two frequency domain reference points, which are the frequency domain reference point corresponding to the second frequency interval in Table 3 (indicated as frequency domain reference point 1 in FIG. 7) and the third frequency interval corresponding to (Referred to as frequency domain reference point 2 in FIG. 7).
  • the first network device may generate a reference signal according to the two frequency domain reference points, and the portions belonging to different frequency intervals use the corresponding frequency domain reference points to determine the reference signal.
  • the first network device generates the reference signal.
  • parts 10 to 14 are generated based on frequency domain reference point 1
  • parts 0 to 6 are generated based on frequency domain reference point 2.
  • the digital number in FIG. 7 may be regarded as a number of a subcarrier, or as a number of a carrier, or as an element number included in a reference signal sequence.
  • the working bandwidth of the first network device spans two or more frequency intervals, which of the above-mentioned implementation manners is used by the first network device to select the frequency domain reference point can be predefined through a protocol or a high-level control node Pre-configuration, etc., without specific restrictions.
  • the frequency domain reference point of each frequency interval is predefined, no signaling interaction is required between network devices, and no higher-level control node configuration is required, thereby reducing signaling overhead.
  • the network device can determine the frequency domain reference point according to the frequency interval in which the network device's operating bandwidth is located, so that the network device that sends the reference signal and the network device that receives the reference signal can generate the same reference signal in the same frequency domain position, and that It is understood that the "understanding" of the reference signal is consistent between the network device that sends the reference signal and the network device that receives the reference signal. Therefore, the two network devices can further send or receive the reference signal for measurement between the network devices.
  • the network equipment of the reference signal can correctly detect the reference signal and realize the measurement between the network equipment.
  • signaling interaction is required between network devices, so network devices of different operators can also perform measurements with each other, extending the scope of application of the embodiments of this application, and also enabling measurement between network devices across operators.
  • the frequency domain reference point is determined according to the frequency interval, that is, the frequency is first divided into at least one frequency interval, and the frequency domain reference point is predefined for each frequency interval, or the frequency domain reference point is based on the first
  • the frequency band is determined, that is, one or more frequency domain reference points are predefined or configured for the operating frequency band of the network device.
  • the frequency domain reference point may not be defined in advance, but may be configurable, or determined in a form combining a predefined manner and a configuration manner.
  • multiple frequency domain reference points can be pre-defined for a frequency interval, and a network device operating in the frequency interval can use one of the multiple frequency domain reference points by way of signaling configuration; or, Network equipment in a certain frequency range configures the frequency of any frequency domain reference point to maximize configuration flexibility.
  • pre-defined can be understood as that the device can directly determine the predefined content without signaling; configuration can be understood as that the device can determine the configured content only after signaling is required.
  • predefined method helps reduce the interaction process of signaling, and the configuration method will be more flexible.
  • the frequency domain reference points used by multiple network devices that need to perform mutual measurement can be configured by higher-level control nodes than the network devices that perform mutual measurement.
  • the higher-level control nodes are, for example, next generation core network nodes , NGC).
  • the frequency domain reference points used by network devices that need to measure each other can also be configured by the master network device among these network devices and notify other network devices after configuration , So that these network devices have a consistent understanding of the frequency domain reference point.
  • each network device is manually configured by an engineer manually.
  • the same frequency domain reference point can be configured for network devices that need to measure each other.
  • the second network device determines a second frequency band for receiving the reference signal.
  • S51 to S52 are taken as a whole, and there is no restriction on the order of occurrence of S51 to S52 and S53.
  • S51 to S52 can occur before S53, or S51 to S52 occur after S53, or S51 to S52 and S53 also May happen at the same time.
  • the second frequency band may be a working frequency band of a second network device, or the working frequency band may also be referred to as a carrier frequency band, or a frequency band for receiving a reference signal that is pre-configured or predefined by a protocol, and is not specifically limited.
  • the first frequency band and the second frequency band may be the same frequency band, have the same frequency range, or may be different frequency bands.
  • the first frequency band and the second frequency band may overlap, but not completely overlap, that is, partially overlap. of.
  • the first network device sends a reference signal on the first frequency band, and the second network device receives all or part of the reference signal on the second frequency band.
  • the first network device After the first network device generates the reference signal, it can transmit on the first frequency band.
  • the first network device there may be multiple network devices that can receive the reference signal, and the manner in which these network devices receive the reference signal may be the same. Therefore, this article uses the second network device to receive the reference signal as an example.
  • the second network device may determine a reference signal to be detected in the second frequency band according to the frequency domain reference point, and detect the reference signal.
  • the second network device may adopt a cross-correlation detection method. Specifically, the second network device may generate a reference signal locally, and use the generated local reference signal to perform cross-correlation operation with the received signal. If the correlation peak exceeds a certain value, The threshold value, the second network device may determine that the reference signal from the first network device is received.
  • the second network device may determine at least one frequency domain reference point according to the second frequency band, because the frequency domain in the embodiment of the present application
  • the reference points are all predefined or configured. Therefore, the second network device determines at least one frequency domain reference point according to the second frequency band.
  • a determination method refer to the first network device described in S51 to determine at least one frequency domain according to the first frequency band.
  • a reference point manner, and at least one frequency domain reference point determined by the second network device is the same as at least one frequency domain reference point determined by the first network device, so that the first network device and the second network device can be guaranteed The same is true for reference signals.
  • the second network device may generate the reference signal according to the determined at least one frequency domain reference point.
  • the second network device may generate the reference signal according to the at least one frequency domain reference point.
  • reference may also be made to the first network device described in S52. The manner of generating the reference signal by at least one frequency-domain reference point is not described in detail.
  • the operating frequency band (first frequency band) of the first network device and the operating frequency band (second frequency band) of the second network device are the same frequency band.
  • the reference signal sent on the network may be 2-13, and the second network device detects on the second frequency band.
  • the detected reference signal is also 2-13.
  • the second network device may generate the reference signals 2-13 in advance. After detecting a signal on the second frequency band, the second network device may use the generated reference signals 2 to 13 to perform cross-correlation operations with the detected signal. If the correlation peak is greater than or equal to a certain threshold, the second network device determines Received reference signals 2-13 from the first network device.
  • the digital number in FIG. 8 can be regarded as the number of the subcarrier, or as the number of the carrier, or as the number of the element included in the reference signal sequence.
  • the first frequency band and the second frequency band are exactly aligned as an example. Therefore, the second network device can receive all of the reference signal, or the second network device may also receive a part of the reference signal, as shown in FIG. 9.
  • the operating frequency band (first frequency band) of the first network device and the operating frequency band (second frequency band) of the second network device are not the same frequency band, and the two have an intersection.
  • the reference signal sent by the first network device on the first frequency band may be 2-13
  • the second network device detects on the second frequency band, and the detected reference signal is 5-13
  • the second network device may generate reference signals 5 to 13 in advance. After detecting the signal on the second frequency band, the second network device may use the generated reference signals 5 to 13 to perform cross-correlation operations with the detected signal.
  • the second network device determines that the reference signals 5 to 13 from the first network device have been received.
  • the digital number in FIG. 9 may be regarded as a number of a subcarrier, or as a number of a carrier, or as an element number included in a reference signal sequence.
  • the order of the steps of S51 to S54 is not limited in this article.
  • S51 and S52 are considered as a whole, such as the first part of the steps
  • S53 and S54 are considered as a whole, such as the second Partial steps
  • the execution time of the first part of the step can be earlier than the execution time of the second part of the step
  • the execution time of the second part of the step can be earlier than the execution time of the first part of the step
  • the second network device is not sure whether the reference signal from the first network device will be transmitted and when it will not be transmitted, the second can All reception times detect the presence of a reference signal.
  • the second part of the step may be performed earlier than the first part.
  • the second network device starts the detection early, the reference signal of the first network device will only reach the first.
  • the second network device can detect the reference signal, that is, the second network device receives successfully, and this step should occur after the first step.
  • first network device and the second network device are adjacent network devices, the transmission delay between the two is small and can be ignored, and the first network device and the second network device have been configured and determined to send the reference signal.
  • Time / arrival time, the first part of the steps and the second part of the steps can be considered to be performed synchronously.
  • FIG. 10 is a schematic structural diagram of a communication device 1000.
  • the communication apparatus 1000 may implement the functions of the first network device involved in the foregoing.
  • the communication device 1000 may be the first network device described above, or may be a chip provided in the first network device described above.
  • the communication device 1000 may include a processor 1001 and a transceiver 1002.
  • the processor 1001 may be configured to execute S51 and S52 in the embodiment shown in FIG. 5 and / or other processes for supporting the technology described herein.
  • the transceiver 1002 may be used to perform 54 in the embodiment shown in FIG. 5 and / or other processes to support the techniques described herein.
  • the processor 1001 is configured to determine at least one frequency domain reference point according to the first frequency band;
  • the processor 1001 is further configured to generate a reference signal according to the at least one frequency domain reference point;
  • the transceiver 1002 is configured to send the reference signal on the first frequency band.
  • FIG. 11 is a schematic structural diagram of a communication device 1100.
  • the communication device 1100 may implement the functions of the second network device involved in the foregoing.
  • the communication device 1100 may be the second network device described above, or may be a chip provided in the second network device described above.
  • the communication device 1100 may include a processor 1101 and a transceiver 1102.
  • the processor 1101 may be configured to execute S53 in the embodiment shown in FIG. 5 and / or other processes for supporting the technology described herein, such as a process of determining at least one frequency domain reference point according to a second frequency band. And a process of generating a reference signal based on at least one frequency domain reference point.
  • the transceiver 1102 may be used to perform S54 in the embodiment shown in FIG. 5 and / or other processes for supporting the technology described herein.
  • the processor 1101 is configured to determine a second frequency band for receiving a reference signal
  • the transceiver 1102 is configured to receive a part or all of the reference signal on the second frequency band, where the reference signal is generated according to at least one frequency domain reference point, and the at least one frequency domain reference point is based on the first The second frequency band is determined.
  • the communication device 1000 or the communication device 1100 can also be implemented by the structure of the communication device 1200 as shown in FIG. 12A.
  • the communication device 1200 can implement the functions of the terminal equipment or the network equipment mentioned above.
  • the communication device 1200 may include a processor 1201.
  • the processor 1201 may be configured to execute S51 and S52 in the embodiment shown in FIG. 5, and / or used to support what is described herein. Other processes of the described technology; or, when the communication device 1200 is used to implement the function of the second network device involved above, the processor 1201 may be configured to execute S53 in the embodiment shown in FIG. 5 and / or Other procedures to support the techniques described herein.
  • the communication device 1200 can pass through a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), a system chip (SoC), and a central processor (central processor).
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • SoC system chip
  • central processor central processor
  • the communication device 1200 may be set in the first network device or the second network device in the embodiment of the present application, so that the first network device or the second network device implements the provided in the embodiment of the present application. method.
  • the communication device 1200 may include a transceiver component for communicating with other devices.
  • the transceiver component may be used to perform S54 in the embodiment shown in FIG. 5 and / or used to support Other processes for the techniques described herein.
  • a transceiver component is a communication interface. If the communication device 1200 is a first network device or a second network device, the communication interface may be a transceiver in the first network device or the second network device, such as the transceiver 1001 or the transceiver.
  • the transceiver 1102 is, for example, a radio frequency transceiver component in the first network device or the second network device, or, if the communication device 1200 is a chip set in the first network device or the second network device, the communication interface may be Input / output interface of the chip, such as input / output pins.
  • the communication device 1200 may further include a memory 1202, as shown in FIG. 12B.
  • the memory 1202 is configured to store computer programs or instructions
  • the processor 1201 is configured to decode and execute these computer programs or instructions.
  • these computer programs or instructions may include the functional programs of the first network device or the second network device.
  • the first network device may be caused to implement the functions of the first network device in the method provided in the embodiment shown in FIG. 5 of the embodiment of the present application.
  • the functional program of the second network device is decoded and executed by the processor 1201
  • the second network device may be caused to implement the function of the second network device in the method provided in the embodiment shown in FIG. 5 in the embodiment of the present application.
  • the function programs of the first network device or the second network device are stored in a memory external to the communication device 1200.
  • the function program of the first network device is decoded and executed by the processor 1201
  • a part or all of the content of the function program of the first network device is temporarily stored in the memory 1202.
  • the function program of the second network device is decoded and executed by the processor 1201
  • a part or all of the content of the function program of the second network device is temporarily stored in the memory 1202.
  • the function programs of the first network device or the second network device are set in a memory 1202 stored in the communication device 1200.
  • the communication device 1200 may be set in the first network device in the embodiment of the present application.
  • the function program of the second network device is stored in the memory 1202 inside the communication device 1200, the communication device 1200 may be set in the second network device in the embodiment of the present application.
  • part of the content of the function program of the first network device is stored in a memory external to the communication device 1200, and content of the other part of the function program of the first network device is stored in the communication device 1200.
  • part of the content of the function program of the second network device is stored in a memory external to the communication device 1200, and other content of the function program of the second network device is stored in the memory 1202 inside the communication device 1200.
  • the communication device 1000, the communication device 1100, and the communication device 1200 are presented in the form of dividing each functional module into corresponding functions, or may be presented in the form of dividing each functional module in an integrated manner.
  • the "module” herein may refer to an ASIC, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and / or other devices capable of providing the above functions.
  • the communication device 1000 provided in the embodiment shown in FIG. 10 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 1001, and the transceiver module may be implemented by the transceiver 1002.
  • the processing module may be used to execute S51 and S52 in the embodiment shown in FIG. 5 and / or other processes for supporting the technology described herein.
  • the transceiver module may be used to perform S54 in the embodiment shown in FIG. 5 and / or other processes for supporting the technology described herein.
  • a processing module is configured to determine at least one frequency domain reference point according to the first frequency band
  • a processing module further configured to generate a reference signal according to the at least one frequency domain reference point
  • the transceiver module is configured to send the reference signal on the first frequency band.
  • the communication device 1100 provided in the embodiment shown in FIG. 11 may also be implemented in other forms.
  • the communication device includes a processing module and a transceiver module.
  • the processing module may be implemented by the processor 1101, and the transceiver module may be implemented by the transceiver 1102.
  • the processing module may be configured to execute S53 in the embodiment shown in FIG. 5 and / or other processes for supporting the technology described herein.
  • the transceiver module may be used to perform S54 in the embodiment shown in FIG. 5 and / or other processes for supporting the technology described herein.
  • a processing module is configured to determine a second frequency band for receiving a reference signal
  • a transceiver module configured to receive a part or all of the reference signal on the second frequency band, wherein the reference signal is generated according to at least one frequency domain reference point, and the at least one frequency domain reference point is based on the second The frequency band is determined.
  • the communication device 1000, the communication device 1100, and the communication device 1200 provided in the embodiments of the present application can be used to execute the method provided in the embodiment shown in FIG. 5, the technical effects that can be obtained can refer to the foregoing method embodiments. Here, No longer.
  • Embodiments of the present application are described with reference to flowcharts and / or block diagrams of methods, devices (systems), and computer program products according to the embodiments of the present application. It should be understood that each process and / or block in the flowcharts and / or block diagrams, and combinations of processes and / or blocks in the flowcharts and / or block diagrams can be implemented by computer program instructions.
  • These computer program instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing device to produce a machine, so that the instructions generated by the processor of the computer or other programmable data processing device are used to generate Means for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another readable storage medium. For example, the computer instructions may be transmitted from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD) ))Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种参考信号发送、接收方法、装置及设备,用于提供一种参考信号发送或接收机制。第一网络设备根据第一频带确定至少一个频域参考点。该第一网络设备根据该至少一个频域参考点生成参考信号,并在第一频带上发送所述参考信号。频域参考点是根据频带确定的,那么发送参考信号的第一网络设备和接收参考信号的第二网络设备都可以根据频带来确定频域参考点,则两个网络设备在相同的频域位置上可以确定相同的参考信号,从而第一网络设备发送的参考信号能够被正确第二网络设备检测到。

Description

一种参考信号发送、接收方法、装置及设备
本申请要求在2018年7月27日提交国家知识产权局、申请号为201810848338.0、申请名称为“一种参考信号发送、接收方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种参考信号发送、接收方法、装置及设备。
背景技术
在无线通信系统,如新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、或演进的LTE(LTE-Advanced,LTE-A)系统等通信系统中,若系统使用时分双工(time division duplex,TDD)的双工模式,基站(base station,BS)与基站之间可能产生异向干扰(cross-link interference,CLI)。所谓基站之间的异向干扰,主要指的是一个基站发送的下行(downlink,DL)信号会干扰另一个基站的上行(uplink,UL)信号,上行信号例如是用户设备(user equipment,UE)发送给基站的信号。例如,第一基站在发送下行信号时,第二基站正在接收上行信号,第一基站发送的下行信号一般功率比较大,可能会被第二基站接收,这样就会干扰第二基站接收上行信号。
基站之间的CLI通常发生在工作在相同频率的两个TDD小区的传输方向不同的情况中,因此,若TDD小区保持传输方向相同,通常不会产生CLI。但也有例外的情况,例如地理位置相隔很远的两个基站,即使它们的传输方向相同,也就是这两个基站同时接收上行信号以及同时发送下行信号,但由于它们之间较远的地理位置,导致一个基站发送的下行信号到达另一个基站时产生了明显的时延,可能另一个基站已经切换到上行接收方向,此时这两个基站也会产生CLI。为了解决这个问题,可以考虑进行基站之间的测量,从而能够识别干扰基站,但是目前还没有标准化的基站之间测量的机制。而且,即使目前能够利用基站与终端设备之间进行测量的方法进行基站之间的测量,现有技术中频域上用于确定参考信号的公共参考点是每个基站独立配置的,不同的基站可能配置不同的公共参考点,因此,两个基站在相同的频域位置上会确定不同的参考信号,导致一个基站所发送的参考信号无法被另一个基站所检测到,例如后续需要完成信号检测或信道测量等工作也就无法完成。
发明内容
本申请实施例提供一种参考信号发送、接收方法、装置及设备,提供一种参考信号发送或接收机制。
第一方面,提供一种参考信号发送方法,该方法包括:根据第一频带确定至少一个频域参考点;根据所述至少一个频域参考点生成参考信号;在所述第一频带上发送所述参考信号。
该方法可由第一通信装置执行,第一通信装置可以是网络设备或能够支持网络设备实 现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。
第二方面,提供一种参考信号接收方法,该方法包括:确定用于接收参考信号的第二频带;在所述第二频带上接收所述参考信号的部分或全部,其中,所述参考信号根据至少一个频域参考点生成,所述至少一个频域参考点根据所述第二频带确定。
该方法可由第二通信装置执行,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。
其中,第一频带可以是第一通信装置的工作频带,或者为预先配置的或协议预先定义的用于发送参考信号的频带,第二频带可以是第二通信装置的工作频带,或者为预先配置的或协议预先定义的用于接收参考信号的频带,其中,工作频带也可以称为载波频带。第一频带与第二频带可以是同一频带,或者,第一频带与第二频带可以不完全重叠,但存在交集。
在本申请实施例中,频域参考点是根据频带确定的,那么发送参考信号的第一通信装置和接收参考信号的第二通信装置都可以根据频带来确定频域参考点,二者确定出的频域参考点是一致的,则第一通信装置和第二通信装置在相同的频域位置上可以确定相同的参考信号,从而第一通信装置发送的参考信号能够被第二通信装置正确检测到。可见,通过本申请实施例所提供的新的参考信号发送或接收机制,第一通信装置所发送的参考信号能够被第二通信装置检测到,实现了两个通信装置之间的参考信号的正确传输。
在一个可能的设计中,根据第一频带确定至少一个频域参考点,包括:根据所述第一频带所在的频率区间确定所述至少一个频域参考点,所述频率区间为根据预定义的规则,对频率进行划分的区间,所述至少一个频域参考点是为所述频率区间预定义或配置的。相应的,所述至少一个频域参考点是根据所述第二频带所在的频率区间确定的,所述频率区间为根据预定义的规则,对频率进行划分的区间,所述至少一个频域参考点是为所述频率区间预定义或配置的。
可以事先根据预定义的规则对频率进行划分,以得到至少一个频率区间,并可以为至少一个频率区间中的每个频率区间预定义一个或多个频域参考点,那么,确定第一频带所属的频率区间后,也就可以确定第一频带对应的至少一个频域参考点就是第一频带所属的频域区间对应的频域参考点,对于第二频带来说也是同样的。这种方式直接可以预定义频域参考点,对于设备来说实现较为简单。而且因为是通过预定义的方式划分的频率区间以及预定义的频域参考点,因此对于发送参考信号的设备和接收参考信号的设备来说,确定的频域参考点就会是一致的,因此二者在相同的频域位置会生成相同的参考信号。
在一个可能的设计中,所述参考信号根据一个频域参考点确定,所述一个频域参考点的频率为所述频率区间的最低频率,或为小于所述频率区间最低频率的频率。
例如第一频带属于一个频率区间,且为一个频率区间预定义了一个频域参考点,那么参考信号就可以根据该频率区间对应的一个频域参考点确定。在本申请实施例中,可以使得频域区间所对应的频域参考点的频率是该频率区间的最低频率,或者还可以小于该频率区间的最低频率,这种方法简便直观,并且可以尽量保证在该频带内部署的通信系统,网络设备都能正确确定参考信号。
在一个可能的设计中,所述第一频带位于N个频率区间,N为大于或等于2的整数,所述至少一个频域参考点为一个频域参考点,所述一个频域参考点为所述N个频率区间中、所述第一频带的最低频率所在的频率区间对应的频域参考点。相应的,所述第二频带位于 N个频率区间,N为大于或等于2的整数,所述至少一个频域参考点为一个频域参考点,所述一个频域参考点为所述N个频率区间中、所述第二频带的最低频率所在的频率区间对应的频域参考点。
如果第一频带位于至少两个频率区间,那么可以选择其中的一个频率区间来确定频域参考点,为了尽量保证在该频带内部署的通信系统,网络设备都能正确确定参考信号,可以选取N个频率区间中所述第一频带的最低频率所在的频率区间,则参考信号就可以根据该频率区间对应的频域参考点确定,对于第二频带也是同样。例如,该频率区间对应的频域参考点的频率为该频率区间的最低频率,或为小于该频率区间最低频率的频率。
在一个可能的设计中,所述第一频带位于N个频率区间,N为大于或等于2的整数,所述至少一个频域参考点为N个频域参考点,所述N个频域参考点包括所述N个频率区间中的每个频率区间对应的频域参考点。相应的,所述第二频带位于N个频率区间,N大于或等于2,所述至少一个频域参考点为N个频域参考点,所述N个频域参考点包括所述N个频率区间中的每个频率区间对应的频域参考点。
如果第一频带位于至少两个频率区间,那么也可以根据其中的每个频率区间来分别确定参考信号的相应部分,也就是,最终得到的参考信号是根据N个频率区间对应的频域参考点所确定的。如果第一频带位于至少两个频率区间,那么参考信号究竟是根据N个频率区间确定还是根据N个频率区间中的一个频率区间确定,可以通过协议规定,或者也可以由网络设备之间协商确定,具体的不做限制。对于第二频带来说也是同样的,且对于第一频带和第二频带,采取的确定方式应该是一致的。
在一个可能的设计中,根据第一频带确定至少一个频域参考点,包括:确定为所述第一频带配置的所述至少一个频域参考点。相应的,所述至少一个频域参考点是为所述第二频带配置的。
在这种实施方式中,第一网络设备也可以根据第一频带直接确定至少一个频域参考点。例如,无需划分频率区间,而是可以为至少一个网络设备的工作频带预定义频域参考点,例如为至少一个网络设备中的每个网络设备的工作频带预定义一个或多个频域参考点,或者也可以不是预定义,而是可以通过信令配置的方式为至少一个网络设备中的每个网络设备的工作频带配置一个或多个频域参考点,在为频带预定义或者配置频域参考点时,可以考虑为参与测量的网络设备的工作频带配置相同的频域参考点,那么,无论对于第一频带还是第二频带,都可以直接确定频域参考点。这样,参与测量的网络设备在相同的频域位置就能生成相同的参考信号,从而能够实现参考信号的发送和接收。这种方式无需划分频率区间,或者无需根据预定义的频率区间确定频域参考点,较为灵活。
在一个可能的设计中,所述参考信号是第一网络设备发送给第二网络设备的。
例如参考信号可以用于两个网络设备之间的测量,或者也可以有其他的用途。
第三方面,提供第一种通信装置,该通信装置例如为第一网络设备。该通信装置具有实现上述方法设计中的第一网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信装置的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第一方面或第一方面的任意一种可能的实施方式所提供的方法中的相应功能。
第四方面,提供第一种通信装置,该通信装置例如为第二网络设备。该通信装置具有 实现上述方法设计中的第二网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信装置的具体结构可包括处理模块和收发模块。处理模块和收发模块可执行上述第二方面或第二方面的任意一种可能的实施方式所提供的方法中的相应功能。
第五方面,提供第三种通信装置,该通信装置例如为第一网络设备。该通信装置具有实现上述方法设计中的第一网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信装置的具体结构可包括处理器和收发器。处理器和收发器可执行上述第一方面或第一方面的任意一种可能的实施方式所提供的方法中的相应功能。其中,收发器例如实现为通信接口,这里的通信接口可以理解为是网络设备中的射频收发组件。
第六方面,提供第四种通信装置,该通信装置例如为第二网络设备。该通信装置具有实现上述方法设计中的第二网络设备的功能。这些功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
在一个可能的设计中,该通信装置的具体结构可包括处理器和收发器。处理器和收发器可执行上述第二方面或第二方面的任意一种可能的实施方式所提供的方法中的相应功能。其中,收发器例如实现为通信接口,这里的通信接口可以理解为是网络设备中的射频收发组件。
第七方面,提供第五种通信装置。该通信装置可以为上述方法设计中的第一网络设备,或者为设置在第一网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第五种通信装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,第五种通信装置还可以包括通信接口,如果第五种通信装置为第一网络设备,则通信接口可以是第一网络设备中的收发器,例如为第一网络设备中的射频收发组件,或者,如果第五种通信装置为设置在第一网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第八方面,提供第六种通信装置。该通信装置可以为上述方法设计中的第二网络设备,或者为设置在第二网络设备中的芯片。该通信装置包括:存储器,用于存储计算机可执行程序代码;以及处理器,处理器与存储器耦合。其中存储器所存储的程序代码包括指令,当处理器执行所述指令时,使第五种通信装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,第六种通信装置还可以包括通信接口,如果第六种通信装置为第一网络设备,则通信接口可以是第二网络设备中的收发器,例如为第二网络设备中的射频收发组件,或者,如果第六种通信装置为设置在第二网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第九方面,提供第一种通信系统,该通信系统可以包括第三方面所述的第一种通信装置和第四方面所述的第二种通信装置。
第十方面,提供第二种通信系统,该通信系统可以包括第五方面所述的第三种通信装 置和第六方面所述的第四种通信装置。
第十一方面,提供第三种通信系统,该通信系统可以包括第七方面所述的第五种通信装置和第八方面所述的第六种通信装置。
第十二方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十三方面,提供一种计算机存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
第十四方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意一种可能的设计中所述的方法。
第十五方面,提供一种包含指令的计算机程序产品,所述计算机程序产品中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意一种可能的设计中所述的方法。
通过本申请实施例所提供的新的参考信号发送或接收机制,第一通信装置所发送的参考信号能够被第二通信装置检测到,实现了两个通信装置之间的参考信号的正确传输。
附图说明
图1为两个基站间的CL1的一种示意图;
图2为距离较远的基站间的CL1的一种示意图;
图3为生成CSI-RS的一种示意图;
图4为本申请实施例所应用的一种网络架构的示意图;
图5为本申请实施例提供的一种参考信号发送、接收方法的流程图;
图6A为本申请实施例假设的一种设置频域参考点的方式的示意图;
图6B为本申请实施例提供的一种设置频域参考点的方式的示意图;
图7为本申请实施例提供的跨频率区间的情况下生成参考信号的示意图;
图8为本申请实施例提供的第一网络设备发送参考信号以及第二网络设备检测参考信号的一种示意图;
图9为本申请实施例提供的第一网络设备发送参考信号以及第二网络设备检测参考信号的另一种示意图;
图10为本申请实施例提供的能够实现第一网络设备的功能的通信装置的一种示意图;
图11为本申请实施例提供的能够实现第二网络设备的功能的通信装置的一种示意图;
图12A~图12B为本申请实施例提供的一种通信装置的两种示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端设备,包括向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。该终端设备可以包括用户设备(user equipment,UE)、无线终端设备、移动终端设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point,AP)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端设备的计算机,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,智能穿戴式设备等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
2)网络设备,例如包括基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备。网络设备可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。网络设备还可协调对空口的属性管理。例如,网络设备可以包括LTE系统或LTE-A中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(fifth generation,5G)NR系统中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(CloudRAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
3)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。
如上介绍了本申请实施例涉及的一些概念,下面介绍本申请实施例涉及的技术特征。
在无线通信系统,如NR系统、LTE系统、或LTE-A系统等通信系统中,若系统使用TDD的双工模式,基站与基站之间可能产生CLI。例如,第一基站在发送下行信号时,第二基站正在接收上行信号,第一基站发送的下行信号一般功率比较大,可能会被第二基站接收,这样就会干扰第二基站接收上行信号。例如参考图1,图1中的第一小区和第二小区(可以认为就是第一小区中的第一基站和第二小区中的第二基站)工作在相同的频段,第一小区中,第一基站正在给终端设备1发送下行信号,同时第二小区中,第二基站正在接收终端设备2发送的上行(uplink,UL)信号,第一基站发送的下行信号一般功率比较大,可能也会被第二基站接收,这样就会干扰到第二基站接收终端设备2发送的上行信号,因此第一小区的下行信号干扰了第二小区的上行信号的接收。
基站之间的CLI通常发生在工作在相同频率的两个TDD小区的传输方向不同的情况中,因此,若TDD小区保持传输方向相同,通常不会产生CLI。但也有例外的情况,例如地理位置相隔很远的两个基站,即使它们的传输方向相同,也就是这两个基站同时接收上行信号以及同时发送下行信号,但由于它们之间较远的地理位置,导致一个基站发送的下行信号到达另一个基站时产生了明显的时延,可能另一个基站已经切换到上行接收方向,此时这两个基站也会产生CLI。例如参考图2,基站1和基站2的传输方向本来是相同的,但由于距离较远,基站1发送的下行信号到达基站2时会有时延,此时基站2已经开始了上行信号的接收过程,此时,基站1发送的下行信号还是会干扰基站2的上行信号的接收。这种来自远处基站的超远距离干扰的成因,通常是因为对流层弯曲现象造成,是否造成基站间干扰、干扰距离以及时延等,都受地理位置和天气影响,因此具有很大的不确定性。此外,远距离山坡处的基站、远距离湖面或海面的基站发送的下行信号也可能产生超远距离干扰。
为了对抗超远距离干扰,可以考虑进行基站之间的测量,从而能够识别干扰基站,但是在NR系统中,目前没有标准化用于NR基站(例如gNB)之间(例如,gNB与gNB之间)信道状况测量的参考信号,也没有标准化相关的测量流程。
而gNB与终端设备之间的信道状况方面,在下行方向,终端设备可以通过信道状态信息参考信号(channel-state information reference signal,CSI-RS)测量gNB与终端设备之间的下行信道状况。首先简单介绍现有CSI-RS的频域生成逻辑。请参考图3,小区在广播的系统消息中指示一个频域上的参考点,可称为频域参考点,例如为图3中指示的频域参考点,这个频域参考点是公共的,它对该小区所服务的终端设备都有效。CSI-RS可以根据预定义的公式生成,并根据频域参考点的位置,按一定的顺序(如从低频向高频)进行映射,终端设备和基站都可以确定在每个子载波上承载的CSI-RS,基站在相应的位置上发送CSI-RS,而终端设备则根据自己接收/测量CSI-RS的带宽和位置,确定自己接收的CSI-RS。如图3中,基站在基站的频带内发CSI-RS,终端设备1确定在终端设备1接收/测量CSI-RS的频带内接收到的CSI-RS为“6~17”,终端设备2确定在终端设备2的接收/测量CSI-RS的频带内接收到的CSI-RS为“10-29”。其中,图3中的数字编号可以视为子载波的编号,或者视为载波的编号,或者视为CSI-RS序列中包括的元素的编号等。
另外CSI-RS的生成具体还可能与小区身份标识号(ID)或时域位置等其他因素有关, 但本文只重点关注频域参考点的影响,因此不再多介绍与其他因素相关的内容。对于一个小区ID已经固定的特定的小区,在特定的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号(symbol)上,终端设备会接收到怎样的CSI-RS,与频域参考点的位置强相关。
那么,首先,虽然现有技术能够支持基站与终端设备之间的测量,但是,现有技术中不支持基站之间的测量。
其次,假设能够进行基站之间的测量,例如使用类似基站与终端设备之间的CSI-RS的测量方式来进行基站与基站之间的信道测量或信号检测,则现有技术中的基站与终端设备之间的CSI-RS的测量方式也难以应用到基站与基站之间的测量中。因为,现有技术中频域上的公共参考点是每个基站为基站和该基站所服务的终端设备之间的通信独立配置的,也就是,不同的基站可能配置不同的公共参考点。鉴于公共参考点的不同,因此,两个基站在相同的频域位置上会确定不同的参考信号,导致一个基站所发送的参考信号无法被另一个基站所检测到,例如后续需要完成信号检测或信道测量等工作也就无法完成。
鉴于此,提供本申请实施例的技术方案,在本申请实施例中,第一通信装置和第二通信装置在相同的频域位置上可以确定相同的参考信号,从而第一通信装置发送的参考信号能够被第二通信装置正确检测到。可见,通过本申请实施例所提供的新的参考信号发送或接收机制,第一通信装置所发送的参考信号能够被第二通信装置检测到,实现了两个通信装置之间的参考信号的传输。
本申请实施例可以应用于5G NR系统,或者也可以应用于其它的通信系统,如LTE系统,只要该通信系统中存在一个实体需要发送信号,另一个实体需要接收或测量信号,就能够适用本申请实施例提供的技术方案。
前文介绍了目前存在的问题,以及介绍了本申请实施例可能应用的通信系统,下面介绍本申请实施例的一种应用场景,或者说是本申请实施例所应用的一种网络架构,请参考图4。
图4中包括网络设备1和网络设备2,网络设备1服务于终端设备1,网络设备2服务于终端设备2。网络设备1与网络设备2可以是地理位置相隔很远的两个网络设备,网络设备1和网络设备2之间需要进行测量。此外,还可能存在其他的网络设备,以及其他的终端设备,本申请实施例不做限制。另外,本申请实施例也可以应用于邻近的网络设备之间的测量,因此网络设备1与网络设备2也可以是地理位置邻近的两个网络设备。
图4中的网络设备例如为接入网(access network,AN)设备,例如基站。
下面结合附图介绍本申请实施例提供的技术方案。
本申请实施例提供一种参考信号发送、接收方法,请参见图5,为该方法的流程图。在下文的介绍过程中,以该方法应用于图4所示的网络架构为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置,其中,第一通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。对于第二通信装置也是同样,第二通信装置可以是网络设备或能够支持网络设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制,例如第一通信装置和第二通信装置都是网络设备,或者第一通信装置是网络设备,第二通信装置是能够支持网络设备实现该方法所需的功能的通信装置,等等。其中,网络设备例如为基站。
为了便于介绍,在下文中,以该方法由网络设备和网络设备执行为例,也就是,以第一通信装置是第一网络设备、第二通信装置是第二网络设备为例。例如,第一网络设备是图4所示的网络架构中的网络设备1,第二网络设备是图4所示的网络架构中的网络设备2,或者,第一网络设备是图4所示的网络架构中的网络设备2,第二网络设备是图4所示的网络架构中的网络设备1。
S51、第一网络设备根据第一频带确定至少一个频域参考点。
第一频带例如为第一网络设备的工作频带,或工作频带也可以称为载波频带,或者为预先配置的或协议预先定义的用于发送参考信号的频带,具体的不做限制。第一网络设备确定要在第一频带发送参考信号,那么第一网络设备首先可以根据第一频带确定至少一个频域参考点。
在本申请实施例中,第一网络设备根据第一频带确定至少一个频域参考点,具体可以包括,第一网络设备根据第一频带所在的频率区间确定至少一个频域参考点。其中,可以事先根据预定义的规则对频率进行划分,以得到至少一个频率区间,并可以为至少一个频率区间中的每个频率区间预定义一个或多个频域参考点,那么,确定第一频带所属的频率区间后,也就可以确定第一频带对应的至少一个频域参考点就是第一频带所属的频域区间对应的频域参考点。
作为确定频率区间的一种实施方式,一种划分频率区间的方法可以是第三代合作伙伴计划(3rd generation partnership project,3GPP)提供的,也就是说,频率区间可以包括3GPP标准中定义的、可部署在5G通信系统中的频带。3GPP标准中为NR系统中定义的频带方式如表1所示:
表1
Figure PCTCN2019098053-appb-000001
Figure PCTCN2019098053-appb-000002
表1中的N/A表示未设置。表1中,第一列的NR操作带宽表示序列号,或者理解为频带的标识。例如频带n1,就对应于1920MHz~1980MHz的上行带宽,以及对应于2110MHz~2170MHz的下行带宽,部署在频带n1上的通信系统可采用的双工模式为FDD模式。或者,例如频带n38为例,频带n38的双工模式为TDD模式,对应的上行频率范围为2570MHz~2620MHz,对应的下行频率范围为2570MHz~2620MHz。其中,对于TDD模式,通常上下行的频带的频率范围相同,通过时分的方式实现发送和接收的双工,对于FDD模式,通常上下行的频带的频率范围不同,通过频分的方式实现发送和接收的双工。
那么,表1中的一行就表示一个频率区间,例如n1就表示一个频率区间,n2表示另一个频率区间,以此类推。可以理解为,根据预定义的规则,在频率上划分出了多个频率区间。
在本申请实施例中,对表1中的每个频率区间,可以预定义频域参考点,本文主要以 为每个频率区间预定义一个频域参考点为例,实际并不限制为一个频率区间预定义的频域参考点的数量。例如,为表1中的频带n38、频带n41、频带n50和频带n51分别预定义的频域参考点可以参考表2:
表2
Figure PCTCN2019098053-appb-000003
表2中的最后一列参考点,也就是频域参考点,就是为相应的频率区间所设置的频域参考点。例如对于频带n38,根据表2可知,为频带n38设置的频域参考点的频率为2570MHz。表2只是选取了一部分频率区间作为示意,在实际应用中,对于表1中的每个频率区间都可以预定义一个或多个频域参考点。或者,可选的,也可以只为双工模式为TDD模式的频率区间设置频域参考点,对于双工模式为FDD模式、SUL模式和SDL模式的频率区间可以均不设置频域参考点。这是因为,通常只有TDD模式下的通信系统会产生同频CLI,而对于FDD模式下的通信系统,由于下行传输与上行传输在不同的频带进行,因此一般不会产生同频CLI。只为双工模式为TDD模式的频率区间设置频域参考点,可以减少所设置的频域参考点的数量。
在得到频率区间的第一种实施方式中,是以将表1中的一行看做一个频率区间为例。作为得到频率区间的第二种实施方式,还可以将表1中的一行再进行划分,以得到本申请实施例中的至少一个频率区间,也就是,将表1中的一个频带还可以再划分,得到一个或多个频率区间,在设置频域参考点时,依然可以为一个频率区间设置一个或多个频域参考点。对于频率区间包括的范围,本申请实施例不做限制。
作为得到频率区间的第三种实施方式,可以不借用表1,也就是不借用3GPP标准中划分的频带,而是以其他方式划分频率区间。例如,可以每隔100MHz划分一个频率区间。在这种情况下,可以认为一个频率区间对应两个频域参考点,也就是该频率区间的最低频率和最高频率为该频率区间对应的两个频域参考点的频率,或者,也可以认为一个频率区间对应一个频域参考点,例如可以规定,每个频率区间对应的最低频率是该频率区间对应的频域参考点的频率,或者规定,每个频率区间对应的最高频率是该频率区间对应的频域参考点的频率。例如,一种示例如表3:
表3
频率区间 频域参考点
2500MHz≤f<2600MHz 2500MHz
2600MHz≤f<2700MHz 2600MHz
2700MHz≤f<2800MHz 2700MHz
表3中的一行就代表一个频率区间,频域参考点就是相应的频率区间对应的频域参考点。如表3所示,如果一个网络设备工作于2500MHz–2600MHz的范围,也就是该网络设备的工作带宽位于2500MHz–2600MHz的频率区间内,则该网络设备可以确定频域参考点为2500MHz;或者,如果一个网络设备工作于2600MHz–2700MHz的范围,也就是该网络设备的工作带宽位于2600MHz–2700MHz的频率区间内,则该网络设备可以确定频域参考点为2600MHz。
可选地,如果将本申请实施例提供的方案应用于NR系统,则,在划分频率区间时,根据频率位置的不同,所划分的一个频率区间的频率范围(或称频率间隔)也可以不同,这样可以适配NR系统的部署带宽。一个NR系统的工作频带通常不是在所有频点上都是均匀的,频率越高,可部署的频带越大。例如,在6GHz以下的频率范围内,一个小区的工作频带范围通常不超过100MHz,但在6GHz以上时,一个小区的工作频带范围可达到400MHz。在不同的频率位置定义不同的频率间隔,可以使得频域参考点的颗粒度不至于过大或过小,可以尽量减小一个网络设备的工作带宽跨两个或多个频率区间的可能性,降低发送/检测参考信号的复杂度。而且,对于工作在低频的网络设备,如果按照较大的频率间隔来划分频率区间,则这样的网络设备实际上的工作带宽虽然不大,却因为频率区间较大,因此需要存储过长的参考信号用于发送或检测,增加了网络设备的实现复杂度,而采用本申请实施例提供的方案就能尽量避免这一点。
例如,可以将频率先划分为至少两部分,其中的每一部分可以再划分得到至少一个频率区间。对于至少两部分中的不同的部分,一个频率区间的频率范围可以是不同的。例如将频率划分为三个部分,分别称为第一部分、第二部分和第三部分,为第一部分中一个频率区间的频率范围称为第一频率间隔,为第二部分中一个频率区间的频率范围称为第二频率间隔,为第三部分中一个频率区间的频率范围称为第三频率间隔,则第一频率间隔、第二频率间隔和第三频率间隔均不相同。例如在设置频率间隔时可参考一个原则:频率越低,则设置的频率间隔可以越小,而频率越高,设置的频率间隔可以越大。
例如,将频率划分为三个部分,第一部分包括3GHz以下的频率(不包括3GHz),第二部分包括3GHz–6GHz(包括3GHz,不包括6GHz),第三部分包括6GHz及以上的频率(包括6GHz)。第一部分可以视为低频部分,例如设置的频率间隔的范围可以是[5MHz,100MHz],例如设置为100MHz,也就是可以每隔100MHz为一个频率区间并设置一个相应的频域参考点;第二部分可以视为中高频部分,例如设置的频率间隔的范围可以是[100MHz,400MHz],例如设置为200MHz,也就是可以每隔200MHz为一个频率区间并设置一个频域参考点;第三部分可以视为高频部分,例如设置的频率间隔可以是1GHz,也就是可以每隔1GHz为一个频率区间并设置一个频域参考点。对此可以参考表4:
表4
Figure PCTCN2019098053-appb-000004
Figure PCTCN2019098053-appb-000005
表4中,频率范围就表示将频率划分得到的不同的部分,例如f<3GHz表示第一部分,3GHz≤f<6GHz表示第二部分,6GHz≤f表示第三部分。表4中的
Figure PCTCN2019098053-appb-000006
表示对X进行向下取整。
表4中,等价于将每个频率区间中的最低频设置为该频率区间的频域参考点,也即表4可以等价于表5:
表5
Figure PCTCN2019098053-appb-000007
表5中的第一列表示频率的三个部分,第二列表示对频率的三个部分分别又划分得到的频率区间,第三列就表示频率区间所对应的频域参考点。
前文介绍了如何得到频率区间,下文就介绍如何为频率区间设置频域参考点。
可选地,继续以为一个频率区间设置了一个频域参考点,那么该频域区间所对应的频域参考点的频率可以是该频率区间的最低频率(如表5的示例),或者,频域区间所对应的频域参考点的频率也可以小于该频率区间的最低频率。该规则可以适用于每个频率区间,或者也可以适用于部分频率区间,具体的不做限制。
例如,一个网络设备的工作带宽属于频率区间1,频率区间1对应的频域参考点例如为频域参考点1,频域参考点1的频率大于频率区间1的最低频率。那么,例如该网络设备的工作带宽还包括了比频率参考点1更低频的频率,则,在从网络设备的工作带宽的最低频到频率参考点1之间,这部分带宽内是没办法定义参考信号的,因此网络设备没办法在这部分带宽内发送参考信号,或者如果网络设备作为接收端,则网络设备也不能在这部分带宽内接收参考信号,降低了检测性能。对此可参考图6A,在图6A中可以看到,网络设备的工作带宽如第二行所示,网络设备的工作带宽包括了比该工作带宽所在的频率区间对应的频域参考点的频率更低的频率,那么图6A中的问号所示的部分,就是根据频域参考点也无法定义的部分,因为这部分的存在,降低了检测性能,也导致这部分资源的浪费。
为了解决该问题,在本申请实施例中,就可以使得频域区间所对应的频域参考点的频率是该频率区间的最低频率,或者还可以小于该频率区间的最低频率,这种方法简便直观, 并且可以尽量保证在该频带内部署的通信系统,网络设备都能正确确定参考信号。例如可参考图6B,在图6B中可以看到,网络设备的工作带宽并未包括比该工作带宽所在的频率区间对应的频域参考点的频率更低的频率,因此网络设备的整个工作带宽范围内都是可以根据频域参考点确定位置的,能够实现对参考信号的发送或检测,提高了检测性能。
在前文介绍的方案中,是预先划分了至少一个频率区间,并为其中的每个频率区间预定义了频域参考点,从而第一网络设备根据第一频带所在的频率区间就可以确定至少一个频域参考点,这可以作为确定频域参考点的一种实施方式。而在另一种实施方式中,第一网络设备也可以根据第一频带直接确定至少一个频域参考点。例如,无需划分频率区间,而是可以为至少一个网络设备的工作频带预定义频域参考点,例如为至少一个网络设备中的每个网络设备的工作频带预定义一个或多个频域参考点,或者也可以不是预定义,而是可以通过信令配置的方式为至少一个网络设备中的每个网络设备的工作频带配置一个或多个频域参考点,在为频带预定义或者配置频域参考点时,可以考虑为参与测量的网络设备(包括发送参考信号的网络设备和接收参考信号的网络设备)的工作频带配置相同的频域参考点,这样,参与测量的网络设备对参考信号就能有相同的理解。如果采用这种方式,则第一网络设备根据第一网络设备工作的第一频带,就可以直接确定为第一频带预定义或配置的至少一个频域参考点。这种方式无需划分频率区间,或者无需根据预定义的频率区间确定频域参考点,较为灵活。
无论是通过频率区间确定频域参考点,还是无需借助频率区间,直接根据频带确定频域参考点,第一网络设备和第二网络设备在相同的频域位置上都可以确定相同的参考信号,从而第一网络设备发送的参考信号能够被第二网络设备通过盲检正确检测到。可见,通过本申请实施例所提供的新的参考信号发送或接收机制,第一网络设备所发送的参考信号能够被第二网络设备检测到,实现了两个网络设备之间的参考信号的传输,例如,第一网络设备和第二网络设备之间要进行测量或信道估计等,也因为参考信号能够正确传输,而能够得以实现。
其中,图6A和图6B中的数字编号可以视为子载波的编号,或者视为载波的编号,或者视为参考信号序列中包括的元素的编号等。
S52、第一网络设备根据至少一个频域参考点生成参考信号。
在本申请实施例中,第一网络设备的工作带宽可能位于一个频率区间内,也可能会跨两个或者两个以上的频率区间。如果第一网络设备的工作带宽位于一个频率区间内,则第一网络设备可以直接确定该频率区间对应的频域参考点,并根据该频率区间对应的频域参考点生成参考信号。例如图6B就是网络设备生成的参考信号的一种示例,图6B中,生成的参考信号为1~12。
而如果第一网络设备的工作带宽跨两个或者两个以上的频率区间,则网络设备需要确定如何生成参考信号。例如,第一网络设备确定第一频带位于N个频率区间,N为大于或等于2的整数,以每个频率区间对应一个频域参考点为例,N个频率区间就会对应N个频域参考点。那么作为选择频域参考点的一种实施方式,第一网络设备可以确定N个频率区间中第一频带的最低频率所在的频率区间,例如称为第一频率区间,则第一网络设备确定的至少一个频率参考点的数量为1,也就是只确定了一个频域参考点,该频域参考点是第一频率区间所对应的频域参考点,第一网络设备根据该频域参考点确定发送的参考信号。通过这种方式可以减少确定的频域参考点的数量,可以在一定程度上减小生成参考信号的 复杂度。当然这里是以一个频率区间对应一个频域参考点为例,如果一个频域区间对应多个频域参考点,则第一网络设备确定的至少一个频域参考点的数量可能会大于1,或者,如果一个频域区间对应多个频域参考点,则第一网络设备也可以从第一频率区间对应的多个频域参考点中选择一个频域参考点作为所确定的频域参考点。
或者,作为选择频域参考点的另一种实施方式,第一网络设备确定第一频带位于N个频率区间,N为大于或等于2的整数,以每个频率区间对应一个频域参考点为例,N个频率区间就会对应N个频域参考点,则第一网络设备可以分别确定N个频率区间所对应的频域参考点。在这种实施方式中,第一网络设备所确定的至少一个频域参考点的数量为N,也就是共确定了N个频域参考点,这N个频域参考点就包括了N个频率区间中的每个频率区间所对应的频域参考点。当然这里是以一个频率区间对应一个频域参考点为例,如果一个频域区间对应多个频域参考点,则第一网络设备确定的至少一个频域参考点的数量会大于N。
请参考图7,以表3所示的频率区间为例,例如第一网络设备工作于2680MHz~2730MHz,跨了表3所示的第二行所示的第二个频率区间和第三行所示的第三个频率区间。第一网络设备可以确定两个频域参考点,分别为表3中的第二个频率区间对应的频域参考点(在图7中表示为频域参考点1)和第三个频率区间对应的频域参考点(在图7中表示为频域参考点2)。则第一网络设备可以根据这2个频域参考点生成参考信号,属于不同的频率区间的部分使用对应的频域参考点确定参考信号,如图7中所示,第一网络设备生成的参考信号中,10~14的部分是根据频域参考点1生成的,0~6的部分是根据频域参考点2生成的。其中,图7中的数字编号可以视为子载波的编号,或者视为载波的编号,或者视为参考信号序列中包括的元素的编号等。
如果第一网络设备的工作带宽跨两个或者两个以上的频率区间,则第一网络设备究竟采用如上的哪种实施方式来选择频域参考点,可以通过协议预定义,或者通过高层控制节点预先配置等,具体的不做限制。
本申请实施例中,每个频率区间的频域参考点是预定义的,网络设备之间不需要信令交互,也不需要更高层的控制节点的配置,减少了信令开销。网络设备根据网络设备的工作带宽所在的频率区间就可以确定频域参考点,从而发送参考信号的网络设备和接收参考信号的网络设备在相同的频域位置能够生成相同的参考信号,也就可以理解为,发送参考信号的网络设备和接收参考信号的网络设备对参考信号的“理解”是一致的,因此,两个网络设备可以进一步发送或接收用于网络设备之间测量的参考信号,接收参考信号的网络设备能够正确地检测到参考信号,实现网络设备之间的测量。并且,通常,跨运营商的情况下由于网络设备之间无法交互信息,导致无法进行信令交互或进行统一的控制,但通过本申请实施例所提供的预定义频域参考点的方法,不需要网络设备之间进行信令交互,因此不同运营商的网络设备之间也可以互相进行测量,扩展了本申请实施例的应用范围,也实现了跨运营商的网络设备之间的测量。
在前文中,频域参考点是根据频率区间确定的,也就是先将频率划分为至少一个频率区间,并为每个频率区间预定义频域参考点,或者,频域参考点是根据第一频带确定的,也就是为网络设备的工作频带预定义或配置了一个或多个频域参考点。这只是设置频域参考点的两种实施方式。作为设置频域参考点的第三种实施方式,频域参考点也可以不必预先定义,而是可配置的,或者是预定义方式与配置方式结合的形式确定的。例如,可以为 一个频率区间预定义多个频域参考点,而通过信令配置的方式使工作在该频率区间的网络设备使用多个频域参考点中的一个;又或者,可以为工作于某一频率区间内的网络设备配置任意频域参考点的频率,最大化配置灵活度。
其中,预定义可以理解为,无需信令通知,设备就可以直接确定所预定义的内容;配置可以理解为,需要信令通知后设备才能确定所配置的内容。显然,预定义的方式有助于减少信令的交互过程,而配置的方式会更为灵活。
例如,多个需要进行互相测量的网络设备所使用的频域参考点可以由比进行互相测量的网络设备更高层的控制节点进行配置,更高层的控制节点例如为下一代核心网节点(next generation core,NGC)。
又例如,若网络设备之间存在从属关系,则需要进行互相测量的网络设备所使用的频域参考点也可以由这些网络设备中的主控网络设备进行配置,并在配置后告知其他网络设备,从而使得这些网络设备对于频域参考点的理解是一致。
再例如,在部署网络设备时,由工程师通过人工方式分别对每个网络设备进行配置,在配置时,可以为需要互相测量的网络设备配置相同的频域参考点。
如上的几种方式也只是示例,本申请实施例不限制频域参考点的配置方式。在这种实施方式中,无需预定义频域参考点,使得频域参考点的选取更为灵活。
S53、第二网络设备确定用于接收参考信号的第二频带。
其中,将S51~S52看做一个整体,对S51~S52和S53的发生顺序不做限制,例如S51~S52可以发生在S53之前,或者S51~S52发生在S53之后,或者S51~S52和S53也可能同时发生。
其中,第二频带可以是第二网络设备的工作频带,或工作频带也可以称为载波频带,或者为预先配置的或协议预先定义的用于接收参考信号的频带,具体的不做限制。第一频带与第二频带可以是相同的频带,具有相同的频率范围,或者也可以是不同的频带,例如第一频带与第二频带可以交叠,但不完全交叠,也即部分交叠的。
S54、第一网络设备在第一频带上发送参考信号,则第二网络设备在第二频带上接收该参考信号的全部或部分。
第一网络设备在生成参考信号后就可以在第一频带上发送。其中,可能都多个网络设备都可以接收参考信号,这些网络设备接收参考信号的方式可能都是相同的,因此本文以第二网络设备接收参考信号为例。
例如,第二网络设备可以根据频域参考点确定第二频带内需要检测的参考信号,并对该参考信号进行检测。例如第二网络设备可以采用互相关的检测方式,具体的,第二网络设备可以在本地生成参考信号,并使用生成的本地的参考信号与接收的信号进行互相关操作,如果相关峰值超过一定的门限值,第二网络设备就可以确定是接收到了来自第一网络设备的参考信号。
而第二网络设备要生成参考信号,也就需要确定至少一个频域参考点,那么第二网络设备可以是根据第二频带来确定至少一个频域参考点,因为本申请实施例中的频域参考点都是预定义或配置的,因此第二网络设备根据第二频带确定至少一个频域参考点,确定方式可参考前文的S51中介绍的第一网络设备根据第一频带确定至少一个频域参考点的方式,而且,第二网络设备所确定的至少一个频域参考点与第一网络设备所确定的至少一个频域参考点是相同的,这样可以保证第一网络设备和第二网络设备对于参考信号有相同的理解。 另外,第二网络设备可以根据确定的至少一个频域参考点生成参考信号,关于第二网络设备根据至少一个频域参考点生成参考信号的方式,也可参考S52中介绍的第一网络设备根据至少一个频域参考点生成参考信号的方式,不多赘述。
请参考图8,例如第一网络设备的工作频带(第一频带)和第二网络设备的工作频带(第二频带)为同一频带,根据频域参考点可知,第一网络设备在第一频带上发送的参考信号可以是2~13,而第二网络设备在第二频带上检测,其检测得到的参考信号也就是2~13,例如第二网络设备可以事先生成参考信号2~13,在第二频带上检测到信号后,第二网络设备可以使用生成的参考信号2~13与检测到的信号进行互相关操作,如果相关峰值大于或等于一定的门限值,则第二网络设备确定接收到了来自第一网络设备的参考信号2~13。其中,图8中的数字编号可以视为子载波的编号,或者视为载波的编号,或者视为参考信号序列中包括的元素的编号等。图8中,是以第一频带和第二频带正好对齐为示例,因此第二网络设备能够接收参考信号的全部,或者,第二网络设备也可能接收参考信号的部分,可参考图9。
图9中,例如第一网络设备的工作频带(第一频带)和第二网络设备的工作频带(第二频带)不是同一频带,二者有交集。根据频域参考点可知,第一网络设备在第一频带上发送的参考信号可以是2~13,而第二网络设备在第二频带上检测,其检测得到的参考信号是5~13,例如第二网络设备可以事先生成参考信号5~13,在第二频带上检测到信号后,第二网络设备可以使用生成的参考信号5~13与检测到的信号进行互相关操作,如果相关峰值大于或等于一定的门限值,则第二网络设备确定接收到了来自第一网络设备的参考信号5~13。其中,图9中的数字编号可以视为子载波的编号,或者视为载波的编号,或者视为参考信号序列中包括的元素的编号等。
应当注意的是,本文对于S51~S54这几个步骤的顺序不限定,例如将S51和S52看做一个整体,例如称为第一部分步骤,将S53和S54看做一个整体,例如称为第二部分步骤,则第一部分步骤的执行时间可以早于第二部分步骤的执行时间,或者第二部分步骤的执行时间可以早于第一部分步骤的执行时间,或者第一部分步骤与第二部分步骤也可以同步执行。例如,若第一网络设备与第二网络设备之间的距离较远,第二网络设备不确定来自第一网络设备的参考信号是否会传输,也不确定何时会传输,则第二可以在所有的接收时间都检测是否存在参考信号,此时第二部分步骤可能会早于第一部分步骤执行,当然,尽管第二网络设备早早开始检测,也仅会在第一网络设备的参考信号到达第二网络设备后,第二网络设备才能检测到该参考信号,也就是说,第二网络设备接收成功,这个步骤应该发生在第一部分步骤之后。再例如,第一网络设备与第二网络设备为相邻的网络设备,两者的传输时延很小,可以忽略,并且第一网络设备与第二网络设备已配置并确定了参考信号的发送时间/到达时间,则第一部分步骤与第二部分步骤可以认为是同步执行的。
综上,采用本申请实施例提供的技术方案,可以使得网络设备之间对齐接收和发送的参考信号,从而使能了网络设备之间的测量等过程。
下面结合附图介绍本申请实施例提供的装置。
图10示出了一种通信装置1000的结构示意图。该通信装置1000可以实现上文中涉及的第一网络设备的功能。该通信装置1000可以是上文中所述的第一网络设备,或者可以是设置在上文中所述的第一网络设备中的芯片。该通信装置1000可以包括处理器1001和收发器1002。其中,处理器1001可以用于执行图5所示的实施例中的S51和S52,和/ 或用于支持本文所描述的技术的其它过程。收发器1002可以用于执行图5所示的实施例中的54,和/或用于支持本文所描述的技术的其它过程。
例如,处理器1001,用于根据第一频带确定至少一个频域参考点;
处理器1001,还用于根据所述至少一个频域参考点生成参考信号;
收发器1002,用于在所述第一频带上发送所述参考信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图11示出了一种通信装置1100的结构示意图。该通信装置1100可以实现上文中涉及的第二网络设备的功能。该通信装置1100可以是上文中所述的第二网络设备,或者可以是设置在上文中所述的第二网络设备中的芯片。该通信装置1100可以包括处理器1101和收发器1102。其中,处理器1101可以用于执行图5所示的实施例中的S53,和/或用于支持本文所描述的技术的其它过程,例如根据第二频带确定至少一个频域参考点的过程,以及根据至少一个频域参考点生成参考信号的过程等。收发器1102可以用于执行图5所示的实施例中的S54,和/或用于支持本文所描述的技术的其它过程。
例如,处理器1101,用于确定用于接收参考信号的第二频带;
收发器1102,用于在所述第二频带上接收所述参考信号的部分或全部,其中,所述参考信号根据至少一个频域参考点生成,所述至少一个频域参考点根据所述第二频带确定。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在一个简单的实施例中,本领域的技术人员可以想到,还可以将通信装置1000或通信装置1100通过如图12A所示的通信装置1200的结构实现。该通信装置1200可以实现上文中涉及的终端设备或网络设备的功能。该通信装置1200可以包括处理器1201。
其中,在该通信装置1200用于实现上文中涉及的第一网络设备的功能时,处理器1201可以用于执行图5所示的实施例中的S51和S52,和/或用于支持本文所描述的技术的其它过程;或者,在该通信装置1200用于实现上文中涉及的第二网络设备的功能时,处理器1201可以用于执行图5所示的实施例中的S53,和/或用于支持本文所描述的技术的其它过程。
其中,通信装置1200可以通过现场可编程门阵列(field-programmable gate array,FPGA),专用集成芯片(application specific integrated circuit,ASIC),系统芯片(system on chip,SoC),中央处理器(central processor unit,CPU),网络处理器(network processor,NP),数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片实现,则通信装置1200可被设置于本申请实施例的第一网络设备或第二网络设备中,以使得第一网络设备或第二网络设备实现本申请实施例提供的方法。
在一种可选实现方式中,该通信装置1200可以包括收发组件,用于与其他设备进行通信。其中,在该通信装置1200用于实现上文中涉及的第一网络设备或第二网络设备的功能时,收发组件可以用于执行图5所示的实施例中的S54,和/或用于支持本文所描述的技术的其它过程。例如,一种收发组件为通信接口,如果通信装置1200为第一网络设备或第二网络设备,则通信接口可以是第一网络设备或第二网络设备中的收发器,例如收发器1001或收发器1102,收发器例如为第一网络设备或第二网络设备中的射频收发组件, 或者,如果通信装置1200为设置在第一网络设备或第二网络设备中的芯片,则通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
在一种可选实现方式中,该通信装置1200还可以包括存储器1202,可参考图12B,其中,存储器1202用于存储计算机程序或指令,处理器1201用于译码和执行这些计算机程序或指令。应理解,这些计算机程序或指令可包括上述第一网络设备或第二网络设备的功能程序。当第一网络设备的功能程序被处理器1201译码并执行时,可使得第一网络设备实现本申请实施例图5所示的实施例所提供的方法中第一网络设备的功能。当第二网络设备的功能程序被处理器1201译码并执行时,可使得第二网络设备实现本申请实施例图5所示的实施例所提供的方法中第二网络设备的功能。
在另一种可选实现方式中,这些第一网络设备或第二网络设备的功能程序存储在通信装置1200外部的存储器中。当第一网络设备的功能程序被处理器1201译码并执行时,存储器1202中临时存放上述第一网络设备的功能程序的部分或全部内容。当第二网络设备的功能程序被处理器1201译码并执行时,存储器1202中临时存放上述第二网络设备的功能程序的部分或全部内容。
在另一种可选实现方式中,这些第一网络设备或第二网络设备的功能程序被设置于存储在通信装置1200内部的存储器1202中。当通信装置1200内部的存储器1202中存储有第一网络设备的功能程序时,通信装置1200可被设置在本申请实施例的第一网络设备中。当通信装置1200内部的存储器1202中存储有第二网络设备的功能程序时,通信装置1200可被设置在本申请实施例的第二网络设备中。
在又一种可选实现方式中,这些第一网络设备的功能程序的部分内容存储在通信装置1200外部的存储器中,这些第一网络设备的功能程序的其他部分内容存储在通信装置1200内部的存储器1202中。或,这些第二网络设备的功能程序的部分内容存储在通信装置1200外部的存储器中,这些第二网络设备的功能程序的其他部分内容存储在通信装置1200内部的存储器1202中。
在本申请实施例中,通信装置1000、通信装置1100及通信装置1200对应各个功能划分各个功能模块的形式来呈现,或者,可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指ASIC,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
另外,图10所示的实施例提供的通信装置1000还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器1001实现,收发模块可通过收发器1002实现。其中,处理模块可以用于执行图5所示的实施例中的S51和S52,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图5所示的实施例中的S54,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于根据第一频带确定至少一个频域参考点;
处理模块,还用于根据所述至少一个频域参考点生成参考信号;
收发模块,用于在所述第一频带上发送所述参考信号。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
同理,图11所示的实施例提供的通信装置1100还可以通过其他形式实现。例如该通信装置包括处理模块和收发模块。例如处理模块可通过处理器1101实现,收发模块可通过 收发器1102实现。其中,处理模块可以用于执行图5所示的实施例中的S53,和/或用于支持本文所描述的技术的其它过程。收发模块可以用于执行图5所示的实施例中的S54,和/或用于支持本文所描述的技术的其它过程。
例如,处理模块,用于确定用于接收参考信号的第二频带;
收发模块,用于在所述第二频带上接收所述参考信号的部分或全部,其中,所述参考信号根据至少一个频域参考点生成,所述至少一个频域参考点根据所述第二频带确定。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
由于本申请实施例提供的通信装置1000、通信装置1100及通信装置1200可用于执行图5所示的实施例所提供的方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请实施例是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种参考信号发送方法,其特征在于,包括:
    确定至少一个频域参考点;
    根据所述至少一个频域参考点生成参考信号;
    在所述第一频带上发送所述参考信号。
  2. 根据权利要求1所述的方法,其特征在于,确定至少一个频域参考点,包括:
    确定为所述第一频带的所述参考信号配置的所述至少一个频域参考点。
  3. 根据权利要求1所述的方法,其特征在于,所述确定至少一个频域参考点,包括:
    根据所述第一频带所在的频率区间确定所述至少一个频域参考点,所述频率区间为根据预定义的规则,对频率进行划分的区间,所述至少一个频域参考点是为所述频率区间预定义或配置的。
  4. 根据权利要求3所述的方法,其特征在于,
    所述参考信号根据一个频域参考点确定,所述一个频域参考点的频率为所述频率区间的最低频率,或为小于所述频率区间最低频率的频率。
  5. 根据权利要求3或4所述的方法,其特征在于,
    所述第一频带位于N个频率区间,N为大于或等于2的整数,所述至少一个频域参考点为一个频域参考点,所述一个频域参考点为所述N个频率区间中、所述第一频带的最低频率所在的频率区间对应的频域参考点。
  6. 根据权利要求3所述的方法,其特征在于,
    所述第一频带位于N个频率区间,N为大于或等于2的整数,所述至少一个频域参考点为N个频域参考点,所述N个频域参考点包括所述N个频率区间中的每个频率区间对应的频域参考点。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,所述参考信号是第一网络设备发送给第二网络设备的。
  8. 一种参考信号接收方法,其特征在于,包括:
    确定用于接收参考信号的第二频带;
    在所述第二频带上接收所述参考信号的部分或全部,其中,所述参考信号根据至少一个频域参考点生成。
  9. 根据权利要求8所述的方法,其特征在于,
    所述至少一个频域参考点是为所述第一频带的所述参考信号配置的。
  10. 根据权利要求8所述的方法,其特征在于,
    所述至少一个频域参考点是根据所述第二频带所在的频率区间确定的,所述频率区间为根据预定义的规则,对频率进行划分的区间,所述至少一个频域参考点是为所述频率区间预定义或配置的。
  11. 根据权利要求10所述的方法,其特征在于,
    所述参考信号根据一个频域参考点确定,所述一个频域参考点的频率为所述频率区间的最低频率,或为小于所述频率区间最低频率的频率。
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述第二频带位于N个频率区间,N为大于或等于2的整数,所述至少一个频域参考点为一个频域参考点,所述一个频域参考点为所述N个频率区间中、所述第二频带的最低 频率所在的频率区间对应的频域参考点。
  13. 根据权利要求10或11所述的方法,其特征在于,
    所述第二频带位于N个频率区间,N大于或等于2,所述至少一个频域参考点为N个频域参考点,所述N个频域参考点包括所述N个频率区间中的每个频率区间对应的频域参考点。
  14. 根据权利要求8~13任一项所述的方法,其特征在于,所述参考信号是第一网络设备发送给第二网络设备的。
  15. 一种网络设备,其特征在于,包括:
    处理器,用于确定至少一个频域参考点,并根据所述至少一个频域参考点生成参考信号;
    收发器,用于在所述第一频带上发送所述参考信号。
  16. 根据权利要求15所述的网络设备,其特征在于,所述处理器用于按如下方式确定至少一个频域参考点:
    确定为所述第一频带的所述参考信号配置的所述至少一个频域参考点。
  17. 根据权利要求15所述的网络设备,其特征在于,所述处理器用于按如下方式确定至少一个频域参考点:
    根据所述第一频带所在的频率区间确定所述至少一个频域参考点,所述频率区间为根据预定义的规则,对频率进行划分的区间,所述至少一个频域参考点是为所述频率区间预定义或配置的。
  18. 根据权利要求17所述的网络设备,其特征在于,
    所述参考信号根据一个频域参考点确定,所述一个频域参考点的频率为所述频率区间的最低频率,或为小于所述频率区间最低频率的频率。
  19. 根据权利要求17或18所述的网络设备,其特征在于,
    所述第一频带位于N个频率区间,N为大于或等于2的整数,所述至少一个频域参考点为一个频域参考点,所述一个频域参考点为所述N个频率区间中、所述第一频带的最低频率所在的频率区间对应的频域参考点。
  20. 根据权利要求17所述的网络设备,其特征在于,
    所述第一频带位于N个频率区间,N为大于或等于2的整数,所述至少一个频域参考点为N个频域参考点,所述N个频域参考点包括所述N个频率区间中的每个频率区间对应的频域参考点。
  21. 根据权利要求15~20任一项所述的网络设备,其特征在于,所述参考信号是第一网络设备发送给第二网络设备的。
  22. 一种网络设备,其特征在于,包括:
    处理器,用于确定用于接收参考信号的第二频带;
    收发器,用于在所述第二频带上接收所述参考信号的部分或全部,其中,所述参考信号根据至少一个频域参考点生成。
  23. 根据权利要求22所述的网络设备,其特征在于,
    所述至少一个频域参考点是为所述参考信号配置的。
  24. 根据权利要求22所述的网络设备,其特征在于,
    所述至少一个频域参考点是根据所述第二频带所在的频率区间确定的,所述频率区间 为根据预定义的规则,对频率进行划分的区间,所述至少一个频域参考点是为所述频率区间预定义或配置的。
  25. 根据权利要求24所述的网络设备,其特征在于,
    所述参考信号根据一个频域参考点确定,所述一个频域参考点的频率为所述频率区间的最低频率,或为小于所述频率区间最低频率的频率。
  26. 根据权利要求24或25所述的网络设备,其特征在于,
    所述第二频带位于N个频率区间,N为大于或等于2的整数,所述至少一个频域参考点为一个频域参考点,所述一个频域参考点为所述N个频率区间中、所述第二频带的最低频率所在的频率区间对应的频域参考点。
  27. 根据权利要求24或25所述的网络设备,其特征在于,
    所述第二频带位于N个频率区间,N大于或等于2,所述至少一个频域参考点为N个频域参考点,所述N个频域参考点包括所述N个频率区间中的每个频率区间对应的频域参考点。
  28. 根据权利要求22~27任一项所述的网络设备,其特征在于,所述参考信号是第一网络设备发送给第二网络设备的。
  29. 一种通信装置,其特征在于,所述通信装置用于执行如权利要求1~7中任一项所述的方法,或用于执行如权利要求8~14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令在被计算机执行时,使所述计算机执行如权利要求1~7中任一项所述的方法,或执行如权利要求8~14中任一项所述的方法。
PCT/CN2019/098053 2018-07-27 2019-07-27 一种参考信号发送、接收方法、装置及设备 WO2020020376A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19840148.1A EP3820070A4 (en) 2018-07-27 2019-07-27 METHOD, DEVICE AND DEVICE FOR SENDING AND RECEIVING REFERENCE SIGNALS
BR112021001532-9A BR112021001532A2 (pt) 2018-07-27 2019-07-27 método de envio de sinal de referência, método de recepção de sinal de referência, aparelho e dispositivo
US17/158,274 US20210152309A1 (en) 2018-07-27 2021-01-26 Reference signal sending method, reference signal receiving method, apparatus, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810848338.0 2018-07-27
CN201810848338.0A CN110768770B (zh) 2018-07-27 2018-07-27 一种参考信号发送、接收方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/158,274 Continuation US20210152309A1 (en) 2018-07-27 2021-01-26 Reference signal sending method, reference signal receiving method, apparatus, and device

Publications (1)

Publication Number Publication Date
WO2020020376A1 true WO2020020376A1 (zh) 2020-01-30

Family

ID=69180370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098053 WO2020020376A1 (zh) 2018-07-27 2019-07-27 一种参考信号发送、接收方法、装置及设备

Country Status (5)

Country Link
US (1) US20210152309A1 (zh)
EP (1) EP3820070A4 (zh)
CN (2) CN110768770B (zh)
BR (1) BR112021001532A2 (zh)
WO (1) WO2020020376A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023205981A1 (en) * 2022-04-24 2023-11-02 Zte Corporation Interference measurement reference signal

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022027501A1 (zh) * 2020-08-06 2022-02-10 北京小米移动软件有限公司 参考信号的配置、接收方法及装置、网络设备、用户设备及存储介质
US11751133B2 (en) * 2021-02-18 2023-09-05 Qualcomm Incorporated Techniques for setting a quantity of bits for an adaptive low-resolution analog-to digital converter (ADC) in higher band operation
CN113556769B (zh) * 2021-07-21 2022-04-22 湖南人文科技学院 一种基于干扰控制的计算机数据传输通信方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582129A (zh) * 2012-07-18 2014-02-12 华为技术有限公司 终端的调度方法、装置与系统
WO2015043633A1 (en) * 2013-09-25 2015-04-02 Nokia Solutions And Networks Oy Method, apparatus and computer program for wireless communications
CN107483166A (zh) * 2016-06-08 2017-12-15 上海朗帛通信技术有限公司 一种无线通信中的方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5727046B2 (ja) * 2011-02-11 2015-06-03 ノキア ソリューションズ アンド ネットワークス オサケユキチュア サブフレームを所定の送信方向のために確保した、複数のキャリア上におけるtddデータ送信
CN103068050B (zh) * 2012-12-25 2016-12-28 上海无线通信研究中心 一种时分双工系统中基于干扰感知的上下行时隙资源配置方法
CN107733609B (zh) * 2016-08-12 2023-10-13 华为技术有限公司 参考信号发送方法和参考信号发送装置
CN110024462A (zh) * 2017-01-06 2019-07-16 富士通株式会社 基于动态时分双工的传输装置、方法以及通信系统
CN108282254B (zh) * 2017-01-06 2020-10-23 华为技术有限公司 一种信道状态信息上报方法、基站和用户设备
DE112017005725T5 (de) * 2017-01-09 2019-08-14 Intel IP Corporation Messung von crosslink-störung in einem dynamischen zeitdivisionsduplex (tdd) neuen radio- (nr) system
CN108289311B (zh) * 2017-01-09 2022-10-14 中兴通讯股份有限公司 干扰测量方法及装置和定时偏差测量方法
WO2020167106A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US20210126816A1 (en) * 2020-01-09 2021-04-29 Alexei Davydov Sounding reference signal (srs) transmission with bandwidth part (bwp) switching
US11533236B2 (en) * 2020-03-25 2022-12-20 Qualcomm Incorporated Configuration for user equipment intra-frequency measurement of sounding reference signals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582129A (zh) * 2012-07-18 2014-02-12 华为技术有限公司 终端的调度方法、装置与系统
WO2015043633A1 (en) * 2013-09-25 2015-04-02 Nokia Solutions And Networks Oy Method, apparatus and computer program for wireless communications
CN107483166A (zh) * 2016-06-08 2017-12-15 上海朗帛通信技术有限公司 一种无线通信中的方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023205981A1 (en) * 2022-04-24 2023-11-02 Zte Corporation Interference measurement reference signal

Also Published As

Publication number Publication date
US20210152309A1 (en) 2021-05-20
EP3820070A4 (en) 2021-09-01
EP3820070A1 (en) 2021-05-12
CN113746614A (zh) 2021-12-03
CN110768770A (zh) 2020-02-07
CN110768770B (zh) 2021-09-07
BR112021001532A2 (pt) 2021-04-20

Similar Documents

Publication Publication Date Title
US20210219155A1 (en) Interference Measurement Method and Apparatus
WO2019096248A1 (zh) 发送和接收信号的方法、装置和系统
WO2020020376A1 (zh) 一种参考信号发送、接收方法、装置及设备
WO2018137703A1 (zh) 一种信息传输方法和装置
WO2020001607A1 (zh) 数据加扰方法及相关设备
TW201824912A (zh) 數據傳輸方法和裝置
WO2019196689A1 (zh) 通信的方法和通信装置
WO2021051364A1 (zh) 一种通信方法、装置及设备
CN114071429A (zh) 一种物理下行控制信道增强方法、通信装置及系统
WO2020029896A1 (zh) 一种参考信号发送、接收方法及装置
US20220360398A1 (en) Sounding Reference Signal Based Downlink Transmission Configuration Indication
US20220053500A1 (en) Communication method and device
WO2018171783A1 (zh) 信号传输方法、装置及系统
WO2021062689A1 (zh) 一种上行传输的方法及装置
CN110166204B (zh) 资源分配的方法和装置
WO2019158071A1 (zh) 信号传输的方法和装置
US20230155765A1 (en) Sounding Reference Signal Resource Capacity Enhancement for Wireless Communications
WO2018205436A1 (zh) 波束管理的方法、网络设备及终端
US20230140502A1 (en) Beam indication method and communications apparatus
CN114208243A (zh) 一种通信方法及装置
WO2018127158A1 (zh) 一种数据传输的方法、网络侧设备及终端设备
CN111372308A (zh) 一种通信方法及装置
US20210336735A1 (en) Electronic device, wireless communication method and computer readable medium
WO2022041289A1 (zh) 同步信号传输方法及装置
CN112399574B (zh) 一种无线通信的方法和装置以及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 19840148.1

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021001532

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112021001532

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210127