WO2020020251A1 - 一种电磁辐射控制方法及相关设备 - Google Patents

一种电磁辐射控制方法及相关设备 Download PDF

Info

Publication number
WO2020020251A1
WO2020020251A1 PCT/CN2019/097566 CN2019097566W WO2020020251A1 WO 2020020251 A1 WO2020020251 A1 WO 2020020251A1 CN 2019097566 W CN2019097566 W CN 2019097566W WO 2020020251 A1 WO2020020251 A1 WO 2020020251A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
user
millimeter wave
separation distance
distance
Prior art date
Application number
PCT/CN2019/097566
Other languages
English (en)
French (fr)
Inventor
侯猛
周海
于亚芳
王汉阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020020251A1 publication Critical patent/WO2020020251A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power

Definitions

  • the present application relates to the technical field of antennas, and in particular, to a method for controlling electromagnetic radiation and related equipment.
  • the fifth generation mobile communication specifications include millimeter waves.
  • the millimeter wave frequency bands specified by the 3rd Generation Partnership Project (3GPP) are 28 GHz and 38 GHz in the United States and 26 GHz in Europe.
  • 3GPP 3rd Generation Partnership Project
  • MPE maximum allowable amount of electromagnetic radiation.
  • MPE the electromagnetic radiation generated by the emitted millimeter wave is closely related to the equivalent direct radiation power of the millimeter wave.
  • the equivalent direct radiation power cannot be guaranteed, affecting Millimeter wave emission efficiency.
  • the embodiments of the present application provide an electromagnetic radiation control method and related equipment, which can improve the transmission power and efficiency of millimeter waves on the premise of ensuring user safety.
  • an embodiment of the present application provides a method for controlling electromagnetic radiation, including: first obtaining a separation distance between a user equipment and a user; and then adjusting an equivalent of a millimeter wave emitted by the user equipment according to the separation distance.
  • the radiation power is passed such that the emitted electromagnetic radiation generated by the millimeter wave satisfies the maximum allowable radiation amount.
  • a power value corresponding to the separation distance is looked up from a preset target calibration table, where the target calibration table includes a correspondence relationship between the separation distance and the power value;
  • the equivalent directional radiation power of the millimeter wave emitted by the user equipment is adjusted to the power value, thereby ensuring that the electromagnetic radiation generated by the user equipment does not affect the user at the separation distance.
  • the equivalent direct radiation of the millimeter wave emitted by the user equipment can be improved Power, thereby improving the transmission efficiency of millimeter waves.
  • the equivalent direct radiation power of the millimeter wave emitted by the user equipment can be reduced, and the user is protected from the influence of electromagnetic radiation.
  • an antenna used by the user equipment to transmit the millimeter wave may be determined first, and then selected from a plurality of preset calibration tables according to the antenna used by the user equipment to transmit the millimeter wave.
  • the target calibration table realizes the accuracy of adjusting the equivalent radiated power.
  • the antenna used for transmitting millimeter waves in 5G applications will be changed according to changes in the network environment, the electromagnetic radiation generated by different antennas is also different. Therefore, a calibration table corresponding to each antenna among all antennas of the user terminal can be configured in advance.
  • the received signal strength of each antenna of the multiple antennas of the user equipment may be obtained first; and the antenna used by the user equipment to transmit the millimeter wave is determined according to the received signal strength.
  • the separation distance between the user equipment and the user is measured by a ranging sensor.
  • the interval distance between the user equipment and the user is measured according to a preset period, and the interval distance measured each time is reported to a core processor of the user equipment for processing.
  • multiple measurement distances between the user equipment and the user obtained through multiple measurements may be obtained; and an average value of the multiple measurement distances is used as the separation distance.
  • an embodiment of the present application provides an electromagnetic radiation control device configured to implement the methods and functions performed by the user equipment in the first aspect, which are implemented by hardware / software, and hardware / software thereof. Includes units corresponding to the above functions.
  • an embodiment of the present application provides a user equipment, including a processor, a memory, and a communication bus, where the communication bus is used to implement connection and communication between the processor and the memory, and the processor executes a program stored in the memory to The steps in the electromagnetic radiation control method provided by the first aspect are implemented.
  • the user equipment provided in the embodiment of the present application may include a module corresponding to the behavior of the electromagnetic radiation control device in the method design.
  • Modules can be software and / or hardware.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions, and when the computer-readable storage medium runs on the computer, the computer executes the methods in the foregoing aspects.
  • an embodiment of the present application provides a computer program product including instructions, which when executed on a computer, causes the computer to execute the methods in the foregoing aspects.
  • FIG. 1 is a schematic structural diagram of an electromagnetic radiation control system according to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of an electromagnetic radiation control method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a calibration table provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electromagnetic radiation control device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a user equipment according to an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an electromagnetic radiation control system according to an embodiment of the present application.
  • the system in the embodiment of the present application includes a user equipment and a user.
  • the user equipment may be any kind of device having wireless transmitting and receiving functions, may refer to a device that provides a voice and / or data connection to the user, or may be connected to a computing device such as a laptop computer or a desktop computer, Or it can be a stand-alone device such as a personal digital assistant (PDA).
  • PDA personal digital assistant
  • the user equipment may also be referred to as a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, an access point, a remote terminal, an access terminal, a user terminal, a user agent, or a user device.
  • the user equipment may be a (5-generation, 5G) millimeter wave device that generates fifth-generation mobile communication technology, such as a notebook, a router, a watch, and so on.
  • the user equipment may include a ranging sensor, and the distance between the user and the user equipment is measured by the ranging sensor. Based on the above system, the embodiments of the present application provide the following solutions.
  • FIG. 2 is a schematic flowchart of an electromagnetic radiation control method according to an embodiment of the present application. The method includes, but is not limited to, the following steps:
  • the ranging sensor may include a laser ranging sensor, an infrared ranging sensor, an ultrasonic ranging sensor, a millimeter wave ranging sensor, and the like.
  • the laser ranging sensor, an infrared ranging sensor, an ultrasonic ranging sensor, or a millimeter may be used.
  • a wave ranging sensor measures the separation distance between the user equipment and the user.
  • the ranging sensor may be set inside the user equipment, or the ranging sensor may be placed on the user equipment and used.
  • a laser ranging sensor set inside the user equipment can be used to transmit a laser signal to the user and record the time point of transmitting the laser signal. After the laser signal is reflected by the human body, it returns to the laser ranging sensor.
  • the transmission time of the laser signal is determined according to the time point at which the laser signal is transmitted and the time point at which the laser signal is received, and then the separation distance between the user equipment and the user is determined according to the transmission time.
  • an infrared ranging sensor can be used to transmit an infrared signal.
  • the principle of measuring the separation distance between the user equipment and the user is based on the principle that the intensity of the reflected infrared signal received is different due to different separation distances.
  • the distance between the user equipment and the user can also be measured by other various methods, which will not be repeated here.
  • the degree of influence of electromagnetic radiation on the user is related to the distance between the user equipment and the user, the closer the distance is, the greater the degree of influence of electromagnetic radiation on the user, and the greater the distance, the degree of influence of electromagnetic radiation on the user is almost 0. Therefore, the distance between the user equipment and the user can be measured by a ranging sensor within a preset distance range.
  • the preset distance range may be a distance where the electromagnetic radiation affects the user, such as 20cm. Within a preset distance range, the electromagnetic radiation generated by the millimeter wave emitted by the user equipment needs to be controlled within the range of the maximum allowable radiation amount.
  • the interval distance between the user equipment and the user may be measured according to a preset period, and the interval distance measured each time may be reported to a core processor of the user equipment for processing.
  • the preset period may be 1 second, 2 seconds, and so on.
  • multiple measurement distances between the user equipment and the user obtained through multiple measurements may be obtained;
  • An average value of the plurality of measurement distances is used as the separation distance.
  • the millimeter wave is an electromagnetic wave with a wavelength of 1 to 10 millimeters, and has the characteristics of high bandwidth and narrow beam.
  • the equivalent directional radiated power is the radiated power in a specified direction, which is ideally equal to the transmitted power of the power amplifier multiplied by the gain of the antenna.
  • the equivalent directional radiation power of the millimeter wave emitted by the user equipment can be increased, thereby increasing millimeter Wave emission efficiency.
  • the equivalent direct radiation power of the millimeter wave emitted by the user equipment can be reduced, and the user is protected from the influence of electromagnetic radiation.
  • FIG. 3 is a schematic diagram of a calibration table provided in an embodiment of the present application.
  • the calibration table is a calibration table of EIRP and separation distance under a requirement of a maximum allowable radiation amount.
  • the equivalent direct radiation power of the millimeter wave emitted by the user equipment can be adjusted to EIRP-1 to ensure that the millimeter wave emitted by the user equipment is within the range of D-0. Electromagnetic radiation does not affect users.
  • the equivalent direct radiation power of the millimeter wave emitted by the user equipment can be adjusted to EIRP-3 to ensure that the millimeter wave emitted by the user equipment is within the range of D-3. Electromagnetic radiation does not affect users.
  • the calibration table of the EIRP and the separation distance may be configured in advance so as to be used when adjusting the equivalent direct radiation power. Specifically, it includes: placing the ranging sensor on the front, back, and frame of the user equipment to fully cover the radiation space of the antenna used by the user equipment to emit millimeter waves, measuring the distance between the user equipment and the user through the ranging sensor, and measuring the current The size of the electromagnetic radiation, when the electromagnetic radiation meets the maximum allowable radiation amount, record the equivalent radiated power of the millimeter wave emitted by the user equipment at this time. Then, changing the distance between the user equipment and the user, and performing multiple tests according to the above method, a calibration table of EIRP and interval distance can be generated.
  • the antenna used for transmitting millimeter waves in 5G applications will change according to changes in the network environment, the electromagnetic radiation generated by different antennas is also different. Therefore, a calibration table corresponding to each antenna among all antennas of the user terminal can be configured in advance.
  • the received signal strength of each antenna of the multiple antennas of the user equipment may be obtained first; and the antenna used by the user equipment to transmit the millimeter wave is determined according to the received signal strength, For example, the antenna with the highest received signal strength may be used as the antenna used to transmit the millimeter wave, or the antenna with the received signal strength greater than a preset threshold may be used as the antenna used to transmit the millimeter wave.
  • the target calibration table is selected from a plurality of preset calibration tables, so as to achieve the accuracy of adjusting the equivalent radiated power.
  • the separation distance between the user equipment and the user is first obtained; and then the equivalent directional radiation power of the millimeter wave emitted by the user equipment is adjusted according to the separation distance, so that the millimeter wave is emitted
  • the generated electromagnetic radiation satisfies the maximum allowable radiation amount.
  • FIG. 4 is a schematic structural diagram of an electromagnetic radiation control device according to an embodiment of the present application.
  • the electromagnetic radiation control device may include an acquisition module 401 and a processing module 402. The detailed description of each module is as follows.
  • An obtaining module 401 configured to obtain a separation distance between a user equipment and a user
  • the processing module 402 is configured to adjust the equivalent direct radiation power of the millimeter wave emitted by the user equipment according to the separation distance, so that the emitted electromagnetic radiation generated by the millimeter wave meets a maximum allowable radiation amount.
  • the processing module 402 is further configured to find a power value corresponding to the separation distance from a preset target calibration table, where the target calibration table includes a correspondence relationship between the separation distance and the power value. ; Adjusting the equivalent directional radiation power of the millimeter wave emitted by the user equipment to the power value.
  • the processing module 402 is further configured to determine an antenna used by the user equipment to transmit the millimeter wave; and select the selected antenna from a plurality of preset calibration tables according to the antenna used by the user equipment to transmit the millimeter wave.
  • the target calibration table is described.
  • the obtaining module 401 is further configured to obtain a received signal strength of each antenna of multiple antennas of the user equipment;
  • the processing module 402 is further configured to determine, according to the received signal strength, an antenna used by the user equipment to transmit the millimeter wave.
  • the obtaining module 401 is further configured to measure the separation distance between the user equipment and the user through a ranging sensor within a preset distance range.
  • the obtaining module 401 is further configured to measure the separation distance between the user equipment and the user according to a preset period.
  • the obtaining module 401 is further configured to obtain multiple measurement distances between the user equipment and the user obtained through multiple measurements; and use an average value of the multiple measurement distances as the separation distance.
  • each module may also correspond to the corresponding description of the method embodiment shown in FIG. 2, and execute the methods and functions performed by the user equipment in the foregoing embodiment.
  • FIG. 5 is a schematic structural diagram of a user equipment according to the present application.
  • the user equipment may include: at least one processor 501, at least one communication interface 502, at least one memory 503, and at least one communication bus 504.
  • the processor 501 may be a central processing unit, a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a transistor logic device, a hardware component, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a digital signal processor and a microprocessor, and so on.
  • the communication bus 504 may be a peripheral component interconnect standard PCI bus or an extended industry standard structure EISA bus. The bus can be divided into an address bus, a data bus, a control bus, and the like.
  • the communication bus 504 is used to implement connection communication between these components.
  • the communication interface 502 of the device in the embodiment of the present application is used to perform signaling or data communication with other node devices.
  • the memory 503 may include volatile memory, such as nonvolatile dynamic random access memory (NVRAM), phase change random access memory (Phase, Change RAM, PRAM), magnetoresistive random access memory (Magetoresistive RAM, MRAM), etc., may also include non-volatile memory, such as at least one disk storage device, Electronically Erasable Programmable Read-Only Memory (EEPROM), flash memory devices, such as flash memory (NOR flash memory) or anti-flash memory (NAND flash memory), semiconductor devices, such as solid state drives (Solid State Disk (SSD), etc.).
  • EEPROM Electronically Erasable Programmable Read-Only Memory
  • flash memory devices such as flash memory (NOR flash memory) or anti-flash memory (NAND flash memory
  • SSD Solid State Disk
  • the memory 503 may optionally be at least one storage device located far from the foregoing processor 501.
  • the memory 503 may further store a set of program codes, and the processor 501 may optionally execute a program executed in the memory 503.
  • the equivalent direct radiation power of the millimeter wave emitted by the user equipment is adjusted so that the electromagnetic radiation generated by the millimeter wave emitted meets the maximum allowable radiation amount.
  • processor 501 is further configured to perform the following operations:
  • processor 501 is further configured to perform the following operations:
  • processor 501 is further configured to perform the following operations:
  • processor 501 is further configured to perform the following operations:
  • the interval distance between the user equipment and the user is measured by a ranging sensor.
  • processor 501 is further configured to perform the following operations:
  • processor 501 is further configured to perform the following operations:
  • An average value of the plurality of measurement distances is used as the separation distance.
  • the processor may also cooperate with the memory and the communication interface to perform operations of the electromagnetic radiation control device in the embodiment of the above application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请实施例公开了一种电磁辐射控制方法,包括:获取用户设备与用户之间的间隔距离;根据所述间隔距离,调整所述用户设备发射的毫米波的等效通向辐射功率,使得发射的所述毫米波产生的电磁辐射满足最大允许辐射量。本申请实施例还公开了一种电磁辐射控制装置,实施本申请实施例,可以提高毫米波的发射功率和发射效率。

Description

一种电磁辐射控制方法及相关设备 技术领域
本申请涉及天线技术领域,尤其涉及一种电磁辐射控制方法及相关设备。
背景技术
第五代移动通信规范包括毫米波,例如第三代合作项目(3rd generation partnership project,3GPP)规定的毫米波频段在美国有28GHz和38GHz,在欧洲有26GHz。但是,在用户设备发射毫米波时会产生电磁辐射,电磁辐射危害用户安全和健康,因此,美国联邦通讯管委会(federal communications commission,FCC)规定了电磁辐射的最大允许辐射量(maximum permissible exposure,MPE),只有在发射的毫米波产生的电磁辐射小于MPE情况下才能被允许。其中,发射的毫米波产生的电磁辐射与该毫米波的等效通向辐射功率密切相关,现有技术方案中,在满足最大允许辐射量的前提下,无法保障等效通向辐射功率,影响毫米波的发射效率。
发明内容
本申请实施例提供一种电磁辐射控制方法及相关设备,在保障用户安全的前提下,提高毫米波的发射功率和发射效率。
第一方面,本申请实施例提供了一种电磁辐射控制方法,包括:首先获取用户设备与用户之间的间隔距离;然后根据所述间隔距离,调整所述用户设备发射的毫米波的等效通向辐射功率,使得发射的所述毫米波产生的电磁辐射满足最大允许辐射量。通过按照用户设备与用户之间不同的间隔距离,调整发射的毫米波的等效通向辐射功率,从而在保障用户安全的前提下,提高毫米波的发射功率和发射效率。
在一种可能的设计中,从预设的目标校准表中查找与所述间隔距离对应的功率值,其中,所述目标校准表包括所述间隔距离与所述功率值的对应关系;将所述用户设备发射的所述毫米波的所述等效通向辐射功率调整到所述功率值,从而保障在该间隔距离下用户设备产生的电磁辐射不会对用户产生影响。
在另一种可能的设计中,在发射的所述毫米波产生的电磁辐射满足最大允许辐射量的前提下,当间隔距离变大时,可以提高用户设备发射的毫米波的等效通向辐射功率,从而提高毫米波的发射效率。当间隔距离变小时,可以降低用户设备发射的毫米波的等效通向辐射功率,保障用户不受电磁辐射的影响。
在另一种可能的设计中,可以首先确定所述用户设备发射所述毫米波所使用的天线,然后根据所述发射所述毫米波所使用的天线,从预设的多个校准表中选取所述目标校准表,从而实现调整等效通向辐射功率的精确性。
在另一种可能的设计中,由于在5G应用中发射毫米波所使用的天线会根据网络环境的变化而变换,天线的不同,其产生的电磁辐射也是不相同的。因此,可以预先配置用户终端的所有天线中每个天线对应的校准表。在实际应用的网络环境中,可以首先获取所述用户设备的多个天线中每个天线的接收信号强度;根据所述接收信号强度,确定所述用户设备发射所述毫米波所使用的天线。
在另一种可能的设计中,在预设距离范围内,通过测距传感器测量所述用户设备与 所述用户之间的所述间隔距离。
在另一种可能的设计中,按照预设周期测量所述用户设备与所述用户之间的所述间隔距离,并将每次测量的间隔距离上报给用户设备的核心处理器进行处理。
在另一种可能的设计中,可以获取经过多次测量得到的所述用户设备与所述用户之间的多个测量距离;将所述多个测量距离的平均值作为所述间隔距离。
第二方面,本申请实施例提供了一种电磁辐射控制装置,该电磁辐射控制装置被配置为实现上述第一方面中用户设备所执行的方法和功能,由硬件/软件实现,其硬件/软件包括与上述功能相应的单元。
第三方面,本申请实施例提供了一种用户设备,包括:处理器、存储器和通信总线,其中,通信总线用于实现处理器和存储器之间连接通信,处理器执行存储器中存储的程序用于实现上述第一方面提供的一种电磁辐射控制方法中的步骤。
在一个可能的设计中,本申请实施例提供的用户设备可以包含用于执行上述方法设计中电磁辐射控制装置的行为相对应的模块。模块可以是软件和/或是硬件。
第四方面,本申请实施例提供了一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述各方面的方法。
第五方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述各方面的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种电磁辐射控制系统的结构示意图;
图2是本申请实施例提供的一种电磁辐射控制方法的流程示意图;
图3是本申请实施例提供的一种校准表的示意图;
图4是本申请实施例提供的一种电磁辐射控制装置的结构示意图;
图5是本申请实施例提供的一种用户设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图1,图1是本申请实施例提供的一种电磁辐射控制系统的结构示意图。如图所示,本申请实施例中的系统包括用户设备和用户。其中,用户设备可以是任意一种具有无线收发功能的设备,可以是指提供到用户的语音和/或数据连接的设备,也可以被连接到诸如膝上型计算机或台式计算机等的计算设备,或者可以是诸如个人数字助理(personal digital assistant,PDA)等的独立设备。用户设备还可以称为系统、用户单元、用户站、移动站、移动台、远程站、接入点、远程终端、接入终端、用户终端、用户代理或用户装置。用户设备可以是产生第五代移动通信技术的(5-generation,5G)毫米波的器件,比如,笔记本,路由器,手表等等。用户设备中可以包括测距传感器,通过测距传感器测量用户与用户设备之间的间隔距离。基于上述系统,本申请实施例提供了如下解决方案。
请参见图2,图2是本申请实施例提供的一种电磁辐射控制方法的流程示意图,该方法包括但不限于如下步骤:
S201,获取用户设备与用户之间的间隔距离。
具体实现中,测距传感器可以包括激光测距传感器、红外测距传感器、超声波测距传感器、毫米波测距传感器等等,可以通过激光测距传感器、红外测距传感器、超声波测距传感器或毫米波测距传感器测量所述用户设备与所述用户之间的所述间隔距离。其中,测距传感器可以设置在用户设备内部,也可以将测距传感器放置在用户设备上使用。例如,可以通过用户设备内部设置的激光测距传感器,向用户发射激光信号并记录发射激光信号的时间点,激光信号经过人体反射后,返回到激光测距传感器,此时记录接收到激光信号的时间点,根据发射激光信号的时间点和接收到激光信号的时间点,确定激光信号的传输时长,进而根据传输时长确定用户设备与用户之间的间隔距离。或者,可以通过红外测距传感器发射红外信号,由于间隔距离的不同接收到的反射回来的红外信号的强度也不同的原理,来测量用户设备与用户之间的间隔距离。还可以通过其他多种方法来测量用户设备与用户之间的间隔距离,此处不再赘述。
其中,由于电磁辐射对用户的影响程度、与用户设备与用户之间的间隔距离相关,间隔距离越近,电磁辐射对用户的影响程度越大,间隔距离越远,电磁辐射对用户的影响程度越小,当间隔距离超过预设距离范围时,电磁辐射对用户的影响程度几乎为0。因此可以在预设距离范围内,通过测距传感器测量所述用户设备与所述用户之间的所述间隔距离。预设距离范围可以为电磁辐射对用户存在影响的距离,如20cm。在预设距离范围内,需要将用户设备发射的毫米波产生的电磁辐射控制在最大允许辐射量的范围内。
可选的,可以按照预设周期测量所述用户设备与所述用户之间的所述间隔距离,并将每次测量的间隔距离上报给用户设备的核心处理器进行处理。其中,预设周期可以为1秒或2秒等等。
可选的,可以获取经过多次测量得到的所述用户设备与所述用户之间的多个测量距离;
将所述多个测量距离的平均值作为所述间隔距离。
S202,根据所述间隔距离,调整所述用户设备发射的毫米波的等效通向辐射功率,使得发射的所述毫米波产生的电磁辐射满足最大允许辐射量。其中,毫米波为波长为1~10毫米的电磁波,具有带宽高、波束窄的特点。等效通向辐射功率为在某个指定方向上的辐射功率,理想情况下等于功放的发射功率乘以天线的增益。
具体实现中,在发射的所述毫米波产生的电磁辐射满足最大允许辐射量的前提下,当间隔距离变大时,可以提高用户设备发射的毫米波的等效通向辐射功率,从而提高毫米波的发射效率。当间隔距离变小时,可以降低用户设备发射的毫米波的等效通向辐射功率,保障用户不受电磁辐射的影响。
进一步的,可以从预设的目标校准表中查找与所述间隔距离对应的功率值,其中,所述目标校准表包括所述间隔距离与所述功率值的对应关系;将所述用户设备发射的所述毫米波的所述等效通向辐射功率调整到所述功率值,从而保障在该间隔距离下用户设备产生的电磁辐射不会对用户产生影响。例如,如图3所示,图3是本申请实施例提供的一种校准表的示意图,该校准表为满足最大允许辐射量要求下的EIRP和间隔距离的校准表。当用户与用户设备的间隔距离为D-0时,可以将用户设备发射的毫米波的等效通 向辐射功率调整到EIRP-1,保证在D-0范围内用户设备发射的毫米波产生的电磁辐射不会对用户产生影响。当用户与用户设备的间隔距离为D-3时,可以将用户设备发射的毫米波的等效通向辐射功率调整到EIRP-3,保证在D-3范围内用户设备发射的毫米波产生的电磁辐射不会对用户产生影响。
另外,在对所述用户设备发射的毫米波的等效通向辐射功率调整之前,可以预先配置上述EIRP和间隔距离的校准表,以便在调整等效通向辐射功率时使用。具体包括:将测距传感器放置在用户设备的正面、反面及边框,全面覆盖用户设备发射毫米波所使用的天线的辐射空间,通过测距传感器测量用户设备与用户之间的距离,并测量当前的电磁辐射大小,在电磁辐射大小满足最大允许辐射量时,记录此时用户设备发射的毫米波的等效通向辐射功率。然后,改变用户设备与用户之间的距离,按照上述方法进行多次测试,可以生成EIRP和间隔距离的校准表。
可选的,由于在5G应用中发射毫米波所使用的天线会根据网络环境的变化而变换,天线的不同,其产生的电磁辐射也是不相同的。因此,可以预先配置用户终端的所有天线中每个天线对应的校准表。在实际应用的网络环境中,可以首先获取所述用户设备的多个天线中每个天线的接收信号强度;根据所述接收信号强度,确定所述用户设备发射所述毫米波所使用的天线,例如可以将接收信号强度最高的天线作为发射所述毫米波所使用的天线、或者接收信号强度大于预设阈值的天线作为发射所述毫米波所使用的天线。然后根据所述发射所述毫米波所使用的天线,从预设的多个校准表中选取所述目标校准表,从而实现调整等效通向辐射功率的精确性。
在本申请实施例中,首先获取用户设备与用户之间的间隔距离;然后根据所述间隔距离,调整所述用户设备发射的毫米波的等效通向辐射功率,使得发射的所述毫米波产生的电磁辐射满足最大允许辐射量。通过按照用户设备与用户之间不同的间隔距离,调整发射的毫米波的等效通向辐射功率,从而在保障用户安全的前提下,提高毫米波的发射功率和发射效率。
上述详细阐述了本申请实施例的方法,下面提供了本申请实施例的装置。
请参见图4,图4是本申请实施例提供的一种电磁辐射控制装置的结构示意图,该电磁辐射控制装置可以包括获取模块401和处理模块402,其中,各个模块的详细描述如下。
获取模块401,用于获取用户设备与用户之间的间隔距离;
处理模块402,用于根据所述间隔距离,调整所述用户设备发射的毫米波的等效通向辐射功率,使得发射的所述毫米波产生的电磁辐射满足最大允许辐射量。
可选的,处理模块402,还用于从预设的目标校准表中查找与所述间隔距离对应的功率值,其中,所述目标校准表包括所述间隔距离与所述功率值的对应关系;将所述用户设备发射的所述毫米波的所述等效通向辐射功率调整到所述功率值。
可选的,处理模块402,还用于确定所述用户设备发射所述毫米波所使用的天线;根据所述发射所述毫米波所使用的天线,从预设的多个校准表中选取所述目标校准表。
获取模块401,还用于获取所述用户设备的多个天线中每个天线的接收信号强度;
处理模块402,还用于根据所述接收信号强度,确定所述用户设备发射所述毫米波所使用的天线。
可选的,获取模块401,还用于在预设距离范围内,通过测距传感器测量所述用户设备与所述用户之间的所述间隔距离。
可选的,获取模块401,还用于按照预设周期测量所述用户设备与所述用户之间的所述间隔距离。
可选的,获取模块401,还用于获取经过多次测量得到的所述用户设备与所述用户之间的多个测量距离;将所述多个测量距离的平均值作为所述间隔距离。
需要说明的是,各个模块的实现还可以对应参照图2所示的方法实施例的相应描述,执行上述实施例中用户设备所执行的方法和功能。
请继续参考图5,图5是本申请提出的一种用户设备的结构示意图。如图5所示,该用户设备可以包括:至少一个处理器501,至少一个通信接口502,至少一个存储器503和至少一个通信总线504。
其中,处理器501可以是中央处理器单元,通用处理器,数字信号处理器,专用集成电路,现场可编程门阵列或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理器和微处理器的组合等等。通信总线504可以是外设部件互连标准PCI总线或扩展工业标准结构EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信总线504用于实现这些组件之间的连接通信。其中,本申请实施例中设备的通信接口502用于与其他节点设备进行信令或数据的通信。存储器503可以包括易失性存储器,例如非挥发性动态随机存取内存(Nonvolatile Random Access Memory,NVRAM)、相变化随机存取内存(Phase Change RAM,PRAM)、磁阻式随机存取内存(Magetoresistive RAM,MRAM)等,还可以包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)、半导体器件,例如固态硬盘(Solid State Disk,SSD)等。存储器503可选的还可以是至少一个位于远离前述处理器501的存储装置。存储器503中可选的还可以存储一组程序代码,且处理器501可选的还可以执行存储器503中所执行的程序。
获取用户设备与用户之间的间隔距离;
根据所述间隔距离,调整所述用户设备发射的毫米波的等效通向辐射功率,使得发射的所述毫米波产生的电磁辐射满足最大允许辐射量。
可选的,处理器501还用于执行如下操作:
从预设的目标校准表中查找与所述间隔距离对应的功率值,其中,所述目标校准表包括所述间隔距离与所述功率值的对应关系;
将所述用户设备发射的所述毫米波的所述等效通向辐射功率调整到所述功率值。
可选的,处理器501还用于执行如下操作:
确定所述用户设备发射所述毫米波所使用的天线;
根据所述发射所述毫米波所使用的天线,从预设的多个校准表中选取所述目标校准表。
可选的,处理器501还用于执行如下操作:
获取所述用户设备的多个天线中每个天线的接收信号强度;
根据所述接收信号强度,确定所述用户设备发射所述毫米波所使用的天线。
可选的,处理器501还用于执行如下操作:
在预设距离范围内,通过测距传感器测量所述用户设备与所述用户之间的所述间隔距离。
可选的,处理器501还用于执行如下操作:
按照预设周期测量所述用户设备与所述用户之间的所述间隔距离。
可选的,处理器501还用于执行如下操作:
获取经过多次测量得到的所述用户设备与所述用户之间的多个测量距离;
将所述多个测量距离的平均值作为所述间隔距离。
进一步的,处理器还可以与存储器和通信接口相配合,执行上述申请实施例中电磁辐射控制装置的操作。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种电磁辐射控制方法,其特征在于,所述方法包括:
    获取用户设备与用户之间的间隔距离;
    根据所述间隔距离,调整所述用户设备发射的毫米波的等效通向辐射功率,使得发射的所述毫米波产生的电磁辐射满足最大允许辐射量。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述间隔距离,调整所述用户设备发射的毫米波的等效通向辐射功率包括:
    从预设的目标校准表中查找与所述间隔距离对应的功率值,其中,所述目标校准表包括所述间隔距离与所述功率值的对应关系;
    将所述用户设备发射的所述毫米波的所述等效通向辐射功率调整到所述功率值。
  3. 如权利要求2所述的方法,其特征在于,所述从预设的目标校准表中查找与所述间隔距离对应的所述等效通向辐射功率的功率值之前,还包括:
    确定所述用户设备发射所述毫米波所使用的天线;
    根据所述发射所述毫米波所使用的天线,从预设的多个校准表中选取所述目标校准表。
  4. 如权利要求3所述的方法,其特征在于,所述确定所述用户设备发射所述毫米波所使用的天线包括:
    获取所述用户设备的多个天线中每个天线的接收信号强度;
    根据所述接收信号强度,确定所述用户设备发射所述毫米波所使用的天线。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述获取用户设备与用户之间的间隔距离包括:
    在预设距离范围内,通过测距传感器测量所述用户设备与所述用户之间的所述间隔距离。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述获取用户设备与用户之间的间隔距离包括:
    按照预设周期测量所述用户设备与所述用户之间的所述间隔距离。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述获取用户设备与用户之间的间隔距离包括:
    获取经过多次测量得到的所述用户设备与所述用户之间的多个测量距离;
    将所述多个测量距离的平均值作为所述间隔距离。
  8. 一种电磁辐射控制装置,其特征在于,所述装置包括:
    获取模块,用于获取用户设备与用户之间的间隔距离;
    处理模块,用于根据所述间隔距离,调整所述用户设备发射的毫米波的等效通向辐 射功率,使得发射的所述毫米波产生的电磁辐射满足最大允许辐射量。
  9. 如权利要求8所述的装置,其特征在于,
    所述处理模块,还用于从预设的目标校准表中查找与所述间隔距离对应的功率值,其中,所述目标校准表包括所述间隔距离与所述功率值的对应关系;将所述用户设备发射的所述毫米波的所述等效通向辐射功率调整到所述功率值。
  10. 如权利要求9所述的装置,其特征在于,
    所述处理模块,还用于确定所述用户设备发射所述毫米波所使用的天线;根据所述发射所述毫米波所使用的天线,从预设的多个校准表中选取所述目标校准表。
  11. 如权利要求10所述的装置,其特征在于,
    所述获取模块,还用于获取所述用户设备的多个天线中每个天线的接收信号强度;
    所述处理模块,还用于根据所述接收信号强度,确定所述用户设备发射所述毫米波所使用的天线。
  12. 如权利要求8-11任一项所述的装置,其特征在于,
    所述获取模块,还用于在预设距离范围内,通过测距传感器测量所述用户设备与所述用户之间的所述间隔距离。
  13. 如权利要求8-12任一项所述的装置,其特征在于,
    所述获取模块,还用于按照预设周期测量所述用户设备与所述用户之间的所述间隔距离。
  14. 如权利要求8-13任一项所述的装置,其特征在于,
    所述获取模块,还用于获取经过多次测量得到的所述用户设备与所述用户之间的多个测量距离;将所述多个测量距离的平均值作为所述间隔距离。
  15. 一种用户设备,其特征在于,包括:存储器、通信总线以及处理器,其中,所述存储器用于存储程序代码,所述处理器用于调用所述程序代码,执行如权利要求1-7任一项所述的方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行权利要求1-7任一项所述的方法。
PCT/CN2019/097566 2018-07-25 2019-07-24 一种电磁辐射控制方法及相关设备 WO2020020251A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810830376.3A CN110769493A (zh) 2018-07-25 2018-07-25 一种电磁辐射控制方法及相关设备
CN201810830376.3 2018-07-25

Publications (1)

Publication Number Publication Date
WO2020020251A1 true WO2020020251A1 (zh) 2020-01-30

Family

ID=69181258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097566 WO2020020251A1 (zh) 2018-07-25 2019-07-24 一种电磁辐射控制方法及相关设备

Country Status (2)

Country Link
CN (1) CN110769493A (zh)
WO (1) WO2020020251A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021189281A1 (en) * 2020-03-25 2021-09-30 Qualcomm Incorporated Techniques for maximum permissible exposure reporting
CN113973363B (zh) * 2020-07-22 2023-09-12 维沃移动通信有限公司 P-mpr报告的发送、接收方法、装置及电子设备
CN115333581B (zh) * 2021-05-11 2024-05-31 维沃移动通信有限公司 终端天线面板信息的传输方法、终端及网络侧设备
CN116347324A (zh) * 2021-12-22 2023-06-27 中兴通讯股份有限公司 发射功率的调节方法、毫米波终端和存储介质
CN114440426A (zh) * 2022-03-09 2022-05-06 青岛海信日立空调系统有限公司 一种空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325365A (zh) * 2011-08-23 2012-01-18 华为终端有限公司 一种调整终端发射功率的方法及装置
CN105704745A (zh) * 2016-04-29 2016-06-22 北京小米移动软件有限公司 移动终端的天线收发状态控制方法及装置
CN205792650U (zh) * 2016-05-11 2016-12-07 大连工业大学 一种分布式智能家居无线网络系统
WO2017004907A1 (zh) * 2015-07-03 2017-01-12 中兴通讯股份有限公司 一种自适应式蓝牙性能调节的通讯终端及方法
CN107231682A (zh) * 2017-05-25 2017-10-03 北京小米移动软件有限公司 降低终端sar的处理方法、装置及终端

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9397733B2 (en) * 2013-04-12 2016-07-19 Broadcom Corporation Dynamic EIRP constraint for a cellular communication system using a large number of base station antennas
US9426754B2 (en) * 2013-06-13 2016-08-23 Blackberry Limited Device dynamic total RF power compensation
CN104581896A (zh) * 2013-10-15 2015-04-29 中兴通讯股份有限公司 一种终端发射功率的调整方法、装置和终端
US11368926B2 (en) * 2016-12-12 2022-06-21 Qualcomm Incorporated Reporting power limit and corresponding constraint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325365A (zh) * 2011-08-23 2012-01-18 华为终端有限公司 一种调整终端发射功率的方法及装置
WO2017004907A1 (zh) * 2015-07-03 2017-01-12 中兴通讯股份有限公司 一种自适应式蓝牙性能调节的通讯终端及方法
CN105704745A (zh) * 2016-04-29 2016-06-22 北京小米移动软件有限公司 移动终端的天线收发状态控制方法及装置
CN205792650U (zh) * 2016-05-11 2016-12-07 大连工业大学 一种分布式智能家居无线网络系统
CN107231682A (zh) * 2017-05-25 2017-10-03 北京小米移动软件有限公司 降低终端sar的处理方法、装置及终端

Also Published As

Publication number Publication date
CN110769493A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
WO2020020251A1 (zh) 一种电磁辐射控制方法及相关设备
CN105900498B (zh) 用于传感及动态传输的天线耦合
AU2014243666B2 (en) Terminal transmission power adjustment method, device, and terminal
JP7016303B2 (ja) 放射電力推定方法
CN108931767B (zh) 用于确定到对象的距离的装置和方法
US10469183B1 (en) Antenna device and method for calibrating antenna device
WO2021043153A1 (zh) 无线设备的射频暴露控制方法、装置及无线设备
US20200044612A1 (en) Transmitter dynamic rf power control via vswr detection for wireless radios
CN111917432B (zh) 发射功率的调整方法、装置、存储介质及电子设备
CN114785393B (zh) 一种自适应波束宽度确定方法、系统、基站及介质
CN116053783A (zh) 用于sar抑制的超声接近感测
Aan Den Toorn et al. Proximity‐effect test for lossy wireless‐device measurements in reverberation chambers
CN112069713B (zh) 一种近场散射特性建模方法、电子设备及存储介质
CN113940011B (zh) 预配置的天线波束形成
US10992393B1 (en) System, test setup as well as method for performing MIMO tests
Hung et al. Parametric analysis of negative and positive refractive index lens antenna by ANSYS HFSS
CN114826362A (zh) 天线切换方法及相关装置
Januszkiewicz Model for Ray‐Based UTD Simulations of the Human Body Shadowing Effect in 5G Wireless Systems
WO2023116048A1 (zh) 发射功率的调节方法、毫米波终端和存储介质
US20240072836A1 (en) Transmission power control at a radio terminal
US20210058928A1 (en) Output power based on communication bands
Cacciola et al. Impact of transmit interference on receive sensitivity in a bi-static active array system
Min et al. Spatial and temporal characterization of indoor millimeter wave propagation at 24 GHz
CN113765547B (zh) 一种波束对齐方法及相关设备
JP7451975B2 (ja) 電磁波測定装置、及び電磁波測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840957

Country of ref document: EP

Kind code of ref document: A1