WO2020020289A1 - 信号传输方法、装置、终端设备、网络设备及系统 - Google Patents

信号传输方法、装置、终端设备、网络设备及系统 Download PDF

Info

Publication number
WO2020020289A1
WO2020020289A1 PCT/CN2019/097693 CN2019097693W WO2020020289A1 WO 2020020289 A1 WO2020020289 A1 WO 2020020289A1 CN 2019097693 W CN2019097693 W CN 2019097693W WO 2020020289 A1 WO2020020289 A1 WO 2020020289A1
Authority
WO
WIPO (PCT)
Prior art keywords
bits
bwp
rbg
type
frequency domain
Prior art date
Application number
PCT/CN2019/097693
Other languages
English (en)
French (fr)
Inventor
王婷
彭金磷
唐浩
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19840688.6A priority Critical patent/EP3820218A4/en
Publication of WO2020020289A1 publication Critical patent/WO2020020289A1/zh
Priority to US17/157,727 priority patent/US11818695B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/04Interfaces between hierarchically different network devices
    • H04W92/10Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a signal transmission method, device, terminal device, network device, and system.
  • network equipment and terminal equipment can perform signal transmission through air interface resources, and air interface resources include frequency domain resources, where the frequency domain resources can be located in a certain frequency range.
  • a network device may configure a bandwidth part (bandwidth part (BWP)) for a terminal device in a frequency domain resource, such as a system bandwidth, for signal transmission between the network device and the terminal device. How to carry out signal transmission on BWP is an urgent subject to be studied.
  • BWP bandwidth part
  • a first aspect of the embodiments of the present application provides a signal transmission method, which includes:
  • Receiving resource indication information sent by a network device where the resource indication information is used to indicate a resource block group RBG allocated to a terminal device in a bandwidth part BWP, where the BWP includes N frequency band resources, where N is greater than or equal to 2 An integer
  • the size P of the RBG except the first RBG and the last RBG in the piece of frequency domain resources is based on the bandwidth of the N-band frequency domain resources. The sum is determined, where P is an integer greater than or equal to 1;
  • the size of the first RBG in the section of frequency domain resources is determined according to the starting position of the section of frequency domain resources and the P, where The start position of the frequency domain resource is determined according to the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined according to the reference point of the BWP;
  • Signal transmission is performed on the RBG allocated for the terminal device.
  • This method guarantees the normal transmission of signals on the BWP.
  • the above method includes:
  • the size P of the RBGs other than the first RBG and the last RBG in the one first-type BWP is based on the N first-type BWPs
  • P is an integer greater than or equal to 1.
  • the size of the first RBG in the one first-type BWP is determined according to the starting position of the one first-type BWP and the P , wherein the starting position of the first type BWP is determined according to the reference point of the first type BWP, or the starting position of the first type BWP is based on the second type BWP Determined by reference point
  • Signal transmission is performed on the resource block group RBG allocated for the terminal device.
  • the above method includes:
  • the resource indication information is used to indicate a resource block group RBG allocated to a terminal device in a first-type BWP group, and the BWP group includes N first-type BWPs, where N Is an integer greater than or equal to 2;
  • the size P of the RBGs other than the first RBG and the last RBG in the one first-type BWP is based on the N first-type BWPs
  • P is an integer greater than or equal to 1.
  • the size of the first RBG in the one first-type BWP is determined according to the starting position of the one first-type BWP and the P , wherein the starting position of the one first-type BWP is determined according to the reference point of the one first-type BWP, or the starting position of the one first-type BWP is according to the reference point of the BWP group definite;
  • Signal transmission is performed on the resource block group RBG allocated for the terminal device.
  • the method provided in the first aspect can implement resource allocation in a discrete frequency spectrum, and then network devices and terminal devices can perform signal transmission in discrete frequency domain resources, improve resource utilization, and improve signal transmission performance.
  • this method can achieve the same RBG size in each frequency domain resource, reducing the complexity of determining the RBG of the network device and the terminal device.
  • the RBG alignment of each frequency domain resource in the carrier can be achieved to ensure the flexibility of resource allocation.
  • the RBG alignment of each user can be improved to improve the accuracy of channel estimation and ensure signal transmission performance.
  • a second aspect of the embodiments of the present application provides a signal transmission method, which includes:
  • Receiving resource indication information sent by a network device where the resource indication information is used to indicate a resource block group RBG allocated to a terminal device in a bandwidth part BWP, where the BWP includes N frequency band resources, where N is greater than or equal to 2 An integer
  • the size P of the RBG other than the first RBG and the last RBG in the piece of frequency-domain resources is based on the sum of the bandwidths of the N-band frequency-domain resources Yes, where P is an integer greater than or equal to 1;
  • the size of the last RBG in the section of frequency domain resources is based on the starting position of the section of frequency domain resources, the bandwidth of the section of frequency domain resources, and the Determined by P, wherein the starting position of the frequency domain resource is determined based on the reference point of the frequency domain resource, or the starting position of the frequency domain resource is based on the reference point of the BWP definite;
  • Signal transmission is performed on the resource block group RBG allocated for the terminal device.
  • This method guarantees the normal transmission of signals on the BWP.
  • first and second aspects described above may be implemented separately.
  • the method provided in the second aspect above can implement resource allocation in the discrete frequency spectrum, and then the network device and the terminal device can perform signal transmission in the discrete frequency domain resource, improve resource utilization, and improve signal transmission performance.
  • this method can achieve the same RBG size in each frequency domain resource, reducing the complexity of determining the RBG of the network device and the terminal device.
  • the RBG alignment of each frequency domain resource in the carrier can be achieved to ensure the flexibility of resource allocation.
  • the RBG alignment of each user can be improved to improve the accuracy of channel estimation and ensure signal transmission performance.
  • the sum of the bandwidths of the N-band frequency domain resources includes:
  • the sum of the number of RBs included in the N-band frequency-domain resources minus the number of overlapping RBs, and the overlapping RBs include the first-band frequency-domain resources and the second-band frequency-domain resources overlapping in the N-band frequency-domain resources.
  • RB the descriptions of the first paragraph and the second paragraph are used to distinguish between them, and there is no sequence or specific reference.
  • the situation of overlapping RBs can be considered when determining the RBG size.
  • Subtracting the overlapping RBs can determine a more suitable RBG size, improve resource utilization, realize reasonable allocation of resources, and improve signal transmission performance.
  • a third aspect of the embodiments of the present application provides a signal transmission method, which includes:
  • Receiving resource indication information sent by a network device where the resource indication information is used to indicate a resource block group RBG allocated to a terminal device in a bandwidth part BWP, where the BWP includes N frequency band resources, where N is greater than or equal to 2 An integer
  • the size P of the RBG except the first RBG and the last RBG in the section of frequency domain resources is determined according to the bandwidth of the section of frequency domain resources, Where P is an integer greater than or equal to 1;
  • the size of the first RBG in the section of frequency domain resources is determined according to the start position of the section of frequency domain resources and the P, where the start of the section of frequency domain resources
  • the start position is determined according to the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined according to the BWP reference point;
  • Signal transmission is performed on the resource block group RBG allocated for the terminal device.
  • This method guarantees the normal transmission of signals on the BWP.
  • the method provided in the third aspect can implement resource allocation in a discrete frequency spectrum, and then network devices and terminal devices can perform signal transmission in discrete frequency domain resources, improve resource utilization, and improve signal transmission performance.
  • this method can realize that the RBG size in each frequency domain resource can be the same or different, that is, the RBG size in each frequency domain resource can be determined according to the bandwidth of each frequency domain resource, and a reasonable RBG can be determined for the bandwidth of each frequency domain resource. size.
  • the RBG alignment of each frequency domain resource in the carrier can be achieved to ensure the flexibility of resource allocation. In multi-user scheduling, the RBG alignment of each user can be improved to improve the accuracy of channel estimation and ensure signal transmission performance.
  • a fourth aspect of the embodiments of the present application provides a signal transmission method, which includes:
  • Receiving resource indication information sent by a network device where the resource indication information is used to indicate a resource block group RBG allocated to a terminal device in a bandwidth part BWP, where the BWP includes N frequency band resources, where N is greater than or equal to 2 An integer
  • the size P of the RBG except the first RBG and the last RBG in the section of frequency domain resources is determined according to the bandwidth of the section of frequency domain resources, Where P is an integer greater than or equal to 1;
  • the size of the last RBG in the frequency domain resource is determined according to the starting position of the frequency domain resource, the bandwidth of the frequency domain resource, and the P, where: The start position of the frequency domain resource is determined according to the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined according to the reference point of the BWP;
  • Signal transmission is performed on the resource block group RBG allocated for the terminal device.
  • This method guarantees the normal transmission of signals on the BWP.
  • the method provided in the fourth aspect can implement resource allocation in a discrete frequency spectrum, and then network devices and terminal devices can perform signal transmission in discrete frequency domain resources, improve resource utilization, and improve signal transmission performance.
  • this method can realize that the RBG size in each frequency domain resource can be the same or different, that is, the RBG size in each frequency domain resource can be determined according to the bandwidth of each frequency domain resource, and a reasonable RBG can be determined for the bandwidth of each frequency domain resource. size.
  • the RBG alignment of each frequency domain resource in the carrier can be achieved to ensure the flexibility of resource allocation. In multi-user scheduling, the RBG alignment of each user can be improved to improve the accuracy of channel estimation and ensure signal transmission performance.
  • the resource indication information is used to indicate an RBG allocated to a terminal device in a BWP
  • An information bit in the resource indication information corresponds to an RBG index.
  • the RBG allocated to the terminal device includes the RBG corresponding to the one RBG index.
  • the RBG allocated to the terminal device does not include the RBG corresponding to the one RBG index;
  • One of the RBG indexes corresponds to one RBG uniquely, or a plurality of the RBG indexes corresponds to one RBG;
  • the one RBG is an overlapping resource among the multi-segment frequency domain resources of the N-segment frequency domain resources.
  • resource allocation in a discrete frequency spectrum can be achieved, and then network devices and terminal devices can perform signal transmission in discrete frequency domain resources, improve resource utilization, and improve signal transmission performance.
  • the method can consider RBG numbering once in the case of overlapping frequency domain resources, which can reduce the overhead of resource indication information and ensure signal transmission performance.
  • a fifth aspect of the embodiments of the present application provides a signal transmission method.
  • the method includes:
  • the resource indication information includes N information fields, the N information fields respectively correspond to the N band frequency domain resources, and the N information fields are respectively used to determine that they are all in the N band frequency domain resources.
  • the X1 bit in the one information domain is used to indicate that in the one information domain
  • a resource allocated to a terminal device in a corresponding segment of frequency domain resources where X1 is equal to the number of bits of the one information domain minus Y1, where Y1 is a value obtained by dividing L into N, or Y1 is based on L and the one
  • the ratio between the number of bits in the information domain and the number of bits in the resource indication information is determined; or
  • the bits in the one information field are zero-filled Y2 bits to be used for Indicates resources allocated to the terminal device in a segment of frequency domain resources corresponding to the one information domain, where Y2 is a value obtained by dividing S into N, or Y2 is based on S and the number of bits in the one information domain and the The ratio of the number of bits of the resource indication information is determined;
  • Signal transmission is performed on the resources allocated for the terminal device.
  • This method guarantees the normal transmission of signals on the BWP.
  • the method can consider that when the number of bits of the resource indication information is different from the required number of bits, it is ensured that the network device and the terminal device have the same understanding of the meaning of the bits, and the same frequency domain resource is determined for signal transmission to ensure signal transmission performance.
  • the method of determining Y1 or Y2 equally reduces the processing complexity of network equipment and terminal equipment, and the method of determining according to the ratio can consider the number of bits of each frequency domain resource and reasonably design the number of bits according to the bandwidth of each frequency domain resource. , To avoid the situation that a certain frequency domain resource has a small number of available bits, to ensure the flexibility of resource allocation, and improve signal transmission performance.
  • the foregoing fifth aspect may be implemented in combination with one or more of the foregoing first, second, third, and fourth aspects.
  • the above fifth aspect may be implemented separately.
  • a sixth aspect of the embodiments of the present application provides a signal transmission method, including:
  • the resource indication information is used to indicate a resource block group RBG allocated to the terminal device in a bandwidth part BWP, where the BWP includes N frequency band resources, where N is greater than or equal to 2 Integer
  • the size P of the RBG other than the first RBG and the last RBG in the piece of frequency-domain resources is based on the sum of the bandwidths of the N-band frequency-domain resources Yes, where P is an integer greater than or equal to 1;
  • the size of the first RBG in the section of frequency domain resources is determined according to the starting position of the section of frequency domain resources and the P, where The start position of the frequency domain resource is determined according to the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined according to the reference point of the BWP;
  • the above method includes:
  • the resource indication information is used to indicate a resource block group RBG allocated to the terminal device in a second type of BWP, where the second type of BWP includes N first type BWPs, where N Is an integer greater than or equal to 2;
  • the size P of the RBGs other than the first RBG and the last RBG in the one first-type BWP is based on the N first-type BWPs
  • P is an integer greater than or equal to 1.
  • the size of the first RBG in the one first-type BWP is determined according to the starting position of the one first-type BWP and the P , wherein the starting position of the first type BWP is determined according to the reference point of the first type BWP, or the starting position of the first type BWP is based on the second type BWP Determined by reference point
  • the above method includes:
  • the resource instruction information is used to indicate a resource block group RBG allocated to the terminal device in the first type BWP group, and the BWP group includes N first type BWPs, where N is An integer greater than or equal to 2;
  • the size P of the RBGs other than the first RBG and the last RBG in the one first-type BWP is based on the N first-type BWPs
  • P is an integer greater than or equal to 1.
  • the size of the first RBG in the one first-type BWP is determined according to the starting position of the one first-type BWP and the P , wherein the starting position of the one first-type BWP is determined according to the reference point of the one first-type BWP, or the starting position of the one first-type BWP is according to the reference point of the BWP group definite;
  • a seventh aspect of the embodiments of the present application provides a signal transmission method, including:
  • the resource indication information is used to indicate a resource block group RBG allocated to the terminal device in a bandwidth part BWP, where the BWP includes N frequency band resources, where N is greater than or equal to 2 Integer
  • the size P of the RBG other than the first RBG and the last RBG in the piece of frequency-domain resources is based on the sum of the bandwidth of the N-band frequency-domain resources Yes, where P is an integer greater than or equal to 1;
  • the size of the last RBG in the section of frequency domain resources is based on the starting position of the section of frequency domain resources, the bandwidth of the section of frequency domain resources, and the Determined by P, wherein the starting position of the frequency domain resource is determined based on the reference point of the frequency domain resource, or the starting position of the frequency domain resource is based on the reference point of the BWP definite;
  • the sum of the bandwidths of the N-band frequency domain resources includes:
  • the sum of the number of RBs included in the N-band frequency-domain resources minus the number of overlapping RBs, and the overlapping RBs include the first-band frequency-domain resources and the second-band frequency-domain resources overlapping in the N-band frequency-domain resources.
  • RB the descriptions of the first paragraph and the second paragraph are used to distinguish between them, and there is no sequence or specific reference.
  • An eighth aspect of the embodiments of the present application provides a signal transmission method, including:
  • the resource indication information is used to indicate a resource block group RBG allocated to the terminal device in a bandwidth part BWP, where the BWP includes N frequency band resources, where N is greater than or equal to 2 Integer
  • the size P of the RBG except the first RBG and the last RBG in the section of frequency domain resources is determined according to the bandwidth of the section of frequency domain resources, Where P is an integer greater than or equal to 1;
  • the size of the first RBG in the section of frequency domain resources is determined according to the start position of the section of frequency domain resources and the P, where the start of the section of frequency domain resources
  • the start position is determined according to the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined according to the BWP reference point;
  • a ninth aspect of the embodiments of the present application provides a signal transmission method, including:
  • the resource indication information is used to indicate a resource block group RBG allocated to the terminal device in a bandwidth part BWP, where the BWP includes N frequency band resources, where N is greater than or equal to 2 Integer
  • the size P of the RBG except the first RBG and the last RBG in the section of frequency domain resources is determined according to the bandwidth of the section of frequency domain resources, Where P is an integer greater than or equal to 1;
  • the size of the last RBG in the frequency domain resource is determined according to the starting position of the frequency domain resource, the bandwidth of the frequency domain resource, and the P, where: The start position of the frequency domain resource is determined according to the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined according to the reference point of the BWP;
  • the seventh aspect, the eighth aspect, and the ninth aspect in a possible design, when the resource indication information is used to indicate an RBG allocated to a terminal device in a BWP,
  • An information bit in the resource indication information corresponds to an RBG index.
  • the RBG allocated to the terminal device includes the RBG corresponding to the one RBG index.
  • the RBG allocated to the terminal device does not include the RBG corresponding to the one RBG index; where t1 and t2 are integers;
  • One of the RBG indexes corresponds to one RBG uniquely, or a plurality of the RBG indexes corresponds to one RBG;
  • the one RBG is an overlapping resource among the multi-segment frequency domain resources of the N-segment frequency domain resources.
  • a tenth aspect of the embodiments of the present application provides a signal transmission method, including:
  • the resource instruction information is used to indicate resources allocated to the terminal device in a bandwidth part BWP, where the BWP includes N frequency band resources, where N is an integer greater than or equal to 2;
  • the resource indication information includes N information domains, the N information domains respectively correspond to the N band frequency domain resources, and the N information domains are respectively used to indicate that they are all in the N band frequency domain resources.
  • the bits in the one information domain are a segment corresponding to the one information domain Information in the frequency domain resource after zeroing Y1 bits required for allocating resources to the terminal device, where Y1 is a value obtained by dividing L into N or Y1 is based on L and the number of bits in the one information domain and the The ratio of the number of bits of the resource indication information is determined; or,
  • the one information field is used to indicate a frequency segment corresponding to the one information field.
  • the tenth aspect may be implemented in combination with one or more of the sixth aspect, the seventh aspect, the eighth aspect, and the aspect.
  • the tenth aspect described above may be implemented separately.
  • the eleventh aspect of the embodiments of the present application provides an apparatus, which may be a terminal device, or may be capable of supporting the terminal device to perform a corresponding function performed by the terminal device in any one of the design examples of the first to fifth aspects.
  • the device may be a device or a chip system in a terminal device, and the device may include a receiving module and a processing module, and these modules may execute the terminal device in any one of the design examples of the first to fifth aspects described above.
  • the corresponding function specifically:
  • a receiving module configured to receive resource indication information
  • a processing module is configured to perform signal transmission on a resource allocated to a terminal device.
  • the resource allocated to the terminal device may be an RBG allocated to the terminal device.
  • a twelfth aspect of the embodiments of the present application provides an apparatus, which may be a network device, or may be capable of supporting a network device to perform a corresponding function performed by the network device in any one of the design examples of the sixth to tenth aspects.
  • the device for example, the device may be a device or a chip system in a network device, and the device may include a sending module and a processing module, and these modules may execute the network device in any one of the design examples of the sixth to tenth aspects described above.
  • the corresponding function specifically:
  • a processing module is configured to perform signal transmission with the terminal device on a resource allocated to the terminal device.
  • the specific content of the resource indication information may refer to the specific description of the resource indication information in the sixth aspect to the tenth aspect, which is not specifically limited herein.
  • the resource allocated to the terminal device may be an RBG allocated to the terminal device.
  • a thirteenth aspect of the embodiments of the present application provides a terminal device, where the terminal device includes a processor, and is configured to implement functions of the terminal device in the methods described in the first to fifth aspects.
  • the terminal device may further include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor may call and execute program instructions stored in the memory to implement functions of the terminal device in the methods described in the first to fifth aspects.
  • the terminal device may further include a communication interface, and the communication interface is used for the terminal device to communicate with other devices.
  • the other device is a network device.
  • the terminal device includes:
  • Memory for storing program instructions
  • a processor configured to receive resource instruction information and perform signal transmission on a resource allocated to a terminal device.
  • the resource allocated to the terminal device may be an RBG allocated to the terminal device.
  • a fourteenth aspect of the embodiments of the present application provides a network device, where the network device includes a processor, and is configured to implement functions of the network device in the methods described in the sixth to tenth aspects.
  • the network device may further include a memory for storing program instructions and data.
  • the memory is coupled to the processor, and the processor may call and execute program instructions stored in the memory, so as to implement functions of the network device in the methods described in the sixth aspect to the tenth aspect.
  • the network device may further include a communication interface, and the communication interface is used for the network device to communicate with other devices.
  • the other device is a terminal device.
  • the network device includes:
  • Memory for storing program instructions
  • a processor configured to send resource instruction information and perform signal transmission with the terminal device on a resource allocated to the terminal device.
  • the specific content of the resource indication information may refer to the specific description of the resource indication information in the sixth aspect to the tenth aspect, which is not specifically limited herein.
  • the resource allocated to the terminal device may be an RBG allocated to the terminal device.
  • a fifteenth aspect of the embodiments of the present application provides a chip system.
  • the chip system includes a processor, may further include a memory, and may further include a communication interface, so as to implement a function of a terminal device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a chip system includes a processor, may further include a memory, and may further include a communication interface, so as to implement a function of a network device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • a seventeenth aspect of the embodiments of the present application provides a computer program product, where the computer program product includes computer program code, and when the computer program code is executed by a computer, causes the computer to perform any of the foregoing first to fifth aspects.
  • An eighteenth aspect of the embodiments of the present application provides a computer-readable storage medium, where the computer storage medium stores computer instructions, and when the computer instructions are executed by a computer, the computer is caused to execute the foregoing first aspect to the fifth aspect Or the method according to the sixth aspect to the tenth aspect.
  • a nineteenth aspect of the embodiments of the present application provides a system including the terminal device according to the thirteenth aspect and the network device according to the fourteenth aspect; or the system includes the device according to the eleventh aspect. , And the device described in the twelfth aspect.
  • 1 and 2 are schematic diagrams of discrete spectrum owned by an operator A, respectively;
  • FIG. 3 is a first example diagram of a second type of BWP
  • FIG. 6 is a fourth example diagram of the second type of BWP
  • FIG. 7 is a fifth example diagram of the second type of BWP.
  • FIG. 9 is a seventh example diagram of the second type of BWP.
  • FIG. 10 is an eighth example diagram of the second type of BWP.
  • FIG. 11 is an exemplary system architecture diagram of a signal transmission method according to an embodiment of the present application.
  • FIG. 12 is an exemplary flowchart of a signal transmission interaction process between a terminal device and a network device according to an embodiment of the present application
  • FIG. 13 is an example diagram of joint numbering of RBs in the second type of BWP
  • FIG. 14 is an example diagram of joint numbering of RBGs in the second type of BWP.
  • FIG. 15 is an example diagram of RBs that do not overlap among N first-type BWPs in the second-type BWP;
  • FIG. 16 is an example diagram of overlapping RBs in N first-type BWPs in a second-type BWP;
  • FIG. 17 is another example diagram of overlapping RBs in N first-type BWPs in a second-type BWP;
  • FIG. 18 is a schematic diagram of frequency domain resources when there is a reference point in the second type of BWP
  • 19 is a schematic diagram of frequency domain resources when each first type BWP in the second type BWP has a reference point
  • FIG. 20 is a first schematic diagram of frequency domain resource allocation of the second type of BWP
  • FIG. 21 is a second schematic diagram of frequency domain resource allocation of the second type of BWP.
  • FIG. 22 is a second example of frequency domain resource allocation of the second type of BWP in the first example
  • FIG. 23 is a second schematic diagram of frequency domain resource allocation of the second type of BWP in the second example.
  • FIG. 24 is an example in which RBs included in two RBGs completely overlap
  • FIG. 25 is an example of resource overlap between two first-type BWPs of N first-type BWPs
  • FIG. 26 is an example of resource overlap between three first-type BWPs of N first-type BWPs;
  • FIG. 27 is an example diagram of overlapping resource numbers once
  • FIG. 28 is a module structural diagram of a device according to an embodiment of the present application.
  • FIG. 29 is a module structural diagram of another device according to an embodiment of the present application.
  • FIG. 30 is an example diagram of a device 3000 provided by an embodiment of the present application.
  • FIG. 31 is an example diagram of a device 3100 according to an embodiment of the present application.
  • air interface resources may include frequency domain resources and may also include time domain resources. Among them, the frequency domain resources can be located in a certain frequency range.
  • Network devices can configure BWP for terminal devices in frequency domain resources, such as system bandwidth.
  • the BWP includes a continuous frequency domain resource on the carrier.
  • the BWP may include a positive integer number of RBs, and a BWP may be located on a carrier.
  • One or more carriers can be configured for a cell.
  • one or more BWPs can be configured for the terminal device in a cell or a carrier, and one BWP can be activated at the same time, and the terminal device can receive or send signals on the activated BWP.
  • a BWP including a continuous piece of frequency domain resources may also be referred to as a piece of frequency domain resources, a first type BWP, a first type BWP, or a legacy (existing) BWP.
  • FIG. 1 and 2 are schematic diagrams of the discrete spectrum owned by an operator A.
  • operator A has two segments of spectrum, and the two segments of spectrum are located on the same carrier CC1. A part of the frequency spectrum is occupied by the operator B.
  • the two segments of spectrum owned by operator A are discrete spectrums, and the discrete spectrums may be located on the same carrier.
  • Operator A has two segments of spectrum, one of which is on carrier CC1 and the other of which is on carrier CC2. A segment of spectrum between these two segments is occupied by operator B.
  • the two segments of spectrum owned by operator A are discrete spectrums, and the discrete spectrums may be located in different carriers.
  • a BWP (group) design that supports discrete frequency domain resources is proposed.
  • the design can be a BWP aggregation (BWP) design as described below, a second type BWP design or BWP group design.
  • one BWP includes one or more frequency domain resources, and the multi-band frequency domain resources include at least two frequency domain resources. Further, any two frequency domain resources in the multiple frequency domain resources may be located on the same carrier or on different carriers, which is not limited in this application.
  • signals can be transmitted on discrete frequency domain resources, or they can be transmitted on multiple carriers.
  • one or more frequency domain resources in the BWP can be both uplink frequency domain resources and downlink frequency domain resources, and can be both uplink frequency domain resources and downlink frequency domain resources.
  • the frequency domain resources are uplink frequency domain resources, and some frequency domain resources are downlink frequency domain resources.
  • the terminal device can send a signal to the network device; in the downlink frequency domain resource, the network device can send a signal to the terminal device.
  • a plurality may be two, three, four, or more, and a plurality of segments may be two, three, four, or more, which is not limited in the present application.
  • the BWP in the BWP aggregation design may also be referred to as an aggregated BWP or other names, which are not limited in the present application.
  • a second type of BWP may include one or more first type of BWP.
  • a first type of BWP is equivalent to or corresponds to a section of frequency domain resources in the above BWP aggregation
  • a second type of BWP is equivalent to or corresponds to BWP in the BWP aggregation.
  • the first type of BWPs in a second type of BWP may be both uplink BWPs and downlink BWPs, or some of the first type of BWPs may be uplink BWPs and some of the first type of BWPs may be downlink BWPs.
  • the terminal device can send signals to the network device; in the downlink BWP, the network device can send signals to the terminal device.
  • the second type of BWP may also be referred to as X-BWP or another name, which is not limited in the present application.
  • a first-type BWP group may include one or more first-type BWPs.
  • a first type of BWP is equivalent to or corresponds to a section of frequency domain resources in the above BWP aggregation
  • a first type of BWP group is equivalent to or corresponds to BWP in the BWP aggregation.
  • the first type BWPs in a first type BWP group may be both uplink BWPs and downlink BWPs, or some of the first type BWPs may be uplink BWPs and the first type BWPs may be downlink BWPs.
  • the design of the second type of BWP is taken as an example for description.
  • Those skilled in the art can easily apply the methods provided in the embodiments of the present application to the design of a BWP aggregation or the design of a BWP group.
  • any two first-type BWPs in the multiple first-type BWPs included in it may be located on the same carrier or on different carriers.
  • multiple first-type BWPs included in a second-type BWP may be located on the same carrier, or may be respectively located on different carriers, or a part of the second-type BWP may be located on a first-type BWP. In the same carrier, this embodiment of the present application does not limit this.
  • FIG. 3 is a first example diagram of the second type of BWP.
  • a second type of BWP includes two first type BWPs, which are first type BWP1 and first type BWP2, among which the first type Class BWP1 and class BWP2 are located in the same carrier CC1.
  • FIG. 4 is a second example diagram of the second type of BWP.
  • a second type of BWP includes two first type BWPs, which are first type BWP1 and first type BWP2, among which the first type Class BWP1 and first class BWP2 are located in different carriers.
  • the first type of BWP1 is located in the carrier CC1
  • the first type of BWP2 is located in the carrier CC2.
  • FIG. 5 is a third example diagram of the second type of BWP.
  • the second type of BWP includes three first type BWPs, namely first type BWP1, first type BWP2, and first type BWP3.
  • the first type BWP2 and the first type BWP3 are located on the same carrier, and the first type BWP1 and the first type BWP2 are located on different carriers.
  • the first type BWP1 is located in the carrier CC1
  • the first type BWP2 and the first type BWP3 are located in the carrier CC2.
  • two first-type BWPs included in the multiple first-type BWPs may be continuous frequency domain resources, discontinuous frequency domain resources, or in-frequency
  • the domain has overlapping frequency domain resources, which is not limited in this application.
  • the two first-type BWPs included in the second-type BWP are discontinuous frequency-domain resources.
  • FIG. 6 is a fourth example diagram of the second type of BWP.
  • the second type of BWP includes two first type BWPs, which are the first type BWP1 and the first type BWP2, among which the first type The BWP1 is located in the carrier CC1, the first type BWP2 is located in the carrier CC2, and the first type BWP1 and the first type BWP2 are two consecutive frequency domain resources. That is, the two first-type BWPs included in the second-type BWP may constitute continuous frequency-domain resources.
  • one of the first-type BWP or multiple first-type BWPs may be both an uplink BWP or a downlink BWP, or it may be both an uplink BWP and a downlink BWP.
  • part of the first type of BWP is an uplink BWP and part of the first type of BWP is a downlink BWP.
  • FIG. 7 is a fifth example diagram of the second type of BWP.
  • the second type of BWP1 includes two first type BWPs, which are the first type BWP1 and the first type BWP2, of which the first type Both BWP1 and BWP2 of the first type are uplink first-type BWP.
  • FIG. 8 is a sixth example diagram of the second type of BWP.
  • the second type of BWP2 includes two first type BWPs, which are the first type BWP1 and the first type BWP2, of which the first type BWP1 and BWP2 of the first type are both downlink BWP of the first type.
  • FIG. 9 is a seventh example diagram of the second type of BWP.
  • the second type of BWP3 includes two first type BWPs, which are the first type BWP1 and the first type BWP2, among which the first type BWP1 is both the first-class BWP and the first-class BWP, and the first-class BWP2 is both the first-class BWP and the first-class BWP.
  • FIG. 10 is an eighth example diagram of the second type of BWP.
  • the second type of BWP4 includes three first type BWPs, namely first type BWP1, first type BWP2, and first type BWP3.
  • the first type BWP1 is an uplink first type BWP
  • the first type BWP2 and the first type BWP3 are a downlink first type BWP.
  • signal transmission may refer to uplink signal transmission (for example, a terminal device sends a signal to a network device) or downlink signal transmission (for example, a network device sends a signal to a terminal device).
  • signal transmission may refer to sending a signal or receiving a signal.
  • one or more second-type BWPs can be configured for a terminal device.
  • the following scenarios can be included:
  • multiple second-type BWPs can be configured.
  • One or more second-type BWPs can be configured for the Uu air interface between the network equipment and the terminal equipment, and one or more second-type BWPs can be configured for the sidelink between the terminal equipment and the terminal equipment .
  • Multiple second-type BWPs can be configured for the side links between the terminal equipment and the terminal equipment.
  • the Uu air interface is used to implement communication between the terminal device and the network device
  • the sidelink is used to implement communication between the terminal device and the terminal device.
  • the BWP may be activated or deactivated in units of the first type of BWP, and the network device and the terminal device may perform signal transmission in the activated first type of BWP.
  • the activation and deactivation of the first type of BWP may involve or cause the switching of the first type of BWP.
  • the activated first-type BWP can be understood as the current working bandwidth part of the terminal.
  • the terminal can receive downlink reference signals (including downlink demodulation reference signal (DMRS), channel status) on the activated downlink first-type BWP.
  • DMRS downlink demodulation reference signal
  • At least one of the information reference signal (channel state information reference signal (CSI-RS), physical downlink control channel (physical downlink link control channel, PDCCH), and physical downlink data channel (physical downlink link shared channel (PDSCH))
  • CSI-RS channel state information reference signal
  • PDCCH physical downlink control channel
  • PDSCH physical downlink data channel
  • At least one of the uplink reference signal (including uplink DMRS), physical uplink control channel (PUCCH), and physical uplink data channel (physical uplink link shared channel, PUSCH) is sent on the activated uplink type BWP.
  • at least one signal or channel may be one, two, three or more signals or channels.
  • the BWP may be activated or deactivated in units of the second type of BWP, and the network device and the terminal device may perform signal transmission in the activated second type of BWP.
  • the activation and deactivation of the second type of BWP may also involve or cause the switching of the second type of BWP.
  • the activated second type BWP can be understood as the second type BWP that the terminal is currently working, and the terminal device can receive the downlink reference signal (including the downlink DMRS, CSI-RS) on the downlink first type BWP in the activated second type BWP.
  • At least one signal or channel among PDCCH, PDCCH, and PDSCH may send at least one signal or channel among uplink reference signals (including uplink DMRS), PUCCH, and PUSCH on the uplink first type BWP in the activated second type BWP. .
  • uplink reference signals including uplink DMRS
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Control Channel
  • the network device can configure a second type of BWP for the terminal device, and can allocate resources to the terminal device in the configured second type of BWP, and the allocated resources can be used for the network device and the terminal.
  • the device transmits signals. Therefore, how to allocate resources to terminal devices in the second type of BWP is an important research topic.
  • the second type of BWP configured by the network device for different terminal devices may be the same or different; the number of the first type of BWP included in the second type of BWP configured by the network device for different terminal devices may be the same It can also be different, this application is not restricted.
  • the technical solution of the embodiments of the present application is to solve the problem of resource allocation and signal transmission on the second type of BWP.
  • the BWP is a BWP in the BWP aggregation design.
  • the BWP may include N bands of frequency domain resources, where N is greater than or equal to 2 Integer. Any two frequency-domain resources in the N-band frequency-domain resources may be discontinuous frequency-domain resources.
  • FIG. 11 is an exemplary system architecture diagram of a signal transmission method according to an embodiment of the present application. As shown in FIG. 11, the method involves signal transmission between a terminal device and a network device.
  • the terminal device may be a device that provides voice and / or data connectivity to the user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • a terminal device can communicate with one or more core networks via a radio access network (RAN).
  • the terminal device can be a mobile terminal device, such as a mobile phone (or a "cellular" phone) and a mobile terminal device.
  • the computer for example, may be a portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile device that exchanges language and / or data with a wireless access network.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • computing devices or other processing devices connected to wireless modems in-vehicle devices, wearable devices, terminals in future 5G networks, or public land mobile networks that have evolved in the future (public land mobile network) , PLMN), etc.
  • this embodiment of the present application is not limited to this.
  • the terminal device can also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user equipment (user device), or user equipment (user equipment).
  • Remote terminal equipment remote terminal equipment
  • access terminal equipment access terminal
  • user terminal equipment user terminal
  • user agent user agent
  • user equipment user device
  • user equipment user equipment
  • the network device may be a base station.
  • a base station may be a device that is deployed in a wireless access network and is capable of wireless communication with a terminal device.
  • the base station can be used to convert the received air frames and IP packets to each other as a router between the terminal device and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network; the base station can also Coordinate the management of air interface attributes.
  • IP Internet Protocol
  • the base station can be a Global System for Mobile Communication (GSM) or a code division multiple access (CDMA) base station (Base Transceiver Station (BTS)), or it can be a Broadband Code Division Multiple Access
  • GSM Global System for Mobile Communication
  • CDMA code division multiple access
  • BTS Base Transceiver Station
  • NodeB in (wideband code multiple access, WCDMA) may also be an evolved base station (eNB or e-NodeB, evolutional NodeB) in LTE, or gNB in NR, etc.
  • eNB evolved base station
  • e-NodeB evolutional NodeB
  • the base station can also be a wireless controller in a cloud radio access network (CRAN) scenario, or it can be a relay station, access point, in-vehicle device, wearable device, and network device in a 5G network or future evolution
  • CRAN cloud radio access network
  • the network devices and the like in the PLMN network are not limited in the embodiments of the present application.
  • the base station may be a macro base station or a micro base station.
  • the method involved in this application is applicable to scenarios of homogeneous networks and heterogeneous networks. At the same time, there are no restrictions on transmission points. For example, it can support multi-point coordinated transmission between macro base stations and macro base stations, micro base stations and micro base stations, and macro base stations and micro base stations.
  • the method involved in this application may be used in a frequency division duplex (FDD) system, and may also be used in a time division duplex (TDD) system.
  • FDD frequency division duplex
  • TDD time division duplex
  • the method involved in this application is also applicable to low-frequency scenes (below 6GHz) and high-frequency scenes (above 6GHz).
  • FIG. 12 is an exemplary flowchart of a signal transmission interaction process between a terminal device and a network device according to an embodiment of the present application. As shown in FIG. 12, the signal transmission process between the terminal device and the network device is:
  • the network device sends resource instruction information to the terminal device.
  • the resource indication information is used to indicate resources allocated to the terminal device in the second type of BWP.
  • the terminal device performs signal transmission with the network device on the resources allocated by the network device.
  • the above resource indication information may be used to indicate the RB allocated to the terminal device in the second type of BWP, or the above resource indication information may also be used to indicate the resource block group allocated to the terminal device in the second type of BWP (resource block group, RBG).
  • the second type of BWP may include one or more first type BWPs, and each first type of BWP may include one or more RBs; or each first type of BWP may include one or more RBGs, One RBG may include one or more RBs.
  • the RB described in this application may be either a physical resource block or a virtual resource block, which is not limited in this application.
  • the network device may jointly number the RBs included in the second type of BWP.
  • the RB index may be incremented from the lowest frequency position of the second type of BWP.
  • FIG. 13 is an example diagram of joint numbering of RBs in the second type of BWP.
  • the second type of BWP includes the first type of BWP1 and the first type of BWP2.
  • the first type of BWP1 includes 10 RBs
  • the first type of BWP2 includes 8 RBs.
  • the indexes of the RBs in the first type of BWP1 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively.
  • the indexes of the RBs in the first type of BWP2 are 11, 12, 13, 14, 15, 16, 17, 18 in order.
  • the RB index may be numbered from 0, which is not limited in this application.
  • the indexes of RBs in the first type of BWP1 are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and the indexes of the RBs in the first type of BWP2 are 10, 11, 12, and 1, respectively. 13, 14, 15, 16, 17.
  • the terminal device when the network device allocates the RB resources in the second type of BWP to the terminal device, the terminal device may be allocated the starting RB and the length of consecutive RBs (that is, the number of consecutive RBs).
  • the terminal device may allocate a resource with a starting RB ID of 3 and a length of RB to the terminal device, that is, a resource allocated by the network device to the terminal device.
  • the network device may carry the identifier of the starting RB allocated for the terminal device and the length of the continuous RB for the index in the resource indication information.
  • the network device may adopt a joint indication manner of the start RB and the length of the RB, or may adopt an independent indication manner of the length indication of the start RB and the RB respectively.
  • the terminal device After receiving the resource indication information, the terminal device performs signal transmission on the RB indicated by the resource indication information.
  • the network device may use a resource indication value (RIV) to indicate the start RB of the resource allocated for the terminal device and the length of the continuous RB index.
  • RIV resource indication value
  • the following formula can be used to determine the starting RB and the length of the RB according to the RIV.
  • RB start is the starting RB of the resources allocated for the terminal device in the second type of BWP
  • L RBs is the length of the RB of the resources allocated for the terminal device in the second type of BWP, L RBs ⁇ 1 and does not exceed Bandwidth for the second type of BWP.
  • the bandwidth of the second type of BWP may be the number of RBs included in the second type of BWP. That is, starting from the RB start of the second type of BWP, L RBs consecutive RBs are allocated to the terminal device.
  • the terminal device may determine the length of the starting RB and the indexed RB according to the correspondence between the RIV and the length of the starting RB and the indexed RB, or may determine that the network device allocates the terminal device. resource of.
  • the terminal device may start with the starting RB and perform signal transmission with the network device on a frequency domain resource whose RB index has a continuous length of RB.
  • the network device may allocate resources to the terminal device according to a preset RBG allocation method, and The allocation result is carried in the above-mentioned resource indication information.
  • the resource indication information may include a bitmap, where one bit in the bitmap corresponds to one RBG or An RBG index.
  • the resource allocated by the network device to the terminal device includes the RBG corresponding to the one bit.
  • the network device is the terminal device.
  • the allocated resources do not include the RBG corresponding to the one bit.
  • t1 and t2 are integers, for example, t1 is 1.
  • the first bit in a bitmap corresponds to an RBG with an index of 1
  • the second bit corresponds to an RBG with an index of 2, and so on.
  • resources allocated to the terminal may be determined according to a bit value on the bit. For example, if the bit value of a corresponding bit in an RBG in the bitmap is 1, it indicates that the network device has allocated the RBG resource corresponding to the bit to the terminal device. If the bit value of an RBG in the corresponding bit in the bitmap is 0, it means that the network device has not allocated the RBG resource corresponding to the bit to the terminal device. After the terminal device receives the bitmap, the RBG allocated to the terminal device is determined according to the bits in the bitmap with a bit value of 1.
  • the RBGs included in the second-type BWP may be jointly numbered to obtain the index of the RBGs in the second-type BWP.
  • each RBG in the second type of BWP has a unique index, that is, one RBG index corresponds to one RBG.
  • the RBG index may be incremented from the lowest frequency position of the second type of BWP.
  • the terminal device may determine the resources allocated by the network device to the terminal device according to the RBG allocated by the network device and the size of the RBG, and perform signal transmission on the resources allocated to the terminal device and the network device.
  • the network device and the terminal device perform signal transmission or resource allocation, it is necessary to determine the RBG in the second type of BWP, for example, determine the RBG index, the number of RBGs, or the size of the RBG.
  • the RBGs included in the second-type BWP may be jointly numbered to determine the index of the RBGs in the second-type BWP.
  • the following describes the method of RBG joint numbering with an example.
  • FIG. 14 is an example diagram of joint numbering of RBGs in the second type of BWP.
  • the second type of BWP includes the first type of BWP1 and the first type of BWP2.
  • the first type of BWP1 includes 10 RBGs
  • the first type of BWP2 includes 11 RBGs.
  • the indexes of the RBGs in the first type of BWP1 are 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, respectively.
  • the indexes of RBGs in the first type of BWP2 are 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, and 21, respectively.
  • the RBG index may be numbered from 0, which is not limited in this application.
  • the indexes of RBGs in the first type of BWP1 are 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, and the indexes of the RBGs in the first type of BWP2 are 10, 11, 12, 13, and 1, respectively. 14, 15, 16, 17, 18, 19, 20.
  • each RBG in the second type of BWP has a unique index that does not duplicate other RBGs.
  • the number of RBGs included in the second-type BWP may be determined according to the number of RBGs included in each of the first-type BWPs in the second-type BWP. Specifically, the number of RBGs included in the second-type BWP is equal to the sum of the number of RBGs included in each of the first-type BWPs in the second-type BWP. The number of RBGs included in each first-type BWP may be determined according to a starting position of the first-type BWP and a bandwidth of the first-type BWP.
  • the bandwidth of the first-type BWP described in the embodiments of the present application may refer to the number of RBs included in the first-type BWP (the number may also be referred to as the number).
  • the bandwidth of the first type of BWP may also be referred to as the bandwidth of the first type of BWP, or the size of the first type of BWP, or another name, which is not limited in this application.
  • determining the size of the RBG in the second type of BWP includes determining the size of the RBG in the first type of BWP in the second type of BWP. For example, to determine the size of each RBG in the second type of BWP, it is necessary to determine the size of each RBG in each of the first type of BWP in the second type of BWP. For the first type BWP in the second type BWP, determining the RBG size in the first type BWP includes determining the size of the first RBG, the size of the second RBG, and dividing the first RBG in the first type of BWP. And the size of the RBG other than the second RBG.
  • the first RBG may be the first RBG in the first-type BWP
  • the second RBG may be the last RBG in the first-type BWP.
  • the following embodiments of this application refer to the size of the RBG other than the first RBG and the second RBG as the RBG size of the first-type BWP, and mark the RBG size as P.
  • the RBG size P of the first-type BWP in the second-type BWP may be determined according to the sum of the bandwidths of the N first-type BWPs included in the second-type BWP, or according to the second-type BWP.
  • the bandwidth is ok.
  • N is an integer greater than or equal to 1.
  • the size of the first RBG may be determined according to the starting position of the first type BWP in which the first RBG is located and P.
  • the size of the second RBG is determined according to the starting position of the first type of BWP where the second RBG is located, the bandwidth of the first type of BWP, and P.
  • the following describes the process of determining the number of RBGs and the RBG size of the second type of BWP based on the two optional determination methods of P above.
  • the RBG size in the first type BWP is the sum of the bandwidths of the N first type BWPs included in the second type BWP, that is, the second type BWP bandwidth is determined.
  • configuration 1 and configuration 2 are two configuration methods.
  • the network device can indicate to the terminal device which configuration method to use. If the network device does not indicate the configuration method to the terminal device in advance, a predefined method can be used. For example, a pre-defined method can be used. Define configuration 1 or configuration 2.
  • Table 1 is only an example of the relationship between the bandwidth of the second type of BWP and the size of the RBG, and other mapping relationships between the bandwidth of the second type of BWP and the RBG size can also be selected as required. No restrictions.
  • the configuration 1 is predefined and the second type of BWP includes the first type of BWP1 and the first type of BWP2, where the bandwidth of the first type of BWP1 is 40 RBs and the bandwidth of the first type of BWP2 is 50 RB, the bandwidth of the second type of BWP is the sum of the bandwidth of the first type of BWP1 and the first type of BWP2, that is, 90 RBs, that is, the bandwidth of the second type of BWP falls within the range of “73–144” in Table 1 above.
  • the sum of the bandwidth of N first-type BWPs in the second-type BWP is equal to the sum of the number of RBs included in each first-type BWP.
  • the sum of the bandwidth is equal to the sum of the number of RBs included in each first-type BWP. If there are overlapping RBs in the N first-type BWPs, the sum of the bandwidths of the N first-type BWPs is equal to the sum of the number of RBs included in the N first-type BWPs minus the number of overlapping RBs.
  • the overlapping RBs include an RB in which the first type BWP and the second type BWP overlap among the first type BWPs.
  • the first type BWP and the second type BWP mentioned above are first type BWPs in which any two of the N first type BWPs have overlapping RBs.
  • FIG. 15 is an example diagram of RBs that do not overlap among N first-type BWPs in the second-type BWP.
  • the second-type BWP includes the first-type BWP1 and the first-type BWP2.
  • the sum of the bandwidths of the two first-type BWPs is equal to the sum of the number of RBs included in the first-type BWP1 and the number of RBs included in the first-type BWP2.
  • the sum of the bandwidth of the two first type BWPs is 40 plus 50, That is, the sum of the bandwidths of the two first-type BWPs is 90.
  • FIG. 16 is an example diagram of overlapping RBs in N first-type BWPs in the second-type BWP.
  • the second-type BWP includes the first-type BWP1, the first-type BWP2, and the first-type. BWP3.
  • the sum of the bandwidths of the three first-type BWPs may be equal to the sum of the number of RBs included in the first-type BWP1, the first-type BWP2, and the first-type BWP3 minus the overlap between the first-type BWP1 and the first-type BWP2.
  • the number of RBs is an example diagram of overlapping RBs in N first-type BWPs in the second-type BWP.
  • the number of RBs included in the first type BWP1 is 40
  • the number of RBs included in the first type BWP2 is 50
  • the number of RBs included in the first type BWP3 is 30, and the first type BWP2 and the first type There are 25 RBs overlapping between BWP1. Therefore, the sum of the bandwidths of the three first-type BWPs is 40 plus 50 plus 30 and then minus 25, that is, the sum of the bandwidths of the three first-type BWPs is 95.
  • FIG. 17 is another example diagram of overlapping RBs among N first-type BWPs in the second-type BWP.
  • the second-type BWP includes the first-type BWP1, the first-type BWP2, and the first Class BWP3, where there is an RB overlap between the first class BWP2 and the first class BWP1.
  • the RBs of the first type BWP3 and the first type BWP2 overlap.
  • the sum of the bandwidth of the first type BWP is equal to the sum of the number of RBs included in the first type BWP1, the first type BWP2, and the first type BWP3 minus the overlapping RB between the first type BWP1 and the first type BWP2 And the number of RBs overlapping between the first type BWP2 and the first type BWP3.
  • the number of RBs included in the first type BWP1 is 40
  • the number of RBs included in the first type BWP2 is 50
  • the number of RBs included in the first type BWP3 is 30.
  • the sum of the bandwidths of the three first-type BWPs is 40 plus 50 plus 30 minus 25 and then minus 15, that is, the sum of the bandwidths of the three first-type BWPs is 80.
  • the size of other RBGs other than the first RBG and the second RBG in the first type of BWP is determined in one of the second type of BWPs, and the size of these RBGs is equal to P.
  • P is an integer greater than or equal to 1.
  • the size of the first RBG and the size of the second RBG can be determined.
  • the size of the first RBG is an integer less than or equal to P
  • the size of the second RBG is an integer less than or equal to P.
  • the following describes the process of determining the size of the first RBG.
  • the embodiment for determining the size of the first RBG may be an independent embodiment, or may be combined with other embodiments in this application. Specifically, this application does not limit this.
  • the size of the first RBG may be determined according to a start position of the first type BWP in which the first RBG is located and the foregoing P.
  • the starting position of the first type of BWP where the first RBG is located refers to the index of the starting RB of the first type of BWP.
  • BWP (t1) in each formula shown in the following embodiments of this application is used to identify the first type of BWP.
  • the size of the first RBG in the first type of BWP i can be determined by the following formula (1):
  • a sign of the size of the first RBG of the first type of BWP i The subscript 0 in is the RBG number of the first RBG of the first type BWP i.
  • the RBG number of the first RBG in the first type of BWP i may be 0, or may be another number, or may not have a number. Specifically, this embodiment of the application does not limit this.
  • the size of the first RBG of the first type of BWP i can be calculated by the above formula (1 ) It is determined that the size of the first RBG of the first type of BWP j can be determined by the following formula (2), where, Is the starting position of the first type of BWP j:
  • a sign of the size of the first RBG of the first type of BWP j Subscript in RBG number of the first RBG of the first type BWP j.
  • the RBG number of the first RBG of the first type of BWP j may be Alternatively, it may be another number, or it may not have a number. Specifically, this embodiment of the present application does not limit this.
  • N RBG N RBG
  • the number of RBGs included in the first type of BWP i is The number of RBGs included in the first type of BWP j is
  • Is the starting position of the first type of BWP i Is the starting position of the first type of BWP j, Is the bandwidth of the first type of BWP i, Is the bandwidth of the first type of BWP j.
  • the starting position of the first-type BWP may be determined according to a reference point of the first-type BWP, or may also be determined according to a location of the first-type BWP.
  • the reference point for the second type of BWP is determined. Each of them will be described below.
  • the N first-type BWPs contained in the second-type BWP in which the first-type BWP is located may have corresponding reference points
  • the terminal device determines a starting position of each first-type BWP according to the reference point.
  • the terminal device determines a reference point of the first-type BWP according to a reference frequency location (reference location) and a first offset from the reference frequency location,
  • the reference frequency position may be indicated by a network device, or may be obtained by a terminal device through a search signal when accessing a cell.
  • the first offset may be indicated by the network device.
  • the terminal device determines the starting RB position of the carrier according to the reference point of the first type of BWP and the second offset.
  • the terminal device determines a start position of the first type of BWP according to a start RB position of the carrier and a third offset, where the third offset is used to indicate that the start position of the first type of BWP is relative to Offset of the starting RB position of the carrier.
  • the terminal device may add the second offset and the third offset, and use the result of the addition as the starting position of the first type of BWP.
  • the second type of BWP When the starting position of the first type of BWP is determined according to the reference point of the second type of BWP where the first type of BWP is located, the second type of BWP has a reference point, that is, the N first types contained in the second type of BWP.
  • the class BWP has a common reference point, and the terminal device determines the starting position of each first class BWP according to the common reference point.
  • the terminal device determines the reference point of the second type of BWP according to the reference frequency position and the reference frequency position and the first offset. Furthermore, for each first-type BWP in the second-type BWP, a starting position of each first-type BWP is determined based on the reference point.
  • the specific process can refer to the above description, and will not be repeated here.
  • the network device may also notify the terminal device of the reference point and the start position of each first-type BWP based on the reference point.
  • FIG. 18 is a schematic diagram of frequency domain resources when the second type of BWP has a reference point.
  • the second type of BWP includes the first type of BWP1 and the first type of BWP2, and the second type of BWP has A reference point A, the first type BWP1 and the first type BWP2 all determine their respective starting positions according to the reference point A.
  • the starting position of the first type BWP1 is RBi
  • the starting position of the first type BWP2 is RBj.
  • i, j are integers greater than or equal to zero.
  • FIG. 19 is a schematic diagram of frequency domain resources when each first type BWP in the second type BWP has a reference point.
  • the second type BWP includes the first type BWP1 and the first type BWP2, the first type BWP1 has a reference point A, the first type BWP2 has another reference point A, the first type BWP1 and the first type BWP2 determine their respective starting positions according to their respective reference points.
  • the starting position of the first type BWP1 is RBi1; based on the reference point A of the first type BWP2 shown, the first The starting position of class BWP2 is RBj1.
  • i1 and j1 are integers greater than or equal to zero.
  • the following describes the process of determining the size of the second RBG in the first type of BWP.
  • the embodiment for determining the size of the second RBG may be an independent embodiment, or may be combined with other embodiments in this application. Specifically, this application does not limit this.
  • the size of the second RBG is determined according to the starting position of the first type of BWP where the second RBG is located, the bandwidth of the first type of BWP, and the foregoing P.
  • the starting position of the first type of BWP and the determination method of P are the same as the above-mentioned method for determining the size of the first RBG, that is, the above-mentioned P may be based on N firsts in the second type of BWP where the first type of BWP is located.
  • the BWP-like bandwidth sum is determined.
  • other methods for determining P may also be adopted, which is not limited in this application.
  • other methods for determining the starting position may also be used, which is not limited in this application.
  • the starting position of the first type of BWP may be determined according to the reference point of the first type of BWP, or determined by the reference point of the second type of BWP.
  • reference may be made to the foregoing embodiments, and details are not described herein again.
  • the bandwidth of the first type of BWP is the number of RBs included in the first type of BWP.
  • the first type of BWP is a first type of BWP i
  • i is an integer greater than or equal to 0
  • the starting position of the first type of BWP i is Or can also be expressed as
  • is the identifier or index corresponding to the subcarrier interval of BWP i, and the correspondence between ⁇ and the subcarrier interval can be described in Table 2 below.
  • the bandwidth of this first type of BWP i is Then the size of the second RBG can be determined by the following formula (4):
  • the symbol of the size of the second RBG of the first type BWP i Subscript in Number of the second RBG of the first type BWP i.
  • the number of the size of the second RBG of the first type of BWP i may be Alternatively, it may be another number, or may not be provided with a number. Specifically, this application does not limit this.
  • the size of the second RBG of the first type BWPi is P.
  • the size of the second RBG of the first type of BWP i can be determined by the above formula (4)
  • the size of the two RBGs can be determined by the following formula (5), where: Is the starting position of the first type of BWP j, Bandwidth for the first type of BWP j:
  • the sign of the size of the second RBG of the first type BWP j is the number of the second RBG of the first type BWP j.
  • last indicates the last RBG of the first type BWP j.
  • the number of the second RBG of the first type of BWP j may be the number of the last RBG, or it may be another number, or it may be without a number. Specifically, this application does not limit this .
  • the size of the second RBG is P.
  • the number of RBGs of the second type of BWP is determined by the above formula (3).
  • the following further illustrates the process of determining the RBG of the second type of BWP through two examples.
  • the first example is a first example:
  • the starting position of the first type of BWP in the second type of BWP is determined according to the reference point of the second type of BWP.
  • FIG. 20 is a first example of frequency domain resource allocation of the second type of BWP.
  • a second type of BWP includes a first type of BWP1 and a first type of BWP2.
  • the starting position of the first type BWP 1 is RB9
  • the bandwidth of the first type BWP 1 is 37 RBs
  • the starting position of the first type BWP 2 is RB 50
  • the bandwidth of the first type BWP 2 is 30 RBs.
  • the bandwidth of the second type BWP is 67 RBs.
  • the RBGs included in the second type of BWP are as follows:
  • the number of RBGs is calculated as
  • the first type of BWP 1 includes 10 RBGs
  • the first type of BWP 2 includes 8 RBGs.
  • the numbers of the RBGs in the second type of BWP are jointly numbered, and the numbers of the RBGs in the second type of BWP may be RBG 0 to RBG 17.
  • the size of the first RBG of the first type BWP1 is calculated as
  • the size of the second RBG of the first type of BWP1 is calculated as
  • the size of the first RBG of the first type of BWP2 is calculated as
  • the size of the second RBG of the first type of BWP2 is calculated as According to the above description of formula (5), the size of the second RBG of the first type of BWP2 is 4, that is,
  • the starting position of the first-type BWP is determined according to a reference point of the first-type BWP.
  • FIG. 21 is a schematic diagram of frequency domain resource allocation of the second type of BWP in the second example.
  • a second type of BWP includes a first type of BWP1 and a first type of BWP2.
  • the starting position of the first type of BWP1 is RB9
  • the bandwidth of the first type of BWP1 is 37 RBs.
  • the first The starting position of one type of BWP 2 is RB 11, and the bandwidth of the first type BWP 2 is 30 RBs.
  • the bandwidth of the second type BWP is 67 RBs.
  • the RBGs included in the second type of BWP are as follows:
  • the number of RBGs is calculated as
  • the first type of BWP 1 includes 10 RBGs
  • the first type of BWP 2 includes 8 RBGs.
  • the RBGs in the second type of BWP are jointly numbered, and the RBGs in the second type of BWP may be numbered from RBG 0 to RBG 17.
  • the size of the first RBG of the first type of BWP1 is calculated as
  • the size of the second RBG of the first type of BWP1 is calculated as
  • the size of the first RBG of the first type of BWP2 is calculated as
  • the size of the second RBG of the first type of BWP2 is calculated as which is
  • the RBG size P of the first-type BWP may be determined according to the bandwidth of the first-type BWP.
  • configuration 1 and configuration 2 are two configuration methods.
  • the network device can indicate to the terminal device which configuration method to use. If the network device does not indicate the configuration method to the terminal device in advance, a predefined method can be used. For example, a pre-defined method can be used. Define configuration 1 or configuration 2. It should be noted that Table 1 is only an example of the relationship between the bandwidth of the first type of BWP and the size of the RBG, and other mapping relationships between the bandwidth of the first type of BWP and the size of the RBG can also be selected, which is not limited in this application .
  • the configuration 1 is predefined and the second type of BWP includes the first type of BWP1 and the first type of BWP2.
  • the bandwidth of the first type of BWP1 is 40 RBs, and the bandwidth of the first type of BWP2 is 30.
  • the bandwidth of the first type of BWP1 falls within the range of “37–72” in Table 1 above
  • the value of the RBG size corresponding to the first type of BWP1 is the value under configuration 1 corresponding to this range, that is, the first type
  • the size of the RBG corresponding to BWP1 is equal to 4.
  • the bandwidth of the first type of BWP2 falls within the range of “1–36” in Table 1 above.
  • the value of the RBG size corresponding to the first type of BWP2 is the value under configuration 1 corresponding to the range, that is, the value of the first type of BWP2.
  • the RBG size is equal to two.
  • the size of other RBGs other than the first RBG and the second RBG in the first type of BWP is determined. Is equal to P.
  • P is an integer greater than or equal to 1.
  • the size of the first RBG and the size of the second RBG can be determined.
  • the size of the first RBG is an integer less than or equal to P
  • the size of the second RBG is an integer less than or equal to P.
  • the following describes the process of determining the size of the first RBG.
  • the embodiment for determining the size of the first RBG may be an independent embodiment, or may be combined with other embodiments in this application. Specifically, this application does not limit this.
  • the size of the first RBG may be determined according to a start position of the first type of BWP where the RBG is located and a size of the RBG corresponding to the first type of BWP.
  • the starting position of the first-type BWP refers to the index of the starting RB of the first-type BWP.
  • the method for determining the start position of the first-type BWP can be determined by referring to the above-mentioned "for one first-type BWP in the second-type BWP, according to the sum of the bandwidths of the N first-type BWPs included in the second-type BWP.
  • the method described in the section "The RBG size P of the first type of BWP" can be determined according to the bandwidth of the first type of BWP.
  • other methods for determining the RBG size may also be adopted, which is not limited in this application.
  • other methods for determining the starting position may also be adopted, which is not limited in this application.
  • the starting position of the first-type BWP may be determined according to the reference point of the first-type BWP, or may also be determined according to the reference point of the second-type BWP where the first-type BWP is located.
  • Examples of the reference points of the first type of BWP and the reference points of the second type of BWP and the process of determining the starting position of the first type of BWP according to these two methods can refer to the Nth
  • the sum of the bandwidth of a type of BWP determines the RBG size of the first type of BWP.
  • the first type of BWP in which the first RBG is located is a first type of BWP i
  • i is an integer greater than 0
  • the starting position of the first type of BWP i is Or, it can be expressed as Where ⁇ is the subcarrier interval of the first type of BWP i, and the size of the RBG corresponding to the first type of BWP i is P i , then the size of the first RBG of the first type of BWP i can be determined by the following formula (6):
  • a sign of the size of the first RBG of the first type of BWP i The subscript 0 in is the RBG number of the first RBG of the first type BWP i.
  • the RBG number of the first RBG in the first type of BWP i may be 0, or may be another number, or may not have a number. Specifically, this embodiment of the application does not limit this.
  • the size of the first RBG of the first type of BWP i can be calculated by the above formula (6 ) It is determined that the size of the first RBG of the first type of BWP j can be determined by the following formula (7), where, Is the starting position of the first type of BWP j, and P j is the RBG size corresponding to the first type of BWP j:
  • the size of the first RBG of the first type of BWP j The subscript in is the RBG number of the first RBG of the first type of BWP j.
  • the RBG number of the first RBG of the first type of BWP j may be Alternatively, it may be another number, or may not be provided with a number. Specifically, this application does not limit this.
  • N RBG N RBG
  • the number of RBGs included in the first type of BWP i is The number of RBGs included in the first type of BWP j is
  • Is the starting position of the first type of BWP i Is the starting position of the first type of BWP j, Is the bandwidth of the first type of BWP i, Is the bandwidth of the first type of BWP j.
  • the following describes the process of determining the size of the second RBG in the first type of BWP.
  • the embodiment for determining the size of the second RBG may be an independent embodiment, or may be combined with other embodiments in this application. Specifically, this application does not limit this.
  • the size of the second RBG may be determined according to the starting position of the first type of BWP where the second RBG is located, the bandwidth of the first type of BWP, and the size of the RBG corresponding to the first type of BWP.
  • the method for determining the starting position of the first type of BWP and the RBG size corresponding to the first type of BWP is the same as the method for determining the first RBG size, that is, the above RBG size can be determined according to the bandwidth of the first type of BWP. .
  • other methods for determining the RBG size may also be adopted, which is not limited in this application.
  • other methods for determining the starting position may also be adopted, which is not limited in this application.
  • the starting position of the first type of BWP may be determined according to the reference point of the first type of BWP, or determined by the reference point of the second type of BWP.
  • reference may be made to the foregoing embodiments, and details are not described herein again.
  • the bandwidth of the first type of BWP is the number of RBs included in the first type of BWP.
  • the first type of BWP is a first type of BWP i
  • i is an integer greater than or equal to 0
  • the starting position of the first type of BWP i is Or can also be expressed as
  • is the subcarrier interval of the first type of BWP i
  • the bandwidth of the first type of BWP i is The size of the RBG corresponding to the first type of BWP i is P i
  • the size of the second RBG of the first type of BWP i can be determined by the following formula (9):
  • the symbol of the size of the second RBG of the first type BWP i Subscript in Number of the second RBG of the first type BWP i.
  • the number of the size of the second RBG of the first type of BWP i may be Alternatively, it may be another number, or may not be provided with a number. Specifically, this application does not limit this.
  • the size of the second RBG of the first type BWPi is Pi.
  • the size of the second RBG of the first type of BWP i can be calculated by the above formula (9 ) It is determined that the size of the second RBG of the first type of BWP j can be determined by the following formula (10), where, Is the starting position of the first type of BWP j, Is the bandwidth of the first type of BWP j, and P j is the RBG size corresponding to the first type of BWP j:
  • the sign of the size of the second RBG of the first type BWP j is the number of the second RBG of the first type BWP j.
  • last indicates the last RBG.
  • the number of the second RBG of the first type of BWP j may be the number of the last RBG, or it may be another number, or it may be without a number. Specifically, this application does not limit this .
  • the size of the second RBG of the first type BWP j is P j .
  • the number of RBGs of the second type of BWP is determined by the above formula (8).
  • the size of other RBGs in the first type of BWP1 is P i
  • the size of other RBGs in the first type of BWP2 is P j .
  • the following further illustrates the process of determining the RBG of the second type of BWP through two examples.
  • the first example is a first example:
  • the starting position of the first type of BWP in the second type of BWP is determined according to the reference point of the second type of BWP.
  • FIG. 22 is a schematic diagram of frequency domain resource allocation of the second type of BWP in the first example.
  • a second type of BWP includes a first type of BWP 1 and a first type of BWP 2.
  • the starting position of the first type of BWP 1 is RB 9
  • the bandwidth of the first type of BWP 1 is 37 RBs
  • the starting position of the first type of BWP 2 is RB 50
  • the bandwidth of the first type of BWP 2 is 30 RBs.
  • the number of RBGs is calculated as
  • the first type of BWP 1 includes 10 RBGs
  • the first type of BWP 2 includes 15 RBGs.
  • the RBGs in the second type of BWP are numbered jointly, and the numbers of the RBGs in the second type of BWP may be RBG 0 to RBG 24.
  • the size of the first RBG of the first type of BWP 1 is calculated as
  • the size of the second RBG of the first type of BWP1 is calculated as
  • the size of the first RBG of the first type of BWP2 is calculated as
  • the size of the second RBG of the first type BWP2 is which is
  • the starting position of the first-type BWP is determined according to a reference point of the first-type BWP.
  • FIG. 23 is a schematic diagram of frequency domain resource allocation of the second type of BWP according to the second example.
  • a second type of BWP includes a first type of BWP 1 and a first type of BWP 2.
  • the starting position of the first type BWP 1 is RB 9
  • the bandwidth of the first type BWP 1 is 37 RBs.
  • the The starting position of one type of BWP 2 is RB 11, and the bandwidth of the first type of BWP 2 is 30 RBs.
  • the bandwidth of the second type of BWP is 67 RBs.
  • the number of RBGs is calculated as
  • the first type of BWP 1 includes 10 RBGs
  • the first type of BWP 2 includes 16 RBGs.
  • the RBGs in the second type of BWP are jointly numbered, and the RBGs in the second type of BWP may be numbered from RBG 0 to RBG 25.
  • the size of the first RBG of the first type of BWP 1 is calculated as
  • the size of the second RBG of the first type BWP1 is
  • the size of the first RBG of the first type BWP2 is calculated as
  • the size of the second RBG of the first type of BWP2 is calculated as which is
  • the foregoing resource indication information may be indicated by high-level signaling, or may also be indicated by downlink control information (DCI), which is not limited in this application.
  • DCI downlink control information
  • N first-type BWPs included in the second-type BWP there may be no resource overlap between each first-type BWP in the N first-type BWPs, or multiple of the N first-type BWPs There may be resource overlap between the first types of BWP.
  • the resource overlap between multiple first-type BWPs of the N first-type BWPs may mean that the RBs included in the two RBGs of the N first-type BWPs completely overlap, or it may also refer to the above. All RBs included in one RBG in the N first type BWPs are part of the RBs included in another RBG, that is, the other RBG includes the one RBG.
  • FIG. 24 is an example where the RBs included in the two RBGs completely overlap.
  • a second type of BWP includes a first type of BWP1 and a first type of BWP2, and a first type of BWP1 includes RBG1, RBG2, and RBG3.
  • the RBs included in RBG3 and RBG4 are RB a1, RB a2, and RB a3, that is, the RBs included in RBG3 and RBG4 completely overlap, and resources overlap between RBG3 and RBG4.
  • a1, a2, and a3 are integers.
  • the overlapping resources are RBa1, RBa2, and RBa3.
  • FIG. 25 is an example of resource overlap between two first-type BWPs of N first-type BWPs.
  • a second-type BWP includes first-type BWP1 and first-type BWP2, and first type BWP1 includes three RBGs: RBG1, RBG2, and RBG3.
  • the first type of BWP2 includes three RBGs: RBG4, RBG5, and RBG6.
  • RBG3 includes RB1, RB2, and RB3, and RBG4 includes RB2 and RB3, that is, all RBs included in RBG4 are part of RBG3 and can also be regarded as RBG3 includes RBG4.
  • a1, a2, a3, and a4 are integers.
  • the overlapping resources are RBa2 and RBa3.
  • FIG. 26 is an example of resource overlap between three first-type BWPs of N first-type BWPs.
  • a second-type BWP includes first-type BWP1, first-type BWP2, and first-type BWP3.
  • the first type of BWP1 includes three RBGs, RBG1, RBG2, and RBG3.
  • the first type of BWP2 includes three RBGs, RBG4, RBG5, and RBG6.
  • the first type of BWP3 includes three RBGs, RBG7, RBG8, and RBG9.
  • the RBs included in RBG3 are RB a1, RB a2, and RB a3, and the RBs included in RBG4 are RB a1, RB a2, RB a3, and RB a4, that is, all the RBs included in RBG3 are part of the RBs included in RBG4 It can also be regarded as RBG4 including RBG3.
  • the RBs included in RBG6 are RB a5, RB a6, and RB a7
  • the RBs included in RBG7 are RB a5, RB a6, RB a7, and RB a8, that is, all the RBs included in RBG6 are part of the RBs included in RBG7 It can also be regarded as RBG7 including RBG6.
  • a1, a2, a3, a4, a5, a6, a7, and a8 are integers.
  • the overlapping resources are RBa1, RBa2, and RBa3, RBa5, RBa6, and RB a7.
  • the network device when the network device indicates the RBG through the resource indication information, for the overlapping resources, It can be numbered only once, or it can be numbered multiple times according to the RBG corresponding to the overlapping resource.
  • one of the above RBG indexes uniquely corresponds to one RBG.
  • FIG. 27 is an example diagram of overlapping resource numbers once.
  • a second type BWP includes a first type BWP1 and a first type BWP2, and a third type RBG in the first type BWP1 and a first type BWP2.
  • the first RBG is completely overlapped, according to the method of numbering overlapping resources once, the overlapping RGB is numbered as the RBG index of RBG3.
  • the RBG index uniquely corresponds to an RBG composed of RB a1, RB a2, and RB a3.
  • a1, a2, and a3 are integers.
  • a plurality of the above-mentioned RBG indexes correspond to one RBG.
  • the overlapping resources shown in the three figures are numbered multiple times according to the RBG where they are located.
  • RBG3 and RBG4 in FIG. 24 correspond to the same RBG, but in the first type BWP1
  • the overlapping resource is numbered RBG3 in the first category, and the overlapping resource is numbered RBG4 in the first type of BWP2.
  • the one RBG is an overlapping resource in multiple first-type BWPs of N first-type BWPs.
  • the RBGs corresponding to RBG3 and RBG4 in FIG. 24 are overlapping resources between the first type BWP1 and the first type BWP2.
  • the overlapping resources may refer to overlapping RBGs, or may refer to overlapping RBs.
  • the one RBG is an overlapping resource in multiple first-type BWPs of N first-type BWPs, which may mean that when multiple RBG indexes correspond to one RBG, the The resources in one RBG may include overlapping resources in multiple first-type BWPs of N first-type BWPs.
  • the following method for designing the resource indication information may be an independent embodiment, or may be combined with other embodiments in this application. Specifically, this application does not limit this.
  • the resource indication information when used to indicate resources allocated to the terminal device in the second type of BWP, the resource indication information may include N information fields, each of which corresponds to the second type of BWP. N of the first type BWP. The N information fields are used to determine the resources allocated to the terminal equipment in the N first type BWPs.
  • the above N information fields may be carried in a resource indication field of an indication message, and the indication message may be included in a high-level signaling or a DCI message.
  • the above N information fields may be carried in a bit field of a DCI, and accordingly, the N information fields may be N segments in the one bit field.
  • each of the N-segment bits includes at least one bit.
  • the above N information fields may be carried in multiple resource indication fields of the indication message.
  • the above N information fields may be carried in multiple bit fields in one DCI, and then each information field corresponds to a bit field in the DCI.
  • the network device when performing resource allocation, the network device generates resource instruction information and sends the resource instruction information to the terminal device.
  • the resource instruction information includes the N information fields described above, and the terminal device according to the N information in the resource instruction information
  • the domain determines the frequency domain resources allocated to the terminal device, and performs signal transmission on the allocated frequency domain resources.
  • the information field carried therein needs to meet specific requirements.
  • the number of bits of the resource indication information needs to be equal to the number of bits pre-configured or predefined by the protocol.
  • the number of bits in the resource indication information after the dynamic switching of the second type of BWP needs to be equal to the number of bits in the resource indication information before the dynamic switching of the second type of BWP.
  • the number of bits in the resource indication information after the second type of BWP is activated needs to be equal to the number of bits in the resource indication information before the second type of BWP is activated. Limiting the number of bits in the information domain can reduce the complexity of blind detection of control information for the terminal device.
  • the second type of BWP before switching may be referred to as a source second type BWP, and the second type of BWP after switching to or after switching may be referred to as a target second type BWP.
  • the number of bits of the resource indication information may be different from the required number of bits.
  • the required number of bits refers to the number of bits required to indicate resources allocated to terminal devices in N first-type BWPs in the second-type BWP.
  • both the network device and the terminal device need to perform corresponding processing, so that the resource indication information can meet specific requirements, and the terminal device can correctly determine the frequency domain resources allocated to the terminal device.
  • the required number of bits described in the embodiments of the present application may be the number of bits required for the resource indication information, or may be the number of bits required for the information fields in the N information fields in the resource indication information.
  • the number of bits required for the resource indication information may also be referred to as the number of bits required for the second type of BWP.
  • the number of bits required by the information field may also be referred to as the number of bits required by the first type of BWP corresponding to the information field.
  • the total number of bits required for each information field in the N information fields can be understood as including the number of bits required for the resource indication information of the N information fields.
  • the required number of bits indicates the number of bits required by the second type of BWP
  • the required resources can be determined according to the overlapping resource number one or more times.
  • the number of bits Exemplarily, if the overlapping resource is numbered once, the number of bits corresponding to the overlapping resource is 1 in the required number of bits, and if the overlapping resource is numbered multiple times, the number of bits corresponding to the overlapping resource is 2 in the required number of bits. In the case of numbering once, the number of bits required to indicate the second type of BWP can be reduced.
  • the number of bits required for the second type of BWP may be determined according to the number of RBs or RBGs included in the second type of BWP.
  • the resource indication method is RBG.
  • the RBG numbers included in the second type of BWP are RBG 0 to RBG n-1, and the required number of bits may be n.
  • the number of bits required by the second type of BWP may also be referred to as the number of bits required by the N type BWP included in a second type of BWP.
  • the number of bits required for a first-type BWP corresponding to an information domain may be determined according to the number of RBs or RBGs included in a first-type BWP corresponding to the information domain.
  • the resource indication method is RBG.
  • the number of bits required is RBG.
  • the RBG number in a first-type BWP is RBG 0 ⁇ RBG m-1, the number of bits required can be m.
  • a first-type BWP corresponding to an information domain may also be simply referred to as the number of bits required for an information domain, or simply the number of bits required for a first-type BWP.
  • the number of bits specified in this application may be the number of bits required when limiting the number of bits.
  • the specified number of bits of the resource indication information in this application is the number of bits of the resource indication information that meets a specific requirement.
  • the specified number of bits of the resource indication information is M
  • the resource indication information includes N information fields
  • the specified number of bits of each information field may be equally divided, or may be based on each information The number of bits required by the domain is determined.
  • the specified number of bits in each information field is equally divided, that is, the specified number of bits in an information field is M / N, or M / N is rounded up or down.
  • the specified number of bits in each information domain is determined according to the number of bits required in each information domain, it can be specifically determined as follows.
  • the specified number of bits of an information field may be based on the ratio of the number of bits required by a first-type BWP corresponding to the information field to the number of bits required by a second-type BWP where the first type BWP is located Determine the number of bits specified in the information field.
  • the number of bits required by a first-type BWP corresponding to an information domain is r1
  • the number of bits required by a second-type BWP where the first type BWP is located is T
  • the ratio of the number of bits required for the second type of BWP where a corresponding first type of BWP is located is r1 / T.
  • the number of bits specified in this information field is the number of bits specified in the resource indication information multiplied by r1 / T. Or it can be rounded up or down after multiplying by r1 / T.
  • the number of bits required for a first-type BWP corresponding to an information domain is 5 bits
  • the number of bits required for a second-type BWP for the first type BWP is 20 bits, that is, a first type corresponding to the one information domain
  • the specified number of bits of an information field can be determined according to the ratio of the number of bits required by a first-type BWP corresponding to the information field to the number of bits required by a first-type BWP corresponding to another information field.
  • the number of bits specified in this information field uses two information fields as an example. The situation of other information fields is similar and will not be described again.
  • the number of bits required by a first-type BWP corresponding to one information domain is r1
  • the number of bits required by a first-type BWP corresponding to another information domain is r2, that is, a first-type BWP corresponding to one information domain
  • the ratio of the number of required bits to the number of bits required by a first-type BWP corresponding to another information domain is r1 / r2.
  • the number of bits specified in the one information field is the number of bits specified in the resource indication information multiplied by r1 / (r1 + r2). Or it can be rounded up or down after multiplying by r1 / (r1 + r2).
  • the number of bits specified in the other information field is the number of bits specified in the resource indication information multiplied by r2 / (r1 + r2). Or it can be rounded up or down after multiplying by r2 / (r1 + r2).
  • the number of bits required for a first-type BWP corresponding to one information domain is 5 bits
  • the number of bits required for a first-type BWP corresponding to another information domain is 10 bits.
  • the number of bits specified in the resource indication information is 18 bits
  • Determining the specified number of bits according to the ratio can take into account the different bandwidths of each first-type BWP in the N first-type BWPs to avoid the imbalance of the actual effective number of bits in each first-type BWP and avoid improper resource allocation. Flexible question.
  • a bit removal process can be performed according to requirements, and the effective bits in each information field can be balanced to avoid the situation of limited resource allocation.
  • zero-padded processing may be performed on multiple information fields in the resource indication information according to requirements, which facilitates the acquisition of prior information and improves the decoding performance.
  • the network device sends the resource indication information or the N information fields included in the resource indication information to the terminal device that meets the specified number of bits, so that the number of bits of the resource indication information and the required number of bits may be different.
  • the terminal device receives the resource indication information sent by the network device.
  • the number of bits of the resource indication information is more than the required number of bits.
  • the X1 bit in the one information field is used to indicate A resource allocated to a terminal device in a first-type BWP corresponding to an information domain, where X1 is equal to the number of bits of the information domain minus Y1, where Y1 is a value obtained by dividing L into N, or Y1 is based on L and the ratio of the number of bits of the one information field to the number of bits of the resource indication information are determined.
  • the terminal device may remove excess Y1 bits from the bits corresponding to the information field to obtain the remaining X1 bits, which are the bits used to indicate a corresponding first type of BWP.
  • the terminal device may determine it according to the excess L bits and the N information fields. For example, L is divided into N information fields to obtain the number of bits to be subtracted for each information field. Alternatively, it may also be determined according to a ratio of the number of bits of the one information field to the number of bits of the resource indication information.
  • the subtracted bits may refer to the most significant bits of the information domain, or the least significant bits of the information domain, or bits at other locations. Specifically, this application does not limit this.
  • the position of the subtracted bits may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. Specifically, this application does not limit this.
  • Y1 is a value obtained by dividing L by N.
  • the following uses only two information domains as an example, and the schemes of other multiple information domains are similar, and are not repeated here.
  • the first type BWP of the second type BWP uses P1 bits
  • the second type BWP uses P2 bits.
  • P1 + P2 M.
  • (M-T) L bits can be equally divided.
  • one information field can remove (L / N) bits, or it can take (L / N) the whole bit upward, or (L / N) Take the entire bit down.
  • X1 bits in the one information field are used to indicate the one information field.
  • Y1 may be (L / N) bits, or may be (L / N) to take the whole bit up, or (L / N) to take the whole bit down.
  • the first information field of the resource indication information that is, P1-2 bits in the first information field is used to indicate that the A resource allocated to a terminal device in a first type of BWP corresponding to each information field, where P1-2 is equal to the number of bits P1 of the first information field minus Y1.
  • P2-2 is equal to the number of bits P2 of the second information field minus Y1.
  • Y1 is determined according to L and the ratio of the number of bits of the one information field to the number of bits of the resource indication information.
  • L the ratio of the number of bits of the one information field to the number of bits of the resource indication information.
  • the first type BWP of the second type BWP uses P1 bits
  • the second type BWP uses P2 bits.
  • P1 + P2 M.
  • the ratio of the number of bits of the first information field to the number of bits of the resource indication information is P1 / M
  • the ratio of the number of bits of the second information field to the number of bits of the indication information is P2 / M.
  • the first information field may remove L * m1 bits, and the second information field may remove L * m2 bits.
  • it may be rounded up or rounded down for L * m1, or it may be rounded up or rounded down for L * m2.
  • X1 bits in the one information field are used to indicate the one information field.
  • Y1 can be the following values: L * m1, L * m2, L * m1 is rounded up or down, and L * m2 is rounded up or down.
  • the number of bits of the resource indication information is 6 bits more than the required number of bits
  • the first information field of the resource indication information that is, P1-4 bits in the first information field are used to indicate A resource allocated to a terminal device in a first type of BWP corresponding to each information field, where P1-4 is equal to the number of bits P1 of the first information field minus Y1.
  • P2-2 is equal to the number of bits P2 of the second information field minus Y1.
  • Y1 is determined according to L and the ratio of the number of bits in one information domain to the number of bits in another information domain.
  • the following uses only two information domains as an example, and the schemes of other multiple information domains are similar, and are not repeated here.
  • the first information field may remove L * f1 / (f1 + 1) bits
  • the second information field may remove L * 1 / (f1 + 1) Bits.
  • it may be rounded up or rounded down for L * f1 / (f1 + 1), or it may be rounded up or rounded down for L * 1 / (f1 + 1).
  • the first information field can remove L * 1 / (f2 + 1) bits
  • the second information field can remove L * f2 / (f2 + 1) bits. Bits. Alternatively, it may be rounded up or rounded down by L * 1 / (f2 + 1), or may be rounded up or rounded down by L * f2 / (f2 + 1).
  • the number of bits of the resource indication information is more than L bits than the required number, for one information field in the N information fields, that is, X1 bits in the one information field are used to indicate the one information field.
  • Y1 can be the following values: L * f1 / (f1 + 1), L * 1 / (f1 + 1), L * f1 / (f1 + 1) is rounded up or down, L * 1 / (f1 + 1) is rounded up or down, L * f1 / (f1 + 1), L * 1 / (f1 + 1), L * f1 / (f1 + 1) is rounded up or Round down, round up or round down L * 1 / (f1 + 1), L * 1 / (f2 + 1), L * f2 / (f2 + 1), L * 1 / (f2 +1) is rounded up or down, and L * f2 / (f2 + 1) is rounded up or down.
  • the first information field of the resource indication information that is, P1-4 bits in the first information field are used to indicate A resource allocated to a terminal device in a first type of BWP corresponding to each information field, where P1-4 is equal to the number of bits P1 of the first information field minus Y1.
  • P2-2 is equal to the number of bits P2 of the second information field minus Y1.
  • the X bits in the resource indication information are used to indicate resources allocated to the terminal device in the second type of BWP, Wherein, X is equal to the number of bits of the resource indication information minus L.
  • the terminal device may remove the excess L bits from the bits carried by the resource indication information, thereby obtaining the remaining X bits, the X bits
  • the bit is a bit used to indicate the second type of BWP.
  • the subtracted bit L may refer to the L bit of the highest bit of the resource indication information, or the L bit of the lowest bit of the resource indication information, or a bit at another position. Specifically, this application does not limit this.
  • the position of the subtracted L bit may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. Specifically, this application does not limit this.
  • the terminal device can remove 2 The most significant bit, the remaining 10 bits are the bits used to indicate the second type of BWP.
  • the terminal device may use the least significant bit of the same number of bits in an information field in the resource indication information as required.
  • the required number of bits is used to indicate a required bit of a first-type BWP corresponding to the information domain.
  • the terminal device may determine the resource allocated to the terminal device on the first type of BWP according to the least significant bit of the same number of bits in the one information domain.
  • the terminal device may use the X1 least significant bit of an information field in the resource indication information, and the X1 bit is used to indicate the corresponding One of the first type of BWP bits required.
  • the terminal device can determine the resources allocated to the terminal device on the first type BWP according to the X1 bit of the lowest bit.
  • the terminal device uses the resource The 10 least significant bits of the information field in the indication information, and the resources allocated to the terminal device on the first type of BWP are determined according to the 10 bits.
  • the terminal device may use the least significant bit of the resource indication information that is the same as the required number of bits.
  • the resource indication information The least significant bit among the required number of bits is used to indicate the bit required for the second type of BWP.
  • the terminal device may determine the resource allocated to the terminal device on the second type of BWP according to the least significant bit in the resource indication information that is the same as the required number of bits.
  • the terminal device may use the least significant bit among the bits carried by the resource indication information as the required number of bits.
  • the terminal device may determine the resources allocated to the terminal device according to the lowest T bits.
  • the number of bits of the resource indication information is less than the required number of bits.
  • the bits in the one information field are zero-filled with Y2 bits.
  • the bit is used to indicate the resources allocated to the terminal device in a first type BWP corresponding to the one information field, where Y2 is a value obtained by dividing S into N, or Y2 is a bit according to S and one of the above information fields
  • the ratio of the number to the number of bits of the resource indication information is determined.
  • the terminal device may add Y2 bits and Y2 bits based on the bits corresponding to the information field.
  • the bit obtained after that is used to indicate the resource allocated to the terminal device on a first-type BWP corresponding to the information domain.
  • the terminal device may determine the Y2 bit according to the S bit and the N information fields. For example, S is equally divided in N information fields to obtain the number of bits that need to be zero-added in each information field. Alternatively, it may also be determined according to a ratio of the number of bits of the one information field to the number of bits of the resource indication information.
  • zero padding when zero padding is performed in an information domain, zero padding may be performed on the highest bit of the information domain or zero padding on the lowest bit of the information domain. Or it can be zero-padded at other positions. Specifically, this application does not limit this.
  • zero padding when zero padding is performed in the information field of the resource indication information, zero padding may be performed on the highest bit of the information field or zero padding on the lowest bit of the information field. Or it can be zero-padded at other positions. Specifically, this application does not limit this.
  • the position of zero padding may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. Specifically, this application does not limit this.
  • Y2 is a value obtained by dividing S into N.
  • the following uses only two information domains as an example, and the schemes of other multiple information domains are similar, and are not repeated here.
  • the first type BWP of the second type BWP uses P1 bits
  • the second type BWP uses P2 bits.
  • P1 + P2 M.
  • (T-M) S bits can be equally divided.
  • one information field may be zero-padded (S / N) bits, or (S / N) may be taken up to the entire bit, or (S / N) Takes the whole bit down.
  • Y2 may be (S / N) bits, or (S / N) may be taken to take the entire bit upward, Or (S / N) down the whole bit.
  • each information field can be filled with 2 bits, that is, The highest bit of P1 can be filled with 2 bits, and the value of the 2 filled bits is 0, and then the highest bit of P2 is filled with 2 bits, and the value of the filled 2 bits is 0.
  • the first information field of the resource indication information that is, the bits after zeroing 2 bits in the first information field
  • the second information field of the resource indication information that is, the bits after zero-padded with 2 bits in the second information field are used to indicate that the terminal device is allocated in a first type BWP corresponding to the second information field.
  • the following is an example of determining the Y2 bits of zero padding according to the ratio of the number of bits of the information field to the number of bits of the resource indication information.
  • the first type BWP of the second type BWP uses P1 bits
  • the second type BWP uses P2 bits.
  • P1 + P2 M.
  • the ratio of the number of bits of the first information field to the number of bits of the resource indication information is P1 / M
  • the ratio of the number of bits of the second information field to the number of bits of the indication information is P2 / M.
  • the first information field may be zero-padded L * m1 bits
  • the second information field may be zero-padded L * m2 bits.
  • it may be rounded up or rounded down for L * m1, or it may be rounded up or rounded down for L * m2.
  • the number of bits of the resource indication information is S bits less than the required number of bits, for one of the N information fields, that is, the bits in the information field are zero-filled Y2 bits It is used to indicate the resources allocated to the terminal device in a first-type BWP corresponding to the one information field, where Y2 can be the following values: L * m1, L * m2, L * m1 rounded up or down Round, L * m2 rounds up or down.
  • the number of bits in the first information field is P1
  • the number of bits in the second information field is P2
  • P1 / M 2/3
  • P2 / M 1/3
  • the first information field of the resource indication information that is, the bits after zeroing 4 bits in the first information field
  • Y2 is determined according to S and the ratio of the number of bits in one information domain to the number of bits in another information domain.
  • the following uses only two information domains as an example, and the schemes of other multiple information domains are similar, and are not repeated here.
  • the first information field may be zero-padded by L * f1 / (f1 + 1) bits
  • the second information field may be padded by L * 1 / (f1 + 1) bits.
  • it may be rounded up or rounded down for L * f1 / (f1 + 1), or it may be rounded up or rounded down for L * 1 / (f1 + 1).
  • the first information field may be zero-padded by L * 1 / (f2 + 1) bits
  • the second information field may be padded by L * f2 / (f2 + 1 ) Bits.
  • it may be rounded up or rounded down by L * 1 / (f2 + 1), or may be rounded up or rounded down by L * f2 / (f2 + 1).
  • Y2 can be the following values: L * f1 / (f1 + 1), L * 1 / (f1 + 1), L * f1 / (f1 + 1) is rounded up or down, L * 1 / (f1 + 1) is rounded up or down, L * f1 / (f1 + 1) , L * 1 / (f1 + 1), L * f1 / (f1 + 1) is rounded up or down, L * 1 / (f1 + 1) is rounded up or down, L * 1 / (f1 + 1) is rounded up or down, L * 1 / (f1 + 1) is rounded up or down, L * 1 / (f2 + 1), L * f2 / (f2 + 1), L * 1 / (f2 + 1) is rounded up or down,
  • the value of 0 is filled with 2 bits in the most significant bit of P2, and the value of the filled 2 bits is 0.
  • the first information field of the resource indication information that is, the bits after zeroing 4 bits in the first information field
  • the second information field of the resource indication information that is, the bits in the second information field are zero-filled and 2 bits are used to indicate that the terminal device is allocated in a first type BWP corresponding to the second information field
  • the terminal device may determine the resources allocated to the terminal device on the second-type BWP according to the zero-padded bits.
  • the terminal device needs to add S bits to the bits carried by the resource indication information, and the bits obtained after adding the S bits are used for indication. Bits of the second type of BWP.
  • the terminal device determines the resources allocated by the network device to the terminal device on the second type BWP according to the zero-padded bits.
  • zero padding when zero padding is performed in the resource instruction information, zero padding may be performed on the highest bit of the resource instruction information, or zero padding may be performed on the lowest bit of the resource instruction information. Or it can be zero-padded at other positions. Specifically, this application does not limit this.
  • the position of zero padding may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. Specifically, this application does not limit this.
  • the terminal device may be at the highest bit of the resource indication information.
  • Complement 2 bits The value of these 2 bits is 0.
  • the 12 bits obtained are the bits used to indicate the second type of BWP.
  • the terminal device determines the resources allocated by the network device to the terminal device on the second type BWP according to the zero-padded bits.
  • the terminal device may add (or preset) bits to the bits in an information field in the resource indication information 0 until the number of bits in the information field is the same as the number of bits required to indicate a first-type BWP corresponding to the information field.
  • the terminal device may determine resources allocated to the terminal device on a first-type BWP corresponding to the information field according to the information field after adding bit 0.
  • the terminal device may add (or preset) bit 0 to the bits in an information field in the resource indication information until the The number of bits is the same as the number of bits required to indicate a first type of BWP corresponding to the information field.
  • the terminal device may determine resources allocated to the terminal device on a first-type BWP corresponding to the information field according to the information field after adding bit 0.
  • the terminal device may pad zero bits on the highest bit of the first information field of the resource indication information until one of the information of the resource indication information
  • the bit number field of the field indicates that the number of bits required for a first type of BWP corresponding to the information field is the same.
  • the terminal device determines resources allocated to the terminal device on a first-type BWP corresponding to the information field according to the zero-padded information field.
  • the terminal device may add (or preset) bit 0 to the bits carried by the resource indication information until the resource indication
  • the number of bits of information is the same as the number of bits required.
  • the same number of bits as required in the resource indication information is used to indicate the bits required for the second type of BWP.
  • the terminal device may determine a resource allocated to the terminal device on the second type of BWP according to the resource indication information after adding bit 0.
  • the terminal device may add (or preset) bit 0 to the bits carried by the resource indication information until the number of bits of the resource indication information and the required Until the number of bits is the same.
  • the terminal device may add bit 0 to the bits carried by the resource indication information until the number of bits of the resource indication information is equal to 12.
  • the terminal device determines resources allocated to the terminal device on the second-type BWP according to the zero-padded resource indication information.
  • the following is the processing procedure on the network device side.
  • the network device sends resource instruction information to the terminal device.
  • the number of bits of the resource indication information is more than the required number of bits.
  • the bits in the one information field are in the one information field.
  • Corresponding information in the first type of BWP after zero-filling Y1 bits required for allocating resources to terminal devices, where Y1 is the value obtained by dividing L into N, or Y1 is the number of bits based on L and the information field The ratio to the number of bits of the resource indication information is determined.
  • the network device needs to send resource indication information. Therefore, if the number of bits of the resource indication information is more than L bits than the required number of bits, the network device needs to add L bits to the required number of bits.
  • the resource indication information sent by the network device meets the requirements of the foregoing scenario.
  • the L bits need to be split into N information fields, and the bit split into one information field is the above-mentioned Y1.
  • zero-padding processing can be performed according to requirements, which facilitates the acquisition of prior information and improves decoding performance.
  • the network device may determine the Y1 bit according to the L bit and the N information fields. For example, L is divided into N information fields to obtain the number of bits that need to be zero-filled in each information field. Alternatively, it may also be determined according to a ratio of the number of bits of the one information field to the number of bits of the resource indication information.
  • zero padding when zero padding is performed in an information domain, zero padding may be performed on the highest bit of the information domain or zero padding on the lowest bit of the information domain. Or it can be zero-padded at other positions. Specifically, this application does not limit this.
  • zero padding when zero padding is performed in the resource indication information, zero padding may be performed on the highest bit of the information indication information, or zero padding may be performed on the lowest bit of the resource indication information. Or it can be zero-padded at other positions. Specifically, this application does not limit this.
  • the position of zero padding may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. Specifically, this application does not limit this.
  • L is divided into N information fields for zero-padding. That is, Y1 is a value obtained by dividing L by N.
  • Y1 is a value obtained by dividing L by N.
  • the following uses only two information domains as an example, and the schemes of other multiple information domains are similar, and are not repeated here.
  • the first type BWP of the second type BWP uses P1 bits
  • the second type BWP uses P2 bits.
  • P1 + P2 M.
  • (M-T) L bits can be equally divided.
  • one information field may be zero-padded (L / N) bits, or it may be (L / N) and the entire bit is taken up, or (L / N) Takes the whole bit down.
  • Y1 can be (L / N) bits, or (L / N) can be taken up to take the entire bit. Or (L / N) down to take the whole bit.
  • each information field can be filled with 2 bits, that is, Then, 2 bits can be filled in the most significant bit of P1, the value of the 2 filled bits is 0, and 2 bits are filled in the most significant bit of P2, and the value of the 2 filled bits is 0.
  • the first information field of the resource indication information that is, the bits in the first information field is a first information field corresponding to the first information field.
  • Information in a type of BWP that is zero-padded with 2 bits when allocating resources to terminal equipment.
  • the bits in the second information field are information obtained by padding 2 bits with zeros required when allocating resources to the terminal device in a first-type BWP corresponding to the one information field.
  • the following is an example of determining zero-padded Y1 bits according to the ratio of the number of bits of the above-mentioned information field to the number of bits of the resource indication information.
  • the first type BWP of the second type BWP uses P1 bits
  • the second type BWP uses P2 bits.
  • P1 + P2 M.
  • the ratio of the number of bits of the first information field to the number of bits of the resource indication information is P1 / M
  • the ratio of the number of bits of the second information field to the number of bits of the indication information is P2 / M.
  • the first information field P1 is a bit-padded zero L * m1 bit required to indicate that the first type of BWP corresponding to the one information field allocates resources to the terminal device.
  • the second information field P2 is information indicating that the first type of BWP corresponding to the one information field needs to be zero-filled L * m2 bits when allocating resources to the terminal device. Alternatively, it may be rounded up or rounded down for L * m1, or it may be rounded up or rounded down for L * m2.
  • Y1 can be the following values: L * m1, L * m2, L * m1 rounded up or down. Round, L * m2 rounds up or down.
  • the highest bit of the bit required for allocating resources to the terminal device is filled with 4 bits, and the terminal device is allocated in the first type of BWP corresponding to the second information domain. 2 bits are padded with zeros in the most significant bits of the bits required for the resource.
  • the first information field of the resource indication information that is, the bits in the first information field is a first indication field corresponding to the one information field.
  • the bits in the second information field are obtained by indicating that the bits required for allocating resources to the terminal device in a first type BWP corresponding to the one information field are zero-padded with 2 bits.
  • Y1 is determined according to L and the ratio of the number of bits in one information domain to the number of bits in another information domain.
  • the following uses only two information domains as an example, and the schemes of other multiple information domains are similar, and are not repeated here.
  • the bits of the first information field are zero-filled bits L * f1 that are required to indicate that the first type BWP corresponding to the one information field allocates resources to the terminal device. / (f1 + 1) bits of information, and the bits in the second information field are zero-filled bits L * 1 / (f1) required to indicate that the first type of BWP corresponding to the one information field allocates resources to the terminal device +1) bits of information.
  • it may be rounded up or rounded down for L * f1 / (f1 + 1), or it may be rounded up or rounded down for L * 1 / (f1 + 1).
  • the bits of the first information field are zero-filled bits L * 1 / required to indicate that the first type of BWP corresponding to the one information field allocates resources to the terminal device (f2 + 1) bits of information.
  • the bits in the second information field indicate the number of bits that are needed to allocate resources to the terminal device in a first type of BWP corresponding to the one information field.
  • L * f2 / (f2 + 1) Information after bits. Alternatively, it may be rounded up or rounded down by L * 1 / (f2 + 1), or may be rounded up or rounded down by L * f2 / (f2 + 1).
  • Y1 can be the following values: L * f1 / (f1 + 1), L * 1 / (f1 + 1), L * f1 / (f1 + 1) is rounded up or down, L * 1 / (f1 + 1) is rounded up or down, L * f1 / (f1 + 1) , L * 1 / (f1 + 1), L * f1 / (f1 + 1) is rounded up or down, L * 1 / (f1 + 1) is rounded up or down, L * 1 / (f1 + 1) is rounded up or down, L * 1 / (f1 + 1) is rounded up or down, L * 1 / (f2 + 1), L * f2 / (f2 + 1), L * 1 / (f2 + 1) is rounded up or down, L *
  • the first information field P1 is the first information field.
  • the highest bits of the bits required when allocating resources to the terminal device are filled with 4 bits of information.
  • the value of the 4 filled bits is 0, and the second information field P2 is the first
  • the two information fields are filled with 2 bits of information in the first bit of the first type of BWP required for allocating resources to the terminal device, and the value of the 2 filled bits is 0.
  • the first information field of the resource indication information that is, the bits in the first information field is a first indication field corresponding to the one information field.
  • the bits in the second information field are obtained by indicating that the bits required for allocating resources to the terminal device in a first type BWP corresponding to the one information field are zero-padded with 2 bits.
  • the bits of the resource indication information are bit supplements required when allocating resources to the terminal device in the second type of BWP Information after zero L bits.
  • the network device sends the zero-padded resource indication information, where the resource indication information is used to indicate resources allocated to the terminal device on the second-type BWP.
  • the resource indication information is the resource indication information sent by the network device to the terminal device.
  • zero padding when zero padding is performed in the resource instruction information, zero padding may be performed on the highest bit of the resource instruction information, or zero padding may be performed on the lowest bit of the resource instruction information. Or it can be zero-padded at other positions. Specifically, this application does not limit this.
  • the position of zero padding may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. Specifically, this application does not limit this.
  • the network device may indicate the second type of BWP as When the terminal device allocates resources, the most significant bit of the bit is supplemented with 2 bits. The value of these 2 bits is 0.
  • the obtained 12 bits are the resource indication information sent to the terminal device.
  • the network device may assign a first type corresponding to the information field.
  • the BWP zeros are added to the bits required when allocating resources to the terminal device until the number of bits in the information field is the same as the number of bits specified in the information field.
  • the network device sends the zero-padded information field, where the information field is used to indicate a resource allocated to the terminal device on a first-type BWP corresponding to the information field.
  • the specified number of bits in the information field is the number of bits after zeroing Y1 bits in a first type BWP corresponding to the information field when allocating resources to a terminal device.
  • the network device needs to be a terminal device in a first type BWP indicating the information field.
  • Zeroes are added based on the bits required when resources are allocated until the number of bits in the information field specified by the number of bits in the information field is the same.
  • the number of bits in the information field indicates the number of bits after zero-filling Y1 bits required for allocating resources to the terminal device in a first-type BWP corresponding to the information field.
  • the information field obtained after zero-padded Y1 bits is the information field sent by the network device to the terminal device.
  • the network device may padded zero bits to the highest bit of the one information field of the resource indication information until one of the information of the resource indication information.
  • the bit number field of the field indicates that the number of bits required for a first type of BWP corresponding to the information field is the same. All network devices send the zero-padded information field to the terminal device, and the terminal device determines resources allocated to the terminal device on a first-type BWP corresponding to the information field according to the information field.
  • the network device needs to supplement the bits required to instruct the second type of BWP to allocate resources for the terminal device. Zero until the number of bits of the resource indication information is the same as the predetermined number of bits.
  • the prescribed number of bits is the number of bits after zero bits are supplemented by zero bits required for allocating resources to the terminal device in the second type of BWP.
  • the network device may add (or preset) the bits required to instruct the second type of BWP to allocate resources to the terminal device. Bit 0 until the number of bits of the resource indication information is the same as the predetermined number of bits.
  • the network device may add bits 0 to the bits required to instruct the second type of BWP to allocate resources to the terminal device until The number of bits of the resource indication information is equal to 12.
  • the network device sends the zero-padded resource indication information to the terminal device, and the terminal device determines a resource allocated to the terminal device on the second type of BWP according to the resource indication information.
  • the number of bits of the resource indication information is less than the required number of bits.
  • the one information field is used to indicate that the corresponding information field corresponds to A resource allocated to a terminal device in a first type of BWP, wherein the above-mentioned one information field is obtained by subtracting Y2 bits from bits required when allocating resources to a terminal device in a first type BWP corresponding to the above-mentioned one information field.
  • Information where Y2 is a value obtained by dividing S into N, or Y2 is determined according to S and the ratio of the number of bits of the information field to the number of bits of the resource indication information.
  • the network device needs to send resource indication information. Therefore, if the number of bits of the resource indication information is S bits less than the required number of bits, the network device needs to remove the excess S bits from the required number of bits. , So that the resource indication information sent by the network device meets the requirements of the foregoing scenario.
  • the S bits need to be split into N information fields, and the bit split into one information field is the above Y2.
  • bit removal can be performed according to requirements, and the effective bits in each information field can be balanced to avoid the situation of limited resource allocation.
  • the network device may determine according to the extra S bits and the N information fields. For example, S is divided into N information fields to obtain the number of bits to be subtracted for each information field. Alternatively, it may also be determined according to a ratio of the number of bits of the one information field to the number of bits of the resource indication information.
  • bit removal processing when bit removal processing is performed in an information domain, the most significant bit of the information domain may be removed, and the least significant bit of the information domain may be removed.
  • bits can be removed at other positions. Specifically, this application does not limit this.
  • the bit removal process when the bit removal process is performed in the resource indication information, the most significant bit of the resource indication information may be removed, or the least significant bit of the resource indication information may be removed.
  • bits can be removed at other positions. Specifically, this application does not limit this.
  • the bit removal position may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. Specifically, this application does not limit this.
  • Y2 is a value obtained by dividing S into N.
  • the following uses only two information domains as an example, and the schemes of other multiple information domains are similar, and are not repeated here.
  • the first type BWP of the second type BWP uses P1 bits
  • the second type BWP uses P2 bits.
  • P1 + P2 M.
  • (T-M) S bits can be equally divided.
  • one information field can remove (S / N) bits, or it can take (S / N) the entire bit upward, or (S / N) Take the entire bit down.
  • the information is allocated to a first type BWP indicating the corresponding one of the information fields.
  • the Y2 bit is removed from the bits required by the resource of the terminal device, and the network device sends the information field after the bit is removed.
  • the information field is used to indicate the resources allocated to the terminal device in a first type BWP corresponding to the one information field Among them, Y2 may be (S / N) bits, or it may be (S / N) to take the whole bit up, or (S / N) to take the whole bit down.
  • the number of bits in the first information field is P1
  • the number of bits in the second information field is P2.
  • Two bits can be removed from the bits required for the resources allocated to the terminal device in the class BWP, that is, the most significant bits can be removed from the bits required for the resources allocated to the terminal device in a first type BWP indicating the first information field.
  • 2 bits and then remove the most significant 2 bits from the bits required for the resource allocated to the terminal device in a first type BWP corresponding to the second information field.
  • P1 is the information obtained by removing 2 bits from the bits required for the resources allocated to the terminal device in a first-type BWP corresponding to the first information field
  • P2 is a first information indicating the first information field corresponding to the second information field.
  • the first information field of the resource indication information that is, the bits in the first information field indicates that the first information field corresponds to the first information field.
  • the information obtained by removing 2 bits from the bits required for the resources allocated to the terminal device in a first-type BWP is used to indicate that in a first-type BWP corresponding to the first information field, Resources allocated by terminal equipment.
  • bits in the second information field are 2 bits that are required to indicate the resources allocated to the terminal device in a first-type BWP corresponding to the second information field.
  • the information is used to indicate the resources allocated to the terminal device in a first-type BWP corresponding to the second information field.
  • the following is an example of determining Y2 bits according to the ratio of the number of bits of the above-mentioned one information field to the number of bits of the resource indication information.
  • the first type BWP of the second type BWP uses P1 bits
  • the second type BWP uses P2 bits.
  • P1 + P2 M.
  • the ratio of the number of bits of the first information field to the number of bits of the resource indication information is P1 / M
  • the ratio of the number of bits of the second information field to the number of bits of the indication information is P2 / M.
  • the first information field is the L * m1 bit removed from the bits required when indicating the resources allocated to the terminal device in a first-type BWP corresponding to the information field.
  • Bit second information is information obtained by removing L * m2 bits from the bits required when indicating resources allocated to the terminal device in a first-type BWP corresponding to the information field. Alternatively, it may be rounded up or rounded down for L * m1, or it may be rounded up or rounded down for L * m2.
  • the bits in the one information field indicate the corresponding information field.
  • the information required for the resources allocated to the terminal device in a first-type BWP is obtained by removing Y2 bits.
  • This information field is used to indicate the resources allocated to the terminal device in a first-type BWP corresponding to the one information field.
  • Y2 can be the following values: L * m1, L * m2, L * m1 is rounded up or down, and L * m2 is rounded up or down.
  • ie P1 is the information obtained by removing 4 bits when indicating the resources required for the terminal device in a first-type BWP corresponding to the first information field
  • P2 is a first type indicating the second information field corresponding to the first type Information in the BWP after removing the two bits required for the resource allocated to the terminal device.
  • a bit of a resource allocated to a terminal device in a first type of BWP is obtained by subtracting 4 bits from a bit required for indicating that the terminal device is a terminal device in a first type of BWP corresponding to the first information field.
  • Y2 is determined according to S and the ratio of the number of bits in one information domain to the number of bits in another information domain.
  • the following uses only two information domains as an example, and the schemes of other multiple information domains are similar, and are not repeated here.
  • the bits of the first information field are the bits required to indicate the resources allocated to the terminal device in a first-type BWP corresponding to the first information field.
  • L is removed * f1 / (f1 + 1) bits of information.
  • the bits in the second information field are the bits required to indicate the resources allocated to the terminal device in a first type BWP corresponding to the second information field.
  • Information after 1 / (f1 + 1) bits may be rounded up or rounded down for L * f1 / (f1 + 1), or it may be rounded up or rounded down for L * 1 / (f1 + 1).
  • the bits of the first information field are the bits required to indicate a first type BWP corresponding to the first information field to allocate resources to the terminal device L * 1 / (f2 + 1) bits of information.
  • the second information field indicates the bits required for the resources allocated to the terminal device in a first-type BWP corresponding to the second information field.
  • L * f2 / (f2 + 1) Information after bits. Alternatively, it may be rounded up or rounded down by L * 1 / (f2 + 1), or may be rounded up or rounded down by L * f2 / (f2 + 1).
  • Y2 can be the following values: L * f1 / (f1 + 1), L * 1 / (f1 + 1), L * f1 / (f1 + 1) is rounded up or down, L * 1 / (f1 + 1) is rounded up or down, L * f1 / (f1 + 1), L * 1 / (f1 + 1), L * f1 / (f1 + 1) is rounded up Or round down, L * 1 / (f1 + 1) round up or down, L * 1 / (f1 + 1) round up or down, L * 1 / (f1 + 1) round up or down, L * 1 / (f1 + 1) round up or down, L * 1 / (f1 + 1) round up or down, L * 1 / (f1 + 1) round up or down, L * 1 / (f1 + 1) round up or down, L * 1 / (f1 + 1) round up or down, L * 1 / (f1 + 1) round up or down, L * 1 / (
  • P2 indicates the first type BWP corresponding to the second information field and is allocated to the terminal device.
  • the required information is the information after removing the most significant 2 bits.
  • the X bits in the resource indication information are used to indicate resources allocated to the terminal device in the second type of BWP, Where X is equal to the number of bits required to indicate the second type of BWP minus S.
  • the network device needs to remove the S bits from the bits required to instruct the second type of BWP to allocate resources to the terminal device, so as to obtain the required bits.
  • the number of X bits is the number of bits included in the resource indication information sent by the network device to the terminal device, and the resource indication information is used to indicate resources allocated to the terminal device in the second type of BWP.
  • the subtracted S bit may refer to the S bit of the highest bit of the resource indication information, or the S bit of the lowest bit of the resource indication information, or a bit at another position. Specifically, this application does not limit this.
  • the position of the subtracted S bit may be predefined by the protocol, or may be notified by the network device to the terminal device through signaling. Specifically, this application does not limit this.
  • the network device can remove 2 of the required bits Most significant bit, the remaining 10 bits are the resource indication information sent to the terminal device.
  • the bit in an information field in the resource indication information is a network device indicating a first corresponding field in the information field.
  • the high-order bits of a type of BWP are removed until the number of bits in the information field is the same as the specified number of bits, where the specified number of bits is the specified number of bits of a first type of BWP corresponding to the information field.
  • the network device sends the information field equal to the specified number of bits to the terminal device, and the terminal device can determine the resources allocated to the terminal device on a first-type BWP corresponding to the information field according to the bits in the one information field.
  • the network device removes the bits required by the first type BWP indicating the corresponding information field. High-order bits until the number of bits in an information field in the resource indication information is the same as the specified number of bits, where the specified number of bits is the resource allocated to the terminal device in a first type BWP indicating the corresponding information field The number of bits specified at the time.
  • the network device sends the information field with the high-order bits removed to the terminal device, and the terminal device can determine the resources allocated to the terminal device on a first-type BWP corresponding to the information field according to the bits in the information field.
  • the network device removes the high-order bits from the bits that indicate a first-type BWP corresponding to the information field until one of the resource indication information
  • the number of bits specified in the number of bits in the information field is the same, that is, the highest 2 bits indicating the bits required by the first type of BWP are removed until the number of bits in the information field is equal to 10.
  • the remaining 10 bits Information field sent to the terminal device.
  • the network device removes the high order bits from the bits required when indicating the resources allocated to the terminal device in the second type of BWP Until the number of bits of the resource indication information is the same as the predetermined number of bits.
  • the specified number of bits is the number of bits specified when indicating resources allocated to the terminal device in the second type of BWP.
  • the network device sends the resource indication information after removing the high-order bits, and the terminal device can determine the resources allocated to the terminal device in the second type of BWP according to the bits in the resource indication information.
  • the network device may remove the high order bits from the bits required when indicating the resources allocated to the terminal device in the second type of BWP until the resource indication information
  • the number of bits specified in the bit number field is the same.
  • the network device may remove the high order bits from the bits required when indicating the resources allocated to the terminal device in the second type of BWP until the The number of bits of the resource indication information is the same as the predetermined number of bits, that is, the number of bits that satisfy the resource indication information is M.
  • the network device sends the resource indication information after removing the high-order bits, and the terminal device determines the resources allocated to the terminal device in the second type of BWP according to the resource indication information.
  • the terminal device and the network device may include a hardware structure and / or a software module, and implement the foregoing functions in the form of a hardware structure, a software module, or a hardware structure and a software module. Whether one of the above functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application of the technical solution and design constraints.
  • FIG. 28 is a module structural diagram of an apparatus according to an embodiment of the present application.
  • the apparatus may be a terminal device or an apparatus capable of supporting the terminal device to implement the functions of the terminal device in the method provided in the embodiment of the present application.
  • the device may be a device or a chip system in a terminal device. As shown in FIG. 28, the device includes a receiving module 2801 and a processing module 2802.
  • the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • the receiving module 2801 is configured to receive resource indication information sent by a network device, where the resource indication information is used to indicate an RBG allocated to a terminal device in a bandwidth part BWP, where the BWP includes N Segment frequency domain resources, where N is an integer greater than or equal to two.
  • the size P of the RBG other than the first RBG and the last RBG in the piece of frequency-domain resources is based on the sum of the bandwidths of the N-band frequency-domain resources Yes, where P is an integer greater than or equal to 1.
  • the size of the first RBG in the section of frequency domain resources is determined according to the starting position of the section of frequency domain resources and the P, where The start position of the frequency domain resource is determined according to the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined according to the reference point of the BWP.
  • the processing module 2802 is configured to perform signal transmission on the RBG allocated for the terminal device.
  • the receiving module 2802 is configured to receive resource indication information sent by a network device, where the resource indication information is used to indicate an RBG allocated to a terminal in a bandwidth part BWP, where the BWP includes N-band frequency domain resources, where N is an integer greater than or equal to 2.
  • the size P of the RBG except the first RBG and the last RBG in the piece of frequency domain resources is based on the bandwidth of the N-band frequency domain resources. The sum is determined, where P is an integer greater than or equal to 1.
  • the size of the last RBG in the section of frequency domain resources is based on the starting position of the section of frequency domain resources, the bandwidth of the section of frequency domain resources, and the Determined by P, wherein the starting position of the frequency domain resource is determined based on the reference point of the frequency domain resource, or the starting position of the frequency domain resource is based on the reference point of the BWP definite.
  • the processing module 2802 performs signal transmission on the RBG allocated for the terminal device.
  • the sum of the bandwidths of the N-band frequency domain resources includes:
  • the sum of the number of RBs included in the N-band frequency-domain resources minus the number of overlapping RBs, and the overlapping RBs include the first-band frequency-domain resources and the second-band frequency-domain resources overlapping in the N-band frequency-domain resources.
  • RB the descriptions of the first paragraph and the second paragraph here are used for distinguishing, there is no sequence or size order, and there is no specific reference.
  • the receiving module 2801 is configured to receive resource indication information sent by a network device, where the resource indication information is used to indicate an RBG allocated to a terminal device in a bandwidth part BWP, where the BWP includes N-band frequency domain resources, where N is an integer greater than or equal to 2.
  • the size P of the RBG except the first RBG and the last RBG in the section of frequency domain resources is determined according to the bandwidth of the section of frequency domain resources,
  • P is an integer greater than or equal to 1.
  • the size of the first RBG in the section of frequency domain resources is determined according to the start position of the section of frequency domain resources and the P, where the start of the section of frequency domain resources
  • the start position is determined according to the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined according to the BWP reference point.
  • the processing module 2802 is configured to perform signal transmission on the resource block group RBG allocated for the terminal device.
  • the receiving module 2801 is configured to receive resource indication information sent by a network device, where the resource indication information is used to indicate an RBG allocated to a terminal device in a bandwidth part BWP, where the BWP includes N-band frequency domain resources, where N is an integer greater than or equal to 2.
  • the size P of the RBG except the first RBG and the last RBG in the section of frequency domain resources is determined according to the bandwidth of the section of frequency domain resources,
  • P is an integer greater than or equal to 1.
  • the size of the last RBG in the frequency domain resource is determined according to the starting position of the frequency domain resource, the bandwidth of the frequency domain resource, and the P, where: The start position of the frequency domain resource is determined based on the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined based on the reference point of the BWP.
  • the processing module 2802 is configured to perform signal transmission on the resource block group RBG allocated for the terminal device.
  • An information bit in the resource indication information corresponds to an RBG index.
  • the RBG allocated to the terminal device includes the RBG corresponding to the one RBG index.
  • the RBG allocated to the terminal device does not include the RBG corresponding to the one RBG index.
  • t1 and t2 are integers, for example, t1 is 1.
  • One of the RBG indexes corresponds to one RBG uniquely, or a plurality of the RBG indexes corresponds to one RBG.
  • the one RBG is an overlapping resource among the multi-segment frequency domain resources of the N-segment frequency domain resources.
  • the receiving module 2801 is configured to receive resource indication information sent by a network device, where the resource indication information is used to determine resources allocated to a terminal device in a bandwidth part BWP, where the BWP includes N-band frequency domain resources, where N is an integer greater than or equal to 2.
  • the resource indication information includes N information fields, the N information fields respectively correspond to the N band frequency domain resources, and the N information fields are respectively used to determine that they are all in the N band frequency domain resources.
  • the resources allocated by the terminal device are described.
  • the X1 bit in the one information domain is used to indicate that in the one information domain
  • a resource allocated to a terminal device in a corresponding segment of frequency domain resources where X1 is equal to the number of bits in the one information domain minus Y1, where Y1 is a value obtained by dividing L into N, or Y1 is based on L and the one
  • the ratio between the number of bits in the information domain and the number of bits in the resource indication information is determined; or
  • the bits in the one information field are zero-filled Y2 bits to be used for Indicates resources allocated to the terminal device in a segment of frequency domain resources corresponding to the one information domain, where Y2 is a value obtained by dividing S into N, or Y2 is based on S and the number of bits in the one information domain and the The ratio of the number of bits of the resource indication information is determined.
  • the processing module 2802 is configured to perform signal transmission on the resources allocated for the terminal device.
  • FIG. 29 is a module structural diagram of another apparatus according to an embodiment of the present application.
  • the apparatus may be a network device or an apparatus capable of supporting the network device to implement the functions of the network device in the method provided in the embodiment of the present application, for example,
  • the device may be a device or a chip system in a network device. As shown in FIG. 29, the device includes a sending module 2901 and a processing module 2902.
  • the sending module 2901 is configured to send resource instruction information to the terminal device, where the resource instruction information is used to indicate an RBG allocated to the terminal device in a bandwidth part BWP, where the BWP includes N segments Frequency-domain resources, where N is an integer greater than or equal to two.
  • the size P of the RBG other than the first RBG and the last RBG in the piece of frequency-domain resources is based on the sum of the bandwidth of the N-band frequency-domain resources Yes, where P is an integer greater than or equal to 1.
  • the size of the first RBG in the section of frequency domain resources is determined according to the starting position of the section of frequency domain resources and the P, where The start position of the frequency domain resource is determined according to the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined according to the reference point of the BWP.
  • the processing module 2902 is configured to perform signal transmission with the terminal device on the RBG allocated for the terminal device.
  • the sending module 2901 is configured to send resource instruction information to the terminal device, where the resource instruction information is used to indicate a resource block group RBG allocated to the terminal device in the bandwidth part BWP, the BWP N-band frequency domain resources are included, where N is an integer greater than or equal to two.
  • the size P of the RBG other than the first RBG and the last RBG in the piece of frequency-domain resources is based on the sum of the bandwidths of the N-band frequency-domain resources Yes, where P is an integer greater than or equal to 1.
  • the size of the last RBG in the section of frequency domain resources is based on the starting position of the section of frequency domain resources, the bandwidth of the section of frequency domain resources, and the Determined by P, wherein the starting position of the frequency domain resource is determined based on the reference point of the frequency domain resource, or the starting position of the frequency domain resource is based on the reference point of the BWP definite.
  • the processing module 2902 is configured to perform signal transmission with the terminal device on the RBG allocated for the terminal device.
  • the sum of the bandwidths of the N-band frequency domain resources includes:
  • the sum of the number of RBs included in the N-band frequency-domain resources minus the number of overlapping RBs, and the overlapping RBs include the first-band frequency-domain resources and the second-band frequency-domain resources overlapping in the N-band frequency-domain resources.
  • RB the descriptions of the first paragraph and the second paragraph here are used for distinguishing, there is no sequence or size order, and there is no specific reference.
  • the sending module 2901 is configured to send resource instruction information to the terminal device, where the resource instruction information is used to indicate an RBG allocated to the terminal device in a bandwidth part BWP, where the BWP includes N Segment frequency domain resources, where N is an integer greater than or equal to two.
  • the size P of the RBG except the first RBG and the last RBG in the section of frequency domain resources is determined according to the bandwidth of the section of frequency domain resources,
  • P is an integer greater than or equal to 1.
  • the size of the first RBG in the section of frequency domain resources is determined according to the start position of the section of frequency domain resources and the P, where the start of the section of frequency domain resources
  • the start position is determined according to the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined according to the BWP reference point.
  • the processing module 2902 is configured to perform signal transmission with the terminal device on the RBG allocated for the terminal device.
  • the sending module 2901 is configured to send resource instruction information to the terminal device, where the resource instruction information is used to indicate an RBG allocated to the terminal device in a bandwidth part BWP, where the BWP includes N Segment frequency domain resources, where N is an integer greater than or equal to two.
  • the size P of the RBG except the first RBG and the last RBG in the section of frequency domain resources is determined according to the bandwidth of the section of frequency domain resources,
  • P is an integer greater than or equal to 1.
  • the size of the last RBG in the frequency domain resource is determined according to the starting position of the frequency domain resource, the bandwidth of the frequency domain resource, and the P, where: The start position of the frequency domain resource is determined based on the reference point of the frequency domain resource, or the start position of the frequency domain resource is determined based on the reference point of the BWP.
  • the processing module 2902 is configured to perform signal transmission with the terminal device on the RBG allocated for the terminal device.
  • an information bit in the resource indication information corresponds to an RBG index
  • the RBG allocated for the terminal device includes the RBG corresponding to the one RBG index.
  • the RBG allocated for the terminal device The RBG corresponding to the one RBG index is not included.
  • One of the RBG indexes corresponds to one RBG uniquely, or a plurality of the RBG indexes corresponds to one RBG.
  • the one RBG is an overlapping resource among the multi-segment frequency domain resources of the N-segment frequency domain resources.
  • the sending module 2091 is configured to send resource instruction information to the terminal device, where the resource instruction information is used to indicate resources allocated to the terminal device in a bandwidth part BWP, where the BWP includes N Segment frequency domain resources, where N is an integer greater than or equal to two.
  • the resource indication information includes N information domains, the N information domains respectively correspond to the N band frequency domain resources, and the N information domains are respectively used to indicate in the N band frequency domain resources Resources allocated for the terminal device.
  • the bits in the one information domain are a segment corresponding to the one information domain Information in the frequency domain resource after zeroing Y1 bits required for allocating resources to the terminal device, where Y1 is a value obtained by dividing L into N or Y1 is based on L and the number of bits in the one information domain and the The ratio of the number of bits of the resource indication information is determined; or,
  • the one information field is used to indicate a frequency segment corresponding to the one information field.
  • a resource allocated to a terminal device in a domain resource, wherein the one information domain is information obtained by subtracting Y2 bits from bits required when allocating resources to a terminal device in a frequency domain resource corresponding to the one information domain, where Y2 is a value obtained by dividing S into N, or Y2 is determined according to S and the ratio of the number of bits of the one information field to the number of bits of the resource indication information.
  • the processing module 2902 is configured to perform signal transmission with the terminal device on the resources allocated for the terminal device.
  • the division of the modules in the embodiments of the present application is schematic and is only a logical function division. In actual implementation, there may be another division manner.
  • the functional modules in the embodiments of the present application may be integrated into one process. In the device, it can also exist separately physically, or two or more modules can be integrated into one module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules.
  • an apparatus 3000 is used to implement functions of a terminal device in the foregoing method.
  • the device may be a terminal device or a device capable of supporting the terminal device to implement the functions of the terminal device in the method provided in the embodiment of the present application.
  • the device may be a device in the terminal device.
  • the device may be a chip system.
  • the apparatus 3000 includes at least one processor 3020, and is configured to implement functions of a terminal device in the method provided in the embodiment of the present application.
  • the processor 3020 may receive the resource indication information and perform signal transmission on the resources indicated by the resource indication.
  • the resource indication information may receive the resource indication information and perform signal transmission on the resources indicated by the resource indication.
  • the device 3000 may further include at least one memory 3030 for storing program instructions and / or data.
  • the memory 3030 and the processor 3020 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be electrical, mechanical or other forms for information exchange between devices, units or modules.
  • the processor 3020 may operate in cooperation with the memory 3030.
  • the processor 3020 may execute program instructions stored in the memory 3030. At least one of the at least one memory may be included in a processor.
  • the device 3000 may further include a communication interface 3010 for communicating with other devices through a transmission medium, so that the devices used in the device 1500 may communicate with other devices.
  • the communication interface may be any form of interface capable of communication, such as a module, a circuit, a bus, or a combination thereof.
  • the communication interface 1510 may be a transceiver.
  • the other device may be a network device.
  • the processor 3020 uses the communication interface 3010 to send and receive data, and is used to implement the method performed by the terminal device described in the foregoing method embodiment.
  • the embodiments of this application are not limited to the specific connection medium between the communication interface 3010, the processor 3020, and the memory 3030.
  • the memory 3030, the processor 3020, and the communication interface 3010 are connected by a bus 3040 in FIG. 30.
  • the bus is indicated by a thick line in FIG. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 30, but it does not mean that there is only one bus or one type of bus.
  • an apparatus 3100 is used to implement functions of a network device in the foregoing method.
  • the apparatus may be a network device, or an apparatus capable of supporting a network device to implement the functions of the network device in the method provided in the embodiment of the present application.
  • the apparatus may be an apparatus in a network device.
  • the device may be a chip system.
  • the apparatus 3100 includes at least one processor 3120, and is configured to implement functions of a network device in the method provided in the embodiment of the present application.
  • the processor 3120 may send resource instruction information to the terminal device and perform signal transmission with the terminal device on the resource indicated by the resource instruction.
  • the device 3100 may further include at least one memory 3130 for storing program instructions and / or data.
  • the memory 3130 and the processor 3120 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be electrical, mechanical or other forms for information exchange between devices, units or modules.
  • the processor 3120 may operate in cooperation with the memory 3130.
  • the processor 3120 may execute program instructions stored in the memory 3130. At least one of the at least one memory may be included in a processor.
  • the device 3100 may further include a communication interface 3110 for communicating with other devices through a transmission medium, so that the devices used in the device 3100 may communicate with other devices.
  • the communication interface 3110 may be a transceiver.
  • the other device may be a terminal device.
  • the processor 3120 uses the communication interface 3110 to send and receive data, and is used to implement the method performed by the network device described in the foregoing method embodiment.
  • the embodiment of the present application is not limited to a specific connection medium between the communication interface 3110, the processor 3120, and the memory 3130.
  • the memory 3130, the processor 3120, and the communication interface 3110 are connected by a bus 3140 in FIG. 31.
  • the bus is indicated by a thick line in FIG. 31.
  • the connection between other components is only a schematic description. It is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 31, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or The disclosed methods, steps and logic block diagrams in the embodiments of the present application are executed.
  • a general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory), such as Random-access memory (RAM).
  • the memory is any other medium that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and / or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions according to the embodiments of the present invention are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, a network device, a user equipment, or another programmable device.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL), or wireless) (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD), or a semiconductor medium (for example, an SSD), or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供一种信号传输方法、装置、终端设备、网络设备及系统,其中,终端设备侧方法包括:接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源;对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的;对于所述N段频域资源中的一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的;在所述为终端设备分配的资源块组RBG上进行信号传输。

Description

信号传输方法、装置、终端设备、网络设备及系统
本申请要求于2018年07月27日提交国家知识产权局、申请号为201810845114.4、申请名称为“信号传输方法、装置、终端设备、网络设备及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术,尤其涉及一种信号传输方法、装置、终端设备、网络设备及系统。
背景技术
在移动通信系统中,网络设备和终端设备可以通过空口资源进行信号传输,空口资源包括频域资源,其中,频域资源可以位于一定的频率范围内。网络设备可以在频域资源中,例如系统带宽中,为终端设备配置带宽部分(bandwidth part,BWP),用于网络设备和该终端设备之间的信号传输。如何在BWP上进行信号传输,是亟待研究的课题。
发明内容
本申请实施例第一方面提供一种信号传输方法,该方法包括:
接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
其中,对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
在所述为终端设备分配的RBG上进行信号传输。
该方法保证了信号在BWP上的正常传输。
在一种可能的设计中,如果将上述BWP描述为第二类BWP,将上述一段频域资源描述为第一类BWP,则上述方法包括:
接收网络设备发送的资源指示信息,所述资源指示信息用于指示在第二类BWP中为终端设备分配的资源块组RBG,所述第二类BWP中包括N个第一类BWP,其中,N为大于等于2的整数;
对于所述N个第一类BWP中的一个第一类BWP,所述一个第一类BWP中除第一个 RBG和最后一个RBG以外的RBG的大小P是根据所述N个第一类BWP的带宽之和确定的,其中,P为大于或等于1的整数;
对于所述N个第一类BWP中的一个第一类BWP,所述一个第一类BWP中第一个RBG的大小是根据所述一个第一类BWP的起始位置和所述P确定的,其中,所述一个第一类BWP的起始位置是根据所述一个第一类BWP的参考点确定的,或者所述一个第一类BWP的起始位置是根据所述第二类BWP的参考点确定的;
在所述为终端设备分配的资源块组RBG上进行信号传输。
本申请实施例提供的其它方法也可以进行类似的等效描述。
在一种可能的设计中,如果将上述BWP描述为第一类BWP组,将上述一段频域资源描述为第一类BWP,则上述方法包括:
接收网络设备发送的资源指示信息,所述资源指示信息用于指示在第一类BWP组中为终端设备分配的资源块组RBG,所述BWP组中包括N个第一类BWP,其中,N为大于等于2的整数;
对于所述N个第一类BWP中的一个第一类BWP,所述一个第一类BWP中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N个第一类BWP的带宽之和确定的,其中,P为大于或等于1的整数;
对于所述N个第一类BWP中的一个第一类BWP,所述一个第一类BWP中第一个RBG的大小是根据所述一个第一类BWP的起始位置和所述P确定的,其中,所述一个第一类BWP的起始位置是根据所述一个第一类BWP的参考点确定的,或者所述一个第一类BWP的起始位置是根据所述BWP组的参考点确定的;
在所述为终端设备分配的资源块组RBG上进行信号传输。
本申请实施例提供的其它方法也可以进行类似的等效描述。
通过上述第一方面中提供的方法可以实现在离散频谱下的资源分配,进而网络设备和终端设备可以在离散的频域资源中进行信号传输,提高资源的利用率,提升信号传输性能。另外该方法可以实现各频域资源中的RBG大小相同,降低网络设备和终端设备的确定RBG的复杂度。同时也可以实现载波中各频域资源的RBG对齐,保证资源分配的灵活性,在多用户调度时可以各用户RBG对齐,提高信道估计的准确性,保证信号传输性能。
本申请实施例第二方面提供一种信号传输方法,该方法包括:
接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
在所述为终端设备分配的资源块组RBG上进行信号传输。
该方法保证了信号在BWP上的正常传输。
在一种可能的设计中,上述第一方面和第二方面可以结合起来实施。
在一种可能的设计中,上述第一方面和第二方面可以单独实施。
通过上述第二方面中提供的方法可以实现在离散频谱下的资源分配,进而网络设备和终端设备可以在离散的频域资源中进行信号传输,提高资源的利用率,提升信号传输性能。另外该方法可以实现各频域资源中的RBG大小相同,降低网络设备和终端设备的确定RBG的复杂度。同时也可以实现载波中各频域资源的RBG对齐,保证资源分配的灵活性,在多用户调度时可以各用户RBG对齐,提高信道估计的准确性,保证信号传输性能。
针对上述第一方面以及上述第二方面,在一种可能的设计中,所述N段频域资源的带宽之和包括:
所述N段频域资源中包括的RB数量之和减去重叠的RB的数量,所述重叠的RB包括所述N段频域资源中第一段频域资源和第二段频域资源重叠的RB。其中,第一段和第二段这样的描述是用于区分,并无先后顺序,也不是特指。
通过上述方法可以在确定RBG大小的时候考虑重叠的RB的情况,通过减去重叠的RB可以确定更合适的RBG的大小,提高资源利用率,实现资源的合理分配,提高信号传输性能。
本申请实施例第三方面提供一种信号传输方法,该方法包括:
接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数;
对于所述一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
在所述为终端设备分配的资源块组RBG上进行信号传输。
该方法保证了信号在BWP上的正常传输。
通过上述第三方面中提供的方法可以实现在离散频谱下的资源分配,进而网络设备和终端设备可以在离散的频域资源中进行信号传输,提高资源的利用率,提升信号传输性能。另外该方法可以实现各频域资源中的RBG大小可以相同也可以不同,即可以根据各频域资源的带宽确定各频域资源中的RBG大小,可以针对各频域资源的带宽确定合理的RBG大小。同时也可以实现载波中各频域资源的RBG对齐,保证资源分配的灵活性,在多用户调度时可以各用户RBG对齐,提高信道估计的准确性,保证信号传输性能。
本申请实施例第四方面提供一种信号传输方法,该方法包括:
接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数;
对于所述一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
在所述为终端设备分配的资源块组RBG上进行信号传输。
该方法保证了信号在BWP上的正常传输。
通过上述第四方面中提供的方法可以实现在离散频谱下的资源分配,进而网络设备和终端设备可以在离散的频域资源中进行信号传输,提高资源的利用率,提升信号传输性能。另外该方法可以实现各频域资源中的RBG大小可以相同也可以不同,即可以根据各频域资源的带宽确定各频域资源中的RBG大小,可以针对各频域资源的带宽确定合理的RBG大小。同时也可以实现载波中各频域资源的RBG对齐,保证资源分配的灵活性,在多用户调度时可以各用户RBG对齐,提高信道估计的准确性,保证信号传输性能。
在一种可能的设计中,上述第三方面和第四方面可以结合起来实施。
在一种可能的设计中,上述第三方面和第四方面可以单独实施。
针对上述第一方面、第二方面、第三方面以及第四方面,在一种可能的设计中,当所述资源指示信息用于指示在BWP中为终端设备分配的RBG时,
所述资源指示信息中的一个信息位对应于一个RBG索引,当所述一个信息位的值为t1时,为所述终端设备分配的RBG包括所述一个RBG索引对应的RBG,当所述一个信息位的值不为t1或者为t2时,为所述终端设备分配的RBG不包括所述一个RBG索引对应的RBG;
其中,一个所述RBG索引唯一地对应一个RBG,或者多个所述RBG索引对应于一个RBG;
其中,当多个所述RBG索引对应于一个RBG时,所述一个RBG为所述N段频域资源的多段频域资源中的重叠资源。
通过上述方法可以实现在离散频谱下的资源分配,进而网络设备和终端设备可以在离散的频域资源中进行信号传输,提高资源的利用率,提升信号传输性能。另外该方法可以考虑频域资源重叠的情况下RBG编号一次,可以降低资源指示信息的开销,保证信号传输性能。
本申请实施例第五方面提供一种信号传输方法,该方法包括:
接收网络设备发送的资源指示信息,所述资源指示信息用于确定在带宽部分BWP中为终端设备分配的资源,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
所述资源指示信息中包括N个信息域,所述N个信息域分别对应于所述N段频域资源,所述N个信息域分别用于确定在所述N段频域资源中为所述终端设备分配的资源;
如果所述资源指示信息的比特数比需要的比特数多L比特,则对于所述N个信息域中的一个信息域,所述一个信息域中的X1比特用于指示在所述一个信息域对应的一段频域资源中为终端设备分配的资源,其中,X1等于所述一个信息域的比特数减去Y1,其中Y1 是L等分N得到的值,或者Y1是根据L以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的;或者
如果所述资源指示信息的比特数比需要的比特数少S比特,则对于所述N个信息域中的一个信息域,所述一个信息域中的比特补零Y2比特后的比特位用于指示在所述一个信息域对应的一段频域资源中为终端设备分配的资源,其中,Y2是S等分N得到的值,或者Y2是根据S以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的;
在所述为终端设备分配的资源上进行信号传输。
该方法保证了信号在BWP上的正常传输。
通过上述方法可以实现在离散频谱下的资源分配,进而网络设备和终端设备可以在离散的频域资源中进行信号传输,提高资源的利用率,提升信号传输性能。另外该方法可以考虑当资源指示信息的比特数和需要的比特数不同时,保证网络设备和终端设备对于比特含义的理解一致,确定出相同的频域资源进行信号传输,保证信号传输性能。其中,等分确定Y1或Y2的方法降低网络设备和终端设备的处理复杂度,而根据比例确定的方法可以考虑各频域资源的比特数的情况,根据各频域资源的带宽合理设计比特数,避免出现某个频域资源可用比特数较少的情况,保证资源分配的灵活性,提高信号传输性能。
在一种可能的设计中,上述第五方面可以与上述第一方面、第二方面、第三方面及第四方面中的一个或多个结合起来实施。
在一种可能的设计中,上述第五方面可以单独实施。
本申请实施例第六方面提供一种信号传输方法,包括:
向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
在所述为终端设备分配的资源块组RBG上与所述终端设备进行信号传输。
在一种可能的设计中,如果将上述BWP描述为第二类BWP,将上述一段频域资源描述为第一类BWP,则上述方法包括:
向终端设备发送资源指示信息,所述资源指示信息用于指示在第二类BWP中为终端设备分配的资源块组RBG,所述第二类BWP中包括N个第一类BWP,其中,N为大于等于2的整数;
对于所述N个第一类BWP中的一个第一类BWP,所述一个第一类BWP中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N个第一类BWP的带宽之和确定的,其中,P为大于或等于1的整数;
对于所述N个第一类BWP中的一个第一类BWP,所述一个第一类BWP中第一个 RBG的大小是根据所述一个第一类BWP的起始位置和所述P确定的,其中,所述一个第一类BWP的起始位置是根据所述一个第一类BWP的参考点确定的,或者所述一个第一类BWP的起始位置是根据所述第二类BWP的参考点确定的;
在所述为终端设备分配的资源块组RBG上与所述终端设备进行信号传输。
在一种可能的设计中,如果将上述BWP描述为第一类BWP组,将上述一段频域资源描述为第一类BWP,则上述方法包括:
向终端设备发送资源指示信息,所述资源指示信息用于指示在第一类BWP组中为终端设备分配的资源块组RBG,所述BWP组中包括N个第一类BWP,其中,N为大于等于2的整数;
对于所述N个第一类BWP中的一个第一类BWP,所述一个第一类BWP中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N个第一类BWP的带宽之和确定的,其中,P为大于或等于1的整数;
对于所述N个第一类BWP中的一个第一类BWP,所述一个第一类BWP中第一个RBG的大小是根据所述一个第一类BWP的起始位置和所述P确定的,其中,所述一个第一类BWP的起始位置是根据所述一个第一类BWP的参考点确定的,或者所述一个第一类BWP的起始位置是根据所述BWP组的参考点确定的;
在所述为终端设备分配的资源块组RBG上与所述终端设备进行信号传输。
本申请实施例第七方面提供一种信号传输方法,包括:
向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
在所述为终端设备分配的资源块组RBG上与所述终端设备进行信号传输。
针对上述第六方面以及上述第七方面,在一种可能的设计中,所述N段频域资源的带宽之和包括:
所述N段频域资源中包括的RB数量之和减去重叠的RB的数量,所述重叠的RB包括所述N段频域资源中第一段频域资源和第二段频域资源重叠的RB。其中,第一段和第二段这样的描述是用于区分,并无先后顺序,也不是特指。
在一种可能的设计中,上述第六方面和第七方面可以结合起来实施。
在一种可能的设计中,上述第六方面和第七方面可以单独实施。
本申请实施例第八方面提供一种信号传输方法,包括:
向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的 整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数;
对于所述一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
在所述为终端设备分配的资源块组RBG上与所述终端设备进行信号传输。
本申请实施例第九方面提供一种信号传输方法,包括:
向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数;
对于所述一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
在所述为终端设备分配的资源块组RBG上与所述终端设备进行信号传输。
在一种可能的设计中,上述第八方面和第九方面可以结合起来实施。
在一种可能的设计中,上述第八方面和第九方面可以单独实施。
针对上述第六方面、第七方面、第八方面以及第九方面,在一种可能的设计中,当所述资源指示信息用于指示在BWP中为终端设备分配的RBG时,
所述资源指示信息中的一个信息位对应于一个RBG索引,当所述一个信息位的值为t1时,为所述终端设备分配的RBG包括所述一个RBG索引对应的RBG,当所述一个信息位的值不为t1或者为t2时,为所述终端设备分配的RBG不包括所述一个RBG索引对应的RBG;其中t1和t2为整数;
其中,一个所述RBG索引唯一地对应一个RBG,或者多个所述RBG索引对应于一个RBG;
其中,当多个所述RBG索引对应于一个RBG时,所述一个RBG为所述N段频域资源的多段频域资源中的重叠资源。
本申请实施例第十方面提供一种信号传输方法,包括:
向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
所述资源指示信息中包括N个信息域,所述N个信息域分别对应于所述N段频域资源,所述N个信息域分别用于指示在所述N段频域资源中为所述终端设备分配的资源;
如果所述资源指示信息的比特数比需要的比特数多L比特,则对于所述N个信息域中 的一个信息域,所述一个信息域中的比特为在所述一个信息域对应的一段频域资源中为终端设备分配资源时需要的比特补零Y1比特后的信息,其中,Y1是L等分N得到的值,或者Y1是根据L以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的;或者,
如果所述资源指示信息的比特数比需要的比特数少S比特,则对于所述N个信息域中的一个信息域,所述一个信息域用于指示在所述一个信息域对应的一段频域资源中为终端设备分配的资源,其中,所述一个信息域是从在所述一个信息域对应的一段频域资源中为终端设备分配资源时需要的比特减去Y2比特后的信息,其中Y2是S等分N得到的值,或者Y2是根据S以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的;
在所述为终端设备分配的资源上与所述终端设备进行信号传输。
在一种可能的设计中,上述第十方面可以与上述第六方面、第七方面、第八方面及第就方面中的一个或多个结合起来实施。
在一种可能的设计中,上述第十方面可以单独实施。
本申请实施例第十一方面提供一种装置,该装置可以是终端设备,也可以是能够支持终端设备执行上述第一方面至第五方面任一种设计示例中的终端设备所执行的相应功能的装置,例如该装置可以是终端设备中的装置或者芯片系统,该装置可以包括接收模块和处理模块,这些模块可以执行上述第一方面至第五方面任一种设计示例中的终端设备所执行的相应功能,具体的:
接收模块,用于接收资源指示信息;
处理模块,用于在为终端设备分配的资源上进行信号传输。
在一种可能的设计中,资源指示信息的具体内容可以参见第一方面至第五方面中针对资源指示信息的具体描述,此处不再具体限定。
在一种可能的设计中,上述为终端设备分配的资源可以是为终端设备分配的RBG。
本申请实施例第十二方面提供一种装置,该装置可以是网络设备,也可以是能够支持网络设备执行上述第六方面至第十方面任一种设计示例中的网络设备所执行的相应功能的装置,例如该装置可以是网络设备中的装置或者芯片系统,该装置可以包括发送模块和处理模块,这些模块可以执行上述第六方面至第十方面任一种设计示例中的网络设备所执行的相应功能,具体的:
发送模块,用于发送资源指示信息;
处理模块,用于在为终端设备分配的资源上与所述终端设备进行信号传输。
在一种可能的设计中,资源指示信息的具体内容可以参见第六方面至第十方面中针对资源指示信息的具体描述,此处不再具体限定。
在一种可能的设计中,上述为终端设备分配的资源可以是为终端设备分配的RBG。
本申请实施例第十三方面提供一种终端设备,所述终端设备包括处理器,用于实现上述第一方面至第五方面描述的方法中终端设备的功能。所述终端设备还可以包括存储器, 用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第一方面至第五方面描述的方法中终端设备的功能。所述终端设备还可以包括通信接口,所述通信接口用于该终端设备与其它设备进行通信。示例性地,该其它设备为网络设备。
在一种可能的设备中,该终端设备包括:
通信接口;
存储器,用于存储程序指令;
处理器,用于接收资源指示信息,并在为终端设备分配的资源上进行信号传输。
在一种可能的设计中,资源指示信息的具体内容可以参见第一方面至第五方面中针对资源指示信息的具体描述,此处不再具体限定。
在一种可能的设计中,上述为终端设备分配的资源可以是为终端设备分配的RBG。
本申请实施例第十四方面提供一种网络设备,所述网络设备包括处理器,用于实现上述第六方面至第十方面描述的方法中网络设备的功能。所述网络设备还可以包括存储器,用于存储程序指令和数据。所述存储器与所述处理器耦合,所述处理器可以调用并执行所述存储器中存储的程序指令,用于实现上述第六方面至第十方面描述的方法中网络设备的功能。所述网络设备还可以包括通信接口,所述通信接口用于该网络设备与其它设备进行通信。示例性地,该其它设备为终端设备。
在一种可能的设备中,该网络设备包括:
通信接口;
存储器,用于存储程序指令;
处理器,用于发送资源指示信息,并在为终端设备分配的资源上与所述终端设备进行信号传输。
在一种可能的设计中,资源指示信息的具体内容可以参见第六方面至第十方面中针对资源指示信息的具体描述,此处不再具体限定。
在一种可能的设计中,上述为终端设备分配的资源可以是为终端设备分配的RBG。
本申请实施例第十五方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,还可以包括通信接口,用于实现上述方法中终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第十六方面提供一种芯片系统,该芯片系统包括处理器,还可以包括存储器,还可以包括通信接口,用于实现上述方法中网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例第十七方面提供一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被计算机执行时,使得所述计算机执行上述第一方面至第五方面任一个所述的方法,或者使得所述计算机执行第六方面至第十方面任一个所述的方法。
本申请实施例第十八方面提供一种计算机可读存储介质,所述计算机存储介质存储有 计算机指令,当所述计算机指令被计算机执行时,使得所述计算机执行上述第一方面至第五方面或者第六方面至第十方面所述的方法。
本申请实施例第十九方面提供一种系统,所述系统包括第十三方面所述的终端设备、和第十四方面述的网络设备;或者所述系统包括第十一方面所述的装置、和第十二方面述的装置。
附图说明
图1和图2分别为某运营商A所拥有的离散频谱的示意图;
图3为第二类BWP的第一种示例图;
图4为第二类BWP的第二种示例图;
图5为第二类BWP的第三种示例图;
图6为第二类BWP的第四种示例图;
图7为第二类BWP的第五种示例图;
图8为第二类BWP的第六种示例图;
图9为第二类BWP的第七种示例图;
图10为第二类BWP的第八种示例图;
图11为本申请实施例涉及的信号传输方法的示例性系统架构图;
图12为本申请实施例提供的一种终端设备与网络设备的信号传输交互流程示例图;
图13为对第二类BWP中RB进行联合编号的示例图;
图14为对第二类BWP内的RBG进行联合编号的示例图;
图15为第二类BWP中的N个第一类BWP中不存在重叠的RB的示例图;
图16为第二类BWP中N个第一类BWP中存在重叠的RB的一种示例图;
图17为第二类BWP中N个第一类BWP中存在重叠的RB的另一种示例图;
图18为第二类BWP中具有一个参考点时的频域资源示意图;
图19为第二类BWP中每个第一类BWP分别具有一个参考点时的频域资源示意图;
图20为第一个示例的第二类BWP的频域资源分配示意图一;
图21为第二个示例的第二类BWP的频域资源分配示意图一;
图22为第一个示例的第二类BWP的频域资源分配示意图二;
图23为第二个示例的第二类BWP的频域资源分配示意图二;
图24为两个RBG所包括的RB完全重叠的一个示例;
图25为N个第一类BWP的两个第一类BWP之间存在资源重叠的示例;
图26为N个第一类BWP的三个第一类BWP之间存在资源重叠的示例;
图27为重叠资源编号一次的示例图;
图28为本申请实施例提供的一种装置的模块结构图;
图29为本申请实施例提供的另一种装置的模块结构图;
图30为本申请实施例提供的装置3000的示例图;
图31为本申请实施例提供的装置3100的示例图。
具体实施方式
在移动通信网络中,空口资源可以包括频域资源,还可以包括时域资源。其中,频域资源可以位于一定的频率范围内。网络设备可以在频域资源中,例如系统带宽中,为终端设备配置BWP。
在一种可能的设计中,BWP中包括载波上一段连续的频域资源,例如BWP中可以包括正整数个RB,一个BWP可以位于一个载波上。可以为一个小区配置一个或多个载波。可选的,在一个小区或一个载波中,可以为终端设备配置一个或多个BWP,在同一时刻可以有一个BWP被激活,终端设备可以在该被激活的BWP上接收或发送信号。在本申请实施例中,包括一段连续的频域资源的BWP还可以称为一段频域资源、第一类BWP、第一类型BWP、或legacy(现有)BWP等。
在实际运营中,运营商所拥有的频域资源可能为离散频谱。图1和图2分别为某运营商A所拥有的离散频谱的示意图,如图1所示,运营商A拥有两段频谱,该两段频谱位于同一个载波CC1上,在这两段频谱之间的一段频谱被运营商B占有。则对于运营商A而言,其所拥有的这两段频谱为离散频谱,并且该离散频谱可以是位于同一个载波内。如图2所示,运营商A拥有两段频谱,其中一段频谱位于载波CC1上,另一段频谱位于载波CC2上,在这两段频谱之间的一段频谱被运营商B占有。则对于运营商A而言,其所拥有的这两段频谱为离散频谱,并且该离散频谱可以是位于不同的载波内。
为了解决离散频谱下的信号传输,在一种可能的设计中,提出了支持离散频域资源的BWP(组)设计,该设计可以是如下描述的BWP聚合(BWP bundle)的设计、第二类BWP的设计或者BWP组的设计。
在BWP聚合中,一个BWP中包括一段或多段频域资源,该多段频域资源中至少包括两段频域资源。进一步地,该多段频域资源中的任意两段频域资源可以位于相同的载波,也可以位于不同的载波,本申请不做限制。通过BWP聚合,可以使得信号在离散频域资源上进行传输,或者也可以在多个载波上传输。在BWP聚合中,该BWP中的一段或多段频域资源可以都是上行频域资源,也可以都是下行频域资源,也可以既是上行频域资源又是下行频域资源,还可以部分段频域资源是上行频域资源部分段频域资源是下行频域资源。在上行频域资源中,终端设备可以向网络设备发送信号;在下行频域资源中,网络设备可以向终端设备发送信号。在本申请实施例中,多个可以是两个、三个、四个或者更多个,多段可以是两段、三段、四段或更多段,本申请不做限制。在本申请实施例中,BWP聚合设计中的BWP还可以称为聚合BWP或其它名称,本申请不做限制。
BWP聚合的设计还可以描述为第二类BWP的设计:一个第二类BWP中可以包括一个或多个第一类BWP。其中,一个第一类BWP相当于或对应于上述BWP聚合中的一段频域资源,第二类BWP相当于或对应于BWP聚合中的BWP。类似地,一个第二类BWP中的第一类BWP可以都是上行BWP,也可以都是下行BWP,或者可以部分第一类BWP是上行BWP部分第一类BWP是下行BWP。在上行BWP中,终端设备可以向网络设备发送信号;在下行BWP中,网络设备可以向终端设备发送信号。在本申请实施例中,第二类BWP还可以称为X-BWP或者别的名称,本申请不做限制。
或者BWP聚合的设计还可以描述为BWP组的设计:一个第一类BWP组中可以包括 一个或多个第一类BWP。其中,一个第一类BWP相当于或对应于上述BWP聚合中的一段频域资源,第一类BWP组相当于或对应于BWP聚合中的BWP。类似的,一个第一类BWP组中的第一类BWP可以都是上行BWP,也可以都是下行BWP,或者可以部分第一类BWP是上行BWP部分第一类BWP是下行BWP。
为了简化描述,在本申请实施例中,以第二类BWP的设计为例进行描述。本领域技术人员可以很容易地将本申请实施例提供的方法应用于BWP聚合的设计或者BWP组的设计。
对于一个第二类BWP,当其包括多个第一类BWP时,其所包括的多个第一类BWP中的任意两个第一类BWP可以位于相同的载波,也可以位于不同的载波。例如,一个第二类BWP所包括的多个第一类BWP可以位于同一个载波内,或者,也可以分别位于不同的载波内,或者,也可以第二类BWP中的一部分第一类BWP位于相同的载波内,本申请实施例对此不做限制。
图3为第二类BWP的第一种示例图,如图3所示,一个第二类BWP中包括2个第一类BWP,分别为第一类BWP1和第一类BWP2,其中,第一类BWP1和第一类BWP2位于同一个载波CC1内。
图4为第二类BWP的第二种示例图,如图4所示,一个第二类BWP中包括2个第一类BWP,分别为第一类BWP1和第一类BWP2,其中,第一类BWP1和第一类BWP2位于不同的载波内。具体的,第一类BWP1位于载波CC1内,第一类BWP2位于载波CC2内。
图5为第二类BWP的第三种示例图,如图5所示,第二类BWP中包括3个第一类BWP,分别为第一类BWP1、第一类BWP2和第一类BWP3。其中,第一类BWP2和第一类BWP3位于同一个载波内,第一类BWP1与第一类BWP2位于不同的载波内。具体的,第一类BWP1位于载波CC1内,第一类BWP2和第一类BWP3位于载波CC2内。
另外,对于一个第二类BWP,其所包括的多个第一类BWP中的两个第一类BWP可以是连续的频域资源,也可以是不连续的频域资源,还可以是在频域具有重叠部分的频域资源,本申请不做限制。
以上述图3所述的示例为例,第二类BWP所包括的2个第一类BWP之间(例如第一类BWP1和第一类BWP2之间)还存在一段不属于该第二类BWP的频域资源,即该第二类BWP所包括的2个第一类BWP是不连续的频域资源。
图6为第二类BWP的第四种示例图,如图6所示,第二类BWP中包括2个第一类BWP,分别为第一类BWP1和第一类BWP2,其中,第一类BWP1位于载波CC1内,第一类BWP2位于载波CC2内,并且,第一类BWP1和第一类BWP2为连续的两段频域资源。即,该第二类BWP所包括的2个第一类BWP可以组成连续的频域资源。
另外,对于一个第二类BWP,其中的一个第一类BWP或多个第一类BWP可以都是上行BWP,或者,也可以都是下行BWP,或者,还可以既是上行BWP又是下行BWP,或者,还可以部分第一类BWP是上行BWP部分第一类BWP是下行BWP。
图7为第二类BWP的第五种示例图,如图7所示,第二类BWP1中包括两个第一类BWP,分别为第一类BWP1和第一类BWP2,其中,第一类BWP1和第一类BWP2均为上行第一类BWP。
图8为第二类BWP的第六种示例图,如图8所示,第二类BWP2中包括两个第一类BWP,分别为第一类BWP1和第一类BWP2,其中,第一类BWP1和第一类BWP2均为下行第一类BWP。
图9为第二类BWP的第七种示例图,如图9所示,第二类BWP3中包括两个第一类BWP,分别为第一类BWP1和第一类BWP2,其中,第一类BWP1既是上行第一类BWP也是下行第一类BWP,第一类BWP2既是上行第一类BWP也是下行第一类BWP。
图10为第二类BWP的第八种示例图,如图10所示,第二类BWP4中包括3个第一类BWP,分别为第一类BWP1、第一类BWP2和第一类BWP3。其中,第一类BWP1为上行第一类BWP,第一类BWP2和第一类BWP3为下行第一类BWP。
本申请实施例中信号传输可以是指上行信号传输(例如,终端设备向网络设备发送信号),也可以是下行信号传输(例如,网络设备向终端设备发送信号)。本申请实施例中信号传输可以是指信号的发送,也可以是指信号的接收。
可选的,可以为一个终端设备配置一个或者多个第二类BWP。当为一个终端设备配置了多个第二类BWP时,可以包括如下的场景:
(1)针对网络设备和终端设备之间的Uu空口(universal UE to network interface)可以配置多个第二类BWP。
(2)针对网络设备和终端设备之间的Uu空口可以配置一个或多个第二类BWP,针对终端设备和终端设备之间的旁链路(sidelink)可以配置一个或多个第二类BWP。
(3)针对终端设备和终端设备之间的旁链路可以配置多个第二类BWP。
其中,Uu空口用于实现终端设备和网络设备的通信,sidelink用于实现终端设备和终端设备的通信。
可选地,可以以第一类BWP为单位对BWP进行激活或去激活,网络设备和终端设备可以在激活的第一类BWP中进行信号传输。第一类BWP的激活与去激活可以涉及或引起第一类BWP的切换。其中,激活的第一类BWP可以理解为终端当前工作的带宽部分,终端可以在激活的下行第一类BWP上接收下行参考信号(包括下行解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(channel state information reference signal,CSI-RS)、物理下行控制信道(physical downlink control channel,PDCCH)和物理下行数据信道(physical downlink shared channel,PDSCH)中至少一种信号或信道,可以在激活的上行第一类BWP上发送上行参考信号(包括上行DMRS)、物理上行控制信道(physical uplink control channel,PUCCH)和物理上行数据信道(physical uplink shared channel,PUSCH)中至少一种信号或信道。在本申请实施例中,至少一种信号或信道可以是一种、两种、三种或更多种信号或信道。
可选地,可以以第二类BWP为单位对BWP进行激活或去激活,网络设备和终端设备可以在激活的第二类BWP中进行信号传输。第二类BWP的激活与去激活也可以涉及或引起即第二类BWP的切换。其中,激活的第二类BWP可以理解为终端当前工作的第二类BWP,终端设备可以在激活的第二类BWP中的下行第一类BWP上接收下行参考信号(包括下行DMRS、CSI-RS、PDCCH和PDSCH中至少一种信号或信道,终端设备可以在激活的第二类BWP中的上行第一类BWP上发送上行参考信号(包括上行DMRS)、PUCCH和PUSCH中至少一种信号或信道。
网络设备和终端设备进信号传输时,网络设备可以为终端设备配置第二类BWP,并且可以在该配置的第二类BWP中为终端设备分配资源,该分配的资源可以用于网络设备和终端设备进信号传输。因此,如何在第二类BWP中为终端设备分配资源是重要的研究课题。在本申请实施例中,网络设备为不同终端设备配置的第二类BWP可以相同也可以不同;网络设备为不同终端设备配置的第二类BWP中所包括的第一类BWP的个数可以相同也可以不同,本申请不做限制。
本申请实施例的技术方案,旨在解决在第二类BWP上的资源分配以及信号传输的问题。
可选的,本申请以下实施例所述的第二类BWP还可以描述为BWP,该BWP是BWP聚合设计中的BWP,该BWP中可以包括N段频域资源,其中,N为大于等于2的整数。该N段频域资源中的任意两段频域资源可以为不连续的频域资源。
图11为本申请实施例涉及的信号传输方法的示例性系统架构图,如图11所示,该方法涉及终端设备和网络设备之间的信号传输。
本申请实施例中,终端设备可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。终端设备可以经无线接入网(radio access network,RAN)与一个或多个核心网进行通信,终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户设备(user device)、或用户装备(user equipment)。
本申请实施例中,网络设备可以是基站。基站可以是一种部署在无线接入网中能够和终端设备进行无线通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络;基站还可协调对空中接口的属性管理。例如,基站可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),也可以是NR中的gNB等。基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者可以为中继站、接入点、车载设备、可穿戴设备以及5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
另外,上述基站可以是宏基站,也可以是微基站。
本申请所涉及的方法对于同构网络与异构网络的场景均适用。同时,对于传输点也无限制,例如,可以支持宏基站与宏基站、微基站与微基站,以及,宏基站与微基站间的多点协同传输。另外,本申请所涉及的方法可以用于频分双工(frequency division duplex,FDD)系统,也可以用于时分双工(time division duplex,TDD)系统。同时,本申请所涉及的方法对于低频场景(6GHz以下)以及高频场景(6GHz以上)也均适用。
图12为本申请实施例提供的一种终端设备与网络设备的信号传输交互流程示例图,如图12所示,终端设备与网络设备之间的信号传输过程为:
S1201、网络设备向终端设备发送资源指示信息。
其中,上述资源指示信息用于指示在第二类BWP中为终端设备分配的资源。
S1202、终端设备在网络设备分配的资源上和网络设备进行信号传输。
可选的,上述资源指示信息可以用于指示在第二类BWP中为终端设备分配的RB,或者,上述资源指示信息也可以用于指示在第二类BWP中为终端设备分配的资源块组(resource block group,RBG)。其中,该第二类BWP中可以包括一个或多个第一类BWP,每个第一类BWP中可以包括一个或多个RB;或者每个第一类BWP中可以包括一个或多个RBG,一个RBG可以包括一个或多个RB。
需要说明的是,本申请所述的RB既可以是物理资源块,也可以是虚拟资源块,本申请对此不作限制。
在一种可选的实施方式中,如果上述资源指示信息用于指示在第二类BWP中为终端设备分配的RB,则网络设备可以对第二类BWP所包含的RB进行联合编号。示例性的,RB索引可以从第二类BWP的最低频率位置开始递增。图13为对第二类BWP中RB进行联合编号的示例图,如图13所示,该第二类BWP中包括第一类BWP1和第一类BWP2。其中,第一类BWP1中包括10个RB,第一类BWP2中包括8个RB。则对第一类BWP1和第一类BWP2内的RB进行联合编号后,第一类BWP1中的RB的索引依次为1、2、3、4、5、6、7、8、9、10,第一类BWP2中的RB的索引依次为11、12、13、14、15、16、17、18。或者,RB索引可以从0开始编号,本申请对此不作限定。例如,第一类BWP1中的RB的索引依次为0、1、2、3、4、5、6、7、8、9,第一类BWP2中的RB的索引依次为10、11、12、13、14、15、16、17。
在本申请实施例中,网络设备为终端设备分配第二类BWP中的RB资源时,可以为终端设备分配起始RB以及索引连续的RB的长度(即索引连续的RB的个数)。示例性的,以上述图13所示的第二类BWP为例,网络设备可以为终端设备分配起始RB的标识为3,RB的长度为4的资源,即网络设备为终端设备分配的资源为索引为3、4、5、6的RB资源。
在本申请实施例中,网络设备可以在资源指示信息中携带为该终端设备分配的起始RB的标识以及为索引连续的RB的长度。示例性的,网络设备可以采用起始RB和RB的长度的联合指示方式,也可以采用起始RB和RB的长度分别指示的独立指示方式。终端设备在接收到上述资源指示信息后,在上述资源指示信息所指示的RB上进行信号传输。
可选地,进行资源指示时,网络设备可以通过一个资源指示值(resource indication value,RIV)指示为终端设备分配的资源的起始RB以及索引连续的RB的长度。比如可以按照如 下的公式,根据RIV确定起始RB和RB的长度。
如果
Figure PCTCN2019097693-appb-000001
Figure PCTCN2019097693-appb-000002
否则
Figure PCTCN2019097693-appb-000003
其中,RB start为在第二类BWP中为终端设备分配的资源的起始RB,L RBs为在第二类BWP中为终端设备分配的资源的RB的长度,L RBs≥1,并且不超过
Figure PCTCN2019097693-appb-000004
Figure PCTCN2019097693-appb-000005
为第二类BWP的带宽。第二类BWP的带宽可以为第二类BWP包括的RB的个数。即从第二类BWP的RB start开始,将L RBs个索引连续的RB分配给终端设备。
终端设备接收到该RIV之后,可以根据该RIV与起始RB以及索引连续的RB的长度的对应关系,确定出起始RB以及索引连续的RB的长度,或者可以确定出网络设备为终端设备分配的资源。终端设备可以从该起始RB开始,在RB索引连续的长度为RB的长度的频域资源上和网络设备进行信号传输。
在另一种可选的实施方式中,如果资源指示信息用于指示在第二类BWP中为终端设备分配的RBG,则网络设备可以按照预设的RBG分配方式向终端设备分配资源,并将分配结果携带在上述资源指示信息中。
在本申请实施例中,网络设备通过资源指示信息为终端设备指示所分配的RBG时,该资源指示信息中可以包括位图(bitmap),其中,该位图中的一个比特对应一个RBG或对应一个RBG索引,当该一个比特的值为t1时,网络设备为终端设备分配的资源包括该一个比特所对应的RBG;当该一个比特的值不为t1或者为t2时,网络设备为终端设备分配的资源不包括该一个比特所对应的RBG。其中,t1和t2为整数,例如t1为1。例如,位图中第一个比特对应索引为1的RBG,第二个比特对应索引为2的RBG,以此类推。进一步,可以根据比特上的比特值确定为终端分配的资源。例如,如果一个RBG在该位图中对应比特上的比特值为1,则说明网络设备向终端设备分配了该比特对应的RBG资源,如果一个RBG在该位图中对应比特上的比特值为0,则说明网络设备未向终端设备分配该比特对应的RBG资源。终端设备接收到位图之后,根据位图中比特值为1的比特,确定分配给终端设备的RBG。
在本申请实施例中,可以对第二类BWP所包括的RBG进行联合编号,得到第二类BWP中的RBG的索引。可选地,第二类BWP中每个RBG具有唯一的索引,即一个RBG索引对应一个RBG。示例性的,RBG索引可以从第二类BWP的最低频率位置开始递增。
进一步地,终端设备可以根据网络设备为其分配的RBG,以及RBG大小,确定网络设备为终端设备分配的资源,并在分配给终端设备的资源上和网络设备进行信号传输。
因此,在该可选方式中,网络设备和终端设备进行信号传输时或者进行资源分配时,需要确定第二类BWP中的RBG,例如确定RBG索引、RBG的个数或RBG的大小。
本申请以下实施例将详细描述确定第二类BWP中的RBG的过程。
在本申请实施例中,可以对第二类BWP所包括的RBG进行联合编号,以确定第二类BWP中的RBG的索引。以下以一个示例说明RBG联合编号的方法。
图14为对第二类BWP内的RBG进行联合编号的示例图,如图14所示,第二类BWP内包括第一类BWP1和第一类BWP2。其中,第一类BWP1内包括10个RBG,第一类BWP2内包括11个RBG。则对第一类BWP1和第一类BWP2中的RBG进行联合编号后,第一类BWP1中的RBG的索引依次为1、2、3、4、5、6、7、8、9、10,第一类BWP2中的RBG的索引依次为11、12、13、14、15、16、17、18、19、20、21。或者,RBG索引可以从0开始编号,本申请对此不作限定。第一类BWP1中的RBG的索引依次为0、1、2、3、4、5、6、7、8、9,第一类BWP2内的RBG的索引依次为10、11、12、13、14、15、16、17、18、19、20。
经过上述联合编号之后,第二类BWP中的每个RBG具有不与其他RBG重复的唯一索引。
针对确定第二类BWP所包括的RBG个数以及每个RBG的大小,下面进行具体的描述。
在本申请实施例中,第二类BWP所包括的RBG个数可以根据第二类BWP中每个第一类BWP所包括的RBG个数确定。具体的,第二类BWP所包括的RBG个数等于该第二类BWP中每个第一类BWP所包括的RBG个数之和。其中,每个第一类BWP所包括的RBG个数可以根据该第一类BWP的起始位置以及该第一类BWP的带宽确定。
需要说明的是,本申请实施例中所述的第一类BWP的带宽可以是指该第一类BWP中包括的RB的个数(个数也可以称为数量)。第一类BWP的带宽也可以称为该第一类BWP的带宽大小,或该第一类BWP的大小,或者其他名称,本申请对此不做限定。
可选的,确定第二类BWP中的RBG的大小,包括确定第二类BWP中的第一类BWP中的RBG的大小。例如,确定第二类BWP中每个RBG的大小,需要分别确定第二类BWP中每个第一类BWP中每个RBG的大小。其中,针对第二类BWP中的一个第一类BWP,确定该第一类BWP中的RBG大小,包括确定该第一类BWP中第一RBG的大小、第二RBG的大小以及除第一RBG和第二RBG之外的RBG的大小。
可选地,对于一个第一类BWP,第一RBG可以为该第一类BWP中的第一个RBG,第二RBG可以为该第一类BWP中的最后一个RBG。
为便于描述,对于一个第一类BWP,本申请以下实施例将除第一RBG和第二RBG之外的RBG的大小称为该第一类BWP的RBG大小,并标记该RBG大小为P。
可选的,第二类BWP中的第一类BWP的RBG大小P,可以根据第二类BWP所包括的N个第一类BWP的带宽之和确定,或者,也可以根据该第二类BWP的带宽确定。其中,N为大于或等于1的整数。
可选的,第一RBG的大小可以根据第一RBG所在的第一类BWP的起始位置以及P确定。
可选的,第二RBG的大小根据第二RBG所在的第一类BWP的起始位置、该第一类BWP的带宽和P确定。
以下基于上述P的两种可选确定方式来分别说明确定第二类BWP的RBG个数以及RBG大小的过程。
需要说明的是,以下确定第二类BWP的RBG个数以及每个RBG大小的实施例可以是独立的实施例,也可以与本申请中其他实施例相结合,具体的,本申请对此不做限定。
1、对于第二类BWP中的一个第一类BWP,根据第二类BWP所包括的N个第一类BWP的带宽之和确定该第一类BWP的RBG大小P
在该方式下,对于第二类BWP中的一个第一类BWP,该第一类BWP中的RBG大小由第二类BWP所包括的N个第一类BWP的带宽之和,即第二类BWP的带宽确定。
示例性的,N个第一类BWP的带宽之和与P的对应关系可以如下述表1所示。
表1
Figure PCTCN2019097693-appb-000006
其中,配置1和配置2为两种配置方式,可以由网络设备向终端设备指示使用哪种配置方式,如果网络设备没有预先向终端设备指示配置方式,则可以使用预定义的方式,比如可以预定义配置1或配置2。
需要说明的是,上述表1仅是第二类BWP的带宽与RBG大小的关系的示例,也可以根据需要选择其他的第二类BWP的带宽和RBG大小的对应关系,本申请实施例对此不做限定。
一个示例中,假设预定义使用配置1,并且第二类BWP中包括第一类BWP1和第一类BWP2,其中,第一类BWP1的带宽为40个RB,第一类BWP2的带宽为50个RB,则第二类BWP的带宽为第一类BWP1和第一类BWP2的带宽之和,即90个RB,即第二类BWP的带宽落入上述表1中“73–144”的范围内,则相应的,P的值为该范围对应的配置1下的数值,即P=8。
一种可选的方式中,第二类BWP中的N个第一类BWP的带宽之和等于每个第一类BWP所包括的RB数量的和。
另一种可选的方式中,可选的,对于上述N个第一类BWP的带宽之和,如果该N个第一类BWP中不存在重叠的RB,则该N个第一类BWP的带宽之和等于每个第一类BWP所包括的RB数量的和。而如果该N个第一类BWP中存在重叠的RB,则该N个第一类BWP的带宽之和等于N个第一类BWP中包括的RB的数量之和减去重叠的RB的数量。
其中,上述重叠的RB包括N个第一类BWP中第一个第一类BWP和第二个第一类BWP重叠的RB。
其中,上述第一个第一类BWP和第二个第一类BWP为N个第一类BWP中任意两个存在重叠RB的第一类BWP。
图15为第二类BWP中的N个第一类BWP中不存在重叠的RB的示例图,如图15所示,第二类BWP中包括第一类BWP1和第一类BWP2。此时,第一类BWP1和第一类BWP2之间不存在重叠的RB。则该两个第一类BWP的带宽之和等于第一类BWP1所包括的RB的数量与第一类BWP2所包括的RB的数量之和。
示例性的,假设第一类BWP1中包括的RB的个数为40,第一类BWP2中包括的RB的个数为50,则两个第一类BWP的带宽之和为40加上50,即两个第一类BWP的带宽之 和为90。
图16为第二类BWP中N个第一类BWP中存在重叠的RB的一种示例图,如图16所示,第二类BWP中包括第一类BWP1、第一类BWP2和第一类BWP3。此时,第一类BWP1和第一类BWP2之间存在重叠的RB。则,该三个第一类BWP的带宽之和可以等于第一类BWP1、第一类BWP2以及第一类BWP3所包括的RB数量之和减去第一类BWP1和第一类BWP2之间重叠的RB的数量。
示例性的,第一类BWP1包括的RB的个数为40,第一类BWP2包括的RB的个数为50,第一类BWP3包括的RB个数为30,并且第一类BWP2和第一类BWP1之间有25个RB相重叠。因此,三个第一类BWP的带宽之和为40加上50加上30再减去25,即三个第一类BWP的带宽之和为95。
图17为第二类BWP中N个第一类BWP中存在重叠的RB的另一种示例图,如图17所示,第二类BWP中包括第一类BWP1、第一类BWP2和第一类BWP3,其中,第一类BWP2和第一类BWP1之间有RB重叠。第一类BWP3和第一类BWP2的RB有重叠。则,该个第一类BWP的带宽之和等于第一类BWP1、第一类BWP2以及第一类BWP3所包括的RB数量之和减去第一类BWP1和第一类BWP2之间重叠的RB的数量以及第一类BWP2和第一类BWP3之间重叠的RB的数量。
示例性的,假设第一类BWP1包括的RB的个数为40,第一类BWP2包括的RB的个数为50,第一类BWP3包括的RB的个数为30。其中,第一类BWP2和第一类BWP1之间有25个RB相重叠。第一类BWP3和第一类BWP2之间有15个RB相重叠。则,三个第一类BWP的带宽之和为40加上50加上30减去25再减去15,即三个第一类BWP的带宽之和为80。
经过上述过程确定出P之后,即确定出第二类BWP中的一个第一类BWP中除第一RBG和第二RBG之外的其他RBG的大小,这些RBG的大小均等于P。
其中,P为大于或等于1的整数。
在此基础上,可以确定第一RBG的大小以及第二RBG的大小。
可选地,第一RBG的大小为小于等于P的整数,第二RBG的大小为小于等于P的整数。
以下说明确定上述第一RBG的大小的过程。
其中,确定第一RBG的大小的实施例可以是独立的实施例,也可以与本申请中其他实施例相结合,具体的,本申请对此不做限定。
可选的,上述第一RBG的大小可以根据上述第一RBG所在的第一类BWP的起始位置以及上述的P确定。
其中,第一RBG所在的第一类BWP的起始位置是指该第一类BWP的起始RB的索引。
需要说明的是,本申请以下实施例所示各公式中的BWP(t1)用于标识第一类BWP。
可选的,假设第一RBG所在的第一类BWP为第一类BWP i,i为大于等于0的整数,该第一类BWP i的起始位置为
Figure PCTCN2019097693-appb-000007
或者也可以表示为
Figure PCTCN2019097693-appb-000008
其中μ为第一类BWP i的子载波间隔的标识或索引,则第一类BWP i中的第一RBG的大小可以通过如下公式(1)确定:
Figure PCTCN2019097693-appb-000009
可选地,第一类BWP i的第一RBG的大小的符号
Figure PCTCN2019097693-appb-000010
中的下标0为第一类BWP i的第一RBG的RBG编号。可选的,第一类BWP i中第一RBG的RBG编号可以是0,或者也可以是其他的编号,或者也可以不带编号,具体的,本申请实施例对此不做限定。
示例性的,假设第二类BWP中包括第一类BWP i和第一类BWP j,i,j为大于等于0的整数,第一类BWP i的第一RBG的大小可以通过上述公式(1)确定,第一类BWP j的第一RBG的大小可以通过下述公式(2)确定,其中,
Figure PCTCN2019097693-appb-000011
为第一类BWP j的起始位置:
Figure PCTCN2019097693-appb-000012
可选地,第一类BWP j的第一RBG的大小的符号
Figure PCTCN2019097693-appb-000013
中的下标
Figure PCTCN2019097693-appb-000014
为第一类BWP j的第一RBG的RBG编号。可选的,第一类BWP j第一RBG的RBG编号可以是
Figure PCTCN2019097693-appb-000015
或者也可以是其他的编号,或者也可以不带编号,具体的,本申请实施例对此不做限定。
其中,
Figure PCTCN2019097693-appb-000016
为第一类BWP i的带宽,
Figure PCTCN2019097693-appb-000017
为第一类BWP j的带宽。
假设上述示例中第二类BWP中包括第一类BWP i和第一类BWP j,i,j为大于等于0的整数,第二类BWP包括的RBG的个数为N RBG,则N RBG可以通过下述公式(3)确定:
Figure PCTCN2019097693-appb-000018
其中,第一类BWP i包括的RBG的个数为
Figure PCTCN2019097693-appb-000019
第一类BWP j包括的RBG的个数为
Figure PCTCN2019097693-appb-000020
其中,
Figure PCTCN2019097693-appb-000021
为第一类BWP i的起始位置,
Figure PCTCN2019097693-appb-000022
为第一类BWP j的起始位置,
Figure PCTCN2019097693-appb-000023
为第一类BWP i的带宽,
Figure PCTCN2019097693-appb-000024
为第一类BWP j的带宽。
可选的,对于第二类BWP中的一个第一类BWP,该第一类BWP的起始位置可以根据该第一类BWP的参考点确定,或者,也可以根据该第一类BWP所在的第二类BWP的参考点确定。以下分别进行说明。
当第一类BWP的起始位置根据该第一类BWP的参考点确定时,该第一类BWP所在的第二类BWP中所包含的N个第一类BWP可以分别具有对应的参考点,终端设备根据该参考点确定每个第一类BWP的起始位置。
示例性的,针对第二类BWP中的一个第一类BWP,终端设备根据参考频率位置(reference location)和相对于该参考频率位置的第一偏移量确定该第一类BWP的参考点,其中,该参考频率位置可以由网络设备指示,也可以由终端设备在接入小区时通过搜索信号得到。该第一偏移量可以由网络设备指示。进而,终端设备根据该第一类BWP的参考点和第二偏移量,确定载波的起始RB位置。进而,终端设备根据载波的起始RB位置以及第三偏移量确定该第一类BWP的起始位置,其中,该第三偏移量用于表示该第一类BWP的起始位置相对于载波的起始RB位置的偏移。示例性的,终端设备可以将第二偏移量与第三偏移量相加,将相加的结果作为该第一类BWP的起始位置。
当第一类BWP的起始位置根据该第一类BWP所在的第二类BWP的参考点确定时,第二类BWP中具有一个参考点,即第二类BWP内所包含的N个第一类BWP具有一个共同的参考点,终端设备根据该共同的参考点确定每个第一类BWP的起始位置。
可选的,终端设备根据参考频率位置和相对于该参考频率位置和第一偏移量确定第二类BWP的参考点。进而,针对第二类BWP中的每个第一类BWP,均基于该参考点确定每个第一类BWP的起始位置。具体过程可以参考上述的描述,不再赘述。
可选的,网络设备也可以通知终端设备参考点以及基于该参考点的每个第一类BWP的起始位置。
图18为第二类BWP中具有一个参考点时的频域资源示意图,如图18所示,示例性的,第二类BWP中包括第一类BWP1和第一类BWP2,第二类BWP具有一个参考点A,第一类BWP1和第一类BWP2均根据该参考点A确定各自的起始位置。
示例性的,如图18所示,基于所示的参考点A,第一类BWP1的起始位置为RB i,第一类BWP2的起始位置为RB j。其中,i,j为大于等于0的整数。
图19为第二类BWP中每个第一类BWP分别具有一个参考点时的频域资源示意图,如图19所示,示例性的,第二类BWP中包括第一类BWP1和第一类BWP2,第一类BWP1具有一个参考点A,第一类BWP2具有另一个参考点A,第一类BWP1和第一类BWP2根据各自的参考点确定各自的起始位置。
示例性的,如图19所示,基于所示的第一类BWP1的参考点A,第一类BWP1的起始位置为RB i1;基于所示的第一类BWP2的参考点A,第一类BWP2的起始位置为RB j1。其中,i1,j1为大于等于0的整数。
以下说明确定第一类BWP中的第二RBG的大小的过程。
其中,确定第二RBG的大小的实施例可以是独立的实施例,也可以与本申请中其他实施例相结合,具体的,本申请对此不做限定。
可选的,第二RBG的大小根据第二RBG所在的第一类BWP的起始位置、该第一类BWP的带宽和上述的P确定。
其中,第一类BWP的起始位置以及P的确定方法与上述确定第一RBG大小的方法相同,即,上述的P可以根据该第一类BWP所在的第二类BWP中的N个第一类BWP的带宽之和确定。或者,也可以采用其他的P的确定方法,本申请对此不做限定。或者,也可 以采用其他的起始位置的确定方法,本申请对此不做限定。
可选的,第一类BWP的起始位置可以根据该第一类BWP的参考点确定,或者由第二类BWP的参考点确定。具体实现方式可以参照上述的实施例,此处不再赘述。
可选的,第一类BWP的带宽为该第一类BWP所包含的RB个数。
可选的,假设第一类BWP为第一类BWP i,i为大于等于0的整数,该第一类BWP i的起始位置为
Figure PCTCN2019097693-appb-000025
或者也可以表示为
Figure PCTCN2019097693-appb-000026
其中μ为BWP i的子载波间隔对应的的标识或索引,其中μ和子载波间隔的对应关系可以如下表2所述。
表2
Figure PCTCN2019097693-appb-000027
该第一类BWP i的带宽为
Figure PCTCN2019097693-appb-000028
则上述第二RBG的大小可以通过如下公式(4)确定:
Figure PCTCN2019097693-appb-000029
其中,第一类BWP i的第二RBG的大小的符号
Figure PCTCN2019097693-appb-000030
中的下标
Figure PCTCN2019097693-appb-000031
为第一类BWP i的第二RBG的大小的编号。可选的,第一类BWP i的第二RBG的大小的编号可以是
Figure PCTCN2019097693-appb-000032
或者也可以是其他的编号,或者也可以不带编号,具体的,本申请对此不做限定。
其中,如果上述公式(4)的计算结果为0,则第一类BWP i的第二RBG的大小为P。
示例性的,假设第二类BWP中包括第一类BWP i和第一类BWP j,第一类BWP i的第二RBG的大小可以通过上述公式(4)确定,第一类BWP j的第二RBG的大小可以通过下述公式(5)确定,其中,
Figure PCTCN2019097693-appb-000033
为第一类BWP j的起始位置,
Figure PCTCN2019097693-appb-000034
为第一类BWP j的带宽:
Figure PCTCN2019097693-appb-000035
其中,第一类BWP j的第二RBG的大小的符号
Figure PCTCN2019097693-appb-000036
中的下标last为第一类BWP  j的第二RBG的大小的编号,比如last表明第一类BWP j的最后一个RBG。可选的,第一类BWP j的第二RBG的大小的编号可以是最后一个RBG的编号,或者也可以是其他的编号,或者也可以不带编号,具体的,本申请对此不做限定。
其中,如果上述公式(5)的计算结果为0,则第二RBG的大小为P。
由上述过程可知,对于第二类BWP中的第一类BWP i和第一类BWP j(i,j为大于等于0的整数),其第一RBG的大小、第二RBG的大小,以及第二类BWP的RBG的个数的确定过程为:
(1)通过上述公式(3)确定第二类BWP的RBG的个数。
(2)通过上述公式(1)确定第一类BWP i的第一RBG的大小。
(3)通过上述公式(4)确定第一类BWP i的第二RBG的大小。
(4)通过上述公式(2)确定第一类BWP j的第一RBG的大小。
(5)通过上述公式(5)确定第一类BWP j的第二RBG的大小。
(6)其他RBG的大小为P。
需要说明的是,本申请实施例对上述(1)至(6)的执行顺序不做限制。
以下通过两个示例进一步说明确定第二类BWP的RBG的过程。
第一个示例:
在该示例中,第二类BWP中的第一类BWP的起始位置根据第二类BWP的参考点确定。
图20为第一个示例的第二类BWP的频域资源分配示意图一,如图20所示,假设一个第二类BWP中包括第一类BWP 1和第一类BWP 2。其中第一类BWP 1的起始位置为RB 9,第一类BWP 1的带宽为37个RB,第一类BWP 2的起始位置为RB 50,第一类BWP 2的带宽为30个RB。可以根据上述实施例中确定RBG大小的方法,此时第二类BWP的带宽为67个RB,在上述表1所示的配置1的情况下RBG的大小为4,即P=4,则该第二类BWP所包括的RBG如下:
根据上述公式(3),计算RBG的个数为
Figure PCTCN2019097693-appb-000037
根据计算结果,可以得出,第一类BWP 1包括10个RBG,第一类BWP 2包括8个RBG。
示例性的,对第二类BWP中的RBG联合编号,第二类BWP中的RBG的编号可以为RBG 0~RBG 17。
根据上述公式(1),计算第一类BWP1的第一RBG的大小为
Figure PCTCN2019097693-appb-000038
Figure PCTCN2019097693-appb-000039
根据上述公式(4),计算第一类BWP1的第二RBG的大小为
Figure PCTCN2019097693-appb-000040
根据上述公式(2),计算第一类BWP2的第一RBG的大小为
Figure PCTCN2019097693-appb-000041
根据上述公式(5),计算第一类BWP2的第二RBG的大小为
Figure PCTCN2019097693-appb-000042
则根据上述对于公式(5)的描述,第一类BWP2的第二RBG的大小为4,即
Figure PCTCN2019097693-appb-000043
其他RBG的大小为P=4。
第二个示例:
在该示例中,对于第二类BWP中的一个第一类BWP,该第一类BWP的起始位置根据该第一类BWP的参考点确定。
图21为第二个示例的第二类BWP的频域资源分配示意图,如图21所示,假设一个第二类BWP中包括第一类BWP 1和第一类BWP 2。其中,相对于第一类BWP1的参考点A,第一类BWP 1的起始位置为RB 9,第一类BWP 1的带宽为37个RB,相对于第一类BWP2的参考点A,第一类BWP 2的起始位置为RB 11,第一类BWP 2的带宽为30个RB。可以根据上述实施例中确定RBG大小的方法,此时第二类BWP的带宽为67个RB,在上述表1所示的配置1的情况下RBG的大小为4,即P=4,则该第二类BWP所包括的RBG如下:
根据上述公式(3),计算RBG的数目为
Figure PCTCN2019097693-appb-000044
根据计算结果,可以得出,第一类BWP 1包括10个RBG,第一类BWP 2包括8个RBG。
示例性的,对第二类BWP中的RBG进行联合编号,第二类BWP中的RBG的编号可以为RBG 0~RBG 17。
根据上述公式(1),计算第一类BWP1的第一RBG的大小为
Figure PCTCN2019097693-appb-000045
根据上述公式(4),计算第一类BWP1的第二RBG的大小为
Figure PCTCN2019097693-appb-000046
根据上述公式(2),计算第一类BWP2的第一RBG的大小为
Figure PCTCN2019097693-appb-000047
根据上述公式(5),计算第一类BWP2的第二RBG的大小为
Figure PCTCN2019097693-appb-000048
Figure PCTCN2019097693-appb-000049
其他RBG的大小为P=4。
2、根据第二类BWP中每个第一类BWP的带宽确定各第一类BWP的RBG大小P
可选的,对于第二类BWP中的一个第一类BWP,该第一类BWP的RBG大小P可以根据该第一类BWP的带宽确定。
示例性的,第一类BWP的带宽与P的对应关系可以如下述表3所示。
表3
Figure PCTCN2019097693-appb-000050
其中,配置1和配置2为两种配置方式,可以由网络设备向终端设备指示使用哪种配置方式,如果网络设备没有预先向终端设备指示配置方式,则可以使用预定义的方式,比如可以预定义配置1或配置2。需要说明的是,表1仅是第一类BWP的带宽与RBG大小的关系的示例,也可以根据需要选择其他的第一类BWP的带宽和RBG大小的对应关系,本申请对此不做限定。
一个示例中,假设预定义使用配置1,并且第二类BWP中包括第一类BWP1和第一类BWP2,其中,第一类BWP1的带宽为40个RB,第一类BWP2的带宽为30个RB,则第一类BWP1的带宽落入上述表1中“37–72”的范围内,则第一类BWP1对应的RBG大小的值为该范围对应的配置1下的数值,即第一类BWP1对应的RBG大小等于4。第一类BWP2的带宽落入上述表1中“1–36”的范围内,则第一类BWP2对应的RBG大小的值为该范围对应的配置1下的数值,即第一类BWP2对应的RBG大小等于2。
对于第二类BWP中的第一类BWP,经过上述过程确定出P之后,即确定出该第一类BWP中除第一RBG和第二RBG之外的其他RBG的大小,这些RBG的大小均等于P。
其中,P为大于或等于1的整数。
在此基础上,可以确定第一RBG的大小以及第二RBG的大小。
可选的,第一RBG的大小为小于等于P的整数,第二RBG的大小为小于等于P的整数。
以下说明确定上述第一RBG的大小的过程。
其中,确定第一RBG的大小的实施例可以是独立的实施例,也可以与本申请中其他实施例相结合,具体的,本申请对此不做限定。
可选的,上述第一RBG的大小可以根据上述RBG所在的第一类BWP的起始位置以及该第一类BWP对应的RBG大小确定。
其中,该第一类BWP的起始位置是指该第一类BWP的起始RB的索引。
其中,上述第一类BWP的起始位置的确定方法可以参照上述“对于第二类BWP中的 一个第一类BWP,根据第二类BWP所包括的N个第一类BWP的带宽之和确定该第一类BWP的RBG大小P”一节中所述的方法,上述的RBG大小可以根据该第一类BWP的带宽确定。或者,也可以采用其他的RBG大小的确定方法,本申请对此不做限定。或者,也可以采用其他的起始位置的确定方法,本申请对此不做限定。
可选的,该第一类BWP的起始位置可以根据该第一类BWP的参考点确定,或者,也可以根据该第一类BWP所在的第二类BWP的参考点确定。该第一类BWP的参考点以及第二类BWP的参考点的示例以及根据这两种方式确定第一类BWP的起始位置的过程,可以参照上述根据第二类BWP所包括的N个第一类BWP的带宽之和确定该第一类BWP的RBG大小一节实施例中的描述,此处不再赘述。
可选的,假设该第一RBG所在的第一类BWP为第一类BWP i,i为大于0的整数,该第一类BWP i的起始位置为
Figure PCTCN2019097693-appb-000051
或者,也可以表示为
Figure PCTCN2019097693-appb-000052
其中,μ为第一类BWP i的子载波间隔,该第一类BWP i对应的RBG大小为P i,则该第一类BWP的第一RBG的大小可以通过如下公式(6)确定:
Figure PCTCN2019097693-appb-000053
可选地,第一类BWP i的第一RBG的大小的符号
Figure PCTCN2019097693-appb-000054
中的下标0为第一类BWP i的第一RBG的RBG编号。可选的,第一类BWP i中第一RBG的RBG编号可以是0,或者也可以是其他的编号,或者也可以不带编号,具体的,本申请实施例对此不做限定。
示例性的,假设第二类BWP中包括第一类BWP i和第一类BWP j,i,j为大于等于0的整数,第一类BWP i的第一RBG的大小可以通过上述公式(6)确定,第一类BWP j的第一RBG的大小可以通过下述公式(7)确定,其中,
Figure PCTCN2019097693-appb-000055
为第一类BWP j的起始位置,P j为第一类BWP j对应的RBG大小:
Figure PCTCN2019097693-appb-000056
可选的,第一类BWP j的第一RBG的大小的符号
Figure PCTCN2019097693-appb-000057
中的下标为第一类BWP j的第一RBG的RBG编号。可选的,第一类BWP j的第一RBG的RBG编号可以是
Figure PCTCN2019097693-appb-000058
或者也可以是其他的编号,或者也可以不带编号,具体的,本申请对此不做限定。
其中,
Figure PCTCN2019097693-appb-000059
为第一类BWP i的带宽,
Figure PCTCN2019097693-appb-000060
为第一类BWP j的带宽。
假设上述示例中第二类BWP包括第一类BWP i和第一类BWP j,i,j为大于等于0的整数,第二类BWP包括的RBG的个数为N RBG,则N RBG可以通过下述公式(8)确定:
Figure PCTCN2019097693-appb-000061
其中,第一类BWP i包括的RBG的个数为
Figure PCTCN2019097693-appb-000062
第一类BWP j包括的RBG的个数为
Figure PCTCN2019097693-appb-000063
其中,
Figure PCTCN2019097693-appb-000064
为第一类BWP i的起始位置,
Figure PCTCN2019097693-appb-000065
为第一类BWP j的起始位置,
Figure PCTCN2019097693-appb-000066
为第一类BWP i的带宽,
Figure PCTCN2019097693-appb-000067
为第一类BWP j的带宽。
以下说明确定第一类BWP中的第二RBG的大小的过程。
其中,确定第二RBG的大小的实施例可以是独立的实施例,也可以与本申请中其他实施例相结合,具体的,本申请对此不做限定。
可选的,第二RBG的大小可以根据第二RBG所在的第一类BWP的起始位置、该第一类BWP的带宽以及该第一类BWP对应的RBG大小确定。
其中,第一类BWP的起始位置以及该第一类BWP对应的RBG大小的确定方法与上述确定第一RBG大小的方法相同,即,上述的RBG大小可以根据该第一类BWP的带宽确定。或者,也可以采用其他的RBG大小的确定方法,本申请对此不做限定。或者,也可以采用其他的起始位置的确定方法,本申请对此不做限定。
可选的,第一类BWP的起始位置可以根据该第一类BWP的参考点确定,或者由第二类BWP的参考点确定。具体实现方式可以参照上述的实施例,此处不再赘述。
可选的,第一类BWP的带宽为该第一类BWP所包含的RB个数。
可选的,假设该第一类BWP为第一类BWP i,i为大于等于0的整数,该第一类BWP i的起始位置为
Figure PCTCN2019097693-appb-000068
或者也可以表示为
Figure PCTCN2019097693-appb-000069
其中μ为第一类BWP i的子载波间隔,该第一类BWP i的带宽为
Figure PCTCN2019097693-appb-000070
该第一类BWP i对应的RBG大小为P i,则该第一类BWP的第二RBG的大小可以通过如下公式(9)确定:
Figure PCTCN2019097693-appb-000071
其中,第一类BWP i的第二RBG的大小的符号
Figure PCTCN2019097693-appb-000072
中的下标
Figure PCTCN2019097693-appb-000073
为第一类BWP i的第二RBG的大小的编号。可选的,第一类BWP i的第二RBG的大小的编号可以是
Figure PCTCN2019097693-appb-000074
或者也可以是其他的编号,或者也可以不带编号,具体的,本申请对此不做限定。
其中,如果上述公式(9)的计算结果为0,则第一类BWP i的第二RBG的大小为Pi。
示例性的,假设第二类BWP中包括第一类BWP i和第一类BWP j,i,j为大于等于0的整数,第一类BWP i的第二RBG的大小可以通过上述公式(9)确定,第一类BWP j的第二RBG的大小可以通过下述公式(10)确定,其中,
Figure PCTCN2019097693-appb-000075
为第一类BWP j的起始位置,
Figure PCTCN2019097693-appb-000076
为第一类BWP j的带宽,P j为第一类BWP j对应的RBG大小:
Figure PCTCN2019097693-appb-000077
其中,第一类BWP j的第二RBG的大小的符号
Figure PCTCN2019097693-appb-000078
中的下标last为第一类BWP j的第二RBG的大小的编号,比如last表明最后一个RBG。可选的,第一类BWP j的第二RBG的大小的编号可以是最后一个RBG的编号,或者也可以是其他的编号,或者也可以不带编号,具体的,本申请对此不做限定。
其中,如果上述公式(10)的计算结果为0,则第一类BWP j的第二RBG的大小为P j
由上述过程可知,对于第二类BWP中的第一类BWP i和第一类BWP j(i,j为大于等于0的整数),其第一RBG的大小、第二RBG的大小,以及第二类BWP的RBG的个数的确定过程为:
(1)通过上述公式(8)确定第二类BWP的RBG的个数。
(2)通过上述公式(6)确定第一类BWP i的第一RBG的大小。
(3)通过上述公式(9)确定第一类BWP i的第二RBG的大小。
(4)通过上述公式(7)确定第一类BWP j的第一RBG的大小。
(5)通过上述公式(10)确定第一类BWP j的第二RBG的大小。
(6)第一类BWP1中其他RBG的大小为P i,第一类BWP2中其他RBG的大小为P j
需要说明的是,本申请实施例对上述(1)至(6)的执行顺序不做限制。
以下通过两个示例进一步说明确定第二类BWP的RBG的过程。
第一个示例:
在该示例中,第二类BWP中的第一类BWP的起始位置根据第二类BWP的参考点确定。
图22为第一个示例的第二类BWP的频域资源分配示意图,如图22所示,假设一个第二类BWP包括第一类BWP 1和第一类BWP 2。其中第一类BWP 1的起始位置为RB 9,第一类BWP 1的带宽为37个RB,第一类BWP 2的起始位置为RB 50,第一类BWP 2的带宽为30个RB。可以根据上述实施例中确定RBG大小的方法,在上述表2所示的配置1的情况下第一类BWP1的RBG大小为4,即P i=4,第一类BWP2的RBG的大小为2,即P j=2,其中,i=1,j=2,则该第二类BWP所包括的RBG如下:
根据上述公式(8),计算RBG的数目为
Figure PCTCN2019097693-appb-000079
根据计算结果,可以得出,第一类BWP 1包括10个RBG,第一类BWP 2包括15个RBG。
示例性的,对第二类BWP中的RBG联合编号,第二类BWP中的RBG的编号可以为RBG 0~RBG 24。
根据上述公式(6),计算第一类BWP 1的第一RBG的大小为
Figure PCTCN2019097693-appb-000080
根据上述公式(9),计算第一类BWP1的第二RBG的大小为
Figure PCTCN2019097693-appb-000081
根据上述公式(7),计算第一类BWP2的第一RBG的大小为
Figure PCTCN2019097693-appb-000082
根据上述公式(10),计算第一类BWP2的第二RBG的大小为
Figure PCTCN2019097693-appb-000083
Figure PCTCN2019097693-appb-000084
第一类BWP1中其他RBG的大小为P i=4,第一类BWP2中其他RBG的大小为P j=2。
第二个示例:
在该示例中,对于第二类BWP中的一个第一类BWP,该第一类BWP的起始位置根据该第一类BWP的参考点确定。
图23为第二个示例的第二类BWP的频域资源分配示意图,如图23所示,假设一个第二类BWP包括第一类BWP 1和第一类BWP 2。其中,相对于第一类BWP1的参考点A,第一类BWP 1的起始位置为RB 9,第一类BWP 1的带宽为37个RB,相对于第一类BWP2的参考点A,第一类BWP 2的起始位置为RB 11,第一类BWP 2的带宽为30个RB。可以根据上述实施例中确定RBG大小的方法,此时第二类BWP的带宽为67个RB,在上述表2所示的配置1的情况下第一类BWP1的RBG的大小为4,即P i=4,第一类BWP2的RBG的大小为2,即P j=2,其中,i=1,j=2,则该第二类BWP所包括的RBG如下:
根据上述公式(8),计算RBG的数目为
Figure PCTCN2019097693-appb-000085
根据计算结果,可以得出,第一类BWP 1包括10个RBG,第一类BWP 2包括16个RBG。
示例性的,对第二类BWP中的RBG进行联合编号,第二类BWP中的RBG的编号可以为RBG 0~RBG 25。
根据上述公式(6),计算第一类BWP 1的第一RBG的大小为
Figure PCTCN2019097693-appb-000086
根据上述公式(9),计算第一类BWP1的第二RBG的大小为
Figure PCTCN2019097693-appb-000087
根据上述公式(7),计算第一类BWP2的第一RBG的大小为
Figure PCTCN2019097693-appb-000088
根据上述公式(10),计算第一类BWP2的第二RBG的大小为
Figure PCTCN2019097693-appb-000089
Figure PCTCN2019097693-appb-000090
第一类BWP1中其他RBG的大小为P i=4,第一类BWP2中其他RBG的大小为P j=2。
具体实施过程中,上述的资源指示信息可以通过高层信令来指示,或者,也可以通过下行控制信息(downlink controlinformation,DCI)来指示,本申请对此不作限制。
对于第二类BWP中包括的N个第一类BWP,该N个第一类BWP中的各第一类BWP之间可能不存在资源重叠,或者,该N个第一类BWP中的多个第一类BWP之间可能存在资源重叠。
其中,N个第一类BWP的多个第一类BWP之间存在资源重叠,可以是指上述N个第一类BWP中的两个RBG所包括的RB完全重叠,或者,也可以是指上述N个第一类BWP中的一个RBG所包括的全部RB为另一个RBG所包括的RB的一部分,即该另一个RBG包括该一个RBG。
图24为两个RBG所包括的RB完全重叠的一个示例,如图24所示,一个第二类BWP中包括第一类BWP1和第一类BWP2,第一类BWP1中包括RBG1、RBG2和RBG3这三个RBG,第一类BWP2中包括RBG4、RBG5和RBG6这三个RBG。其中,RBG3和RBG4所包括的RB都是RB a1、RB a2和RB a3,即RBG3和RBG4所包括的RB完全重叠,RBG3和RBG4之间存在资源重叠。其中,a1,a2,a3为整数。
在该示例中,第二类BWP的两个第一类BWP1和第一类BWP2中存在重叠资源,所重叠的资源为RB a1、RB a2和RB a3。
图25为N个第一类BWP的两个第一类BWP之间存在资源重叠的示例,如图25所示,一个第二类BWP中包括第一类BWP1和第一类BWP2,第一类BWP1中包括RBG1、RBG2和RBG3这三个RBG,第一类BWP2中包括RBG4、RBG5和RBG6这三个RBG。其中,RBG3所包括的RB是RB a1、RB a2和RB a3,RBG4所包括的RB是RB a2和RB a3,即RBG4所包括的全部RB是RBG3所包括的RB的一部分,也可以看作是RBG3包括RBG4。其中,a1,a2,a3,a4为整数。
在该示例中,第二类BWP的第一类BWP1和第一类BWP2中存在重叠资源,所重叠 的资源为RB a2和RB a3。
图26为N个第一类BWP的三个第一类BWP之间存在资源重叠的示例,如图26所示,一个第二类BWP包括第一类BWP1、第一类BWP2和第一类BWP3,第一类BWP1中包括RBG1、RBG2和RBG3这三个RBG,第一类BWP2中包括RBG4、RBG5和RBG6这三个RBG,第一类BWP3中包括RBG7、RBG8和RBG9这三个RBG。其中,RBG3所包括的RB是RB a1、RB a2和RB a3,RBG4所包括的RB是RB a1、RB a2、RB a3和RB a4,即RBG3所包括的全部RB是RBG4所包括的RB的一部分,也可以看作是RBG4包括RBG3。另外,RBG6所包括的RB是RB a5、RB a6和RB a7,RBG7所包括的RB是RB a5、RB a6、RB a7和RB a8,即RBG6所包括的全部RB是RBG7所包括的RB的一部分,也可以看作是RBG7包括RBG6。其中,a1,a2,a3,a4,a5,a6,a7,a8为整数。
在该示例中,第二类BWP的第一类BWP1、第一类BWP2和第一类BWP3中存在重叠资源,所重叠的资源为RB a1、RB a2和RB a3、RB a5、RB a6、和RB a7。
可选的,如果第二类BWP中的N个第一类BWP的多个第一类BWP之间存在上述的资源重叠的情况,则网络设备通过上述资源指示信息指示RBG时,对于重叠资源,可以仅编号一次,或者,也可以按照重叠资源对应的RBG编号多次。
一种可选的方式中,如果对于重叠资源仅编号一次,则一个上述的RBG索引唯一地对应一个RBG。
图27为重叠资源编号一次的示例图,如图27所示,一个第二类BWP中包括第一类BWP1和第一类BWP2,第一类BWP1中的第三个RBG和第一类BWP2中的第一个RBG完全重叠,则按照为重叠资源编号一次的方法,重叠的RGB被编号为RBG3这个RBG索引。在此基础上,当资源指示信息指示该RBG索引时,该RBG索引唯一地对应RB a1、RB a2和RB a3所组成的RBG。其中,a1,a2,a3为整数。
另一种可选的方式中,如果重叠的资源被编号多次,则多个上述的RBG索引对应一个RBG。
参照上述图24、图25以及图26,该三幅图中所示的重叠资源按照所在的RBG被编号多次,例如,图24中的RBG3和RBG4对应同一个RBG,但是在第一类BWP1中该重叠资源被编号为RBG3,在第一类BWP2中该重叠资源被编号为RBG4。
可选的,在该方式中,即当多个RBG索引对应一个RBG时,该一个RBG为N个第一类BWP的多个第一类BWP中的重叠资源。例如,图24中的RBG3和RBG4对应的RBG即为第一类BWP1和第一类BWP2之间的重叠资源。
可选的,重叠资源可以是指重叠的RBG,也可以是指重叠的RB。
可选的,当多个RBG索引对应一个RBG时,该一个RBG为N个第一类BWP的多个第一类BWP中的重叠资源,可以是指当多个RBG索引对应一个RBG时,该一个RBG中的资源可以包括N个第一类BWP的多个第一类BWP中的重叠资源。
如下设计资源指示信息的方法可以是作为独立的实施例,也可以与本申请中的其他实施例相结合,具体的,本申请对此不做限定。
在具体实施过程中,当使用资源指示信息指示为在第二类BWP中为终端设备分配的资源时,资源指示信息中可以包括N个信息域,该N个信息域分别对应于第二类BWP中的N个第一类BWP。该N个信息域分别用于确定在N个第一类BWP中为终端设备分配 的资源。
一种可选的方式(资源指示方式A)中,上述N个信息域可以携带在指示消息的一个资源指示域中,该指示消息可以包括于高层信令或DCI消息中。示例性的,上述N个信息域可以携带在一个DCI的一个比特域中,则相应的,该N个信息域可以是该一个比特域中的N段比特。其中,该N段比特中的每段比特中包括至少一个比特位。
另一种可选的方式(资源指示方式B)中,上述N个信息域可以携带在指示消息的多个资源指示域中。示例性的,上述N个信息域可以携带在一个DCI中的多个比特域中,则每个信息域分别对应DCI中的一个比特域。
可选的,在进行资源分配时,网络设备生成资源指示信息并将资源指示信息发送给终端设备,该资源指示信息中包括上述N个信息域,终端设备根据该资源指示信息中的N个信息域确定分配给终端设备的频域资源,并在所分配的频域资源上进行信号传输。
可选的,当网络设备发送资源指示信息时,其中所携带的信息域需要满足特定的要求。一个示例中,资源指示信息的比特数需要等于协议预配置的或者预定义的比特数。另一个示例中,在动态切换第二类BWP的场景下,进行动态切换第二类BWP之后的资源指示信息中的比特数需要等于动态切换第二类BWP之前的资源指示信息中的比特数。再一个示例中,在激活第二类BWP的场景下,在激活第二类BWP之后的资源指示信息中的比特数需要等于激活第二类BWP之前的资源指示信息中的比特数。对信息域中的比特数进行限制可以降低终端设备的控制信息的盲检复杂度。其中,切换前的第二类BWP可以称为源第二类BWP,切换至或切换后的第二类BWP可以称为目标第二类BWP。
在上述的情况下,资源指示信息的比特数可能与需要的比特数不同。其中,该需要的比特数是指用于指示在第二类的BWP中的N个第一类BWP中为终端设备分配的资源时,所需要的比特数。
因此,在上述的情况下,网络设备和终端设备均需要进行相应的处理,以使得资源指示信息可以满足特定的要求,并使得终端设备可以正确地确定出分配给终端设备的频域资源。
本申请以下实施例分别说明终端设备以及网络设备侧的处理过程。
可选地,本申请实施例中所述的需要的比特数,可以资源指示信息需要的比特数,也可以是资源指示信息中的N个信息域中的信息域需要的比特数。资源指示信息需要的比特数还可以称为第二类BWP需要的比特数。对于资源指示信息中的N个信息域中的一个信息域,该信息域需要的比特数还可以称为该信息域对应的第一类BWP需要的比特数。此时,可选地,N个信息域中的各信息域需要的比特数的总数可以理解为包括该N个信息域的资源指示信息需要的比特数。
当需要的比特数表示第二类BWP需要的比特数时,如果该第二类BWP中包括的N个第一类BWP中存在重叠资源,则可以根据重叠资源编号一次或多次来确定需要的比特数。示例性的,如果重叠资源编号一次,则在需要的比特数中该重叠资源对应的比特数为1,如果重叠资源编号多次,则在需要比特数中该重叠资源对应的比特数为2。编号一次的情况下可以降低指示该第二类BWP需要的比特数。
可选的,第二类BWP需要的比特数可以是根据该第二类BWP包括的RB个数或RBG个数确定的。比如资源指示方法是RBG为单位,用比特位图指示RBG时,一个比特对应 一个RBG,因此需要的比特数为RBG个数。具体的,比如第二类BWP包括的RBG编号为RBG 0~RBG n-1,则需要的比特数可以是n。第二类BWP需要的比特数也可以称为一个第二类BWP包括的N个第一类BWP需要的比特数。
可选的,一个信息域对应的一个第一类BWP需要的比特数可以是根据该信息域对应的一个第一类BWP中包括的RB个数或RBG个数确定的。比如资源指示方法是RBG为单位,用比特位图指示RBG时,一个比特对应一个RBG,因此需要的比特数为RBG个数,具体的,比如一个第一类BWP中的RBG编号为RBG 0~RBG m-1,则需要的比特数可以是m。一个信息域对应的一个第一类BWP也可以简称为一个信息域需要的比特数,或简称为一个第一类BWP需要的比特数。
可选的,本申请中规定的比特数可以是对比特数进行限制时需要的比特数。
可选的,本申请中资源指示信息的规定的比特数为上述满足特定需求的资源指示信息的比特数。
可选的,当资源指示信息的规定的比特数为M时,当资源指示信息包括N个信息域时,每个信息域的规定的比特数可以是等分的,也可以是根据每个信息域需要的比特数确定的。
比如当每个信息域的规定的比特数等分时,即一个信息域中的规定的比特数为M/N,或者M/N的向上取整或向下取整。
比如当每个信息域的规定的比特数根据每个信息域需要的比特数确定时,具体可以按照如下方式确定。
第一种可能的方式,一个信息域的规定的比特数可以根据该信息域对应的一个第一类BWP需要的比特数与该一个第一类BWP所在的第二类BWP需要的比特数的比例确定该信息域规定的比特数。
比如如果一个信息域对应的一个第一类BWP需要的比特数为r1,该一个第一类BWP所在的第二类BWP需要的比特数为T,即一个信息域需要的比特数与该信息域对应的一个第一类BWP所在的第二类BWP需要的比特数的比例为r1/T。因为资源指示信息用于指示第二类BWP中分配给终端设备的资源,一个信息域用于指示该信息域对应的第一类BWP中分配给终端设备的资源。则按照需要的比特数的比例折算,即该一个信息域规定的比特数为资源指示信息规定的比特数乘以r1/T。或者可以是乘以r1/T之后向上取整或向下取整。
例如,一个信息域对应的一个第一类BWP需要的比特数为5比特,该第一类BWP所在的第二类BWP需要的比特数为20比特,即该一个信息域对应的一个第一类BWP需要的比特为第二类BWP需要的比特的1/4。如果资源指示信息规定的比特数为20比特,则该信息域规定的比特数为资源指示信息规定的比特数乘以1/4,即该信息域规定的比特数为20*1/4=5比特。
第二种可能的方式,一个信息域的规定的比特数可以根据该信息域对应的一个第一类BWP需要的比特数与另一信息域对应的一个第一类BWP需要的比特数的比例确定该信息域规定的比特数。如下以两个信息域为例,其他信息域的情况与之类似,不再赘述。
又例如,如果一个信息域对应的一个第一类BWP需要的比特数为r1,另一信息域对应的一个第一类BWP需要的比特数为r2,即一个信息域对应的一个第一类BWP需要的 比特数与另一个信息域对应的一个第一类BWP需要的比特数的比例为r1/r2。则该一个信息域规定的比特数为资源指示信息规定的比特数乘以r1/(r1+r2)。或者可以是乘以r1/(r1+r2)之后向上取整或向下取整。则该另一个信息域规定的比特数为资源指示信息规定的比特数乘以r2/(r1+r2)。或者可以是乘以r2/(r1+r2)之后向上取整或向下取整。
又例如,一个信息域对应的一个第一类BWP需要的比特数为5比特,另一个信息域对应的一个第一类BWP需要的比特数为10比特。如果资源指示信息规定的比特数为18比特,则该一个信息域规定的比特数为资源指示信息规定的比特数乘以5/(5+10)=1/3,即该一个信息域规定的比特数为18*1/3=6比特。则该另一个信息域规定的比特数为资源指示信息规定的比特数乘以10/(5+10)=2/3,即该一个信息域规定的比特数为18*2/3=12比特。
根据比例确定规定的比特数可以考虑N个第一类BWP中每个第一类BWP的带宽大小的不同的情况,避免各个第一类BWP中实际有效的比特数不均衡,避免出现资源分配不灵活的问题。
如下实施例中,针对资源指示信息中的多个信息域都可以根据需求进行去掉比特的处理,可以保证每个信息域中有效比特的均衡,避免出现资源分配受限的情况。
如下实施例中,针对资源指示信息中的多个信息域都可以根据需求进行补零的处理,便于先验信息的获取,提高解码性能。
网络设备会将满足规定的比特数的资源指示信息或资源指示信息包括的N个信息域发送给终端设备,因此会导致资源指示信息的比特数和需要的比特数不同的情况。
以下首先说明终端设备侧的处理过程。终端设备接收网络设备发送的资源指示信息。
一种可能的场景中,资源指示信息的比特数比需要的比特数多。
一种可选的方式中,如果资源指示信息的比特数比需要的比特数多L比特,则对于上述N个信息域中的一个信息域,该一个信息域中的X1比特用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,X1等于该一个信息域的比特数减去Y1,其中,Y1是L等分N得到的值,或者,Y1是根据L以及该一个信息域的比特数与上述资源指示信息的比特数的比例确定的。
具体的,如果资源指示信息的比特数比需要的比特数多L比特,则针对资源指示信息中的一个信息域,终端设备可以将该信息域对应的比特中去掉多余的Y1比特,从而得到剩余的X1个比特,该X1个比特即是用于指示对应的一个第一类BWP的比特。
在上述可选方式中,终端设备在确定上述Y1比特时,可以根据多余的L比特以及N个信息域确定。比如,将L在N个信息域中进行等分,得到每个信息域需要减去的比特数。或者,也可以按照上述一个信息域的比特数与资源指示信息的比特数的比例确定。
可选的,减去的比特可以是指信息域最高位的比特,也可以是指信息域最低位的比特,或者是其他位置的比特。具体的,本申请对此不做限定。
可选的,减去的比特的位置可以是协议预定义的,也可以是网络设备通过信令告知终端设备的,具体的,本申请对此不做限定。
以下为将L在N个信息域中进行等分以去掉多余比特的示例。即Y1是L等分N得到的值。下面仅以两个信息域为例,其他多个信息域的方案与之类似,在此,不再赘述。
假设资源指示信息的比特数为M,需要的比特数为T,其中,第二类BWP的第一个 第一类BWP使用了P1个比特,第二个第一类BWP使用了P2个比特,P1+P2=M。则可以等分该(M-T)=L个比特。
可选的,如果资源指示信息包括N个信息域,则一个信息域可以去掉(L/N)个比特,或者也可以是(L/N)的向上取整个比特,或(L/N)的向下取整个比特。
在该方式中,如果资源指示信息的比特数比需要的比特数多L比特,则对于上述N个信息域中的一个信息域,即该一个信息域中的X1比特用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,X1等于该一个信息域的比特数减去Y1。其中Y1可以是(L/N)个比特,或者也可以是(L/N)的向上取整个比特,或(L/N)的向下取整个比特。
例如,假设M-T=L=4,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,则每个信息域可以去掉4/2=2个比特,即可以去掉P1的最高位的2个比特,再去掉P2的最高位的2个比特。
即,当资源指示信息的比特数比需要的比特数多4比特时,则对于资源指示信息的第一个信息域,即第一个信息域中的P1-2个比特用于指示在第一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,P1-2等于第一个信息域的比特数P1减去Y1。其中,Y1可以是4/2=2。对于资源指示信息的第二个信息域,即第二个信息域中的P2-2个比特用于指示在第二个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,P2-2等于第二个信息域的比特数P2减去Y1。其中,Y1可以是4/2=2。
以下为按照上述一个信息域的比特数与资源指示信息的比特数的比例确定Y1的示例。即Y1是根据L以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的。下面仅以两个信息域为例,其他多个信息域的方案与之类似,在此,不再赘述。
假设资源指示信息的比特数为M,需要的比特数为T,其中,第二类BWP的第一个第一类BWP使用了P1个比特,第二个第一类BWP使用了P2个比特,P1+P2=M。
则,第一个信息域的比特数与资源指示信息的比特数的比例为P1/M,第二个信息域的比特数与指示信息的比特数的比例为P2/M。
假设P1/M=m1,P2/M=m2,其中,m1+m2=1。
可选的,如果资源指示信息包括2个信息域,则第一个信息域可以去掉L*m1个比特,第二个信息域可以去掉L*m2个比特。或者,也可以是L*m1的向上取整或向下取整,也可以是L*m2的向上取整或向下取整。
在该方式中,如果资源指示信息的比特数比需要的比特数多L比特,则对于上述N个信息域中的一个信息域,即该一个信息域中的X1比特用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,X1等于该一个信息域的比特数减去Y1。其中Y1可以是如下取值:L*m1,L*m2,L*m1的向上取整或向下取整,L*m2的向上取整或向下取整。
例如,假设M-T=L=6,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,P1/M=2/3,P2/M=1/3,则第一个信息域可以去掉6*2/3=4个比特,第二个信息域可以去掉6*1/3=2个比特,即可以去掉P1的最高位的4个比特,再去掉P2的最高位的2个比特。
即,当资源指示信息的比特数比需要的比特数多6比特时,则对于资源指示信息的第 一个信息域,即第一个信息域中的P1-4个比特用于指示在第一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,P1-4等于第一个信息域的比特数P1减去Y1。其中,Y1可以是6*2/3=4。对于资源指示信息的第二个信息域,即第二个信息域中的P2-2个比特用于指示在第二个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,P2-2等于第二个信息域的比特数P2减去Y1。其中,Y1可以是6*1/3=2。
可选的,下面是按照资源指示信息的多个信息域的比特数之间的比例确定Y1的示例。即Y1是根据L以及一个信息域的比特数与另一个信息域的比特数的比例确定的。下面仅以两个信息域为例,其他多个信息域的方案与之类似,在此,不再赘述。
假设[P1/P2]=f1或[P2/P1]=f2,其中,[]可以是指向上取整,或向下取整,则可以按照比例划分该(M-T)个比特。其中,f1,f2为正整数。
可选的,如果资源指示信息包括2个信息域,则第一个信息域可以去掉L*f1/(f1+1)个比特,第二个信息域可以去掉L*1/(f1+1)个比特。或者,也可以是L*f1/(f1+1)的向上取整或向下取整,也可以是L*1/(f1+1)的向上取整或向下取整。
可选的,如果资源指示信息包括2个信息域,第一个信息域可以去掉L*1/(f2+1)个比特,第二个信息域可以去掉L*f2/(f2+1)个比特。或者,也可以是L*1/(f2+1)的向上取整或向下取整,也可以是L*f2/(f2+1)的向上取整或向下取整。
在该方式中,如果资源指示信息的比特数比需要的比特数多L比特,则对于上述N个信息域中的一个信息域,即该一个信息域中的X1比特用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,X1等于该一个信息域的比特数减去Y1。其中Y1可以是如下取值:L*f1/(f1+1),L*1/(f1+1),L*f1/(f1+1)的向上取整或向下取整,L*1/(f1+1)的向上取整或向下取整,L*f1/(f1+1),L*1/(f1+1),L*f1/(f1+1)的向上取整或向下取整,L*1/(f1+1)的向上取整或向下取整,L*1/(f2+1),L*f2/(f2+1),L*1/(f2+1)的向上取整或向下取整,L*f2/(f2+1)的向上取整或向下取整。
例如,假设M-T=6,[P1/P2]=2,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,则第一个信息域可以去掉6*2/(2+1)=4个比特,第二个信息域可以去掉6*1/(2+1)=2个比特,即可以去掉P1的最高位的4个比特,再去掉P2的最高为的2个比特。
即,当资源指示信息的比特数比需要的比特数多6比特时,则对于资源指示信息的第一个信息域,即第一个信息域中的P1-4个比特用于指示在第一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,P1-4等于第一个信息域的比特数P1减去Y1。其中,Y1可以是6*2/(2+1)=4。对于资源指示信息的第二个信息域,即第二个信息域中的P2-2个比特用于指示在第二个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,P2-2等于第二个信息域的比特数P2减去Y1。其中,Y1可以是6*1/(2+1)=2。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数多L比特,则该资源指示信息中X比特用于指示在该第二类BWP中为终端设备分配的资源,其中,X等于该资源指示信息的比特数减去L。
具体的,如果资源指示信息的比特数比需要的比特数多L比特,则终端设备可以从资源指示信息所携带的比特中去掉该多余的L比特,从而得到剩余的X个比特,该X个比特即是用于指示该第二类BWP的比特。
可选的,减去的比特L可以是指资源指示信息最高位的L比特,也可以是指资源指示信息最低位的L比特,或者是其他位置的比特。具体的,本申请对此不做限定。
可选的,减去的L比特的位置可以是协议预定义的,也可以是网络设备通过信令告知终端设备的,具体的,本申请对此不做限定。
示例性的,假设需要的比特数为10,资源指示信息的比特数为12,即资源指示信息的比特数比需要的比特数多2个比特,则终端设备可以去掉资源指示信息中的2个最高比特位,剩余的10个比特即是用于指示该第二类BWP的比特。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数多L比特,则终端设备可以使用资源指示信息中的一个信息域中的与需要的比特数相同的最低位的比特,该需要的比特数即用于指示该信息域对应的一个第一类BWP需要的比特。终端设备可以根据该一个信息域中的与需要的比特数相同的最低位的比特确定在该第一类BWP上分配给该终端设备的资源。
具体的,如果资源指示信息的比特数比需要的比特数多L比特,则终端设备可以使用资源指示信息中的一个信息域中的X1个最低位的比特,该X1个比特即用于指示对应的一个第一类BWP需要的比特。终端设备可以根据该最低位的X1个比特即可确定在该第一类BWP上分配给该终端设备的资源。
示例性的,用于指示一个第一类BWP需要的比特数为10,资源指示信息中该第一类BWP对应的一个信息域的比特数比该需要的比特数多2,则终端设备使用资源指示信息中的该一个信息域的最低位的10个比特,根据该10个比特确定在该第一类BWP上分配给该终端设备的资源。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数多L比特,则终端设备可以使用资源指示信息中与需要的比特数相同的最低位的比特,该资源指示信息中的与需要的比特数相同的最低位的比特即用于指示该第二类BWP需要的比特。终端设备可以根据该资源指示信息中与需要的比特数相同的最低位的比特确定在该第二类BWP上分配给该终端设备的资源。
具体的,如果资源指示信息的比特数比需要的比特数多L比特,则终端设备可以使用在资源指示信息所携带的比特中与需要的比特数相同的最低位的比特。
比如,资源指示信息的比特数为M,需要的比特数为T,M-T=L,则终端设备可以根据最低位的T个比特确定分配给该终端设备的资源。
另一种可能的场景中,资源指示信息的比特数比需要的比特数少。
一种可选的方式中,如果资源指示信息的比特数比需要的比特数少S比特,则对于上述N个信息域中的一个信息域,该一个信息域中的比特补零Y2比特后的比特位用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,Y2是S等分N得到的值,或者,Y2是根据S以及上述一个信息域的比特数与上述资源指示信息的比特数的比例确定的。
具体的,如果资源指示信息的比特数比需要的比特数少S比特,则针对资源指示信息中的一个信息域,终端设备可以在该信息域对应的比特的基础上增加Y2比特,增加Y2比特后所得到的比特即是用于指示在该信息域对应的一个第一类BWP上为终端设备分配的资源的比特。
在上述可选方式中,终端设备在确定上述的Y2比特时,可以根据上述S比特以及N个信息域确定。比如,将S在N个信息域中进行等分,得到每个信息域需要补零的比特数。或者,也可以按照上述一个信息域的比特数与资源指示信息的比特数的比例确定。
可选的,在一个信息域进行补零时,可以在该信息域的最高位上补零,也可以在该信息域的最低位上补零。或者也可以是在其他位置补零。具体的,本申请对此不做限定。
可选的,在资源指示信息的信息域中进行补零时,可以在该的信息域的最高位上补零,也可以在该的信息域的最低位上补零。或者也可以是在其他位置补零。具体的,本申请对此不做限定。
可选的,补零的位置可以是协议预定义的,也可以是网络设备通过信令告知终端设备的,具体的,本申请对此不做限定。
以下为将S在N个信息域中进行等分进行补零的示例。即Y2是S等分N得到的值。下面仅以两个信息域为例,其他多个信息域的方案与之类似,在此,不再赘述。
假设资源指示信息的比特数为M,需要的比特数为T,其中,第二类BWP的第一个第一类BWP使用了P1个比特,第二个第一类BWP使用了P2个比特,P1+P2=M。则可以等分该(T-M)=S个比特。
可选的,如果资源指示信息包括N个信息域,则一个信息域可以补零(S/N)个比特,或者也可以是(S/N)的向上取整个比特,或(S/N)的向下取整个比特。
在该方式中,如果资源指示信息的比特数比需要的比特数少S比特,则对于上述N个信息域中的一个信息域,该一个信息域中的比特补零Y2比特后的比特位用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,Y2可以是(S/N)个比特,或者也可以是(S/N)的向上取整个比特,或(S/N)的向下取整个比特。
例如,假设T-M=4,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,则每个信息域可以补零2个比特,即可以在P1的最高位填充2个比特,所填充的2个比特的值为0,再在P2的最高位填充2个比特,所填充的2个比特的值为0。
即,当资源指示信息的比特数比需要的比特数少4比特时,则对于资源指示信息的第一个信息域,即第一个信息域中的比特补零2个比特后的比特位用于指示在第一个信息域对应的一个第一类BWP中为终端设备分配的资源。对于资源指示信息的第二个信息域,即第二个信息域中比特补零2个比特后的比特位用于指示在第二个信息域对应的一个第一类BWP中为终端设备分配的资源。
以下为按照上述一个信息域的比特数与资源指示信息的比特数的比例确定补零的Y2个比特的示例。
假设资源指示信息的比特数为M,需要的比特数为T,其中,第二类BWP的第一个第一类BWP使用了P1个比特,第二个第一类BWP使用了P2个比特,P1+P2=M。
则,第一个信息域的比特数与资源指示信息的比特数的比例为P1/M,第二个信息域的比特数与指示信息的比特数的比例为P2/M。
假设P1/M=m1,P2/M=m2,其中,m1+m2=1。
可选的,如果资源指示信息包括2个信息域,则第一个信息域可以补零L*m1个比特,第二个信息域可以补零L*m2个比特。或者,也可以是L*m1的向上取整或向下取整,也 可以是L*m2的向上取整或向下取整。
在该方式中,如果资源指示信息的比特数比需要的比特数少S比特,则对于上述N个信息域中的一个信息域,即该一个信息域中的比特补零Y2比特后的比特位用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,Y2可以是如下取值:L*m1,L*m2,L*m1的向上取整或向下取整,L*m2的向上取整或向下取整。
例如,假设T-M=S=6,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,P1/M=2/3,P2/M=1/3,则第一个信息域可以补零6*2/3=4个比特,第二个信息域可以补零6*1/3=2个比特,即可以在P1的最高位上补零4个比特,再在P2的最高位上补零2个比特。
即,当资源指示信息的比特数比需要的比特数少6比特时,则对于资源指示信息的第一个信息域,即第一个信息域中的比特补零4个比特后的比特位用于指示在第一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中补零的比特数Y2可以是6*2/3=4。对于资源指示信息的第二个信息域,即第二个信息域中的比特补零2个比特后的比特位用于指示在第二个信息域对应的一个第一类BW中为终端设备分配的资源,其中,补零的比特数Y2可以是6*1/3=2。
可选的,下面是按照资源指示信息的多个信息域的比特数之间的比例确定Y2的示例。即Y2是根据S以及一个信息域的比特数与另一个信息域的比特数的比例确定的。下面仅以两个信息域为例,其他多个信息域的方案与之类似,在此,不再赘述。
假设[P1/P2]=f1或[P2/P1]=f2,其中,[]可以是指向上取整,或向下取整,则可以按照比例划分该(T-M)个比特。其中,f1,f2为正整数。
可选的,如果资源指示信息包括2个信息域,则第一个信息域可以补零L*f1/(f1+1)个比特,第二个信息域可以补零L*1/(f1+1)个比特。或者,也可以是L*f1/(f1+1)的向上取整或向下取整,也可以是L*1/(f1+1)的向上取整或向下取整。
可选的,如果资源指示信息包括2个信息域,第一个信息域可以补零L*1/(f2+1)个比特,第二个信息域可以补零L*f2/(f2+1)个比特。或者,也可以是L*1/(f2+1)的向上取整或向下取整,也可以是L*f2/(f2+1)的向上取整或向下取整。
在该方式中,如果资源指示信息的比特数比需要的比特数少S比特,则对于上述N个信息域中的一个信息域,即该一个信息域中的比特补零Y2个比特之后的比特位用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,Y2可以是如下取值:L*f1/(f1+1),L*1/(f1+1),L*f1/(f1+1)的向上取整或向下取整,L*1/(f1+1)的向上取整或向下取整,L*f1/(f1+1),L*1/(f1+1),L*f1/(f1+1)的向上取整或向下取整,L*1/(f1+1)的向上取整或向下取整,L*1/(f2+1),L*f2/(f2+1),L*1/(f2+1)的向上取整或向下取整,L*f2/(f2+1)的向上取整或向下取整。
例如,假设T-M=6,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,则第一个信息域可以补零6*2/(2+1)=4个比特,第二个信息域可以补零6*1/(2+1)=2个比特,即可以在P1的最高位填充4个比特,所填充的4个比特的值为0,再在P2的最高位填充2个比特,所填充的2个比特的值为0。
即,当资源指示信息的比特数比需要的比特数少6比特时,则对于资源指示信息的第一个信息域,即第一个信息域中的比特补零4个比特后的比特位用于指示在第一个信息域 对应的一个第一类BWP中为终端设备分配的资源,其中,补零的Y2可以是6*2/(2+1)=4。对于资源指示信息的第二个信息域,即第二个信息域中的比特补零2个比特后的比特位用于指示在第二个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,Y2可以是6*1/(2+1)=2。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数少S比特,则该资源指示信息的比特补零S比特后的比特位用于指示在该第二类BWP中为终端设备分配的资源。终端设备可以根据该补零后的比特确定在该第二类BWP上分配给该终端设备的资源。
具体的,如果资源指示信息的比特数比需要的比特数少S比特,则终端设备需要在资源指示信息所携带的比特的基础上增加S比特,增加S比特后所得到的比特即用于指示该第二类BWP的比特。终端设备根据该补零后的比特确定网络设备在第二类BWP上为终端设备分配的资源。
可选的,在资源指示信息中进行补零时,可以在该资源指示信息的最高位上补零,也可以在该资源指示信息的最低位上补零。或者也可以是在其他位置补零。具体的,本申请对此不做限定。
可选的,补零的位置可以是协议预定义的,也可以是网络设备通过信令告知终端设备的,具体的,本申请对此不做限定。
示例性的,假设需要的比特数为12,资源指示信息的比特数为10,即资源指示信息的比特数比需要的比特数少2个比特,则终端设备可以在资源指示信息的最高位上补2个比特,该2个比特的取值为0,所得到的12个比特即是用于指示该第二类BWP的比特。终端设备根据该补零后的比特确定网络设备在第二类BWP上为终端设备分配的资源。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数少S比特,则终端设备可以在该资源指示信息中的一个信息域中的比特中添加(或预设)比特0直到该信息域的比特数与指示该信息域对应的一个第一类BWP需要的比特数相同为止。终端设备可以根据添加比特0后的该信息域确定在该信息域对应的一个第一类BWP上分配给该终端设备的资源。
具体的,如果资源指示信息的比特数比需要的比特数少S比特,则终端设备可以在该资源指示信息中的一个信息域中的比特中添加(或预设)比特0直到该信息域的比特数与指示该信息域对应的一个第一类BWP需要的比特数相同为止。终端设备可以根据添加比特0后的该信息域确定在该信息域对应的一个第一类BWP上分配给该终端设备的资源。
示例性的,假设一个第一类BWP需要的比特数为12,资源指示信息中对应该第一类BWP的一个信息域的比特数为10,即资源指示信息中的一个信息域中的比特数比该一个信息域对应的一个第一类BWP需要的比特数少2个比特,则终端设备可以在资源指示信息的第一个信息域的最高位上补零比特直到该资源指示信息的一个信息域的比特数域指示该信息域对应的一个第一类BWP需要的比特数相同为止。终端设备根据该补零后的信息域确定在该信息域对应的一个第一类BWP上分配给该终端设备的资源。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数少S比特,则终端设备可以在该资源指示信息所携带的比特中添加(或预设)比特0直到资源指示信息的比特数与需要的比特数相同为止。该资源指示信息中的与需要的比特数相同的比特即用于指 示该第二类BWP需要的比特。终端设备可以根据添加比特0后的该资源指示信息确定在该第二类BWP上分配给该终端设备的资源。
具体的,如果资源指示信息的比特数比需要的比特数少S比特,则终端设备可以在该资源指示信息所携带的比特中添(或预设)比特0直到资源指示信息的比特数与需要的比特数相同为止。
示例性的,假设资源指示信息的比特数为10,需要的比特数为12,则终端设备可以在资源指示信息所携带的比特中添加比特0直到资源指示信息的比特数等于12为止。终端设备根据该补零后的资源指示信息确定在该第二类BWP上分配给终端设备的资源。
以下为网络设备侧的处理过程。网络设备向终端设备发送资源指示信息。
一种可能的场景中,资源指示信息的比特数比需要的比特数多。
一种可选的方式中,如果资源指示信息的比特数比需要的比特数多L比特,则对于上述N个信息域中的一个信息域,该一个信息域中的比特为在该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零Y1比特后的信息,其中,Y1是L等分N得到的值,或者Y1是根据L以及该一个信息域的比特数与上述资源指示信息的比特数的比例确定的。
具体的,在网络设备侧,网络设备需要发送资源指示信息,因此,如果资源指示信息的比特数比需要的比特数多L比特,则网络设备需要在需要的比特数的基础上增加L比特,使得网络设备发送的资源指示信息满足上述的场景的要求。该L个比特需要拆分到N个信息域中,拆分到一个信息域中的比特即为上述Y1。
针对资源指示信息中的多个信息域都可以根据需求进行补零的处理,便于先验信息的获取,提高解码性能。
在上述可选方式中,网络设备在确定上述的Y1比特时,可以根据上述L比特以及N个信息域确定。比如,将L在N个信息域中进行等分,得到每个信息域需要补零的比特数。或者,也可以按照上述一个信息域的比特数与资源指示信息的比特数的比例确定。
可选的,在一个信息域进行补零时,可以在该信息域的最高位上补零,也可以在该信息域的最低位上补零。或者也可以是在其他位置补零。具体的,本申请对此不做限定。
可选的,在资源指示信息中进行补零时,可以在该信息指示信息的最高位上补零,也可以在该资源指示信息的最低位上补零。或者也可以是在其他位置补零。具体的,本申请对此不做限定。
可选的,补零的位置可以是协议预定义的,也可以是网络设备通过信令告知终端设备的,具体的,本申请对此不做限定。
以下为将L在N个信息域中进行等分进行补零的示例。即Y1是L等分N得到的值。下面仅以两个信息域为例,其他多个信息域的方案与之类似,在此,不再赘述。
假设资源指示信息的比特数为M,需要的比特数为T,其中,第二类BWP的第一个第一类BWP使用了P1个比特,第二个第一类BWP使用了P2个比特,P1+P2=M。则可以等分该(M-T)=L个比特。
可选的,如果资源指示信息包括N个信息域,则一个信息域可以补零(L/N)个比特,或者也可以是(L/N)的向上取整个比特,或(L/N)的向下取整个比特。
在该方式中,如果资源指示信息的比特数比需要的比特数多L比特,则对于上述N个信息域中的一个信息域,该一个信息域中的比特为在该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零Y1比特后的信息,其中,Y1可以是(L/N)个比特,或者也可以是(L/N)的向上取整个比特,或(L/N)的向下取整个比特。
例如,假设M-T=4,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,则每个信息域可以补零2个比特,即则可以在P1的最高位填充2个比特,所填充的2个比特的值为0,再在P2的最高位填充2个比特,所填充的2个比特的值为0。
即,当资源指示信息的比特数比需要的比特数多4比特时,则对于资源指示信息的第一个信息域,即第一个信息域中的比特为在该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零2比特后的信息。对于资源指示信息的第二个信息域,即第二个信息域中比特为在该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零2比特后的信息。
以下为按照上述一个信息域的比特数与资源指示信息的比特数的比例确定补零的Y1个比特的示例。
假设资源指示信息的比特数为M,需要的比特数为T,其中,第二类BWP的第一个第一类BWP使用了P1个比特,第二个第一类BWP使用了P2个比特,P1+P2=M。
则,第一个信息域的比特数与资源指示信息的比特数的比例为P1/M,第二个信息域的比特数与指示信息的比特数的比例为P2/M。
假设P1/M=m1,P2/M=m2,其中,m1+m2=1。
可选的,如果资源指示信息包括2个信息域,则第一个信息域P1为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零L*m1个比特后的信息,第二个信息域P2为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零L*m2个比特后的信息。或者,也可以是L*m1的向上取整或向下取整,也可以是L*m2的向上取整或向下取整。
在该方式中,如果资源指示信息的比特数比需要的比特数多L比特,则对于上述N个信息域中的一个信息域,即该一个信息域中的比特为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零Y1比特后信息,其中,Y1可以是如下取值:L*m1,L*m2,L*m1的向上取整或向下取整,L*m2的向上取整或向下取整。
例如,假设M-T=L=6,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,P1/M=2/3,P2/M=1/3,则第一个信息域P1为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零6*2/3=4个比特后的信息,第二个信息域P2为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零6*1/3=2个比特后的信息,即可以在指示第一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特的最高位上补零4个比特,再在指示第二个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特的最高位上补零2个比特。
即,当资源指示信息的比特数比需要的比特数多6比特时,则对于资源指示信息的第一个信息域,即第一个信息域中的比特为指示该一个信息域对应的一个第一类BWP中为 终端设备分配资源时需要的比特补零4个比特后的信息,其中补零的比特数Y1可以是6*2/3=4。对于资源指示信息的第二个信息域,即第二个信息域中的比特为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零2个比特后的信息,其中,补零的比特数Y1可以是6*1/3=2。
可选的,下面是按照资源指示信息的多个信息域的比特数之间的比例确定Y1的示例。即Y1是根据L以及一个信息域的比特数与另一个信息域的比特数的比例确定的。下面仅以两个信息域为例,其他多个信息域的方案与之类似,在此,不再赘述。
假设[P1/P2]=f1或[P2/P1]=f2,其中,[]可以是指向上取整,或向下取整,则可以按照比例划分该(M-T)个比特。其中,f1,f2为正整数。
可选的,如果资源指示信息包括2个信息域,则第一个信息域的比特为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零L*f1/(f1+1)个比特后的信息,第二个信息域的比特为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零L*1/(f1+1)个比特后的信息。或者,也可以是L*f1/(f1+1)的向上取整或向下取整,也可以是L*1/(f1+1)的向上取整或向下取整。
可选的,如果资源指示信息包括2个信息域,第一个信息域的比特为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零L*1/(f2+1)个比特后的信息,第二个信息域的比特为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零L*f2/(f2+1)个比特后的信息。或者,也可以是L*1/(f2+1)的向上取整或向下取整,也可以是L*f2/(f2+1)的向上取整或向下取整。
在该方式中,如果资源指示信息的比特数比需要的比特数多L比特,则对于上述N个信息域中的一个信息域,即该一个信息域中的比特为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零Y1个比特之后的信息,其中,Y1可以是如下取值:L*f1/(f1+1),L*1/(f1+1),L*f1/(f1+1)的向上取整或向下取整,L*1/(f1+1)的向上取整或向下取整,L*f1/(f1+1),L*1/(f1+1),L*f1/(f1+1)的向上取整或向下取整,L*1/(f1+1)的向上取整或向下取整,L*1/(f2+1),L*f2/(f2+1),L*1/(f2+1)的向上取整或向下取整,L*f2/(f2+1)的向上取整或向下取整。
例如,假设M-T=6,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,则第一个信息域P1为指示第一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特的最高位填充4个比特后的信息,所填充的4个比特的值为0,再第二个信息域P2为指示第二个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特的最高位填充2个比特后的信息,所填充的2个比特的值为0。
即,当资源指示信息的比特数比需要的比特数多6比特时,则对于资源指示信息的第一个信息域,即第一个信息域中的比特为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零4个比特后的信息,其中,补零的Y1可以是6*2/(2+1)=4。对于资源指示信息的第二个信息域,即第二个信息域中的比特为指示该一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零2个比特后的信息,其中,补零的Y1可以是6*1/(2+1)=2。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数多L比特,则该资源指示信息的比特为在该第二类BWP中为终端设备分配资源时需要的比特补零L比特后 的信息。网络设备发送所述补零后的资源指示信息,所述资源指示信息用于指示在该第二类BWP上分配给该终端设备的资源。
具体的,如果资源指示信息的比特数比需要的比特数多L比特,则网络设备需要在指示该BWP中为终端设备分配资源时需要的比特的基础上增加L比特,增加L比特后所得到的资源指示信息,即为网络设备发送给终端设备的资源指示信息。
可选的,在资源指示信息中进行补零时,可以在该资源指示信息的最高位上补零,也可以在该资源指示信息的最低位上补零。或者也可以是在其他位置补零。具体的,本申请对此不做限定。
可选的,补零的位置可以是协议预定义的,也可以是网络设备通过信令告知终端设备的,具体的,本申请对此不做限定。
示例性的,假设需要的比特数为10,资源指示信息的比特数为12,即资源指示信息的比特数比需要的比特数多2个比特,则网络设备可以在指示第二类BWP中为终端设备分配资源时需要的比特的最高位上补2个比特,该2个比特的取值为0,所得到的12个比特即是发送给终端设备的资源指示信息。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数多L比特,则对于该资源指示信息中的一个信息域,网络设备可以在该信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特中补零直到该信息域的比特数与规定的该信息域的比特数相同为止。网络设备发送所述补零后的该信息域,所述信息域用于指示在该信息域对应的一个第一类BWP上分配给该终端设备的资源。其中,规定的该信息域的比特数为该信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特数补零Y1个比特后的比特数。
具体的,如果资源指示信息的比特数比需要的比特数多L比特,则对于该资源指示信息中的一个信息域,网络设备需要在指示该信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特的基础上补零直到该信息域的比特数域规定的该信息域的比特数相同为止。其中该信息域的比特数为指示该信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特补零Y1比特后的比特数。补零Y1比特后所得的的信息域,即为网络设备发送给终端设备的信息域。
示例性的,假设一个第一类BWP需要的比特数为10,资源指示信息中用于指示该第一类BWP的一个信息域的比特数为12,即资源指示信息中的一个信息域的比特数比该一个信息域对应的一个第一类BWP需要的比特数多2个比特,则网络设备可以在资源指示信息的该一个信息域的最高位上补零比特直到该资源指示信息的一个信息域的比特数域指示该信息域对应的一个第一类BWP需要的比特数相同为止。所网络设备将该补零后的信息域发送给终端设备,终端设备根据该信息域确定在该信息域对应的一个第一类BWP上分配给终端设备的资源。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数多L比特,则网络设备需要在指示该第二类BWP中为终端设备分配资源时需要的比特的基础上补零直到该资源指示信息的比特数与规定的比特数相同为止。其中,规定的的比特数为在该第二类BWP中为终端设备分配资源时需要的比特数补零Y个比特后的比特数。
具体的,如果资源指示信息的比特数比需要的比特数多L比特,则网络设备可以在指示该第二类BWP中为终端设备分配资源时需要的比特的基础上中添加(或预设)比特0直到资源指示信息的比特数与规定的比特数相同为止。
示例性的,假设资源指示信息的比特数为10,需要的比特数为12,则网络设备可以在指示该第二类BWP中为终端设备分配资源时需要的比特的基础上中添加比特0直到资源指示信息的比特数等于12为止。网络设备将该补零后的资源指示信息发送给终端设备,终端设备根据该资源指示信息确定在该第二类BWP上分配给终端设备的资源。
另一种可能的场景中,资源指示信息的比特数比需要的比特数少。
一种可选的方式中,如果资源指示信息的比特数比需要的比特数少S比特,则对于上述N个信息域中的一个信息域,该一个信息域用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,上述一个信息域是从在上述一个信息域对应的一个第一类BWP中为终端设备分配资源时需要的比特减去Y2比特后的信息,其中Y2是S等分N得到的值,或者Y2是根据S以及上述一个信息域的比特数与所述资源指示信息的比特数的比例确定的。
具体的,在网络设备侧,网络设备需要发送资源指示信息,因此,如果资源指示信息的比特数比需要的比特数少S比特,则网络设备需要从需要的比特数中去掉该多余的S比特,使得网络设备发送的资源指示信息满足上述的场景的要求。该S个比特需要拆分到N个信息域中,拆分到一个信息域中的比特即为上述Y2。
针对资源指示信息中的多个信息域都可以根据需求进行去掉比特的处理,可以保证每个信息域中有效比特的均衡,避免出现资源分配受限的情况。
在上述可选方式中,网络设备在确定上述Y2时,可以根据多余的S比特以及N个信息域确定。比如,将S在N个信息域中进行等分,得到每个信息域需要减去的比特数。或者,也可以按照上述一个信息域的比特数与资源指示信息的比特数的比例确定。
可选的,在一个信息域进行去掉比特的处理时,可以去掉该信息域的最高位比特,也可以去掉该信息域的最低位比特。或者也可以是在其他位置去掉比特。具体的,本申请对此不做限定。
可选的,在资源指示信息中进行去掉比特的处理时,可以去掉该资源指示信息的最高位比特,也可以去掉该资源指示信息的最低位比特。或者也可以是在其他位置去掉比特。具体的,本申请对此不做限定。
可选的,去掉比特的位置可以是协议预定义的,也可以是网络设备通过信令告知终端设备的,具体的,本申请对此不做限定。
以下为将S在N个信息域中进行等分以去掉多余比特的示例。即Y2是S等分N得到的值。下面仅以两个信息域为例,其他多个信息域的方案与之类似,在此,不再赘述。
假设资源指示信息的比特数为M,需要的比特数为T,其中,第二类BWP的第一个第一类BWP使用了P1个比特,第二个第一类BWP使用了P2个比特,P1+P2=M。则可以等分该(T-M)=S个比特。
可选的,如果资源指示信息包括N个信息域,则一个信息域可以去掉(S/N)个比特, 或者也可以是(S/N)的向上取整个比特,或(S/N)的向下取整个比特。
在该方式中,如果资源指示信息的比特数比需要的比特数少S比特,则对于上述N个信息域中的一个信息域,在指示该一个信息域对应的一个第一类BWP中分配给终端设备的资源需要的比特中去掉Y2比特,网络设备发送所述去掉比特后的该信息域,该信息域用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,Y2可以是(S/N)个比特,或者也可以是(S/N)的向上取整个比特,或(S/N)的向下取整个比特。
例如,假设T-M=4,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,则可以在指示每个信息域对应的一个第一类BWP中分配给终端设备的资源需要的比特中可以去掉2个比特,即可以在指示第一个信息域对应的一个第一类BWP中分配给终端设备的资源需要的比特中去掉最高位的2个比特,再在第二个信息域对应的一个第一类BWP中分配给终端设备的资源需要的比特中去掉最高位的2个比特。即P1为在指示第一个信息域对应的一个第一类BWP中分配给终端设备的资源需要的比特中去掉2个比特后的信息,P2为在指示第二个信息域对应的一个第一类BWP中分配给终端设备的资源需要的比特中去掉2个比特后的信息。即,当资源指示信息的比特数比需要的比特数少4比特时,则对于资源指示信息的第一个信息域,即第一个信息域中的比特为指示该第一个信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特中去掉2个比特后的信息,该去掉2比特后的信息用于指示在第一个信息域对应的一个第一类BWP中为终端设备分配的资源。对于资源指示信息的第二个信息域,即第二个信息域中比特为指示该第二个信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特中去掉2个比特后的信息,该去掉2比特后的信息用于指示在第二个信息域对应的一个第一类BWP中为终端设备分配的资源。
以下为按照上述一个信息域的比特数与资源指示信息的比特数的比例确定Y2个的比特的示例。
假设资源指示信息的比特数为M,需要的比特数为T,其中,第二类BWP的第一个第一类BWP使用了P1个比特,第二个第一类BWP使用了P2个比特,P1+P2=M。
则,第一个信息域的比特数与资源指示信息的比特数的比例为P1/M,第二个信息域的比特数与指示信息的比特数的比例为P2/M。
假设P1/M=m1,P2/M=m2,其中,m1+m2=1。
可选的,如果资源指示信息包括2个信息域,则第一个信息域为在指示该信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特中去掉L*m1个比特后的信息,第二个信息域为在指示该信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特中去掉L*m2个比特后的信息。或者,也可以是L*m1的向上取整或向下取整,也可以是L*m2的向上取整或向下取整。
在该方式中,如果资源指示信息的比特数比需要的比特数少S比特,则对于上述N个信息域中的一个信息域,即该一个信息域中的比特为在指示该信息域对应的一个第一类BWP中给终端设备分配的资源时需要的比特去掉Y2比特后的信息,该信息域用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,Y2可以是如下取值:L*m1,L*m2,L*m1的向上取整或向下取整,L*m2的向上取整或向下取整。
例如,假设T-M=S=6,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,P1/M=2/3,P2/M=1/3,则第一个信息域的比特为在指示第一个信息域对应的一个第一类BWP中给终端设备分配的资源时需要的比特去掉6*2/3=4个比特后的信息,第二个信息域的比特为指示第二个信息域对应的一个第一类BWP中给终端设备分配的资源时需要的比特去掉6*1/3=2个比特后的信息,即P1是在指示第一个信息域对应的一个第一类BWP中给终端设备分配的资源时需要的比特去掉4个比特后的信息,P2是在指示第二个信息域对应的一个第一类BWP中给终端设备分配的资源时需要的比特去掉2个比特后的信息。
即,当资源指示信息的比特数比需要的比特数少6比特时,则对于资源指示信息的第一个信息域,即第一个信息域中的比特为在指示在第一个信息域对应的一个第一类BWP中为终端设备分配的资源需要的比特中去掉4个比特后的比特位,所述比特为用于指示在第一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中去掉的比特数Y2可以是6*2/3=4。对于资源指示信息的第二个信息域,即第二个信息域中的比特为在指示在第一个信息域对应的一个第一类BWP中为终端设备分配的资源需要的比特中去掉2个比特后的比特位,该比特位用于指示在第二个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,补零的比特数Y2可以是6*1/3=2。
可选的,下面是按照资源指示信息的多个信息域的比特数之间的比例确定Y2的示例。即Y2是根据S以及一个信息域的比特数与另一个信息域的比特数的比例确定的。下面仅以两个信息域为例,其他多个信息域的方案与之类似,在此,不再赘述。
假设[P1/P2]=f1或[P2/P1]=f2,其中,[]可以是指向上取整,或向下取整,则可以按照比例划分该(T-M)个比特。其中,f1,f2为正整数。
可选的,如果资源指示信息包括2个信息域,则第一个信息域的比特为指示该第一个信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特去掉L*f1/(f1+1)个比特后的信息,第二个信息域的比特为指示该第二个信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特去掉L*1/(f1+1)个比特后的信息。或者,也可以是L*f1/(f1+1)的向上取整或向下取整,也可以是L*1/(f1+1)的向上取整或向下取整。
可选的,如果资源指示信息包括2个信息域,第一个信息域的比特为指示该第一个信息域对应的一个第一类BWP分配给终端设备的资源时需要的比特L*1/(f2+1)个比特后的信息,第二个信息域为指示该第二个信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特去掉L*f2/(f2+1)个比特后的信息。或者,也可以是L*1/(f2+1)的向上取整或向下取整,也可以是L*f2/(f2+1)的向上取整或向下取整。
在该方式中,如果资源指示信息的比特数比需要的比特数少S比特,则对于上述N个信息域中的一个信息域,即该一个信息域中的比特为指示该信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特去掉Y2个比特之后的比特位,该比特位用于指示在该一个信息域对应的一个第一类BWP中为终端设备分配的资源,其中,Y2可以是如下取值:L*f1/(f1+1),L*1/(f1+1),L*f1/(f1+1)的向上取整或向下取整,L*1/(f1+1)的向上取整或向下取整,L*f1/(f1+1),L*1/(f1+1),L*f1/(f1+1)的向上取整或向下取整,L*1/(f1+1)的向上取整或向下取整,L*1/(f2+1),L*f2/(f2+1),L*1/(f2+1)的向上取整或向下取整,L*f2/(f2+1)的向上取整或向下取整。
例如,假设T-M=6,两个信息域的情况下,第一个信息域的比特数为P1,第二个信息域的比特数为P2,则第一个信息域的比特为指示该第一个信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特去掉6*2/(2+1)=4个比特后的信息,第二个信息域的比特为指示该第二个信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特去掉6*1/(2+1)=2个比特后的信息,即P1为指示该第一个信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特去掉最高位的4个比特后的信息,P2为指示该第二个信息域对应的一个第一类BWP中分配给终端设备的资源时需要的比特去掉最高位的2个比特后的信息。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数少S比特,则该资源指示信息中X比特用于指示在该第二类BWP中为终端设备分配的资源,其中,X等于指示该第二类BWP需要的比特数减去S。
具体的,如果资源指示信息的比特数比需要的比特数少S比特,则网络设备需要从指示该第二类BWP中为终端设备分配资源时需要的比特中去掉S比特,从而得到满足规定比特数的X个比特,该X个比特即网络设备发送给终端设备的资源指示信息中包括的比特数,该资源指示信息是用于指示在该第二类BWP中分配给终端设备的资源。
可选的,减去的S比特可以是指资源指示信息最高位的S比特,也可以是指资源指示信息最低位的S比特,或者是其他位置的比特。具体的,本申请对此不做限定。
可选的,减去的S比特的位置可以是协议预定义的,也可以是网络设备通过信令告知终端设备的,具体的,本申请对此不做限定。
示例性的,假设需要的比特数为12,资源指示信息的比特数为10,即资源指示信息的比特数比需要的比特数少2个比特,则网络设备可以去掉需要的比特中的2个最高比特位,剩余的10个比特即是发送给终端设备的资源指示信息。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数少S比特,则该资源指示信息中的一个信息域中的比特为网络设备在指示该信息域对应的一个第一类BWP需要的比特去掉高位比特直到该信息域的比特数与规定的比特数相同为止,其中,规定的比特数为该信息域对应的一个第一类BWP的规定的比特数。网络设备将等于规定的比特数的该信息域发送给终端设备,终端设备可以根据该一个信息域中的比特确定在该信息域对应的一个第一类BWP上分配给该终端设备的资源。
具体的,如果资源指示信息的比特数比需要的比特数少S比特,则对于该资源指示信息中的一个信息域,网络设备在指示该信息域对应的一个第一类BWP需要的比特中去掉高位比特直到该资源指示信息中的一个信息域中的比特数与规定的比特数相同为止,其中该规定的比特数为指示该一个信息域对应的一个第一类BWP中分配给终端设备的资源时规定的比特数。网络设备将去掉高位比特后的该信息域发送给终端设备,终端设备可以根据该信息域中的比特确定在该信息域对应的一个第一类BWP上分配给该终端设备的资源。
示例性的,假设一个第一类BWP需要的比特数为12,资源指示信息中该第一类BWP对应的一个信息域的比特数为10,即资源指示信息中的一个信息域的比特数比指示该信息域对应的一个第一类BWP需要的比特数少2个比特,则网络设备在指示该信息域对应的一个第一类BWP需要的比特中去掉高位比特直到该资源指示信息中的一个信息域中的比特数域规定的比特数相同为止,即去掉指示该第一类BWP需要的比特的最高的2位比特 直到该信息域的比特数等于10为止,则剩余的10个比特即是发送给终端设备的信息域。
另一种可选的方式中,如果资源指示信息的比特数比需要的比特数少S比特,则网络设备在指示该第二类BWP中分配给终端设备的资源时需要的比特中去掉高位比特直到该资源指示信息的比特数与规定的比特数相同为止。该规定的比特数为在指示该第二类BWP中为终端设备分配的资源时规定的比特数。网络设备发送去掉高位比特后的资源指示信息,终端设备可以根据该资源指示信息中的比特确定在该第二类BWP中分配给该终端设备的资源。
具体的,如果资源指示信息的比特数比需要的比特数少S比特,则网络设备可以在指示该第二类BWP中分配给终端设备的资源时需要的比特中去掉高位比特直到该资源指示信息的比特数域规定的比特数相同为止。
比如,资源指示信息的比特数为M,需要的比特数为T,M-T=L,则网络设备可以在指示该第二类BWP中分配给终端设备的资源时需要的比特中去掉高位比特直到该资源指示信息的比特数与规定的比特数相同为止,即满足资源指示信息的比特数为M。网络设备发送所述去掉高位比特后的资源指示信息,终端设备根据该资源指示信息确定在该第二类BWP中分配给该终端设备的资源。
上述本申请提供的实施例中,分别从终端设备、网络设备、以及终端设备和网络设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备和网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图28为本申请实施例提供的一种装置的模块结构图,该装置可以为终端设备,也可以为能够支持终端设备实现本申请实施例提供的方法中的终端设备的功能的装置,例如该装置可以是终端设备中的装置或芯片系统,如图28所示,该装置包括:接收模块2801和处理模块2802。在本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在一种可选的实施方式中,接收模块2801用于接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的。
处理模块2802用于在所述为终端设备分配的RBG上进行信号传输。
在另一种可选的实施方式中,接收模块2802用于接收网络设备发送的资源指示信息, 所述资源指示信息用于指示在带宽部分BWP中为终端设分配的RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数。
其中,对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的。
处理模块2802在所述为终端设备分配的RBG上进行信号传输。
在上述各可选的实施方式中,上述N段频域资源的带宽之和包括:
所述N段频域资源中包括的RB数量之和减去重叠的RB的数量,所述重叠的RB包括所述N段频域资源中第一段频域资源和第二段频域资源重叠的RB。其中,此处第一段和第二段的描述用于进行区分,无先后或大小顺序等,也无特指。
在另一种可选的实施方式中,接收模块2801用于接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数。
对于所述一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的。
处理模块2802用于在所述为终端设备分配的资源块组RBG上进行信号传输。
在另一种可选的实施方式中,接收模块2801用于接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数。
对于所述一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的。
处理模块2802用于在所述为终端设备分配的资源块组RBG上进行信号传输。
在上述各可选的实施方式中,当所述资源指示信息用于指示在BWP中为终端设备分配的RBG时,
所述资源指示信息中的一个信息位对应于一个RBG索引,当所述一个信息位的值为 t1时,为所述终端设备分配的RBG包括所述一个RBG索引对应的RBG,当所述一个信息位的值不为t1或者为t2时,为所述终端设备分配的RBG不包括所述一个RBG索引对应的RBG。其中,t1和t2为整数,例如t1为1。
其中,一个所述RBG索引唯一地对应一个RBG,或者多个所述RBG索引对应于一个RBG。
其中,当多个所述RBG索引对应于一个RBG时,所述一个RBG为所述N段频域资源的多段频域资源中的重叠资源。
在另一种可选的实施方式中,接收模块2801用于接收网络设备发送的资源指示信息,所述资源指示信息用于确定在带宽部分BWP中为终端设备分配的资源,所述BWP中包括N段频域资源,其中,N为大于等于2的整数。
所述资源指示信息中包括N个信息域,所述N个信息域分别对应于所述N段频域资源,所述N个信息域分别用于确定在所述N段频域资源中为所述终端设备分配的资源。
如果所述资源指示信息的比特数比需要的比特数多L比特,则对于所述N个信息域中的一个信息域,所述一个信息域中的X1比特用于指示在所述一个信息域对应的一段频域资源中为终端设备分配的资源,其中,X1等于所述一个信息域的比特数减去Y1,其中Y1是L等分N得到的值,或者Y1是根据L以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的;或者
如果所述资源指示信息的比特数比需要的比特数少S比特,则对于所述N个信息域中的一个信息域,所述一个信息域中的比特补零Y2比特后的比特位用于指示在所述一个信息域对应的一段频域资源中为终端设备分配的资源,其中,Y2是S等分N得到的值,或者Y2是根据S以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的。
处理模块2802用于在所述为终端设备分配的资源上进行信号传输。
图29为本申请实施例提供的另一种装置的模块结构图,该装置可以为网络设备,也可以为能够支持网络设备实现本申请实施例提供的方法中的网络设备的功能的装置,例如该装置可以是网络设备中的装置或芯片系统,如图29所示,该装置包括:发送模块2901和处理模块2902。
在一种可选的实施方式中,发送模块2901用于向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的。
处理模块2902用于在所述为终端设备分配的RBG上与所述终端设备进行信号传输。
在另一种可选的实施方式中,发送模块2901用于向终端设备发送资源指示信息,所述 资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的。
处理模块2902用于在所述为终端设备分配的RBG上与所述终端设备进行信号传输。
在上述各实施方式中,所述N段频域资源的带宽之和包括:
所述N段频域资源中包括的RB数量之和减去重叠的RB的数量,所述重叠的RB包括所述N段频域资源中第一段频域资源和第二段频域资源重叠的RB。其中,此处第一段和第二段的描述用于进行区分,无先后或大小顺序等,也无特指。
在另一种可选的实施方式中,发送模块2901用于向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数。
对于所述一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的。
处理模块2902用于在所述为终端设备分配的RBG上与所述终端设备进行信号传输。
在另一种可选的实施方式中,发送模块2901用于向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数。
对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数。
对于所述一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的。
处理模块2902用于在所述为终端设备分配的RBG上与所述终端设备进行信号传输。
在上述各可选的实施方式中,当所述资源指示信息用于指示在BWP中为终端设备分配的RBG时,所述资源指示信息中的一个信息位对应于一个RBG索引,当所述一个信息位的值为t1时,为所述终端设备分配的RBG包括所述一个RBG索引对应的RBG,当所 述一个信息位的值不为t1或者为t2时,为所述终端设备分配的RBG不包括所述一个RBG索引对应的RBG。
其中,一个所述RBG索引唯一地对应一个RBG,或者多个所述RBG索引对应于一个RBG。
其中,当多个所述RBG索引对应于一个RBG时,所述一个RBG为所述N段频域资源的多段频域资源中的重叠资源。
在另一种可选的实施方式中,发送模块2091用于向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源,所述BWP中包括N段频域资源,其中,N为大于等于2的整数。
其中,所述资源指示信息中包括N个信息域,所述N个信息域分别对应于所述N段频域资源,所述N个信息域分别用于指示在所述N段频域资源中为所述终端设备分配的资源。
如果所述资源指示信息的比特数比需要的比特数多L比特,则对于所述N个信息域中的一个信息域,所述一个信息域中的比特为在所述一个信息域对应的一段频域资源中为终端设备分配资源时需要的比特补零Y1比特后的信息,其中,Y1是L等分N得到的值,或者Y1是根据L以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的;或者,
如果所述资源指示信息的比特数比需要的比特数少S比特,则对于所述N个信息域中的一个信息域,所述一个信息域用于指示在所述一个信息域对应的一段频域资源中为终端设备分配的资源,其中,所述一个信息域是从在所述一个信息域对应的一段频域资源中为终端设备分配资源时需要的比特减去Y2比特后的信息,其中Y2是S等分N得到的值,或者Y2是根据S以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的。
处理模块2902用于在所述为终端设备分配的资源上与所述终端设备进行信号传输。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图30所示为本申请实施例提供的装置3000,用于实现上述方法中终端设备的功能。该装置可以是终端设备,也可以是能够支持终端设备实现本申请实施例提供的方法中的终端设备的功能的装置,例如该装置可以是终端设备中的装置。其中,该装置可以为芯片系统。装置3000包括至少一个处理器3020,用于实现本申请实施例提供的方法中终端设备的功能。示例性地,处理器3020可以接收资源指示信息并在资源指示所指示的资源上进行信号传输,具体参见方法示例中的详细描述,此处不做赘述。
装置3000还可以包括至少一个存储器3030,用于存储程序指令和/或数据。存储器3030和处理器3020耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器3020可能和存储器3030协同操作。处理器3020可能执行存储器3030中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置3000还可以包括通信接口3010,用于通过传输介质和其它设备进行通信,从而用于装置1500中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是能够进行通信的任意形式的接口,如模块、电路、总线或其组合等。可选的,该通信接口1510可以为收发器。示例性地,该其它设备可以是网络设备。处理器3020利用通信接口3010收发数据,并用于实现上述方法实施例中所述的终端设备所执行的方法。
本申请实施例中不限定上述通信接口3010、处理器3020以及存储器3030之间的具体连接介质。本申请实施例在图30中以存储器3030、处理器3020以及通信接口3010之间通过总线3040连接,总线在图30中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图30中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
如图31所示为本申请实施例提供的装置3100,用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是能够支持网络设备实现本申请实施例提供的方法中的网络设备的功能的装置,例如该装置可以是网络设备中的装置。其中,该装置可以为芯片系统。装置3100包括至少一个处理器3120,用于实现本申请实施例提供的方法中网络设备的功能。示例性地,处理器3120可以向终端设备发送资源指示信息并在资源指示所指示的资源上与所述终端设备进行信号传输,具体参见方法示例中的详细描述,此处不做赘述。
装置3100还可以包括至少一个存储器3130,用于存储程序指令和/或数据。存储器3130和处理器3120耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器3120可能和存储器3130协同操作。处理器3120可能执行存储器3130中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
装置3100还可以包括通信接口3110,用于通过传输介质和其它设备进行通信,从而用于装置3100中的装置可以和其它设备进行通信。可选的,该通信接口3110可以为收发器。示例性地,该其它设备可以是终端设备。处理器3120利用通信接口3110收发数据,并用于实现上述方法实施例中所述的网络设备所执行的方法。
本申请实施例中不限定上述通信接口3110、处理器3120以及存储器3130之间的具体连接介质。本申请实施例在图31中以存储器3130、处理器3120以及通信接口3110之间通过总线3140连接,总线在图31中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图31中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。 本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (22)

  1. 一种信号传输方法,其特征在于,包括:
    接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
    在所述为终端设备分配的资源块组RBG上进行信号传输。
  2. 一种信号传输方法,其特征在于,包括:
    接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
    在所述为终端设备分配的资源块组RBG上进行信号传输。
  3. 根据权利要求1或2所述的方法,其特征在于,所述N段频域资源的带宽之和包括:
    所述N段频域资源中包括的RB数量之和减去重叠的RB的数量,所述重叠的RB包括所述N段频域资源中第一段频域资源和第二段频域资源重叠的RB。
  4. 一种信号传输方法,其特征在于,包括:
    接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数;
    对于所述一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述 BWP的参考点确定的;
    在所述为终端设备分配的资源块组RBG上进行信号传输。
  5. 一种信号传输方法,其特征在于,包括:
    接收网络设备发送的资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数;
    对于所述一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
    在所述为终端设备分配的资源块组RBG上进行信号传输。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,当所述资源指示信息用于指示在BWP中为终端设备分配的RBG时,
    所述资源指示信息中的一个信息位对应于一个RBG索引,当所述一个信息位的值为t1时,为所述终端设备分配的RBG包括所述一个RBG索引对应的RBG,当所述一个信息位的值不为t1或者为t2时,为所述终端设备分配的RBG不包括所述一个RBG索引对应的RBG,其中t1和t2为整数;
    其中,一个所述RBG索引唯一地对应一个RBG,或者多个所述RBG索引对应于一个RBG;
    其中,当多个所述RBG索引对应于一个RBG时,所述一个RBG为所述N段频域资源的多段频域资源中的重叠资源。
  7. 一种信号传输方法,其特征在于,包括:
    接收网络设备发送的资源指示信息,所述资源指示信息用于确定在带宽部分BWP中为终端设备分配的资源,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
    所述资源指示信息中包括N个信息域,所述N个信息域分别对应于所述N段频域资源,所述N个信息域分别用于确定在所述N段频域资源中为所述终端设备分配的资源;
    如果所述资源指示信息的比特数比需要的比特数多L比特,则对于所述N个信息域中的一个信息域,所述一个信息域中的X1比特用于指示在所述一个信息域对应的一段频域资源中为终端设备分配的资源,其中,X1等于所述一个信息域的比特数减去Y1,其中Y1是L等分N得到的值,或者Y1是根据L以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的;或者
    如果所述资源指示信息的比特数比需要的比特数少S比特,则对于所述N个信息域中的一个信息域,所述一个信息域中的比特补零Y2比特后的比特位用于指示在所述一个信息域对应的一段频域资源中为终端设备分配的资源,其中,Y2是S等分N 得到的值,或者Y2是根据S以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的;
    在所述为终端设备分配的资源上进行信号传输。
  8. 一种信号传输方法,其特征在于,包括:
    向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
    在所述为终端设备分配的资源块组RBG上与所述终端设备进行信号传输。
  9. 一种信号传输方法,其特征在于,包括:
    向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述N段频域资源的带宽之和确定的,其中,P为大于或等于1的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
    在所述为终端设备分配的资源块组RBG上与所述终端设备进行信号传输。
  10. 根据权利要求8或9所述的方法,其特征在于,所述N段频域资源的带宽之和包括:
    所述N段频域资源中包括的RB数量之和减去重叠的RB的数量,所述重叠的RB包括所述N段频域资源中第一段频域资源和第二段频域资源重叠的RB。
  11. 一种信号传输方法,其特征在于,包括:
    向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数;
    对于所述一段频域资源,所述一段频域资源中第一个RBG的大小是根据所述一 段频域资源的起始位置和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
    在所述为终端设备分配的资源块组RBG上与所述终端设备进行信号传输。
  12. 一种信号传输方法,其特征在于,包括:
    向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源块组RBG,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
    对于所述N段频域资源中的一段频域资源,所述一段频域资源中除第一个RBG和最后一个RBG以外的RBG的大小P是根据所述一段频域资源的带宽确定的,其中,P为大于或等于1的整数;
    对于所述一段频域资源,所述一段频域资源中最后一个RBG的大小是根据所述一段频域资源的起始位置、所述一段频域资源的带宽和所述P确定的,其中,所述一段频域资源的起始位置是根据所述一段频域资源的参考点确定的,或者所述一段频域资源的起始位置是根据所述BWP的参考点确定的;
    在所述为终端设备分配的资源块组RBG上与所述终端设备进行信号传输。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,当所述资源指示信息用于指示在BWP中为终端设备分配的RBG时,
    所述资源指示信息中的一个信息位对应于一个RBG索引,当所述一个信息位的值为t1时,为所述终端设备分配的RBG包括所述一个RBG索引对应的RBG,当所述一个信息位的值不为t1或者为t2时,为所述终端设备分配的RBG不包括所述一个RBG索引对应的RBG,其中t1和t2为整数;
    其中,一个所述RBG索引唯一地对应一个RBG,或者多个所述RBG索引对应于一个RBG;
    其中,当多个所述RBG索引对应于一个RBG时,所述一个RBG为所述N段频域资源的多段频域资源中的重叠资源。
  14. 一种信号传输方法,其特征在于,包括:
    向终端设备发送资源指示信息,所述资源指示信息用于指示在带宽部分BWP中为终端设备分配的资源,所述BWP中包括N段频域资源,其中,N为大于等于2的整数;
    所述资源指示信息中包括N个信息域,所述N个信息域分别对应于所述N段频域资源,所述N个信息域分别用于指示在所述N段频域资源中为所述终端设备分配的资源;
    如果所述资源指示信息的比特数比需要的比特数多L比特,则对于所述N个信息域中的一个信息域,所述一个信息域中的比特为在所述一个信息域对应的一段频域资源中为终端设备分配资源时需要的比特补零Y1比特后的信息,其中,Y1是L等分N得到的值,或者Y1是根据L以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的;或者,
    如果所述资源指示信息的比特数比需要的比特数少S比特,则对于所述N个信 息域中的一个信息域,所述一个信息域用于指示在所述一个信息域对应的一段频域资源中为终端设备分配的资源,其中,所述一个信息域是从在所述一个信息域对应的一段频域资源中为终端设备分配资源时需要的比特减去Y2比特后的信息,其中Y2是S等分N得到的值,或者Y2是根据S以及所述一个信息域的比特数与所述资源指示信息的比特数的比例确定的;
    在所述为终端设备分配的资源上与所述终端设备进行信号传输。
  15. 一种通信装置,其特征在于,用于实现如权利要求1-7任一项所述的方法。
  16. 一种通信装置,其特征在于,用于实现如权利要求8-14任一项所述的方法。
  17. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述处理器用于与所述存储器耦合,读取并执行所述存储器中存储的指令,以实现权利要求1-7任一项所述的方法。
  18. 一种通信装置,其特征在于,包括:存储器和处理器;
    所述处理器用于与所述存储器耦合,读取并执行所述存储器中存储的指令,以实现权利要求8-14任一项所述的方法。
  19. 一种芯片系统,其特征在于,包括至少一个通信接口,至少一个处理器,至少一个存储器,用于实现权利要求1-7任一项所述的方法,或者用于实现权利要求8-14任一项所述的方法。
  20. 一种通信系统,其特征在于,包括权利要求15所述的通信装置和权利要求16所述的通信装置,或者包括权利要求17所述的通信装置和权利要求18所述的通信装置。
  21. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码被计算机执行时,使得所述计算机执行权利要求1-7任一项所述的方法,或者使得所述计算机执行权利要求8-14任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机存储介质存储有计算机指令,当所述计算机指令被计算机执行时,使得所述计算机执行权利要求1-7任一项所述的方法,或者使得所述计算机执行权利要求8-14任一项所述的方法的指令。
PCT/CN2019/097693 2018-07-27 2019-07-25 信号传输方法、装置、终端设备、网络设备及系统 WO2020020289A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19840688.6A EP3820218A4 (en) 2018-07-27 2019-07-25 SIGNAL TRANSMISSION METHOD, DEVICE, TERMINAL DEVICE, NETWORK DEVICE AND SYSTEM
US17/157,727 US11818695B2 (en) 2018-07-27 2021-01-25 Signal transmission method, apparatus, terminal device, network device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810845114.4 2018-07-27
CN201810845114.4A CN110769508B (zh) 2018-07-27 2018-07-27 信号传输方法、装置、终端设备、网络设备及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/157,727 Continuation US11818695B2 (en) 2018-07-27 2021-01-25 Signal transmission method, apparatus, terminal device, network device, and system

Publications (1)

Publication Number Publication Date
WO2020020289A1 true WO2020020289A1 (zh) 2020-01-30

Family

ID=69181339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097693 WO2020020289A1 (zh) 2018-07-27 2019-07-25 信号传输方法、装置、终端设备、网络设备及系统

Country Status (4)

Country Link
US (1) US11818695B2 (zh)
EP (1) EP3820218A4 (zh)
CN (1) CN110769508B (zh)
WO (1) WO2020020289A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113630873A (zh) * 2020-05-08 2021-11-09 维沃移动通信有限公司 频域资源分配方法及设备
WO2022027493A1 (zh) * 2020-08-06 2022-02-10 华为技术有限公司 资源分配方法、装置及系统
CN112702789B (zh) * 2020-12-03 2022-11-18 杭州红岭通信息科技有限公司 一种物理上行共享信道的资源分配方法
CN113329508B (zh) * 2021-06-08 2022-05-24 杭州红岭通信息科技有限公司 一种下行物理共享信道pdsch资源分配方法
CN115707124A (zh) * 2021-08-06 2023-02-17 华为技术有限公司 一种参考信号的传输方法及装置
US20230135841A1 (en) * 2021-11-04 2023-05-04 T-Mobile Innovations Llc System and method for spectrum management of overlapping bandwidth
CN117242867A (zh) * 2022-04-14 2023-12-15 北京小米移动软件有限公司 资源处理方法及装置、通信设备及存储介质

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106332286B (zh) 2015-06-30 2022-01-28 中兴通讯股份有限公司 频谱资源分配方法及装置
EP3934357B1 (en) * 2016-08-11 2024-05-15 Samsung Electronics Co., Ltd. Method and apparatus of data transmission in next generation cellular networks
US10492157B2 (en) * 2017-01-04 2019-11-26 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
CN107911203B (zh) * 2017-08-11 2023-11-14 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
CN109548149B (zh) * 2017-09-21 2020-11-10 电信科学技术研究院 一种rbg的划分方法和用户终端
US10448388B2 (en) * 2018-01-11 2019-10-15 Lg Electronics Inc. Method for receiving downlink signal in wireless communication system and terminal using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "0n PDSCH and PUSCH resource allocation", 3GPP TSG RAN WG1 MEETING AH 1801, RL-1800257, vol. 4, 13 January 2018 (2018-01-13), pages 1 - 6, XP051384735 *
HUAWEI: "Resource allocation and TBS", 3GPP TSG RAN WG1 MEETING #91, R1_1719381, 18 November 2017 (2017-11-18), XP051369290 *
HUAWEI: "Scheduling and resource allocation for bandwidth parts", 3GPP TSG RAN WG1 MEETING #90, RL-1712156, 20 August 2017 (2017-08-20), XP051314975 *
NOKIA: "On the remaining wider-band aspects of NR", 3GPP TSG-RAN WG1 MEETING #90, R1-1714094, 20 August 2017 (2017-08-20), XP051316884 *

Also Published As

Publication number Publication date
EP3820218A4 (en) 2021-12-22
CN110769508A (zh) 2020-02-07
US11818695B2 (en) 2023-11-14
CN110769508B (zh) 2023-01-13
US20210168801A1 (en) 2021-06-03
EP3820218A1 (en) 2021-05-12

Similar Documents

Publication Publication Date Title
WO2020020289A1 (zh) 信号传输方法、装置、终端设备、网络设备及系统
CN107210892B (zh) 无线电节点、无线设备及其中用于配置无线设备的方法
US20200280962A1 (en) Information Transmission Method and Apparatus
US11924141B2 (en) Communication method, network device, and terminal device
US11272547B2 (en) Communication method, network device, and user equipment
TWI744432B (zh) 傳輸數據的方法、網絡設備和終端設備
CN109392129B (zh) 一种资源分配的方法,终端以及网络设备
US11659534B2 (en) Resource configuration method, network device, and terminal
US20190268090A1 (en) Uplink data transmission method and device
US10911978B2 (en) Data transmission method, device, and communications system
US20190028164A1 (en) Method for antenna port indication and apparatus
WO2019214523A1 (zh) 一种通信方法及装置
WO2020237489A1 (zh) 一种通信方法、装置及计算机可读存储介质
TW201820813A (zh) 上行訊號的傳輸方法和裝置
WO2019223781A1 (zh) 通信方法和装置
WO2020020292A1 (zh) 通信方法和通信装置
WO2019047553A1 (zh) 一种时隙格式指示方法、设备及系统
WO2021226794A1 (zh) 数据传输方法及相关装置
JP2020504547A (ja) 通信装置の能力情報を送信する方法および装置
JP2023537068A (ja) アクセス情報指示方法、装置、及びシステム
CN116055018B (zh) 一种物理上行控制信道的发送方法、接收方法及通信装置
JP7484934B2 (ja) リソース確定方法、リソーススケジューリング方法及び装置
WO2022027524A1 (zh) 一种资源配置方法及装置
WO2019157670A1 (zh) 一种信息指示方法及相关设备
JP2022531212A (ja) リソース確定方法、リソーススケジューリング方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE