WO2020019362A1 - 一种冷冻消融装置及冷冻消融方法 - Google Patents

一种冷冻消融装置及冷冻消融方法 Download PDF

Info

Publication number
WO2020019362A1
WO2020019362A1 PCT/CN2018/097905 CN2018097905W WO2020019362A1 WO 2020019362 A1 WO2020019362 A1 WO 2020019362A1 CN 2018097905 W CN2018097905 W CN 2018097905W WO 2020019362 A1 WO2020019362 A1 WO 2020019362A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
cold
cooling
cryoablation
rewarming
Prior art date
Application number
PCT/CN2018/097905
Other languages
English (en)
French (fr)
Inventor
肖家华
苏东波
德•拉•拉玛•阿兰
哈塔•凯利•邦彦
Original Assignee
山前(珠海)医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山前(珠海)医疗科技有限公司 filed Critical 山前(珠海)医疗科技有限公司
Priority to US17/250,446 priority Critical patent/US20210315626A1/en
Priority to JP2021503722A priority patent/JP7088478B2/ja
Priority to EP18927240.4A priority patent/EP3827771A4/en
Publication of WO2020019362A1 publication Critical patent/WO2020019362A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00863Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid

Definitions

  • the present invention relates to the technical field of medical instruments, and in particular, to a cryoablation device and a cryoablation method.
  • Cryoablation is a surgical medical technique that uses cryoablation of target tissues. It is mostly used to treat tumors and atrial fibrillation. The principle lies in the use of low-temperature equipment to subject the targeted tissue to cold, freezing, and rewarming processes, which in turn can cause irreversible damage or necrosis of cells.
  • the cryoablation equipment generally includes a cryoablation generator (host) and a cryoballoon part.
  • the cryoablation generator (host) is responsible for providing a cold carrier for the cryoballoon. When in use, the cryoballoon is installed at the front end of the catheter and extends into the human body.
  • the cryo-ablation generator (host) passes the cold-loading medium from the catheter into the cryo-balloon to cool it down, and then performs cryo-ablation of the targeted tissue.
  • the cryoablation generator generally adopts a high-pressure gas throttling refrigeration method.
  • the high-pressure gas flows through the small hole to be adiabatic and throttling, the temperature often changes as the pressure decreases. The effect can complete the cooling treatment process of cryoablation.
  • the high-pressure gas throttling method has certain shortcomings in practical use.
  • the high-pressure gas danger coefficient is high. Because the frozen ablation tip balloon is generally in the human body, once the gas pressure is too high, it may cause the balloon to rupture and pose a great safety threat to the patient.
  • the high-pressure gas is a consumable and needs to be replenished, which is inconvenient to use; again, the equipment is used The requirements on the operator are high, and it needs to be accompanied by a professional technician during the operation.
  • the technical problem to be solved by the present invention is to overcome the defects of high risk coefficient, fast working fluid consumption and inconvenient use of the cryoablation device in the prior art in the prior art. Easy-to-use cryoablation device.
  • Another technical problem to be solved by the present invention is to overcome the defects of high danger coefficient and difficult operation during the operation of the freezing ablation method in the prior art, and further provide a freezing ablation method with low risk coefficient and simple operation.
  • a cryoablation device includes:
  • Cryoballoons in which a cold-loaded medium is circulated, which is suitable for contacting with human tissues and freezing and ablating them;
  • a catheter which is connected to the freezing balloon and has a medium input end and a medium output end, and is suitable for inputting and outputting a cold-loading medium into the freezing balloon;
  • One end of the medium supply line communicates with the medium storage tank and the other end communicates with the medium input end of the conduit;
  • Media recovery pipeline one end communicates with the medium storage tank, and the other end communicates with the medium output end of the conduit;
  • the refrigeration component is connected in series with the medium supply pipeline, and is suitable for refrigerating and heat-exchanging the cooling medium in the medium supply pipeline.
  • the refrigeration component includes:
  • Cold capacity generating device for generating cold capacity
  • a first cooling capacity exchange device is installed on the medium supply pipeline, the cooling capacity generating device provides cooling capacity to the first cooling capacity exchange device, and the first cooling capacity exchange device is configured to pass through the first cooling capacity. Refrigerating and heat-exchanging the cooling medium in the heat exchange device;
  • the refrigeration component further includes:
  • a second cold quantity exchange device has a hot fluid channel installed on the medium supply pipeline and a cold fluid channel installed on the medium recovery pipeline, and a cold quantity is generated between the cold fluid channel and the hot fluid channel Exchange to pre-cool the cold carrier medium flowing through the hot fluid channel;
  • the hot fluid channel is connected between the medium storage tank and the first cold energy exchange device.
  • the method further includes:
  • a bypass pipe which is in communication with the medium supply pipeline and the medium recovery pipeline, and makes the medium supply pipeline and the medium recovery pipeline form a pre-cooling circuit of a serial medium storage tank and a first cold exchange device;
  • bypass pipe and the medium supply pipeline communicate with each other through a first three-way valve.
  • the refrigeration component further includes:
  • the cold storage device is installed on the medium recovery pipeline and communicates with the first cold capacity exchange device by a bypass pipe, and is suitable for storing the cold quantity flowing out of the first cold capacity exchange device.
  • the refrigeration component further includes:
  • the heat insulation device has a heat insulation cavity adapted to reduce or isolate heat conduction from the outside, and the cold output ends of the first cold energy exchange device, the second cold energy exchange device, the cold storage device, and the cold energy generation device are located in the heat insulation device. Hot cavity.
  • the heat insulation device is a box, and the vacuum insulation device connected to the heat insulation cavity is installed on the heat insulation device.
  • the heat insulation device is a box body, and the heat insulation cavity is filled with a heat insulation substance.
  • a rewarming circuit is further included, and the rewarming circuit is used to transfer the cold medium in the medium storage tank to the medium input end of the catheter in the freezing and ablation device.
  • the rewarming circuit includes:
  • the medium inlet end of the reheating pipe is connected to a side installed on the medium supply pipeline without entering the first cold capacity exchange device by using a second three-way valve.
  • a rewarming circuit is further included, and the rewarming circuit is used to heat the cold carrier medium in the medium storage tank and transport it to the medium input end of the catheter in the freezing and ablation device.
  • the rewarming circuit includes:
  • Reheating tube with heating device connected in series;
  • the medium inlet end of the rewarming pipe is connected to the upstream of the medium inlet of the hot fluid channel by a second three-way valve.
  • the rewarming circuit further includes:
  • the rewarming return line is used to communicate the medium output end of the catheter in the freezing and ablation device with the medium storage tank.
  • the rewarming return line includes:
  • the reheating return pipe is connected at both ends with the medium recovery pipe and is connected in parallel with the second cooling capacity exchange device;
  • the medium inlet end of the rewarming return pipe is connected to the medium supply pipeline by a third three-way valve.
  • the refrigeration component further includes:
  • the heat insulation device has a heat insulation cavity adapted to reduce or isolate heat conduction from the outside, and the cold output ends of the first cold energy exchange device, the second cold energy exchange device, the cold storage device, and the cold energy generation device are located in the heat insulation device. Hot cavity
  • the rewarming return pipe is located outside the heat insulation device.
  • a pumping device is connected in series to the medium supply pipeline or the medium recovery pipeline, and the pumping device is adapted to provide power for the flow of the cold medium.
  • a cryoablation method includes the following steps:
  • Rewarming stop passing cold cooling medium into the human body, and increase the temperature of the targeted tissue.
  • the cold carrier medium after cold exchange with the targeted tissue is transported out of the human body, and the residual cold capacity in the cold carrier medium and the load flowing out of the medium storage tank are used.
  • the cold medium is exchanged in the second cold quantity exchange device, so that the cold carrier medium that has not yet been passed into the first cold quantity exchange device is cooled and transported to the first cold quantity exchange device.
  • a part of the cold capacity is stored in the pre-cooling stage, and the cold capacity is transferred to the cold carrier medium recovered from the duct, and flows out from the medium storage tank in the second cold capacity exchange device. Cooling medium for cold exchange.
  • the cooling medium in the rewarming step, is circulated through the heating device to heat the cooling medium, and then the heated cooling medium is passed into the targeted tissue of the human body to cool the cooling medium.
  • the medium generates heat exchange with the target tissue, which makes the target tissue after the temperature rise.
  • an unrefrigerated cooling medium is input into the human body, and the target tissue and the uncooled cooling medium are heat-exchanged after heating.
  • the cryoablation device comprises a cryoballoon, a catheter, a medium storage tank, a medium supply pipeline, a medium recovery pipeline and a refrigeration component; a cold-loaded medium circulates in the refrigeration balloon, and is suitable for communicating with human tissues. Contact and cryoablate it; the catheter is connected to the cryoballoon and has a medium input end and a medium output end, which are suitable for inputting and outputting the cold-loaded medium into the cryoballoon; the cold-loaded medium is stored in the medium storage tank.
  • the cold medium is a low-pressure liquid or gas or gas-liquid mixture; one end of the medium supply pipeline communicates with the medium storage tank and the other end communicates with the medium input end of the conduit; one end of the medium recovery pipeline communicates with the medium storage tank and the other end communicates with the conduit
  • the medium output end of the medium is connected; the refrigeration component is connected in series with the medium supply pipe, and is suitable for supplying cold energy to the cold medium in the medium supply pipe.
  • the cold carrier medium flows according to the following path: after flowing out of the medium storage tank along the medium supply pipeline, the temperature of the cold carrier medium decreases through the refrigeration assembly, and then enters the medium input end of the catheter.
  • the cooling medium is directly cooled and cooled to meet the low temperature requirements of freezing and ablation.
  • the cold-carrying medium is less likely to explode, so it can effectively reduce the risk factor of the cryoablation device during use.
  • the cold-carrying medium can be recycled, there is no need to replenish high-pressure gas during use, improving Its convenience in use.
  • the cooling method of the low-pressure carrier cold medium is single and only depends on the cooling component to cool down, so the cooling process is easier to control than the cooling method relying on high-pressure gas throttling, which effectively reduces its operation difficulty, and the surgeon doctor does not need a professional technician Accompanying can carry out the entire surgical process.
  • the refrigeration assembly further includes a second cold capacity exchange device having a hot fluid channel installed on the medium supply pipeline and a cold fluid installed on the medium recovery pipeline. Channel, a cold energy exchange is generated between the cold fluid channel and the hot fluid channel to pre-cool the cold carrier medium flowing through the hot fluid channel; the hot fluid channel is connected between the medium storage tank and the The first cooling capacity exchange device is described.
  • the medium supply line, the medium recovery line, the catheter of the cryoablation system, and the freezing balloon are used to circulate the cooling medium.
  • the cold generated at the cold generation device passes the first
  • the cold capacity exchange device is delivered to the medium supply pipeline, and then delivered to the human body through a catheter to freeze and ablate the target tissue, and the cold-carrying medium that exchanges the supercooled quantity with the target tissue then flows from the conduit to the medium recovery pipeline.
  • the cooling medium still has a part of the cooling capacity.
  • the cooling medium flows through the medium recovery pipeline, due to the existence of the second cooling capacity exchange device, the remaining cooling capacity in the cooling medium will pass the second cooling capacity.
  • the exchange device conducts to the cooling medium in the medium supply pipeline, so that the cooling medium there is cooled down in advance.
  • the second cooling capacity exchange device since the second cooling capacity exchange device is located upstream of the first cooling capacity exchange device on the medium supply pipeline, the temperature of the cold medium in the medium supply pipeline is higher than the temperature in the medium recovery pipeline. Therefore, it is possible to ensure that the cold amount is conducted from the medium recovery pipeline to the medium supply pipeline.
  • the residual cooling capacity of the cooling medium in the medium recovery pipeline can pre-cool the cooling medium, reduce the initial temperature of the cooling medium when it enters the first cooling capacity exchange device, and then at the same cooling capacity exchange capacity
  • the pre-cooled cooling medium can reach a lower temperature, so that this type of cryoablation that directly cools the low-pressure medium is more likely to reach the temperature required for cryoablation, and at the same time it can improve the Utilization efficiency of cooling capacity.
  • the cryoablation device provided by the present invention further includes a bypass pipe, which is in communication with the medium supply pipeline and the medium recovery pipeline, and forms a serial medium storage for the medium supply pipeline and the medium recovery pipeline.
  • the tank and the pre-cooling circuit of the first cooling capacity exchange device; and the bypass pipe and the medium supply pipeline communicate with each other through a first three-way valve.
  • By-pass pipe can be used to pass the refrigerant into the human body for pre-cooling before freezing and ablation.
  • the cooling medium flows out of the medium storage tank and then flows through the medium supply pipeline and the first cooling capacity.
  • the temperature of the cooling medium is reduced, and it has a lower initial temperature when entering the freezing and ablation stage.
  • the temperature of the first cooling capacity exchange device is reduced, it is easier to reach the low temperature required for freezing and ablation. Therefore, this can further increase the possibility that the cooling medium of the cryoablation device reaches the temperature required for cryoablation.
  • the cryoablation device provided by the present invention further includes a cold storage device, which is installed on the medium recovery pipeline and communicates with the first cold capacity exchange device by using a bypass pipe, which is suitable for storing the cold outflow from the first cold capacity exchange device. the amount.
  • the cold storage device can store a part of the cooling capacity brought by the cooling medium. After the frozen ablation phase starts, the stored cooling capacity can pre-cool the cooling medium left from the human body to make the second
  • the temperature difference between the cold fluid channel and the hot fluid channel at the cold energy exchange device increases, increasing the cold energy exchange rate at the second cold energy exchange device, thereby further reducing the temperature of the cold medium in the medium supply pipeline.
  • the pre-cooled cooling medium can reach a lower temperature after being finally cooled by the first cooling capacity exchange device. Therefore, this action can further ensure that the cryoablation device can reach the low temperature required for cryoablation, and can further improve the utilization efficiency of the cold amount and reduce the waste of the cold amount.
  • the cryoablation device provided by the present invention further comprises a heat insulation device, the heat insulation device having a heat insulation cavity adapted to reduce or isolate heat conduction from the outside, the first cooling capacity exchange device, the second cooling device
  • the cold output terminals of the heat exchange device, cold storage device and cold heat generating device are located in the heat insulation cavity.
  • the use of the heat insulation device can avoid the loss of cold energy during the cold energy exchange process, and at the same time, the heat storage device has a better thermal insulation effect, and avoids the loss of cold energy during the cold energy storage device's cold energy storage process.
  • the heat insulation device is a box body, and the vacuum insulation device connected to the heat insulation cavity is installed on the heat insulation device.
  • the heat-insulating cavity close to the vacuum state can further reduce the loss rate of the cold amount, so that the freezing and ablation device can further improve the utilization efficiency of the cold amount.
  • the cryoablation device provided by the present invention further comprises a rewarming circuit, which is used to heat the cold carrier medium in the storage tank and transport it to the medium input end of the catheter in the cryoablation device.
  • a rewarming circuit which is used to heat the cold carrier medium in the storage tank and transport it to the medium input end of the catheter in the cryoablation device.
  • the ideal rewarming process can improve the surgical effect of cryoablation and reduce the probability of postoperative complications.
  • the rewarming circuit provided in the present invention can heat the cold carrier medium and deliver it to the targeted tissue through a catheter. This separately set rewarming circuit can not only meet the needs of rewarming for cryoablation, but also very beneficial More precise control of the temperature, course and time of rewarming will improve the cure rate and reduce postoperative complications.
  • the rewarming circuit includes a rewarming tube, and a heating device is connected in series with the rewarming tube; the medium inlet end of the rewarming tube uses a second three-way valve to enter the station.
  • the inlet of the hot fluid channel is connected upstream.
  • the reheating tube is connected in parallel with the first cooling capacity exchange device and the second cooling capacity exchange device.
  • the pipes are independent of the pipes used for cooling.
  • the residual cooling capacity of the first cooling capacity exchange device and the second cooling capacity exchange device can be prevented from disturbing the heating process of the refrigerant during the reheating stage, reducing the interference factors of the rewarming process, and making the control of the rewarming process more convenient. control.
  • the rewarming circuit further includes a rewarming return line, and the rewarming return line is used to communicate the medium output end of the catheter in the freeze ablation device with the medium storage tank.
  • Separate rewarming return line can make the rewarming process form a separate rewarming circuit consisting of a medium storage tank, rewarming tube, freezing and ablation device, and rewarming return line, which can further reduce the interference factors during the rewarming process To make the process control of rewarming more accurate.
  • the cryoablation device provided by the present invention further comprises a heat insulation device, the heat insulation device having a heat insulation cavity adapted to reduce or isolate heat conduction from the outside, the first cold capacity exchange device, the second cold The cold output terminals of the heat exchange device, the cold storage device and the cold heat generating device are located in the heat insulation cavity; the reheating return pipe is outside the heat insulation device. After the reheating return pipe is set outside the heat insulation device, the reheating return pipe can be used to avoid taking away the cooling capacity of the cold storage device or the second cooling capacity exchange device when transferring the reheated cooling medium, thereby increasing the cooling capacity. Utilization.
  • the technical solution provided by the present invention further includes a freezing and ablation method, which includes the following steps: pre-cooling, cold-circulating a low-pressure cold carrier medium into a cold generating device for cooling; and ablation, pre-cooling is completed.
  • the cold carrier medium is circulated into the cold volume generating device, and then passed to the targeted tissue of the human body, so that the cold carrier medium and the targeted tissue are cold-exchanged. After the target tissue is cooled, the targeted tissue is frozen and ablated. ; Recycling, transporting the cold-carrying medium after cold exchange with the targeted tissue from the human body to the storage tank; re-warming, re-warming, stop passing the cooled cold-carrying medium into the human body, so that the target Warm up to the tissue.
  • the cold carrier medium has a lower temperature after being pre-cooled, so that it has a lower initial temperature during the cooling process in the ablation stage, and the temperature that can be finally reached will be lower. .
  • the cold carrier in the method can more easily reach the low temperature required for freezing and ablation.
  • the cold-carrying medium after cold exchange with the targeted tissue is transported out of the human body, and the remaining cold capacity in the cold-carrying medium and the unpassed cold
  • the cold-carrying medium in the heat-generating device exchanges cold capacity, and the cold-carrying medium that has not yet been passed into the cold-heating-gen generating device is cooled and transported to the cold-heat-generating device.
  • the residual cooling capacity of the cooling medium in the medium recovery pipeline can be reused, the utilization efficiency of the cooling capacity can be improved, and the power load of the cooling capacity generating device can be reduced.
  • a part of the cooling capacity is stored in the pre-cooling stage, and the cooling capacity is transferred to the cold carrier medium sent from the human body, so that the cold carrier medium sent from the human body is cooled.
  • the pre-stored cooling capacity is transferred to the medium recovery pipeline, the temperature of the cooling medium can be reduced, and then the residual cooling capacity of the cooling medium being transported is used to cool down the non-input cooling medium in the recycling step.
  • the temperature difference in the process is greater, increasing the cold exchange rate between the two, so that the temperature of the cold medium that is not input to the human body is lower, and it is easier to reach the temperature required for freezing and ablation under the cooling of the cold generating device.
  • cryoablation device and the cryoablation method provided by the present invention have the advantages of low risk coefficient, simple operation, and convenient use, and at the same time have the advantages of high utilization of cold energy and accurate temperature control.
  • FIG. 1 is a schematic structural diagram of a cryoablation device provided in Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of a flow direction of a cold carrier in the pre-cooling stage of the freezing and ablation device shown in FIG. 1;
  • FIG. 3 is a schematic diagram of a flow direction of a cold carrier in the freezing and ablation device shown in FIG. 1 during a freezing and ablation stage;
  • FIG. 4 is a schematic diagram of a flow direction of a cold carrier in the freezing and ablation device shown in FIG. 1 during a rewarming stage;
  • FIG. 5 is a flowchart of a cryoablation method provided in Embodiment 3 of the present invention.
  • this embodiment provides a cryoablation device including a freezing balloon 8, a catheter 7, a medium storage tank 1, a medium supply pipeline 2, and a medium recovery.
  • the catheter 7 is connected to the freezing balloon 8 and has a medium input end and a medium output end, It is suitable for inputting and outputting a cold carrier medium into the freezing balloon 8;
  • a medium carrier tank 1 stores a cold carrier medium, the cold carrier medium is a low-pressure medium;
  • one end of the medium supply pipeline 2 communicates with the medium storage tank 1, and the other end
  • the liquid inlet end of the conduit 7 is in communication; one end of the medium recovery pipeline 3 is in communication with the medium storage tank 1 and the other end is in communication with the liquid outlet of the conduit 7;
  • the refrigeration component is connected in series with the medium supply pipeline 2 and is suitable for the medium supply pipeline 2 Refrig
  • the cooling medium flows according to the following path: after flowing out of the medium storage tank 1 along the medium supply pipeline 2 and passing through the refrigeration assembly, the temperature of the cooling medium decreases, and then enters the medium of the catheter 7 The input end flows into the frozen balloon 8 to contact the targeted tissue through the balloon, and then flows out from the medium output end of the catheter 7 into the medium recovery pipeline 3, and finally returns to the medium storage tank 1 to complete a cycle .
  • the original high-pressure gas is replaced with a cold carrier medium, and the cold carrier medium is directly cooled, compared with the high-pressure gas, it is less likely to explode, so it can effectively reduce the danger of the cryoablation device during use.
  • the cooling method of the low-pressure carrier cold medium is single and only depends on the cooling component to cool down. Therefore, the cooling process is easier to control than the cooling method relying on high-pressure gas throttling, which effectively reduces its operation difficulty. Accompanying can carry out the entire surgical process.
  • the refrigeration module includes a cold capacity generating device 4, a first cold capacity exchange device 5, and a second cold capacity exchange device 6.
  • the cooling capacity generating device 4 is used to provide cooling capacity; a first cooling capacity exchange device 5 is installed on the medium supply pipe 2, and the cooling capacity generating device 4 provides cooling capacity to the first cooling capacity exchange device 5,
  • the first cooling capacity exchanging device 5 is used for cooling and exchanging the cooling medium passing through the first cooling capacity exchanging device 5; the second cooling capacity exchanging device 6 has heat installed on the medium supply pipe 2 A fluid channel and a cold fluid channel installed on the medium recovery pipeline 3, a cold exchange is generated between the cold fluid channel and the hot fluid channel, and the cold carrier medium flowing through the hot fluid channel is pre-cooled. Cold; the hot fluid channel is connected between the medium storage tank 1 and the first cold energy exchange device 5.
  • the medium supply pipeline 2, the medium recovery pipeline 3, the duct 7 of the freezing and ablation system, and the freezing balloon 8 are used to circulate the cooling medium, and during the flow, the cold generating device
  • the cold energy generated at 4 places is transmitted to the medium supply pipeline 2 through the first cold energy exchange device 5, and then delivered to the human body through the catheter 7 to freeze and ablate the targeted tissue, and carry out supercooled exchange with the targeted tissue.
  • the cold medium then flows from the duct 7 into the medium recovery pipe 3, and at this time, the cold medium still has a part of the cold capacity.
  • the remaining cooling capacity in the cooling medium will be conducted to the cooling medium in the medium supply pipeline 2 through the second cooling capacity exchange device 6, so that the cooling medium there will be cooled in advance.
  • the second cooling capacity exchanging device 6 since the second cooling capacity exchanging device 6 is located upstream of the first cooling capacity exchanging device 5 on the medium supply line 2, the temperature of the cooling medium in the medium supply line 2 is higher than that of the medium recovery.
  • the temperature in the pipeline 3 can ensure that the cold energy is conducted from the medium recovery pipeline 3 to the medium supply pipeline 2.
  • the residual cooling capacity of the cooling medium in the medium recovery pipeline 3 can be used to pre-cool the cooling medium, reduce the initial temperature of the cooling medium when it enters the first cooling capacity exchange device 5, and then maintain the same cooling capacity.
  • this pre-cooled cooling medium can reach a lower temperature, which makes it more likely that this type of cryoablation that directly cools the low-pressure medium can reach the temperature required for cryoablation, and it can also Improve the utilization efficiency of cooling capacity.
  • the cold quantity generating device 4 in this embodiment is a miniature ultra-low temperature refrigerator capable of providing a cold source below -120 ° C, which may be in the form of a pulse tube, Stirling, mixed refrigerant throttling, thermal sound, etc. It can be one or more. When multiple units work together, the joint mode can be series or parallel.
  • the cooling medium in this embodiment is a medium with a lower freezing point, such as anhydrous ethanol.
  • a bypass pipe 9 is further included.
  • the bypass pipe 9 is in communication with the medium supply pipe 2 and the medium recovery pipe 3, and makes the medium supply pipe 2 and The medium recovery pipeline 3 forms a pre-cooling circuit of the serial medium storage tank 1 and the first cold capacity exchange device 5; and the bypass pipe 9 and the medium supply pipeline 2 communicate with each other through a first three-way valve 10.
  • By-pass pipe 9 can be used to allow the refrigerant to pass into the human body for pre-freezing before freezing and ablation.
  • the cooling medium flows out of the medium storage tank 1 and flows through the medium supply pipeline 2 and A cooling capacity exchange device 5, a bypass pipe 9 and a medium recovery pipeline 3 are finally returned to the medium storage tank 1.
  • the temperature of the cooling medium is reduced, and it has a lower initial temperature when entering the freezing and ablation stage.
  • the temperature of the first cooling capacity exchange device 5 is reduced, it is easier to reach the low temperature required for freezing and ablation. Therefore, this can further increase the possibility that the cryoablation device can reach the temperature required for cryoablation by the cooling medium.
  • the freezing and ablation device further includes a cold storage device 11 installed on the medium recovery pipeline 3 and communicating with the first cold capacity exchange device 5 by using a bypass pipe 9, which is suitable for storing the first cold capacity exchange The amount of cooling flowing out of the device 5.
  • the cold storage device 11 is specifically a box filled with a cold storage medium with a high specific heat capacity.
  • the medium recovery pipeline 3 passes through the cold storage device 11 and uses the side wall of the pipeline to generate cold energy with the cold storage medium in the cold storage device 11. exchange.
  • the cold storage device 11 can store a part of the cooling capacity brought by the cooling medium.
  • the cooling medium left from the human body can be pre-cooled, so that the first The temperature difference between the cold fluid passage and the hot fluid passage at the second cooling capacity exchange device 6 increases, and the cooling capacity exchange rate at the second cooling capacity exchange device 6 is increased, thereby further increasing the temperature of the cooling medium in the medium supply pipeline 2
  • the cold-loaded cooling medium that has been cooled in advance can reach a lower temperature after being finally cooled by the first cooling capacity exchange device 5. Therefore, this action can further ensure that the cryoablation device can reach the low temperature required for cryoablation, and can further improve the utilization efficiency of the cold amount and reduce the waste of the cold amount.
  • a heat insulation device 12 is further provided.
  • the insulation device 12 has a heat insulation cavity 13 adapted to reduce or isolate heat conduction from the outside.
  • the cold output terminals of the exchange device 6, the cold storage device 11 and the cold capacity generating device 4 are located in the heat insulation cavity 13.
  • the use of the heat insulation device 12 can avoid the loss of cooling capacity during the cooling capacity exchange process, and at the same time, the thermal storage device 11 has a better thermal insulation effect, and avoid the loss of cooling capacity during the storage of the cooling capacity device 11.
  • the heat insulation device 12 is a box
  • the vacuum insulation device 14 is installed on the heat insulation device 12 and communicates with the heat insulation cavity 13.
  • the heat-insulating cavity 13 close to the vacuum state can further reduce the loss rate of the cooling capacity, so that the freezing and ablation device can further improve the utilization efficiency of the cooling capacity.
  • the evacuation device 14 is specifically a small vacuum pump.
  • the heat insulation device 12 is a box body, and the heat insulation cavity 13 is filled with a heat insulation substance.
  • the heat insulation substance may be a heat insulation material such as polyurethane foam material or aerogel. material.
  • this embodiment further includes a rewarming circuit, which is used to heat the cold carrier medium in the storage tank and transport it to the freezing Medium input end of catheter 7 in an ablation device.
  • a rewarming circuit which is used to heat the cold carrier medium in the storage tank and transport it to the freezing Medium input end of catheter 7 in an ablation device.
  • cryoablation the target tissue that has been frozen should be rewarmed.
  • the ideal rewarming process can improve the surgical effect of cryoablation and reduce the probability of postoperative complications.
  • the rewarming circuit provided in the present invention can heat the cold medium and transport it to the targeted tissue through the catheter 7.
  • This individually set rewarming circuit can not only meet the needs of rewarming by cryoablation, but also has very It is conducive to more precise control of the temperature, course and time of rewarming, thereby improving the surgical cure rate and reducing postoperative complications.
  • the re-warming circuit includes a re-warming pipe 15 on which a heating device 16 is connected in series; the medium inlet end of the re-warming pipe 15 uses a second three-way valve 17 and enters the hot fluid. The entrance of the passage is connected upstream.
  • the reheating tube 15 is connected in parallel with the first cooling capacity exchange device 5 and the second cooling capacity exchange device 6.
  • the pipes used for heating the refrigerant are independent from the pipes used for cooling.
  • the rewarming circuit includes: a rewarming pipe 15; the medium inlet end of the rewarming pipe 15 uses a second three-way valve 17 and is installed on the medium supply pipe 2 The side that does not enter the first cooling capacity exchange device 5 is connected.
  • there is no series heating device on the rewarming circuit but only the uncooled cooling medium is introduced into the duct to participate in the rewarming process, and the human body's own heat is used for rewarming. This makes the warming of the targeted tissues more gentle and reduces the damage to the healthy tissue by cryoablation.
  • the rewarming circuit further includes a rewarming return line, and the rewarming return line is used to connect the medium output end of the catheter 7 in the freezing and ablation device to the recovery port of the medium storage tank 1 Connected.
  • Separate rewarming return lines can make the rewarming process form a separate rewarming circuit consisting of a medium storage tank 1, a rewarming tube 15, a freezing ablation device, and a rewarming return line, which can further reduce the temperature during the rewarming process. Disturbance factors make the process control of rewarming more precise.
  • the rewarming return pipe includes a rewarming return pipe 18, both ends of which communicate with the medium recovery pipe 3 and are connected in parallel with the second cooling capacity exchange device 6; the medium entering end of the rewarming return pipe 18 is utilized
  • the third three-way valve 19 is connected to the medium supply line 2.
  • the reheating return pipe 18 is located outside the heat insulation device 12. After the reheating return pipe 18 is provided outside the heat insulation device 12, the rewarming return pipe 18 can be used to avoid the cold in the cold storage device 11 or the second cooling capacity exchange device 6 when transporting the reheated cooling medium. To increase the utilization of cooling capacity.
  • a pumping device 20 is connected in series to the medium supply pipeline 2 or the medium recovery pipeline 3, and the pumping device 20 is adapted to provide power for the flow of the cooling medium.
  • the cryoablation device provided in this embodiment further includes an operation device.
  • the operating device includes a handle and a actuator for operating the catheter 7 to reach the ablation target tissue.
  • the catheter 7 is a pipe for transporting a cryogenic carrier medium. It is made of a material that has a certain toughness, a small thermal conductivity, and physiological compatibility. Cold medium inlet and outlet flow channels, functional channels and isolation chambers. The cooling medium inlet and outlet flow channels are distributed on both sides to insulate the inlet and outlet fluids and avoid thermal short circuits.
  • the functional channel is located at the center of the conduit 7 and is used for routing of functional components such as sensors and guide wires.
  • the isolation cavity is distributed at both ends of the cold medium flow channel, and is used to further reduce the heat exchange of the incoming and outgoing fluids.
  • the outer part of the duct 7 is wrapped with a heat-insulating material, which is used to reduce the heat transfer between the cooling medium in the duct 7 and external human tissues, on the one hand, to reduce the heat leakage of the cooling medium, and on the other hand, to prevent the tissue from freezing due to the low temperature of the outer wall surface of the duct 7.
  • the cryoballoon 8 is used for cryoablation of the targeted tissue, and has a medium inlet and a medium outlet therein. The medium inlet is connected to the inlet of the catheter 7 and the medium outlet is connected to the outlet of the catheter 7. After the balloon is in contact with the tissue, the cold carrier carries heat through the balloon wall and the tissue.
  • This embodiment provides a cryoablation method.
  • a cold carrier medium using a low-pressure medium is cooled and directly passed into the human body to perform targeted human tissues.
  • Cryoablation including the following steps:
  • Pre-cooling cold circulation of a low-pressure cooling medium is passed into the cooling capacity generating device 4 for cooling.
  • Rewarming stop passing cold cooling medium into the human body, and increase the temperature of the targeted tissue. .
  • the cold carrier medium has a lower temperature after being pre-cooled, so that it has a lower initial temperature during the cooling process in the ablation stage, and the temperature that can be finally reached will be lower. .
  • the cold carrier in the method can more easily reach the low temperature required for freezing and ablation.
  • the cooling medium that has been cold-exchanged with the targeted tissue is transported from the human body, and the remaining cooling capacity in the cooling medium is used to cool the cooling medium in the cooling capacity generating device 4 The amount of heat is exchanged, and the cooling medium that has not yet been passed into the cooling capacity generating device 4 is cooled and then transferred to the cooling capacity generating device 4.
  • the residual cold capacity of the cooling medium in the medium recovery pipeline 3 can be reused, the utilization efficiency of the cold capacity can be improved, and the power load of the cold capacity generating device 4 can be reduced.
  • the pre-cooling step a part of the cooling capacity is stored, and the cooling capacity is transferred to the cold carrier medium sent from the human body, so that the cold carrier medium sent from the human body is cooled.
  • the pre-stored cooling capacity is transferred to the medium recovery pipeline 3
  • the temperature of the cooling medium can be lowered, and then the residual cooling capacity of the cooling medium being conveyed is used for the non-input cooling medium in the recovery step.
  • the temperature difference during the cooling process is greater, and the cold exchange speed between the two is increased, so that the temperature of the cold carrier medium that is not input to the human body is lower, and it is easier to reach the temperature required for freezing and ablation under the cooling of the cold generating device 4.
  • the cooling medium in the rewarming step, is circulated through the heating device (16), the cooling medium is heated, and then the heated cooling medium is passed to the human body for targeting.
  • the heated cooling medium is passed to the human body for targeting.
  • heat exchange is performed between the cold-loading medium and the targeted tissue, so that the targeted tissue after the temperature is lowered is heated.
  • an uncooled cooling medium may be input into the human body, and the target tissue and the uncooled cooling medium are heat-exchanged after heating.
  • the specific process of the cryoablation method in this embodiment is:
  • the cooling capacity generating device 4 and the pumping device 20 are turned on, and the three three-way valves are adjusted so that the cooling medium flows according to the following flow: After the cooling medium at room temperature flows out from the medium storage tank 1, After passing through the flowmeter, pumping device 20, and flow regulating valve, it enters the heat insulation device 12. After the second cooling capacity exchange device 6 and the returning cooling medium exchange heat and pre-cool, it enters the first cooling capacity exchange device 5 to cool.
  • the cooling medium is reduced to minus 80-100 ° C.
  • the temperature of the cold storage medium is higher than the temperature of the heat storage medium in the cold storage device 11.
  • the heat storage medium releases heat, the temperature decreases, and then enters the second cold energy exchange device 6, performs cold energy exchange on the cold medium flowing out of the medium storage tank 1, and then exits the heat insulation device 12 and returns to the medium storage tank 1.
  • the cold carrier first comes out of the medium storage tank 1 and flows through the flow meter and pumping device 20 After entering the heating device 16 and the flow regulating valve, it is heated to 37 ° C by the heating device 16 and then enters the catheter 7 through the rewarming tube 15 to heat and rewarm the ablated tissue. After exiting the catheter 7, it passes through the third tee The valve 10 flows through the rewarming return pipe 18 and returns to the medium storage tank 1.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

一种冷冻消融装置,包括冷冻球囊(8)、导管(7)、介质存储罐(1)、介质供应管路(2)、介质回收管路(3)和制冷组件。冷冻球囊中流通有载冷介质,载冷介质为低压液体或气体或气液混合物。一种冷冻消融方法,包括预冷、消融、回收、复温四个步骤。提供的冷冻消融装置和冷冻消融方法危险系数低、操作简单、使用方便,同时还具有冷量利用效率高、控温精确等优点。

Description

一种冷冻消融装置及冷冻消融方法 技术领域
本发明涉及医疗器械技术领域,具体涉及一种冷冻消融装置和冷冻消融方法。
背景技术
冷冻消融术是一种应用冷冻消除靶组织的外科医疗技术,多用于治疗肿瘤、房颤等疾病。其原理在于利用低温设备使靶向组织经历受冷、冻结、复温过程,进而使细胞产生不可逆的损伤或坏死。冷冻消融设备一般包括冷冻消融发生器(主机)和冷冻球囊部分,冷冻消融发生器(主机)负责为冷冻球囊提供载冷介质,使用时将冷冻球囊安装在导管前端伸入到人体内部,冷冻消融发生器(主机)将载冷介质从导管内通入到冷冻球囊内对其进行降温,进而对靶向组织进行冷冻消融。
现有技术中的冷冻消融发生器,一般采用高压气体节流制冷方式,利用高压气体流经小孔后绝热节流时,随着压力的下降,温度往往会发生变化,利用气体的绝热节流效应可完成冷冻消融的降温治疗过程。然而,高压气体节流的方式在实际使用中存在一定缺陷:首先,高压气体危险系数较高。由于冷冻消融的末端球囊一般在人体内,一旦气体压力过高,可能导致球囊破裂,对患者产生极大安全威胁;其次,高压气体为消耗品,需要补充,使用不便;再次,设备使用对操作者要求较高,需要在手术时由专业技师陪同进行操作。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的冷冻消融装置在使用时危险系数高、工质消耗快、使用不便的缺陷,进而提供一种危险系数低、工质损耗极小、使用简便的冷冻消融装置。
本发明所要解决的另外一个技术问题在于克服现有技术中的冷冻消融方法操作时危险系数高、操作难度大的缺陷,进而提供一种危险系数低、操作简单的冷冻消融方法。
为了解决上述技术问题,本发明提供了的技术方案如下:
一种冷冻消融装置,包括:
冷冻球囊,其中流通有载冷介质,适于同人体组织相接触并对其进行冷冻消融;
导管,与冷冻球囊连接,具有介质输入端和介质输出端,适于向冷冻球囊内输入和输出载冷介质;
介质存储罐,其中存储有载冷介质;
介质供应管路,一端与介质存储罐连通,另一端与导管的介质输入端连通;
介质回收管路,一端与介质存储罐连通,另一端与导管的介质输出端连通;
制冷组件,与介质供应管路串联,适于对介质供应管路内的载冷介质进行制冷换热。
作为一种优选的技术方案,所述制冷组件包括:
冷量发生装置,用于产生冷量;
第一冷量交换装置,安装在介质供应管路上,所述冷量发生装置向所述第一冷量交换装置提供冷量,所述第一冷量交换装置用于对途经所述第 一冷量交换装置内的载冷介质进行制冷换热;
作为一种优选的技术方案,所述制冷组件还包括:
第二冷量交换装置,具有安装在所述介质供应管路上的热流体通道和安装在所述介质回收管路上的冷流体通道,所述冷流体通道与所述热流体通道之间产生冷量交换,对流经所述热流体通道内的载冷介质进行预冷;
所述热流体通道连接在所述介质存储罐与所述第一冷量交换装置之间。
作为一种优选的技术方案,还包括:
旁通管,所述旁通管与介质供应管路和介质回收管路相连通,并使介质供应管路和介质回收管路形成串联介质存储罐和第一冷量交换装置的预冷回路;
且所述旁通管与介质供应管路之间通过第一三通阀进行连通。
作为一种优选的技术方案,所述制冷组件还包括:
蓄冷装置,安装在介质回收管路上,利用旁通管与第一冷量交换装置相连通,适于存储第一冷量交换装置中流出的冷量。
作为一种优选的技术方案,所述制冷组件还包括:
隔热装置,具有适于降低或隔绝与外部的热量传导的隔热腔,所述第一冷量交换装置、第二冷量交换装置、蓄冷装置和冷量发生装置的冷量输出端位于隔热腔内。
作为一种优选的技术方案,所述隔热装置为箱体,所述隔热装置上安装有与隔热腔连通的抽真空装置。
作为一种优选的技术方案,所述隔热装置为箱体,所述隔热腔内填充有绝热物质。
作为一种优选的技术方案,还包括复温回路,所述复温回路用于将所 述介质存储罐中的载冷介质输送至冷冻消融装置中导管的介质输入端。
作为一种优选的技术方案,所述复温回路包括:
复温管;
所述复温管的介质进入端利用第二三通阀与安装在介质供应管路上未进入所述第一冷量交换装置的一侧相连。
作为一种优选的技术方案,还包括复温回路,所述复温回路用于将所述介质存储罐中的载冷介质加热之后输送至冷冻消融装置中导管的介质输入端。
作为一种优选的技术方案,所述复温回路包括:
复温管,其上串联有升温装置;
所述复温管的介质进入端利用第二三通阀与进入所述热流体通道的介质进入口的上游相连。
作为一种优选的技术方案,所述复温回路还包括:
复温回流管路,用于将所述冷冻消融装置中导管的介质输出端与介质存储罐连通。
作为一种优选的技术方案,所述复温回流管路包括:
复温回流管,两端与介质回收管路连通,并与第二冷量交换装置相并联;
所述复温回流管的介质进入端利用第三三通阀与介质供应管路相连。
作为一种优选的技术方案,所述制冷组件还包括:
隔热装置,具有适于降低或隔绝与外部的热量传导的隔热腔,所述第一冷量交换装置、第二冷量交换装置、蓄冷装置和冷量发生装置的冷量输出端位于隔热腔内;
所述复温回流管处于隔热装置外部。
作为一种优选的技术方案,所述介质供应管路或所述介质回收管路上串联有泵送装置,所述泵送装置适于为载冷介质的流动提供动力。
一种冷冻消融方法,包括以下步骤:
预冷,将载冷介质冷循环通入到冷量发生装置中进行冷却
消融,将预冷完成的载冷介质再次循环通入到冷量发生装置中进行再次降温,然后再通入人体的靶向组织处,使载冷介质与靶向组织产生冷量交换,使靶向组织降温后对靶向组织进行冷冻消融;
回收,将与靶向组织进行冷量交换后的载冷介质从人体中输送出来,输送至介质存储罐中;
复温,停止向人体中通入经过降温的载冷介质,使靶向组织进行升温。
作为一种优选的技术方案,回收步骤中,将与靶向组织进行冷量交换后的载冷介质从人体中输送出来,利用载冷介质中的残存冷量与从介质存储罐中流出的载冷介质在第二冷量交换装置中进行冷量交换,使尚未通入第一冷量交换装置中的载冷介质降温后往第一冷量交换装置中输送。
作为一种优选的技术方案,在预冷阶段存储一部分冷量,将这些冷量输送到从导管中回收的的载冷介质中,并在第二冷量交换装置中与从介质存储罐中流出的载冷介质进行冷量交换。
作为一种优选的技术方案,在复温步骤中,使载冷介质循环通过升温装置,对载冷介质进行升温,然后将升温后的载冷介质通入人体的靶向组织处,使载冷介质与靶向组织产生热量交换,使降温后的靶向组织升温。
作为一种优选的技术方案,在复温步骤中,向人体中输入未经过制冷的载冷介质,使靶向组织与未经过制冷的载冷介质产生热交换后升温。
本发明技术方案,具有如下优点:
1、本发明提供的冷冻消融装置中,包括冷冻球囊、导管、介质存储罐、介质供应管路、介质回收管路和制冷组件;冷冻球囊中流通有载冷介质,适于同人体组织相接触并对其进行冷冻消融;导管与冷冻球囊连接,具有介质输入端和介质输出端,适于向冷冻球囊内输入和输出载冷介质;介质存储罐中存储有载冷介质,所述载冷介质为低压液体或气体或气液混合物;介质供应管路一端与介质存储罐连通,另一端与导管的介质输入端连通;介质回收管路一端与介质存储罐连通,另一端与导管的介质输出端连通;制冷组件与介质供应管路串联,适于向介质供应管路内的载冷介质提供冷量。在进行冷冻消融术的过程中,载冷介质按照下述路径进行流动:沿介质供应管路从介质存储罐中流出后,通过制冷组件,载冷介质温度下降,然后进入导管的介质输入端,进而流到冷冻球囊内隔着球囊与靶向组织进行接触,然后从导管的介质输出端流出至介质回收管路中,最终回到介质存储罐中完成一个循环。在上述过程中由于将原有的高压气体替换成了载冷介质,对载冷介质体进行直接降温制冷,使其满足冷冻消融的低温要求。载冷介质相比于高压气体,更加不容易产生爆炸,因而能够有效降低冷冻消融装置在使用时的危险系数,同时,由于载冷介质可以循环利用,因而无需在使用过程中补充高压气体,提高了其使用时方便性。另外,低压载冷介质的降温方式单一,仅依靠制冷组件进行降温,因而其降温过程相比与依靠高压气体节流的降温方式更加容易控制,因而有效降低了其操作难度,主刀医生无需专业技师陪同即可进行整个手术过程。
2、本发明提供的冷冻消融装置中,所述制冷组件还包括第二冷量交换装置,其具有安装在所述介质供应管路上的热流体通道和安装在所述介质回收管路上的冷流体通道,所述冷流体通道与所述热流体通道之间产生冷量交换,对流经所述热流体通道内的载冷介质进行预冷;所述热流体通道 连接在所述介质存储罐与所述第一冷量交换装置之间。在进行冷冻消融时,利用介质供应管路、介质回收管路、冷冻消融系统的导管和冷冻球囊使载冷介质进行循环流动,流动过程中,冷量发生装置处生成的冷量通过第一冷量交换装置输送至介质供应管路上,进而通过导管输送到人体中对靶向组织进行冷冻消融,与靶向组织进行过冷量交换的载冷介质随后从导管流动到介质回收管路中,此时的载冷介质仍然残存有部分冷量,随后载冷介质在流经介质回收管路时,由于第二冷量交换装置的存在,载冷介质中残存的冷量会通过第二冷量交换装置传导至介质供应管路内的载冷介质上,使该处的载冷介质预先降温。上述过程中,由于第二冷量交换装置在介质供应管路上相对于第一冷量交换装置处于上游的位置,该处介质供应管路内的载冷介质温度高于介质回收管路内的温度,因而能够保证冷量自介质回收管路向介质供应管路传导。通过上述过程,介质回收管路内的载冷介质的残存冷量可以对载冷介质进行预降温,降低载冷介质进入第一冷量交换装置时的初始温度,进而在同样的冷量交换量的情况下,这种经过预降温的载冷介质可以达到更低的温度,进而使这种对低压介质进行直接制冷的冷冻消融方式更有可能达到冷冻消融所需的温度,同时还能提高对冷量的利用效率。
3、本发明提供的冷冻消融装置中,还包括旁通管,所述旁通管与介质供应管路和介质回收管路相连通,并使介质供应管路和介质回收管路形成串联介质存储罐和第一冷量交换装置的预冷回路;且所述旁通管与介质供应管路之间通过第一三通阀进行连通。利用旁通管,可以使载冷剂通入到人体内进行冷冻消融之前先进行预冷,在预冷阶段载冷介质从介质存储罐中出来以后依次流经介质供应管路、第一冷量交换装置、旁通管和介质回收管路,并最终回到介质存储罐内。经过预冷后的载冷介质温度得到降低, 在进入冷冻消融阶段时具有更低的初始温度,再经过第一冷量交换装置的降温之后就更加容易达到冷冻消融所需的低温。因此,此举能够进一步的提高该冷冻消融装置的载冷介质达到冷冻消融所需温度的可能性。
4、本发明提供的冷冻消融装置中,还包括蓄冷装置,安装在介质回收管路上,利用旁通管与第一冷量交换装置相连通,适于存储第一冷量交换装置中流出的冷量。在预冷阶段,蓄冷装置能够存储一部分由载冷介质带来的冷量,这些存储的冷量在冷冻消融阶段开始后,能够对从人体中留出的载冷介质进行预降温,使第二冷量交换装置处冷流体通道和热流体通道处的温差增大,提高第二冷量交换装置处的冷量交换速率,进而使介质供应管路中的载冷介质的温度进一步降低,这些经过预先降温的载冷介质经过第一冷量交换装置进行最终降温之后便可以达到更低的温度。因此,此举可以进一步保证本冷冻消融装置能够达到冷冻消融所需的低温,并且能够进一步提高冷量的利用效率,减少冷量浪费。
5、本发明提供的冷冻消融装置中,还包括隔热装置,所述隔热装置具有适于降低或隔绝与外部的热量传导的隔热腔,所述第一冷量交换装置、第二冷量交换装置、蓄冷装置和冷量发生装置的冷量输出端位于隔热腔内。利用隔热装置,能够避免在冷量交换过程中发生冷量的流失,同时蓄冷装置的保温效果也更好,避免蓄冷装置在存储冷量的过程中发生冷量的流失。
6、本发明提供的冷冻消融装置中,所述隔热装置为箱体,所述隔热装置上安装有与隔热腔连通的抽真空装置。贴近真空状态的隔热腔能够进一步降低冷量的流失速率,使冷冻消融装置进一步提高对冷量的利用效率。
7、本发明提供的冷冻消融装置中,还包括复温回路,所述复温回路用于将所述存储罐中的载冷介质加热之后输送至冷冻消融装置中导管的介质输入端。在冷冻消融术中,经过冷冻后的靶向组织要进行复温,理想的复 温的过程能够提高冷冻消融术的手术效果,并且降低术后并发症的发生的概率。本发明中提供的复温回路能够对载冷介质进行加热,并通过导管输送至靶向组织处,这种单独设置的复温回路不但能够满足冷冻消融术进行复温的需要,并且非常有利于对复温的温度、进程和时间进行更加精确的控制,进而提高手术治愈率、减少术后并发症。
8、本发明提供的冷冻消融装置中,所述复温回路包括复温管,所述复温管上串联有升温装置;所述复温管的介质进入端利用第二三通阀与进入所述热流体通道的进入口的上游相连。通过将复温管与介质供应管路上第二冷量交换装置的上游相连之后,复温管和第一冷量交换装置以及第二冷量交换装置形成并联,此时的载冷剂加热所用的管路与降温所用的管路之间各自独立。因此能够避免第一冷量交换装置和第二冷量交换装置的残留冷量在复温阶段对载冷剂的升温过程造成干扰,减少复温过程的干扰因素,使复温过程的控制更加便于控制。
9、本发明提供的冷冻消融装置中,所述复温回路还包括复温回流管路,复温回流管路用于将所述冷冻消融装置中导管的介质输出端与介质存储罐连通。单独设置的复温回流管路能够使复温过程形成由介质存储罐、复温管、冷冻消融装置、复温回流管路组成的单独复温回路,从而能够进一步减少复温过程中的干扰因素,使复温的进程控制更加精准。
10、本发明提供的冷冻消融装置中,还包括隔热装置,所述隔热装置具有适于降低或隔绝与外部的热量传导的隔热腔,所述第一冷量交换装置、第二冷量交换装置、蓄冷装置和冷量发生装置的冷量输出端位于隔热腔内;所述复温回流管处于隔热装置外部。将复温回流管设置在隔热装置的外部之后,能够避免复温回流管在输送复温后的载冷介质的时候带走蓄冷装置或者第二冷量交换装置中的冷量,提高冷量的利用率。
11、本发明提供的技术方案中还包括一种冷冻消融方法,包括以下步骤:预冷,将低压的载冷介质冷循环通入到冷量发生装置中进行冷却;消融,将预冷完成的载冷介质循环通入到冷量发生装置中,然后再通入人体的靶向组织处,使载冷介质与靶向组织产生冷量交换,使靶向组织降温后对靶向组织进行冷冻消融;回收,将与靶向组织进行冷量交换后的载冷介质从人体中输送出来,往存储罐中输送;复温,复温,停止向人体中通入经过降温的载冷介质,使靶向组织进行升温。在上述步骤中,由于具有预冷的步骤,载冷介质经过预冷之后具有更低的温度,这样在消融阶段的制冷过程中具有更低的初始温度,因而最终能够达到的温度将会更低。相对于现有技术中对载冷介质进行直接制冷然后通入人体的方式,本方法中的载冷介质更加容易达到冷冻消融所需的低温。
12、本发明提供的冷冻消融方法中,在回收步骤中,将与靶向组织进行冷量交换后的载冷介质从人体中输送出来,利用载冷介质中的残存冷量与未通入冷量发生装置中的载冷介质进行冷量交换,使尚未通入冷量发生装置中的载冷介质降温后往冷量发生装置中输送。上述步骤中,能够对介质回收管路中载冷介质的残存冷量进行再利用,能够提高冷量的利用效率,降低冷量发生装置的功率负担。
13、本发明提供的冷冻消融方法中,在预冷阶段存储一部分冷量,将这些冷量输送到从人体中送出的载冷介质中,使这些从人体中送出的载冷介质降温。通过上述步骤,这些预先存储的冷量输送到介质回收管路中后能够降低载冷介质的温度,进而使回收步骤中利用输送出载冷介质的残余冷量对未输入的载冷介质进行降温的过程中的温差更大,提高二者的冷量交换速度,使未输入人体的载冷介质的温度更低,更加容易在冷量发生装置的制冷下达到冷冻消融所需的温度。
综上所述,本发明提供的冷冻消融装置和冷冻消融方法危险系数低、操作简单、使用方便,同时还具有冷量利用效率高、控温精确等优点。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例1中提供的冷冻消融装置的机构示意图;
图2为图1所示冷冻消融装置在预冷阶段的载冷介质流向示意图;
图3为图1所示冷冻消融装置在冷冻消融阶段的载冷介质流向示意图;
图4为图1所示冷冻消融装置在复温阶段的载冷介质流向示意图;
图5为本发明实施例3中提供的冷冻消融方法的流程图;
附图标记说明:
1-介质存储罐,2-介质供应管路,3-介质回收管路,4-冷量发生装置,5-第一冷量交换装置,6-第二冷量交换装置,7-导管,8-冷冻球囊,9-旁通管,10-第一三通阀,11-蓄冷装置,12-隔热装置,13-隔热腔,14-抽真空装置,15-复温管,16-升温装置,17-第二三通阀,18-复温回流管,19-第三三通阀,20-泵送装置,21-流量计,22-温度计,23-单向阀,24-散热器。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例1:
如图1至图4所示,为本发明的实施例1,本实施例提供了一种冷冻消融装置,包括冷冻球囊8、导管7、介质存储罐1、介质供应管路2、介质回收管路3和制冷组件;冷冻球囊8中流通有载冷介质,适于同人体组织相接触并对其进行冷冻消融;导管7与冷冻球囊8连接,具有介质输入端和介质输出端,适于向冷冻球囊8内输入和输出载冷介质;介质存储罐1 中存储有载冷介质,所述载冷介质为低压介质;介质供应管路2一端与介质存储罐1连通,另一端导管7的进液端连通;介质回收管路3一端与介质存储罐1连通,另一端导管7的出液端连通;制冷组件与介质供应管路2串联,适于对介质供应管路2内的载冷介质制冷换热。
在进行冷冻消融术的过程中,载冷介质按照下述路径进行流动:沿介质供应管路2从介质存储罐1中流出后,通过制冷组件,载冷介质温度下降,然后进入导管7的介质输入端,进而流到冷冻球囊8内隔着球囊与靶向组织进行接触,然后从导管7的介质输出端流出至介质回收管路3中,最终回到介质存储罐1中完成一个循环。在上述过程中由于将原有的高压气体替换成了载冷介质,直接对载冷介质进行制冷,相比于高压气体,更加不容易产生爆炸,因而能够有效降低冷冻消融装置在使用时的危险系数,同时,由于低压的载冷介质可以循环利用,因而无需在使用过程中补充高压气体,提高了其使用时方便性。另外,低压载冷介质的降温方式单一,仅依靠制冷组件进行降温,因而其降温过程相比与依靠高压气体节流的降温方式更加容易控制,因而有效降低了其操作难度,主刀医生无需专业技师陪同即可进行整个手术过程。
作为制冷组件的具体实施方式,制冷组件包括冷量发生装置4、第一冷量交换装置5和第二冷量交换装置6。冷量发生装置4用于提供冷量;第一冷量交换装置5安装在介质供应管路2上,所述冷量发生装置4向所述第一冷量交换装置5提供冷量,所述第一冷量交换装置5用于对途经所述第一冷量交换装置5内的载冷介质进行制冷换热;第二冷量交换装置6具有安装在所述介质供应管路2上的热流体通道和安装在所述介质回收管路3上的冷流体通道,所述冷流体通道与所述热流体通道之间产生冷量交换,对流经所述热流体通道内的载冷介质进行预冷;所述热流体通道连接在所 述介质存储罐1与所述第一冷量交换装置5之间。
在上述制冷组件参与进行冷冻消融时,利用介质供应管路2、介质回收管路3、冷冻消融系统的导管7和冷冻球囊8使载冷介质进行循环流动,流动过程中,冷量发生装置4处生成的冷量通过第一冷量交换装置5输送至介质供应管路2上,进而通过导管7输送到人体中对靶向组织进行冷冻消融,与靶向组织进行过冷量交换的载冷介质随后从导管7流动到介质回收管路3中,此时的载冷介质仍然残存有部分冷量,随后载冷介质在流经介质回收管路3时,由于第二冷量交换装置6的存在,载冷介质中残存的冷量会通过第二冷量交换装置6传导至介质供应管路2内的载冷介质上,使该处的载冷介质预先降温。
上述过程中,由于第二冷量交换装置6在介质供应管路2上相对于第一冷量交换装置5处于上游的位置,该处介质供应管路2内的载冷介质温度高于介质回收管路3内的温度,因而能够保证冷量自介质回收管路3向介质供应管路2传导。通过上述过程,介质回收管路3内的载冷介质的残存冷量可以对载冷介质进行预降温,降低载冷介质进入第一冷量交换装置5时的初始温度,进而在同样的冷量交换量的情况下,这种经过预降温的载冷介质可以达到更低的温度,进而使这种对低压介质进行直接制冷的冷冻消融方式更有可能达到冷冻消融所需的温度,同时还能提高对冷量的利用效率。
具体的,本实施例中的冷量发生装置4具体为能够提供-120℃以下冷源的微型超低温制冷机,可以是脉冲管、斯特林、混合工质节流、热声等形式,数量可以为一台或多台,多台联合工作时,联合方式可以为串联或者并联。本实施例中的载冷介质为凝固点较低的介质,例如无水乙醇。
为了进一步的降低载冷介质所能达到的最低温度,还包括旁通管9,所 述旁通管9与介质供应管路2和介质回收管路3相连通,并使介质供应管路2和介质回收管路3形成串联介质存储罐1和第一冷量交换装置5的预冷回路;且所述旁通管9与介质供应管路2之间通过第一三通阀10进行连通。
利用旁通管9,可以使载冷剂通入到人体内进行冷冻消融之前先进行预冷,在预冷阶段载冷介质从介质存储罐1中出来以后依次流经介质供应管路2、第一冷量交换装置5、旁通管9和介质回收管路3,并最终回到介质存储罐1内。经过预冷后的载冷介质温度得到降低,在进入冷冻消融阶段时具有更低的初始温度,再经过第一冷量交换装置5的降温之后就更加容易达到冷冻消融所需的低温。因此,此举能够进一步的提高该冷冻消融装置是载冷介质达到冷冻消融所需温度的可能性。
作为冷冻消融装置的一种改进实施方式,还包括蓄冷装置11,安装在介质回收管路3上,利用旁通管9与第一冷量交换装置5相连通,适于存储第一冷量交换装置5中流出的冷量。本实施例中,蓄冷装置11具体为填充有比热容较高的蓄冷介质的箱体,介质回收管路3穿过蓄冷装置11,利用管路的侧壁与蓄冷装置11内的蓄冷介质发生冷量交换。
在预冷阶段,蓄冷装置11能够存储一部分由载冷介质带来的冷量,这些存储的冷量在冷冻消融阶段开始后,能够对从人体中留出的载冷介质进行预降温,使第二冷量交换装置6处冷流体通道和热流体通道处的温差增大,提高第二冷量交换装置6处的冷量交换速率,进而使介质供应管路2中的载冷介质的温度进一步降低,这些经过预先降温的载冷介质经过第一冷量交换装置5进行最终降温之后便可以达到更低的温度。因此,此举可以进一步保证本冷冻消融装置能够达到冷冻消融所需的低温,并且能够进一步提高冷量的利用效率,减少冷量浪费。
为了降低冷量流失,还包括隔热装置12,所述隔热装置12具有适于降低或隔绝与外部的热量传导的隔热腔13,所述第一冷量交换装置5、第二冷量交换装置6、蓄冷装置11和冷量发生装置4的冷量输出端位于隔热腔13内。利用隔热装置12,能够避免在冷量交换过程中发生冷量的流失,同时蓄冷装置11的保温效果也更好,避免蓄冷装置11在存储冷量的过程中发生冷量的流失。
具体的,所述隔热装置12为箱体,所述隔热装置12上安装有与隔热腔13连通的抽真空装置14。贴近真空状态的隔热腔13能够进一步降低冷量的流失速率,使冷冻消融装置进一步提高对冷量的利用效率。抽真空装置14具体为小型真空泵。
作为隔热装置的另一种替代实施方式,所述隔热装置12为箱体,所述隔热腔13内填充有绝热物质,此处绝热物质可以采用聚氨酯发泡材料或气凝胶等绝热材料。
为了满足冷冻消融术中靶向组织对于冷冻后需要复温的需要,本实施例中还包括复温回路,所述复温回路用于将所述存储罐中的载冷介质加热之后输送至冷冻消融装置中导管7的介质输入端。在冷冻消融术中,经过冷冻后的靶向组织要进行复温,理想的复温的过程能够提高冷冻消融术的手术效果,并且降低术后并发症的发生的概率。本发明中提供的复温回路能够对载冷介质进行加热,并通过导管7输送至靶向组织处,这种单独设置的复温回路不但能够满足冷冻消融术进行复温的需要,并且非常有利于对复温的温度、进程和时间进行更加精确的控制,进而提高手术治愈率、减少术后并发症。
具体的,所述复温回路包括复温管15,所述复温管15上串联有升温装置16;所述复温管15的介质进入端利用第二三通阀17与进入所述热流体 通道的进入口的上游相连。通过将复温管15与介质供应管路2上第二冷量交换装置6的上游相连之后,复温管15和第一冷量交换装置5以及第二冷量交换装置6形成并联,此时的载冷剂加热所用的管路与降温所用的管路之间各自独立。因此能够避免第一冷量交换装置5和第二冷量交换装置6的残留冷量在复温阶段对载冷剂的升温过程造成干扰,减少复温过程的干扰因素,使复温过程的控制更加便于控制。
作为上述复温回路的一种替代实施方式,所述复温回路包括:复温管15;所述复温管15的介质进入端利用第二三通阀17与安装在介质供应管路2上未进入所述第一冷量交换装置5的一侧相连。在该替代实施方式中,复温回路上没有串联升温装置,而是仅将没有经过冷却的载冷介质通入到导管中参与复温过程,利用人体的自身热量进行复温。此举使靶向组织的升温更加温和,降低冷冻消融术对健康组织的损伤。
作为复温回路的进一步改进,所述复温回路还包括复温回流管路,复温回流管路用于将所述冷冻消融装置中导管7的介质输出端与介质存储罐1连通的回收口连通。单独设置的复温回流管路能够使复温过程形成由介质存储罐1、复温管15、冷冻消融装置、复温回流管路组成的单独复温回路,从而能够进一步减少复温过程中的干扰因素,使复温的进程控制更加精准。
具体的,复温回流管路包括复温回流管18,其两端与介质回收管路3连通,并与第二冷量交换装置6相并联;所述复温回流管18的介质进入端利用第三三通阀19与介质供应管路2相连。进一步的,所述复温回流管18处于隔热装置12外部。将复温回流管18设置在隔热装置12的外部之后,能够避免复温回流管18在输送复温后的载冷介质的时候带走蓄冷装置11或者第二冷量交换装置6中的冷量,提高冷量的利用率。
为了保证载冷介质的顺利循环,所述介质供应管路2或所述介质回收 管路3上串联有泵送装置20,所述泵送装置20适于为载冷介质的流动提供动力。
本实施例中提供的冷冻消融装置还包括操作装置。操作装置包括手柄和至动器,用于操作导管7到达消融靶向组织。在进行冷冻消融术时,导管7是输送低温载冷介质的管道,采用具有一定韧性的,导热系数较小的,具有生理兼容性的材料制成,其内部具有多个流道,分别为载冷介质的进、出的流道、功能通道及隔离腔。载冷介质进出流道分布于两侧,以便对进出流体进行隔热,避免热短路。功能通道位于导管7中心,用于传感器及导丝等功能部件的走线,隔离腔分布于载冷介质流道的两端,用于进一步减少进出流体的热交换。导管7外部包裹绝热材料,用于减少导管7内载冷介质与外部人体组织的传热,一方面降低载冷介质漏热,另一方面避免导管7外壁面温度过低引起组织冻结。冷冻球囊8用于对靶向组织进行冷冻消融,其内部有介质入口和介质出口,介质入口口与导管7进流道相连,介质出口与导管7的出流道相连。球囊与组织接触后,载冷介质通过球囊壁与组织进行换热。
实施例2:
如图5所示,为本发明提供的实施例2,本实施例提供了一种冷冻消融方法,本方法中利用低压介质的载冷介质经过制冷后直接通入人体中对人体靶向组织进行冷冻消融,具体包含以下步骤:
预冷,将低压的载冷介质冷循环通入到冷量发生装置4中进行冷却。
消融,将预冷完成的载冷介质循环通入到冷量发生装置4中,然后再通入人体的靶向组织处,使载冷介质与靶向组织产生冷量交换,使靶向组织降温后对靶向组织进行冷冻消融。
回收,将与靶向组织进行冷量交换后的载冷介质从人体中输送出来, 往存储罐中输送。
复温,停止向人体中通入经过降温的载冷介质,使靶向组织进行升温。。
在上述步骤中,由于具有预冷的步骤,载冷介质经过预冷之后具有更低的温度,这样在消融阶段的制冷过程中具有更低的初始温度,因而最终能够达到的温度将会更低。相对于现有技术中对载冷介质进行直接制冷然后通入人体的方式,本方法中的载冷介质更加容易达到冷冻消融所需的低温。
在回收步骤中,将与靶向组织进行冷量交换后的载冷介质从人体中输送出来,利用载冷介质中的残存冷量与未通入冷量发生装置4中的载冷介质进行冷量交换,使尚未通入冷量发生装置4中的载冷介质降温后往冷量发生装置4中输送。在回收步骤中,能够对介质回收管路3中载冷介质的残存冷量进行再利用,能够提高冷量的利用效率,降低冷量发生装置4的功率负担。
在预冷步骤中存储一部分冷量,将这些冷量输送到从人体中送出的载冷介质中,使这些从人体中送出的载冷介质降温。通过上述步骤,这些预先存储的冷量输送到介质回收管路3中后能够降低载冷介质的温度,进而使回收步骤中利用输送出载冷介质的残余冷量对未输入的载冷介质进行降温的过程中的温差更大,提高二者的冷量交换速度,使未输入人体的载冷介质的温度更低,更加容易在冷量发生装置4的制冷下达到冷冻消融所需的温度。
作为复温步骤的一种具体实施方式,在复温步骤中,使载冷介质循环通过升温装置(16),对载冷介质进行升温,然后将升温后的载冷介质通入人体的靶向组织处,使载冷介质与靶向组织产生热量交换,使降温后的靶向组织升温。
作为上述复温步骤的替代实施方式,在复温步骤中,也可以向人体中输入未经过制冷的载冷介质,使靶向组织与未经过制冷的载冷介质产生热交换后升温。
结合实施例1中所的冷冻消融装置,本实施例中的冷冻消融方法的具体过程为:
预冷阶段,参见图2,冷量发生装置4和泵送装置20送装置开启,调节三个三通阀,使载冷介质按以下流程流动:常温载冷介质从介质存储罐1流出后,经过流量计、泵送装置20、流量调节阀后进入隔热装置12,经过第二冷量交换装置6与回流的载冷介质换热预冷后,进入第一冷量交换装置5冷却,流经旁通管9后进入蓄冷装置11,将一部分冷量存入蓄冷装置11,然后回流至第二冷量交换装置6中对从介质存储罐1内留出的载冷介质进行预冷,最后流出隔热装置12,最终回到介质存储罐1。
预冷循环进行约20分钟后,载冷介质降至零下80-100℃。
消融阶段,参加图3,预冷完成后,调节三个三通阀,使载冷介质按照下述过程流动:经过流量计、泵送装置20、流量调节阀后进入隔热装置12,经过第二冷量交换装置6与回流的载冷介质换热后,进入第一冷量交换装置5冷却,载冷介质经第一冷量交换装置5冷却后,流出隔热装置12,进入导管7,继而进入冷冻球囊8内进行消融,而后流出导管7,回到隔热装置12内,流经蓄冷装置11,此时载冷介质温度高于蓄冷装置11内蓄热介质温度,载冷介质向蓄热介质放热,温度降低,然后进入第二冷量交换装置6,对从介质存储罐1中流出的载冷介质进行冷量交换,然后出隔热装置12,回到介质存储罐1。
复温阶段,参见图4,冷冻消融完成后,调节三个三通阀,使载冷介质按照下述流程流动:载冷介质首先从介质存储罐1出来,流经流量计、泵 送装置20和流量调节阀后,进入升温装置16中,被升温装置16加热至37℃,然后经过复温管15进入导管7,对消融后的组织进行加热复温,流出导管7后经过第三三通阀10,流经复温回流管18后回到介质存储罐1。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (21)

  1. 一种冷冻消融装置,其特征在于,包括:
    冷冻球囊(8),其中流通有载冷介质,适于同人体组织相接触并对其进行冷冻消融;
    导管(7),与冷冻球囊(8)连接,具有介质输入端和介质输出端,适于向冷冻球囊(8)内输入和输出载冷介质;
    介质存储罐(1),其中存储有载冷介质;
    介质供应管路(2),一端与介质存储罐(1)连通,另一端与导管(7)的介质输入端连通;
    介质回收管路(3),一端与介质存储罐(1)连通,另一端与导管(7)的介质输出端连通;
    制冷组件,与介质供应管路(2)串联,适于对介质供应管路(2)内的载冷介质进行制冷换热。
  2. 根据权利要求1所述的一种冷冻消融装置,其特征在于,所述制冷组件包括:
    冷量发生装置(4),用于产生冷量;
    第一冷量交换装置(5),安装在介质供应管路(2)上,所述冷量发生装置(4)向所述第一冷量交换装置(5)提供冷量,所述第一冷量交换装置(5)用于对途经所述第一冷量交换装置(5)内的载冷介质进行制冷换热;
  3. 根据权利要求2所述的一种冷冻消融装置,其特征在于,所述制冷组件还包括:
    第二冷量交换装置(6),具有安装在所述介质供应管路(2)上的热流体通道和安装在所述介质回收管路(3)上的冷流体通道,所述冷流体通道与所述热流体通道之间产生冷量交换,对流经所述热流体通道内的载冷介 质进行预冷;
    所述热流体通道连接在所述介质存储罐(1)与所述第一冷量交换装置(5)之间。
  4. 根据权利要求2所述的一种冷冻消融装置,其特征在于,还包括:
    旁通管(9),所述旁通管(9)与介质供应管路(2)和介质回收管路(3)相连通,并使介质供应管路(2)和介质回收管路(3)形成串联介质存储罐(1)和第一冷量交换装置(5)的预冷回路;
    且所述旁通管(9)与介质供应管路(2)之间通过第一三通阀(10)进行连通。
  5. 根据权利要求3所述的一种冷冻消融装置,其特征在于,所述制冷组件还包括:
    蓄冷装置(11),安装在介质回收管路(3)上,利用旁通管(9)与第一冷量交换装置(5)相连通,适于存储第一冷量交换装置(5)中流出的冷量。
  6. 根据权利要求5所述的一种冷冻消融装置,其特征在于,所述制冷组件还包括:
    隔热装置(12),具有适于降低或隔绝与外部的热量传导的隔热腔(13),所述第一冷量交换装置(5)、第二冷量交换装置(6)、蓄冷装置(11)和冷量发生装置(4)的冷量输出端位于隔热腔(13)内。
  7. 根据权利要求6所述的一种冷冻消融装置,其特征在于,所述隔热装置(12)为箱体,所述隔热装置(12)上安装有与隔热腔(13)连通的抽真空装置(14)。
  8. 根据权利要求6所述的一种冷冻消融装置,其特征在于,所述隔热装置(12)为箱体,所述隔热腔(13)内填充有绝热物质。
  9. 根据权利要求2所述的一种冷冻消融装置,其特征在于,还包括复温回路,所述复温回路用于将所述介质存储罐(1)中的载冷介质输送至冷冻消融装置中导管(7)的介质输入端。
  10. 根据权利要求9所述的一种冷冻消融装置,其特征在于,所述复温回路包括:
    复温管(15);
    所述复温管(15)的介质进入端利用第二三通阀(17)与安装在介质供应管路(2)上未进入所述第一冷量交换装置(5)的一侧相连。
  11. 根据权利要求2所述的一种冷冻消融装置,其特征在于,还包括复温回路,所述复温回路用于将所述介质存储罐(1)中的载冷介质加热之后输送至冷冻消融装置中导管(7)的介质输入端。
  12. 根据权利要求11所述的一种冷冻消融装置,其特征在于,所述复温回路包括:
    复温管(15),其上串联有升温装置(16);
    所述复温管(15)的介质进入端利用第二三通阀(17)与进入所述热流体通道的介质进入口的上游相连。
  13. 根据权利要求9所述的一种冷冻消融装置,其特征在于,所述复温回路还包括:
    复温回流管路,用于将所述冷冻消融装置中导管(7)的介质输出端与介质存储罐(1)连通。
  14. 根据权利要求13所述的一种冷冻消融装置,其特征在于,所述复温回流管路包括:
    复温回流管(18),两端与介质回收管路(3)连通,并与第二冷量交换装置(6)相并联;
    所述复温回流管(18)的介质进入端利用第三三通阀(19)与介质供应管路(2)相连。
  15. 根据权利要求14所述的一种冷冻消融装置,其特征在于,所述制冷组件还包括:
    隔热装置(12),具有适于降低或隔绝与外部的热量传导的隔热腔(13),所述第一冷量交换装置(5)、第二冷量交换装置(6)、蓄冷装置(11)和冷量发生装置(4)的冷量输出端位于隔热腔(13)内;
    所述复温回流管(18)处于隔热装置(12)外部。
  16. 根据权利要求1至15中任意一项所述的一种冷冻消融装置,其特征在于,所述介质供应管路(2)或所述介质回收管路(3)上串联有泵送装置(20),所述泵送装置(20)适于为载冷介质的流动提供动力。
  17. 一种冷冻消融方法,其特征在于,包括以下步骤:
    预冷,将载冷介质冷循环通入到冷量发生装置(4)中进行冷却
    消融,将预冷完成的载冷介质再次循环通入到冷量发生装置(4)中进行再次降温,然后再通入人体的靶向组织处,使载冷介质与靶向组织产生冷量交换,使靶向组织降温后对靶向组织进行冷冻消融;
    回收,将与靶向组织进行冷量交换后的载冷介质从人体中输送出来,输送至介质存储罐中;
    复温,停止向人体中通入经过降温的载冷介质,使靶向组织进行升温。
  18. 根据权利要求17所述的一种冷冻消融方法,其特征在于,回收步骤中,将与靶向组织进行冷量交换后的载冷介质从人体中输送出来,利用载冷介质中的残存冷量与从介质存储罐中流出的载冷介质在第二冷量交换装置(6)中进行冷量交换,使尚未通入第一冷量交换装置(5)中的载冷介质降温后往第一冷量交换装置(5)中输送。
  19. 根据权利要求17所述的一种冷冻消融方法,其特征在于,在预冷阶段存储一部分冷量,将这些冷量输送到从导管(7)中回收的的载冷介质中,并在第二冷量交换装置(6)中与从介质存储罐中流出的载冷介质进行冷量交换。
  20. 根据权利要求17所述的一种冷冻消融方法,其特征在于,在复温步骤中,使载冷介质循环通过升温装置(16),对载冷介质进行升温,然后将升温后的载冷介质通入人体的靶向组织处,使载冷介质与靶向组织产生热量交换,使降温后的靶向组织升温。
  21. 根据权利要求17所述的一种冷冻消融方法,其特征在于,在复温步骤中,向人体中输入未经过制冷的载冷介质,使靶向组织与未经过制冷的载冷介质产生热交换后升温。
PCT/CN2018/097905 2018-07-23 2018-08-01 一种冷冻消融装置及冷冻消融方法 WO2020019362A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/250,446 US20210315626A1 (en) 2018-07-23 2018-08-01 Cryoablation apparatus and method
JP2021503722A JP7088478B2 (ja) 2018-07-23 2018-08-01 冷凍アブレーション装置及び冷凍アブレーション方法
EP18927240.4A EP3827771A4 (en) 2018-07-23 2018-08-01 CRYOABLATION DEVICE AND ITS PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810812250.3 2018-07-23
CN201810812250.3A CN109009406B (zh) 2018-07-23 2018-07-23 一种冷冻消融装置及冷冻消融方法

Publications (1)

Publication Number Publication Date
WO2020019362A1 true WO2020019362A1 (zh) 2020-01-30

Family

ID=64645243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097905 WO2020019362A1 (zh) 2018-07-23 2018-08-01 一种冷冻消融装置及冷冻消融方法

Country Status (5)

Country Link
US (1) US20210315626A1 (zh)
EP (1) EP3827771A4 (zh)
JP (1) JP7088478B2 (zh)
CN (1) CN109009406B (zh)
WO (1) WO2020019362A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109350220A (zh) * 2018-07-23 2019-02-19 山前(珠海)医疗科技有限公司 一种制冷设备
CN109674525B (zh) * 2018-12-21 2021-04-06 海杰亚(北京)医疗器械有限公司 一种用于医用冷冻球囊的治疗设备
CN110393603A (zh) * 2019-08-02 2019-11-01 上海市东方医院(同济大学附属东方医院) 一种大型动物的肺迷走神经损伤的方法
CN111529047B (zh) * 2020-06-23 2020-11-17 上海微创电生理医疗科技股份有限公司 冷冻消融温度控制方法、系统及介质
CN113100911A (zh) * 2021-05-13 2021-07-13 上海玮启医疗器械有限公司 一种冷冻消融系统及气源更换方法
CN114636102B (zh) * 2021-06-30 2024-01-09 杭州堃博生物科技有限公司 用于冷冻消融的工质压力控制方法
CN113749753B (zh) * 2021-11-09 2022-03-01 海杰亚(北京)医疗器械有限公司 一种压力调节方法、装置及冷冻手术系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201631375U (zh) * 2010-01-27 2010-11-17 上海导向医疗系统有限公司 一种超低温冷冻治疗系统用预冷装置
CN103417288A (zh) * 2012-08-03 2013-12-04 康沣生物科技(上海)有限公司 冷冻消融治疗系统
CN104873265A (zh) * 2015-06-02 2015-09-02 北京迈迪顶峰医疗科技有限公司 冷冻消融系统
US20170000543A1 (en) * 2015-07-02 2017-01-05 Medtronic Cryocath Lp N2o thermal pressurization system by cooling
CN106572877A (zh) * 2014-08-14 2017-04-19 克莱米迪克斯有限责任公司 全液体冷冻消融导管

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5414450Y2 (zh) * 1974-04-10 1979-06-14
JPS62294882A (ja) * 1986-05-22 1987-12-22 三洋電機株式会社 潜熱蓄冷システムの制御方法
US5275595A (en) * 1992-07-06 1994-01-04 Dobak Iii John D Cryosurgical instrument
US6635053B1 (en) * 1999-01-25 2003-10-21 Cryocath Technologies Inc. Cooling system
US6442949B1 (en) * 2001-07-12 2002-09-03 General Electric Company Cryongenic cooling refrigeration system and method having open-loop short term cooling for a superconducting machine
US9089316B2 (en) * 2009-11-02 2015-07-28 Endocare, Inc. Cryogenic medical system
EP2416723A4 (en) * 2009-04-06 2012-08-29 Cryomedix Llc SINGLE-PHASE COOLING LIQUID CRYOABLATION SYSTEM WITH MULTI-TUBE DISTAL SECTION AND CORRESPONDING METHOD
US9956024B2 (en) * 2014-07-11 2018-05-01 Medtronic Cryocath Lp Cryoablation method and system
CN209301296U (zh) * 2018-07-23 2019-08-27 山前(珠海)医疗科技有限公司 一种冷冻消融装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201631375U (zh) * 2010-01-27 2010-11-17 上海导向医疗系统有限公司 一种超低温冷冻治疗系统用预冷装置
CN103417288A (zh) * 2012-08-03 2013-12-04 康沣生物科技(上海)有限公司 冷冻消融治疗系统
CN106572877A (zh) * 2014-08-14 2017-04-19 克莱米迪克斯有限责任公司 全液体冷冻消融导管
CN104873265A (zh) * 2015-06-02 2015-09-02 北京迈迪顶峰医疗科技有限公司 冷冻消融系统
US20170000543A1 (en) * 2015-07-02 2017-01-05 Medtronic Cryocath Lp N2o thermal pressurization system by cooling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3827771A4 *

Also Published As

Publication number Publication date
JP7088478B2 (ja) 2022-06-21
US20210315626A1 (en) 2021-10-14
EP3827771A1 (en) 2021-06-02
CN109009406B (zh) 2020-02-21
CN109009406A (zh) 2018-12-18
JP2021532854A (ja) 2021-12-02
EP3827771A4 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
WO2020019362A1 (zh) 一种冷冻消融装置及冷冻消融方法
CN102596119B (zh) 使用超临界气体的低温治疗装置
WO2020020035A1 (zh) 一种制冷设备
CN102413785B (zh) 有用于填充低温容器的停留站的冷冻消融系统和相关方法
JP2020051619A (ja) 加圧ガスタンクを充填するための装置および方法
US10194934B2 (en) Active cooling system and apparatus for controlling temperature of a fluid used during treatment of biological tissue
WO2021109206A1 (zh) 高低温复合消融手术系统
CN111839713B (zh) 多模态肿瘤消融探针系统及其控制方法
US20080119839A1 (en) Cryosurgical Applicator
CN212326553U (zh) 具有多级回路的冷冻消融系统
CN106572877B (zh) 全液体冷冻消融导管
CN218494750U (zh) 用于冷冻消融的工质压力容器系统
CN204797985U (zh) 一种新型肿瘤冷冻消融导管
JP7105864B2 (ja) 加熱冷却器装置
CN109480999B (zh) 一种双级冷冻消融系统
CN105902310B (zh) 一种调节气压实现冷冻和复温的冷冻外科装置
CN111735222B (zh) 用于医疗装置的带过冷却热交换器的n2o液化系统
CN101554338A (zh) 带蓄冷蓄热装置的冷热消融设备
CN209301296U (zh) 一种冷冻消融装置
CN103394150B (zh) 一种医用流体恒温控制器
CN105852960B (zh) 一种气体节流型冷冻外科装置及其控制方法
CN209499884U (zh) 一种双级冷冻消融系统
CN210138184U (zh) 一种制冷设备
CN205626096U (zh) 一种调节气压实现冷冻和复温的冷冻外科装置
CN211911785U (zh) 高低温复合消融手术系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018927240

Country of ref document: EP

Effective date: 20210223