WO2020019262A1 - 激光测距设备及其激光测距仪 - Google Patents

激光测距设备及其激光测距仪 Download PDF

Info

Publication number
WO2020019262A1
WO2020019262A1 PCT/CN2018/097272 CN2018097272W WO2020019262A1 WO 2020019262 A1 WO2020019262 A1 WO 2020019262A1 CN 2018097272 W CN2018097272 W CN 2018097272W WO 2020019262 A1 WO2020019262 A1 WO 2020019262A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
housing
reference point
ranging
mounting base
Prior art date
Application number
PCT/CN2018/097272
Other languages
English (en)
French (fr)
Inventor
付陆欣
刑志成
Original Assignee
深圳市瑞尔幸电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瑞尔幸电子有限公司 filed Critical 深圳市瑞尔幸电子有限公司
Priority to CN201890001346.5U priority Critical patent/CN213600058U/zh
Priority to PCT/CN2018/097272 priority patent/WO2020019262A1/zh
Publication of WO2020019262A1 publication Critical patent/WO2020019262A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/10Measuring distances in line of sight; Optical rangefinders using a parallactic triangle with variable angles and a base of fixed length in the observation station, e.g. in the instrument

Definitions

  • the invention relates to a photoelectric measuring device, in particular to a laser distance meter and a laser distance measuring device including the laser distance meter.
  • Laser distance measurement uses laser to accurately measure the distance of a target.
  • Existing laser rangefinders can be attached to and combined with imaging equipment.
  • imaging equipment is often a multi-optical system and requires secondary sighting.
  • the secondary sighting is interpreted as: because the imaging device has its own aiming point, after the laser rangefinder is fixed to the imaging device, the imaging device itself needs to aim at the target once, and the laser rangefinder needs to aim at the target again. This causes the user to switch the aiming point back and forth between the imaging device and the laser rangefinder, which makes the operation tedious.
  • the present invention provides a laser rangefinder, so that when it is fixed to an imaging device, it can directly aim at a target without the need for secondary aiming, thereby avoiding the tedious operation.
  • the present invention also provides a laser ranging device including the above-mentioned laser range finder and imaging device.
  • a laser rangefinder comprises a housing, a main control circuit board, a mounting base, and a photovoltaic module arranged on the mounting base, wherein a connecting device is arranged on the housing, and the connecting device is used for connecting the
  • the laser rangefinder is fixed to an imaging device;
  • the optoelectronic component includes: a laser emitting device, a laser receiving device, and a reference point indicating device; wherein the optical path of the laser emitting device and the optical path of the laser receiving device and the reference point
  • the optical paths of the pointing device are set to be independent from each other, and the optical axis of the laser emitting device that is directed toward the target is set on the same straight line as the optical axis of the reference point that is generated by the optical path of the reference point indicating device.
  • the mounting base is movably arranged in the inner space of the housing, so that the inclination of the mounting base relative to the housing can be adjusted.
  • one end of the mounting base is connected to the housing through a rubber sleeve, and the other end of the mounting base is connected to the housing through an adjusting device, so that the mounting base can be adjusted relative to the housing through the adjusting device.
  • the inclination of the enclosure in two dimensions.
  • the adjustment device is disposed at the front end opening of the housing and includes vertical adjustment screws and vertical adjustment springs symmetrically arranged in the vertical direction, and horizontal adjustment screws and horizontal adjustments symmetrically disposed in the horizontal direction. spring.
  • the laser emitting device includes: a laser emitter for emitting a laser beam; a first total reflection mirror for totally reflecting the laser beam; a first laser focusing lens for causing the laser beam Intersect to form a collimated ranging laser; bandpass filter to allow the ranging laser to pass and prevent natural light from passing; and dichroic mirrors to reflect the ranging laser and allow Natural light passes.
  • the laser emitting device includes: a dichroic mirror for reflecting the ranging laser and allowing natural light to pass; a band-pass filter for allowing the ranging laser to pass and preventing natural light from passing; the second A laser focusing lens for converging the ranging laser; a second total reflection mirror for totally reflecting the converged ranging laser; and a laser receiver for converting the received optical signal into an electrical signal.
  • the laser emitting device and the receiving device share the band-pass filter and the dichroic mirror.
  • the reference point indicating device includes: a light emitting diode for generating a visible indicating light source; an aperture plate for limiting a light-emitting aperture of the visible indicating light source; and a reflector for reflecting the light passing through the aperture plate.
  • a display Preferably, a display, a wind speed and direction sensor, a control button and an external interface are arranged on the casing, which are electrically connected to the main control circuit board.
  • an orientation sensor Preferably, one or more of the following are provided on the main control circuit board: an orientation sensor, an angle sensor, a temperature sensor, a humidity sensor, an atmospheric pressure sensor, a global positioning system, a wireless transmission module, and the like.
  • the external interface is configured to be capable of data transmission with an external device, so as to transmit measurement data of the laser rangefinder to an external device for processing.
  • the wireless transmission module is configured to be capable of data transmission with an external device to transmit measurement data of the laser rangefinder to an external device for processing.
  • the laser ranging device includes an imaging device and a laser ranging device that are detachably connected to each other.
  • the laser ranging device and the imaging device are separately manufactured and completed assembling.
  • the laser ranging device is The above-mentioned laser rangefinder according to the present invention.
  • the laser rangefinder and the laser distance measuring device set the optical path of the reference point indicating device to form an instruction reference point, and set the optical axis of the instruction reference point to the light of the distance measurement laser beam that is directed toward the target from the front end
  • the axes are on the same straight line, so that when the laser rangefinder is fixed to the imaging device, the target can be aimed directly without the need for secondary aiming, making the operation easy.
  • FIG. 1 shows an embodiment of a laser rangefinder according to the present invention.
  • FIG. 2 illustrates a top cross-sectional view of the laser rangefinder of FIG. 1.
  • FIG. 3 shows a side cross-sectional view of the laser rangefinder of FIG. 1.
  • FIG. 4 shows a schematic diagram of the internal structure of the laser rangefinder of FIG. 1 after the casing is removed.
  • FIG. 5 illustrates a side cross-sectional view of the internal structure of the laser rangefinder of FIG. 1 after the casing is removed.
  • FIG. 6 shows a schematic diagram of a photoelectric component of the laser rangefinder of FIG. 1.
  • 7a and 7b show optical paths of the laser rangefinder of FIG. 1.
  • 8a, 8b, and 8c show schematic diagrams of a laser ranging device including the laser rangefinder of FIG.
  • 1 to 7 illustrate an embodiment of a laser rangefinder 100 according to the present invention.
  • the laser rangefinder 100 includes a housing 201 for forming the outer shape of the laser rangefinder 100 and assembling the remaining parts into a whole.
  • a front end opening 212 and a rear end opening 210 aligned with each other are provided on two axial end surfaces of the housing 201.
  • the housing 201 is provided with a connecting device for fixing the laser rangefinder 100 according to the present invention to an imaging device.
  • the connection device includes an external thread.
  • the housing 201 is further provided with an adjusting device for adjusting the movement of the internal components of the laser rangefinder 100 relative to the housing 201.
  • the adjustment device is disposed at the front end opening 212.
  • a display 203 is further arranged on the housing 201 for displaying the final measurement result of the laser ranging.
  • a display reflector 204 is also arranged above the display 203, which can adjust the included angle with the display 203 for reflecting the content displayed by the display 203, so that the user can observe the measurement results conveniently.
  • the casing 201 is further provided with a wind speed and direction sensor 205, control buttons 202, and an external interface (not shown in the figure).
  • the laser rangefinder 100 can be electrically connected to an external imaging device through the external interface to perform data transmission.
  • a mounting seat 113 is provided in an inner space of the housing 201.
  • the mounting base 113 has a cylindrical structure for arranging and mounting photovoltaic modules (to be described in detail below).
  • the cylindrical structure has two end surfaces of the opening, which are axially aligned with the front end opening 212 and the rear end opening 210 of the housing 201 in the axial direction, and at least one bottom portion perpendicular to the end surface.
  • the rear end of the mounting base 113 is connected to the rear end of the housing 201, and is preferably relatively fixed by a rubber sleeve 211 disposed between them.
  • the mounting base 113 is also connected to the housing 201 through an adjusting device provided on the housing 201.
  • the adjustment device includes a vertical adjustment screw 206 and a vertical adjustment spring 207 that are symmetrically arranged in the vertical direction, and a horizontal adjustment screw 208 and a horizontal adjustment spring 209 that are symmetrically disposed in the horizontal direction.
  • the horizontal and vertical movements of the front end of the mounting base 113 relative to the housing 201 can be adjusted by rotating the vertical adjustment screw 206 and the horizontal adjustment screw 208, respectively, so that the mounting base 113 as a whole is in two dimensions relative to the housing 201.
  • the mounting base 113 is assumed to be a rigid structure).
  • the internal components of the laser rangefinder 100 are shown, including the mounting base 113 and the main control circuit board 114 described above, and the housing 201 and other components thereon are omitted for clarity.
  • the main control circuit board 114 is electrically connected to a wind speed and direction sensor 205, a control button 202 and an external interface, and a photovoltaic module arranged on the mounting base 113.
  • the main control circuit board 114 is arranged on one side of the mounting base 113.
  • the main control circuit board 114 is provided with one or more of the following: an orientation sensor, an angle sensor, a temperature sensor, a humidity sensor, an atmospheric pressure sensor, a global positioning system, a wireless transmission module, and the like.
  • the wireless transmission module can transmit the laser ranging data of the laser rangefinder 100 and measurement data of other sensors to the terminal device, and the terminal device can directly display the measurement result after processing.
  • the photovoltaic module is fixed in the mounting base 113, and the photovoltaic module will be described in detail below with reference to FIGS. 5 and 6 at the same time.
  • the laser module frame 113 is omitted in FIG. 6 and only the optoelectronic components are shown.
  • the photoelectric component includes: a laser emitting device, a laser receiving device, and a reference point indicating device.
  • the laser emitting device includes a laser transmitter 101 for emitting a laser beam, a first total reflection mirror 102 for total reflection of the laser beam, and a first laser focusing lens 103 for intersecting the laser beams to A collimated ranging laser is formed; a band-pass filter 104 is used to allow the ranging laser to pass and prevent natural light from passing; and a dichroic mirror (Dichroic mirrors) 105 is used to reflect the ranging laser and allow natural light to pass.
  • a laser transmitter 101 for emitting a laser beam
  • a first total reflection mirror 102 for total reflection of the laser beam
  • a first laser focusing lens 103 for intersecting the laser beams to A collimated ranging laser is formed
  • a band-pass filter 104 is used to allow the ranging laser to pass and prevent natural light from passing
  • a dichroic mirror (Dichroic mirrors) 105 is used to reflect the ranging laser and allow natural light to pass.
  • the laser receiving device includes: a dichroic mirror 105 for reflecting the ranging laser and allowing natural light to pass; a band-pass filter 104 for allowing the ranging laser to pass and preventing natural light from passing; a second laser focusing lens 108 for A second total reflection mirror 107 for total reflection of the collected distance measurement laser; and a laser receiver 106 for converting the received optical signal into an electrical signal.
  • the laser emitting device and the laser receiving device share the dichroic mirror 105 and the band-pass filter 104.
  • the reference point indicating device includes: a light emitting diode 109 for generating a visible indicating light source; an aperture plate 110 for limiting a light emitting aperture of the visible indicating light source; and a reflector 111 for reflecting the visible indicating light source passing through the diaphragm; And a concave focusing lens 112 for converging the visible indicator light source into a real image point, that is, the reference point.
  • the laser transmitter 101 and the laser receiver 106 are fixed below the cylindrical structure of the mounting base 113.
  • the laser transmitter 101 and the laser receiver 106 are arranged side by side and have an equal distance from the bottom of the cylindrical structure.
  • the first total reflection mirror 102 and the second total reflection mirror 107 are arranged in front of the laser transmitter 101 and the laser receiver 106, respectively.
  • the first laser focusing lens 103 and the second laser focusing lens 108 are arranged above the first total reflection mirror 102 and the second total reflection mirror 107, respectively, and are preferably arranged in parallel at the bottom of the cylindrical structure, respectively.
  • the band-pass filter 104 is located above the first laser focusing lens 103 and the second laser focusing lens 108, and is preferably also arranged at the bottom of the cylindrical structure.
  • the dichroic mirror 105 is arranged above the band-pass filter 104, and is fixed to the inside of the cylindrical structure of the mounting base 113 obliquely and divides the internal space of the cylindrical structure into two parts.
  • a concave focusing lens 112 is fixed on the surface of the rear side (i.e., the right side in FIG. 5) of the dichroic mirror 105.
  • a light emitting diode 109 and a reflecting mirror 111 are fixed to the bottom of the cylindrical structure of the mounting base 113 behind the dichroic mirror 105 (that is, viewed from the right in FIG. 5), and the diaphragm 110 is arranged on the light emitting diode 109. And is located between the light emitting diode 109 and the reflector 111.
  • FIGS. 7a and 7b wherein FIG. 7a and FIG. 7b each show only the components required to complete the respective optical paths.
  • the laser transmitter 101 emits a laser beam having a specific wavelength band (for example, a 905 nm band), is totally reflected by the first total reflection mirror 102, and passes through the first laser focusing lens 103 to converge to form a collimated ranging laser
  • the ranging laser passes through the band-pass filter 104, reaches the dichroic mirror 105, and then reflects again, and is directed toward a specified target.
  • the ranging laser will reflect after reaching the specified target, and the partially reflected ranging laser returns to the laser rangefinder again to form the optical path of the laser receiving device.
  • the dichroic mirror 105 reflects, and then sequentially After passing through the band-pass filter 104 and the second laser focusing lens 108, it reaches the second total reflection mirror 107 and then reflects, and finally reaches the laser receiver 106, which converts the received optical signal into an electrical signal .
  • the distance between the target and the laser rangefinder is measured.
  • the dichroic mirror 105 since the dichroic mirror 105 is set to allow only natural light to pass through, the ranging laser cannot pass through the dichroic mirror 105 and enter the area behind the dichroic mirror 105.
  • the band-pass filter 104 due to the arrangement of the band-pass filter 104, light having other wavelength bands than the ranging laser entering the mounting base 113 cannot be received by the laser receiver, thereby avoiding interference of other light on distance measurement.
  • an optical path of the reference point indicating device is provided behind the dichroic mirror 105 (that is, the right side of FIG. 7a).
  • the light-emitting diode 109 generates a visible indication light source, restricts the light-emitting diameter of the visible indication light source through the diaphragm 110, and then reflects to the reflecting mirror 111, and then reflects through the concave focusing lens 112 and converges at a certain point to generate a light source The real image of the point, which is the reference point.
  • the optical path of the reference point indicating device is set so that the optical axis of the reference point and the optical axis of the ranging laser light directed at the target are set on the same straight line, so the reference point of reference is also called
  • the laser indicates the reference point.
  • the laser indicating reference point can be collected by the imaging device installed at the back of the laser rangefinder 100 along with natural light at the rear. Therefore, the position where the laser indicating reference point observed by the user superimposed on the natural light imaging is The position where the ranging laser is actually pointed, so that the target can be aimed.
  • a laser ranging device which includes an imaging device and a laser range finder 100 according to the present invention fixed at the front end of a lens of the imaging device.
  • 8a to 8c illustrate three different embodiments of a laser ranging device according to the present invention, in which the laser rangefinder 100 is assembled with a white-light sight 300, a digital camera 400, and a mobile phone 500, respectively.
  • the laser ranging device includes a digital camera 400 and a laser rangefinder 100 fixed to the front end of its lens.
  • the use and operation process of the laser ranging device according to the present invention will be described in detail.
  • the light-emitting diode 109 is turned on by the control button 202, so that a laser indicating reference point is formed in front of the lens of the digital camera 400, and the laser indicating reference point is collected by the lens together with natural light. Therefore, the image band displayed on the display device of the digital camera 400 There is a red dot, the laser indicates the reference point. In this way, the position of the laser indication reference point in the image displayed by the display device is the position at which the ranging laser is actually pointed.
  • the control button 202 is triggered to drive the main control circuit board 114 to generate a signal.
  • the laser transmitter 101 After the laser transmitter 101 receives the signal, it emits a laser beam. After the laser beam passes through the optical element, it forms a ranging laser that strikes the target and reflects it back.
  • the receiver 106 converts the received optical signal into an electrical signal, and the electrical signal is transmitted to the main control circuit board 114.
  • the main control circuit board 114 processes these electrical signals, and then transmits the processed data to the display 203 to directly display the measurement results.
  • the electrical signals from the azimuth sensor, angle sensor, temperature sensor, humidity sensor, atmospheric pressure sensor and wind speed and direction sensor 205 are also transmitted to the main control circuit board 114 for processing, and the processed results can also be displayed on the display 203 display.
  • the laser ranging data of the laser rangefinder 100 and the measurement data of the sensor can also be transmitted to the back-end digital camera 400 for processing through an external interface on the main control circuit board 114 or a wireless transmission module, and the processed measurement results can be processed. It is directly displayed on the display device of the digital video camera 400.
  • the laser rangefinder 100 can process the data by itself and display the measurement results, or it can transmit the data to the imaging device at the back end for processing and the measurement results can be displayed by the imaging device.
  • dichroic mirrors 204 display mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种激光测距仪(100),包括:外壳(201)、主控电路板(114)、安装座(113)、以及布置在安装座(113)上的光电组件,外壳(201)上布置有连接装置,连接装置用于将激光测距仪(100)固定至成像设备;光电组件包括:激光发射装置、激光接收装置和基准点指示装置,激光发射装置的光路和激光接收装置的光路与基准点指示装置的光路被设置为相互独立,且激光发射装置的光路中射向目标物的光轴与基准点指示装置的光路产生的指示基准点的光轴设置在同一条直线上。还涉及一种包括激光测距仪(100)和成像设备的激光测距设备。

Description

激光测距设备及其激光测距仪 技术领域
本发明涉及一种光电测量装置,特别地,涉及激光测距仪以及包括这种激光测距仪的激光测距设备。
背景技术
激光测距是利用激光对目标的距离进行准确测定。现有的激光测距仪可以附装到成像设备中结合使用,然而这种与成像设备结合后的装置往往是多光路系统,需要进行二次瞄准。二次瞄准解释为:由于成像设备具有自身的瞄准点,将激光测距仪固定至成像设备后,成像设备自身需要瞄准一次目标,激光测距仪还需要再瞄准一次目标。这导致使用者需要在成像设备和激光测距仪来回切换瞄准点,使得操作变得繁琐。
发明内容
为解决现有技术存在的问题,本发明提供一种激光测距仪,使得当其固定至成像设备时,可以直接对目标物进行瞄准,而不需要二次瞄准,避免了操作的繁琐性。另外本发明还提供一种包括上述激光测距仪和成像设备的激光测距设备。
根据本发明的激光测距仪,包括:外壳、主控电路板、安装座、以及布置在安装座上的光电组件,其中,所述外壳上布置有连接装置,所述连接装置用于将所述激光测距仪固定至成像设备;所述光电组件包括:激光发射装置、激光接收装置和基准点指示装置;其中所述激光发射装置的光路和所述激光接收装置的光路与所述基准点指示装置的光路被设置为相互独立,且所述激光发射装置的光路中射向目标物的光轴与基准点指示装置的光路产生的指示基准点的光轴设置在同一条直线上。
优选地,所述安装座可移动地布置在所述外壳的内部空间中,使得能够调节所述安装座相对于所述外壳的倾斜度。
优选地,所述安装座的一端通过胶套与所述外壳连接,所述安装座的另一端通过调节装置与所述外壳连接,使得能够通过所述调节装置调节所述安装座相对于所述外壳的在两个维度上的倾斜度。
优选地,所述调节装置设置在所述外壳的前端开口处且包括在竖直方向上对称设置的竖直调节螺钉和竖直调节弹簧、以及在水平方向上对称设置的水平调节螺钉和水平调节弹 簧。
优选地,所述激光发射装置包括:激光发射器,用于发射激光束;第一全反射镜,用于对所述激光束进行全反射;第一激光聚焦透镜,用于使所述激光束交汇以形成准直的测距激光;带通滤光镜,用于允许所述测距激光通过并阻止自然光通过;和二向色镜(Dichroic Mirrors),用于反射所述测距激光并允许自然光通过。
优选地,所述激光发射装置包括:二向色镜,用于反射所述测距激光并允许自然光通过;带通滤光镜,用于允许所述测距激光通过并阻止自然光通过;第二激光聚焦透镜,用于汇聚所述测距激光;第二全反射镜,用于对汇聚的所述测距激光进行全反射;和激光接收器,用于将接收的光信号转换为电信号。
优选地,所述激光发射装置和所述接收装置共用所述带通滤光镜和所述二向色镜。
优选地,所述基准点指示装置包括:发光二极管,用于产生可见指示光源;光阑片,用于限制所述可见指示光源的发光口径;反射镜,用于反射通过光阑片的所述可见指示光源;和凹面聚焦透镜,用于使所述可见指示光源汇聚成一个实像点,形成所述指示基准点。
优选地,所述外壳上布置有与所述主控电路板电连接的显示器、风速风向传感器、控制按键和外接接口。
优选地,所述主控电路板上设置有以下中的一个或多个:方位传感器、角度传感器、温度传感器、湿度传感器、大气压力传感器、全球定位系统和无线传输模块等。
优选地,所述外接接口被配置为能够与外部设备进行数据传输,以将所述激光测距仪的测量数据传输至外部设备上进行处理。
优选地,所述无线传输模块被配置为能够与外部设备进行数据传输,以将所述激光测距仪的测量数据传输至外部设备上进行处理。
根据本发明的激光测距设备,包括相互可拆卸地连接的成像设备和激光测距仪,所述激光测距仪和所述成像设备分别制造并分别完成组装,其中所述激光测距仪为上述根据本发明的激光测距仪。
根据本发明的激光测距仪和激光测距设备通过设置基准点指示装置的光路以形成指示基准点,并将该指示基准点的光轴设置为与前端射向目标物的测距激光的光轴在同一条直线上,使得当该激光测距仪固定至成像设备时,可以直接对目标物进行瞄准,而不需要二次瞄准,使得操作变得简易。
附图说明
图1示出了根据本发明的激光测距仪的一实施例。
图2示出了图1的激光测距仪的俯视剖面图。
图3示出了图1的激光测距仪的侧视剖面图。
图4示出了图1的激光测距仪的去外壳后的内部结构示意图。
图5示出了图1的激光测距仪的去外壳后的内部结构的侧视剖面图。
图6示出了图1的激光测距仪的光电组件的示意图。
图7a和图7b示出了图1的激光测距仪的光路图。
图8a、8b和8c示出了包括图1的激光测距仪的激光测距设备的示意图。
具体实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
图1至图7示出了根据本发明的激光测距仪100的一实施例。
参见图1,该激光测距仪100包括外壳201,用于形成激光测距仪100的外形,并将其余部分组装为一个整体。外壳201的两个轴向端面上设置有相互对齐的前端开口212和后端开口210。外壳201上布置有连接装置,用于将根据本发明的激光测距仪100固定至成像设备上。优选地,该连接装置包括外接螺纹。优选地,外壳201上还布置有调节装置,用于调节该激光测距仪100的内部组件相对于外壳201的移动。优选地,该调节装置设置在前端开口212处。优选地,外壳201上还布置有显示器203,用于显示激光测距的最终测量结果。优选地,在显示器203的上方还配置有显示器反射镜204,其可以调整与显示器203之间的夹角,用于反射显示器203所显示的内容,方便使用者观察测量结果。优选地,在外壳201上还设置有风速风向传感器205、控制按键202和外接接口(图中未示出)。优选地,激光测距仪100可以通过该外接接口与外部的成像设备电连接,以进行数据的传输。
参见图2至图3,其示出了图1的激光测距仪100的两个不同方向的剖面图。在外壳201的内部空间中设置有安装座113。该安装座113具有筒状结构,用于布置和安装光电组件(将在下文进行详细描述)。该筒状结构具有:开口的两个端面,在轴向上与外壳201的前端开口212和后端开口210对齐;以及至少一个与该端面垂直的底部。安装座113的后端与外壳201的后端连接,优选地通过布置在它们之间的胶套211相对固定。此外,安装座113还通过设置在外壳201上的调节装置与外壳201连接。优选地,该调节装置设置包括在竖直方向上对称设置的竖直调节螺钉206和竖直调节弹簧207,在水平方向上对称设置的水平调节螺钉208和水平调节弹簧209。在使用时,可通过旋转竖直调节螺钉206和水平调节螺钉208分别调节安装座113的前端相对于外壳201的水平移动和竖直移动,从而安装 座113整体相对于外壳201的在两个维度上的倾斜度(在此假定安装座113为刚性结构)。
参见图4,其示出了激光测距仪100的内部组件,包括上述的安装座113和主控电路板114,其中,为清楚起见,省去了外壳201及其上的其它部件。主控电路板114与布置在外壳201上的风速风向传感器205、控制按键202和外接接口、以及布置在安装座113上的光电组件电连接。优选地,主控电路板114布置在安装座113的一侧。优选地,主控电路板114上设置有以下中的一个或多个:方位传感器、角度传感器、温度传感器、湿度传感器、大气压力传感器、全球定位系统和无线传输模块等。优选地,该无线传输模块可以将激光测距仪100的激光测距数据和其他传感器的测量数据传输至终端设备,终端设备进行处理后可以在其显示器上直接显示测量结果。
在安装座113中固定有光电组件,下面将同时接合图5和图6对光电组件进行详细的描述。为清楚起见,图6省去了激光模组框架113,仅示出了光电组件。光电组件包括:激光发射装置、激光接收装置和基准点指示装置。其中,激光发射装置包括:激光发射器101,用于发射激光束;第一全反射镜102,用于对该激光束进行全反射;第一激光聚焦透镜103,用于使该激光束交汇以形成准直的测距激光;带通滤光镜104,用于允许该测距激光通过并阻止自然光通过;和二向色镜(Dichroic Mirrors)105,用于反射测距激光并允许自然光通过。激光接收装置包括:二向色镜105,用于反射测距激光并允许自然光通过;带通滤光镜104,用于允许该测距激光通过并阻止自然光通过;第二激光聚焦透镜108,用于汇聚折返的测距激光;第二全反射镜107,用于对汇聚的测距激光进行全反射;和激光接收器106,用于将接收的光信号转换为电信号。优选地,激光发射装置和激光接收装置共用二向色镜105和带通滤光镜104。所述基准点指示装置包括:发光二极管109,用于产生可见指示光源;光阑片110,用于限制可见指示光源的发光口径;反射镜111,用于反射通过光阑片的可见指示光源;和凹面聚焦透镜112,用于使可见指示光源汇聚成一个实像点,即指示基准点。
激光发射器101和激光接收器106固定在安装座113的筒状结构的下方,优选地,激光发射器101和激光接收器106并列布置且与筒状结构的底部之间的距离相等。第一全反射镜102和第二全反射镜107分别布置在激光发射器101和激光接收器106的前方。第一激光聚焦透镜103和第二激光聚焦透镜108分别布置在第一全反射镜102和第二全反射镜107的上方,优选地分别平行地布置在筒状结构的底部。带通滤光镜104位于第一激光聚焦透镜103和第二激光聚焦透镜108的上方,优选地也布置在筒状结构的底部。二向色镜105布置在带通滤光镜104的上方,其倾斜地固定在安装座113的筒状结构的内部并将该筒状结构的内部空间分隔为两个部分。在二向色镜105的后侧(即从图5看为右侧)表面 上固定有凹面聚焦透镜112。在安装座113的筒状结构的底部、位于二向色镜105的后方(即从图5看为右方)固定有发光二极管109和反射镜111,在光阑片110则布置在发光二极管109的前侧且位于发光二极管109和反射镜111之间。
下面将结合图7a和图7b对上述光电组件的所产生的光路进行详细描述,其中图7a和图7b均仅示出了完成各自光路所需的元件。
参见图7a,其同时示出了激光发射装置的光路(左侧)和基准点指示装置的光路(右侧),这两个光路互不干扰。在此先对激光发射装置的光路(左侧)进行描述。激光发射器101发射出具有某一特定波段(例如,905nm波段)的激光束,经第一全反射镜102发生全反射,穿过第一激光聚焦透镜103后聚交形成准直的测距激光,测距激光穿过带通滤光镜104,到达二向色镜105后再发生反射,射向指定目标物。测距激光达到指定目标物后会发生反射,部分反射回来的测距激光再次回到激光测距仪形成了激光接收装置的光路,请接着参见图7b,二向色镜105发生反射,而后依次穿过带通滤光镜104和第二激光聚焦透镜108,到达第二全反射镜107后再发生反射,最终到达激光接收器106,该激光接收器106将接收到的光信号转换为电信号。由此实现了目标物与激光测距仪之间距离的测量。其中,由于二向色镜105被设置为仅允许自然光通过,因此测距激光无法透过二向色镜105进入到二向色镜105后方区域。此外,由于带通滤光镜104的布置,使得进入到安装座113中的除测距激光外的具有其它波段的光都无法被激光接收器所接收,避免了其它光线对距离测量的干扰。
另外,再次参见图7a,在二向色镜105的后方(即图7a的右侧)还设置了基准点指示装置的光路。具体地,发光二极管109产生可见指示光源,经由光阑片110限制可见指示光源的发光口径后射向反射镜111发生反射,然后经由凹面聚焦透镜112反射并在某一点上汇聚,产生了一个光源点的实像,即指示基准点。如图7a所示,该基准点指示装置的光路被设置为使得指示基准点的光轴与射向目标物的测距激光的光轴设置在同一条直线上,因此该指示基准点也称为激光指示基准点。该激光指示基准点可在后方与自然光一同被安装于激光测距仪100后端的成像设备所采集,因此使用者在成像设备所观察到的该激光指示基准点叠加到自然光成像中的位置即为测距激光实际上所指向的位置,由此可以对目标物进行瞄准。
参见图8,其示出了根据本发明的激光测距设备,其包括成像设备以及固定在成像设备的镜头前端的根据本发明的激光测距仪100。图8a至图8c示出了根据本发明的激光测距设备的三个不同的实施例,其中激光测距仪100分别与白光瞄准镜300、数码摄像机400和手机500进行组装。
以图8b示出的实施例为例,激光测距设备包括数码摄像机400和固定至其镜头前端的激光测距仪100,对根据本发明的激光测距设备的使用和运作过程进行详细说明。通过控制按键202打开发光二极管109,使得在数码摄像机400的镜头前形成一个激光指示基准点,该激光指示基准点与自然光一起被镜头所采集,因此在数码摄像机400的显示装置中显示的图像带有一个红点,即激光指示基准点。这样,该激光指示基准点在显示装置所显示的图像中的位置就是测距激光实际上所指向的位置。此时可以通过旋转竖直调节螺钉206和水平调节螺钉208移动激光指示基准点,和/或通过移动数码摄像机400显示装置中的图像,使得在显示装置中红点与目标物重合,以完成瞄准动作。也可以先通过旋转竖直调节螺钉206和水平调节螺钉208将激光指示基准点移动至显示装置的屏幕中心,使得激光测距仪100的瞄准中心与数码摄像机400的瞄准中心重合,然后整体移动装置和设备来完成瞄准动作。在瞄准目标物后,触发控制按键202以驱动主控电路板114产生信号,激光发射器101接收信号后发射激光束,激光束经过光学元件后形成测距激光射向目标物并反射回来,激光接收器106将接收到的光信号转换为电信号,该电信号被传送至主控电路板114。主控电路板114将这些电信号进行处理,然后将处理后的数据传送到显示器203中直接显示测量结果。优选地,来自于方位传感器、角度传感器、温度传感器、湿度传感器、大气压力传感器和风速风向传感器205的电信号也被传送至主控电路板114进行处理,处理后的结果也可以在显示器203中显示。优选地,激光测距仪100的激光测距数据和传感器的测量数据也可以通过主控电路板114上的外接接口或无线传输模块传输到后端的数码摄像机400进行处理,处理后的测量结果可以在数码摄像机400的显示装置上直接显示。也就是说激光测距仪100即可以自己处理数据并显示测量结果,也可以将数据传输到后端的成像设备中进行处理并由成像设备来显示测量结果。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
附图标记说明
101 激光发射器                       114 主控电路板
102 第一全反射镜                     201 外壳
103 第一激光聚焦透镜                 202 控制按键
104 带通滤光镜                       203 显示器
105 二向色镜                         204 显示器反射镜
106 激光接收器                       205 风速风向传感器
107 第二全反射镜                     206 竖直调节螺钉
108 第二激光聚焦透镜                 207 竖直调节弹簧
109 发光二极管                       208 水平调节螺钉
110 光阑片                           209 水平调节弹簧
111 反射镜                           210 后端开口
112 凹面聚焦透镜                     211 胶套
113 安装座                           212 前端开口

Claims (13)

  1. 一种激光测距仪,包括:外壳、主控电路板、安装座、以及布置在安装座上的光电组件,其中,所述外壳上布置有连接装置,所述连接装置用于将所述激光测距仪固定至成像设备;所述光电组件包括:激光发射装置、激光接收装置和基准点指示装置,其特征在于,
    所述激光发射装置的光路和所述激光接收装置的光路与所述基准点指示装置的光路被设置为相互独立,且所述激光发射装置的光路中射向目标物的光轴与基准点指示装置的光路产生的指示基准点的光轴设置在同一条直线上。
  2. 根据权利要求1所述的激光测距仪,其特征在于,所述安装座可移动地布置在所述外壳的内部空间中,使得能够调节所述安装座相对于所述外壳的倾斜度。
  3. 根据权利要求2所述的激光测距仪,其特征在于,所述安装座的一端通过胶套与所述外壳连接,所述安装座的另一端通过调节装置与所述外壳连接,使得能够通过所述调节装置调节所述安装座相对于所述外壳的在两个维度上的倾斜度。
  4. 根据权利要求3所述的激光测距仪,其特征在于,所述调节装置设置在所述外壳的前端开口处且包括在竖直方向上对称设置的竖直调节螺钉和竖直调节弹簧、以及在水平方向上对称设置的水平调节螺钉和水平调节弹簧。
  5. 根据权利要求1所述的激光测距仪,其特征在于,所述激光发射装置包括:激光发射器,用于发射激光束;第一全反射镜,用于对所述激光束进行全反射;第一激光聚焦透镜,用于使所述激光束交汇以形成准直的测距激光;带通滤光镜,用于允许所述测距激光通过并阻止自然光通过;和二向色镜(Dichroic Mirrors),用于反射所述测距激光并允许自然光通过。
  6. 根据权利要求5所述的激光测距仪,其特征在于,所述激光发射装置包括:二向色镜,用于反射所述测距激光并允许自然光通过;带通滤光镜,用于允许所述测距激光通过并阻止自然光通过;第二激光聚焦透镜,用于汇聚所述测距激光;第二全反射镜,用于对汇聚的所述测距激光进行全反射;和激光接收器,用于将接收的光信号转换为电信号。
  7. 根据权利要求6所述的激光测距仪,其特征在于,所述激光发射装置和所述接收装置共用所述带通滤光镜和所述二向色镜。
  8. 根据权利要求1所述的激光测距仪,其特征在于,所述基准点指示装置包括:发光 二极管,用于产生可见指示光源;光阑片,用于限制所述可见指示光源的发光口径;反射镜,用于反射通过光阑片的所述可见指示光源;和凹面聚焦透镜,用于使所述可见指示光源汇聚成一个实像点,形成所述指示基准点。
  9. 根据权利要求1所述的激光测距仪,其特征在于,所述外壳上布置有与所述主控电路板电连接的显示器、风速风向传感器、控制按键和外接接口。
  10. 根据权利要求1所述的激光测距仪,其特征在于,所述主控电路板上设置有以下中的一个或多个:方位传感器、角度传感器、温度传感器、湿度传感器、大气压力传感器、全球定位系统和无线传输模块等。
  11. 根据权利要求9所述的激光测距仪,其特征在于,所述外接接口被配置为能够与外部设备进行数据传输,以将所述激光测距仪的测量数据传输至外部设备上进行处理。
  12. 根据权利要求10所述的激光测距仪,其特征在于,所述无线传输模块被配置为能够与外部设备进行数据传输,以将所述激光测距仪的测量数据传输至外部设备上进行处理。
  13. 一种激光测距设备,包括相互可拆卸地连接的成像设备和激光测距仪,所述激光测距仪和所述成像设备分别制造并分别完成组装,其特征在于,所述激光测距仪为权利要求1至10任意一项所述的激光测距仪。
PCT/CN2018/097272 2018-07-26 2018-07-26 激光测距设备及其激光测距仪 WO2020019262A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201890001346.5U CN213600058U (zh) 2018-07-26 2018-07-26 激光测距设备及其激光测距仪
PCT/CN2018/097272 WO2020019262A1 (zh) 2018-07-26 2018-07-26 激光测距设备及其激光测距仪

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097272 WO2020019262A1 (zh) 2018-07-26 2018-07-26 激光测距设备及其激光测距仪

Publications (1)

Publication Number Publication Date
WO2020019262A1 true WO2020019262A1 (zh) 2020-01-30

Family

ID=69182098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097272 WO2020019262A1 (zh) 2018-07-26 2018-07-26 激光测距设备及其激光测距仪

Country Status (2)

Country Link
CN (1) CN213600058U (zh)
WO (1) WO2020019262A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161588A (zh) * 2020-10-10 2021-01-01 江苏农牧科技职业学院 一种基于激光测距技术的多功能位移测量装置及其系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116149042B (zh) * 2022-11-02 2023-08-22 华中科技大学 一种光电瞄具

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2356317Y (zh) * 1999-01-08 1999-12-29 陆建红 瞄准式半导体脉冲激光测距装置
US6411371B1 (en) * 1998-09-02 2002-06-25 Leica Geosystems Ag Device for optical distance measurement
CN2628995Y (zh) * 2003-06-03 2004-07-28 杨红林 激光测距工程放线测量仪
CN1995908A (zh) * 2006-12-28 2007-07-11 厦门大学 单光电探测器共焦激光三角测量装置
CN204044361U (zh) * 2014-08-20 2014-12-24 深圳市瑞尔幸电子有限公司 一种带亮度自动反馈控制的激光测距望远镜
CN205280929U (zh) * 2015-12-25 2016-06-01 常州市莱赛激光工程有限公司 激光测距光学系统及其构成的激光测距仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6411371B1 (en) * 1998-09-02 2002-06-25 Leica Geosystems Ag Device for optical distance measurement
CN2356317Y (zh) * 1999-01-08 1999-12-29 陆建红 瞄准式半导体脉冲激光测距装置
CN2628995Y (zh) * 2003-06-03 2004-07-28 杨红林 激光测距工程放线测量仪
CN1995908A (zh) * 2006-12-28 2007-07-11 厦门大学 单光电探测器共焦激光三角测量装置
CN204044361U (zh) * 2014-08-20 2014-12-24 深圳市瑞尔幸电子有限公司 一种带亮度自动反馈控制的激光测距望远镜
CN205280929U (zh) * 2015-12-25 2016-06-01 常州市莱赛激光工程有限公司 激光测距光学系统及其构成的激光测距仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112161588A (zh) * 2020-10-10 2021-01-01 江苏农牧科技职业学院 一种基于激光测距技术的多功能位移测量装置及其系统

Also Published As

Publication number Publication date
CN213600058U (zh) 2021-07-02

Similar Documents

Publication Publication Date Title
US11536567B2 (en) Surveying instrument
US9335124B2 (en) Compact riflescope display adapter
US20230144958A1 (en) Shooting device, sighting apparatus, imaging rangefinder and adjusting method thereof
WO2020019261A1 (zh) 共光路数码成像的激光测距仪
US11371890B2 (en) Sequential beam splitting in a radiation sensing apparatus
WO2020019262A1 (zh) 激光测距设备及其激光测距仪
CN213599935U (zh) 射击设备、瞄准装置及其成像测距装置
KR20180014974A (ko) 라이다 장치
CN110199202B (zh) 一种成像透镜前分离激光的共光路的测距瞄准器
CN202393913U (zh) 光信号接收装置和测距仪
CN107238840B (zh) 脉冲激光高速测距光学系统
CN214335222U (zh) 数码成像设备、共光轴测距成像装置及其共光轴测距成像系统
CN108549144A (zh) 测距仪光学系统及望远镜测距仪
CN208270843U (zh) 测距仪光学系统及望远镜测距仪
WO2021243517A1 (zh) 成像设备、共光轴测距成像装置及其共光轴测距成像系统
RU2664788C1 (ru) Оптико-электронная система поиска и сопровождения цели
CN111458857A (zh) 激光光学结构及激光测距系统
CN213600889U (zh) 成像设备、共光轴测距成像装置及其共光轴测距成像系统
US11874089B1 (en) Rangefinder, sighting apparatus and shooting auxiliary device
CN219037767U (zh) 前置瞄准镜及采用前置瞄准镜的双光瞄准系统
CN213122292U (zh) 成像设备、共光轴测距成像装置及其共光轴测距成像系统
CN220872669U (zh) 测距成像双光共轴光学系统及瞄准镜
RU197841U1 (ru) Телевизионный прицел с лазерным дальномером
CN217655365U (zh) 双筒望远镜
JP3089101U (ja) 測距双眼鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18927704

Country of ref document: EP

Kind code of ref document: A1