WO2020020080A1 - 一种波束管理方法和相关设备 - Google Patents

一种波束管理方法和相关设备 Download PDF

Info

Publication number
WO2020020080A1
WO2020020080A1 PCT/CN2019/096867 CN2019096867W WO2020020080A1 WO 2020020080 A1 WO2020020080 A1 WO 2020020080A1 CN 2019096867 W CN2019096867 W CN 2019096867W WO 2020020080 A1 WO2020020080 A1 WO 2020020080A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
attitude
receiving beam
receiving
network device
Prior art date
Application number
PCT/CN2019/096867
Other languages
English (en)
French (fr)
Inventor
余小勇
刘斌
黄伟
王琪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811459624.4A external-priority patent/CN110753388B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19840751.2A priority Critical patent/EP3800797B9/en
Priority to US17/262,223 priority patent/US11153001B2/en
Publication of WO2020020080A1 publication Critical patent/WO2020020080A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a beam management method and related equipment.
  • 3GPP 3rd generation partnership project
  • eMBB enhanced mobile bandwidth
  • eMTC mass machine-type communication
  • URLLC ultra-reliable ultra-low latency communication
  • eMBB will be able to provide 10Gbit-per-second uplink and downlink throughput for each cell.
  • LTE long term evolution
  • High-frequency electromagnetic waves have high path loss characteristics.
  • a signal transmission mechanism based on beamforming technology is adopted to pass a larger antenna gain. To compensate for transmission loss during signal propagation.
  • the present application provides a beam management method and related equipment, which can reduce repeated scanning of the physical space by the UE when the attitude of the terminal device changes, and improve scanning efficiency.
  • a beam management method includes: determining a first UE posture of the terminal device during a process in which the terminal device receives information sent by a network device through a first receiving beam, and the terminal device Including a plurality of receiving beams; and in a case where the terminal device changes from the first UE attitude to the second UE attitude, at least according to an azimuth relationship between the plurality of receiving beams and the terminal device from the A change in the orientation of the attitude of the first UE to the attitude of the second UE determines a second receiving beam; the terminal device receives information sent by a network device through the second receiving beam.
  • the terminal device changes the orientation of the UE ’s attitude based on the azimuth relationship between multiple received beams and the UE ’s attitude.
  • the solution provided in the present application can reduce repeated scanning of physical space, improve scanning efficiency, improve random access success rate when the attitude of the terminal device changes, and can reduce the measurement frequency based on the reference signal and power consumption. To improve the robustness of the link.
  • the posture of the terminal device includes, but is not limited to, a UE posture, a terminal posture, and a user posture.
  • the information sent by the network device includes synchronization reference information
  • the synchronization reference information includes a channel state information reference signal and / or a synchronization sequence block reference signal.
  • a network device sends a channel state information reference signal or a synchronization sequence reference signal to a terminal device, and the terminal device receives the channel state information reference signal or the synchronization sequence reference signal through different receiving beams to implement beam scanning. process.
  • the received power of the channel state information reference signal or synchronization sequence block reference signal received by the first receiving beam is greater than a first threshold.
  • the terminal device determines a receiving beam that satisfies a condition (for example, the receiving power is greater than a first threshold) as the first by measuring the received power of the received channel state information reference signal or synchronization sequence reference signal. Receiving the beam, the entire determination process is simple.
  • the multiple receiving beams have blocked receiving beams.
  • the first receiving beam does not include the blocked receiving beam.
  • the terminal device detects the blocking condition of the receiving beam in advance, which can improve the efficiency of the entire beam scanning and reduce the unnecessary receiving power measurement on the blocked receiving beam.
  • the terminal device changes from the first UE attitude to the second UE attitude
  • the multiple receive beams are blocked.
  • the second receiving beam does not include the blocked receiving beam.
  • the terminal device when the UE changes its attitude, the terminal device can detect the blocking condition of the receiving beam in advance, which can improve the efficiency of the entire second receiving beam determination process and reduce the number of blocked receiving beams. Measurement of unnecessary received power.
  • a parameter of a UE attitude n times is obtained, and The parameters of the secondary UE attitude are averaged to determine that the UE attitude corresponding to the average is the first UE attitude, and n is a positive integer greater than or equal to 1.
  • the terminal device obtains a parameter of the UE posture multiple times and obtains an average value of the parameter, and determines the UE posture corresponding to the average value as the first UE posture, which can ensure the obtained first UE.
  • the attitude is more accurate, which effectively avoids errors.
  • the method further includes: the terminal device sending the random access preamble through the second receiving beam.
  • sending the random access preamble through the second receiving beam in the second UE attitude can ensure that the network device can receive The random access preamble sent to the terminal device completes the random access process.
  • the information received by the terminal device through the second receiving beam from the network device includes: the terminal device receiving the random access response sent by the network device through the second receiving beam .
  • the terminal device changes its attitude during the process of receiving the random access response sent by the network device, the terminal device receives the random access response through the second receiving beam, which can ensure that the terminal device can The random access response sent by the network device is accurately received, and the random access process is completed.
  • the terminal device in the contention-based random access process, in the second UE posture, receives a contention resolution response sent by the network device.
  • the information that the terminal device receives from the network device through the second receiving beam includes that the terminal device receives the competition sent by the network device through the second receiving beam. Resolve the response message.
  • the terminal device when the terminal device changes its attitude while waiting for a response to a contention resolution response, the terminal device receives the contention response response message through the second receiving beam, which can ensure that the network device can accurately receive The contention resolution response message improves access efficiency and success rate.
  • the first UE posture when the terminal device is in a connected state discontinuous reception state or an idle state discontinuous reception state, the first UE posture includes the The posture corresponding to the terminal device before going to sleep, and the second UE posture includes the posture corresponding to when the terminal device wakes up.
  • the terminal device can record the posture before going to sleep and the posture when waking up, and adjust the receiving beam based on the UE posture change at these two moments, which can ensure that the terminal device can use the appropriate
  • the receiving beam accurately receives the information sent by the network device.
  • the terminal device after the terminal device receives the information sent by the network device through the first receiving beam, after determining the first UE posture of the terminal device, include:
  • the terminal device receives information sent by the network device through the first receiving beam, if the receiving power of the synchronization reference information received by the terminal device in the third UE attitude is greater than the received power in the fourth UE attitude The received power of the synchronization reference information corrects the attitude of the first UE to the attitude of the third UE.
  • the terminal device corrects and updates the attitude change of the terminal device based on the detection of the synchronous reference information, which can eliminate the accumulation of the adjustment of the receiving beam based on only the change in attitude.
  • the error ensures that the information sent by the network device can be received using a proper receiving beam when the UE attitude changes.
  • the method further includes:
  • the polarization direction of the second receiving beam is the same as the polarization direction of the first receiving beam
  • the polarization direction of the second receiving beam is different from the polarization direction of the first receiving beam.
  • the terminal device can determine the rotation angle corresponding to the attitude change and select a receiving beam with an appropriate polarization direction to ensure that the network device can be accurately received. Message sent.
  • a terminal device may be a user equipment (UE) or a chip in the user equipment.
  • the terminal device has a function of implementing the first aspect related to the terminal device. This function can be realized by hardware, and can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the processing device when the terminal device is a UE, the processing device includes a processing module and a transceiver module.
  • the processing module may be a processor
  • the transceiver module may be a transceiver
  • the transceiver may include a radio frequency. Circuits and baseband circuits.
  • the transceiver module is used to support communication between the terminal device and the network device or other terminal equipment.
  • the transceiver module may further include a sending module and a receiving module.
  • a receiving module is configured to receive information sent by an access network device; a processing module is configured to determine a first UE of the terminal device during a process in which the terminal device receives information sent by a network device through a first receiving beam Attitude, the terminal device includes a plurality of receiving beams, and is configured to, according to an azimuth relationship between the plurality of receiving beams, in a case where the terminal device changes from the first UE attitude to a second UE attitude, And a change in the orientation of the terminal device from the attitude change of the first UE to the attitude of the second UE, determining a second receiving beam.
  • the terminal device may further include a memory, which is used for coupling with the processor, and stores the program instructions and data necessary for the terminal device.
  • the terminal device includes: a processor, a baseband circuit, a radio frequency circuit, and an antenna.
  • the processor is used to control the functions of each circuit part, the baseband circuit, the radio frequency circuit and the antenna are used to instruct the communication between the terminal device and the network device.
  • the radio frequency circuit can digitally convert, filter, amplify, and downconvert the information sent by the network device received via the antenna, and then decode it through the baseband circuit and decapsulate it according to the protocol to obtain the message carried in it. .
  • the terminal device further includes a memory, which stores necessary program instructions and data of the terminal device; in uplink communication, a message to be sent is generated by a baseband circuit, and analog conversion, filtering, amplification, and up-conversion are performed through a radio frequency circuit. After processing, it is sent to the network equipment by the antenna.
  • the terminal device includes a processor and a modem.
  • the processor may be used for instructions or an operating system to control the functions of the terminal device.
  • the modem may encapsulate, encode, and decode data according to a protocol. Modulation, equalization, etc. to generate a message to be reported to support the terminal device to perform the corresponding function in the first aspect; the modem can also be used to receive information sent by the network device.
  • the chip when the terminal device is a chip in the user equipment UE, the chip includes a processing module and a transceiver module.
  • the processing module may be, for example, a processor, and the processor may be used for The data packets carrying the information received through the transceiver module are processed for filtering, demodulation, power amplification, decoding, etc.
  • the transceiver module may be, for example, an input / output interface, a pin or a circuit on the chip.
  • the processing module can execute computer execution instructions stored in the storage unit to support the terminal device to perform the corresponding functions in the first aspect.
  • the storage unit may be a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit may also be a storage unit located outside the chip in the terminal device, such as a read-only memory (read-only memory (ROM) for short) or other types of static storage devices that can store static information and instructions, random access memory (RAM).
  • ROM read-only memory
  • RAM random access
  • the apparatus includes a processor, which is configured to be coupled to the memory, and read an instruction in the memory and execute the function of the terminal device according to the first aspect according to the instruction.
  • the memory can be located inside the processor or external to the processor.
  • a computer non-transitory storage medium including instructions that, when the instructions run on a terminal device, cause the terminal device to execute the method according to any one of the first aspects.
  • FIG. 1 is a schematic diagram of generating beamforming according to an embodiment of the present application
  • FIG. 2A is a schematic diagram of a beam transmitted by a base station according to an embodiment of the present application.
  • FIG. 2B is a schematic diagram of a working beam pair according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a system architecture according to an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a beam management method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of determining a UE attitude during a beam scanning process according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a receiving beam of a terminal device according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of adjusting a receiving beam under a posture change of a terminal device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of receiving beam selection during a scanning process according to an embodiment of the present application.
  • 9A is a schematic diagram of receiving beam selection in a random access process according to an embodiment of the present application.
  • FIG. 9B is a schematic diagram of receiving beam selection in another random access process according to an embodiment of the present application.
  • 9C is a schematic diagram of receiving beam selection in another random access process according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a connected state discontinuous reception according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of receiving beam adjustment when a terminal device is in a discontinuous reception state according to an embodiment of the present application
  • FIG. 12 is a schematic diagram of a beam generated by a dual-polarized antenna according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another terminal device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of sensor-assisted beam management on a terminal device according to an embodiment of the present application.
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • UMTS Universal Mobile Telecommunications System
  • UTRAN Universal Mobile Telecommunications System
  • GSM Global Communication System
  • EDGE Enhanced Data Rate GSM Evolution
  • GSM Global Communication System
  • EDGE Enhanced Data Rate for GSM Evolution
  • GSM Global Communication System
  • EDGE Enhanced Data Rate for GSM Evolution
  • GSM Global Communication System
  • GERAN Radio Access Network
  • MME Mobility Management Entity
  • SGSN Serving GPRS Support
  • GPRS General Packet Radio Service
  • the SGW ⁇ PGW The function is completed by the gateway GPRS support node (Gateway GPRS Support Node, GGSN).
  • the technical solution of the embodiment of the present invention can also be applied to other communication systems, such as a Public Land Mobile Network (PLMN) system, or even a future 5G communication system or a communication system after 5G, etc. Not limited.
  • PLMN Public Land Mobile Network
  • the embodiment of the present application relates to a terminal device.
  • the terminal device may be a device that includes a wireless transmitting and receiving function and can cooperate with a network device to provide a communication service for a user.
  • a terminal device may refer to a user equipment (User Equipment, UE), an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, User agent or user device.
  • UE user equipment
  • UE User Equipment
  • the terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), a wireless A communication-enabled handheld device, computing device, or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network or a network after 5G, and the like are not limited in the embodiments of the present invention.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Processing
  • the embodiment of the present application also relates to a network device.
  • the network device may be a device for communicating with the terminal device, for example, it may be a base station (Base Transceiver Station, BTS) in the GSM system or CDMA, or a base station (NodeB, NB) in the WCDMA system, or it may be Evolutionary NodeB (eNB or eNodeB) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network-side device in a future 5G network or a network after 5G or Network equipment in future evolved PLMN networks.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • eNB Evolutionary NodeB
  • LTE Long Term Evolutionary NodeB
  • the network devices involved in the embodiments of the present application may also be referred to as radio access network (RAN) devices.
  • RAN devices correspond to different devices in different communication systems, for example, base stations and base station controllers in 2G systems, base stations and radio network controllers (RNCs) in 3G systems, and evolution in 4G systems.
  • the base station (Evolutionary NodeB, eNB) corresponds to the 5G system in the 5G system, such as the access network equipment (for example, gNB, CU, DU) in the New Radio Access System (NR).
  • NR New Radio Access System
  • SDMA space-division multiple access
  • SDMA is an important example of massive multiple-input (multiple-input, multiple-output, MIMO) technology application, that is, using large-scale transmitting antennas and receiving antenna arrays at the transmitting end and the receiving end, respectively. Signals are transmitted and received through large-scale antenna arrays at the transmitting and receiving ends, thereby improving communication quality.
  • MIMO massive multiple-input
  • a technology that spreads wireless signals (electromagnetic waves) only in a specific direction is called beamforming.
  • the radiation direction of electromagnetic waves is determined by the characteristics of the antenna.
  • the directional characteristics of the antenna can be described by the radiation pattern (that is, the amplitude of the signal emitted by the antenna in different directions in space).
  • the radiation pattern of ordinary antennas has very low directivity (that is, the radiation intensity in each direction is about the same), and the most basic method of forming a beam is to use an antenna with strong radiation directivity (that is, aiming at radiation in one direction, similar to a flashlight)
  • beamforming needs to change the beam direction with the relative position between the receiving end and the transmitting end.
  • the traditional method of forming a beam using a single antenna requires mechanical rotation of the antenna to change the beam direction. Therefore, a practical beamforming solution uses It is a smart antenna array.
  • FIG. 1 is a schematic diagram of generating beamforming.
  • the corresponding vertical plane pattern gain is 2.15 decibels (dB).
  • dB decibels
  • the corresponding vertical pattern is The gain is 5.15dB.
  • the corresponding vertical plane pattern gain is 8.15dB. It can be seen that when the number of half-wave oscillators is more, they are arranged in a vertical For a linear array, the corresponding vertical pattern gain is larger.
  • beamforming by controlling the relative phase and amplitude between the transmitted and received waves, it is possible to concentrate the electromagnetic wave radiation and reception gain in one direction.
  • FIG. 2A is a schematic diagram of a beam transmitted by a base station.
  • the base station uses 8 beams to cover the cell it serves.
  • the base station sequentially uses differently directed beams to transmit wireless signals. This process is called a beam. Scanning (beam measurement).
  • the terminal device measures the wireless signals transmitted by different beams and reports the relevant information to the base station.
  • the base station determines the best transmission beam aimed at the terminal device according to the relevant information reported by the terminal device.
  • the 5G standard allows terminal equipment to transform different reception beams for the transmission beam and select the best reception from them. Beam to get the best pair of beams (one transmit beam and one receive beam).
  • FIG. 2B it is a schematic diagram of a working beam pair. As shown in FIG. 2B, the alignment of the transmission beam 4 of the base station and the reception beam 3 of the terminal device 1 is the best, and the alignment of the transmission beam 6 of the base station and the reception beam 2 of the terminal device 2 is the best. Therefore, the terminal device 1 and the terminal The best beam pairs corresponding to device 2 are (beam 4, beam 3) and (beam 6, beam 2).
  • all or part of the beams on the base station side and all or part of the beams on the terminal equipment side need to be scanned, and then the beam pairs that reach the access threshold or have the best performance are found from the measured beam pairs for Random access. If the attitude and position of the terminal device changes during the beam scanning or random access process (for example, the terminal device rotates), causing the found beam pair to no longer match, it may cause random access time. Too long or random access failed.
  • the application provides a beam management method, which can effectively solve the problems of low scanning efficiency and low random access success rate when the attitude of a terminal device changes, can reduce the measurement frequency based on a reference signal, reduce power consumption, and improve the link. Robustness.
  • FIG. 3 is a schematic diagram of a system architecture according to an embodiment of the present application.
  • the network architecture includes a terminal device 110 and a network device 120.
  • the network device 120 may specifically be a base station, and the terminal device 110 may specifically be a mobile phone, a notebook, a tablet computer, or a customer equipment (CPE).
  • CPE customer equipment
  • the network device 120 provides wireless access service for the terminal device 110, and each network device 120 corresponds to a service coverage area.
  • the terminal device 110 entering the area can communicate with the network device 120 through wireless signals.
  • the terminal device 110 can adjust the receiving beam based on its own attitude change to ensure that the information sent by the network device 120 can be received correctly and without interruption.
  • the network device 120 may perform downlink transmission to the terminal device 110, for example, the network device 120 sends a synchronization signal sequence to the terminal device 110, and the terminal device 110 may also perform uplink transmission to the network device 120.
  • the transmission may specifically refer to data transmission and physical layer control signaling transmission.
  • FIG. 4 is a schematic flowchart of a beam management method according to an embodiment of the present application.
  • the terminal device and the network device described in FIG. 4 may correspond to the terminal device 110 and the network device 120 shown in FIG. 3, respectively.
  • the method includes, but is not limited to, the following steps:
  • the terminal device receives information sent by the network device through a first receiving beam.
  • the terminal device has multiple receiving beams, and in the process of receiving information sent by the network device, one of the multiple receiving beams is selected for reception.
  • the terminal device may receive information sent by the network device during the beam scanning process, or may receive information sent by the network device during the random access process, or may establish radio resource control with the network device. (radio resource control, RRC) After receiving the connection, it receives the information sent by the network device.
  • the information sent by the network device is downlink information.
  • the downlink information may be information sent periodically by the network device, or information sent by the network device semi-statically, or information sent dynamically and aperiodically, which is not limited herein.
  • the information sent by the network device includes synchronization reference information
  • the synchronization reference information includes a channel state information reference signal and / or a synchronization sequence block reference signal.
  • the terminal device Before the terminal device initiates random access, all or part of the beams on the network device side and all or part of the beams on the terminal device side need to be scanned, and then the ones that reach the access threshold or have the best performance are found from the measured beam pairs. Beam pairs are used for random access. Therefore, in order to select the optimal beam pair, the terminal device needs to receive synchronization reference information sent by the network device.
  • the synchronization reference information sent by the network device may be a channel state information reference signal (channel-information reference signal, CSI-RS), or a synchronization sequence block (synchronization sequence block, SSB) reference signal, or another reference signal .
  • CSI-RS channel-information reference signal
  • SSB synchronization sequence block
  • the network equipment sends the synchronization reference information through different transmission beams, and the terminal equipment receives the synchronization reference information sent by multiple transmission beams. For example, if there are 8 different transmit beams on the network device to cover the entire cell, and 10 receive beams on the terminal device, for each receive beam of the terminal device, it is necessary to receive the synchronization sent by the 8 transmit beams from the network device.
  • the reference information is used to perform channel quality measurement based on the received synchronous reference information sent by the eight transmit beams, and a channel quality measurement result for each transmit beam is obtained.
  • the terminal device may send the channel quality measurement result to the network device. For the beam scanning process, 80 measurements are required to complete the scanning of all beams on the entire network device side and terminal device side. Based on the channel quality measurement results, a pair of beam pairs with the best channel quality measurement results can be found.
  • the received power of the channel state information reference signal or the synchronization sequence block reference signal received by the first receiving beam is greater than a first threshold.
  • the terminal device measures the received power of the received channel state information reference signal or the synchronization sequence block reference signal, and after completing all beam measurements, determines the channel state information reference signal or synchronization sequence.
  • the receiving beam corresponding to the maximum received power of the block reference signal is the first receiving beam.
  • the first threshold may be set by a terminal device or a network device, which is not limited herein.
  • the terminal device receives information sent by a network device through a first receiving beam
  • the first receiving The beam does not include the blocked receiving beam
  • the terminal device detects the position of the antenna by using an electromagnetic absorption ratio (SAR) sensor. If it is detected that some receiving beams are blocked, the performance of the blocked receiving beam is extremely high. Poor and cannot be used for random access and subsequent information transmission, the terminal device ignores these blocked receiving beams and no longer uses these blocked receiving beams to receive synchronization reference information sent by the network device.
  • SAR electromagnetic absorption ratio
  • the terminal device can detect the shielding position of the antenna by using the SAR sensor and ignore the blocked receiving beam, which can effectively reduce the scanning time and improve the scanning efficiency of the entire scanning process.
  • the terminal device determines a first UE posture.
  • the network device sends different reference beams (such as the SSB reference signal) to the terminal device using different beams in one scanning period (for example, an SSB period), and the terminal devices use the same signal for one period.
  • the receiving beam receives the synchronous reference information and performs reference signal received power (RSRP) measurement.
  • the terminal device uses another receiving beam to receive the synchronous reference information and performs RSRP measurement.
  • the sensor of the terminal device will perform detection to obtain data information.
  • the sensor may include an accelerometer, gyroscope, magnetometer, etc.
  • the micro controller unit (MCU) of the terminal device The sensor context module (sensor context) performs fusion algorithm processing on the data information to calculate the attitude of the terminal device.
  • the sensor of the terminal device continuously obtains data information, and the posture of the terminal device at multiple times can be calculated. For example, the posture of the terminal device in each scanning cycle can be obtained. And determine the attitude of the terminal device corresponding to the largest RSRP value as the attitude of the first UE.
  • the determining a first UE posture of the terminal device includes: obtaining n times of UE postures during a process in which the terminal device receives information sent by a network device through a first receiving beam.
  • the parameter is an average of the parameters of the n-th UE attitude, and it is determined that the UE attitude corresponding to the average is the first UE attitude, and n is a positive integer greater than or equal to 1.
  • a sensor of the terminal device obtains data information multiple times, for example, obtains a parameter of the UE attitude n times, and averages the parameters of the n times UE attitude.
  • the attitude corresponding to the average value is determined as the first UE attitude, where n is a positive integer greater than or equal to 1.
  • FIG. 5 is a schematic diagram of determining a UE attitude in a beam scanning process. As shown in FIG.
  • the sensor context on the MCU of the terminal device is repeatedly calculated to obtain the posture of the terminal device 4 times, that is, the posture of the terminal device is obtained every 5 ms.
  • the terminal device averages the obtained parameters of the posture of the terminal device 4 times, and determines that the posture corresponding to the average value is the posture corresponding to the scanning of the terminal device by using beam 1.
  • the sensor context on the MCU of the terminal equipment still calculates the attitude of the terminal equipment every 5 milliseconds.
  • the terminal equipment averages the parameters of the obtained 4 attitudes, and determines that the attitude corresponding to the average is the terminal equipment using beam 2 or The corresponding attitude when the beam 3 scans.
  • the terminal device obtains the posture of the terminal device multiple times in one scanning cycle, and averages the parameters of the acquired postures of multiple terminal devices, and uses the posture corresponding to the average value as the current beam scanning time.
  • the posture can make the final determined posture of the terminal device more accurate.
  • the terminal device changes from the attitude of the first UE to the attitude of the second UE, and determines the second receiving beam according to at least the azimuth relationship between the plurality of receiving beams and the azimuth change situation.
  • the multiple receiving beams of the terminal device need to cover the entire spherical space position, and the relative positions between the multiple receiving beams do not follow the terminal device. Changes in attitude or position while sending changes.
  • FIG. 6 is a schematic diagram of a receiving beam of a terminal device.
  • the terminal device has eight receiving beams, and the eight receiving beams cover the entire spherical space position, which can ensure that the terminal device receives information from various directions.
  • the positions between the receiving beams are fixed, for example, the positions between the receiving beam 1 and the receiving beam 2 are fixed, and the positions between the receiving beam 7 and the receiving beam 8 are also fixed.
  • the terminal device acquires data information through sensors to calculate the orientation change of the terminal device (for example, it can be an angle change, that is, the attitude of the terminal device after the change is clockwise or How many degrees counterclockwise), according to the change in azimuth and the relative position relationship between multiple receiving beams, it can be determined which receiving beam can meet the receiving conditions (that is, which receiving beam) after the attitude of the terminal device changes Alignment with the transmitting beam of the network device is better), the terminal device determines that the receiving beam is the second receiving beam, adjusts the receiving beam to the second receiving beam, and uses the second receiving beam to receive information sent by the network device.
  • the orientation change of the terminal device for example, it can be an angle change, that is, the attitude of the terminal device after the change is clockwise or How many degrees counterclockwise
  • the terminal device determines that the receiving beam is the second receiving beam, adjusts the receiving beam to the second receiving beam, and uses the second receiving beam to receive information sent by the network device.
  • FIG. 7 it is a schematic diagram of receiving beam adjustment under a change in attitude of a terminal device.
  • the reception beam 2 of the terminal device is best aligned with the transmission beam on the network device side, and the terminal device uses the reception beam 2 to receive the transmission from the network device.
  • Information when at the second moment, the attitude of the terminal device changes, from the attitude of the first UE to the attitude of the second UE, at this time, the receiving device 4 of the terminal device is best aligned with the transmitting beam on the network device side.
  • the terminal equipment uses the receiving beam 4 to receive the information sent by the network equipment.
  • FIG. 8 is a schematic diagram of receiving beam selection during a scanning process. As shown in FIG. 8, at the first moment, the terminal device uses the receiving beam 1 to receive the synchronization reference information sent by the network device in this attitude, and completes the scanning process.
  • the terminal device After the scanning of the receiving beam 1 is completed, the terminal device detects that a gesture has occurred The change has rotated to a new attitude. Under this new attitude, the physical space of the coverage scan corresponding to the reception beam 2 and the reception beam 1 at the first moment is the same. If the terminal device uses the reception beam 2 to receive the network at the second moment The synchronization reference information sent by the device completes the scanning process, and the results of the two scans are the same. Therefore, the terminal device uses other receiving beams (receiving beams other than receiving beam 2) to complete at the second moment based on the identified attitude change.
  • the terminal device can continue to use the receiving beam 1 at the second moment to receive the synchronization reference information sent by the network device, because after the attitude of the terminal device changes, the physical space of the coverage scan corresponding to the receiving beam 1 at the second moment The physical space is different from the coverage scan corresponding to the received beam 1 at the first time.
  • the terminal device can select the receiving beam to complete the scanning process according to the change in attitude, which can ensure better coverage of the physical space in a shorter time, avoid repeated scanning, save scanning time, and improve scanning efficiency.
  • the terminal device changes from the first UE attitude to the second UE attitude
  • the multiple receiving beams have blocked receiving beams
  • the second The receiving beam does not include the blocked receiving beam
  • the antenna position is blocked by the SAR sensor. If it is detected that some receiving beams are blocked, the blocked receiving beam performance is extremely poor and cannot be used for random access and For subsequent information transmission, the terminal device ignores the blocked receiving beams, and after the attitude changes, selects the unblocked receiving beams to receive the information sent by the network device.
  • the terminal device detects the shielding position of the antenna by using the SAR sensor and ignores the blocked receiving beam, which can ensure that the terminal device can accurately receive the information sent by the network device after the change of the sending attitude, and ensure good access performance. .
  • the terminal device in a random access process, and when the posture of the second UE is the posture corresponding to the terminal device sending the random access preamble, the terminal device passes the first Before the two receiving beams receive the information sent by the network device, the terminal device further includes: sending, by the terminal device, the random access preamble through the second receiving beam.
  • the total time of beam scanning is directly proportional to the receiving beams supported by the terminal device side. If the measurement of all the transmitting beams on the network device side and one receiving beam on the terminal device side is completed in 20 milliseconds, all the beams need to be measured, and the total time required Is: N * 20 milliseconds, N is the number of receiving beams supported by the terminal device side. If the beam pair measured in the first scanning cycle meets the random access conditions (for example, the received power of the received SSB reference signal is greater than the first threshold), the shortest delay from the measurement to the terminal device initiating random access is approximately required. 120 milliseconds. If the attitude of the terminal device changes during this process (that is, within 120 ms), the terminal device still uses the measured beam to initiate random access, which may cause random access failure or performance after random access. Worse.
  • the terminal device has determined the beam pair that meets the conditions after the beam scanning. If random access needs to be initiated at the time of random access, the terminal device obtains data information through the sensor and calculates the attitude change of the terminal device. Situation, determine the attitude at the current moment (that is, the attitude of the second UE), which is different from the attitude of the terminal device at the time of scanning (that is, the attitude of the first UE), and the terminal device is based on the change in attitude and the positional relationship between each received beam , Adjusting the receiving beam, that is, adjusting the first receiving beam determined from the scanning time to the second receiving beam after the attitude change.
  • the terminal device will initiate a random process using the physical random access channel (PRACH) resource associated with the synchronization reference information (such as the SSB reference signal), and the terminal device will adjust it by
  • PRACH physical random access channel
  • the second receiving beam obtained later sends a random access preamble to the network device, and starts a timer to wait for a random access response message (RAR) on the network device side.
  • the timer may be RRC signaling For configuration.
  • FIG. 9A is a schematic diagram of receiving beam selection in a random access process.
  • the terminal device is in the first UE attitude.
  • the alignment between the receiving beam 1 and the transmission beam of the network device is the best.
  • the terminal device sends the preamble, the attitude of the terminal device changes.
  • the terminal device is in the second UE attitude, the receiving beam 1 is deviated from the transmitting beam of the network device, and the receiving beam 2 is better aligned with the transmitting beam of the network device.
  • the terminal device selects the receiving beam 2 to send random to the network device. Access preamble.
  • the The receiving, by the terminal device, information sent by the network device through the second receiving beam includes: receiving, by the terminal device, the random access response sent by the network device through the second receiving beam.
  • the network device selects an appropriate beam to receive the preamble sent by the terminal device and sends a RAR message to the terminal device according to the resources allocated to the terminal device to initiate random access.
  • the posture of the terminal device changes, resulting in a different posture at the current time (that is, the second UE posture) and a posture at the time of sending the preamble.
  • the terminal device is based on the posture Change the positional relationship between each receiving beam, adjust the receiving beam, determine the receiving beam (that is, the second receiving beam) with the best alignment with the transmitting beam of the network device at the current moment's attitude, and pass the receiving beam Receive RAR messages from network devices.
  • FIG. 9B is a schematic diagram of receiving beam selection in another random access process.
  • the alignment between the receiving beam 2 and the transmission beam of the network device is the best.
  • the terminal device sends the preamble and waits for the network device to send the RAR message, the attitude of the terminal device occurs.
  • the receiving beam 2 deviates from the transmitting beam of the network device, and the receiving beam 3 is better aligned with the transmitting beam of the network device.
  • the terminal device selects the receiving beam 3 to receive the RAR message sent by the network device.
  • adjusting the receiving beam based on the change of the attitude of the terminal device is beneficial to improving the success rate of random access.
  • the posture of the second UE is a posture corresponding to the terminal device receiving the contention response message sent by the network device
  • the receiving, by the terminal device, information sent by the network device through the second receiving beam includes: receiving, by the terminal device, the contention resolution response message sent by the network device through the second receiving beam.
  • the terminal device completes the entire random access process after receiving the RAR message sent by the network device.
  • the terminal device needs to send a random access request message (that is, Msg3) to the network device, and start a contention resolution timer to wait for network device competition.
  • the timer may be configured by RRC signaling.
  • the posture of the terminal device changes, resulting in a posture at the current time (that is, a second UE posture) different from the posture at the time of sending a random access request message.
  • the terminal device adjusts the receiving beam based on the change in attitude and the positional relationship between the receiving beams to determine the receiving beam (that is, the second receiving beam) with the best alignment with the transmitting beam of the network device under the current moment's attitude. And receive the contention resolution response message sent by the network device through the receiving beam.
  • FIG. 9C is a schematic diagram of receiving beam selection in another random access process.
  • the terminal device sends a random access request message
  • the alignment between the receiving beam 3 and the transmission beam of the network device is the best.
  • the terminal device waits for the network device to send a contention resolution response message.
  • the attitude of the terminal device changes.
  • the receiving beam 3 deviates from the transmitting beam of the network device, and the receiving beam 4 is better aligned with the transmitting beam of the network device.
  • the terminal device selects the receiving beam 4 to receive
  • the contention resolution response message sent by the network device completes the entire random access process after receiving the contention resolution response message sent by the network device.
  • the first UE posture when the terminal device is in a connected state discontinuous reception state or an idle state discontinuous reception state, the first UE posture includes a corresponding value of the terminal device before entering sleep.
  • a posture, and the second UE posture includes a posture corresponding to the terminal device when awake.
  • the discontinuous reception (DRX) feature can make the terminal device not need to be in the work monitoring state all the time, so that the terminal device can reduce power consumption.
  • the terminal device When the terminal device is in a connected discontinuous reception (CDRX) state, the terminal device does not need to constantly monitor the physical downlink control channel (PDCCH), and wakes up for a period of time in each DRX cycle. Time to receive data.
  • the DRX cycle includes two types: a long cycle and a short cycle.
  • the long cycle is an integer multiple of the short cycle.
  • the terminal device can adjust the use of a long period or a short period as needed. For example, in a certain long period, the terminal device wakes up and finds that data arrives. Then, in a subsequent period, the terminal device adjusts the long period to a short period. After a period of time, if no data arrives for several consecutive (for example, three) short cycles, the terminal device adjusts the short cycle to a long cycle to reduce power consumption.
  • FIG. 10 is a schematic diagram of a connected state discontinuous reception.
  • the long cycle is twice the short cycle.
  • the terminal device When the terminal device is in an idle discontinuous reception (IDRX) state, at this time, the terminal device does not have a dedicated wireless resource, and only needs to wake up at a fixed period (that is, the length of the paging period) specified by a network. To monitor the paging channel and broadcast channel. If the terminal device receives a paging message or system message from the paging channel or broadcast channel and needs further processing, the terminal device needs to transition from the idle state to the connected state, establish an RRC connection, and receive data. .
  • IDRX idle discontinuous reception
  • the posture of the terminal device has changed, causing the posture at the moment of waking (that is, the second UE posture) to be different from the posture recorded before entering sleep (that is, the first UE posture).
  • the terminal device adjusts the receiving beam based on the change in attitude and the positional relationship between the receiving beams, and determines the receiving beam with the best alignment with the transmitting beam of the network device (i.e., the second receiving beam) under the attitude at the time of waking. ), And receive data sent by the network device through the receiving beam.
  • FIG. 11 is a schematic diagram of receiving beam adjustment when a terminal device is in a discontinuous reception state.
  • the terminal device acquires data information and calculates the posture of the terminal device.
  • the terminal device acquires data information again through the sensor and calculates the terminal device.
  • Time attitude the terminal device adjusts the receiving beam based on the changes in the attitude at the above two moments, and selects the terminal device with the latest attitude and the receiving beam with the best alignment with the transmission beam of the network device to ensure that the terminal device wakes up Data can be received using a receive beam that is best aligned with the network device.
  • adjusting the receiving beam based on the posture change of the terminal device before going to sleep and waking up can ensure that the terminal device can use the appropriate receiving beam to receive data sent by the network device at the time of waking. To ensure uninterrupted transmission between terminal equipment and network equipment.
  • the method further includes: receiving the terminal device through the first receiving beam.
  • the receiving power of the synchronization reference information received by the terminal device in the attitude of the third UE is greater than the receiving power of the synchronization reference information received in the attitude of the fourth UE, The parameter information corresponding to the first UE attitude is corrected to the parameter information corresponding to the third UE attitude.
  • each receiving beam corresponds to a certain physical space.
  • a slight attitude change for example, the angle of rotation is small
  • it will not cause the switching of the receiving beam. If the terminal device keeps this fine
  • the change of the attitude exceeds a certain threshold, it will cause the switching of the receiving beam.
  • the attitude of the terminal device corresponding to the maximum value is best aligned with the network device. This attitude is used as the reference attitude of the receiving beam. If the attitude of the subsequent terminal device changes, it needs to be compared with the attitude corresponding to the maximum received power. Obtain the attitude change and judge whether it will cause the switching of the receiving beam.
  • the corresponding receiving beam is the receiving beam 0.
  • the attitude of the terminal device changes and the change is q1 it is not enough.
  • the corresponding receiving beam is still the receiving beam 0, and the attitude of the terminal device continues to change.
  • the change is q2 the attitude of the terminal device at this time is relative to the attitude at the beginning (no change).
  • the generated angle change needs to cause the switching of the receiving beam.
  • the terminal device switches the receiving beam to the receiving beam 2 and records the attitude corresponding to the receiving beam 2 as the attitude at this time (that is, the attitude of the terminal device after the change of q2).
  • the terminal device receives the synchronization reference information sent by the network device through the receiving beam 2 and measures the received power of the synchronization reference information.
  • the attitude of the terminal device continues to change. When the change is q3, the corresponding receiving beam is still receiving beam 2. At this time, the terminal device continues to receive the synchronization reference information sent by the network device through the receiving beam 2 and measures the synchronization reference information. Receiving power.
  • the terminal device will respond to the receiving beam 2
  • the parameter information of the attitude of the mobile phone is adjusted, and the parameter information of the attitude corresponding to the receiving beam 2 is the attitude at the current time (that is, the parameter information of the attitude of the terminal device after the change of q3).
  • the synchronization reference information sent by the network device can be received at the same time, and the synchronization can be compared by comparison.
  • the amount of reference information received power and correction of the parameter information corresponding to the attitude of the terminal device can eliminate the cumulative error caused by the continuous detection of the sensor, can make the switching of the receiving beam more accurate, and can also reduce the measurement frequency based on the synchronous reference information. Degrees, reducing power consumption.
  • the method further includes: if a rotation angle between the first UE attitude and the second UE attitude Less than the second threshold, the polarization direction of the second receiving beam is the same as the polarization direction of the first receiving beam; if the rotation angle between the attitude of the first UE and the attitude of the second UE is greater than the first threshold , The polarization direction of the second receiving beam is different from the polarization direction of the first receiving beam.
  • polarization isolation is relatively high.
  • the receiving beam of the terminal device is formed by a single-polarized antenna (horizontal or vertical polarization)
  • the terminal device needs to correctly receive the information sent by the network device, not only the receiving beam of the terminal device and the network device are required
  • the alignment of the beam direction of the transmitting beam is good, and the alignment of the polarization directions of the receiving beam and the transmitting beam is also good.
  • FIG. 12 a schematic diagram of a beam generated by a dual-polarized antenna is shown.
  • the horizontal polarization plane is in the XY plane and the vertical polarization plane is in the XZ plane.
  • the beam directions of the beam formed by the horizontal polarization and the vertical polarization are the same. It is the same as the positive semi-axis of the X axis.
  • the performance of transmitting and receiving information and data between the terminal device and the network device is related to the polarization direction alignment between the transmitting beam and the receiving beam.
  • the reception beam of a terminal device is formed by a horizontally or vertically polarized antenna; or the transmission beam of a network device is formed by a horizontally polarized antenna
  • the receiving beam of the terminal device is also formed by a horizontally polarized antenna; or the transmitting beam of the network device is formed by a vertically polarized antenna, and the receiving beam of the terminal device is also formed by a vertically polarized antenna.
  • the sensor of the terminal device obtains data information, and calculates the posture change and rotation angle change of the terminal device.
  • the second threshold may be a network device or the terminal device presets it, for example, it can be 45 degrees, which means that the polarization of the receiving beam (ie, the second receiving beam) after the attitude change is the same as that of the receiving beam (ie, the first receiving beam) before the attitude change.
  • the terminal device adjusts the receiving beam to a second receiving beam based on the change in attitude and the positional relationship between the receiving beams, and the second receiving beam has the same beam direction and the same polarization direction as the first receiving beam. For example, if the first receiving beam is formed by horizontal polarization, then the second receiving beam is also formed by horizontal polarization, and the first receiving beam is formed by vertical polarization, then the second receiving beam is also formed by vertical polarization.
  • the rotation angle is greater than 45 degrees, it means that the polarization direction of the receiving beam (ie, the second receiving beam) after the attitude change is different from that of the receiving beam (ie, the first receiving beam) before the attitude change.
  • the positional relationship between the receiving beams is adjusted to a second receiving beam, and the second receiving beam and the first receiving beam have the same beam direction and different polarization directions. For example, if the first receiving beam is formed by horizontal polarization, then the second receiving beam is formed by vertical polarization, the first receiving beam is formed by vertical polarization, and the second receiving beam is formed by horizontal polarization.
  • attitude change and rotation angle change of the terminal device through the sensor can ensure that after the terminal device changes the attitude, it can select the receiving beam with the correct polarization direction, and ensure the transmission performance between the terminal device and the network device.
  • the terminal device receives information sent by the network device through a second receiving beam.
  • the terminal device can receive the synchronization reference information sent by the network device through the second receiving beam; or the posture of the terminal device occurs during the random access process If the terminal device changes, the terminal device can receive the RAR response message or the contention resolution response message sent by the network device through the second receiving beam; or if the terminal device's posture changes during the RRC connection between the terminal device and the network device, the terminal device The service information or data sent by the network device may be received through the second receiving beam.
  • FIG. 13 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 100 includes at least a transceiver module 110 and a processing module 120. Among them:
  • the transceiver module 110 is configured to receive information sent by a network device
  • a processing module 120 configured to determine a first UE posture of the terminal device during the process in which the transceiver module 110 receives information sent by a network device through a first receiving beam, where the terminal device includes multiple receiving beams;
  • the processing module 120 is further configured to, when the terminal device changes from the first UE attitude to the second UE attitude, according to the azimuth relationship between the plurality of received beams, and the terminal device from Determining a second receiving beam from a change in the orientation of the attitude of the first UE to the attitude of the second UE;
  • the transceiver module 110 is further configured to receive information sent by a network device through the second receiving beam.
  • the terminal device when the attitude changes, can determine the second receiving beam after the attitude change according to the orientation relationship between multiple receiving beams and the orientation change of the UE attitude, which can reduce the physical space. Repeated scanning can improve scanning efficiency, improve random access success rate, and can reduce the measurement frequency based on reference signals, reduce power consumption, and improve the robustness of the link.
  • the information sent by the network device received by the transceiver module 110 includes synchronization reference information
  • the synchronization reference information includes a channel state information reference signal and / or a synchronization sequence block reference signal.
  • the receiving power of the channel state information reference signal or the synchronization sequence block reference signal received by the transceiver module 110 through the first receiving beam is greater than a first threshold.
  • the transceiver module 110 receives information sent by a network device through a first receiving beam
  • the first receiving beam does not include The blocked receiving beam
  • the attitude of the terminal device changes from the attitude of the first UE to the attitude of the second UE, there is a case where the multiple receiving beams are blocked by receiving beams, and the second receiving beam does not include The blocked receiving beam.
  • the processing module 120 is further configured to: during the process in which the transceiver module receives information sent by the network device through the first receiving beam, obtain a parameter of the UE attitude n times, and The parameters of the attitude are averaged, and it is determined that the attitude corresponding to the average is the first UE attitude, and n is a positive integer greater than or equal to 1.
  • the transceiver module 110 receives the network device transmission through the second receiving beam. Before receiving the information, the transceiver module 110 is further configured to send the random access preamble through the second receiving beam.
  • the transceiver module 110 is further configured to pass the first Two receiving beams receive the random access response sent by the network device.
  • the transceiver The module 110 is further configured to receive the contention resolution response message sent by the network device through the second receiving beam.
  • the first UE posture when the terminal device is in a connected state discontinuous reception state or an idle state discontinuous reception state, the first UE posture includes a posture corresponding to the terminal device before entering sleep, and The second UE posture includes a posture corresponding to when the terminal device wakes up.
  • the terminal device further includes a correction module 130, and is used for receiving the information sent by the network device through the first receiving beam through the transceiver module 110, if the terminal device is in a third UE posture
  • the received power of the received synchronization reference information is greater than the received power of the synchronization reference information received in a fourth UE posture, and the first UE posture is corrected to the third UE posture.
  • the plurality of receiving beams are formed by a single-polarized antenna
  • the polarization direction of the second receiving beam is the same as the polarization direction of the first receiving beam
  • the polarization direction of the second receiving beam is different from the polarization direction of the first receiving beam.
  • the transceiver module 110 in the embodiment of the present application may be implemented by a transceiver or a transceiver-related circuit component
  • the processing module 120 may be implemented by a processor or a processor-related circuit component
  • the correction module 130 may be related by a corrector or a corrector
  • the circuit components are implemented, and the terminal device can perform the steps performed by the terminal device in the beam management method shown in FIG. 4, which will not be repeated here. For details, refer to FIG. 4 and related content.
  • FIG. 14 is a schematic structural diagram of another terminal device according to an embodiment of the present application.
  • the terminal device in this embodiment includes a mobile phone, a tablet computer, a vehicle-mounted computer, and the like.
  • FIG. 14 is a block diagram showing a part of the structure of the mobile phone 200 related to the embodiment of the present application.
  • the mobile phone 200 includes a radio frequency (RF) circuit 210, a memory 220, other input devices 230, a display 240, a sensor 250, an audio circuit 260, an I / O subsystem 270, a processor 280, and a power supply. 290 and other components.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 14 does not constitute a limitation on the mobile phone, and may include more or fewer components than shown in the figure, or combine some components, or disassemble some components, or Different component arrangements.
  • the display screen 240 belongs to a user interface (UI), and the mobile phone 200 may include a user interface more than illustrated or less.
  • UI user interface
  • the RF circuit 210 may be used for receiving and sending signals during information transmission and reception or during a call.
  • the downlink information of the base station is received and processed by the processor 280.
  • the uplink data is sent to the base station.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 210 can also communicate with a network and other devices through wireless communication.
  • the wireless communication can use any communication standard or protocol, including, but not limited to, global system of mobile communication (GSM), general packet radio service (GPRS), code division multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), email, short message service (SMS), and so on.
  • GSM global system of mobile communication
  • GPRS general packet radio service
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE long term evolution
  • email short message service
  • SMS short message service
  • the RF circuit 210 may be configured to receive a channel state information reference signal or a synchronization sequence block reference signal, a random access response, and a contention resolution response message.
  • the RF circuit 210 may also be configured to use To send a random access preamble.
  • the memory 220 may be configured to store software programs and modules, and the processor 280 executes various functional applications and data processing of the mobile phone 200 by running the software programs and modules stored in the memory 220.
  • the memory 220 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store Data (such as audio data, phone book, etc.) created according to the use of the mobile phone 200.
  • the memory 220 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the memory 220 may store parameter change information of the UE attitude.
  • the other input devices 230 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the mobile phone 200.
  • other input devices 230 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), trackball, mouse, joystick, and light mouse (light mouse is a touch-sensitive device that does not display visual output). Or one or more of a touch sensitive surface formed by a touch screen).
  • the other input devices 230 are connected to other input device controllers 271 of the I / O subsystem 270, and perform signal interaction with the processor 280 under the control of the other device input controllers 271.
  • the display screen 240 may be used to display information input by the user or information provided to the user and various menus of the mobile phone 200, and may also accept user input.
  • the specific display screen 240 may include a display panel 241 and a touch panel 242.
  • the display panel 241 may be configured with a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • Touch panel 242 also known as touch screen, touch-sensitive screen, etc.
  • Touch panel 242 can collect user's contact or non-contact operations on or near it (for example, the user uses a finger, a stylus or any suitable object or accessory on touch panel 242 Or operations near the touch panel 242 may also include somatosensory operations; the operations include single-point control operations, multi-point control operations, and other types of operations.), And drive the corresponding connection device according to a preset program.
  • the touch panel 242 may include a touch detection device and a touch controller.
  • the touch detection device detects a user's touch orientation and posture, and detects signals brought by the touch operation, and transmits the signals to the touch controller; the touch controller receives touch information from the touch detection device and converts it into a processor capable of The processed information is then sent to the processor 280, which can receive commands from the processor 280 and execute them.
  • the touch panel 242 may be implemented using various types such as resistive, capacitive, infrared, and surface acoustic wave, and the touch panel 242 may also be implemented using any technology developed in the future.
  • the touch panel 242 may cover the display panel 241, and the user may display the display panel 241 on the display panel 241 according to the content displayed on the display panel 241 (including but not limited to, a soft keyboard, a virtual mouse, a virtual key, an icon, etc.). An operation is performed on or near the covered touch panel 242. After the touch panel 242 detects an operation on or near the touch panel 242, the touch panel 242 transmits the operation to the processor 280 through the I / O subsystem 270 to determine user input. The inputs provide corresponding visual outputs on the display panel 241 through the I / O subsystem 270.
  • the touch panel 242 and the display panel 241 are implemented as two separate components to implement the input and input functions of the mobile phone 200, in some embodiments, the touch panel 242 and the display panel 241 may be integrated The input and output functions of the mobile phone 200 are realized.
  • the mobile phone 200 may further include at least one sensor 250, such as a light sensor, a motion sensor, an electromagnetic wave absorption specific rate (SAR) sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor may adjust the brightness of the display panel 241 according to the brightness of the ambient light.
  • the proximity sensor may close the display panel 241 and the mobile phone 200 when the mobile phone 200 moves to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary.
  • the audio circuit 260, the speaker 261, and the microphone 262 may provide an audio interface between the user and the mobile phone 200.
  • the audio circuit 260 may transmit the converted signal of the received audio data to the speaker 261, and convert the signal from the speaker 261 into a sound signal for output.
  • the microphone 262 converts the collected sound signal into a signal and is received by the audio circuit 260. It is converted into audio data, and then the audio data is output to the RF circuit 208 for transmission to, for example, another mobile phone, or the audio data is output to the memory 220 for further processing.
  • the I / O subsystem 270 is used to control input and output external devices, and may include other device input controllers 271, sensor controllers 272, and display controllers 273.
  • one or more other input control device controllers 271 receive signals from and / or send signals to other input devices 230.
  • the other input devices 230 may include physical buttons (press buttons, rocker buttons, etc.) , Dial, slide switch, joystick, click wheel, light mouse (light mouse is a touch-sensitive surface that does not display visual output, or an extension of a touch-sensitive surface formed by a touch screen). It is worth noting that the other input control device controller 271 may be connected to any one or more of the above devices.
  • the display controller 273 in the I / O subsystem 270 receives signals from the display screen 240 and / or sends signals to the display screen 240. After the display screen 240 detects a user input, the display controller 273 converts the detected user input into interaction with a user interface object displayed on the display screen 240, that is, realizes human-computer interaction.
  • the sensor controller 272 may receive signals from and / or send signals to one or more sensors 250.
  • the processor 280 is the control center of the mobile phone 200, and uses various interfaces and lines to connect various parts of the entire mobile phone. By running or executing software programs and / or modules stored in the memory 220, and calling data stored in the memory 220, Perform various functions and process data of the mobile phone 200 to perform overall monitoring of the mobile phone.
  • the processor 280 may include one or more processing units; preferably, the processor 280 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the modem processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 280.
  • the processor 200 may be configured to determine that the first transmission block is mapped to the first codeword and the second transmission block is mapped to the second code according to the first information of the first DCI and / or the second DCI. word.
  • the mobile phone 200 further includes a power source 290 (such as a battery) for supplying power to various components.
  • a power source 290 such as a battery
  • the power source can be logically connected to the processor 280 through a power management system, so as to implement functions such as managing charging, discharging, and power consumption through the power management system.
  • the mobile phone 200 may further include a camera, a Bluetooth module, and the like, and details are not described herein again.
  • the terminal device can perform the steps performed by the terminal device in the beam management method shown in FIG. 4, which will not be repeated here. For details, refer to FIG. 4 and related content.
  • FIG. 15 is a schematic structural diagram of sensor-assisted beam management on a terminal device according to an embodiment of the present application.
  • the accelerometer, gyroscope, magnetometer, and electromagnetic wave absorption ratio sensor are connected to the micro control unit on the terminal device.
  • the accelerometer, gyroscope, and magnetometer perform detection to obtain detection data for calculating the posture of the terminal device. It is worth noting that accelerometers, gyroscopes, and magnetometers are used here to detect and acquire the data of the computing terminal device posture.
  • Electromagnetic wave absorption ratio sensor that is, a sensor used to measure SAR (Specific Absorption Rate, also known as electromagnetic wave energy specific absorption rate) value
  • SAR Specific Absorption Rate
  • magnetometer magnetometer
  • electromagnetic wave absorption ratio sensor send the detected data to the data fusion module on the micro control unit.
  • the data fusion module performs fusion algorithm processing on the collected data to calculate the change in attitude of the terminal device and the In the case of occlusion, the micro control unit sends the result information calculated by the data fusion module to the modem module.
  • the modem module selects the appropriate polarization beam in combination with the terminal device attitude change information and the terminal device beam position information.
  • the modem The module also corrects the attitude of the terminal device calculated from the data collected by the accelerometer, gyroscope, and magnetometer based on the measurement results of the synchronization sequence block and / or the channel state information reference signal.
  • the above-mentioned accelerometer, gyroscope, magnetometer, electromagnetic wave absorption ratio sensor, and micro-control unit can be integrated on one module to perform the function of the processing module 120 in FIG. 13, and the modem module can execute the correction module in FIG. 13. 130 function; or, a gyroscope, magnetometer, and electromagnetic wave absorption ratio sensor may be integrated on one device to perform the function of the sensor 250 in FIG. 14, a micro control unit and a modem module may be integrated on one module or device to perform Functions of the processor 280 in FIG. 15.
  • a method for improving beam management performance comprising at least one of the following:
  • the UE beam is a single polarization beam (that is, the beam is generated by a certain polarization of a dual polarization antenna)
  • the polarization direction of the UE beam is rotated, the other pole of the UE is selected based on the rotation angle. Beam in the direction of orientation.
  • a terminal characterized in that the terminal comprises:
  • Memory for storing instructions
  • the processor is configured to call an instruction in the memory and execute the method described in Embodiment 1.
  • a terminal characterized in that the terminal comprises: a processor, a memory, and a transceiver;
  • the transceiver is used to receive and send data
  • the memory is used for storing instructions
  • the processor is configured to call the instruction in the memory and execute the method according to Embodiment 1.
  • a terminal characterized in that the terminal is configured to execute the method described in Embodiment 1.
  • a computer program product comprising a computer program, characterized in that, when the computer program is executed on a computer, the computer will enable the computer to implement the method described in Embodiment 1.
  • a computer program characterized in that, when the computer program is executed on a computer, the computer will implement the method described in Embodiment 1.
  • a computer-readable storage medium having stored thereon a computer program, characterized in that when the computer program is executed on a certain computer, the computer will implement the method described in Embodiment 1.
  • An apparatus comprising: a processing module and a communication interface, wherein the processing module is configured to execute the method described in Embodiment 1.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server, or data center Transmission by wire (for example, coaxial cable, optical fiber, digital subscriber line) or wireless (for example, infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a storage disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state storage disk (Solid State Disk (SSD)), and the like.
  • a magnetic medium for example, a floppy disk, a storage disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state storage disk (Solid State Disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种波束管理方法和相关设备。其中,该方法包括:在终端设备通过第一接收波束接收网络设备发送的信息的过程中,确定该终端设备的第一UE姿态,该终端设备包括多个接收波束;在该终端设备从第一UE姿态变化到第二UE姿态的情况下,终端设备根据多个接收波束之间的方位关系,以及从第一UE姿态变化到第二UE姿态的方位变化情况,确定第二接收波束;该终端设备通过第二接收波束接收网络设备发送的信息。基于此方案,能够在终端设备的姿态发生变化时,选择合适的接收波束接收网络设备发送的信息,保证终端设备和网络设备之间的传输性能,而且能够降低基于参考信号测量频度,降低功率,提升链路的鲁棒性。

Description

一种波束管理方法和相关设备
本申请要求于2018年7月23日提交中国国家知识产权局、申请号为201810813756.6、申请名称为“一种提升波束管理性能的方法”的中国专利申请的优先权,以及于2018年11月2日提交中国国家知识产权局、申请号为201811300660.6、申请名称为“一种波束管理方法和相关设备”的中国专利申请的优先权,以及于2018年11月30日提交中国国家知识产权局、申请号为201811459624.4、申请名称为“一种波束管理方法和相关设备”的中国专利申请的优先权,它们的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束管理方法和相关设备。
背景技术
无线网络技术和应用的发展已经来到第五代移动通信技术(the 5th generation wireless systems,5G)时代,在2018年6月已经完成了第三代合作伙伴计划(3rd generation partnership project,3GPP)R15版本的冻结。3GPP定义了5G应用场景三大方向—增强移动带宽(enhance mobile broadband,eMBB)、大规模物联网(mass machine-type communication,eMTC)和超高可靠超低时延通信(ultra-reliable low latency communication,uRLLC)。其中eMBB将能够为每个小区提供10G比特每秒级的上下行吞吐量,为了获得这样的带宽,eMBB将使用更加广泛的频谱资源,从长期演进技术(long term evolution,LTE)使用的低频段扩展至高频段(例如可以达到100GHz)。
高频段电磁波具有高路损的特性,为了克服高频段导致的较大的传播损耗,实现更好的小区覆盖,一种基于波束赋形技术的信号传输机制被采用,以通过较大的天线增益来补偿信号传播过程中的传输损耗。
现有技术中,当信号基于波束赋形技术进行传输时,一旦用户发生移动或者用户设备(user equipment,UE)的姿态发生了改变(例如旋转),可能会出现传输信号对应的赋形波束的方向不再匹配旋转后的UE姿态,从而存在UE不能完成随机接入或者随机接入后性能较差,接收信号频繁中断的问题。这时需要在不同的赋形波束间进行切换,需要再次对发射赋形波束和接收赋形波束分别进行波束扫描和波束训练,完成满足接入条件收发波束对的选取。整个过程较为繁琐,而且在UE姿态快速变化的场景中,UE不能及时的做出响应,切换到合适的赋形波束进行信号的传输。
发明内容
本申请提供了一种波束管理方法和相关设备,能够实现在终端设备姿态发生变化时,减少UE对物理空间的重复扫描,提高扫描效率。
第一方面,提供了一种波束管理方法,所述方法包括:在终端设备通过第一接收波束接收网络设备发送的信息的过程中,确定所述终端设备的第一UE姿态,所述终端设备包括多个接收波束;在所述终端设备从所述第一UE姿态变化为第二UE姿态的情况下,至少根据所述多个接收波束之间的方位关系,以及所述终端设备从所述第一UE姿态变化到所述第二UE姿态的方位变化情况,确定第二接收波束;所述终端设备通过所述第二接收波束接收网络设备发送的信息。
在本申请提供的方案中,若终端设备在接收网络设备发送的信息的过程中UE姿态发生变化的情况下,该终端设备根据多个接收波束之间的方位关系,以及UE姿态的方位变化情况,确定经过姿态变化后的第二接收波束。这样,可以保证在UE姿态发生变化时,能够及时的利用第二接收波束接收网络设备发送的信息。因此,本申请提供的方案,能够实现在终端设备姿态发生变化时,减少物理空间的重复扫描,提高扫描效率,提升随机接入成功率,并且可以降低基于参考信号的测量频度,降低功耗,提升链路的鲁棒性。
可以理解的,终端设备的姿态包括而不限定为UE姿态,终端姿态,用户姿态。
结合第一方面,在第一方面的一种可能的实现方式中,所述网络设备发送的信息包括同步参考信息,所述同步参考信息包括信道状态信息参考信号和/或同步序列块参考信号。
在本申请提供的方案中,网络设备通过向终端设备发送信道状态信息参考信号或同步序列参考信号,终端设备通过不同的接收波束接收该信道状态信息参考信号或同步序列参考信号来实现波束扫描的过程。
结合第一方面,在第一方面的一种可能的实现方式中,所述第一接收波束接收到的所述信道状态信息参考信号或同步序列块参考信号的接收功率大于第一阈值。
在本申请提供的方案中,终端设备通过对接收到的信道状态信息参考信号或同步序列参考信号的接收功率进行测量,将满足条件(例如接收功率大于第一阈值)的接收波束确定为第一接收波束,整个确定过程实现简单。
结合第一方面,在第一方面的一种可能的实现方式中,在所述终端设备通过第一接收波束接收网络设备发送的信息的过程中,所述多个接收波束存在被遮挡的接收波束的情况下,所述第一接收波束不包括所述被遮挡的接收波束。
在本申请提供的方案中,终端设备预先对接收波束的遮挡情况进行检测,可以提高整个波束扫描的效率,减少对被遮挡的接收波束进行的不必要的接收功率的测量。
结合第一方面,在第一方面的一种可能的实现方式中,在所述终端设备从所述第一UE姿态变化为第二UE姿态的情况下,所述多个接收波束存在被遮挡的接收波束的情况,所述第二接收波束不包括所述被遮挡的接收波束。
在本申请提供的方案中,终端设备在UE姿态发生变化的情况下,预先通过对接收波束的遮挡情况进行检测,可以提高整个确定第二接收波束过程的效率,减少对被遮挡的接收波束进行的不必要的接收功率的测量。
结合第一方面,在第一方面的一种可能的实现方式中,在所述终端设备通过第一接收波束接收网络设备发送的信息的过程中,获取n次UE姿态的参数,对所述n次UE姿态的参数求平均值,确定所述平均值对应的UE姿态为第一UE姿态,n为大于 等于1的正整数。
在本申请提供的方案中,终端设备通过多次获取UE姿态的参数并求出该参数的平均值,将该平均值对应的UE姿态确定为第一UE姿态,可以保证得到的该第一UE姿态更加准确,有效避免出现误差。
结合第一方面,在第一方面的一种可能的实现方式中,在随机接入过程中,在所述第二UE姿态为所述终端设备发送随机接入前导时所对应的姿态的情况下,所述终端设备通过所述第二接收波束接收网络设备发送的信息之前还包括:所述终端设备通过所述第二接收波束发送所述随机接入前导。
在本申请提供的方案中,在终端设备在发送随机接入前导时,UE姿态发生变化的情况下,通过第二UE姿态下的第二接收波束发送随机接入前导,可以保证网络设备能够接收到终端设备发送的随机接入前导,完成随机接入过程。
结合第一方面,在第一方面的一种可能的实现方式中,在随机接入过程中,在所述第二UE姿态为所述终端设备接收所述网络设备发送的随机接入响应时所对应的姿态的情况下,所述终端设备通过所述第二接收波束接收网络设备发送的信息包括:所述终端设备通过所述第二接收波束接收所述网络设备发送的所述随机接入响应。
在本申请提供的方案中,若终端设备在接收网络设备发送的随机接入响应的过程中,姿态发生了变化,则终端设备通过第二接收波束接收该随机接入响应,可以保证终端设备能够准确接收到网络设备发送的随机接入响应,完成随机接入过程。
结合第一方面,在第一方面的一种可能的实现方式中,在基于竞争的随机接入过程中,在所述第二UE姿态为所述终端设备接收所述网络设备发送的竞争解决响应消息时所对应的姿态的情况下,所述终端设备通过所述第二接收波束接收网络设备发送的信息包括:所述终端设备通过所述第二接收波束接收所述网络设备发送的所述竞争解决响应消息。
在本申请提供的方案中,终端设备在等待竞争解决响应的过程中,姿态发生了变化,则终端设备通过第二接收波束接收该竞争解决响应消息,可以保证能够准确接收到网络设备发送的该竞争解决响应消息,提高接入效率和成功率。
结合第一方面,在第一方面的一种可能的实现方式中,在所述终端设备处于连接态非连续性接收状态或空闲态非连续性接收状态时,所述第一UE姿态包括所述终端设备在进入睡眠前所对应的姿态,所述第二UE姿态包括所述终端设备苏醒时所对应的姿态。
在本申请提供的方案中,终端设备可以记录进入睡眠前的姿态和醒来时的姿态,并基于这两个时刻的UE姿态变化调整接收波束,可以保证终端设备在醒来时能够使用合适的接收波束准确接收网络设备发送的信息。
结合第一方面,在第一方面的一种可能的实现方式中,所述在终端设备通过第一接收波束接收网络设备发送的信息的过程中,确定所述终端设备的第一UE姿态之后还包括:
在终端设备通过第一接收波束接收网络设备发送的信息的过程中,若所述终端设备在第三UE姿态下接收到的同步参考信息的接收功率大于在第四UE姿态下接收到的所述同步参考信息的接收功率,则将所述第一UE姿态校正为所述第三UE姿态。
在本申请提供的方案中,终端设备在基于姿态的变化调整接收波束的过程中,基于同步参考信息的检测来校正更新终端设备的姿态变化,可以消除仅依赖姿态变化而调整接收波束而累积的误差,保证能够在UE姿态变化的情况下使用合适的接收波束接收网络设备发送的信息。
结合第一方面,在第一方面的一种可能的实现方式中,在所述多个接收波束是由单极化天线形成的情况下,所述方法还包括:
若所述第一UE姿态与所述第二UE姿态的旋转角度小于第二阈值,则所述第二接收波束的极化方向与所述第一接收波束的极化方向相同;
若所述第一UE姿态与所述第二UE姿态的旋转角度大于第一阈值,则所述第二接收波束的极化方向与所述第一接收波束的极化方向不同。
在本申请提供的方案中,终端设备在UE姿态发送变化的过程中,通过对姿态变化所对应的旋转角度进行判断判断,并选择极化方向合适的接收波束,可以保证能够准确接收到网络设备发送的信息。
第二方面,提供了一种终端设备,该终端设备可以是用户设备(user equipment,UE),也可以是用户设备内的芯片。该终端设备具有实现上述第一方面涉及终端设备的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,该终端设备为UE时,包括:处理模块和收发模块,所述处理模块例如可以是处理器,所述收发模块例如可以是收发器,所述收发器可以包括射频电路和基带电路。收发模块用于支持终端设备与网络设备或其它终端设备之间的通信,一个示例中,收发模块,还可以包括发送模块和接收模块。例如,接收模块,用于接收接入网设备发送的信息;处理模块,用于在所述终端设备通过第一接收波束接收网络设备发送的信息的过程中,确定所述终端设备的第一UE姿态,所述终端设备包括多个接收波束,以及用于在所述终端设备从所述第一UE姿态变化为第二UE姿态的情况下,根据所述多个接收波束之间的方位关系,以及所述终端设备从所述第一UE姿态变化到所述第二UE姿态的方位变化情况,确定第二接收波束。可选的,该终端设备还可以包括存储器,所述存储器用于与处理器耦合,其保存该终端设备必要的程序指令和数据。
在另一种可能的设计中,该终端设备包括:处理器,基带电路,射频电路和天线。其中处理器用于实现对各个电路部分功能的控制,基带电路,射频电路和天线,用于指示终端设备与网络设备之间的通信。例如,在下行通信中,射频电路可以对经由天线接收到的网络设备发送的信息进行数字转换、滤波、放大和下变频等处理后,经由基带电路进行解码按协议解封装以获取其中携带的消息。可选的,该终端设备还包括存储器,其保存终端设备必要的程序指令和数据;在上行通信中,由基带电路生成需要发送的消息,经由射频电路进行模拟转换、滤波、放大和上变频等处理后,再由天线发送给网络设备。
在又一种可能的实现方式中,该终端设备包括处理器和调制解调器,处理器可以用于指令或操作系统,以实现对终端设备功能的控制,调制解调器可以按协议对数据 进行封装、编解码、调制解调、均衡等以生成需要上报的消息,以支持终端设备执行第一方面中相应的功能;调制解调器还可以用于接收网络设备发送的信息。
在又一种可能的实现方式中,当该终端设备为用户设备UE内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,此处理器可以用于对经由收发模块接收到的承载信息的数据分组进行滤波、解调、功率放大、解码等处理,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储单元存储的计算机执行指令,以支持终端设备执行上述第一方面相应的功能。可选地,所述存储单元可以为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端设备内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,简称ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,简称RAM)等。
在又一种可能的实现方式中,该装置包括处理器,该处理器用于与存储器耦合,并读取存储器中的指令并根据所述指令执行上述第一方面涉及终端设备的功能。该存储器可以位于该处理器内部,还可以位于该处理器外部。
第三方面,提供了一种计算机非瞬态存储介质,包括指令,当所述指令在终端设备上运行时,使得所述终端设备执行如第一方面任一项所述的方法。
附图说明
图1为本申请实施例提供的一种产生波束成型的示意图;
图2A为本申请实施例提供的一种基站发射的波束的示意图;
图2B为本申请实施例提供的一种工作波束对示意图;
图3为本申请实施例提供的一种系统架构示意图;
图4为本申请实施例提供的一种波束管理方法的流程示意图;
图5为本申请实施例提供的一种波束扫描过程中确定UE姿态示意图;
图6为本申请实施例提供的一种终端设备的接收波束示意图;
图7为本申请实施例提供的一种终端设备姿态变化下接收波束调整示意图;
图8为本申请实施例提供的一种扫描过程中接收波束选择示意图;
图9A为本申请实施例提供的一种随机接入过程中接收波束选择示意图;
图9B为本申请实施例提供的另一种随机接入过程中接收波束选择示意图;
图9C为本申请实施例提供的另一种随机接入过程中接收波束选择示意图;
图10为本申请实施例提供的一种连接态非连续性接收示意图;
图11为本申请实施例提供的一种终端设备处于非连续性接收状态时接收波束调整示意图;
图12为本申请实施例提供的一种双极化天线产生波束示意图;
图13为本申请实施例提供的一种终端设备的结构示意图;
图14为本申请实施例提供的另一种终端设备的结构示意图;
图15为本申请实施例提供的一种终端设备上传感器辅助波束管理的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于长期演进(Long Term Evolution,LTE)架构,还可以应用于通用移动通信系统(Universal Mobile Telecommunications System,UMTS)陆地无线接入网(UMTS Terrestrial Radio Access Network,UTRAN)架构,或者全球移动通信系统(Global System for Mobile Communication,GSM),增强型数据速率GSM演进(Enhanced Data Rate for GSM Evolution,EDGE)系统的无线接入网(GSM EDGE Radio Access Network,GERAN)架构。在UTRAN架构或GERAN架构中,移动性管理实体(Mobility Management Entity,MME)的功能由服务通用分组无线业务(General Packet Radio Service,GPRS)支持节点(Serving GPRS Support,SGSN)完成,SGW\PGW的功能由网关GPRS支持节点(Gateway GPRS Support Node,GGSN)完成。本发明实施例的技术方案还可以应用于其他通信系统,例如公共陆地移动网络(Public Land Mobile Network,PLMN)系统,甚至未来的5G通信系统或5G之后的通信系统等,本发明实施例对此不作限定。
本申请实施例涉及终端设备。终端设备可以为包含无线收发功能、且可以与网络设备配合为用户提供通讯服务的设备。具体地,终端设备可以指用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。例如,终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络或5G之后的网络中的终端设备等,本发明实施例对此不作限定。
本申请实施例还涉及网络设备。网络设备可以是用于与终端设备进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络或5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
本申请实施例中涉及的网络设备还可以称为无线接入网(Radio Access Network,RAN)设备。RAN设备在不同通信系统中对应不同的设备,例如,在2G系统中对应基站与基站控制器,在3G系统中对应基站与无线网络控制器(Radio Network Controller,RNC),在4G系统中对应演进型基站(Evolutional Node B,eNB),在5G系统中对应5G系统,如新无线接入系统(New Radio Access Technology,NR)中的接入网设备(例如gNB,CU,DU)。
为了便于理解本申请,首先在此介绍本申请实施例涉及的相关技术知识。
在无线通信中,可以设法使电磁波按特定方向传播,从而在不同空间的用户可以同时使用全部频谱资源不间断的进行通讯,即空分复用(space-division multiple access, SDMA)。当无线信号在空间中全方向辐射时,只有一小部分信号能量被接收机接收到成为有用信号,大部分信号并没有被相应的接收机接收到,而是辐射到了其它的接收机成为了干扰信号。当使用SDMA时,信号能量集中在特定的方向,一方面减少了对其它接收机的干扰,一方面也减少了信号能量的浪费。在5G通讯中,SDMA是大规模多输入多输出(massive multiple-input multiple-output,MIMO)技术应用的一个重要例子,即在发射端和接收端分别使用大规模发射天线和接收天线阵列,使信号通过发射端与接收端的大规模天线阵列传送和接收,从而改善通信质量。将无线信号(电磁波)只按特定方向传播的技术叫做波束成型。
电磁波的辐射方向由天线的特性决定,天线的方向特性可以由辐射方向图(即天线发射的信号在空间不同方向的幅度)来描述。普通的天线的辐射方向图方向性很弱(即每个方向的辐射强度差不多),而最基本的形成波束的方法是使用辐射方向性很强的天线(即瞄准一个方向辐射,类似手电筒),此外,波束成型需要可以随着接收端和发射端之间的相对位置而改变波束的方向,传统使用单一天线形成波束的方法需要机械转动天线才能改变波束的方向,因此,实用的波束成型方案使用的是智能天线阵列。
参见图1,是一种产生波束成型的示意图。如图1所示,当单个半波振子垂直放置,其对应的垂直面方向图增益是2.15分贝(dB),当两个半波振子排成一个垂直放置的直线阵,其对应的垂直方向图增益为5.15dB,当四个半波振子排成一个垂直放置的直线阵,其对应的垂直面方向图增益是8.15dB,可以看出,当半波振子数量越多,排成一个垂直放置的直线阵时,其对应的垂直方向图增益越大。在波束成型中,可以通过控制发射和接收的波之间的相对相位和幅度,可以做到电磁波辐射和接收增益都集中在一个方向上。
采用波束成型技术后,基站必须使用多个不同指向的波束才能完全覆盖小区。参见图2A,是一种基站发射的波束的示意图。如图2A所示,基站使用了8个波束覆盖其服务的小区,在下行过程中(即基站到终端设备的无线传输),基站依次使用不同指向的波束发射无线信号,该过程被称作波束扫描(beam measurement),同时,终端设备测量不同波束发射出的无线信号,并向基站报告相关信息,基站根据终端设备报告的相关信息确定对准该终端设备的最佳发射波束。若终端设备也有天线阵列,则在波束对准的过程中,不仅要考虑发射波束,还要考虑接收波束,因此,5G标准允许终端设备针对发射波束变换不同的接收波束,并从中选择最佳接收波束,获得一对最佳的波束对(一个发射波束和一个接收波束)。参见图2B,是一种工作波束对示意图。如图2B所示,基站的发射波束4和终端设备1的接收波束3的对齐度最好,基站的发射波束6和终端设备2的接收波束2的对齐度最好,所以终端设备1和终端设备2所对应的最佳波束对分别为(波束4,波束3)和(波束6,波束2)。
需要说明的是,在发起随机接入之前,需要扫描基站侧所有或者部分波束以及终端设备侧所有或者部分波束,然后从所测量波束对中找到达到接入门限或者性能最优的波束对用于随机接入,如果在波束扫描过程中或者随机接入过程中,终端设备的姿态位置发生了改变(例如终端设备发生了旋转),导致找到的波束对不再匹配,则可能引起随机接入时间过长或者随机接入失败。
本申请提供一种波束管理方法,能够有效解决在终端设备姿态发生变化时,扫描效率低和随机接入成功率低的问题,能够降低基于参考信号的测量频度,降低功耗,提升链路的鲁棒性。
参见图3,图3是本申请实施例的系统架构示意图。如图3所示,该网络架构包括终端设备110和网络设备120,该网络设备120具体可以为基站,终端设备110具体可以为手机,笔记本,平板电脑,客户端设备(customer premise equipment,CPE)等,网络设备120为终端设备110提供无线接入服务,每个网络设备120都对应一个服务覆盖区域,进入该区域的终端设备110可以通过无线信号与网络设备120进行通信。终端设备110在接收网络设备120发送的信息的过程中,可以基于自身的姿态变化,调整接收波束,保证能够正确不中断的接收到网络设备120发送的信息。基于本申请实施例提供的系统架构,网络设备120可以向终端设备110进行下行传输,例如网络设备120向终端设备110发送同步信号序列,终端设备110也可以向网络设备120进行上行传输,这里的传输具体可以指数据传输和物理层控制信令传输。
下面结合附图详细介绍本申请实施例的方法及相关装置。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
请参见图4,图4为本申请实施例提供的一种波束管理方法的流程示意图。图4中所描述的终端设备和网络设备可以分别对应图3中所示的终端设备110和网络设备120。如图4所示,该方法包括但不限于以下步骤:
S401:终端设备通过第一接收波束接收网络设备发送的信息。
具体地,终端设备具有多个接收波束,在接收网络设备发送的信息的过程中,选择该多个接收波束中的一个进行接收。
具体地,终端设备可以是在波束扫描的过程中,接收网络设备发送的信息,也可以是在随机接入过程中,接收网络设备发送的信息,也可以是在与网络设备建立了无线资源控制(radio resource control,RRC)连接之后,接收网络设备发送的信息。网络设备发送的信息是下行信息,该下行信息可以是网络设备周期性发送的信息,也可以是网络设备半静态发送的信息,或者动态非周期发送的信息,这里不做限定。
在一种可能的实现方式中,所述网络设备发送的信息包括同步参考信息,所述同步参考信息包括信道状态信息参考信号和/或同步序列块参考信号。
具体地,在终端设备发起随机接入之前,需要扫描网络设备侧的所有或部分波束以及终端设备侧的所有或部分波束,然后从所测量的波束对中找到达到接入门限或者性能最优的波束对用于随机接入。所以,终端设备为了选取最佳波束对,需要接收网络设备发送的同步参考信息。
进一步地,网络设备发送的同步参考信息可以是信道状态信息参考信号(channel state information reference signal,CSI-RS),或者是同步序列块(synchronization sequence block,SSB)参考信号,或者是其它的参考信号。
需要说明的是,网络设备通过不同的发射波束发送该同步参考信息,终端设备接 收到的是多个发射波束发送的同步参考信息。举例来说,若网络设备存在8个不同的发射波束以覆盖整个小区,终端设备存在10个接收波束,则对于终端设备的每一个接收波束,需要接收来自网络设备的8个发射波束发送的同步参考信息,并基于接收到的8个发射波束发送的同步参考信息进行信道质量测量,得到针对于每一个发射波束的信道质量测量结果,终端设备可以将该信道质量测量结果发送给网络设备。对于波束扫描过程,需要测量80次才能完成整个网络设备侧和终端设备侧所有波束的扫描,并基于信道质量测量结果,可以找到一对信道质量测量结果最好的波束对。
在一种可能的实现方式中,所述第一接收波束接收到的所述信道状态信息参考信号或同步序列块参考信号的接收功率大于第一阈值。
具体地,在波束扫描过程中,终端设备对于接收到的信道状态信息参考信号或同步序列块参考信号的接收功率进行测量,在完成所有的波束测量后,确定该信道状态信息参考信号或同步序列块参考信号的接收功率最大值对应的接收波束为第一接收波束,该第一阈值可以是终端设备设置的,也可以是网络设备设置的,这里不做限定。
在一种可能的实现方式中,在所述终端设备通过第一接收波束接收网络设备发送的信息的过程中,所述多个接收波束存在被遮挡的接收波束的情况下,所述第一接收波束不包括所述被遮挡的接收波束。
具体地,在波束扫描过程中,终端设备会通过电磁波吸收比值(specific absorption rate,SAR)传感器对天线位置遮挡情况进行检测,若检测到某些接收波束被遮挡,由于被遮挡的接收波束性能极差,无法用于随机接入以及后续的信息传输,则终端设备会忽略这些被遮挡的接收波束,不再利用这些被遮挡的接收波束接收网络设备发送的同步参考信息。
可以理解,终端设备通过利用SAR传感器对天线位置遮挡情况进行检测,忽略被遮挡的接收波束,可以有效减小扫描时间,提高整个扫描过程的扫描效率。
S402:终端设备确定第一UE姿态。
具体地,在波束扫描的过程中,网络设备在一个扫描周期内(例如一个SSB周期)使用不同的波束向终端设备发送同步参考信息(例如SSB参考信号),终端设备在一个周期内使用同一个接收波束接收该同步参考信息并进行参考信号接收功率(reference signal received power,RSRP)测量,在下一个扫描周期,终端设备使用另一个接收波束接收该同步参考信息并进行RSRP测量。与此同时,终端设备的传感器会进行检测获得数据信息,该传感器可以包括加速度计,陀螺仪,磁力计等,在传感器获得数据信息后,终端设备的微控制单元(microcontroller unit,MCU)上的传感器上下文模块(sensor context)对数据信息进行融合算法处理,计算得到终端设备的姿态。
需要说明的是,终端设备的传感器是不间断的获取数据信息的,可以计算得到多个时刻下的终端设备的姿态,例如,可以得到每一个扫描周期的终端设备的姿态,终端设备根据测量得到的RSRP值,确定最大的RSRP值所对应的终端设备的姿态为第一UE姿态。
在一种可能的实现方式中,所述确定所述终端设备的第一UE姿态,包括:在所述终端设备通过第一接收波束接收网络设备发送的信息的过程中,获取n次UE姿态 的参数,对所述n次UE姿态的参数求平均值,确定所述平均值对应的UE姿态为第一UE姿态,n为大于等于1的正整数。
具体地,在终端设备使用同一个接收波束接收网络设备发送的信息的过程中,终端设备的传感器多次获取数据信息,例如获取n次UE姿态的参数,对该n次UE姿态的参数求平均值,将该平均值对应的姿态确定为第一UE姿态,其中,n为大于等于1的正整数。
进一步地,在波束扫描的过程中,按照通信协议的默认配置,每20毫秒完成网络设备侧所有波束和终端设备侧一个波束的测量,即一个扫描周期为20毫秒。在一个扫描周期内,终端设备的MCU上的sensor context根据传感器多次获取的UE姿态参数进行计算得到多个终端设备的姿态,对该多个终端设备的姿态的参数求平均值,确定该平均值对应的UE姿态为第一UE姿态。参见图5,图5是一种波束扫描过程确定UE姿态的示意图。如图5所示,在第一个扫描周期(即20毫秒)中,终端设备的MCU上的sensor context多次计算获得4次终端设备的姿态,即每隔5毫秒获得一次终端设备的姿态,终端设备对获得的4次终端设备的姿态的参数求平均值,确定该平均值对应的姿态为终端设备利用波束1扫描时所对应的姿态,在第二个扫描周期或第三个扫描周期中,终端设备的MCU上的sensor context依旧每隔5毫秒计算获得一次终端设备的姿态,终端设备对获得的4次姿态的参数求平均值,确定该平均值对应的姿态为终端设备利用波束2或波束3进行扫描时所对应的姿态。
可以理解,终端设备通过在一个扫描周期中,多次获取终端设备的姿态,并对获取到的多个终端设备的姿态的参数求平均值,将该平均值对应的姿态作为当前波束扫描时的姿态,可以使最终确定的终端设备的姿态更加准确。
S403:终端设备从第一UE姿态变化到第二UE姿态,至少根据多个接收波束之间的方位关系以及方位变化情况,确定第二接收波束。
具体地,对于终端设备来说,为了保证能够接收到网络设备发送的信息,终端设备的多个接收波束需要覆盖整个球面空间位置,而且多个接收波束之间的相对位置不会随着终端设备的姿态或位置的变化而发送改变。
参见图6,是一种终端设备的接收波束示意图。如图6所示,终端设备具有8个接收波束,这8个接收波束覆盖整个球面空间位置,能够保证终端设备接收到来自各个方向的信息。此外,接收波束之间的位置是固定的,例如接收波束1和接收波束2之间的位置是固定的,接收波束7和接收波束8之间的位置也是固定的。
进一步地,若终端设备的姿态发生变化,终端设备通过传感器获取数据信息,计算出终端设备的方位变化情况(例如可以是角度变化,即终端设备变化后的姿态相对于变化前的姿态顺时针或逆时针旋转了多少度),根据该方位变化情况以及多个接收波束之间的相对位置关系,可以确定在终端设备的姿态发生改变后,哪一个接收波束能够满足接收条件(即哪一个接收波束与网络设备的发射波束对齐度更好),终端设备确定该接收波束为第二接收波束,并将接收波束调整至第二接收波束,利用该第二接收波束接收网络设备发送的信息。
参见图7,是一种终端设备姿态变化下接收波束调整示意图。如图7所示,在第一时刻,终端设备处于第一UE姿态时,该终端设备的接收波束2与网络设备侧的发 射波束对齐度最好,终端设备则利用接收波束2接收网络设备发送的信息,当在第二时刻,终端设备发生了姿态变化,从第一UE姿态变化到了第二UE姿态,此时,该终端设备的接收波束4与网络设备侧的发射波束对齐度最好,终端设备则利用接收波束4接收网络设备发送的信息。
需要说明的是,在波束扫描的过程中,需要在尽量短的时间内完成尽量多的球面空间位置的扫描,从而找到满足条件(即对齐度最好)的波束对。每扫描完终端设备的一个接收波束后,需要通过传感器获取数据信息,并计算识别终端设备的姿态变化,以确定在下一个扫描周期使用终端设备的哪一个接收波束。参见图8,图8是一种扫描过程中接收波束选择示意图。如图8所示,在第一时刻,终端设备在该姿态下使用接收波束1接收网络设备发送的同步参考信息,完成扫描过程,在完成接收波束1的扫描后,终端设备检测到发生了姿态变化,旋转到了新的姿态,由于在该新的姿态下,接收波束2和第一时刻的接收波束1所对应的覆盖扫描的物理空间相同,若终端设备在第二时刻使用接收波束2接收网络设备发送的同步参考信息完成扫描过程,则两次扫描结果是一样的,所以,终端设备基于识别出的姿态变化,在第二时刻使用其它的接收波束(除接收波束2以外的接收波束)完成扫描过程,例如,终端设备可以在第二时刻继续使用接收波束1接收网络设备发送的同步参考信息,因为在终端设备的姿态发生变化后,第二时刻接收波束1所对应的覆盖扫描的物理空间与第一时刻接收波束1所对应的覆盖扫描的物理空间不同。
可以理解,终端设备可以根据姿态的变化选择接收波束完成扫描过程,可以保证在更短的时间内达到对物理空间更好的覆盖,避免重复扫描,节约了扫描时间,提高了扫描效率。
在一种可能的实现方式中,在所述终端设备从所述第一UE姿态变化为第二UE姿态的情况下,所述多个接收波束存在被遮挡的接收波束的情况,所述第二接收波束不包括所述被遮挡的接收波束。
具体地,终端设备在发生姿态变化时,会通过SAR传感器对天线位置遮挡情况进行检测,若检测到某些接收波束被遮挡,由于被遮挡的接收波束性能极差,无法用于随机接入以及后续的信息传输,则终端设备会忽略这些被遮挡的接收波束,在姿态变化后,选择未被遮挡的接收波束接收网络设备发送的信息。
可以理解,终端设备通过利用SAR传感器对天线位置遮挡情况进行检测,忽略被遮挡的接收波束,可以保证终端设备在发送姿态变化后,仍能够准确接收到网络设备发送的信息,保证接入性能良好。
在一种可能的实现方式中,在随机接入过程中,且所述第二UE姿态为所述终端设备发送随机接入前导时所对应的姿态的情况下,所述终端设备通过所述第二接收波束接收网络设备发送的信息之前还包括:所述终端设备通过所述第二接收波束发送所述随机接入前导。
具体地,波束扫描的总时间与终端设备侧支持的接收波束成正比,若20毫秒完成网络设备侧所有发射波束和终端设备侧一个接收波束的测量,则要测量所有的波束,需要的总时间为:N*20毫秒,N为终端设备侧支持的接收波束的数量。假若在第一个扫描周期测量得到的波束对满足随机接入条件(例如接收到的SSB参考信号的接收功 率大于第一阈值),则从测量到终端设备发起随机接入的最短时延大约需要120毫秒,若在这个过程中(即在120毫秒中),终端设备的姿态发生了变化,终端设备仍使用测量得到的波束发起随机接入,可能会导致随机接入失败或者随机接入后性能较差。
进一步地,终端设备经过波束扫描后,已经确定满足条件的波束对,若在随机接入时刻需要发起随机接入,此时,终端设备通过传感器获取到数据信息,计算出该终端设备的姿态变化情况,确定当前时刻的姿态(即第二UE姿态),该姿态与终端设备在扫描时刻的姿态(即第一UE姿态)不相同,终端设备基于姿态的变化和各个接收波束之间的位置关系,对接收波束进行调整,即从扫描时刻确定的第一接收波束调整为姿态变化后的第二接收波束。
值得说明的是,在随机接入时刻,终端设备会使用与同步参考信息(例如SSB参考信号)关联的物理随机接入信道(physical random access channel,PRACH)资源发起随机过程,终端设备会通过调整后得到的第二接收波束向网络设备发送随机接入前导(preamble),并启动定时器等待网络设备侧的随机接入响应消息(random access response,RAR),该定时器可以是由RRC信令进行配置的。
参见图9A,图9A是一种随机接入过程中接收波束选择示意图。如图9A所示,在波束扫描后,终端设备处于第一UE姿态,此时接收波束1与网络设备的发射波束对齐度最好,在终端设备发送preamble时刻,终端设备的姿态发生了变化,此时,终端设备处于第二UE姿态,接收波束1与网络设备的发射波束发生了偏离,而接收波束2与网络设备的发射波束对齐度更好,终端设备选择接收波束2向网络设备发送随机接入前导。
可以理解,在随机接入的过程中,基于终端设备姿态的变化,调整接收波束,有利于提高随机接入成功率。
在一种可能的实现方式中,在随机接入过程中,且所述第二UE姿态为所述终端设备接收所述网络设备发送的随机接入响应时所对应的姿态的情况下,所述终端设备通过所述第二接收波束接收网络设备发送的信息包括:所述终端设备通过所述第二接收波束接收所述网络设备发送的所述随机接入响应。
具体地,终端设备向网络设备发送preamble后,网络设备会根据分配给终端设备发起随机接入的资源情况,选择合适的波束接收终端设备发送的preamble,并向终端设备发送RAR消息。
特别地,终端设备在等待网络设备发送RAR消息的过程中,该终端设备的姿态发生了变化,导致当前时刻的姿态(即第二UE姿态)与发送preamble时刻的姿态不同,终端设备基于姿态的变化和各个接收波束之间的位置关系,对接收波束进行调整,确定当前时刻的姿态下,与网络设备的发射波束对齐度最好的接收波束(即第二接收波束),并通过该接收波束接收网络设备发送的RAR消息。
参见图9B,图9B是另一种随机接入过程中接收波束选择示意图。如图9B所示,在终端设备发送preamble时,接收波束2与网络设备的发射波束对齐度最好,在终端设备发送preamble后,等待网络设备发送RAR消息的过程中,终端设备的姿态发生了变化,此时,接收波束2与网络设备的发射波束发生了偏离,而接收波束3与网络设备的发射波束对齐度更好,终端设备选择接收波束3接收网络设备发送的RAR消息。
可以理解,在随机接入过程中,基于终端设备姿态的变化,调整接收波束,有利于提高随机接入成功率。
在一种可能的实现方式中,在基于竞争的随机接入过程中,且所述第二UE姿态为所述终端设备接收所述网络设备发送的竞争解决响应消息时所对应的姿态的情况下,所述终端设备通过所述第二接收波束接收网络设备发送的信息包括:所述终端设备通过所述第二接收波束接收所述网络设备发送的所述竞争解决响应消息。
具体地,对于非竞争的随机接入过程,终端设备在接收到网络设备发送的RAR消息后,就完成了整个随机接入过程。而对于竞争的随机接入过程,终端设备在接收到网络设备发送的RAR消息后,需要再向网络设备发送随机接入请求消息(即Msg3),并启动竞争解决定时器,等待网络设备的竞争解决响应消息,该定时器可以是由RRC信令进行配置的。
特别地,终端设备在等待网络设备发送竞争解决响应消息的过程中,该终端设备的姿态发生了变化,导致当前时刻的姿态(即第二UE姿态)与发送随机接入请求消息时刻的姿态不同,终端设备基于姿态的变化和各个接收波束之间的位置关系,对接收波束进行调整,确定当前时刻的姿态下,与网络设备的发射波束对齐度最好的接收波束(即第二接收波束),并通过该接收波束接收网络设备发送的竞争解决响应消息。
参见图9C,图9C是另一种随机接入过程中接收波束选择示意图。如图9C所示,在终端设备发送随机接入请求消息时,接收波束3与网络设备的发射波束对齐度最好,在终端设备发送随机接入请求消息后,等待网络设备发送竞争解决响应消息的过程中,终端设备的姿态发生了变化,此时,接收波束3与网络设备的发射波束发生了偏离,而接收波束4与网络设备的发射波束对齐度更好,终端设备选择接收波束4接收网络设备发送的竞争解决响应消息,在接收到网络设备发送的竞争解决响应消息后,完成整个随机接入过程。
可以看出,在基于竞争的随机接入过程中,基于终端设备姿态的变化,调整接收波束,有利于提高随机接入成功率。
在一种可能的实现方式中,在所述终端设备处于连接态非连续性接收状态或空闲态非连续性接收状态时,所述第一UE姿态包括所述终端设备在进入睡眠前所对应的姿态,所述第二UE姿态包括所述终端设备苏醒时所对应的姿态。
具体地,非连续性接收(discontinuous reception,DRX)特性可以使终端设备不需要一直处于工作监听状态,使终端设备能够降低功耗。当终端设备处于连接态非连续性接收(connected discontinuous reception,CDRX)状态时,终端设备不需要一直监听物理下行控制信道(physical downlink control channel,PDCCH),在每个DRX周期内会定时醒来一段时间接收数据。DRX周期包括长周期和短周期两种,长周期是短周期的整数倍。
进一步地,终端设备可以根据需要调整使用长周期或短周期,例如,在某个长周期内,终端设备醒来发现有数据到达,那么在后续一段时间内,终端设备将长周期调整为短周期,经过一段时间后,连续几个(例如3个)短周期内,都没有数据到达,则终端设备将短周期调整为长周期以降低功耗。
参见图10,图10是一种连接态非连续性接收示意图。如图10所示,长周期是短 周期的两倍,在每一个周期(长周期或短周期)中,存在一段工作时间,在该时间段内,终端设备从睡眠状态清醒过来并监控接收数据。
当终端设备处于空闲态非连续接收(idle discontinuous reception,IDRX)状态时,此时,终端设备没有专有的无线资源,只需要在一个网络指定的固定的周期(即寻呼周期长度)上醒来监听寻呼信道和广播信道,如果终端设备从寻呼信道或广播信道接收到寻呼消息或系统消息,需要进一步处理,则终端设备需要从空闲态转到连接态,建立RRC连接,接收数据。
需要说明的是,终端设备在睡眠过程中,该终端设备的姿态发生了变化,导致醒来时刻的姿态(即第二UE姿态)与进入睡眠前所记录的姿态(即第一UE姿态)不同,终端设备基于姿态的变化和各个接收波束之间的位置关系,对接收波束进行调整,确定醒来时刻的姿态下,与网络设备的发射波束对齐度最好的接收波束(即第二接收波束),并通过该接收波束接收网络设备发送的数据。
参见图11,图11是一种终端设备处于非连续性接收状态时接收波束调整示意图。如图11所示,终端设备在进入睡眠前,通过传感器获取数据信息并计算得到终端设备的姿态,在终端设备从睡眠状态醒来前,终端设备通过传感器再次获取数据信息并计算得到终端设备此时的姿态,终端设备基于上述两个时刻的姿态的变化,调整接收波束,选择终端设备在最新的姿态下,与网络设备的发射波束对齐度最好的接收波束,保证终端设备在醒来时可以使用与网络设备对齐度最好的接收波束接收数据。
可以理解,在终端设备处于CDRX或IDRX时,基于终端设备进入睡眠前和醒来时刻姿态的变化,调整接收波束,可以保证终端设备在醒来时刻能够使用合适的接收波束接收网络设备发送的数据,保证终端设备和网络设备之间传输不中断。
在一种可能的实现方式中,在终端设备通过第一接收波束接收网络设备发送的信息的过程中,确定所述终端设备的第一UE姿态之后还包括:在终端设备通过第一接收波束接收网络设备发送的信息的过程中,若所述终端设备在第三UE姿态下接收到的同步参考信息的接收功率大于在第四UE姿态下接收到的所述同步参考信息的接收功率,则将所述第一UE姿态对应的参数信息校正为所述第三UE姿态对应的参数信息。
具体地,每一个接收波束都对应覆盖一定的物理空间,在终端设备发生较细微的姿态变化时(例如旋转的角度较小),不会引起接收波束的切换,若终端设备一直保持这种细微的变化,当其姿态变化超过某个临界值时,就会引起接收波束的切换。
进一步地,在终端设备姿态变化而不引起接收波束切换的过程中,所有姿态都对应同一个接收波束,但是每一个姿态下所接收到的同步参考信息的接收功率都不一样,其中,接收功率最大值所对应的终端设备的姿态与网络设备对齐度最好,将该姿态作为该接收波束的基准姿态,若后续终端设备发生姿态变化,则需要与上述接收功率最大值所对应的姿态进行比较得到姿态变化情况并判断是否会引起接收波束的切换。
举例来说,在终端设备处于连接态并且是非DRX时,终端设备的姿态未发生变化时,其对应的接收波束为接收波束0,当终端设备的姿态发生变化,其变化为q1时,还不足以引起接收波束的切换,其对应的接收波束仍为接收波束0,终端设备的姿态继续变化,其变化为q2时,此时终端设备的姿态相对于最开始(未发生变化)时的姿 态所产生的角度变化需要引起接收波束的切换,终端设备将接收波束切换至接收波束2,并且记录接收波束2对应的姿态为此时的姿态(即经过q2变化的终端设备的姿态),此时,终端设备通过接收波束2接收网络设备发送的同步参考信息,测量得到该同步参考信息的接收功率。终端设备的姿态继续变化,其变化为q3时,其对应的接收波束仍为接收波束2,此时,终端设备继续通过接收波束2接收网络设备发送的同步参考信息,测量得到该同步参考信息的接收功率,若在经过q3变化的姿态下,接收波束2接收到的同步参考信息的接收功率比在经过q2变化的姿态下的同步参考信息的接收功率大,终端设备将会对接收波束2对应的姿态的参数信息进行调整,并且重新记录接收波束2对应的姿态的参数信息为当前时刻的姿态(即经过q3变化的终端设备的姿态的参数信息)。
可以理解,在通过传感器获取数据信息并计算得到各个时刻终端设备的姿态,基于终端设备的姿态变化调整终端设备的接收波束的过程中,可以同时接收网络设备发送的同步参考信息,并通过比较同步参考信息接收功率的大小,校正终端设备的姿态对应的参数信息,可以消除持续依赖于传感器检测导致的累积误差,可以使接收波束的切换更加准确,此外,还可以降低基于同步参考信息的测量频度,降低功耗。
在一种可能的实现方式中,在所述多个接收波束是由单极化天线形成的情况下,所述方法还包括:若所述第一UE姿态与所述第二UE姿态的旋转角度小于第二阈值,则所述第二接收波束的极化方向与所述第一接收波束的极化方向相同;若所述第一UE姿态与所述第二UE姿态的旋转角度大于第一阈值,则所述第二接收波束的极化方向与所述第一接收波束的极化方向不同。
具体地,在高频场景下,极化隔离度比较高。在终端设备的接收波束是由单极化天线(水平极化或者垂直极化)形成的情况下,若终端设备需要正确的接收网络设备发送的信息,则不仅需要终端设备的接收波束与网络设备的发射波束的波束方向对齐度较好,而且产生接收波束和发射波束的极化方向对齐度也较好。
参见图12,是一种双极化天线产生波束示意图。如图12所示,存在水平极化和垂直极化,水平极化平面在XY平面,垂直极化平面在XZ平面,但是水平极化和垂直极化所形成的波束的波束方向是一致的,与X轴正半轴指向相同,此外,终端设备和网络设备之间的收发信息和数据的性能与发射波束和接收波束之间的极化方向对齐度相关。
特别地,当网络设备的发射波束是双极化的天线形成的,终端设备的接收波束是水平极化或者垂直极化的天线形成的;或者是网络设备的发射波束是水平极化的天线形成的,终端设备的接收波束也是水平极化的天线形成的;或者是网络设备的发射波束是垂直极化的天线形成的,终端设备的接收波束也是垂直极化的天线形成的。在上述情况下,若终端设备的姿态发生了变化,终端设备的传感器获取数据信息,计算出终端设备的姿态变化和旋转角度变化,若旋转角度小于第二阈值,该第二阈值可以是网络设备或终端设备进行预先设定的,例如可以是45度,则表示姿态变化后的接收波束(即第二接收波束)与姿态变化前的接收波束(即第一接收波束)的极化方向相同,终端设备基于姿态的变化和各个接收波束之间的位置关系,将接收波束调整为第二接收波束,且该第二接收波束与第一接收波束的波束方向相同,极化方向也相同。例如, 第一接收波束是水平极化形成的,那么第二接收波束也是水平极化形成的,第一接收波束是垂直极化形成的,那么第二接收波束也是垂直极化形成的。
若旋转角度大于45度,则表示姿态变化后的接收波束(即第二接收波束)与姿态变化前的接收波束(即第一接收波束)的极化方向不同,终端设备基于姿态的变化和各个接收波束之间的位置关系,将接收波束调整为第二接收波束,且该第二接收波束与第一接收波束的波束方向相同,极化方向不同。例如,第一接收波束是水平极化形成的,那么第二接收波束则是垂直极化形成的,第一接收波束是垂直极化形成的,那么第二接收波束则是水平极化形成的。
可以理解,通过传感器获取终端设备的姿态变化和旋转角度变化,可以保证在终端设备在发生姿态变化后,能够选择正确的极化方向的接收波束,保证终端设备与网络设备之间的传输性能。
S404:终端设备通过第二接收波束接收网络设备发送的信息。
具体地,若是在波束扫描的过程中,终端设备发生姿态变化,则终端设备可以通过第二接收波束接收网络设备发送的同步参考信息;或者是在随机接入的过程中,终端设备的姿态发生变化,则终端设备可以通过第二接收波束接收网络设备发送的RAR响应消息或竞争解决响应消息;或者是在终端设备与网络设备建立了RRC连接过程中,终端设备的姿态发生变化,则终端设备可以通过第二接收波束接收网络设备发送的业务信息或数据。
为了便于更好地实施本申请实施例的上述方案,相应地,下面还提供用于配合实施上述方案的相关装置。
参见图13,图13是本申请实施例提供的一种终端设备的结构示意图,该终端设备100,至少包括:收发模块110和处理模块120;其中:
收发模块110,用于接收网络设备发送的信息;
处理模块120,用于在所述收发模块110通过第一接收波束接收网络设备发送的信息的过程中,确定所述终端设备的第一UE姿态,所述终端设备包括多个接收波束;
所述处理模块120,还用于在所述终端设备从所述第一UE姿态变化为第二UE姿态的情况下,根据所述多个接收波束之间的方位关系,以及所述终端设备从所述第一UE姿态变化到所述第二UE姿态的方位变化情况,确定第二接收波束;
所述收发模块110,还用于通过该第二接收波束接收网络设备发送的信息。
在本申请实施例中,终端设备可以在姿态发生变化时,根据多个接收波束之间的方位关系,以及UE姿态的方位变化情况,确定经过姿态变化后的第二接收波束,能够减少物理空间的重复扫描,提高扫描效率,提升随机接入成功率,并且可以降低基于参考信号的测量频度,降低功耗,提升链路的鲁棒性。
作为一个实施例,所述收发模块110接收到的网络设备发送的信息包括同步参考信息,所述同步参考信息包括信道状态信息参考信号和/或同步序列块参考信号。
作为一个实施例,所述收发模块110通过第一接收波束接收到的所述信道状态信息参考信号或同步序列块参考信号的接收功率大于第一阈值。
作为一个实施例,在所述收发模块110通过第一接收波束接收网络设备发送的信 息的过程中,所述多个接收波束存在被遮挡的接收波束的情况下,所述第一接收波束不包括所述被遮挡的接收波束。
作为一个实施例,在所述终端设备从所述第一UE姿态变化为第二UE姿态的情况下,所述多个接收波束存在被遮挡的接收波束的情况,所述第二接收波束不包括所述被遮挡的接收波束。
作为一个实施例,所述处理模块120还用于,在所述收发模块通过所述第一接收波束接收网络设备发送的信息的过程中,获取n次UE姿态的参数,对所述n次UE姿态的参数求平均值,确定所述平均值对应的姿态为第一UE姿态,n为大于等于1的正整数。
作为一个实施例,在所述第二UE姿态为所述终端设备发送随机接入前导时所对应的姿态的情况下,所述收发模块110通过所述第二接收波束接收网所述络设备发送的信息之前,所述收发模块110还用于,通过所述第二接收波束发送所述随机接入前导。
作为一个实施例,在所述第二UE姿态为所述终端设备接收所述网络设备发送的随机接入响应时所对应的姿态的情况下,所述收发模块110还用于,通过所述第二接收波束接收所述网络设备发送的所述随机接入响应。
作为一个实施例,在基于竞争的随机接入过程中,在所述第二UE姿态为所述终端设备接收所述网络设备发送的竞争解决响应消息时所对应的姿态的情况下,所述收发模块110还用于,通过所述第二接收波束接收所述网络设备发送的所述竞争解决响应消息。
作为一个实施例,在所述终端设备处于连接态非连续性接收状态或空闲态非连续性接收状态时,所述第一UE姿态包括所述终端设备在进入睡眠前所对应的姿态,所述第二UE姿态包括所述终端设备苏醒时所对应的姿态。
作为一个实施例,所述终端设备还包括校正模块130,用于在所述收发模块110通过第一接收波束接收所述网络设备发送的信息的过程中,若所述终端设备在第三UE姿态下接收到的同步参考信息的接收功率大于在第四UE姿态下接收到的所述同步参考信息的接收功率,将所述第一UE姿态校正为所述第三UE姿态。
作为一个实施例,在所述多个接收波束是由单极化天线形成的情况下,
若所述第一UE姿态与所述第二UE姿态的旋转角度小于第二阈值,则所述第二接收波束的极化方向与所述第一接收波束的极化方向相同;
若所述第一UE姿态与所述第二UE姿态的旋转角度大于第一阈值,则所述第二接收波束的极化方向与所述第一接收波束的极化方向不同。
可以理解,本申请实施例中的收发模块110可以由收发器或收发器相关电路组件实现,处理模块120可以由处理器或处理器相关电路组件实现,校正模块130可以由校正器或校正器相关电路组件实现,终端设备可以执行如图4所示波束管理方法中终端设备执行的步骤,此处不再展开赘述,具体请参见图4以及相关内容。
参见图14,图14是本申请实施例提供的另一种终端设备的结构示意图。本实施方式的终端设备包括手机、平板电脑、车载电脑等。
以终端为手机为例,图14示出的是与本申请实施例相关的手机200的部分结构的 框图。参考图14,手机200包括:射频(radio frequency,RF)电路210、存储器220、其他输入设备230、显示屏240、传感器250、音频电路260、I/O子系统270、处理器280、以及电源290等部件。本领域技术人员可以理解,图14中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领领域技术人员可以理解显示屏240属于用户界面(user interface,UI),且手机200可以包括比图示或者更少的用户界面。
下面结合图14对手机200的各个构成部件进行具体的介绍:
RF电路210可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器280处理;另外,将设计上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(lownoise amplifier,LNA)、双工器等。此外,RF电路210还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(globalsystem of mobile communication,GSM)、通用分组无线服务(generalpacket radio service,GPRS)、码分多址(codedivision multiple access,CDMA)、宽带码分多址(widebandcode division multiple access,WCDMA)、长期演进(longterm evolution,LTE)、电子邮件、短消息服务(shortmessaging service,SMS)等。在本申请实施例中,RF电路210可以被配置为用于接收信道状态信息参考信号或同步序列块参考信号、随机接入响应、竞争解决响应消息,此外,RF电路210还可以被配置为用于发送随机接入前导。
存储器220可用于存储软件程序以及模块,处理器280通过运行存储在存储器220的软件程序以及模块,从而执行手机200的各种功能应用以及数据处理。存储器220可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图象播放功能等)等;存储数据区可存储根据手机200的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器220可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。在本申请具体的实施例中,存储器220可以存储了UE姿态的参数变化信息。
其他输入设备230可用于接收输入的数字或字符信息,以及产生与手机200的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备230可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。其他输入设备230与I/O子系统270的其他输入设备控制器271相连接,在其他设备输入控制器271的控制下与处理器280进行信号交互。
显示屏240可用于显示由用户输入的信息或提供给用户的信息以及手机200的各种菜单,还可以接受用户输入。具体的显示屏240可包括显示面板241,以及触控面板242。其中显示面板241可以采用液晶显示器(liquidcrystal display,LCD)、有机发光二极管(organiclight-emitting diode,OLED)等形式来配置显示面板241。触控面板242,也称为触摸屏、触敏屏等,可收集用户在其上或附近的接触或者非接触操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板242上或在触控面板242附近 的操作,也可以包括体感操作;该操作包括单点控制操作、多点控制操作等操作类型。),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板242可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位、姿势,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成处理器能够处理的信息,再送给处理器280,并能接收处理器280发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板242,也可以采用未来发展的任何技术实现触控面板242。进一步的,触控面板242可覆盖显示面板241,用户可以根据显示面板241显示的内容(该显示内容包括但不限于,软键盘、虚拟鼠标、虚拟按键、图标等等),在显示面板241上覆盖的触控面板242上或者附近进行操作,触控面板242检测到在其上或附近的操作后,通过I/O子系统270传送给处理器280以确定用户输入,随后处理器280根据用户输入通过I/O子系统270在显示面板241上提供相应的视觉输出。虽然在图14中,触控面板242与显示面板241是作为两个独立的部件来实现手机200的输入和输入功能,但是在某些实施例中,可以将触控面板242与显示面板241集成而实现手机200的输入和输出功能。
手机200还可包括至少一种传感器250,比如光传感器、运动传感器、电磁波吸收比值(specific absorption rate,SAR)传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板241的亮度,接近传感器可在手机200移动到耳边时,关闭显示面板241和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机200还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路260、扬声器261,麦克风262可提供用户与手机200之间的音频接口。音频电路260可将接收到的音频数据转换后的信号,传输到扬声器261,由扬声器261转换为声音信号输出;另一方面,麦克风262将收集的声音信号转换为信号,由音频电路260接收后转换为音频数据,再将音频数据输出至RF电路208以发送给比如另一手机,或者将音频数据输出至存储器220以便进一步处理。
I/O子系统270用来控制输入输出的外部设备,可以包括其他设备输入控制器271、传感器控制器272、显示控制器273。可选的,一个或多个其他输入控制设备控制器271从其他输入设备230接收信号和/或者向其他输入设备230发送信号,其他输入设备230可以包括物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)。值得说明的是,其他输入控制设备控制器271可以与任一个或者多个上述设备连接。所述I/O子系统270中的显示控制器273从显示屏240接收信号和/或者向显示屏240发送信号。显示屏240检测到用户输入后,显示控制器273将检测到的用户输入转换为与显示在显示屏240上的用户界面对象的交互,即实现人机交互。传感器控制器272可以从一个或者多个传感器250接收信号和/或者向一个或者 多个传感器250发送信号。
处理器280是手机200的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器220内的软件程序和/或模块,以及调用存储在存储器220内的数据,执行手机200的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器280可包括一个或多个处理单元;优选的,处理器280可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器280中。在本申请具体的实施例中,处理器200可以用于根据第一DCI的第一信息和/或第二DCI确定第一传输块映射到第一码字,第二传输块映射到第二码字。
手机200还包括给各个部件供电的电源290(比如电池),优选的,电源可以通过电源管理系统与处理器280逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
尽管未示出,手机200还可以包括摄像头、蓝牙模块等,在此不再赘述。
终端设备可以执行如图4所示波束管理方法中终端设备执行的步骤,此处不再展开赘述,具体请参见图4以及相关内容。
结合图13和图14所示的终端设备的结构示意图,对终端设备的波束管理过程作进一步的说明。参见图15,图15为本申请实施例提供的一种终端设备上传感器辅助波束管理的结构示意图。如图15所示,加速度计、陀螺仪、磁力计以及电磁波吸收比值传感器与终端设备上的微控制单元进行连接,加速度计、陀螺仪、磁力计进行检测获得用于计算终端设备姿态的检测数据,值得说明的是,这里使用了加速度计、陀螺仪和磁力计来检测获取计算终端设备姿态的数据,应理解,也可以是只使用它们中的任意一种或任意一个组合来检测获取计算终端设备姿态的数据。本申请对此不作限定。电磁波吸收比值传感器(即用于测量SAR(Specific Absorption Rate,特定吸收率,也称之为电磁波能量比吸收率)值的传感器)进行检测获得用于计算手握天线位置情况的检测数据,加速度计、陀螺仪、磁力计以及电磁波吸收比值传感器将检测到的数据发送给微控制单元上的数据融合模块,数据融合模块对这些采集到的数据进行融合算法处理,计算出终端设备姿态的变化和被遮挡的情况,微控制单元将数据融合模块计算得到的结果信息发送给调制解调器模块,调制解调器模块结合终端设备姿态的变化信息以及终端设备波束的方位信息,选择合适的极化方向的波束,此外,调制解调器模块还会基于同步序列块和/或信道状态信息参考信号的测量结果对通过加速度计、陀螺仪、磁力计采集数据计算得到的终端设备姿态进行校正。
值得说明的是,上述加速度计、陀螺仪、磁力计、电磁波吸收比值传感器以及微控制单元可以集成在一个模块上,以执行图13中处理模块120的功能,调制解调器模块可以执行图13中校正模块130的功能;或者,陀螺仪、磁力计、电磁波吸收比值传感器可以集成在一个器件上,以执行图14中传感器250的功能,微控制单元和调制解调器模块可以集成在一个模块或器件上,以执行图15中处理器280的功能。
应理解,上述各个模块或器件以及它们之间的集成情况,只是示例性的说明,本 申请对此并不限定。
本申请提供的实施例还可以包括:
1.一种提升波束管理性能的方法,其特征在于,包括以下中的至少一项:
(1)在SSB波束扫描过程中,如果某些UE端波束被遮挡,则UE跳过这些波束的扫描;
(2)在SSB波束扫描测量波束对时记录测量时刻的UE姿态位置,在随机接入时基于UE姿态的变化,调整UE的接入波束;
(3)在随机接入过程中UE发起了preamble和Msg3时记录UE的姿态,基于姿态的变化调整随后接收基站侧响应的UE侧接收波束;
(4)在CDRX/IDRX阶段,UE从睡眠状态中醒来时,检测UE姿态的变化,确保醒来时UE使用合适的波束收发数据;
(5)在UE处于连接态但是非DRX状态时,检测UE姿态的变化,基于姿态的变化调整UE的收发波束;
(6)以UE参考信号为基准校准UE姿态的检测,防止UE姿态检测的累积误差;
(7)对于UE波束是单极化波束时(即该波束是双极化天线的某一个极化产生),如果UE波束的极化方向发生旋转时,基于旋转的角度选择UE的另外一个极化方向的波束。
2.一种终端,其特征在于,所述终端包括:
存储器,用于存储指令;
处理器,用于调用所述存储器中的指令,执行上述实施例1所述的方法。
3.一种终端,其特征在于,所述终端包括:处理器,存储器和收发器;
所述收发器,用于接收和发送数据;
所述存储器用于存储指令;
所述处理器用于调用所述存储器中的所述指令,执行如实施例1所述的方法。
4.一种终端,其特征在于,所述终端被配置为执行如实施例1所述的方法。
5.一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1所述的方法。
6.一种计算机程序,其特征在于,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1所述的方法。
7.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序在某一计算机上执行时,将会使所述计算机实现实施例1所述的方法。
8.一种装置,其特征在于,包括:处理模块与通信接口,所述处理模块用于执行实施例1所述的方法。
9.如实施例8所述的装置,其特征在于,所述装置为终端上的元件(如芯片)。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、存储盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态存储盘Solid State Disk(SSD))等。

Claims (28)

  1. 一种波束管理方法,其特征在于,包括:
    在终端设备通过第一接收波束接收网络设备发送的信息的过程中,确定所述终端设备的第一UE姿态,所述终端设备包括多个接收波束;
    在所述终端设备从所述第一UE姿态变化为第二UE姿态的情况下,至少根据所述多个接收波束之间的方位关系,以及所述终端设备从所述第一UE姿态变化到所述第二UE姿态的方位变化情况,确定第二接收波束;
    所述终端设备通过所述第二接收波束接收网络设备发送的信息。
  2. 如权利要求1所述的方法,其特征在于,所述网络设备发送的信息包括同步参考信息,所述同步参考信息包括信道状态信息参考信号和/或同步序列块参考信号。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一接收波束接收到的所述信道状态信息参考信号或同步序列块参考信号的接收功率大于第一阈值。
  4. 如权利要求1至3任一项所述的方法,其特征在于,在所述终端设备通过第一接收波束接收网络设备发送的信息的过程中,所述多个接收波束存在被遮挡的接收波束的情况下,所述第一接收波束不包括所述被遮挡的接收波束。
  5. 如权利要求1至3任一项所述的方法,其特征在于,在所述终端设备从所述第一UE姿态变化为第二UE姿态的情况下,所述多个接收波束存在被遮挡的接收波束的情况,所述第二接收波束不包括所述被遮挡的接收波束。
  6. 如权利要求4或5所述的方法,其特征在于,所述确定所述终端设备的第一UE姿态,包括:
    在所述终端设备通过第一接收波束接收网络设备发送的信息的过程中,获取n次UE姿态的参数,对所述n次UE姿态的参数求平均值,确定所述平均值对应的UE姿态为第一UE姿态,n为大于等于1的正整数。
  7. 如权利要求1至6任一项所述的方法,其特征在于,在随机接入过程中,在所述第二UE姿态为所述终端设备发送随机接入前导时所对应的姿态的情况下,所述终端设备通过所述第二接收波束接收网络设备发送的信息之前还包括:所述终端设备通过所述第二接收波束发送所述随机接入前导。
  8. 如权利要求1至6任一项所述的方法,其特征在于,在随机接入过程中,在所述第二UE姿态为所述终端设备接收所述网络设备发送的随机接入响应时所对应的姿态的情况下,所述终端设备通过所述第二接收波束接收网络设备发送的信息包括:所述终端设备通过所述第二接收波束接收所述网络设备发送的所述随机接入响应。
  9. 如权利要求1至6任一项所述的方法,其特征在于,在基于竞争的随机接入过程中,在所述第二UE姿态为所述终端设备接收所述网络设备发送的竞争解决响应消息时所对应的姿态的情况下,所述终端设备通过所述第二接收波束接收网络设备发送的信息包括:所述终端设备通过所述第二接收波束接收所述网络设备发送的所述竞争解决响应消息。
  10. 如权利要求1至6任一项所述的方法,其特征在于,在所述终端设备处于连接态非连续性接收状态或空闲态非连续性接收状态时,所述第一UE姿态包括所述终端设备在进入睡眠前所对应的姿态,所述第二UE姿态包括所述终端设备苏醒时所对应的姿态。
  11. 如权利要求1或2所述的方法,其特征在于,所述在终端设备通过第一接收波束接收网络设备发送的信息的过程中,确定所述终端设备的第一UE姿态之后还包括:
    在终端设备通过第一接收波束接收网络设备发送的信息的过程中,若所述终端设备在第三UE姿态下接收到的同步参考信息的接收功率大于在第四UE姿态下接收到的所述同步参考信息的接收功率,则将所述第一UE姿态校正为所述第三UE姿态。
  12. 如权利要求1至11任一项所述的方法,其特征在于,在所述多个接收波束是由单极化天线形成的情况下,所述方法还包括:
    若所述第一UE姿态与所述第二UE姿态的旋转角度小于第二阈值,则所述第二接收波束的极化方向与所述第一接收波束的极化方向相同;
    若所述第一UE姿态与所述第二UE姿态的旋转角度大于第一阈值,则所述第二接收波束的极化方向与所述第一接收波束的极化方向不同。
  13. 一种终端设备,其特征在于,包括:
    收发模块,用于接收网络设备发送的信息;
    处理模块,用于在所述收发模块通过第一接收波束接收网络设备发送的信息的过程中,确定所述终端设备的第一UE姿态,所述终端设备包括多个接收波束;
    所述处理模块还用于,在所述终端设备从所述第一UE姿态变化为第二UE姿态的情况下,根据所述多个接收波束之间的方位关系,以及所述终端设备从所述第一UE姿态变化到所述第二UE姿态的方位变化情况,确定第二接收波束;
    所述收发模块还用于,通过所述第二接收波束接收网络设备发送的信息。
  14. 如权利要求13所述的终端设备,其特征在于,所述网络设备发送的信息包括同步参考信息,所述同步参考信息包括信道状态信息参考信号和/或同步序列块参考信号。
  15. 如权利要求13或14所述的终端设备,其特征在于,所述第一接收波束接收 到的所述信道状态信息参考信号或同步序列块参考信号的接收功率大于第一阈值。
  16. 如权利要求13至15任一项所述的终端设备,其特征在于,在所述终端设备通过第一接收波束接收网络设备发送的信息的过程中,所述多个接收波束存在被遮挡的接收波束的情况下,所述第一接收波束不包括所述被遮挡的接收波束。
  17. 如权利要求13至15任一项所述的终端设备,其特征在于,在所述终端设备从所述第一UE姿态变化为第二UE姿态的情况下,所述多个接收波束存在被遮挡的接收波束的情况,所述第二接收波束不包括所述被遮挡的接收波束。
  18. 如权利要求16或17所述的终端设备,其特征在于,所述处理模块还用于,在所述收发模块通过所述第一接收波束接收网络设备发送的信息的过程中,获取n次UE姿态的参数,对所述n次UE姿态的参数求平均值,确定所述平均值对应的姿态为第一UE姿态,n为大于等于1的正整数。
  19. 如权利要求13至18任一项所述的终端设备,其特征在于,在所述第二UE姿态为所述终端设备发送随机接入前导时所对应的姿态的情况下,所述收发模块通过所述第二接收波束接收网所述络设备发送的信息之前,所述收发模块还用于,通过所述第二接收波束发送所述随机接入前导。
  20. 如权利要求13至18任一项所述的终端设备,其特征在于,在所述第二UE姿态为所述终端设备接收所述网络设备发送的随机接入响应时所对应的姿态的情况下,所述收发模块还用于,通过所述第二接收波束接收所述网络设备发送的所述随机接入响应。
  21. 如权利要求13至18任一项所述的终端设备,其特征在于,在基于竞争的随机接入过程中,在所述第二UE姿态为所述终端设备接收所述网络设备发送的竞争解决响应消息时所对应的姿态的情况下,所述收发模块还用于,通过所述第二接收波束接收所述网络设备发送的所述竞争解决响应消息。
  22. 如权利要求13至18任一项所述的终端设备,其特征在于,在所述终端设备处于连接态非连续性接收状态或空闲态非连续性接收状态时,所述第一UE姿态包括所述终端设备在进入睡眠前所对应的姿态,所述第二UE姿态包括所述终端设备苏醒时所对应的姿态。
  23. 如权利要求13或14所述的终端设备,其特征在于,所述终端设备还包括校正模块,用于在所述收发模块通过第一接收波束接收所述网络设备发送的信息的过程中,若所述终端设备在第三UE姿态下接收到的同步参考信息的接收功率大于在第四UE姿态下接收到的所述同步参考信息的接收功率,将所述第一UE姿态校正为所述第 三UE姿态。
  24. 如权利要求13至23任一项所述的终端设备,其特征在于,在所述多个接收波束是由单极化天线形成的情况下,
    若所述第一UE姿态与所述第二UE姿态的旋转角度小于第二阈值,则所述第二接收波束的极化方向与所述第一接收波束的极化方向相同;
    若所述第一UE姿态与所述第二UE姿态的旋转角度大于第一阈值,则所述第二接收波束的极化方向与所述第一接收波束的极化方向不同。
  25. 一种终端设备,其特征在于,包括:处理器和存储器,所述处理器执行所述存储器中的代码使得所述终端设备执行如权利要求1至12任一权利要求所述的方法。
  26. 一种计算机非瞬态存储介质,其特征在于,包括指令,当所述指令在终端设备上运行时,使得所述终端设备执行如权利要求1至12任一权利要求所述的方法。
  27. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序在某一计算机上执行时,将会使所述计算机实现权利要求1至12所述的方法。
  28. 一种计算机程序,其特征在于,该计算机程序在某一计算机上执行时,将会使所述计算机实现权利要求1至12所述的方法。
PCT/CN2019/096867 2018-07-23 2019-07-19 一种波束管理方法和相关设备 WO2020020080A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19840751.2A EP3800797B9 (en) 2018-07-23 2019-07-19 Beam management method and related device
US17/262,223 US11153001B2 (en) 2018-07-23 2019-07-19 Beam management method and related device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810813756 2018-07-23
CN201810813756.6 2018-07-23
CN201811300660 2018-11-02
CN201811300660.6 2018-11-02
CN201811459624.4 2018-11-30
CN201811459624.4A CN110753388B (zh) 2018-07-23 2018-11-30 一种波束管理方法和相关设备

Publications (1)

Publication Number Publication Date
WO2020020080A1 true WO2020020080A1 (zh) 2020-01-30

Family

ID=69181154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096867 WO2020020080A1 (zh) 2018-07-23 2019-07-19 一种波束管理方法和相关设备

Country Status (1)

Country Link
WO (1) WO2020020080A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022052107A1 (zh) * 2020-09-14 2022-03-17 深圳传音控股股份有限公司 确定发射波束的方法、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106559114A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种波束训练方法和装置
CN107548158A (zh) * 2016-06-24 2018-01-05 华硕电脑股份有限公司 无线通信的用户设备波束成形和波束扫掠的方法和设备
CN107689821A (zh) * 2016-08-05 2018-02-13 北京信威通信技术股份有限公司 一种beamforming矢量调整的方法及装置
US20180152231A1 (en) * 2014-08-08 2018-05-31 Samsung Electronics Co., Ltd. Apparatus and method for adjusting receive beam gain in a wireless communication system
CN108242948A (zh) * 2016-12-23 2018-07-03 维沃移动通信有限公司 一种波束训练方法、网络设备及终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180152231A1 (en) * 2014-08-08 2018-05-31 Samsung Electronics Co., Ltd. Apparatus and method for adjusting receive beam gain in a wireless communication system
CN106559114A (zh) * 2015-09-28 2017-04-05 中兴通讯股份有限公司 一种波束训练方法和装置
CN107548158A (zh) * 2016-06-24 2018-01-05 华硕电脑股份有限公司 无线通信的用户设备波束成形和波束扫掠的方法和设备
CN107689821A (zh) * 2016-08-05 2018-02-13 北京信威通信技术股份有限公司 一种beamforming矢量调整的方法及装置
CN108242948A (zh) * 2016-12-23 2018-07-03 维沃移动通信有限公司 一种波束训练方法、网络设备及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3800797A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022052107A1 (zh) * 2020-09-14 2022-03-17 深圳传音控股股份有限公司 确定发射波束的方法、设备及存储介质

Similar Documents

Publication Publication Date Title
US11153001B2 (en) Beam management method and related device
CN107342801B (zh) 一种波束处理方法、用户设备及基站
US11973561B2 (en) Antenna panel application method, apparatus and storage medium
KR102595769B1 (ko) 정보 보고 방법 및 단말
CN110012549B (zh) 一种信息传输方法、终端及网络设备
WO2020020212A1 (zh) 随机接入方法、终端及网络设备
WO2020134358A1 (zh) 波束失败处理方法及相关设备
WO2019184692A1 (zh) 波束失败处理方法、终端及网络设备
WO2019200613A1 (zh) 一种降低电磁辐射比吸收率的方法及设备
US11632165B2 (en) Beam failure detection method, information configuration method, terminal and network device
WO2018082435A1 (zh) 终端设备移动性的处理方法、终端设备和基站
RU2757574C1 (ru) Способ контроля сообщения системы поискового вызова, абонентское оборудование мобильной связи и сервер
WO2018103584A1 (zh) 一种小区确定的方法、相关设备以及系统
EP4075856A1 (en) Wireless communication method and device, and storage medium
JPWO2020215335A5 (zh)
US20240179624A1 (en) Method of shutting down cell, terminal device, network device, and storage medium
CN113316176B (zh) 更新测量结果的方法,终端设备及存储介质
WO2020020080A1 (zh) 一种波束管理方法和相关设备
US20170164194A1 (en) Offloading of a wireless node authentication with core network
US20210352500A1 (en) Method for pucch transmission, method for pucch reception, terminal, and network-side device
WO2024140575A1 (zh) 信号监听方法、终端及网络侧设备
CN115606225B (zh) 一种测量方法、确定辅小区的方法、装置、设备以及介质
WO2023050039A1 (zh) 信息传输方法、装置、通信设备和存储介质
US20240244500A1 (en) Method of shutting down cell, terminal device, network device, and storage medium
WO2024031459A1 (zh) 一种传输能力信息的方法、装置以及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019840751

Country of ref document: EP

Effective date: 20201229

NENP Non-entry into the national phase

Ref country code: DE