WO2020019517A1 - 飞行器的飞行控制方法、装置、存储介质及电子设备 - Google Patents

飞行器的飞行控制方法、装置、存储介质及电子设备 Download PDF

Info

Publication number
WO2020019517A1
WO2020019517A1 PCT/CN2018/108839 CN2018108839W WO2020019517A1 WO 2020019517 A1 WO2020019517 A1 WO 2020019517A1 CN 2018108839 W CN2018108839 W CN 2018108839W WO 2020019517 A1 WO2020019517 A1 WO 2020019517A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
target
flight
heading
flight control
Prior art date
Application number
PCT/CN2018/108839
Other languages
English (en)
French (fr)
Inventor
王传松
Original Assignee
东汉太阳能无人机技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东汉太阳能无人机技术有限公司 filed Critical 东汉太阳能无人机技术有限公司
Publication of WO2020019517A1 publication Critical patent/WO2020019517A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Definitions

  • the present disclosure relates to the field of aviation, and in particular, to a flight control method for an aircraft, a flight control device for an aircraft, a computer-readable storage medium, and an electronic device.
  • the aircraft needs to obtain the current position and attitude information of the aircraft by means of a navigation system in order to guide the aircraft to fly along a predetermined route.
  • a navigation system inertial navigation, satellite navigation, Doppler navigation, terrain-assisted navigation, and geomagnetic navigation.
  • the Global Positioning System (GPS) based on satellite signals can provide accurate navigation information for aircraft, so it has a wide range of applications in the aviation field.
  • GPS navigation system configured on the fuselage combined with the precise location of the take-off and target locations can ensure that the drone successfully completes the navigation task and returns smoothly in the autonomous flight state.
  • GPS navigation system has the advantages of low cost and high accuracy, but once the satellite signal is lost during the flight of the aircraft, the GPS navigation system will also lose its navigation function; especially for drones, after losing GPS navigation guidance, Only hovering in situ and waiting for the GPS navigation signal to recover can continue the flight mission. In this way, not only will the execution efficiency of the flight mission be affected, but also if the GPS navigation signal is delayed and cannot be recovered, the drone can only crash in place after the energy is exhausted. Therefore, how to provide emergency navigation control for drones and other aircraft under the condition of losing GPS navigation signals is an urgent problem to be solved.
  • the purpose of the present disclosure is to provide a flight control method for an aircraft, a flight control device for an aircraft, a computer-readable storage medium, and an electronic device, so as to at least to some extent overcome the single navigation technology of the aircraft due to the limitations and defects of related technologies 2.
  • Technical problems with poor emergency response capabilities are not limited to.
  • a flight control method for an aircraft which is applied to an aircraft having a sunshade pointer, and the method includes:
  • the adjusting the current heading of the aircraft according to the solar position and the projection position so that the aircraft flies along the target heading includes:
  • the acquiring a projection position generated by sunlight shining on the sunshade pointer includes:
  • a projection position obtained by irradiating sunlight on the shading pointer is obtained according to the solar radiation intensity.
  • a target location of the aircraft is a take-off location of the aircraft, and the target course is a return direction of the aircraft.
  • the acquiring the target heading of the aircraft flying to the target location includes:
  • the returning direction of the aircraft to the take-off point is obtained according to the take-off direction, and the returning direction is used as the target heading.
  • the obtaining the sun position at the current time includes:
  • the solar position at the current time is obtained according to the flight time of the aircraft and the initial solar position.
  • the flight control method further includes:
  • the current heading of the aircraft is corrected by an electronic compass and / or a gyroscope.
  • a flight control device for an aircraft including:
  • a target heading acquisition module configured to acquire a target heading of the aircraft flying to a target location
  • a solar orientation acquisition module configured to acquire a solar orientation at the current time
  • a projection position acquisition module configured to acquire a projection position generated by sunlight shining on the shade pointer
  • the flight direction adjustment module is configured to adjust the current heading of the aircraft according to the solar azimuth and the projection position, so that the aircraft flies along the target heading.
  • a computer-readable storage medium having stored thereon a computer program that, when executed by a processor, implements any one of the above-mentioned flight control methods for an aircraft.
  • an electronic device including a processor and a memory; wherein the memory is configured to store executable instructions of the processor, and the processor is configured to be executed by executing the executable instructions A flight control method for an aircraft as described above.
  • a projection position generated by sunlight can be obtained by setting a sunshade pointer on the aircraft, and even in the case of losing GPS navigation, the projection position and the sun at the current time can be used
  • the orientation is used for emergency navigation of the aircraft and provides a guarantee for the safe return of the aircraft.
  • FIG. 1 schematically illustrates a flowchart of steps of a flight control method in an exemplary embodiment of the present disclosure.
  • FIG. 2 schematically illustrates a flowchart of some steps of a flight control method in an exemplary embodiment of the present disclosure.
  • FIG. 3 schematically illustrates a partial flowchart of a flight control method in an exemplary embodiment of the present disclosure.
  • FIG. 4 schematically illustrates a partial flowchart of a flight control method in an exemplary embodiment of the present disclosure.
  • FIG. 5 schematically illustrates a flowchart of some steps of a flight control method in an exemplary embodiment of the present disclosure.
  • FIG. 6 schematically illustrates a composition block diagram of a flight control device in an exemplary embodiment of the present disclosure.
  • FIG. 7 schematically illustrates a module diagram of an electronic device in an exemplary embodiment of the present disclosure.
  • FIG. 8 schematically illustrates a program product in an exemplary embodiment of the present disclosure.
  • An exemplary embodiment of the present disclosure first provides a flight control method of an aircraft, which is applied to an aircraft having a sunshade pointer.
  • the aircraft may mainly be various unmanned aircrafts such as fixed-wing drones, rotary-wing drones, unmanned airships, umbrella-wing drones, flapping-wing drones, and also manned aircraft.
  • the sunshade pointer is installed in the area where the aircraft is not blocked by sunlight. Its function is mainly to generate shading shadows to determine the position of sunlight projection.
  • the target heading refers to the direction from the current location to the target location, and it can also refer to the azimuth of the current location to the target location.
  • the flight control method may mainly include the following steps:
  • Step S10 Acquire a target heading of the aircraft.
  • This step first obtains the target course of the aircraft flying from the current position to the target location.
  • the target course may be a preset course direction, or it may be a course direction measured by the aircraft in real time during the flight.
  • the preset course direction can be used as the target course.
  • the route direction needs to be measured in real time during the flight.
  • the target heading calculated by the GPS navigation system can be recorded in real time. Once the GPS navigation signal is lost, you can use the recently recorded data and refer to the historical flight The data can be used to guide the target course of the aircraft at the current moment.
  • Step S20 Obtain the solar position at the current time.
  • Solar azimuth refers to the position of the sun relative to the target, which can usually be expressed by the sun azimuth.
  • the azimuth angle refers to the angle obtained by taking the target as the axis and the north direction of the target as the starting direction. Rotating clockwise will increase the azimuth gradually from 0 ° to 360 ° when rotating clockwise. .
  • Obtaining the sun position at the current time in this step is to obtain the position of the sun relative to the aircraft at the current time.
  • the solar azimuth can be regarded as approximately fixed, so the initial solar azimuth can be calculated by using ground equipment directly before the aircraft takes off, and the initial solar azimuth can be used as the entire flight duration Solar orientation.
  • the flight time and / or flight distance is large, you can modify the solar position accordingly. For example, the flight time of the aircraft reaches 2 to 3 hours. You can combine the position of the aircraft and the flight time in the initial sun. Adjust the azimuth based on the azimuth of the sun at the current time and current position.
  • Step S30 Obtain a projection position generated by sunlight shining on the shading pointer.
  • the aircraft in this embodiment is provided with a sunshade pointer.
  • a projection will be generated in the vicinity of the sunshade pointer.
  • the position of the projection can be obtained in various ways. For example, the solar radiation intensity in a certain area around the sunshade pointer can be detected. In the absence of other shadows, the solar irradiation intensity at the projection position of the sunshade pointer will be lower than other areas, so the solar radiation can be used.
  • the detection of the illumination intensity determines the projection position.
  • image projection can also be used to obtain the projection position. For example, without affecting the sun's normal irradiation of the sunshade pointer, the image of the area where the sunshade pointer is located can be collected, and the projection position can be intuitively obtained by analyzing the image data.
  • Step S40 Adjust the current heading of the aircraft according to the sun position and projection position, so that the aircraft flies in the target heading.
  • the current heading of the aircraft can be adjusted so that the aircraft will continue to fly along the target heading to reach the target location when the navigation signal such as GPS is lost.
  • the heading angle of the target heading obtained in step S10 is 270 °
  • the current solar azimuth angle obtained in step S20 is 180 °
  • step S30 Obtaining the projection position generated by the sun shining on the sunshade pointer is the position of the tail, then it can be judged that the nose of the aircraft at this time is the direction of the sun, and the direction of the nose can be adjusted by rotating the fuselage clockwise 90 ° It coincides with the target's heading.
  • the wind disturbance is weak, adjusting the flight direction in this way can make the aircraft fly in the target's heading.
  • a projection position generated by sunlight can be obtained by setting a sunshade pointer on the aircraft, and even in the case of losing GPS navigation, the projection position and the sun at the current time can be used
  • the azimuth is used for emergency navigation of the aircraft, which improves the efficiency of the aircraft in performing flight missions, and avoids the problem of losing navigation and having to circle and wait in place without continuing to fly.
  • step S30 may further include the following steps:
  • Step S31 Detect the solar radiation intensity at the position where the sunshade pointer is located.
  • sensors for detecting the intensity of solar radiation may be set at a plurality of positions around the sunshade pointer.
  • Step S32 Obtain a projection position generated by sunlight shining on the sunshade pointer according to the intensity of solar radiation.
  • the intensity of solar radiation at a plurality of positions around the sunshade pointer obtained through step S31. By comparing and judging in this step, the projection positions generated by sunlight shining on the sunshade pointer can be obtained.
  • a certain position identifier may also be set around the shading pointer.
  • an irradiance measurement disk with a clock dial can be set on the aircraft, and the sunshade pointer is fixed vertically at the center of the irradiance measurement disk.
  • the number of scales on the irradiance measurement disk can be used to pair the sunshade pointer.
  • the scale can be marked according to several 360 ° divisions. Twelve divisions are set at a scale of 30 °, twenty-four divisions are set at a scale of 15 °, thirty-six, etc. The minute is set every 10 °.
  • Detection points of the radiation intensity sensor can be set at the corresponding scale positions, so that the projection position of the sunshade pointer can be obtained from the solar radiation intensity detected by each detection point.
  • step S40 may further include the following steps:
  • Step S41 According to the prediction of the solar azimuth, when the aircraft flies in the target course, sunlight projects on the target projection position generated by the sunshade pointer.
  • the heading angle of the target heading obtained in step S10 is 270 °
  • the azimuth of the solar azimuth obtained in step S20 is 180 degrees
  • the aircraft is provided with an irradiation measuring disk, and the irradiation measuring disk has a 0 ° scale Corresponding to the head direction, other scales increase in a clockwise direction. Then at this time, it can be predicted that when the aircraft flies along the target course, the target projection position generated by the sun shining on the sunshade pointer should be the position on the 90 ° scale on the irradiation measurement disk.
  • Step S42 Adjust the current heading of the aircraft so that the projection position coincides with the target projection position.
  • step S30 If the actual projection position of the sunshade pointer obtained in step S30 is the position where the 180 ° scale on the irradiation measuring disk is located, then this step can adjust the aircraft nose to rotate 90 ° clockwise to make the actual projection position of the sunshade pointer and The predicted projection positions of the targets coincide in step S41, even if the actual projection position of the sunshade pointer falls on the position of the 90 ° scale of the irradiation measuring disc, so that the aircraft flies in the target course.
  • the radiation measuring disc with scale and radiation intensity sensor can map the scale positions around the sunshade pointer to the solar radiation intensity. After detecting the sun radiation intensity, the projection position of the sunshade pointer can be directly obtained. High efficiency and higher accuracy.
  • the method of scale prediction can directly perform quantitative calculation with the target heading angle and solar azimuth, which is more conducive to data storage and calculation.
  • the target location described in step S10 may be the take-off location of the aircraft, and the corresponding target course may be the return direction of the aircraft.
  • step S10 in this embodiment may further include the following steps:
  • Step S11 Obtain the take-off direction of the aircraft when it takes off from the take-off point.
  • Step S12. Obtain the return direction of the aircraft to the take-off point according to the take-off direction, and use the return direction as the target direction.
  • This embodiment is mainly applied to the return process of the aircraft after the flight mission is successfully completed.
  • the aircraft has measured and recorded accurate route information during the flight mission. Therefore, the requirements for the real-time navigation and accuracy of the return process are relatively low.
  • the take-off direction when the aircraft takes off from the take-off point can be directly used as the return direction of the aircraft's return flight. If the return route is different due to the influence of environmental factors, the return direction of the aircraft can also be obtained based on the take-off direction and some other airborne facilities.
  • step S20 when applied to the return flight process, may further include the following steps:
  • Step S21 Obtain the initial solar position of the aircraft when it takes off from the take-off point
  • Step S22 Obtain the solar position at the current time according to the flight time of the aircraft and the initial solar position.
  • the initial solar position of the aircraft when taking off from the take-off point can also be obtained in step S21, and the influence of the flight time on the solar position can be ignored in step S22, and the initial solar position can be directly used.
  • the bearing is used as the sun's bearing at the current time. If the flight time of the aircraft is long, for example, when the flight time reaches 2 to 3 hours or more, it is necessary to obtain the current solar position according to the time when the aircraft performs the flight mission.
  • the flight control method for an aircraft may further include the step of: during the flight of the aircraft, correcting the current heading of the aircraft through an electronic compass and / or a gyroscope.
  • an electronic compass and / or a gyroscope installed on the aircraft, so that the aircraft can smoothly fly along the target heading.
  • correcting the current heading of the aircraft through an electronic compass and / or a gyroscope may include the step of: changing an angle on the electronic compass, Add or subtract the angle of the target heading in real time; or add or subtract the angle of the target heading in real time through the change in angle sensed by the gyroscope; or use the average value of the angle change through the angle change jointly sensed by the electronic compass and the gyroscope, and then The target heading is added and subtracted in real time; after the target heading angle adjustment is completed, the drone is adjusted to fly in accordance with the target heading updated in real time.
  • a flight control device for an aircraft is also provided.
  • the flight control device 60 may mainly include a target heading acquisition module 61, a solar orientation acquisition module 62, and a projection position acquisition module 63.
  • flight direction adjustment module 64 is configured to adjust the current heading of the aircraft according to the sun position and the projection position, so that the aircraft flies along the target heading.
  • modules or units of the device for action execution are mentioned in the detailed description above, this division is not mandatory.
  • the features and functions of two or more modules or units described above may be embodied in one module or unit.
  • the features and functions of a module or unit described above can be further divided into multiple modules or units to be embodied.
  • an electronic device including at least one processor and at least one memory for storing executable instructions of the processor; wherein the processor is It is configured to execute the method steps in the above-described exemplary embodiments of the present disclosure via execution of the executable instructions.
  • the electronic device 700 in this exemplary embodiment is described below with reference to FIG. 7.
  • the electronic device 700 is only an example, and should not impose any limitation on the functions and use scope of the embodiments of the present disclosure.
  • the electronic device 700 is expressed in the form of a general-purpose computing device.
  • the components of the electronic device 700 may include, but are not limited to, at least one processing unit 710, at least one storage unit 720, a bus 730 connecting different system components (including the processing unit 710 and the storage unit 720), and a display unit 740.
  • the storage unit 720 stores program code, and the program code can be executed by the processing unit 710, so that the processing unit 710 executes the method steps in the foregoing exemplary embodiments in the present disclosure.
  • the storage unit 720 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit 721 (RAM) and / or a cache storage unit 722, and may further include a read-only storage unit 723 (ROM).
  • RAM random access storage unit
  • ROM read-only storage unit
  • the storage unit 720 may also include a program / utility tool 724 having a set (at least one) of program modules 725, such program modules include, but are not limited to: an operating system, one or more application programs, other program modules, and program data. These Each or some combination of examples may include an implementation of a network environment.
  • the bus 730 may be one or more of several types of bus structures, including a memory unit bus or a memory unit controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any bus structure in various bus structures bus.
  • the electronic device 700 may also communicate with one or more external devices 800 (such as a keyboard, pointing device, Bluetooth device, etc.), and may also communicate with one or more devices that enable a user to interact with the electronic device 700, and / or with Any device (eg, router, modem, etc.) that enables the electronic device 700 to communicate with one or more other computing devices. This communication can take place through an input / output (I / O) interface 750.
  • the electronic device 700 may also communicate with one or more networks (such as a local area network (LAN), a wide area network (WAN), and / or a public network, such as the Internet) through the network adapter 760. As shown in FIG.
  • the network adapter 760 may communicate with other modules of the electronic device 700 through the bus 730. It should be understood that although not shown in the figure, other hardware and / or software modules may be used in conjunction with the electronic device 700, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage systems.
  • a computer-readable storage medium having stored thereon a computer program that, when executed by a processor, can implement the above-described flight control method of an aircraft of the present disclosure.
  • aspects of the present disclosure may also be implemented in the form of a program product, which includes program code; the program product may be stored in a non-volatile storage medium (which may be a CD-ROM, U, U Disk or mobile hard disk, etc.) or on the network; when the program product runs on a computing device (may be a personal computer, server, terminal device, or network device, etc.), the program code is used to make the computing The device performs the method steps in the above-described exemplary embodiments of the present disclosure.
  • a program product 80 for implementing the above method according to an embodiment of the present disclosure may adopt a portable compact disk read-only memory (CD-ROM) and include a program code, and may be implemented in a computing device such as a personal computer. Computer, server, terminal device, or network device).
  • a computing device such as a personal computer. Computer, server, terminal device, or network device.
  • the program product of the present disclosure is not limited thereto.
  • the computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in combination with an instruction execution system, apparatus, or device.
  • the program product may adopt any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • the readable signal medium may include a data signal that is borne in baseband or propagated as part of a carrier wave, in which readable program code is carried. Such a propagated data signal may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the readable signal medium may also be any readable medium other than a readable storage medium, and the readable medium may send, propagate, or transmit a program for use by or in combination with an instruction execution system, apparatus, or device.
  • the program code contained on the readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wired, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • the program code for performing the operations of the present disclosure may be written in any combination of one or more programming languages, which include object-oriented programming languages, such as Java, C ++, and the like, as well as conventional procedural A programming language, such as C or a similar programming language.
  • the program code may be executed entirely on the user computing device, partly on the user computing device, as an independent software package, partly on the user computing device, partly on a remote computing device, or entirely on the remote computing device or On the server.
  • the remote computing device can be connected to the user computing device through any kind of network (including a local area network (LAN) or wide area network (WAN), etc.); or it can be connected to an external computing device, such as using Internet services Provider to connect via the Internet.
  • LAN local area network
  • WAN wide area network

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Navigation (AREA)

Abstract

一种飞行器的飞行控制方法、飞行器的飞行控制装置、计算机可读存储介质及电子设备。该飞行控制方法包括:获取飞行器飞行的目标航向;获取当前时刻的太阳方位;获取阳光照射于遮阳指针上产生的投影位置;根据太阳方位和投影位置调整飞行器的当前航向,以使飞行器沿目标航向飞行。该方法在失去GPS导航的情况下也可以依据遮阳指针的投影位置和当前时刻的太阳方位为飞行器进行应急导航,提高了飞行器执行飞行任务的效率,避免了飞行器失去导航便只能原地盘旋等待而无法继续飞行的问题。

Description

飞行器的飞行控制方法、装置、存储介质及电子设备
本申请基于申请号为201810826636.X、申请日为2018年7月25日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及航空领域,具体涉及一种飞行器的飞行控制方法、飞行器的飞行控制装置、计算机可读存储介质及电子设备。
背景技术
飞行器在飞行过程中需要借助导航系统获得飞行器当前的位置和姿态信息,以便引导飞行器沿预定航线飞行。现有的飞行器导航系统包括惯性导航、卫星导航、多普勒导航、地形辅助导航以及地磁导航等。
基于卫星信号的全球定位系统(Global Positioning System,简称GPS)可以为飞行器提供准确的导航信息,因此在航空领域具有广泛的应用。特别是在无人机技术领域,通过机体上配置的GPS导航系统结合起飞地点和目标地点的精确位置可以保证无人机在自主飞行状态下成功完成航行任务并顺利返航。
GPS导航系统具有成本低、精度高等优点,但是在飞行器的飞行过程中一旦丢失卫星信号,GPS导航系统也将失去其导航功能;尤其是对于无人机而言,在失去GPS的导航指引后,只能在原地盘旋飞行等待GPS导航信号的恢复才能继续进行飞行任务。如此一来,不仅会影响飞行任务的执行效率,而且如果GPS导航信号迟迟无法恢复,那么无人机也只能在能源耗尽后原地坠毁。因此,如何在失去GPS导航信号的情况下为无人机等飞行器提供应急性的导航控制是目前亟待解决的问题。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种飞行器的飞行控制方法、飞行器的飞行控制装置、计算机可读存储介质及电子设备,进而至少在一定程度上克服由于相关技术的限制和缺陷而导致的飞行器导航技术单一、应急能力差的技术问题。
根据本公开的一个方面,提供一种飞行器的飞行控制方法,应用于具有一遮阳指针的飞行器,所述方法包括:
在定位信息丢失瞬间,如GPS丢失时,获取飞行器向目标地点飞行的目标航向;
获取当前时刻的太阳方位;
获取阳光照射于所述遮阳指针上产生的投影位置;
根据所述太阳方位和所述投影位置调整所述飞行器的当前航向,以使所述飞行器沿所述目标航向飞行。
在本公开的一种示例性实施例中,所述根据所述太阳方位和所述投影位置调整所述飞行器的当前航向,以使所述飞行器沿所述目标航向飞行包括:
根据所述太阳方位预测,当所述飞行器沿所述目标航向飞行时阳光照射于所述遮阳指针上产生的目标投影位置;
调整所述飞行器的当前航向,以使所述投影位置与所述目标投影位置重合。
在本公开的一种示例性实施例中,所述获取阳光照射于所述遮阳指针上产生的投影位置包括:
检测所述遮阳指针所处位置的太阳辐照强度;
根据所述太阳辐照强度获取阳光照射于所述遮阳指针上产生的投影位置。
在本公开的一种示例性实施例中,所述飞行器的目标地点为所述飞行器的起飞地点,所述目标航向为所述飞行器的返航方向。
在本公开的一种示例性实施例中,所述获取飞行器向目标地点飞行的目标航向包括:
获取所述飞行器由所述起飞地点起飞时的起飞方向;
根据所述起飞方向获取所述飞行器返回所述起飞地点的返航方向,将所述返航方向作为目标航向。
在本公开的一种示例性实施例中,所述获取当前时刻的太阳方位包括:
获取所述飞行器由所述起飞地点起飞时的初始太阳方位;
根据所述飞行器的飞行时间和所述初始太阳方位获得当前时刻的太阳方位。
在本公开的一种示例性实施例中,所述飞行控制方法还包括:
在所述飞行器的飞行过程中,通过电子罗盘和/或陀螺仪修正所述飞行器的当前航向。
根据本公开的一个方面,提供您一种飞行器的飞行控制装置,包括:
目标航向获取模块,被配置为获取飞行器向目标地点飞行的目标航向;
太阳方位获取模块,被配置为获取当前时刻的太阳方位;
投影位置获取模块,被配置为获取阳光照射于所述遮阳指针上产生的投影位置;
飞行方向调整模块,被配置为根据所述太阳方位和投影位置调整所述飞行器的当前航向,以使所述飞行器沿所述目标航向飞行。
根据本公开的一个方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以上任一所述的飞行器的飞行控制方法。
根据本公开的一个方面,提供一种电子设备,包括处理器和存储器;其中,存储器用于存储所述处理器的可执行指令,所述处理器被配置为经由执行所述可执行指令来执行以上任一所述的飞行器的飞行控制方法。
在本公开实施例所提供的飞行器的飞行控制方法中,通过在飞行器上设置遮阳指针可以获得阳光照射产生的投影位置,即便在失去GPS导航的情况下也可以依据该投影位置和当 前时刻的太阳方位为飞行器进行应急导航,为飞行器安全返航提供保障。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示意性示出本公开示例性实施例中飞行控制方法的步骤流程图。
图2示意性示出本公开示例性实施例中飞行控制方法的部分步骤流程图。
图3示意性示出本公开示例性实施例中飞行控制方法的部分步骤流程图。
图4示意性示出本公开示例性实施例中飞行控制方法的部分步骤流程图。
图5示意性示出本公开示例性实施例中飞行控制方法的部分步骤流程图。
图6示意性示出本公开示例性实施例中飞行控制装置的组成框图。
图7示意性示出本公开示例性实施例中一种电子设备的模块示意图。
图8示意性示出本公开示例性实施例中一种程序产品的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
本公开的示例性实施例中首先提供一种飞行器的飞行控制方法,应用于具有一遮阳指针的飞行器。其中,飞行器主要可以是固定翼无人机、旋翼无人机、无人飞艇、伞翼无人机、扑翼无人机等各种无人驾驶飞机,另外也可以是有人驾驶飞机。遮阳指针安装在飞行器上无阳光遮挡的区域,其功能主要是产生遮光阴影用以判断阳光投影的位置。目标航向指的是当前地点到目标点的指向,也可以指当前地点到目标地点的方位角。
如图1所示,该飞行控制方法主要可以包括以下步骤:
步骤S10.获取飞行器飞行的目标航向。
本步骤首先获取飞行器由当前位置向目标地点飞行的目标航向,该目标航向可以是预先 设定的航线方向,另外也可以是飞行器在飞行途中实时测算得到的航线方向。通常在一些飞行距离较短而且天气和环境条件也较为适宜的情况下,可以采用预先设定的航线方向作为目标航向。而在需要长距离飞行或者天气和环境条件较为恶劣时,则需要在飞行途中对航线方向进行实时测算。在飞行器搭载有GPS导航系统,并且GPS导航信号可以顺利接收的情况下,可以实时记录由GPS导航系统测算得出的目标航向,一旦GPS导航信号丢失,便可以根据最近记录的数据并参考历史飞行数据得出当前时刻能够指引飞行器飞行的目标航向。
步骤S20.获取当前时刻的太阳方位。
太阳方位指的是太阳相对于目标物的位置,通常可以用太阳方位角来表示。方位角指的是以目标物为轴心,以目标物的正北方向作为起始方向,按顺时针旋转所得到的角度,在顺时针旋转时方位角将逐步由0°增大至360°。本步骤中获取当前时刻的太阳方位便是获取当前时刻太阳相对于飞行器的位置。在执行一些短时、短途的飞行任务时,太阳方位可以近似看作是固定的,因此可以直接在飞行器起飞前利用地面设备测算出初始太阳方位角,并以该初始太阳方位角作为飞行器飞行全程的太阳方位。而如果飞行时间和/或飞行距离的跨度较大,则可以根据具体情况对太阳方位做相应地修正,例如飞行器的飞行时间达到2~3小时,可以结合飞行器所在的位置和飞行时间在初始太阳方位角的基础上调整得到当前时刻、当前位置的太阳方位角。
步骤S30.获取阳光照射于遮阳指针上产生的投影位置。
本实施例中的飞行器上设置有遮阳指针,当阳光照射在遮阳指针上时,将在遮阳指针的附近区域产生投影,本步骤可以采用多种方式获取该投影的位置。举例而言,可以检测遮阳指针周围一定区域范围内的太阳辐照强度,在没有其他阴影遮挡的情况下,遮阳指针的投影位置的太阳辐照强度将必然低于其他区域,因此可以利用太阳辐照强度的检测判断出投影位置。另外,也可以采用图像采集的方式获取投影位置,例如在不影响阳光正常照射遮阳指针的情况下,可以采集遮阳指针所在区域的图像,通过分析图像数据直观地得到投影位置。
步骤S40.根据太阳方位和投影位置调整飞行器的当前航向,以使飞行器沿目标航向飞行。
根据以上步骤获得的太阳方位和投影位置,可以调整飞行器的当前航向,以使该飞行器在失去诸如GPS之类的导航信号的情况下,继续沿目标航向飞行以抵达目标地点。例如,飞行器在飞行途中因设备故障或者信号干扰等问题而失去GPS导航信号,由步骤S10获得目标航向的航向角为270°,由步骤S20获得当前时刻的太阳方位角是180°,由步骤S30获得阳光照射于所述遮阳指针上产生的投影位置是机尾所在的位置,那么可以判断此时飞行器的机头朝向是太阳所在的方位,调整机身顺时针旋转90°便可使机头方向与目标航向重合,在风力干扰微弱的飞行状态下,按该方式调整飞行方向即可使飞行器沿目标航向飞行。
在本公开实施例所提供的飞行器的飞行控制方法中,通过在飞行器上设置遮阳指针可以获得阳光照射产生的投影位置,即便在失去GPS导航的情况下也可以依据该投影位置和当前时刻的太阳方位为飞行器进行应急导航,提高了飞行器执行飞行任务的效率,避免了失去导航便只能原地盘旋等待而无法继续飞行的问题。
如图2所示,在本公开的另一示例性实施例中,步骤S30可以进一步包括以下步骤:
步骤S31.检测遮阳指针所处位置的太阳辐照强度。
本步骤可以在遮阳指针的周围的多个位置处设置用以检测太阳辐照强度的传感器。
步骤S32.根据太阳辐照强度获取阳光照射于遮阳指针上产生的投影位置。
通过步骤S31获得的遮阳指针周围的多个位置处的太阳辐照强度,本步骤进行对比判断即可获得阳光照射于遮阳指针上产生的投影位置。
为了更好地对该投影位置进行量化分析,本实施例还可以在遮阳指针的周围设置一定的位置标识。例如可以在飞行器上设置一带有类似于钟表刻度盘的辐照测量盘,将遮阳指针竖直固定于该辐照测量盘的中心,如此一来便可以使用辐照测量盘上刻度数对遮阳指针的投影位置进行标识。根据所需精度的不同,可以按照360°的若干等分进行刻度标识,十二等分即每隔30°设置一刻度,二十四等分即每隔15度设置一刻度,三十六等分即每隔10°设置一刻度。在相应的刻度位置处可以设置辐照强度传感器的检测点,从而由各个检测点检测到的太阳辐照强度获得遮阳指针的投影位置。
如图3所示,在本公开的另一示例性实施例中,步骤S40可以进一步包括以下步骤:
步骤S41.根据太阳方位预测,当飞行器沿目标航向飞行时阳光照射于遮阳指针上产生的目标投影位置。
举例而言,由步骤S10获得的目标航向的航向角是270°,由步骤S20获得的太阳方位的方位角是180度;飞行器上设置有辐照测量盘,而辐照测量盘的0°刻度对应于机头方向,其他刻度按顺时针方向依次增加。那么此时可以预测当飞行器沿目标航向飞行时,阳光照射于遮阳指针上产生的目标投影位置应当是辐照测量盘上的90°刻度所在的位置。
步骤S42.调整飞行器的当前航向,以使投影位置与目标投影位置重合。
如果步骤S30中获得的遮阳指针的实际投影位置是辐照测量盘上的180°刻度所在的位置,那么本步骤便可以调整飞行器的机头顺时针旋转90°以使得遮阳指针的实际投影位置与步骤S41中预测的目标投影位置相重合,亦即使遮阳指针的实际投影位置落在辐照测量盘的90°刻度所在的位置上,从而使得飞行器沿目标航向飞行。
采用带有刻度和辐照强度传感器的辐照测量盘可以将遮阳指针周围的各个刻度位置与太阳辐照强度形成映射关系,检测出太阳辐照强度便可直接获得遮阳指针的投影位置,不仅检测效率高,而且准确度也更高。另外,通过刻度预测的方式可以直接与目标航向角和太阳方位角进行量化计算,更加有利于数据的存储和运算。
在本公开的另一示例性实施例中,步骤S10中所述的目标地点可以是飞行器的起飞地点,相应的目标航向可以是飞行器的返航方向。
如图4所示,在本实施例中步骤S10可以进一步包括以下步骤:
步骤S11.获取飞行器由起飞地点起飞时的起飞方向。
步骤S12.根据起飞方向获取飞行器返回起飞地点的返航方向,将返航方向作为目标方向。
本实施例主要是应用于飞行器在顺利完成飞行任务后的返航过程,飞行器在执行飞行任 务时已经测算并记录了准确的航线信息,因此返航过程对于导航的实时性和准确性方面的要求相对较低。特别是在执行短途飞行任务时,在环境条件允许的情况下,可以直接以飞行器由起飞地点起飞时的起飞方向作为飞行器返航飞行的返航方向。而如果受到环境因素的影响导致往返航线有所差异,那么也可以在起飞方向的基础上结合其他一些机载设施的测算获得飞行器的返航方向。
相应地,如图5所示,在应用于返航过程时,步骤S20可以进一步包括以下步骤:
步骤S21.获取飞行器由起飞地点起飞时的初始太阳方位;
步骤S22.根据飞行器的飞行时间和初始太阳方位获得当前时刻的太阳方位。
如果飞行器在执行飞行任务时的飞行时间较短,那么也可以由步骤S21获得飞行器由起飞地点起飞时的初始太阳方位,步骤S22中则可以忽略飞行时间对于太阳方位的影响,而直接以初始太阳方位作为当前时刻的太阳方位。而如果飞行器的飞行时间较长,例如飞行时间达到2~3个小时甚至更多的情况下,则需要根据飞行器执行飞行任务的时间获得当前时刻的太阳方位。
在以上示例性实施例的基础上,本公开所提供的飞行器的飞行控制方法还可以包括步骤:在飞行器的飞行过程中,通过电子罗盘和/或陀螺仪修正飞行器的当前航向。特别是在环境因素对飞行器的飞行过程影响较大的情况下,例如风力干扰较大,飞行器的机头方向与实际航线方向存在较大的角度差异或者飞行器的飞行姿态不稳定,那么此时便可以借助飞行器上安装的电子罗盘和/或陀螺仪对飞行器的当前航向进行修正,从而使得飞行器能够顺利地沿目标航向进行飞行。
在以上示例性实施例的基础上,本公开所提供的飞行器的飞行控制过程中,通过电子罗盘和/或陀螺仪修正所述飞行器的当前航向,可以包括步骤:通过电子罗盘上的角度变化,对目标航向实时进行角度的加减;或者是通过陀螺仪感应的角度变化,对目标航向实时进行角度的加减;或者是通过电子罗盘和陀螺仪共同感应的角度变化取角度变化平均值,然后对目标航向实时进行角度的加减;完成目标航向角度调整后,调整无人机按照实时更新的目标航向进行飞行。
需要说明的是,虽然以上示例性实施例以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或者必须执行全部的步骤才能实现期望的结果。附加地或者备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
在本公开的示例性实施例中,还提供一种飞行器的飞行控制装置,如图6所示,飞行控制装置60主要可以包括目标航向获取模块61、太阳方位获取模块62、投影位置获取模块63和飞行方向调整模块64。其中,目标航向获取模块61被配置为获取飞行器向目标地点飞行的目标航向;太阳方位获取模块62被配置为获取当前时刻的太阳方位;投影位置获取模块63被配置为获取阳光照射于所述遮阳指针上产生的投影位置;飞行方向调整模块64被配置为根据所述太阳方位和投影位置调整所述飞行器的当前航向,以使所述飞行器沿所述目标航向飞行。
上述飞行器的飞行控制装置的具体细节已经在对应的飞行控制方法中进行了详细的描述,因此此处不再赘述。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式,上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
在本公开的示例性实施例中,还提供一种电子设备,所述电子设备包括至少一个处理器以及至少一个用于存储所述处理器的可执行指令的存储器;其中,所述处理器被配置为经由执行所述可执行指令来执行本公开中上述各示例性实施例中的方法步骤。
下面结合图7对本示例性实施例中的电子设备700进行描述。电子设备700仅仅为一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
参见图7所示,电子设备700以通用计算设备的形式表现。电子设备700的组件可以包括但不限于:至少一个处理单元710、至少一个存储单元720、连接不同系统组件(包括处理单元710和存储单元720)的总线730、显示单元740。
其中,存储单元720存储有程序代码,所述程序代码可以被处理单元710执行,使得处理单元710执行本公开中上述各示例性实施例中的方法步骤。
存储单元720可以包括易失性存储单元形式的可读介质,例如随机存取存储单元721(RAM)和/或高速缓存存储单元722,还可以进一步包括只读存储单元723(ROM)。
存储单元720还可以包括具有一组(至少一个)程序模块725的程序/实用工具724,这样的程序模块包括但不限于:操作系统、一个或者多个应用程序、其他程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线730可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、外围总线、图形加速端口、处理单元或者使用各种总线结构中的任意总线结构的局域总线。
电子设备700也可以与一个或多个外部设备800(例如键盘、指向设备、蓝牙设备等)通信,还可以与一个或者多个使得用户可以与该电子设备700交互的设备通信,和/或与使得该电子设备700能与一个或多个其他计算设备进行通信的任何设备(例如路由器、调制解调器等)通信。这种通信可以通过输入/输出(I/O)接口750进行。并且,电子设备700还可以通过网络适配器760与一个或者多个网络(例如局域网(LAN)、广域网(WAN)和/或公共网络,例如因特网)通信。如图7所示,网络适配器760可以通过总线730与电子设备700的其他模块通信。应当明白,尽管图中未示出,可以结合电子设备700使用其他硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID系统、磁带驱动器以及数据备份存储系统等。
在本公开的示例性实施例中,还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时可实现本公开的上述的飞行器的飞行控制方法。在一些可能的实施方式中,本公开的各个方面还可以实现为一种程序产品的形式,其包括程序代码;该 程序产品可以存储在一个非易失性存储介质(可以是CD-ROM、U盘或者移动硬盘等)中或网络上;当所述程序产品在一台计算设备(可以是个人计算机、服务器、终端装置或者网络设备等)上运行时,所述程序代码用于使所述计算设备执行本公开中上述各示例性实施例中的方法步骤。
参见图8所示,根据本公开的实施方式的用于实现上述方法的程序产品80,其可以采用便携式紧凑磁盘只读存储器(CD-ROM)并包括程序代码,并可以在计算设备(例如个人计算机、服务器、终端装置或者网络设备等)上运行。然而,本公开的程序产品不限于此。在本示例性实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
所述程序产品可以采用一个或者多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。
可读存储介质例如可以为但不限于电、磁、光、电磁、红外线或半导体的系统、装置或器件、或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件或者上述的任意合适的组合。
可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任意可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、有线、光缆、RF等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言的任意组合来编写用于执行本公开操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如C语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户计算设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络(包括局域网(LAN)或广域网(WAN)等)连接到用户计算设备;或者,可以连接到外部计算设备,例如利用因特网服务提供商来通过因特网连接。
本领域技术人员能够理解,本公开的各个方面可以实现为系统、方法或程序产品。因此,本公开的各个方面可以具体实现为以下形式,即:完全的硬件实施方式、完全的软件实施方式(包括固件、微代码等),或硬件和软件结合的实施方式,这里可以统称为“电路”、“模块”或“系统”。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应 性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。
上述所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中,如有可能,各实施例中所讨论的特征是可互换的。在上面的描述中,提供许多具体细节从而给出对本公开的实施方式的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有特定细节中的一个或更多,或者可以采用其它的方法、组件、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的各方面。

Claims (10)

  1. 一种飞行器的飞行控制方法,应用于具有遮阳指针的飞行器,其中,所述方法包括:
    获取飞行器飞行的目标航向;
    获取当前时刻的太阳方位;
    获取阳光照射于所述遮阳指针上产生的投影位置;
    根据所述太阳方位和所述投影位置调整所述飞行器的当前航向,以使所述飞行器沿所述目标航向飞行。
  2. 根据权利要求1所述的飞行器的飞行控制方法,其中,所述根据所述太阳方位和所述投影位置调整所述飞行器的当前航向,以使所述飞行器沿所述目标航向飞行包括:
    根据所述太阳方位预测所述飞行器沿所述目标航向飞行时阳光照射于所述遮阳指针上产生的目标投影位置;
    调整所述飞行器的当前航向,以使所述投影位置与所述目标投影位置重合。
  3. 根据权利要求1所述的飞行器的飞行控制方法,其中,所述获取阳光照射于所述遮阳指针上产生的投影位置包括:
    检测所述遮阳指针所处位置的太阳辐照强度;
    根据所述太阳辐照强度获取阳光照射于所述遮阳指针上产生的投影位置。
  4. 根据权利要求1所述的飞行器的飞行控制方法,其中,所述飞行器的目标地点为所述飞行器的起飞地点,所述目标航向为所述飞行器的返航方向。
  5. 根据权利要求4所述的飞行器的飞行控制方法,其中,所述获取飞行器飞行的目标航向包括:
    获取所述飞行器由所述起飞地点起飞时的起飞方向;
    根据所述起飞方向获取所述飞行器返回所述起飞地点的返航方向,将所述返航方向作为目标航向。
  6. 根据权利要求4所述的飞行器的飞行控制方法,其中,所述获取当前时刻的太阳方位包括:
    获取所述飞行器由所述起飞地点起飞时的初始太阳方位;
    根据所述飞行器的飞行时间和所述初始太阳方位获得当前时刻的太阳方位。
  7. 根据权利要求1-6中任意一项所述的飞行器的飞行控制方法,还包括:
    在所述飞行器的飞行过程中,通过电子罗盘和陀螺仪中至少之一修正所述飞行器的当前航向。
  8. 一种飞行器的飞行控制装置,包括:
    目标航向获取模块,被配置为获取飞行器飞行的目标航向;
    太阳方位获取模块,被配置为获取当前时刻的太阳方位;
    投影位置获取模块,被配置为获取阳光照射于所述遮阳指针上产生的投影位置;
    飞行方向调整模块,被配置为根据所述太阳方位和投影位置调整所述飞行器的当前航向,以使所述飞行器沿所述目标航向飞行。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1-7中任意一项所述的飞行器的飞行控制方法。
  10. 一种电子设备,包括:
    处理器;
    存储器,用于存储所述处理器的可执行指令;
    其中,所述处理器被配置为经由执行所述可执行指令来执行权利要求1-7中任意一项所述的飞行器的飞行控制方法。
PCT/CN2018/108839 2018-07-25 2018-09-29 飞行器的飞行控制方法、装置、存储介质及电子设备 WO2020019517A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810826636.X 2018-07-25
CN201810826636.XA CN108776493A (zh) 2018-07-25 2018-07-25 飞行器的飞行控制方法、装置、存储介质及电子设备

Publications (1)

Publication Number Publication Date
WO2020019517A1 true WO2020019517A1 (zh) 2020-01-30

Family

ID=64030076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108839 WO2020019517A1 (zh) 2018-07-25 2018-09-29 飞行器的飞行控制方法、装置、存储介质及电子设备

Country Status (2)

Country Link
CN (1) CN108776493A (zh)
WO (1) WO2020019517A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115186233B (zh) * 2022-09-07 2022-11-25 中航信移动科技有限公司 一种用于太阳显示位置确定的数据处理方法、存储介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106249755A (zh) * 2016-09-14 2016-12-21 北京理工大学 一种无人机自主导航系统及导航方法
CN106895837A (zh) * 2017-01-04 2017-06-27 重庆三峡学院 一种太阳影子定位系统及其定位方法
US20170240280A1 (en) * 2016-02-24 2017-08-24 Razmik Karabed Shadow casting drone
CN107479082A (zh) * 2017-09-19 2017-12-15 广东容祺智能科技有限公司 一种无人机无gps返航方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761770A1 (fr) * 1997-04-08 1998-10-09 Philippe Ador Taximetre pour la mesure de la deviation des compas fixes sur les navires
CN101324435A (zh) * 2007-06-15 2008-12-17 展讯通信(上海)有限公司 一种获得方向信息的方法与装置
CN101373137B (zh) * 2007-08-21 2010-10-06 椗光堂发展有限公司 电子日晷罗盘及利用该罗盘的测量方法
CN102650888B (zh) * 2011-02-25 2016-02-10 鸿富锦精密工业(深圳)有限公司 无人飞行载具及其控制方法
CN104359453B (zh) * 2014-11-12 2018-08-10 毕诗捷 一种基于图像处理技术的电子日位传感器及其使用方法
TWI528989B (zh) * 2015-04-10 2016-04-11 wen-chang Xiao Can independently block the light of the aircraft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170240280A1 (en) * 2016-02-24 2017-08-24 Razmik Karabed Shadow casting drone
CN106249755A (zh) * 2016-09-14 2016-12-21 北京理工大学 一种无人机自主导航系统及导航方法
CN106895837A (zh) * 2017-01-04 2017-06-27 重庆三峡学院 一种太阳影子定位系统及其定位方法
CN107479082A (zh) * 2017-09-19 2017-12-15 广东容祺智能科技有限公司 一种无人机无gps返航方法

Also Published As

Publication number Publication date
CN108776493A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
US11885759B2 (en) Solar panel inspection using unmanned aerial vehicles
US11287835B2 (en) Geo-fiducials for UAV navigation
US11709491B2 (en) Dynamically adjusting UAV flight operations based on radio frequency signal data
US20220003213A1 (en) Unmanned Aerial Vehicle Wind Turbine Inspection Systems And Methods
US11897607B2 (en) Unmanned aerial vehicle beyond visual line of sight control
CN109542119B (zh) 飞行器航线规划方法及系统
US20180096609A1 (en) Fleet management of unmanned aerial vehicles and flight authorization system
US11705010B2 (en) Pre-emptive generation of autonomous unmanned aerial vehicle inspections according to monitored sensor events
CN205247213U (zh) 使用在无人机上的高精度定位巡航系统
US11662418B2 (en) Blind area tracking method and apparatus for directional antenna and motion tracking system
US20130204467A1 (en) Wind Calculation System Using a Constant Bank Angle Turn
US20180141656A1 (en) Method and system for monitoring operational status of drone
CN110244765B (zh) 一种飞行器航线轨迹生成方法、装置、无人机及存储介质
US11467002B2 (en) Systems and methods for obtaining wind information
WO2020019517A1 (zh) 飞行器的飞行控制方法、装置、存储介质及电子设备
CN108267753A (zh) 一种无人机着陆点自动配置的方法、系统及装置
CN110554703A (zh) 无人机飞行姿态调整方法、设备及存储介质
CN109084733A (zh) 一种智能遥感测绘系统
CN112665614B (zh) 一种机载宽带卫通设备惯导参考校准方法及相关组件
US20220128364A1 (en) Navigation guidance
TWI744593B (zh) 定翼機操作系統及其方法
WO2019134714A1 (en) Unmanned aerial vehicle launch parachute landing methods and systems
CN114489106A (zh) 一种无人机控制方法、装置、设备及存储介质
CN103983801A (zh) 一种飞机平显虚拟速度矢量符号定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 06/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18927696

Country of ref document: EP

Kind code of ref document: A1