WO2020019855A1 - 触控电路、触控装置和触控方法 - Google Patents

触控电路、触控装置和触控方法 Download PDF

Info

Publication number
WO2020019855A1
WO2020019855A1 PCT/CN2019/088532 CN2019088532W WO2020019855A1 WO 2020019855 A1 WO2020019855 A1 WO 2020019855A1 CN 2019088532 W CN2019088532 W CN 2019088532W WO 2020019855 A1 WO2020019855 A1 WO 2020019855A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
touch
terminal
electrically connected
Prior art date
Application number
PCT/CN2019/088532
Other languages
English (en)
French (fr)
Inventor
丁小梁
董学
王海生
刘英明
曹学友
刘伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/629,003 priority Critical patent/US11086450B2/en
Publication of WO2020019855A1 publication Critical patent/WO2020019855A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3266Details of drivers for scan electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • G09G2360/145Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen
    • G09G2360/147Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel
    • G09G2360/148Detecting light within display terminals, e.g. using a single or a plurality of photosensors the light originating from the display screen the originated light output being determined for each pixel the light being detected by light detection means within each pixel

Definitions

  • the present disclosure relates to the field of touch technology, and in particular, to a touch circuit, a touch device, and a touch method.
  • the related art touch screen (such as an OLED (Organic Light Emitting Diode) display touch screen) may have a function of touch or fingerprint detection.
  • touch detection or fingerprint detection may be implemented by using a photoelectric detection technology.
  • a touch circuit including: at least one photo detection circuit, and a first capacitor electrically connected to the at least one photo detection circuit; each photo detection circuit is configured to detect The modulated light reflected by the touch subject generates a modulated signal, and outputs the modulated signal through the first capacitor.
  • the photodetection circuit includes: a photosensitive detection device and a first switching transistor; a first terminal of the photosensitive detection device is electrically connected to a first voltage terminal, and a second terminal of the photosensitive detection device is electrically connected To the first terminal of the first switching transistor; the second terminal of the first switching transistor is electrically connected to the first terminal of the first capacitor, and the control terminal of the first switching transistor is configured to receive a control signal .
  • the photodetection circuit further includes a second switching transistor, a first terminal of the second switching transistor is electrically connected to a second voltage terminal, and a second terminal of the second switching transistor is electrically connected to A second terminal of the photosensitive detection device, and a control terminal of the second switching transistor is configured to receive a reset signal.
  • the touch circuit further includes a modulated light generating circuit configured to generate a modulated light having a predetermined frequency.
  • the modulated light generating circuit includes: a third switching transistor configured to output an electric signal having the predetermined frequency in response to a switching signal having a predetermined frequency; and a light emitting device configured to have The electric signal of the predetermined frequency emits modulated light.
  • the intensity of the modulated light is positively correlated with the intensity of the ambient light.
  • a sampling circuit is configured to collect a modulated signal output by the first capacitor to obtain a signal to be processed; and a demodulation circuit is configured to perform demodulation processing on the signal to be processed.
  • the sampling circuit includes an amplifier, a first input terminal of the amplifier is electrically connected to a second terminal of the first capacitor, and a second input terminal of the amplifier is configured to receive a reference level Signal, the output terminal of the amplifier is electrically connected to the demodulation circuit; the second capacitor, the first terminal of the second capacitor is electrically connected to the first input terminal of the amplifier, and the second terminal of the second capacitor A sampling terminal, the first terminal of the sampling switch is electrically connected to the first terminal of the second capacitor, and the second terminal of the sampling switch is electrically connected to the first terminal of the amplifier; The second terminal of the two capacitors, and the control terminal of the sampling switch is configured to receive a sampling signal.
  • the sampling circuit includes an amplifier, a first input terminal of the amplifier is electrically connected to a second terminal of the first capacitor, and a second input terminal of the amplifier is configured to receive a reference level Signal, an output terminal of the amplifier is electrically connected to the demodulation circuit; and a resistor, a first terminal of the resistor is electrically connected to a first input terminal of the amplifier, and a second terminal of the resistor is electrically connected Connected to the output of the amplifier.
  • a touch device including: a plurality of gate driving circuit blocks, each gate driving circuit block including at least one gate driving unit; a plurality of photodetection circuits, Each row of the plurality of photodetection circuits is electrically connected to a gate drive unit of the gate drive circuit block; and at least one first capacitor, each of the at least one first capacitor is connected to the plurality of One or more columns of photodetection circuits of each photodetection circuit are electrically connected; wherein each gate drive circuit block is configured to send a control signal to a corresponding at least one row of photodetection circuits; each said photodetection circuit is configured to In response to the control signal, the modulated light reflected by the touch subject is detected and a modulated signal is generated, and the modulated signal is output through a corresponding first capacitor.
  • the at least one first capacitor includes a plurality of first capacitors, and each of the plurality of first capacitors is electrically connected to a column of photodetection circuits of the plurality of photodetection circuits.
  • the photodetection circuits of at least a part of the columns of the plurality of photodetection circuits are respectively electrically connected to the same first capacitor through a switching device.
  • the touch device further comprises: a plurality of pixel units for display, wherein at least a part of the pixel units of the plurality of pixel units are provided with the photodetection circuit.
  • each pixel unit of the plurality of pixel units includes a pixel compensation circuit; each pixel unit of the at least part of the pixel units includes a modulated light generating circuit configured to generate modulated light having a predetermined frequency; Wherein, in each pixel unit of the at least part of the pixel units, the modulated light generating circuit shares a light emitting device with the pixel compensation circuit.
  • a touch control method based on a touch circuit which includes: using a modulated light generating circuit to generate and emit modulated light having a predetermined frequency; and detecting a touched subject using a photodetection circuit The reflected modulated light generates a modulated signal, and the modulated signal is output through a first capacitor.
  • the photodetection circuit includes: a photosensitive detection device, a first switching transistor, and a second switching transistor; a first terminal of the photosensitive detection device is electrically connected to a first voltage terminal, The second terminal is electrically connected to the first terminal of the first switching transistor; the second terminal of the first switching transistor is electrically connected to the first terminal of the first capacitor, and the control terminal of the first switching transistor is Configured to receive a control signal; a first terminal of the second switching transistor is electrically connected to a second voltage terminal, a second terminal of the second switching transistor is electrically connected to a second terminal of the photosensitive detection device, and the first The control terminals of the two switching transistors are configured to receive a reset signal; the touch method further includes: applying a sampling signal to a sampling circuit so that the sampling circuit collects a modulation signal output by the first capacitor to obtain a signal to be processed; And using a demodulation circuit to demodulate the signal to be processed; wherein a photodetection circuit is used to detect the modul
  • the signal step includes: applying a reset signal to the second switching transistor of the photo-detection circuit during the process of collecting the modulation signal, so that the second switching transistor is turned on, so as to apply a voltage to the second terminal of the photosensitive detection device. Potential reset.
  • the step of using the modulated light generating circuit to generate and emit modulated light having a predetermined frequency includes: applying a switching signal with a predetermined frequency to the modulated light generating circuit to cause the modulated light generating circuit to emit modulated light; Wherein, when the switching signal is at the first level, the start time of the sampling signal is after the start time of the switching signal and the end time of the sampling signal is before the end time of the switching signal; When the switching signal is at the second level, the start time of the sampling signal is after the start time of the switching signal and the end time of the sampling signal is before the end time of the switching signal; wherein the first level Higher than the second level.
  • the intensity of the modulated light is positively correlated with the intensity of the ambient light.
  • the photo-detection circuit is used to detect the modulated light reflected by the touch subject and generate a modulated signal.
  • the step of outputting the modulated signal through the first capacitor includes: using a plurality of gate driving circuit blocks. Each gate driving circuit block sends a control signal to a corresponding at least one row of photodetection circuits; and in response to the control signal, each of the photodetection circuits detects the modulated light reflected by the touch subject and generates a modulated signal, The modulation signal is output through a corresponding first capacitor.
  • the touch method further includes: in the touch phase, each gate driving circuit block sends a control signal to all corresponding photodetection circuits, so that all the photocells corresponding to the gate driving circuit block
  • the detection circuits all detect the modulated light reflected by the touch subject and generate a modulated signal
  • the gate drive unit of the gate drive circuit block corresponding to the touch position is step by step.
  • a control signal is sent to the corresponding photo-detection circuit, so that the corresponding photo-detection circuit detects the modulated light reflected by the touch subject and generates a modulated signal.
  • FIG. 1 is a connection diagram illustrating a touch circuit according to an embodiment of the present disclosure
  • FIG. 2 is a connection diagram illustrating a touch circuit according to another embodiment of the present disclosure.
  • FIG. 3 is a connection diagram illustrating a modulated light generating circuit according to an embodiment of the present disclosure
  • 4A is a connection diagram illustrating a pixel compensation circuit according to an embodiment of the present disclosure
  • 4B is a timing control diagram illustrating a pixel compensation circuit in a display period and a touch period according to an embodiment of the present disclosure
  • FIG. 5 is a connection diagram illustrating a touch circuit according to another embodiment of the present disclosure.
  • FIG. 6 is a connection diagram illustrating a touch circuit according to another embodiment of the present disclosure.
  • FIG. 7 is a timing control diagram illustrating a touch circuit according to an embodiment of the present disclosure.
  • FIG. 8 is a connection diagram illustrating a touch circuit according to another embodiment of the present disclosure.
  • FIG. 9 is a flowchart illustrating a touch method for a touch circuit according to an embodiment of the present disclosure.
  • 10A is a connection diagram illustrating a touch device according to an embodiment of the present disclosure.
  • 10B is a connection diagram illustrating a touch device according to another embodiment of the present disclosure.
  • 11A is a connection diagram illustrating a touch device according to another embodiment of the present disclosure.
  • 11B is a connection diagram illustrating a touch device according to another embodiment of the present disclosure.
  • FIG. 12 is a flowchart illustrating a touch method for a touch device according to an embodiment of the present disclosure.
  • a specific device when it is described that a specific device is located between the first device and the second device, there may or may not be an intervening device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to another device, the specific device may be directly connected to the other device without an intervening device, or may have an intervening device without being directly connected to the other device.
  • embodiments of the present disclosure provide a touch circuit to eliminate the influence of ambient light on photoelectric detection as much as possible.
  • a touch circuit according to some embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
  • FIG. 1 is a connection diagram illustrating a touch circuit according to an embodiment of the present disclosure.
  • the touch circuit includes at least one photo-detection circuit (for example, photo-detection circuits 11 to y1 are shown in FIG. 1) and a first capacitor C1.
  • the first capacitor C1 is electrically connected to the at least one photo detection circuit.
  • the first capacitor may be provided on a display panel or an integrated circuit.
  • Each photoelectric detection circuit is configured to detect a modulated light reflected by a touch subject (such as a finger, a stylus, etc.) and generate a modulated signal, and output the modulated signal through the first capacitor C1.
  • the modulation signal may be output to a sampling circuit, a demodulation circuit, and the like, which will be described in detail later.
  • the touch main body in the embodiment of the present disclosure may be a contact type touch main body or a non-contact type touch main body.
  • the touch main body may be implemented by 3D floating touch.
  • the modulated light is reflected by the touch subject to the photo-detection circuit, and the photo-detection circuit detects the modulated light and generates a modulated signal.
  • the signal generated by the ambient light on the photodetection circuit is a DC signal. Since the first capacitor can block DC and AC, the modulated signal can be output through the first capacitor, and the DC signal is blocked by the first capacitor. Therefore, the touch circuit can eliminate the influence of the ambient light on the photoelectric detection as much as possible, for example, the supersaturation effect on the photoelectric detection caused by the strong ambient light.
  • the photodetection circuit generates a modulated signal after detecting the modulated light reflected by the touch subject.
  • the modulation signal generated by the photo-detection circuit at the touch position will change. After collecting such a modulated signal and processing it, the touch position can be determined and touch position detection can be realized.
  • the modulated signal in a case where the modulated light detected by the photoelectric detection circuit is modulated light reflected by a fingerprint (here, a finger fingerprint is used as a touch subject), the modulated signal includes fingerprint information. After collecting such modulated signals and processing them, fingerprint information can be obtained to realize fingerprint detection.
  • FIG. 1 a column of photodetection circuits is shown in FIG. 1.
  • the photo-detection circuit in each column is electrically connected to a first capacitor. That is, the plurality of rows of photodetection circuits are electrically connected to the plurality of first capacitors in a one-to-one correspondence. In this way, the modulation signals of each column of the photoelectric detection circuits are respectively output through the corresponding first capacitors, so as to realize the touch position detection or fingerprint detection of the entire touch screen.
  • the multiple rows of photodetection circuits are electrically connected to the same first capacitor, and a switching device is provided between each column of photodetection circuits and the first capacitor.
  • a switching device is provided between each column of photodetection circuits and the first capacitor.
  • the scope of the embodiments of the present disclosure is not limited to that the photodetection circuit is electrically connected to the first capacitor in the column direction, but may also be electrically connected to the first capacitor in the row direction.
  • FIG. 2 is a connection diagram illustrating a touch circuit according to another embodiment of the present disclosure.
  • the photodetection circuits 11 ′ to y1 ′ in FIG. 2 are a specific implementation of the photodetection circuits 11 to y1 in FIG. 1.
  • the photodetection circuit 11 ′ (or y1 ′, etc.) includes a photosensitive detection device 210 and a first switching transistor T1.
  • a first terminal of the photosensitive detection device 210 is electrically connected to a first voltage terminal 201.
  • a second terminal of the photosensitive detection device 210 is electrically connected to a first terminal (eg, a first electrode) of the first switching transistor T1.
  • the second terminal of the photosensitive detection device 210 and the first terminal of the first switching transistor T1 are both electrically connected to the node PD.
  • the photosensitive detection device is configured to generate a modulated signal after detecting the modulated light reflected by the touch subject.
  • the second terminal (for example, the second electrode) of the first switching transistor T1 is electrically connected to the first terminal of the first capacitor C1.
  • the second terminal of the first switching transistor T1 is electrically connected to the first terminal of the first capacitor C1 through the read line L R.
  • a control terminal (eg, a gate) of the first switching transistor T1 is configured to receive a control signal.
  • the control terminal of the first switching transistor T1 is configured to receive a control signal from the control line G1.
  • the control terminal of the first switching transistor T1 is configured to receive a control signal from the control line Gy.
  • the first switching transistor T1 is configured to be turned on in response to a control signal to output a modulation signal generated by the photosensitive detection device to a first capacitor.
  • the modulated signal can be output through the first capacitor.
  • the modulation signal is a current signal.
  • the photo-detection circuit 11 ′ may further include a second switching transistor T2.
  • a first terminal (for example, a first electrode) of the second switching transistor T2 is electrically connected to a second voltage terminal 202.
  • a second terminal (for example, a second electrode) of the second switching transistor T2 is electrically connected to a second terminal of the photosensitive detection device 210.
  • a control terminal (eg, a gate) of the second switching transistor T2 is configured to receive a reset signal V rst .
  • the second switching transistor T2 is configured to be turned on in response to the reset signal V rst to switch the potential of the node PD between the first switching transistor T1 and the photosensitive detection device (that is, the potential of the second end of the photosensitive detection device). Reset to the potential of the second voltage terminal. In this way, it is possible to ensure that the PD node is at a static working point as far as possible, and prevent the photosensitive detection device from being saturated in the case of being exposed for a long time to affect touch or fingerprint detection.
  • the photosensitive detection device 210 may include a PIN (P-type semiconductor icon N-type semiconductor icon) photodiode.
  • the first The level of the voltage terminal 201 is lower than the level of the second voltage terminal 202.
  • the level of the first voltage terminal 201 may be a negative level
  • the level of the second voltage terminal 202 may be a positive level.
  • the level of the first voltage terminal is high.
  • the level of the first voltage terminal 201 may be a positive level
  • the level of the second voltage terminal 202 may be a negative level.
  • the anode terminal of the PIN photodiode can be applied at a lower level than the cathode terminal, so that the PIN photodiode is in a reverse biased state.
  • the photodetection circuit can also adopt other implementations, for example, the photosensitive detection device can use other components (such as a photosensitive sensor, a light detector, etc.). Therefore, the scope of the embodiments of the present disclosure is not limited to the implementation of the photodetection circuit disclosed herein.
  • the touch circuit may further include a modulated light generating circuit.
  • the modulated light generating circuit is configured to generate a modulated light having a predetermined frequency.
  • FIG. 3 is a connection diagram illustrating a modulated light generating circuit according to an embodiment of the present disclosure.
  • the modulated light generating circuit may include a third switching transistor T3 and a light emitting device (for example, an OLED) 310.
  • a first terminal (for example, a first electrode) of the third switching transistor T3 is configured to receive a current I.
  • the first terminal of the third switching transistor T3 is electrically connected to an integrated circuit or a constant current source (for example, a constant current source made of a Thin Film Transistor (TFT) around it), so that the integrated circuit or the constant current source
  • the current source receives a constant current I.
  • the magnitude of the current I may depend on the magnitude of the ambient light.
  • a photo sensor can be selected as the ambient light sensing unit. When the ambient light is strong, the current I is made larger.
  • the intensity of the modulated light is positively related to the intensity of the ambient light.
  • the intensity of the modulated light is substantially equal to the intensity of the ambient light.
  • a second terminal (for example, a second electrode) of the third switching transistor T3 is electrically connected to an anode terminal of the light emitting device 310.
  • a control terminal (eg, a gate) of the third switching transistor T3 is configured to receive a switching signal V TS having a predetermined frequency.
  • the third switching transistor T3 is configured to output an electric signal (for example, a current signal) having the predetermined frequency in response to a switching signal V TS having a predetermined frequency.
  • a cathode terminal of the light emitting device 310 is electrically connected to a ground terminal ELVSS.
  • the light emitting device 310 is configured to emit modulated light according to an electric signal having the predetermined frequency.
  • the light emitting device 310 may include a light emitting device in a display panel or a light emitting device provided outside the display panel.
  • each pixel of the display panel may include a pixel compensation circuit and a photo-detection circuit described above.
  • a light-emitting device that can multiplex a pixel compensation circuit as a light-emitting device for emitting modulated light For example, when the display panel is an OLED panel, the OLED device of the OLED panel can be used as a light emitting device that emits modulated light. This eliminates the need to add additional light emitting devices and reduces costs.
  • a light emitting device for example, an infrared light source provided externally
  • a light emitting device for example, an infrared light source provided externally
  • the purpose of generating modulated light by the modulated light generating circuit can also be achieved.
  • FIG. 4A is a connection diagram illustrating a pixel compensation circuit according to an embodiment of the present disclosure.
  • the pixel compensation circuit may include a third switching transistor T3 and a light emitting device 310.
  • the pixel compensation circuit may further include a driving transistor T9, a fourth switching transistor T4, a fifth switching transistor T5, a sixth switching transistor T6, a seventh switching transistor T7, an eighth switching transistor T8, and a storage capacitor C0. .
  • a first terminal (for example, a first electrode) of the sixth switching transistor T6 is electrically connected to a power voltage terminal ELVDD.
  • the second terminal (for example, the second electrode) of the sixth switching transistor T6 is electrically connected to the first terminal (for example, the first electrode) of the fifth switching transistor T5 and the first terminal of the storage capacitor C0.
  • a control terminal (eg, a gate) of the sixth switching transistor T6 is configured to receive a control signal EM.
  • the control signal EM is different from the control signal applied to the first switching transistor T1.
  • the aforementioned control signal applied to the first switching transistor T1 may be referred to as a first control signal
  • the control signal EM applied to the sixth switching transistor T6 may be referred to as a second control signal.
  • a second terminal (for example, a second electrode) of the fifth switching transistor T5 is configured to receive a data level V data .
  • a control terminal (eg, a gate) of the fifth switching transistor T5 is configured to receive a gate driving signal V G ′.
  • a first terminal (for example, a first electrode) of the driving transistor T9 is electrically connected to a power voltage terminal ELVDD.
  • One electrode are electrically connected together.
  • the second terminal (for example, the second electrode) of the driving transistor T9, the second terminal (for example, the second electrode) of the eighth switching transistor T8, and the first terminal (for example, the first electrode) of the fourth switching transistor T4 are electrically connected together. .
  • a control terminal (eg, a gate) of the eighth switching transistor T8 is configured to receive a gate driving signal V G ′.
  • a second terminal (for example, a second electrode) of the fourth switching transistor T4 is electrically connected to an anode terminal of the light emitting device 310.
  • a control terminal (eg, a gate) of the fourth switching transistor T4 is configured to receive a control signal EM.
  • a second terminal (for example, a second electrode) of the seventh switching transistor T7 is electrically connected to a third voltage terminal V int .
  • a control terminal (eg, a gate) of the seventh switching transistor T7 is configured to receive a reset signal RST.
  • the reset signal RST is different from the reset signal V rst described above.
  • the aforementioned reset signal V rst may be referred to as a first reset signal
  • the reset signal RST here may be referred to as a second reset signal.
  • the pixel circuit of the touch device includes a pixel compensation circuit and a photo-detection circuit.
  • the pixel compensation circuit is used to control the light emission of the OLED.
  • the photoelectric detection circuit is used to control the detection of the modulated light.
  • a third switching transistor T3 is added to the pixel compensation circuit to control the light emitting device to emit a certain gray-scale modulated light during the touch period, so as to perform touch or fingerprint detection. This embodiment does not need to add additional light emitting devices, which reduces costs.
  • the pixel compensation circuit shown in FIG. 4A is a specific implementation manner. Those skilled in the art should understand that the pixel compensation circuit may also adopt other methods, and is not limited to the embodiment shown in FIG. 4A. Therefore, the scope of the embodiments of the present disclosure is not limited thereto.
  • the switching transistor or the driving transistor shown in the drawings may be an NMOS transistor.
  • the switching transistor or the driving transistor in the embodiment of the present disclosure may also be a PMOS transistor. Therefore, the scope of the embodiments of the present disclosure is not limited thereto.
  • FIG. 4B is a timing control diagram illustrating a pixel compensation circuit in a display period and a touch period according to an embodiment of the present disclosure.
  • the control signal EM and the switching signal V TS are shown in FIG. 4B.
  • the 1-frame timing may include a display period and a touch period.
  • the display period and the touch period alternate.
  • the touch period can also be interspersed into the display period to achieve a higher touch frame rate, which will not be repeated here.
  • the fourth switching transistor T4 is turned off.
  • the on and off of the third switching transistor T3 is controlled by the switching signal V TS so that the current I flows through the light emitting device 310 at a predetermined frequency, so that the light emitting device 310 emits modulated light having the predetermined frequency.
  • the control signal EM has a low level for a short time.
  • the fourth switching transistor T4 is turned off. Since this is the fourth switching transistor T4 of the pixel compensation circuit in one or a row of the entire display device (such as a display panel), that is, only one or a row of sub-pixels in the entire display device does not emit light, and the other The sub-pixels or the sub-pixels of other rows emit light, so from the perspective of the overall display, it can be considered that the pixel compensation circuit or the pixel compensation circuit of the row is still in the display period.
  • FIG. 5 is a connection diagram illustrating a touch circuit according to another embodiment of the present disclosure.
  • the touch circuit may further include a sampling circuit 510 and a demodulation circuit 520.
  • the sampling circuit 510 is configured to collect a modulated signal output from the first capacitor C1 to obtain a signal to be processed.
  • the specific structure of the sampling circuit will be described in detail later with reference to the drawings.
  • the demodulation circuit 520 is configured to perform demodulation processing on a signal to be processed.
  • the demodulation circuit may adopt a circuit form in a known related art, and details are not described herein.
  • the sampling circuit collects the modulation signal output by the first capacitor to obtain a signal to be processed, and transmits the signal to be processed to the demodulation circuit.
  • the demodulation circuit performs demodulation processing on the signal to be processed.
  • the demodulation circuit can determine the touch position of the touch subject according to the change of the modulation signal at the touch position to implement touch detection.
  • the modulation signal may include fingerprint information. Therefore, the demodulation circuit may demodulate the modulation signal (that is, the signal to be processed) collected by the sampling circuit to obtain fingerprint information to implement fingerprint detection.
  • FIG. 6 is a connection diagram illustrating a touch circuit according to another embodiment of the present disclosure.
  • the sampling circuit 610 shown in FIG. 6 is a specific implementation of the sampling circuit 510 shown in FIG. 5.
  • the sampling circuit 610 may include an amplifier 611, a second capacitor C2, and a sampling switch 613.
  • a first input terminal of the amplifier 611 is electrically connected to a second terminal of the first capacitor C1.
  • a second input terminal of the amplifier 611 is configured to receive a reference level signal V ref .
  • the second input terminal of the amplifier 611 may be electrically connected to a fixed level terminal to receive a fixed reference level signal V ref .
  • An output terminal of the amplifier 611 is electrically connected to the demodulation circuit 520.
  • a first terminal of the second capacitor C2 is electrically connected to a first input terminal of the amplifier 611.
  • a second terminal of the second capacitor C2 is electrically connected to an output terminal of the amplifier 611.
  • a first terminal of the sampling switch 613 is electrically connected to a first terminal of the second capacitor C2.
  • a second terminal of the sampling switch 613 is electrically connected to a second terminal of the second capacitor C2.
  • a control terminal of the sampling switch 613 is configured to receive a sampling signal V SW .
  • the sampling switch may include a switching transistor.
  • the sampling circuit is in the form of an integrating amplifier circuit.
  • the sampling switch 613 is turned off after receiving the sampling signal V SW , and then the sampling circuit performs sampling.
  • the second capacitor accumulates the acquired modulated signals to obtain a signal to be processed, and transmits the signal to be processed to the demodulation circuit.
  • This integration detection method can improve the signal-to-noise ratio.
  • FIG. 7 is a timing control diagram illustrating a touch circuit according to an embodiment of the present disclosure.
  • a control signal VG may be applied to a control terminal of the first switching transistor T1.
  • the first switching transistor T1 is an NMOS transistor.
  • the control signal V G is at a high level, the first switching transistor T1 is turned on.
  • a switching signal V TS is applied to a control terminal of the third switching transistor T3.
  • the third switching transistor T3 is an NMOS transistor.
  • the light emitting device 310 emits light (that is, turns on).
  • the switching signal V TS is at a low level and the third switching transistor T3 is turned off, the light emitting device 310 does not emit light (ie, is dark). In this way, the purpose of emitting modulated light by the light emitting device of the modulated light generating circuit is achieved.
  • the sampling signal V SW is applied to a control terminal of the sampling switch 613.
  • the sampling switch may be a PMOS transistor.
  • the sampling switch is turned off.
  • the second capacitor accumulates the acquired modulated signals, thereby implementing sampling processing.
  • the switching signal V TS is at a first level (e.g., high level), the signal V SW at the sampling start timing (e.g., timing corresponding to the rising edge of the sampling signal V SW at)
  • the start time of the switching signal V TS for example, the time corresponding to the rising edge of the switching signal V TS
  • the end time of the sampling signal V SW is at the switching signal V Before the end time of TS (for example, the time corresponding to the falling edge of the switching signal V TS ).
  • the signal V SW at the sampling start timing e.g., timing corresponding to the rising edge of the sampling signal V SW at
  • the start time of the switching signal V TS e.g., switch at the end time of the switching signal V TS (e.g., up switch signal V TS after the falling edge of the timing signal corresponding to the V TS)
  • the end time of the sampled signal V SW at e.g., V SW at the falling edge of the sampling signal corresponding to the time
  • the first level is higher than the second level.
  • the sampling signal V SW is a high-level signal
  • the sampling circuit collects a modulation signal.
  • the switching signal V TS is at a high level
  • the third switching transistor is turned on, and when it is at a low level, the third switching transistor is turned off.
  • the rising and falling edges of the sampling signal V SW avoid the rising and falling edges of the switching signal V TS . That is, during the sampling process, the time of integrating the modulation signal avoids the rising and falling edges of the switching signal V TS .
  • the rising edge of the sampling signal V SW is later than the rising edge of the high-level switching signal V TS
  • the falling edge of the sampling signal V SW is earlier than the falling edge of the high-level switching signal V TS .
  • the sampling signal causes the sampling circuit to sample during the process of emitting and not emitting the light emitting device 310.
  • the frequency of the switching signal V TS is the same as the light emitting frequency, transmission of the signal line of the switching signal V TS (that is, the signal line electrically connected to the control terminal of the third switching transistor T3, not shown in the figure) and the reading line can be avoided Interference to the demodulated signal caused by coupling.
  • a reset signal V rst is applied to a control terminal of the second switching transistor T2.
  • the second switching transistor T2 is an NMOS transistor.
  • the reset signal V rst is at a high level
  • the second switching transistor T2 is turned on, and the transient static operating point of the node PD is reset.
  • the reset signal V rst is at a low level
  • the second switching transistor T2 is turned off.
  • the second switching transistor T2 can be turned on at the end of each sampling, the static operating point of the node PD is reset, and then the second switching transistor T2 is turned off to collect the modulation signal in the next sampling period. .
  • FIG. 8 is a connection diagram illustrating a touch circuit according to another embodiment of the present disclosure.
  • the sampling circuit 810 shown in FIG. 8 is another specific implementation of the sampling circuit 510 shown in FIG. 5.
  • the sampling circuit 810 may include an amplifier 811 and a resistor R0.
  • a first input terminal of the amplifier 811 is electrically connected to a second terminal of the first capacitor C1.
  • the second input of the amplifier 810 is configured to receive a reference level signal V ref .
  • the second input terminal of the amplifier 811 may be electrically connected to a fixed level terminal to receive a fixed reference level signal V ref .
  • An output terminal of the amplifier 810 is electrically connected to the demodulation circuit 520.
  • a first terminal of the resistor R0 is electrically connected to a first input terminal of the amplifier 811.
  • the second terminal of the resistor R0 is electrically connected to the output terminal of the amplifier 811.
  • the sampling circuit is in the form of a transconductance amplifier circuit.
  • the sampling circuit 810 does not need to accumulate the acquired modulated signals as described in the sampling circuit 610, but acquires the signals to be processed by continuously collecting the modulated signals, and transmits the signals to be processed to the demodulation. Circuit.
  • This transconductance method has the characteristics of transmitting a modulation signal in real time, and can reduce the interference of the signal line electrically connected to the control terminal of the third switching transistor T3 on the modulation signal.
  • FIG. 9 is a flowchart illustrating a touch method for a touch circuit according to an embodiment of the present disclosure.
  • the touch method may include steps S902 to S904.
  • step S902 a modulated light having a predetermined frequency is generated and emitted using a modulated light generating circuit.
  • step S902 may include: applying a switching signal having a predetermined frequency to the modulated light generating circuit so that the modulated light generating circuit emits modulated light.
  • a switching signal having a predetermined frequency is applied to a third switching transistor of the modulated light generating circuit, so that a light emitting device electrically connected to the third switching transistor emits modulated light.
  • step S904 the photoelectric detection circuit detects the modulated light reflected by the touch subject and generates a modulated signal, and outputs the modulated signal through the first capacitor.
  • the photo-detection circuit may include a photosensitive detection device, a first switching transistor, and a second switching transistor.
  • a first terminal of the photosensitive detection device is electrically connected to a first voltage terminal
  • a second terminal of the photosensitive detection device is electrically connected to a first terminal of the first switching transistor.
  • a second terminal of the first switching transistor is electrically connected to a first terminal of the first capacitor, and a control terminal of the first switching transistor is configured to receive a control signal.
  • a first terminal of the second switching transistor is electrically connected to a second voltage terminal
  • a second terminal of the second switching transistor is electrically connected to a second terminal of the photosensitive detection device
  • a control terminal of the second switching transistor is configured to receive Reset signal.
  • step S904 may include: applying a control signal to the first switching transistor of the photo-detection circuit, so that the first switching transistor is turned on, so as to output a modulation signal generated by the photosensitive detection device of the photo-detection circuit.
  • the touch method may further include: applying a sampling signal to the sampling circuit so that the sampling circuit collects a modulation signal output by the first capacitor to obtain a signal to be processed; and using a demodulation circuit to the signal to be processed Perform demodulation processing.
  • the to-be-processed signal is obtained by collecting the modulation signal, and the to-be-processed signal is demodulated, so that touch position detection or fingerprint detection can be realized.
  • the start time of the sampling signal is after the start time of the switching signal and the end time of the sampling signal is before the end time of the switching signal.
  • the switch signal is at the second level, the start time of the sampling signal is after the start time of the switch signal and the end time of the sampling signal is before the end time of the switch signal.
  • the first level is higher than the second level.
  • step S904 may include: in the process of collecting the modulation signal, applying a reset signal to the second switching transistor of the photodetection circuit, so that the second switching transistor is turned on, so that the The potential of the second terminal (that is, the potential of the node PD) is reset.
  • a modulated light having a predetermined frequency is generated and emitted by a modulated light generating circuit.
  • the modulated light is reflected by the touch subject and received by the photodetection circuit.
  • the photoelectric detection circuit is used to detect the modulated light reflected by the touch subject and generate a modulated signal, and the modulated signal is output through the first capacitor. Because the first capacitor can function as a direct current and an alternating current, the signal generated by the ambient light on the photodetection circuit is a direct current signal, so the direct current signal is blocked by the first capacitor, and the modulated signal can be output through the first capacitor. Therefore, the touch method can eliminate the influence of ambient light on photoelectric detection as much as possible. With this touch method, touch position detection or fingerprint detection can be achieved.
  • the photoelectric detection circuit detects a modulated light reflected by a touch subject (such as a finger or a stylus pen) to generate a modulated signal.
  • a touch subject such as a finger or a stylus pen
  • the modulation signal generated by the photo-detection circuit at the touch position will change. After acquiring such a modulation signal and demodulating the acquired modulation signal, a touch position can be determined, and touch position detection can be realized.
  • the modulated signal detected by the photoelectric detection circuit is modulated light reflected by a fingerprint (here, a finger fingerprint is used as a touch subject)
  • the modulated signal includes fingerprint information. After the modulation signal is collected and the collected modulation signal is demodulated, fingerprint information can be obtained to realize fingerprint detection.
  • FIG. 10A is a connection diagram illustrating a touch device according to an embodiment of the present disclosure.
  • the touch device may include a plurality of gate driving circuit blocks (for example, gate driving circuit blocks 101 to 10m, where m is a positive integer), a plurality of photodetection circuits (for example, FIG. 1 or FIG. 2) A photo-detection circuit) 1001 and at least one first capacitor C1 are shown.
  • a plurality of gate driving circuit blocks for example, gate driving circuit blocks 101 to 10m, where m is a positive integer
  • a plurality of photodetection circuits for example, FIG. 1 or FIG. 2
  • a photo-detection circuit 1001 and at least one first capacitor C1 are shown.
  • each gate driving circuit block may include at least one gate driving unit.
  • each gate driving circuit block may include two gate driving units 1011.
  • the plurality of photodetection circuits 1001 form a photodetection circuit array.
  • Each row of the plurality of photodetection circuits 1001 is electrically connected to a gate driving unit 1011 of a gate driving circuit block.
  • each of the at least one first capacitor C1 is electrically connected to one or more columns of photodetection circuits of the plurality of photodetection circuits 1001.
  • the at least one first capacitor C1 includes a plurality of first capacitors C1.
  • Each of the plurality of first capacitors C1 is electrically connected to a row of photodetection circuits of the plurality of photodetection circuits. That is, the plurality of first capacitors C1 are electrically connected in one-to-one correspondence with the plurality of rows of photodetection circuits of the plurality of photodetection circuits.
  • the photo-detection circuits in n columns are shown in FIG. 10A, where n is a positive integer.
  • Each column of photodetection circuits is electrically connected to a read line.
  • the first column of photo-detection circuits is electrically connected to the first read line L R1
  • the n-th column of photo-detection circuits is electrically connected to the n-th read line L Rn .
  • Each read line is electrically connected to a first terminal of a corresponding first capacitor C1.
  • Each gate driving circuit block is configured to send a control signal to a corresponding at least one row (eg, two rows) of photodetection circuits 1001.
  • the at least one gate driving unit 1011 of each gate driving circuit block sends a control signal to the photo detection circuits 1001 of a corresponding row.
  • Each photoelectric detection circuit is configured to detect the modulated light reflected by the touch subject and generate a modulated signal in response to the control signal, and output the modulated signal through a corresponding first capacitor.
  • the modulated light is reflected by the touch subject onto the photo-detection circuit, and the photo-detection circuit detects the modulated light and generates a modulated signal.
  • the signal generated by the ambient light on the photodetection circuit is a DC signal. Since the first capacitor can block DC and AC, the modulated signal can be output through the first capacitor, and the DC signal is blocked by the first capacitor. Therefore, the touch device can eliminate the influence of ambient light on photoelectric detection as much as possible.
  • the touch device may further include a modulated light generating circuit (for example, as shown in FIG. 3).
  • the modulated light generating circuit is configured to generate a modulated light having a predetermined frequency.
  • the touch device may further include a sampling circuit and a demodulation circuit.
  • the sampling circuit is configured to acquire a modulated signal output by the first capacitor to obtain a signal to be processed.
  • the demodulation circuit is configured to perform demodulation processing on a signal to be processed.
  • the touch device may further include multiple sampling circuits, and each sampling circuit is electrically connected to one first capacitor.
  • Each sampling circuit may be electrically connected to one demodulation circuit, or multiple sampling circuits may be electrically connected to one demodulation circuit.
  • each gate driving circuit block makes the corresponding at least one row of the photodetection circuits detect the modulated light, and detects the modulated light reflected by the touch subject and generates a modulated signal. Then, the modulated signal is output to the sampling circuit through a corresponding first capacitor.
  • the sampling circuit collects the modulated signal to obtain a signal to be processed, and transmits the signal to be processed to a demodulation circuit. Since the modulation signal generated by the photo-detection circuit at the touch position changes, the touch position can be determined through sampling and demodulation processing.
  • fingerprint detection is performed after the touch position is determined.
  • the gate driving unit corresponding to the touched position is caused to issue a control signal line by line for fingerprint detection.
  • the control signals sent line by line cause each line of the photodetection circuit to sequentially detect the modulated light.
  • the modulated light is modulated light emitted by a fingerprint, and therefore, the modulated signal generated by the photodetection circuit contains fingerprint information.
  • the photo-detection circuit outputs the modulated signal to the sampling circuit through the corresponding first capacitor.
  • the sampling circuit collects the modulated signal to obtain a signal to be processed, and transmits the signal to be processed to a demodulation circuit. In this way, fingerprint information is obtained through sampling and demodulation processing.
  • each gate driving circuit block In the touch device shown in FIG. 10A, the entire gate driving circuit is divided into several blocks (or segments). For example, the width of each gate drive circuit block is less than 4 mm. These blocks share the clock CLK signal. However, each gate driving circuit block uses an STV (Start Pulse Gate Driver, Gate Driver Start Signal) to freely control the opening of different gate driving circuit blocks. Each gate driving circuit block may perform progressive scanning in a shift register manner, and may also pull all or one of the gates of the first switching transistors of the photodetection circuit high or low.
  • STV Start Pulse Gate Driver, Gate Driver Start Signal
  • each gate driving circuit block sequentially outputs a control signal, wherein all gate driving units in each gate driving circuit block are directed to all corresponding control lines (for example, control lines G1 and G2, Or Gy-1, Gy, etc.) output control signals.
  • the gate driving circuit block of the corresponding area is then opened. The gate driving circuit block of the corresponding area causes the photodetection circuits of the corresponding row to scan line by line to detect fingerprints.
  • FIG. 10B is a connection diagram illustrating a touch device according to another embodiment of the present disclosure.
  • the same or similar units or devices in FIG. 10B as those shown in FIG. 10A are not repeated.
  • the photodetection circuits of at least a part of the columns of the plurality of photodetection circuits 1001 are electrically connected to the same first capacitor C1 through switching devices (for example, switching devices 1031 to 103n, where n is a positive integer).
  • the at least one first capacitor includes a first capacitor C1.
  • the first capacitor C1 is electrically connected to all the photo detection circuits.
  • the touch device further includes a plurality of switching devices 1031 to 103n (n is a positive integer).
  • Each switching device is disposed between each column of photodetection circuits and the first capacitor C1.
  • the switching device 1031 is disposed between the first column of photodetection circuits and the first capacitor C1
  • the switching device 103n is disposed between the nth column of the photodetection circuits and the first capacitor C1.
  • each switch device When touch detection or fingerprint detection is performed, each switch device is controlled to be turned on in turn (wherein, only one switch device is turned on during each control process), so that a certain photoelectric detection circuit of each column of photoelectric detection circuits passes the modulation signal
  • the first capacitor C1 is output.
  • the number of first capacitors can be reduced, thereby reducing the circuit size and cost.
  • the at least one first capacitor includes a plurality of first capacitors. Some of the multiple-row photodetection circuits in the plurality of photo-detection circuits are electrically connected one-to-one correspondingly to some of the first capacitors in the plurality of first capacitors; multiple-row photo-detection of another part of the multiple photo-detection circuits The circuit is electrically connected to the same first capacitor of the plurality of first capacitors.
  • a switching device is provided between each column of the multiple rows of photodetection circuits and the corresponding first capacitor. This switching device can perform functions similar to those of the switching device in FIG. 10B.
  • the touch device may further include: a plurality of pixel units for display.
  • a photo-detection circuit is provided in at least a part of the plurality of pixel units.
  • each pixel unit of the plurality of pixel units includes a pixel compensation circuit.
  • Each pixel unit of the at least part of the pixel units includes a modulated light generating circuit.
  • the modulated light generating circuit is configured to generate a modulated light having a predetermined frequency.
  • the modulated light generating circuit shares a light emitting device with the pixel compensation circuit.
  • FIG. 11A is a connection diagram illustrating a touch device according to another embodiment of the present disclosure.
  • the same or similar units or devices in FIG. 11A as those shown in FIG. 10A are not described again.
  • the touch device may further include a plurality of pixel units 1100 for display.
  • a photodetection circuit (for example, the photodetection circuit 1001 in FIG. 10A) is provided in at least a part of the pixel units of the plurality of pixel units 1100.
  • a photo-detection circuit may be provided in each pixel unit.
  • each pixel unit of the touch device may include a pixel compensation circuit in addition to a photo-detection circuit.
  • the aforementioned third switching transistor T3 may be added to the pixel compensation circuit, so that the third switching transistor T3 and the light emitting device of the pixel compensation circuit are used to form a modulated light generating circuit, for example, as shown in FIG. 4B. That is, the modulated light generating circuit shares the light emitting device with the pixel compensation circuit.
  • a modulated light generating circuit may be formed by using a light emitting device (such as an infrared light source) and a third switching transistor provided outside the display panel.
  • FIG. 11B is a connection diagram illustrating a touch device according to another embodiment of the present disclosure.
  • the same or similar units or devices in FIG. 11B as those shown in FIG. 10B will not be described again.
  • the touch device may further include a plurality of pixel units 1100 for display.
  • a photodetection circuit (for example, the photodetection circuit 1001 in FIG. 10B) is provided in at least a part of the pixel units of the plurality of pixel units 1100.
  • a photo-detection circuit may be provided in each pixel unit.
  • each pixel unit of the touch device may include a pixel compensation circuit in addition to a photo-detection circuit. Moreover, the modulated light generating circuit shares the light emitting device with the pixel compensation circuit.
  • the term “row” in the embodiment of the present disclosure may mean that the unit structures (or devices, circuit structures, etc.) are arranged in a horizontal direction or in a vertical direction.
  • the term “column” may mean that the structures (or devices, circuit structures, etc.) are arranged vertically or horizontally.
  • “row” means arranged in a horizontal direction
  • “column” means arranged in a vertical direction
  • “column” means arranged in a horizontal direction.
  • each area is 4mm ⁇ 4mm.
  • Each region includes a plurality of pixel units, and each pixel unit here includes a pixel compensation circuit.
  • Each area also includes a photo-detection circuit. That is, each region includes a plurality of pixel compensation circuits and a photo-detection circuit. This can reduce the number of photodetection circuits, and also reduce the size of the pixel unit.
  • FIG. 12 is a flowchart illustrating a touch method for a touch device according to an embodiment of the present disclosure.
  • the touch method may include steps S1202 to S1206.
  • step S1202 a modulated light having a predetermined frequency is generated and emitted using a modulated light generating circuit.
  • each gate driving circuit block using a plurality of gate driving circuit blocks sends a control signal to a corresponding at least one row of photodetection circuits.
  • a plurality of gate driving circuit blocks sequentially issue control signals, wherein each control signal is output to the at least one photodetection circuit corresponding to each gate driving circuit block.
  • each photodetection circuit in response to the control signal, detects the modulated light reflected by the touch subject and generates a modulated signal, and outputs the modulated signal through a corresponding first capacitor.
  • the aforementioned step S904 may include steps S1204 and S1206 described herein.
  • a modulated light having a predetermined frequency is generated and emitted by a modulated light generating circuit.
  • the gate driving circuit block is used to send a control signal to the corresponding photodetection circuit.
  • each photoelectric detection circuit detects the modulated light reflected by the touch subject and generates a modulated signal, and outputs the modulated signal through a corresponding first capacitor.
  • the first capacitor can play a role of blocking DC and AC
  • the signal generated by the ambient light on the photodetection circuit is a DC signal. Therefore, the DC signal is blocked by the first capacitor, and the modulation signal can be output through the first capacitor. Therefore, the touch method can eliminate the influence of ambient light on photoelectric detection as much as possible.
  • the touch method may further include: using a sampling circuit to collect a modulation signal output from the first capacitor to obtain a signal to be processed, and outputting the signal to be processed to a demodulation circuit; The signal to be processed is demodulated. This can achieve touch position detection or fingerprint detection.
  • the touch method may further include: during the touch phase, each gate driving circuit block sends a control signal to all corresponding photodetection circuits, so that all the photocells corresponding to the gate driving circuit block The detection circuits all detect the modulated light reflected by the touch subject and generate a modulated signal. This achieves touch position detection.
  • the touch method may further include: in the fingerprint detection phase, after the touch position is determined, the gate driving unit of the gate driving circuit block corresponding to the touch position proceeds to the corresponding photoelectric detection line by line.
  • the circuit sends out a control signal, so that the corresponding photodetection circuit detects the modulated light reflected by the touch subject and generates a modulated signal. This achieves fingerprint detection.
  • the touch position detection may be performed first, and the fingerprint detection may be performed after the touch position is determined.
  • the gate driving unit corresponding to the touch position is caused to issue a control signal line by line.
  • the corresponding photoelectric detection circuit responds to the control signal, detects the modulated light reflected by the touch subject and generates a modulated signal.
  • the modulated signal contains fingerprint information.
  • the photo-detection circuit outputs the modulated signal through a corresponding first capacitor. By collecting the demodulated signal and demodulating it, fingerprint information can be obtained.

Abstract

本公开提供了一种触控电路、触控装置和触控方法,涉及触控技术领域。该触控电路包括:至少一个光电检测电路,以及与该至少一个光电检测电路电连接的第一电容器。每个光电检测电路被配置为检测被触控主体反射后的调制光并产生调制信号,将该调制信号通过该第一电容器输出。本公开可以尽量消除环境光对光电检测的影响。

Description

触控电路、触控装置和触控方法
相关申请的交叉引用
本申请是以CN申请号为201810824705.3,申请日为2018年7月25日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及触控技术领域,特别涉及一种触控电路、触控装置和触控方法。
背景技术
随着科技的发展,触摸屏的应用越来越普及。相关技术的触摸屏(例如OLED(Organic Light Emitting Diode,有机发光二极管)显示触摸屏)可以具有触控或指纹检测的功能。在相关技术中,例如可以利用光电检测技术实现触控或指纹检测。
发明内容
在本公开实施例的一个方面,提供了一种触控电路,包括:至少一个光电检测电路,以及与所述至少一个光电检测电路电连接的第一电容器;每个光电检测电路被配置为检测被触控主体反射后的调制光并产生调制信号,将所述调制信号通过所述第一电容器输出。
在一些实施例中,所述光电检测电路包括:光敏检测器件和第一开关晶体管;所述光敏检测器件的第一端电连接至第一电压端,所述光敏检测器件的第二端电连接至所述第一开关晶体管的第一端;所述第一开关晶体管的第二端电连接至所述第一电容器的第一端,所述第一开关晶体管的控制端被配置为接收控制信号。
在一些实施例中,所述光电检测电路还包括:第二开关晶体管,所述第二开关晶体管的第一端电连接至第二电压端,所述第二开关晶体管的第二端电连接至所述光敏检测器件的第二端,所述第二开关晶体管的控制端被配置为接收重置信号。
在一些实施例中,所述触控电路还包括:调制光产生电路,被配置为产生具有预定频率的调制光。
在一些实施例中,所述调制光产生电路包括:第三开关晶体管,被配置为响应于具有预定频率的开关信号,输出具有所述预定频率的电信号;以及发光器件,被配置 为根据具有所述预定频率的电信号发出调制光。
在一些实施例中,所述调制光的强度与环境光的强度呈正相关。
在一些实施例中,采样电路,被配置为采集所述第一电容器输出的调制信号以获得待处理信号;以及解调电路,被配置为对所述待处理信号进行解调处理。
在一些实施例中,所述采样电路包括:放大器,所述放大器的第一输入端电连接至所述第一电容器的第二端,所述放大器的第二输入端被配置为接收参考电平信号,所述放大器的输出端电连接至所述解调电路;第二电容器,所述第二电容器的第一端电连接至所述放大器的第一输入端,所述第二电容器的第二端电连接至所述放大器的输出端;以及采样开关,所述采样开关的第一端电连接至所述第二电容器的第一端,所述采样开关的第二端电连接至所述第二电容器的第二端,所述采样开关的控制端被配置为接收采样信号。
在一些实施例中,所述采样电路包括:放大器,所述放大器的第一输入端电连接至所述第一电容器的第二端,所述放大器的第二输入端被配置为接收参考电平信号,所述放大器的输出端电连接至所述解调电路;以及电阻器,所述电阻器的第一端电连接至所述放大器的第一输入端,所述电阻器的第二端电连接至所述放大器的输出端。
在本公开实施例的另一个方面,提供了一种触控装置,包括:多个栅极驱动电路块,每个栅极驱动电路块包括至少一个栅极驱动单元;多个光电检测电路,所述多个光电检测电路的每行光电检测电路与所述栅极驱动电路块的一个栅极驱动单元电连接;以及至少一个第一电容器,所述至少一个第一电容器的每一个与所述多个光电检测电路的一列或多列的光电检测电路电连接;其中,每个栅极驱动电路块被配置为向对应的至少一行光电检测电路发送控制信号;每个所述光电检测电路被配置为响应于所述控制信号,检测被触控主体反射后的调制光并产生调制信号,将所述调制信号通过对应的第一电容器输出。
在一些实施例中,所述至少一个第一电容器包括多个第一电容器,所述多个第一电容器的每一个与所述多个光电检测电路的一列光电检测电路电连接。
在一些实施例中,所述多个光电检测电路的至少部分列的光电检测电路分别通过开关装置与同一个第一电容器电连接。
在一些实施例中,所述触控装置还包括:用于显示的多个像素单元,其中,所述多个像素单元的至少部分像素单元中设置有所述光电检测电路。
在一些实施例中,所述多个像素单元的每个像素单元包括像素补偿电路;所述至 少部分像素单元的每个像素单元包括调制光产生电路,被配置为产生具有预定频率的调制光;其中,在所述至少部分像素单元的每个像素单元中,所述调制光产生电路与所述像素补偿电路共用发光器件。
在本公开实施例的另一个方面,提供了一种基于触控电路的触控方法,包括:利用调制光产生电路产生并发出具有预定频率的调制光;以及利用光电检测电路检测被触控主体反射后的所述调制光并产生调制信号,将所述调制信号通过第一电容器输出。
在一些实施例中,所述光电检测电路包括:光敏检测器件、第一开关晶体管和第二开关晶体管;所述光敏检测器件的第一端电连接至第一电压端,所述光敏检测器件的第二端电连接至所述第一开关晶体管的第一端;所述第一开关晶体管的第二端电连接至所述第一电容器的第一端,所述第一开关晶体管的控制端被配置为接收控制信号;所述第二开关晶体管的第一端电连接至第二电压端,所述第二开关晶体管的第二端电连接至所述光敏检测器件的第二端,所述第二开关晶体管的控制端被配置为接收重置信号;所述触控方法还包括:对采样电路施加采样信号以使得所述采样电路采集所述第一电容器输出的调制信号以获得待处理信号;以及利用解调电路对所述待处理信号进行解调处理;其中,利用光电检测电路检测被触控主体反射后的所述调制光并产生调制信号的步骤包括:在采集调制信号的过程中,对所述光电检测电路的第二开关晶体管施加重置信号,使得所述第二开关晶体管导通,以便对所述光敏检测器件的第二端的电位重置。
在一些实施例中,利用调制光产生电路产生并发出具有预定频率的调制光的步骤包括:对所述调制光产生电路施加具有预定频率的开关信号以使得所述调制光产生电路发出调制光;其中,在所述开关信号处于第一电平时,所述采样信号的开始时刻在所述开关信号的开始时刻之后且所述采样信号的结束时刻在所述开关信号的结束时刻之前;在所述开关信号处于第二电平时,所述采样信号的开始时刻在所述开关信号的开始时刻之后且所述采样信号的结束时刻在所述开关信号的结束时刻之前;其中,所述第一电平高于所述第二电平。
在一些实施例中,所述调制光的强度与环境光的强度呈正相关。
在一些实施例中,利用光电检测电路检测被触控主体反射后的所述调制光并产生调制信号,将所述调制信号通过第一电容器输出的步骤包括:利用多个栅极驱动电路块的每个栅极驱动电路块向对应的至少一行光电检测电路发送控制信号;以及利用每个所述光电检测电路响应于所述控制信号,检测被触控主体反射后的调制光并产生调 制信号,将所述调制信号通过对应的第一电容器输出。
在一些实施例中,所述触控方法还包括:在触控阶段,每个栅极驱动电路块向对应的所有光电检测电路发送控制信号,以使得与该栅极驱动电路块对应的所有光电检测电路均检测被触控主体反射后的调制光并产生调制信号;以及在指纹检测阶段,在确定触控位置后,与所述触控位置对应的栅极驱动电路块的栅极驱动单元逐行向对应的光电检测电路发出控制信号,以使得所述对应的光电检测电路检测被触控主体反射后的调制光并产生调制信号。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是示出根据本公开一个实施例的触控电路的连接图;
图2是示出根据本公开另一个实施例的触控电路的连接图;
图3是示出根据本公开一个实施例的调制光产生电路的连接图;
图4A是示出根据本公开一个实施例的像素补偿电路的连接图;
图4B是示出根据本公开一个实施例的像素补偿电路在显示时段和触控时段的时序控制图;
图5是示出根据本公开另一个实施例的触控电路的连接图;
图6是示出根据本公开另一个实施例的触控电路的连接图;
图7是示出根据本公开一个实施例的触控电路的时序控制图;
图8是示出根据本公开另一个实施例的触控电路的连接图;
图9是示出根据本公开一个实施例的用于触控电路的触控方法的流程图;
图10A是示出根据本公开一个实施例的触控装置的连接图;
图10B是示出根据本公开另一个实施例的触控装置的连接图;
图11A是示出根据本公开另一个实施例的触控装置的连接图;
图11B是示出根据本公开另一个实施例的触控装置的连接图;
图12是示出根据本公开一个实施例的用于触控装置的触控方法的流程图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
本公开的发明人发现,在相关技术中,在进行触控或指纹检测时,光电检测常常受到环境光(例如夏日正午户外的阳光所造成的强环境光)的影响,从而造成触控或指纹检测不准确的问题。
鉴于此,本公开的实施例提供一种触控电路,以尽量消除环境光对光电检测的影响。下面结合附图详细描述根据本公开一些实施例的触控电路。
图1是示出根据本公开一个实施例的触控电路的连接图。如图1所示,该触控电路包括至少一个光电检测电路(例如图1中示出了光电检测电路11至y1等)和第一电容器C1。该第一电容器C1与所述至少一个光电检测电路电连接。该第一电容器可以设置在显示面板或者集成电路上。
每个光电检测电路被配置为检测被触控主体(例如手指、触控笔等)反射后的调制光并产生调制信号,将该调制信号通过该第一电容器C1输出。例如,可以将该调制信号输出到采样电路、解调电路等,后面将详细描述。
需要说明的是,本公开实施例的触控主体可以是接触式的触控主体,还可以是非接触式的触控主体,例如可以采用3D悬浮触控的方式实现该触控主体。
在上述实施例的触控电路中,调制光被触控主体反射到光电检测电路上,该光电检测电路检测到该调制光并产生调制信号。而环境光照射在光电检测电路上产生的信号是直流信号。由于第一电容器可以起到隔直流通交流的作用,因此调制信号可以通过第一电容器被输出,而该直流信号被第一电容器阻隔。因此,该触控电路可以尽量消除环境光对光电检测的影响,例如消除了强环境光造成的对光电检测的过饱和影响。
在一些实施例中,光电检测电路检测到被触控主体反射后的调制光后产生调制信号。在触控位置处的光电检测电路所产生的调制信号会出现变化。在采集这样的调制信号并进行处理后就可以确定触控位置,实现触控位置检测。
在另一些实施例中,在光电检测电路所检测的调制光是被指纹(这里,手指指纹作为触控主体)反射后的调制光的情况下,调制信号包含指纹信息。在采集这样的调制信号并进行处理后即可得到指纹信息,实现指纹检测。
需要说明的是,图1中示出了一列光电检测电路。本领域技术人员应该理解,在一些实施例中,可以有多列如图1所示的光电检测电路,以实现整个触控屏幕的触控位置检测或指纹检测。例如,在多列光电检测电路中,每一列的光电检测电路与一个第一电容器电连接。即多列光电检测电路与多个第一电容器一一对应地电连接。这样,每列光电检测电路的调制信号分别通过相应的第一电容器输出,以实现整个触控屏幕的触控位置检测或指纹检测。又例如,该多列光电检测电路与同一个第一电容器电连接,并在每列光电检测电路与该第一电容器之间设置一个开关装置。通过控制每一个开关装置的导通和关断,控制每列光电检测电路的调制信号分别通过第一电容器输出,以实现整个触控屏幕的触控位置检测或指纹检测。
还需要说明的是,本公开实施例的范围并不局限于光电检测电路在列方向上与第 一电容器电连接,还可以是在行方向上与第一电容器电连接。
图2是示出根据本公开另一个实施例的触控电路的连接图。在图2中的光电检测电路11'至y1'是图1中的光电检测电路11至y1的一种具体实施方式。在一些实施例中,如图2所示,该光电检测电路11'(或y1'等)包括光敏检测器件210和第一开关晶体管T1。
如图2所示,该光敏检测器件210的第一端电连接至第一电压端201。该光敏检测器件210的第二端电连接至该第一开关晶体管T1的第一端(例如第一电极)。例如,该光敏检测器件210的第二端与该第一开关晶体管T1的第一端均电连接在节点PD。该光敏检测器件被配置为在检测被触控主体反射后的调制光后产生调制信号。
如图2所示,该第一开关晶体管T1的第二端(例如第二电极)电连接至第一电容器C1的第一端。例如,该第一开关晶体管T1的第二端通过读取线L R电连接至第一电容器C1的第一端。该第一开关晶体管T1的控制端(例如栅极)被配置为接收控制信号。例如,在光电检测电路11'中,该第一开关晶体管T1的控制端被配置为接收来自于控制线G1的控制信号。又例如,在光电检测电路y1'中,该第一开关晶体管T1的控制端被配置为接收来自于控制线Gy的控制信号。该第一开关晶体管T1被配置为响应于控制信号导通,以将光敏检测器件产生的调制信号输出到第一电容器。这样,调制信号可以通过第一电容器输出。例如,该调制信号为电流信号。
在一些实施例中,如图2所示,该光电检测电路11'(或y1'等)还可以包括第二开关晶体管T2。如图2所示,该第二开关晶体管T2的第一端(例如第一电极)电连接至第二电压端202。该第二开关晶体管T2的第二端(例如第二电极)电连接至该光敏检测器件210的第二端。该第二开关晶体管T2的控制端(例如栅极)被配置为接收重置信号V rst。该第二开关晶体管T2被配置为响应于重置信号V rst而导通,以将第一开关晶体管T1与光敏检测器件之间的节点PD的电位(即该光敏检测器件的第二端的电位)重置到第二电压端的电位。这样可以尽量保证PD节点处于静态工作点,防止光敏检测器件在长时间被曝光的情况下处于饱和状态而影响触控或指纹检测。
在一些实施例中,如图2所示,该光敏检测器件210可以包括PIN(P-type semiconductor Intrinsic semiconductor N-type semiconductor)光电二极管。
例如,如图2所示,在该光敏检测器件210的第一端为PIN光电二极管的阳极端,该光敏检测器件210的第二端为该PIN光电二极管的阴极端的情况下,该第一电压端201的电平低于该第二电压端202的电平。例如,第一电压端201的电平可以是负电 平,第二电压端202的电平可以是正电平。
又例如,在该光敏检测器件210的第一端为PIN光电二极管的阴极端,该光敏检测器件210的第二端为该PIN光电二极管的阳极端的情况下,该第一电压端的电平高于该第二电压端的电平。例如,第一电压端201的电平可以是正电平,第二电压端202的电平可以是负电平。
在这两种情况下,均可以使得PIN光电二极管的阳极端被施加的电平低于阴极端被施加的电平,从而使得PIN光电二极管处于反向偏置状态。
需要说明的是,图2中描述了光电检测电路的一种具体实施方式。本领域技术人员应该理解,光电检测电路还可以采用其他实施方式,例如,光敏检测器件可以采用其他元件(例如光敏传感器、光探测器等)。因此,本公开实施例的范围并不仅限于这里所公开的光电检测电路的实施方式。
在本公开的一些实施例中,触控电路还可以包括调制光产生电路。该调制光产生电路被配置为产生具有预定频率的调制光。
图3是示出根据本公开一个实施例的调制光产生电路的连接图。如图3所示,该调制光产生电路可以包括第三开关晶体管T3和发光器件(例如OLED)310。
如图3所示,该第三开关晶体管T3的第一端(例如第一电极)被配置为接收电流I。例如,该第三开关晶体管T3的第一端电连接至集成电路或者恒流源(例如在周围以TFT(Thin Film Transistor,薄膜晶体管)制作的恒流源),从而从该集成电路或该恒流源接收恒定电流I。例如,电流I的大小可以取决于环境光的大小。可以选择光电感测器作为环境光感测单元。在环境光较强的情况下,使得电流I较大,这样由于环境光较强,人眼不会分辨出由于触控造成的发光器件发光的异常,并且较大的调制光光强有利于产生较强的调制信号,从而将环境光对光电检测的影响消除。因此,在一些实施例中,调制光的强度与环境光的强度呈正相关。例如,调制光的强度与环境光的强度基本相等。
如图3所示,该第三开关晶体管T3的第二端(例如第二电极)电连接至该发光器件310的阳极端。该第三开关晶体管T3的控制端(例如栅极)被配置为接收具有预定频率的开关信号V TS。该第三开关晶体管T3被配置为响应于具有预定频率的开关信号V TS,输出具有该预定频率的电信号(例如电流信号)。
该发光器件310的阴极端电连接至接地端ELVSS。该发光器件310被配置为根据具有该预定频率的电信号发出调制光。
在一些实施例中,该发光器件310可以包括:在显示面板中的发光器件或者在显示面板外部设置的发光器件。例如,显示面板的每个像素可以包括像素补偿电路和前面所述的光电检测电路。可以复用像素补偿电路的发光器件作为用于发出调制光的发光器件。例如,在显示面板为OLED面板的情况下,该OLED面板的OLED器件可以作为发出调制光的发光器件。这样不需要增加额外的发光器件,减小成本。另外,本领域技术人员应该明白,可以利用在显示面板外部设置的发光器件(例如在外部设置的红外光源)来发出调制光,也能够实现调制光产生电路产生调制光的目的。
图4A是示出根据本公开一个实施例的像素补偿电路的连接图。如图4A所示,该像素补偿电路可以包括第三开关晶体管T3和发光器件310。在一些实施例中,该像素补偿电路还可以包括驱动晶体管T9、第四开关晶体管T4、第五开关晶体管T5、第六开关晶体管T6、第七开关晶体管T7、第八开关晶体管T8和存储电容器C0。
如图4A所示,该第六开关晶体管T6的第一端(例如第一电极)电连接至电源电压端ELVDD。该第六开关晶体管T6的第二端(例如第二电极)与第五开关晶体管T5的第一端(例如第一电极)、存储电容器C0的第一端电连接在一起。该第六开关晶体管T6的控制端(例如栅极)被配置为接收控制信号EM。这里,该控制信号EM与施加到第一开关晶体管T1上的控制信号不同。例如可以将前面所述的施加到第一开关晶体管T1上的控制信号称为第一控制信号,将该施加到第六开关晶体管T6上的控制信号EM称为第二控制信号。该第五开关晶体管T5的第二端(例如第二电极)被配置为接收数据电平V data。该第五开关晶体管T5的控制端(例如栅极)被配置为接收栅极驱动信号V G'。
如图4A所示,该驱动晶体管T9的第一端(例如第一电极)电连接至电源电压端ELVDD。该驱动晶体管T9的控制端(例如栅极)、该存储电容器C0的第二端、第七开关晶体管T7的第一端(例如第一电极)和第八开关晶体管T8的第一端(例如第一电极)电连接在一起。该驱动晶体管T9的第二端(例如第二电极)、第八开关晶体管T8的第二端(例如第二电极)和第四开关晶体管T4的第一端(例如第一电极)电连接在一起。第八开关晶体管T8的控制端(例如栅极)被配置为接收栅极驱动信号V G'。第四开关晶体管T4的第二端(例如第二电极)电连接至发光器件310的阳极端。第四开关晶体管T4的控制端(例如栅极)被配置为接收控制信号EM。该第七开关晶体管T7的第二端(例如第二电极)电连接至第三电压端V int。该第七开关晶体管T7的控制端(例如栅极)被配置为接收重置信号RST。例如,该重置信号RST与前 面所述的重置信号V rst不同。例如,可以将前面所述的重置信号V rst称为第一重置信号,将该处的重置信号RST称为第二重置信号。
在一些实施例中,触控装置的像素电路包括像素补偿电路和光电检测电路。像素补偿电路用于控制OLED的发光。光电检测电路用于控制调制光的检测。如图4A所示,在像素补偿电路中增加第三开关晶体管T3,用以控制在触控时段使发光器件发出一定灰阶的调制光,从而进行触控或指纹检测。该实施例不需要增加额外的发光器件,减小成本。
需要说明的是,图4A所示的像素补偿电路是一种具体的实施方式。本领域技术人员应该明白,像素补偿电路还可以采用其他的方式,并不仅限于图4A所示的实施方式。因此本公开实施例的范围并不仅限于此。
还需要说明的是,本公开实施例的附图(例如图2、图3或图4A等)中示出的开关晶体管或驱动晶体管可以是NMOS晶体管。本领域技术人员可以理解,本公开实施例的开关晶体管或驱动晶体管还可以是PMOS晶体管。因此,本公开实施例的范围并不仅限于此。
图4B是示出根据本公开一个实施例的像素补偿电路在显示时段和触控时段的时序控制图。图4B中示出了控制信号EM和开关信号V TS。如图4B所示,1帧时序可以包括显示时段和触控时段。在一些实施例中,显示时段和触控时段交替出现。当然也可以将触控时段穿插到显示时段中实现更高触控帧率,这里不再赘述。当进入触控时段后,第四开关晶体管T4截止。通过开关信号V TS控制第三开关晶体管T3的导通和截止,以使得电流I按照预定频率流过发光器件310,使得发光器件310发出具有该预定频率的调制光。
需要说明的是,在图4B所示的显示时段内,控制信号EM具有短时间的低电平。此时,第四开关晶体管T4截止。由于这是在整个显示装置(例如显示面板)中的某一个或某一行的像素补偿电路的第四开关晶体管T4截止,即仅是在整个显示装置中的一个或一行子像素不发光,而其他子像素或其他行的子像素均发光,因此从整体的显示来看,可以认为该像素补偿电路或该行的像素补偿电路仍然处于显示时段。
图5是示出根据本公开另一个实施例的触控电路的连接图。
在一些实施例中,如图5所示,触控电路还可以包括采样电路510和解调电路520。
该采样电路510被配置为采集第一电容器C1输出的调制信号以获得待处理信号。关于采样电路的具体结构将在后面结合附图详细描述。
该解调电路520被配置为对待处理信号进行解调处理。该解调电路可以采用已知的相关技术中的电路形式,这里不在赘述。
在该实施例中,采样电路采集第一电容器输出的调制信号以获得待处理信号,并将该待处理信号传输到解调电路。该解调电路对该待处理信号进行解调处理。
在触控情况下,解调电路可以根据在触控位置处的调制信号的变化确定触控主体的触控位置,实现触控检测。在指纹检测的情况下,调制信号可以包含指纹信息,因此,解调电路可以从采样电路采集的调制信号(即待处理信号)中解调得到指纹信息,实现指纹检测。
图6是示出根据本公开另一个实施例的触控电路的连接图。图6中所示的采样电路610是图5中所示采样电路510的一种具体实施方式。
在一些实施例中,如图6所示,该采样电路610可以包括放大器611、第二电容器C2和采样开关613。
如图6所示,该放大器611的第一输入端电连接至第一电容器C1的第二端。该放大器611的第二输入端被配置为接收参考电平信号V ref。例如,该放大器611的第二输入端可以电连接至固定电平端,以接收固定的参考电平信号V ref。该放大器611的输出端电连接至解调电路520。
如图6所示,该第二电容器C2的第一端电连接至该放大器611的第一输入端。该第二电容器C2的第二端电连接至该放大器611的输出端。
如图6所示,该采样开关613的第一端电连接至该第二电容器C2的第一端。该采样开关613的第二端电连接至该第二电容器C2的第二端。该采样开关613的控制端被配置为接收采样信号V SW。例如,该采样开关可以包括开关晶体管。
在该实施例中,采样电路采用了积分放大电路的形式。采样开关613在接收采样信号V SW后断开,然后采样电路进行采样。在一个采样过程中,第二电容器对采集的调制信号进行积累以获得待处理信号,并将该待处理信号传输到解调电路。该积分检测方式可以提升信噪比。
图7是示出根据本公开一个实施例的触控电路的时序控制图。
如图7所示,控制信号V G可以被施加到第一开关晶体管T1的控制端。例如,第一开关晶体管T1为NMOS晶体管。在控制信号V G为高电平的情况下,第一开关晶体管T1导通。
如图7所示,开关信号V TS被施加到第三开关晶体管T3的控制端。例如,第三 开关晶体管T3为NMOS晶体管。在开关信号V TS为高电平的情况下,第三开关晶体管T3导通,则发光器件310发光(即亮)。在开关信号V TS为低电平的情况下,第三开关晶体管T3截止,则发光器件310不发光(即暗)。这样实现了调制光产生电路的发光器件发出调制光的目的。
如图7所示,采样信号V SW被施加到采样开关613的控制端。例如,该采样开关可以是PMOS晶体管。在采样信号V SW为高电平的情况下,采样开关断开。第二电容器对采集的调制信号进行积累,从而实现采样处理。
在一些实施例中,如图7所示,在开关信号V TS处于第一电平(例如高电平)时,采样信号V SW的开始时刻(例如采样信号V SW的上升沿对应的时刻)在该开关信号V TS的开始时刻(例如开关信号V TS的上升沿对应的时刻)之后且该采样信号V SW的结束时刻(例如采样信号V SW的下降沿对应的时刻)在该开关信号V TS的结束时刻(例如开关信号V TS的下降沿对应的时刻)之前。在开关信号V TS处于第二电平(例如低电平)时,采样信号V SW的开始时刻(例如采样信号V SW的上升沿对应的时刻)在该开关信号V TS的开始时刻(例如开关信号V TS的下降沿对应的时刻)之后且该采样信号V SW的结束时刻(例如采样信号V SW的下降沿对应的时刻)在该开关信号V TS的结束时刻(例如开关信号V TS的上升沿对应的时刻)之前。该第一电平高于该第二电平。例如,在采样信号V SW为高电平信号的情况下采样电路采集调制信号。又例如在开关信号V TS为高电平时第三开关晶体管导通,为低电平时第三开关晶体管截止。
因此,如图7所示,该采样信号V SW的上升沿和下降沿避开该开关信号V TS的上升沿和下降沿。即,在采样过程中,对调制信号积分的时间避开开关信号V TS的上升沿及下降沿。例如,该采样信号V SW的上升沿晚于高电平的开关信号V TS的上升沿,该采样信号V SW的下降沿早于高电平的开关信号V TS的下降沿。该采样信号在发光器件310发光和不发光的过程中均使得采样电路采样。由于开关信号V TS的频率与发光频率相同,因此可以避免传输开关信号V TS的信号线(即与第三开关晶体管T3的控制端电连接的信号线,图中未示出)与读取线的耦合所造成的对解调信号的干扰。
如图7所示,重置信号V rst被施加到第二开关晶体管T2的控制端。例如,第二开关晶体管T2为NMOS晶体管。在重置信号V rst为高电平的情况下,第二开关晶体管T2导通,节点PD短暂的静态工作点被重置。在重置信号V rst为低电平的情况下,第二开关晶体管T2截止。如图7所示,可以在每次采样的末端开启第二开关晶体管T2,重置节点PD的静态工作点,然后关闭该第二开关晶体管T2,以进行下一采样周 期内的调制信号的采集。
通过如图7所示的上述时许控制信号,实现了对触控电路的控制。在该控制过程中,可以尽量消除环境光对光电检测的影响。
图8是示出根据本公开另一个实施例的触控电路的连接图。图8中所示的采样电路810是图5中所示采样电路510的另一种具体实施方式。
在一些实施例中,该采样电路810可以包括放大器811和电阻器R0。该放大器811的第一输入端电连接至第一电容器C1的第二端。该放大器810的第二输入端被配置为接收参考电平信号V ref。例如,该放大器811的第二输入端可以电连接至固定电平端,以接收固定的参考电平信号V ref。该放大器810的输出端电连接至解调电路520。该电阻器R0的第一端电连接至该放大器811的第一输入端。该电阻器R0的第二端电连接至该放大器811的输出端。
在该实施例中,采样电路采用了跨导放大电路的形式。在采样过程中,该采样电路810不需要如采样电路610所述的对采集的调制信号进行积累,而是通过不断地采集调制信号来获得待处理信号,并将该待处理信号传输到解调电路。该跨导方式具有实时传输调制信号的特点,可以减少与第三开关晶体管T3的控制端电连接的信号线对调制信号的干扰。
图9是示出根据本公开一个实施例的用于触控电路的触控方法的流程图。该触控方法可以包括步骤S902~S904。
在步骤S902,利用调制光产生电路产生并发出具有预定频率的调制光。
在一些实施例中,该步骤S902可以包括:对调制光产生电路施加具有预定频率的开关信号以使得该调制光产生电路发出调制光。例如对该调制光产生电路的第三开关晶体管施加具有预定频率的开关信号,使得与该第三开关晶体管电连接的发光器件发出调制光。
在步骤S904,利用光电检测电路检测被触控主体反射后的调制光并产生调制信号,将该调制信号通过第一电容器输出。
在一些实施例中,该光电检测电路可以包括:光敏检测器件、第一开关晶体管和第二开关晶体管。该光敏检测器件的第一端电连接至第一电压端,该光敏检测器件的第二端电连接至该第一开关晶体管的第一端。该第一开关晶体管的第二端电连接至该第一电容器的第一端,该第一开关晶体管的控制端被配置为接收控制信号。该第二开关晶体管的第一端电连接至第二电压端,该第二开关晶体管的第二端电连接至该光敏 检测器件的第二端,该第二开关晶体管的控制端被配置为接收重置信号。
在一些实施例中,该步骤S904可以包括:对光电检测电路的第一开关晶体管施加控制信号,使得该第一开关晶体管导通,以便将该光电检测电路的光敏检测器件产生的调制信号输出。
在一些实施例中,所述触控方法还可以包括:对采样电路施加采样信号以使得该采样电路采集第一电容器输出的调制信号以获得待处理信号;以及利用解调电路对该待处理信号进行解调处理。通过对调制信号采集来获得待处理信号,并对该待处理信号进行解调处理,从而可以实现触控位置检测或指纹检测。
在一些实施例中,在开关信号处于第一电平时,采样信号的开始时刻在该开关信号的开始时刻之后且该采样信号的结束时刻在该开关信号的结束时刻之前。在开关信号处于第二电平时,采样信号的开始时刻在该开关信号的开始时刻之后且该采样信号的结束时刻在该开关信号的结束时刻之前。该第一电平高于该第二电平。
在一些实施例中,该步骤S904可以包括:在采集调制信号的过程中,对光电检测电路的第二开关晶体管施加重置信号,使得该第二开关晶体管导通,以便对该光敏检测器件的第二端的电位(即节点PD的电位)重置。
在该实施例的触控方法中,利用调制光产生电路产生并发出具有预定频率的调制光。该调制光被触控主体反射后被光电检测电路接收。利用该光电检测电路检测被触控主体反射后的该调制光并产生调制信号,将该调制信号通过第一电容器输出。由于该第一电容器可以起到隔直流通交流的作用,环境光照射在光电检测电路上产生的信号是直流信号,因此该直流信号被第一电容器阻隔,而调制信号可以通过第一电容器输出。因此,该触控方法可以尽量消除环境光对光电检测的影响。利用该触控方法,可以实现触控位置检测或指纹检测。
例如,光电检测电路检测到被触控主体(例如手指或触控笔等)反射后的调制光后产生调制信号。在触控位置处的光电检测电路所产生的调制信号会出现变化。在采集这样的调制信号并对所采集的调制信号进行解调处理后即可确定触控位置,实现触控位置检测。
又例如,在光电检测电路所检测的调制光是被指纹(这里,手指指纹作为触控主体)反射后的调制光的情况下,调制信号包含指纹信息。在对调制信号进行采集并对所采集的调制信号进行解调处理后即可得到指纹信息,实现指纹检测。
图10A是示出根据本公开一个实施例的触控装置的连接图。
如图10A所示,该触控装置可以包括:多个栅极驱动电路块(例如,栅极驱动电路块101至10m,m为正整数)、多个光电检测电路(例如图1或图2中示出的光电检测电路)1001以及至少一个第一电容器C1。
在一些实施例中,每个栅极驱动电路块可以包括至少一个栅极驱动单元。例如,如图10A所示,每个栅极驱动电路块可以包括两个栅极驱动单元1011。
在一些实施例中,如图10A所示,所述多个光电检测电路1001形成光电检测电路阵列。所述多个光电检测电路1001的每行光电检测电路与栅极驱动电路块的一个栅极驱动单元1011电连接。
在一些实施例中,所述至少一个第一电容器C1的每一个与所述多个光电检测电路1001的一列或多列的光电检测电路电连接。例如,如图10A所示,所述至少一个第一电容器C1包括多个第一电容器C1。所述多个第一电容器C1的每一个与所述多个光电检测电路的一列光电检测电路电连接。即,该多个第一电容器C1与所述多个光电检测电路中的多列光电检测电路一一对应地电连接。
图10A中示出了n列的光电检测电路,n为正整数。每列光电检测电路电连接至一条读取线。例如,第一列光电检测电路电连接至第一条读取线L R1,第n列光电检测电路电连接至第n条读取线L Rn。每条读取线电连接至对应的第一电容器C1的第一端。
每个栅极驱动电路块被配置为向对应的至少一行(例如两行)光电检测电路1001发送控制信号。例如,每个栅极驱动电路块的所述至少一个栅极驱动单元1011向对应行的光电检测电路1001发送控制信号。
每个光电检测电路被配置为响应于该控制信号,检测被触控主体反射后的调制光并产生调制信号,将该调制信号通过对应的第一电容器输出。
在该实施例的触控装置中,调制光被触控主体反射到光电检测电路上,该光电检测电路检测到该调制光并产生调制信号。而环境光照射在光电检测电路上产生的信号是直流信号。由于第一电容器可以起到隔直流通交流的作用,因此调制信号可以通过第一电容器被输出,而该直流信号被第一电容器阻隔。因此,该触控装置可以尽量消除环境光对光电检测的影响。
在一些实施例中,该触控装置还可以包括调制光产生电路(例如图3所示)。该调制光产生电路被配置为产生具有预定频率的调制光。
在一些实施例中,该触控装置还可以包括采样电路和解调电路。该采样电路被配 置为采集第一电容器输出的调制信号以获得待处理信号。该解调电路被配置为对待处理信号进行解调处理。例如,触控装置包括多个第一电容器的情况下,该触控装置还可以包括多个采样电路,每个采样电路与一个第一电容器电连接。每个采样电路可以与一个解调电路电连接,或者多个采样电路与一个解调电路电连接。
下面分别说明触控位置检测和指纹检测的过程。
例如,在进行触控位置检测的过程中,每个栅极驱动电路块使得对应的至少一行光电检测电路均进行调制光的检测,在检测到被触控主体反射后的调制光并产生调制信号后,将该调制信号通过对应的第一电容器输出到采样电路。采样电路采集该调制信号以获得待处理信号,并将该待处理信号传输到解调电路。由于在触控位置处的光电检测电路所产生的调制信号会出现变化,因此通过采样和解调处理,即可确定触控位置。
又例如,在确定触控位置后进行指纹检测。在进行指纹检测的过程中,使得与该触控位置对应的栅极驱动单元逐行发出控制信号,以进行指纹检测。该逐行发出的控制信号使得每行光电检测电路依次进行调制光的检测。该调制光是被指纹发射后的调制光,因此,光电检测电路产生的调制信号包含指纹信息。光电检测电路将该调制信号通过对应的第一电容器输出到采样电路。采样电路采集该调制信号以获得待处理信号,并将该待处理信号传输到解调电路。这样,通过采样和解调处理来获得指纹信息。
在图10A所示的触控装置中,将整个栅极驱动电路分成若干块(或段)。例如,每个栅极驱动电路块的宽度小于4mm。这些块共用时钟CLK信号。但每个栅极驱动电路块使用一个STV(Start pulse to gate driver,栅极驱动器起始信号),以此来自由控制不同栅极驱动电路块的开启。每个栅极驱动电路块可以以移位寄存器方式进行逐行扫描,也可以将光电检测电路的第一开关晶体管的栅极全部拉高或者拉低。在触控时段,每个栅极驱动电路块依次输出控制信号,其中,在每个栅极驱动电路块内的所有栅极驱动单元向所对应的全部控制线(例如,控制线G1和G2,或者Gy-1和Gy等)输出控制信号。在确定了触控位置后,如果有指纹检测需求,则再打开对应区域的栅极驱动电路块。该对应区域的栅极驱动电路块使得对应行的光电检测电路逐行扫描,以进行指纹的检测。
图10B是示出根据本公开另一个实施例的触控装置的连接图。这里,在图10B中的与图10A中所示的相同或相似的单元或器件不再赘述。
在一些实施例中,所述多个光电检测电路1001的至少部分列的光电检测电路分 别通过开关装置(例如开关装置1031至103n,n为正整数)与同一个第一电容器C1电连接。
例如,如图10B所示,所述至少一个第一电容器包括一个第一电容器C1。该第一电容器C1与所有光电检测电路电连接。
在一些实施例中,如图10B所示,该触控装置还包括多个开关装置1031至103n(n为正整数)。每个开关装置设置在每列光电检测电路与该第一电容器C1之间。例如,开关装置1031设置在第一列光电检测电路与该第一电容器C1之间,开关装置103n设置在第n列光电检测电路与该第一电容器C1之间。
当进行触控检测或指纹检测时,依次控制每个开关装置导通(其中,每次控制过程中只有一个开关装置导通),使得每列光电检测电路的某一个光电检测电路将调制信号通过第一电容器C1输出。
在上述实施例中,相比图10A的电路结构,可以减少第一电容器的数量,从而减少电路尺寸和成本。
在另一些实施例中,所述至少一个第一电容器包括多个第一电容器。所述多个光电检测电路中的部分多列光电检测电路与该多个第一电容器中的部分第一电容器一一对应地电连接;所述多个光电检测电路的另一部分的多列光电检测电路与该多个第一电容器中的同一个第一电容器电连接。
在多列光电检测电路与同一个第一电容器电连接的情况下,在该多列光电检测电路的每一列光电检测电路与对应的第一电容器之间设置有开关装置。该开关装置可以起到与图10B中的开关装置类似的功能。
在一些实施例中,所述触控装置还可以包括:用于显示的多个像素单元。所述多个像素单元的至少部分像素单元中设置有光电检测电路。
在一些实施例中,所述多个像素单元的每个像素单元包括像素补偿电路。所述至少部分像素单元的每个像素单元包括调制光产生电路。该调制光产生电路被配置为产生具有预定频率的调制光。在所述至少部分像素单元的每个像素单元中,该调制光产生电路与该像素补偿电路共用发光器件。
图11A是示出根据本公开另一个实施例的触控装置的连接图。这里,在图11A中的与图10A中所示的相同或相似的单元或器件不再赘述。
如图11A所示,该触控装置还可以包括:用于显示的多个像素单元1100。所述多个像素单元1100的至少部分像素单元中设置有光电检测电路(例如图10A中的光电 检测电路1001)。例如,可以在每个像素单元中设置光电检测电路。
例如,该触控装置的每个像素单元除了包括光电检测电路,还可以包括像素补偿电路。可以在该像素补偿电路中增加前面所述的第三开关晶体管T3,从而利用该第三开关晶体管T3和像素补偿电路的发光器件形成调制光产生电路,例如如图4B所示。即,调制光产生电路与像素补偿电路共用发光器件。又例如,可以利用在显示面板外部设置的发光器件(例如红外光源)和第三开关晶体管形成调制光产生电路。
图11B是示出根据本公开另一个实施例的触控装置的连接图。这里,在图11B中的与图10B中所示的相同或相似的单元或器件不再赘述。
如图11B所示,该触控装置还可以包括:用于显示的多个像素单元1100。所述多个像素单元1100的至少部分像素单元中设置有光电检测电路(例如图10B中的光电检测电路1001)。例如,可以在每个像素单元中设置光电检测电路。
与前面类似地,该触控装置的每个像素单元除了包括光电检测电路,还可以包括像素补偿电路。而且调制光产生电路与像素补偿电路共用发光器件。
需要说明的是,本公开实施例的术语“行”可以表示单元结构(或者器件、电路结构等)沿横向排列或沿竖向排列。相应地,术语“列”可以表示结构(或者器件、电路结构等)沿竖向排列或沿横向排列。例如,当“行”表示沿横向排列时,“列”表示沿竖向排列;当“行”表示沿竖向排列时,“列”表示沿横向排列。
在另一些实施例中,可以将整个像素阵列分成若干区域。例如,每个区域为4mm×4mm。每个区域包括多个像素单元,这里的每个像素单元包括一个像素补偿电路。每个区域还包括一个光电检测电路。即,每个区域包括多个像素补偿电路和一个光电检测电路。这样可以减少光电检测电路的数量,也可以减小像素单元的尺寸。
图12是示出根据本公开一个实施例的用于触控装置的触控方法的流程图。该触控方法可以包括步骤S1202至S1206。
在步骤S1202,利用调制光产生电路产生并发出具有预定频率的调制光。
在步骤S1204,利用多个栅极驱动电路块的每个栅极驱动电路块向对应的至少一行光电检测电路发送控制信号。例如,多个栅极驱动电路块依次发出控制信号,其中每个控制信号被输出到每个栅极驱动电路块对应的所述至少一个光电检测电路。
在步骤S1206,利用每个光电检测电路响应于控制信号,检测被触控主体反射后的调制光并产生调制信号,将该调制信号通过对应的第一电容器输出。在一些实施例中,前面所述的步骤S904可以包括这里所述的步骤S1204和S1206。
在该实施例的触控方法中,利用调制光产生电路产生并发出具有预定频率的调制光。利用栅极驱动电路块向对应的光电检测电路发送控制信号。利用每个光电检测电路响应于控制信号,检测被触控主体反射后的调制光并产生调制信号,将该调制信号通过对应的第一电容器输出。由于该第一电容器可以起到隔直流通交流的作用,而环境光照射在光电检测电路上产生的信号是直流信号。因此该直流信号被第一电容器阻隔,而调制信号可以通过第一电容器输出。因此,该触控方法可以尽量消除环境光对光电检测的影响。
在一些实施例中,该触控方法还可以包括:利用采样电路采集第一电容器输出的调制信号以获得待处理信号,并将该待处理信号输出到解调电路;以及利用解调电路对该待处理信号进行解调处理。这样可以实现触控位置检测或指纹检测。
在一些实施例中,该触控方法还可以包括:在触控阶段,每个栅极驱动电路块向对应的所有光电检测电路发送控制信号,以使得与该栅极驱动电路块对应的所有光电检测电路均检测被触控主体反射后的调制光并产生调制信号。这样实现了触控位置检测。
在一些实施例中,该触控方法还可以包括:在指纹检测阶段,在确定触控位置后,与该触控位置对应的栅极驱动电路块的栅极驱动单元逐行向对应的光电检测电路发出控制信号,以使得该对应的光电检测电路检测被触控主体反射后的调制光并产生调制信号。这样实现了指纹检测。
在上述实施例中,可以先进行触控位置检测,在确定触控位置后再进行指纹检测。在进行指纹检测的过程中,使得与该触控位置对应的栅极驱动单元逐行发出控制信号。这样对应的光电检测电路响应于该控制信号,检测被触控主体反射后的调制光并产生调制信号。该调制信号包含指纹信息。该光电检测电路将该调制信号通过对应的第一电容器输出。通过采集该调制信号并进行解调,可以得到指纹信息。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (20)

  1. 一种触控电路,包括:
    至少一个光电检测电路,以及与所述至少一个光电检测电路电连接的第一电容器;
    每个光电检测电路被配置为检测被触控主体反射后的调制光并产生调制信号,将所述调制信号通过所述第一电容器输出。
  2. 根据权利要求1所述的触控电路,其中,
    所述光电检测电路包括:光敏检测器件和第一开关晶体管;
    所述光敏检测器件的第一端电连接至第一电压端,所述光敏检测器件的第二端电连接至所述第一开关晶体管的第一端;
    所述第一开关晶体管的第二端电连接至所述第一电容器的第一端,所述第一开关晶体管的控制端被配置为接收控制信号。
  3. 根据权利要求2所述的触控电路,其中,所述光电检测电路还包括:
    第二开关晶体管,所述第二开关晶体管的第一端电连接至第二电压端,所述第二开关晶体管的第二端电连接至所述光敏检测器件的第二端,所述第二开关晶体管的控制端被配置为接收重置信号。
  4. 根据权利要求1所述的触控电路,还包括:
    调制光产生电路,被配置为产生具有预定频率的调制光。
  5. 根据权利要求4所述的触控电路,其中,所述调制光产生电路包括:
    第三开关晶体管,被配置为响应于具有预定频率的开关信号,输出具有所述预定频率的电信号;以及
    发光器件,被配置为根据具有所述预定频率的电信号发出调制光。
  6. 根据权利要求1所述的触控电路,其中,所述调制光的强度与环境光的强度呈正相关。
  7. 根据权利要求1所述的触控电路,还包括:
    采样电路,被配置为采集所述第一电容器输出的调制信号以获得待处理信号;以及
    解调电路,被配置为对所述待处理信号进行解调处理。
  8. 根据权利要求7所述的触控电路,其中,所述采样电路包括:
    放大器,所述放大器的第一输入端电连接至所述第一电容器的第二端,所述放大器的第二输入端被配置为接收参考电平信号,所述放大器的输出端电连接至所述解调电路;
    第二电容器,所述第二电容器的第一端电连接至所述放大器的第一输入端,所述第二电容器的第二端电连接至所述放大器的输出端;以及
    采样开关,所述采样开关的第一端电连接至所述第二电容器的第一端,所述采样开关的第二端电连接至所述第二电容器的第二端,所述采样开关的控制端被配置为接收采样信号。
  9. 根据权利要求7所述的触控电路,其中,所述采样电路包括:
    放大器,所述放大器的第一输入端电连接至所述第一电容器的第二端,所述放大器的第二输入端被配置为接收参考电平信号,所述放大器的输出端电连接至所述解调电路;以及
    电阻器,所述电阻器的第一端电连接至所述放大器的第一输入端,所述电阻器的第二端电连接至所述放大器的输出端。
  10. 一种触控装置,包括:
    多个栅极驱动电路块,每个栅极驱动电路块包括至少一个栅极驱动单元;
    多个光电检测电路,所述多个光电检测电路的每行光电检测电路与所述栅极驱动电路块的一个栅极驱动单元电连接;以及
    至少一个第一电容器,所述至少一个第一电容器的每一个与所述多个光电检测电路的一列或多列的光电检测电路电连接;
    其中,每个栅极驱动电路块被配置为向对应的至少一行光电检测电路发送控制信号;
    每个所述光电检测电路被配置为响应于所述控制信号,检测被触控主体反射后的调制光并产生调制信号,将所述调制信号通过对应的第一电容器输出。
  11. 根据权利要求10所述的触控装置,其中,
    所述至少一个第一电容器包括多个第一电容器,
    所述多个第一电容器的每一个与所述多个光电检测电路的一列光电检测电路电连接。
  12. 根据权利要求10所述的触控装置,其中,
    所述多个光电检测电路的至少部分列的光电检测电路分别通过开关装置与同一个第一电容器电连接。
  13. 根据权利要求10所述的触控装置,还包括:
    用于显示的多个像素单元,其中,所述多个像素单元的至少部分像素单元中设置有所述光电检测电路。
  14. 根据权利要求13所述的触控装置,其中,
    所述多个像素单元的每个像素单元包括像素补偿电路;
    所述至少部分像素单元的每个像素单元包括调制光产生电路,被配置为产生具有预定频率的调制光;
    其中,在所述至少部分像素单元的每个像素单元中,所述调制光产生电路与所述像素补偿电路共用发光器件。
  15. 一种基于触控电路的触控方法,包括:
    利用调制光产生电路产生并发出具有预定频率的调制光;以及
    利用光电检测电路检测被触控主体反射后的所述调制光并产生调制信号,将所述调制信号通过第一电容器输出。
  16. 根据权利要求15所述的触控方法,其中,
    所述光电检测电路包括:光敏检测器件、第一开关晶体管和第二开关晶体管;所 述光敏检测器件的第一端电连接至第一电压端,所述光敏检测器件的第二端电连接至所述第一开关晶体管的第一端;所述第一开关晶体管的第二端电连接至所述第一电容器的第一端,所述第一开关晶体管的控制端被配置为接收控制信号;所述第二开关晶体管的第一端电连接至第二电压端,所述第二开关晶体管的第二端电连接至所述光敏检测器件的第二端,所述第二开关晶体管的控制端被配置为接收重置信号;所述触控电路还包括采样电路,所述采样电路被配置为通过所述第一电容器采集所述调制信号;
    所述触控方法还包括:对采样电路施加采样信号以使得所述采样电路采集所述第一电容器输出的调制信号以获得待处理信号;以及利用解调电路对所述待处理信号进行解调处理;
    其中,利用光电检测电路检测被触控主体反射后的所述调制光并产生调制信号的步骤包括:
    在采集调制信号的过程中,对所述光电检测电路的第二开关晶体管施加重置信号,使得所述第二开关晶体管导通,以便对所述光敏检测器件的第二端的电位重置。
  17. 根据权利要求16所述的触控方法,其中,
    利用调制光产生电路产生并发出具有预定频率的调制光的步骤包括:对所述调制光产生电路施加具有预定频率的开关信号以使得所述调制光产生电路发出调制光;
    其中,在所述开关信号处于第一电平时,所述采样信号的开始时刻在所述开关信号的开始时刻之后且所述采样信号的结束时刻在所述开关信号的结束时刻之前;在所述开关信号处于第二电平时,所述采样信号的开始时刻在所述开关信号的开始时刻之后且所述采样信号的结束时刻在所述开关信号的结束时刻之前;其中,所述第一电平高于所述第二电平。
  18. 根据权利要求15所述的触控方法,其中,所述调制光的强度与环境光的强度呈正相关。
  19. 根据权利要求15所述的触控方法,其中,利用光电检测电路检测被触控主体反射后的所述调制光并产生调制信号,将所述调制信号通过第一电容器输出的步骤包括:
    利用多个栅极驱动电路块的每个栅极驱动电路块向对应的至少一行光电检测电 路发送控制信号;以及
    利用每个所述光电检测电路响应于所述控制信号,检测被触控主体反射后的调制光并产生调制信号,将所述调制信号通过对应的第一电容器输出。
  20. 根据权利要求19所述的触控方法,还包括:
    在触控阶段,每个栅极驱动电路块向对应的所有光电检测电路发送控制信号,以使得与该栅极驱动电路块对应的所有光电检测电路均检测被触控主体反射后的调制光并产生调制信号;以及
    在指纹检测阶段,在确定触控位置后,与所述触控位置对应的栅极驱动电路块的栅极驱动单元逐行向对应的光电检测电路发出控制信号,以使得所述对应的光电检测电路检测被触控主体反射后的调制光并产生调制信号。
PCT/CN2019/088532 2018-07-25 2019-05-27 触控电路、触控装置和触控方法 WO2020019855A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/629,003 US11086450B2 (en) 2018-07-25 2019-05-27 Touch circuit, touch device and touch method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810824705.3 2018-07-25
CN201810824705.3A CN110174974B (zh) 2018-07-25 2018-07-25 触控电路、触控装置和触控方法

Publications (1)

Publication Number Publication Date
WO2020019855A1 true WO2020019855A1 (zh) 2020-01-30

Family

ID=67688941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088532 WO2020019855A1 (zh) 2018-07-25 2019-05-27 触控电路、触控装置和触控方法

Country Status (3)

Country Link
US (1) US11086450B2 (zh)
CN (1) CN110174974B (zh)
WO (1) WO2020019855A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11048904B2 (en) * 2019-10-03 2021-06-29 Hirnax Technologies Limited Fingerprint sensor embedded in a flat-panel display and a method of operating the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110532987B (zh) * 2019-09-04 2022-04-22 武汉天马微电子有限公司 指纹识别电路、指纹识别方法和显示面板
TWI714295B (zh) * 2019-10-04 2020-12-21 奇景光電股份有限公司 嵌設於平板顯示器的指紋感測器及其操作方法
CN112686078A (zh) * 2019-10-17 2021-04-20 奇景光电股份有限公司 嵌设于平板显示器的指纹感测器及其操作方法
CN111027384B (zh) * 2019-11-07 2022-09-13 厦门天马微电子有限公司 指纹识别检测电路、检测方法及显示装置
CN113128318A (zh) * 2020-01-15 2021-07-16 群创光电股份有限公司 用于屏下生物表征辨识的电子装置
CN113658552A (zh) * 2020-04-28 2021-11-16 奇景光电股份有限公司 驱动装置及其操作方法
CN111880688B (zh) * 2020-09-28 2021-01-22 深圳市汇顶科技股份有限公司 触控芯片、触控检测信号的处理方法和电子设备
CN112289256B (zh) * 2020-10-26 2022-07-12 武汉华星光电半导体显示技术有限公司 一种像素电路、显示面板及其光学式触控识别方法
TWI815121B (zh) * 2021-05-19 2023-09-11 南臺學校財團法人南臺科技大學 非接觸式選取裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726942A (zh) * 2008-10-14 2010-06-09 华映视讯(吴江)有限公司 像素单元及其制造方法以及触控式液晶显示面板
CN102612677A (zh) * 2009-10-26 2012-07-25 株式会社半导体能源研究所 显示装置和半导体器件

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007031102A1 (de) * 2005-09-15 2007-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Erfassung optischer strahlung
JP2009069730A (ja) * 2007-09-18 2009-04-02 Seiko Epson Corp 電気光学装置、電子機器及び指示物体の検出方法
KR20090089254A (ko) * 2008-02-18 2009-08-21 세이코 엡슨 가부시키가이샤 센싱 장치, 표시 장치, 전자 기기 및, 센싱 방법
JP2010122936A (ja) * 2008-11-20 2010-06-03 Seiko Epson Corp センシング回路、表示装置および電子機器
WO2010150573A1 (ja) * 2009-06-25 2010-12-29 シャープ株式会社 表示装置
KR101030001B1 (ko) * 2009-11-26 2011-04-20 삼성모바일디스플레이주식회사 터치 스크린 디스플레이 장치의 구동 방법, 상기 구동 방법을 기록한 기록 매체, 및 터치 스크린 디스플레이 장치
GB2499242A (en) * 2012-02-10 2013-08-14 Alterix Ltd methods of operating excitation circuitry and/or measurement circuitry in a digitiser and a method of manufacturing a transducer for a digitiser
KR20140116753A (ko) * 2013-03-25 2014-10-06 삼성디스플레이 주식회사 접촉 감지 장치 및 그 구동 방법
CN103427636B (zh) * 2013-08-27 2016-04-27 电子科技大学 用于开关电源的瞬态响应增强控制电路
CN204537099U (zh) * 2015-04-02 2015-08-05 创维光电科技(深圳)有限公司 触控终端及其触摸感应电路
CN104836537B (zh) * 2015-05-21 2018-03-20 烽火通信科技股份有限公司 一种光接收次模块中滤波电容的替代方法及电路
TWI596946B (zh) * 2016-08-18 2017-08-21 友達光電股份有限公司 訊號讀取電路
CN107609518B (zh) * 2017-09-14 2020-06-02 京东方科技集团股份有限公司 一种像素检测电路的驱动方法及驱动装置
CN107591127B (zh) * 2017-10-13 2019-06-04 京东方科技集团股份有限公司 像素电路、阵列基板、有机电致发光显示面板及显示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726942A (zh) * 2008-10-14 2010-06-09 华映视讯(吴江)有限公司 像素单元及其制造方法以及触控式液晶显示面板
CN102612677A (zh) * 2009-10-26 2012-07-25 株式会社半导体能源研究所 显示装置和半导体器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11048904B2 (en) * 2019-10-03 2021-06-29 Hirnax Technologies Limited Fingerprint sensor embedded in a flat-panel display and a method of operating the same

Also Published As

Publication number Publication date
CN110174974A (zh) 2019-08-27
US11086450B2 (en) 2021-08-10
CN110174974B (zh) 2020-07-24
US20210019016A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2020019855A1 (zh) 触控电路、触控装置和触控方法
CN108280432B (zh) 指纹识别检测电路及其驱动方法、显示装置
US20200043417A1 (en) Pixel driving circuit and method for driving the same, display substrate and display device
CN105044955B (zh) 光电传感器及其驱动方法、阵列基板和显示装置
US20160204165A1 (en) Pixel circuit, driving method thereof, and display apparatus
US10762837B2 (en) Pixel circuit, a driving method thereof and a display apparatus
US20110128428A1 (en) Sensor device, method of driving sensor element, display device with input function, electronic unit and radiation image pickup device
CN107314813B (zh) 光强检测单元、光强检测方法和显示装置
CN107578026B (zh) 指纹检测电路、指纹检测电路的检测方法和指纹传感器
US8373825B2 (en) Display device
US20100123812A1 (en) Photoelectric Conversion Circuit and Solid State Imaging Device Including Same
WO2018000927A1 (zh) 像素电路、半导体摄像头检测电路以及显示装置
US20120176356A1 (en) Display device
US10991735B2 (en) Optical detection pixel unit, optical detection circuit, optical detection method and display device
EP3836007B1 (en) Optical fingerprint identification circuit
EP3646013A1 (en) Photo-detection pixel circuit, detector panel, and photoelectric detection apparatus
US20120268439A1 (en) Display Device
US11860029B2 (en) Light intensity detection circuit, light intensity detection method and light intensity detection apparatus
US10373558B2 (en) Pixel circuit, a driving method thereof and a display apparatus
CN106162003B (zh) 一种读取电路及其驱动方法、x射线像素电路
US9001096B2 (en) Display device
US8835829B2 (en) Image sensor formed by silicon rich oxide material
WO2020038463A1 (zh) 光学指纹识别电路
US8717308B2 (en) Display device with series connected optical sensors for determining touch position
CN111757025A (zh) 电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19840727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19840727

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19840727

Country of ref document: EP

Kind code of ref document: A1