WO2020017938A1 - 드론 스테이션 - Google Patents

드론 스테이션 Download PDF

Info

Publication number
WO2020017938A1
WO2020017938A1 PCT/KR2019/008992 KR2019008992W WO2020017938A1 WO 2020017938 A1 WO2020017938 A1 WO 2020017938A1 KR 2019008992 W KR2019008992 W KR 2019008992W WO 2020017938 A1 WO2020017938 A1 WO 2020017938A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
wireless power
power transmission
landing
wireless
Prior art date
Application number
PCT/KR2019/008992
Other languages
English (en)
French (fr)
Inventor
신규원
Original Assignee
주식회사 아모센스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모센스 filed Critical 주식회사 아모센스
Priority to CN201980053506.XA priority Critical patent/CN112567171B/zh
Priority to US17/261,452 priority patent/US20210163135A1/en
Publication of WO2020017938A1 publication Critical patent/WO2020017938A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/366Electric or magnetic shields or screens made of ferromagnetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/005Protective coverings for aircraft not in use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/18Visual or acoustic landing aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/37Charging when not in flight
    • B64U50/38Charging when not in flight by wireless transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/08Lighting devices intended for fixed installation with a standard
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/08Lighting devices intended for fixed installation with a standard
    • F21S8/085Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/04Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a generator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2871Pancake coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/50Aeroplanes, Helicopters
    • B60Y2200/51Aeroplanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/60Take-off or landing of UAVs from a runway using their own power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • B64U70/97Means for guiding the UAV to a specific location on the platform, e.g. platform structures preventing landing off-centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a drone station, and more particularly to a drone station that provides a drone take-off and landing space for charging the drone.
  • Drones are used in various fields such as security and energy management.
  • Drones are a type of flying unit that flies in the sky by rotating a number of propellers using battery power.
  • the drone is configured to allow various patterns of flight according to the user's remote control operation.
  • the drone consumes a lot of battery and needs to be recharged for a long flight. Therefore, a technology for enabling a long time flight of the drone by installing a drone station to charge the battery of the drone has been developed.
  • a drone station is installed in a smart street light, and the drone moves to an adjacent drone station when the battery falls below a certain amount to wirelessly charge the battery.
  • the resonance center between the drone station and the drone is not exactly aligned, thereby reducing the charging efficiency and increasing the charging time due to the decrease in the charging efficiency. .
  • the drone being charged in the drone station has a problem in which the drone is out of the charging position or falls from the drone station due to external environmental factors such as wind and vibration.
  • the present invention has been proposed to solve the above-mentioned conventional problems, and an object of the present invention is to provide a drone station in which the resonant center of the drone is always correctly aligned regardless of the initial landing position of the drone.
  • another object of the present invention is to provide a drone station capable of increasing the degree of freedom of charging between the wireless power transmission module and the wireless power receiving module.
  • a drone station is formed on a landing guidance substrate and a landing guidance substrate, and includes a wireless charging substrate wirelessly transmitting power to a drone located at an upper portion, and the landing guidance substrate An inclined surface for moving the landed drone to the top of the wireless charging base is formed.
  • the wireless charging substrate is formed in a loop shape and may include a power transmission coil for wirelessly transmitting power to a drone located above.
  • the drone station may further include a guide member spaced apart from the power transmission coil and generating an electromagnetic force to fix the drone located above the wireless charging substrate.
  • the guide member is disposed on the outer circumference of the power transmission coil.
  • the landing guidance substrate is provided with a receiving groove in which the wireless charging substrate is accommodated, and the inclined surface has an inclination that decreases from the outer circumference of the landing guidance substrate toward the receiving groove.
  • the landing inducing substrate may further include a vibration member for generating vibration at the lower portion of the inclined surface or a rolling member composed of a plurality of spheres disposed on the inclined surface.
  • the drone station further includes a protective cover covering the drone located on the wireless charging base, the protective cover can be changed to an open state during takeoff and landing of the drone.
  • the protective cover includes a rotation shaft, a first cover that rotates by rotation of the rotation shaft, and a second cover that rotates by rotation of the rotation shaft, but rotates in a direction opposite to the first cover.
  • the wireless charging substrate includes a wireless power transmission module, and the wireless power transmission module includes a wireless power transmission antenna for transmitting power in a wireless manner, wherein the wireless power transmission antenna may be a flat plate in which a conductive member is wound in a loop shape. have.
  • the wireless charging base further includes at least one movable member moved along the X-axis direction and the Y-axis direction orthogonal to each other through the control of the control module and the control module, and the wireless power transmission module is fixed to one side of the movable member and is movable. The position can be changed through the movement of the member.
  • the wireless power transmission module may include a shielding sheet disposed on one surface of an antenna for wireless power transmission, and the shielding sheet may be a plate-like sheet including at least one of ferrite, polymer, and amorphous ribbon.
  • the antenna for wireless power transmission may be one of an antenna pattern and a flat coil formed in a loop shape on one surface of a circuit board.
  • the drone has a built-in wireless power receiving module for receiving wireless power from the wireless power transmission module, the wireless power receiving module is a coil wound along the longitudinal direction so that the conductive member surrounds the circumferential surface of the magnetic core having a predetermined length It may include a wireless power receiving antenna consisting of.
  • the magnetic core When the wireless power receiver module is aligned with the wireless power transmitter module, the magnetic core may be disposed such that one end thereof is located at a hollow side formed in a central region of the antenna for wireless power transmission.
  • the wireless power receiving module is embedded in the landing gear side in contact with the wireless charging base when the drone lands, and the wireless power transmitting module has an end portion of the magnetic core through the movement of the movable member included in the wireless charging base. It can be moved to be located in the hollow portion formed in the central region of the.
  • the wireless power receiving module is respectively built on two landing gear sides spaced apart from each other, the wireless charging base further comprises a rotating member rotatably coupled to the movable member, one side of the rotating member two wireless power
  • the transmitting modules may be spaced apart at predetermined intervals. At this time, the distance between the two wireless power transmission module is formed to have the same size as the distance between the two landing gear.
  • the drone station is formed with an inclined surface, there is an effect that the drone can always move to the charging region even when the drone lands on the non-charge region.
  • the drone station is formed with the inclined surface and the guide member, there is an effect that the drone can always move to the position having the optimum charging efficiency even when the drone lands in the non-charged region or the position having low charging efficiency.
  • the drone station is provided with an auxiliary member for assisting the movement of the drone along the inclined surface, there is an effect that can always be moved to the position having the optimum charging efficiency even when the inclined surface is formed gently.
  • the drone station may move the drone to a position having optimal charging efficiency through the inclined surface and the guide member, thereby minimizing the charging time of the drone and maximizing the drone operating time.
  • the drone station includes a guide member, thereby minimizing the movement of the drone by the external environment when the drone is charged, thereby preventing the drone from leaving the charging area or falling down from the drone station.
  • the drone station has a wireless power transmission antenna and a wireless power reception antenna is configured as a flat type and a solenoid type, respectively, thereby eliminating the influence of the angle during alignment for wireless charging, thereby increasing charging freedom.
  • FIG. 1 is a view for explaining a drone station according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a drone station according to an embodiment of the present invention.
  • FIG. 3 is a top view of the drone station according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the cut plane of the drone station of FIG.
  • 5 and 6 are views for explaining the landing guidance substrate of FIG.
  • 7 to 11 are views for explaining the wireless charging substrate of FIG.
  • FIG 12 and 13 are views for explaining a modification of the drone station according to an embodiment of the present invention.
  • the drone station 100 wirelessly transmits (transmits) power to the drone 200 landing on the top. That is, the drone station 100 is installed in a streetlight, a vehicle, etc., detects the drone 200 landing on the upper portion, and wirelessly transmits power to the drone 200.
  • the drone station 100 includes a landing guidance substrate 120 and a wireless charging substrate 140.
  • the landing guidance substrate 120 is a plate-like substrate constituting the drone station 100, and may be formed of a plate-like substrate having various shapes such as a circle and a rectangle.
  • the landing guide substrate 120 is formed with a receiving groove 122.
  • the wireless charging base 140 is accommodated in the accommodation groove 122.
  • the receiving groove 122 is formed to have a shape corresponding to the shape of the wireless charging base 140.
  • Receiving groove 122 is an example that is formed to include the center point of the landing guidance substrate 120.
  • the landing guidance substrate 120 is formed with an inclined surface 124 for inducing the drone 200 to land at the position with the highest wireless charging efficiency.
  • the inclined surface 124 has an inclination lowering toward the receiving groove 122 from the outer circumference of the landing guide substrate 120.
  • the inclined surface 124 has an inclination of the set angle ⁇ .
  • the drone 200 landing on the landing guidance substrate 120 slides along the inclined surface 124 and moves to the top of the wireless charging substrate 140 located at the center. At this time, since the drone 200 moving along the inclined surface 124 may fall when the inclined surface 124 makes a sharp inclination, the inclined surface 124 has a set angle ⁇ within a range in which the drone 200 does not fall. It is formed to form a slope of).
  • the landing guidance substrate 120 moves the drone 200 which landed on the upper side along the inclined surface 124 to guide the drone 200 to be positioned on the top of the wireless charging substrate 140.
  • the landing guide substrate 120 may include an auxiliary member to assist the movement of the drone 200 along the inclined surface 124.
  • the inclined surface 124 may move the drone 200 to the wireless charging substrate 140 even if the inclined surface 124 is formed with a gentle inclination compared to the landing induction substrate 120 that does not include the auxiliary member.
  • the landing guidance substrate 120 may include a vibration member 126 that generates vibration.
  • the vibrating member 126 generates vibration in the landing inducing substrate 120 to assist the movement of the drone 200.
  • the vibration member 126 generates vibration in the landing guidance substrate 120 so that the drone 200 landing on the landing guidance substrate 120 smoothly moves along the inclined surface 124.
  • the vibrating member 126 operates when the drone 200 lands on top of the landing guidance substrate 120.
  • vibration occurs in the landing inducing substrate 120.
  • the drone 200 slides and moves toward the wireless charging substrate 140 due to the vibration of the landing inducing substrate 120.
  • the landing guidance substrate 120 may include a rolling member 128 to assist the movement of the drone 200 along the inclined surface 124.
  • the rolling member 128 includes a plurality of spheres disposed on the inclined surface 124 of the landing guide substrate 120. Rolling member 128 rotates as drone 200 lands on top of landing guidance substrate 120 to move drone 200 toward landing guidance substrate 120.
  • the landing induction substrate 120 may be applied as long as the member can assist the movement of the drone 200 along the inclined surface 124.
  • the wireless charging base 140 is a plate-shaped base material for wirelessly charging the drone 200, and may be formed of a plate-shaped base material having various shapes such as a circle and a rectangle.
  • the wireless charging base 140 is formed in a shape corresponding to the shape of the receiving groove 122 formed in the landing guidance base 120.
  • the wireless charging base 140 includes a power transmission coil 142 for wireless charging of the drone 200.
  • the power transmission coil 142 is disposed on the top surface of the wireless charging base 140.
  • the power transmission coil 142 wirelessly transmits power to the power receiving coil 110 of the drone 200 through wireless power transmission (WPT) of magnetic resonance.
  • WPT wireless power transmission
  • the power transmission coil 142 may be disposed on the bottom surface of the wireless charging base 140 or may be disposed inside the wireless charging base 140.
  • the power transmission coil 142 is formed in a loop shape for winding a winding shaft a plurality of times.
  • the power transmission coil 142 is wound in a winding shaft orthogonal to the drone station 100 a plurality of times to be formed in parallel with the drone station 100.
  • the power transmission coil 142 may be configured in the form of a solenoid wound with a wire on a magnetic material. However, the power transmission coil 142 is preferably formed in a loop shape having a predetermined area to secure the wireless charging region. Although not shown in FIG. 7, both ends of the power transmission coil 142 are connected to a power supply (not shown).
  • the power receiving coil 110 disposed in the drone 200 is preferably configured in the form of a solenoid wound with a wire on a magnetic material. That is, the charging efficiency of the drone 200 may be maximized by configuring the loop-type power transmission coil 142 and the solenoid-type power reception coil 110.
  • a resonance center alignment between the power transmission coil 142 and the power receiving coil 110 of the drone 200 is required.
  • the position of the coil having the maximum charging efficiency is changed according to the eccentric distance of the power transmission coil 142. That is, as the eccentric distance of the power transmission coil 142 increases, the position of the coil having the maximum charging efficiency is changed from the inner coil to the outer coil.
  • the drone 200 may be out of the charging position or fall from the drone station 100 due to external environmental factors such as wind and vibration during wireless charging.
  • the wireless charging base 140 further includes a guide member 144 for preventing alignment and departure of the power transmission coil 142 and the power receiving coil 110 of the drone 200. It may include.
  • the guide member 144 is disposed on the outer circumference of the power transmission coil 142.
  • the guide member 144 is disposed spaced apart from the power transmission coil 142.
  • the guide member 144 is an electromagnetic magnet that generates an electromagnetic force to fix the drone 200.
  • the circular guide member 144 is disposed on the top surface of the wireless charging base 140, the present invention is not limited thereto and may be formed in various shapes such as a rectangle and a parallel line.
  • the guide member 144 may generate the electromagnetic force only at a specific position to fix the drone 200 in order to land and fix the drone 200 at a position having an optimal charging efficiency.
  • the wireless charging base 140 may land the drone 200 at a location having an optimal wireless charging efficiency, and prevent the drone 200 being charged from being separated from the charging position due to external environmental factors.
  • the drone station 100 may further include a protective cover 160 for protecting the landed drone 200.
  • the protective cover 160 covers only the wireless charging base 140, but may cover the entire drone station 100.
  • the protective cover 160 is formed in a hemispherical shape.
  • the protective cover 160 is normally maintained in a closed state and is changed to an open state during takeoff and landing of the drone 200.
  • the protective cover 160 is normally closed and changes to an open state when the drone 200 is close to the drone station 100 for landing, or when the drone 200 takes off from the drone station 100.
  • the protective cover 160 is illustrated as being formed in a hemispherical shape for easy explanation, but the shape of the protective cover 160 is not limited to the hemispherical shape, and may protect the drone 200 landing on the drone station 100. It is applicable if it is shape
  • the protective cover 160 may include a rotation shaft 162 driven by a motor, a first cover 164 and a second cover 166 rotated by the rotation of the rotation shaft 162. have.
  • the first cover 164 and the second cover 166 rotate in different directions when the rotation shaft 162 is rotated by the driving of the motor. As the first cover 164 and the second cover 166 rotate in different directions, the protective cover 160 is opened and closed.
  • the drone station 100 may further include a control circuit (not shown) for controlling the operation of the protective cover 160.
  • the control circuit determines the takeoff and landing of the drone 200 through communication with the drone 200 or the drone control device, and opens the protective cover 160 when the control circuit determines the takeoff or landing of the drone 200.
  • the wireless charging base 140 of the drone station 100 includes a wireless power transmission module 310.
  • the drone 200 includes a wireless power receiving module 320 corresponding to the wireless power transmitting module 310.
  • the wireless power transmission module 310 corresponds to the power transmission coil 142 of the wireless charging base described above
  • the wireless power reception module 320 corresponds to the power reception coil 210 disposed in the drone 200. .
  • the wireless power transmission module 310 is for generating a magnetic field by using power supplied from a power supply source and transmitting power in a wireless manner together with the magnetic field
  • the wireless power receiving module 320 is a wireless power transmission module 310. Induction electromotive force is generated by receiving the power transmitted from the to generate power.
  • the power supply source may be a commercial power source supplied through a power line, or may be a known battery.
  • the wireless power transmission module 310 and the wireless power receiving module 320 may be configured in different forms of the wireless power transmission antenna 311 and the wireless power reception antenna 321 for transmitting or receiving wireless power. Can be.
  • the wireless power transmission module 310 may be configured as a flat plate in which a wireless power transmission antenna 311 for transmitting wireless power is wound in a loop shape, and shielded on one surface of the wireless power transmission antenna 311.
  • the sheet 312 may be disposed.
  • the wireless power receiver module 320 may include a magnetic core 322 having a bar shape having a predetermined length, and a coil in which a conductive member is wound along a length direction to surround a circumferential surface of the magnetic core 322. It may be in the form of a solenoid including, the coil may perform the role of the antenna 321 for receiving wireless power.
  • the wireless power transmission antenna 311 may be a flat coil in which the conductive member is wound a plurality of times (see FIG. 14), or may be an antenna pattern in which a conductive member such as copper foil is patterned on at least one surface of the circuit board 313. It may also be (see Figure 15).
  • the drawing shows that the wireless power transmission antenna 311 is configured as one, but not limited to this, it will be appreciated that the wireless power transmission antenna 311 may be configured in plural.
  • the number of turns of the coil wound on the magnetic core 322 may be appropriately changed according to the desired transmission power, and the materials of the magnetic core 322 and the shielding sheet 312 may be appropriately changed according to the frequency used. Can be.
  • the magnetic core 322 and / or the shielding sheet 312 may have a high permeability, a low permeability, a high Q value, and a high saturation magnetic flux density.
  • the magnetic core 322 and / or the shielding sheet 312 may be made of a magnetic material containing at least 15 or more of Ni-Zn ferrite, Mn-Zn ferrite, polymer and amorphous ribbon.
  • the shielding sheet 312 may be flake-processed to be separated into a plurality of fine pieces to improve the flexibility or to suppress the generation of eddy currents.
  • the magnetic core 322 and / or the shielding sheet 312 may be stacked in multiple layers.
  • the material of the magnetic material is not limited thereto, and it is understood that all known magnetic materials that can be used in the wireless power transmission technology can be used as appropriate.
  • the drone station 100 has an antenna 311 for transmitting wireless power at one end of the magnetic core 322. It may be arranged to be located on the hollow portion (S) side of), more preferably, one end side of the magnetic core 322 is to be aligned so as to be located on the central portion (O) side of the hollow portion of the antenna 311 for wireless power transmission. Can be.
  • the magnetic field emitted from the wireless power transmission module 310 implemented in the form of a flat plate can be smoothly induced to the wireless power receiving module 320 implemented in the form of a solenoid.
  • the path of the main magnetic field may be formed on the hollow side of the antenna when the wireless power antenna is flat, and the path of the main magnetic field at the end of the magnetic core 322 may be formed when the wireless power antenna is solenoid. Paths can be formed.
  • the main power emitted from the wireless power transmission module 310 implemented in the form of a flat plate.
  • the magnetic field may be smoothly induced toward the wireless power reception antenna 321 by matching the direction of the main magnetic field of the wireless power reception module 320 implemented in the solenoid form.
  • the magnetic core 322 is X. Even if the end of the magnetic core 322 is positioned in the hollow portion S of the antenna 311 for wireless power transmission, the optimum wireless charging efficiency can be obtained even if the end of the magnetic core 322 is disposed at an angle with respect to the axis or the Y axis. .
  • the drone station 100 can wirelessly transmit wireless power through the wireless power transmission antenna 311 included in the wireless power transmission module 310 in a large area, it is possible to transmit a large capacity of kW and wireless power transmission. Since the credit antenna 311 can be formed in a larger area, the heat dissipation performance can be increased to increase charging efficiency or to shorten the charging time.
  • the drone station 100 described above may configure a charging system for charging a battery (not shown) built in the drone 200.
  • a drone 200 side may include a wireless power receiving module 320 for receiving wireless power, and a drone station 100 side may include a wireless power transmission module for transmitting wireless power ( 310 may be embedded respectively.
  • the wireless power transmission module 310 is for generating a magnetic field using the power supplied through the power supply source 417 and for transmitting power in a wireless manner together with the magnetic field, the wireless power receiving module 320 The induction electromotive force is generated by receiving the power transmitted from the wireless power transmission module 310 is to produce power for charging the battery built in the drone 200.
  • the wireless power transmission module 310 and the wireless power receiving module 320 are the same as those described with reference to FIGS. 14 and 15 and will be omitted.
  • the power supply source 417 may be a commercial power supplied through the power line, may be a separate battery that is built in the drone station 100 itself, the control module 416 embedded in the drone station 100 Power supplied from the power supply source 417 may be supplied or cut off to the wireless power transmission module 310.
  • the drone 200 may be a helicopter or a quadcopter drone capable of vertically descending and vertically rising.
  • the drone 200 may include a body portion 211, a power generator 212 and a landing gear 213.
  • the body 211 may be mounted with various electronic units suitable for the purpose of use, and a battery 215 for driving the various electronic units may be built in the body 211.
  • the shape of the body portion 211 may be applied to a variety of known shapes.
  • the power generator 212 may be connected to the body 211 to generate power for the flight of the body 211.
  • the power generator 212 may be in a form in which a propeller rotates through driving of a motor.
  • the power generation unit 212 may be one, but may be provided in plurality so as to be free to change direction, the overall driving can be controlled through a controller (not shown) built in the body portion 211.
  • each of the power generators 212 is provided with a plurality of power generators.
  • the direction of flight may vary depending on the output difference of 212.
  • the controller embedded in the body portion 211 may control the overall operation and driving of the drone 200, it may be in the form of a chipset mounted on a circuit board (not shown).
  • the control unit may be a microprocessor.
  • the landing gear 213 is a structure for supporting the weight of the body portion 211 when the drone 200 takes off and lands or is moored on the drone station 100 side.
  • the landing gear 213 may have a form including a plurality of leg portions 213a extending from the body portion 211 and a connecting portion 213b connecting the lower end side of the leg portion.
  • the landing gear 213 may be provided as one, or a plurality of landing gears 213 may be spaced apart from each other.
  • the drone 200 may include at least one camera unit 214 for capturing an image of the ground or the surroundings.
  • various sensors may be included to collect or detect various information about the state of the drone 200 and the surrounding environment.
  • the sensors may include various known sensors such as a gyro sensor, a geomagnetic sensor, a gravity sensor, an altitude sensor, a tilt sensor, a humidity sensor, a wind sensor, an air flow sensor, a temperature sensor, an acoustic sensor, an illuminance sensor, and the like. Can be installed.
  • Such camera unit 214 and sensors may be controlled through a control unit.
  • the controller may further include a communication module for transmitting an image captured by the camera unit or transmitting and receiving data such as flight information of the drone 200 or a control command transmitted from the outside.
  • Electronic equipment may be further mounted.
  • the drone 200 that may be applied to the embodiment of the present invention is not limited to the above-described structure, and various units that may be applied to the known drone 200 according to the purpose of use of the drone 200 are additionally installed. May be In addition, the drone 200 may be used for a variety of purposes, such as leisure, surveillance, industrial, information collection, and the like, at least one wing for generating lift may be a form fixed to the streamlined fuselage.
  • the wireless power receiving module 320 may be embedded in the landing gear 213 side of the drone 200, the wireless power receiving module 320 is a battery 215 via the control unit included in the body portion 211 ) Can be electrically connected.
  • one or more wireless power receiving modules 320 may be built in the landing gear 213.
  • the plurality of wireless power receiving modules 320 when they are built into the landing gear 213, they may be embedded in the same landing gear side, but the weight of the drone 200 may be increased to balance the weight of the drone 200.
  • An equivalent number of wireless power receiving modules 320 may be built in both sides with respect to the center. For example, as shown in FIG. 19, when the drone 200 includes two landing gears 213 spaced apart from each other, the wireless power receiving module 320 is disposed on two landing gears 213. Each of these can be built in.
  • a plurality of wireless power receiving modules 320 when a plurality of wireless power receiving modules 320 are built into the landing gear 213, a plurality of wireless power transmitting modules 310 embedded in the station 820 may also be provided. It may be provided to match the number of 320 one-to-one.
  • the wireless power receiving module 320 may have a solenoid form including a coil in which a conductive member is wound along a length direction of the magnetic core having a predetermined length as described above.
  • the wireless power receiving module 320 is a landing gear 213 so that one surface of the magnetic core is parallel to one surface of the drone station 100 while the drone 200 lands on one surface of the drone station 100.
  • the wireless power receiver module 320 may be embedded in the drone station 100 to be disposed on a plane parallel to one surface of the drone station 100.
  • the drone 200 is the wireless power receiving module 320 when the wireless power receiving module 320 and the wireless power transmission module 310 is aligned with each other in the landing or standby state on one surface of the drone station 100.
  • the battery 215 embedded in the body portion 211 may be charged to drive the drone 200 by receiving the wireless power transmitted from the drone station 100 through.
  • the wireless power transmission module 310 may be embedded in the drone station 100 to be movable along the X-axis and Y-axis direction orthogonal to each other.
  • the wireless power transmission module 310 may move the antenna of the antenna for wireless power transmission, which is configured in a flat form by moving the position.
  • the end of the magnetic core may be aligned to the hollow portion (S) side.
  • the positions of the wireless power transmission module 310 and the wireless power receiving module 320 are aligned to allow the battery 215 built in the drone 200 to be charged with optimum charging efficiency.
  • the antenna for wireless power transmission included in the wireless power transmission module 310 is configured in a loop-shaped flat plate and is embedded in the drone station 100 so as to be disposed on a plane parallel to one surface of the drone station 100. Since the power receiving module 320 is configured in the form of a solenoid and is embedded in the landing gear 213 to be in parallel with one surface of the drone station 100, the wireless power when the drone 200 lands on the drone station 100.
  • the antenna for wireless power transmission of the transmitting module 310 may always be in parallel with one surface of the magnetic core included in the wireless power receiving module 320, and the magnetic core may be at an angle with respect to the X axis or the Y axis. Even when disposed in an inclined state, an end portion of the magnetic core may be easily positioned in the hollow part S of the antenna for wireless power transmission by moving the position of the wireless power transmission module 310.
  • the drone station 100 can increase the charge freedom.
  • the wireless power transmission through the wireless power transmission antenna included in the wireless power transmission module 310 can be made in a large area, large capacity transmission of kW is possible, and the wireless power transmission antenna can be formed in a larger area. As a result, the heat dissipation performance can be increased to increase the charging efficiency or to shorten the charging time.
  • the wireless power transmission module 310 included in the landing gear 213 is configured in the form of a solenoid, the wireless power transmission module 310 may be easily installed without changing the size of the landing gear 213 compared to the flat plate type. As a result, the size of the landing gear 213 may be prevented from increasing in the process of applying the wireless power transmission module 310, thereby preventing an increase in air resistance due to the increase in size.
  • the drone station 100 for driving the movable member and the movable member embedded in the housing 411, the housing 411 to be movable along the X-axis and Y-axis.
  • the control module 416 may be included, and the wireless power transmission module 310 may be fixed to the movable member side. Through this, the wireless power transmission module 310 may be changed in position with the movable member when the movable member is moved by the control module 416.
  • the housing 411 may be formed to have a horizontal surface having at least one surface having a predetermined area so that the drone 200 can land, may be embedded in the ground or fixed to another structure so that the horizontal surface is exposed to the outside. It may also be in the form.
  • the movable member may be any one of the first slider 412 reciprocating along the X axis and the second slider 413 reciprocating along the Y-axis direction, and the first slider 412 and the second slider ( Any one of the 413 may be coupled to be reciprocally movable in a direction perpendicular to the movement direction of the other, and the first slider 412 and the second slider 413 may be a motor controlled by the control module 416. It can be reciprocated through the driving of M1, M2. In this case, the driving force generated from the motors M1 and M2 is transmitted to the first slider 412 and the second slider 413, and a variety of known methods such as a pulley method, a screw method, and a gear method may be applied.
  • the first slider 412 may be reciprocated along the first guide 414 disposed in a direction parallel to the X axis with respect to the bottom surface of the housing 411 by driving the first motor M1.
  • the second slider 413 reciprocates along the second guide 415 disposed in a direction parallel to the Y axis by driving the second motor M2 with respect to the first slider 412.
  • the wireless power transmission module 310 may be fixedly installed on an upper surface of the second slider 413.
  • the overall operation of the first motor M1 and the second motor M2 may be controlled through the control module 416, and the wireless power transmission module 310 may also be electrically connected to the control module 416.
  • the drive can be controlled.
  • the control module 416 may include a general circuit element for driving the wireless power transmission module 310.
  • the positions of the first slider 412 and the second slider 413 are changed by the control of the control module 416 to the landing gear 213.
  • An end of the magnetic core of the embedded wireless power receiving module 320 is disposed in the hollow portion S of the antenna for wireless power transmission, thereby achieving optimal charging efficiency.
  • the second slider 413 alternately moves the X-axis direction and the Y-axis direction by a predetermined distance through the driving of the control module 416 inside the housing 411.
  • the position of the wireless power transmission module 310 may be changed to a position aligned with the wireless power receiving module 320.
  • the movement path of the second slider 413 is not limited thereto, and it may be found that the second slider 413 may be moved in various paths.
  • the second slider 413 or the wireless power transmission module 310 side may include a sensing unit (not shown) for detecting an alignment state with the magnetic core, the sensing unit may be controlled through the control module 416.
  • the control module 416 may align the wireless power transmission module 310 and the wireless power receiving module 320 by adjusting the position of the second slider 413 based on the information detected by the sensing unit.
  • the sensing unit may be an infrared sensor for confirming the end position of the magnetic core through infrared rays, or may be a magnetic field sensor for sensing the magnitude of the magnetic field induced by the antenna for receiving wireless power.
  • the sensing unit is not limited thereto, and it is understood that various sensors known in the art may be applied to the second slider 413 and the end of the magnetic core.
  • the position of the wireless power transmission module 310 is changed through the two sliders 412 and 323 through the control of the control module 416, but the present invention is not limited thereto and the position may be changed in the two axis directions perpendicular to each other. It is to be understood that all known manners may be applied.
  • the station 820 is a control module 416 for driving the housing 411 and the movable member and the movable member embedded in the housing 411 so as to be movable along the X-axis and the Y-axis as in the above-described embodiment. It may include), it may include a rotating member 418 rotatably coupled to the movable member.
  • the wireless power receiving module 320 may be embedded in the two landing gears 213 which are spaced apart from each other in the drone 200.
  • two wireless power transmission modules 310 may be fixed to the rotating member 418, and two wireless power transmission modules 310 may include two landing gears each having two wireless power reception modules 320 built therein. It may be fixed to the upper surface of the rotating member 418 in a state spaced apart by the distance between the (213). Through this, the wireless power transmission module 310 fixed to the rotating member 418 side may be changed in position along the X-axis and Y-axis directions through the movement of the movable member when the movable member is moved by the control module 416. The angle may be changed by rotating about the Z axis through the rotation of the rotating member 418.
  • the movable member may be any one of the first slider 412 reciprocated along the X axis and the second slider 413 reciprocated along the Y axis, and the first slider 412 and the second slider Any one of the 413 may be slidably coupled in a direction perpendicular to the movement direction of the other, and the rotating member 418 may be coupled to any one of the first slider 412 and the second slider 413. It can be coupled rotatably about the Z axis.
  • first slider 412, the second slider 413, and the rotating member 418 may be reciprocated or rotated by driving the motors M1, M2, and M3 controlled by the control module 416.
  • the driving force generated from the motors M1 and M2 is transmitted to the first slider 412 and the second slider 413, and a variety of known methods such as a pulley method, a screw method, and a gear method may be applied.
  • the first slider 412 may be reciprocated along the first guide 414 disposed in a direction parallel to the X axis with respect to the bottom surface of the housing 411 by driving the first motor M1.
  • the second slider 413 reciprocates along the second guide 415 disposed in a direction parallel to the Y axis by driving the second motor M2 with respect to the first slider 412. It may be arranged as possible.
  • the rotating member 418 may be rotated about the Z axis by driving the third motor M3 with respect to the second slider 413, and the wireless power transmission module 310 may have an upper surface of the rotating member 418. Can be fixed to the installation.
  • the overall operation of the first motor M1, the second motor M2, and the third motor M3 may be controlled through the control module 416, and the wireless power transmission module 310 may also control the control module 416.
  • the control module 416 may include a general circuit element for driving the wireless power transmission module 310.
  • the rotation of the rotating member 418 after the position of the first slider 412 and the second slider 413 is changed through the control of the control module 416.
  • the end of the magnetic core of the wireless power receiving module 320 embedded in the two landing gear 213 is positioned in the hollow portion (S) of the two wireless power transmission antenna to implement the optimum charging efficiency Can be.
  • wireless power transmission may be simultaneously performed while the two wireless power transmission modules 310 and the wireless power receiving module 320 are aligned with each other, thereby shortening the charging time of the battery 215 built in the drone 200. You can.
  • any one of the plurality of wireless power transmission modules 310 may be fixed to be positioned on a rotation center axis of the rotating member 418.
  • the wireless power transmission module 310 fixed on the central axis of rotation of the rotating member 418 by moving the position of the first slider 412 and the second slider 413 in the manner described in the above-described embodiment;
  • the position of any one of the wireless power receiving module 320 built in the landing gear 213 is first aligned and the rotating member 418 is rotated, it is fixed at a position deviating from the central axis of rotation of the rotating member 418.
  • the other wireless power transmission module 310 and the other wireless power receiving module 320 embedded in the landing gear 213 may be easily aligned.
  • the drone station 100 described above may be applied to various electronic products in addition to the drone.
  • it can be applied to household appliances, laptop computers, electric vehicles, including TVs, robot cleaners, and the like.
  • the wireless power transmission module 310 is configured as a solenoid type, and the wireless power receiving module 320 embedded in the drone 200 is Note that it may also be configured as a flat plate.
  • the wireless power transmission module 310 and the wireless power receiving module 320 embedded in the drone station 100 and the drone 200 may be all flat or solenoid type.

Abstract

드론의 최초 착륙위치와 관계없이 항상 드론의 공명 중심이 정확하게 정렬되도록 한 드론 스테이션을 제시한다. 제시된 드론 스테이션은 착륙 유도 기재 및 착륙 유도 기재 상에 형성되고, 상부에 위치하는 드론으로 전력을 무선 전송하는 무선 충전 기재를 포함하고, 착륙 유도 기재는 착륙한 드론을 무선 충전 기재의 상부로 이동시키는 경사면이 형성된다.

Description

드론 스테이션
본 발명은 드론 스테이션에 관한 것으로, 더욱 상세하게는 드론의 이착륙 공간을 제공하여 드론을 충전하는 드론 스테이션에 관한 것이다.
무인 비행체인 드론의 기술이 발전함에 따라 이용한 보안, 에너지 관리 등과 같이 다양한 분야에 드론이 이용되고 있다. 드론은 배터리의 전력을 이용하여 다수 개의 프로펠러를 회전시킴으로써 하늘을 비행하는 비행 유닛의 일종이다. 드론은 사용자의 리모컨 조작에 따라 다양한 패턴의 비행이 가능하도록 구성된다.
드론은 배터리 소모량이 매우 높아 장시간 비행을 위해서는 배터리의 충전이 필요하다. 이에, 드론 스테이션을 설치하여 드론의 배터리를 충전함으로써 드론의 장시간 비행을 가능하게 하는 기술이 개발되고 있다.
일례로, 스마트 가로등에 드론 스테이션을 설치하고, 드론은 배터리가 일정량 이하로 떨어질 때 인접한 드론 스테이션으로 이동하여 배터리를 무선 충전한다.
하지만, 종래에는 GPS 정보만을 이용하여 드론을 드론 스테이션에 착륙시키기 때문에, 드론 스테이션과 드론 간의 공명 중심이 정확히 정렬되지 않아 충전 효율이 저하되고, 충전 효율의 저하로 인해 충전 시간이 증가하는 문제점이 있다.
또한, 종래에는 드론 스테이션에서 충전 중인 드론이 바람, 진동 등의 외부 환경 요인으로 인해 드론이 충전 위치에서 벗어나거나, 드론 스테이션에서 추락하는 문제점이 있다.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 드론의 최초 착륙위치와 관계없이 항상 드론의 공명 중심이 정확하게 정렬되도록 한 드론 스테이션을 제공하는 것을 목적으로 한다.
또한, 본 발명은 무선 전력 송신 모듈과 무선 전력 수신 모듈 간의 충전 자유도를 높일 수 있도록 한 드론 스테이션을 제공하는 것을 다른 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 실시 예에 따른 드론 스테이션은 착륙 유도 기재 및 착륙 유도 기재 상에 형성되고, 상부에 위치하는 드론으로 전력을 무선 전송하는 무선 충전 기재를 포함하고, 착륙 유도 기재는 착륙한 드론을 무선 충전 기재의 상부로 이동시키는 경사면이 형성된다.
무선 충전 기재는 루프 형상으로 형성되고, 상부에 위치한 드론으로 전력을 무선 전송하는 전력 전송 코일을 포함할 수 있다.
드론 스테이션은 전력 전송 코일과 이격되고, 전자기력을 발생하여 무선 충전 기재의 상부에 위치한 드론을 고정하는 가이드 부재를 더 포함할 수 있다. 이때, 가이드 부재는 전력 전송 코일의 외주에 배치된다.
착륙 유도 기재는 무선 충전 기재가 수용되는 수용 홈이 형성되고, 경사면은 착륙 유도 기재의 외주에서 수용 홈으로 갈수록 낮아지는 경사를 갖는 다.
착륙 유도 기재는 경사면의 하부에서 진동을 발생시키는 진동 부재 또는 경사면에 배치된 복수의 구체로 구성된 롤링 부재를 더 포함할 수 있다.
드론 스테이션은 무선 충전 기재에 위치한 드론을 커버하는 보호 커버를 더 포함하고, 보호 커버는 드론의 이착륙시 열림 상태로 변경될 수 있다.
보호 커버는 회전 축, 회전 축의 회전에 의해 회동하는 제1 커버 및 회전 축의 회전에 의해 회동하되, 제1 커버와 대향되는 방향으로 회동하는 제2 커버를 포함한다.
무선 충전 기재는 무선 전력 송신 모듈을 포함하고, 무선 전력 송신 모듈은 전원을 무선 방식으로 송출하기 위한 무선 전력 송신용 안테나를 포함하되, 무선 전력 송신용 안테나는 도전성 부재가 루프 형상으로 감긴 평판형일 수 있다.
무선 충전 기재는 제어모듈 및 제어모듈의 제어를 통해 서로 직교하는 X축 방향과 Y축 방향을 따라 이동되는 적어도 하나의 가동부재를 더 포함하고, 무선 전력 송신 모듈은 가동부재의 일측에 고정되어 가동부재의 이동을 통해 위치가 변경될 수 있다.
무선 전력 송신 모듈은 무선 전력 송신용 안테나의 일면에 배치되는 차폐시트를 포함하고, 차폐시트는 페라이트, 폴리머, 비정질 리본 중 적어도 1종 이상을 포함하는 판상의 시트일 수 있다.
무선 전력 송신용 안테나는 회로기판의 일면에 루프 형상으로 패턴형성되는 안테나 패턴 및 평판형 코일 중 하나일 수 있다.
드론에는 무선 전력 송신 모듈로부터 송출되는 무선 전력을 수신하는 무선 전력 수신 모듈이 내장되고, 무선 전력 수신 모듈은 도전성 부재가 소정의 길이를 갖는 자성체 코어의 둘레면을 감싸도록 길이방향을 따라 권선된 코일로 구성된 무선 전력 수신용 안테나를 포함할 수 있다.
무선 전력 수신 모듈과 무선 전력 송신 모듈의 정렬시 자성체 코어는 일단부측이 무선 전력 송신용 안테나의 중앙영역에 형성되는 중공부 측에 위치하도록 배치될 수 있다.
무선 전력 수신 모듈은 드론의 착륙시 무선 충전 기재와 접촉되는 랜딩기어 측에 내장되고, 무선 전력 송신 모듈은 무선 충전 기재에 포함된 가동부재의 이동을 통해 자성체 코어의 단부측이 무선 전력 수신용 안테나의 중앙영역에 형성되는 중공부 내에 위치하도록 이동될 수 있다.
무선 전력 수신 모듈은 서로 간격을 두고 이격배치되는 두 개의 랜딩기어 측에 각각 내장되고, 무선 충전 기재는 가동부재에 회전가능하게 결합되는 회전부재를 더 포함하며, 회전부재의 일면에는 두 개의 무선 전력 송신 모듈이 소정의 간격을 두고 이격배치될 수 있다. 이때, 두 개의 무선 전력 송신 모듈 사이의 거리는 두 개의 랜딩기어 사이의 거리와 동일한 크기를 갖도록 형성된다.
본 발명에 의하면, 드론 스테이션은 경사면이 형성됨으로써, 드론이 비충전 영역에 착륙하더라도 항상 충전 영역으로 이동시킬 수 있는 효과가 있다.
또한, 드론 스테이션은 경사면 및 가이드 부재가 형성됨으로써, 드론이 비충전 영역이나 충전 효율이 낮은 위치에 착륙하더라도 항상 최적의 충전 효율을 갖는 위치로 이동시킬 수 있는 효과가 있다.
또한, 드론 스테이션은 경사면을 따른 드론의 이동을 보조하는 보조 부재가 형성됨으로써, 경사면이 완만하게 형성된 경우에도 항상 최적의 충전 효율을 갖는 위치로 이동시킬 수 있는 효과가 있다.
또한, 드론 스테이션은 경사면 및 가이드 부재를 통해 드론을 최적의 충전 효율을 갖는 위치로 이동시킴으로써, 드론의 충전 시간을 최소화하여 드론의 운영 시간을 최대화할 수 있는 효과가 있다.
또한, 드론 스테이션은 가이드 부재를 포함함으로써, 드론의 충전시 외부 환경에 의한 드론의 움직임을 최소화하여 드론이 충전 영역에서 이탈하거나, 드론 스테이션에서 추락하는 사고를 방지할 수 있는 효과가 있다.
또한, 드론 스테이션은 무선 전력 송신용 안테나 및 무선 전력 수신용 안테나가 평판형과 솔레노이드형으로 각각 구성되어 무선 충전을 위한 정렬시 각도의 영향이 배제됨으로써 충전자유도를 높일 수 있는 효과가 있다.
도 1은 본 발명의 실시 예에 따른 드론 스테이션을 설명하기 위한 도면.
도 2는 본 발명의 실시 예에 따른 드론 스테이션의 사시도.
도 3은 본 발명의 실시 예에 따른 드론 스테이션의 상면도.
도 4는 도 3의 드론 스테이션을 A~A`를 기준으로 절단한 절단면의 단면도.
도 5 및 도 6은 도 2의 착륙 유도 기재를 설명하기 위한 도면.
도 7 내지 도 11은 도 2의 무선 충전 기재를 설명하기 위한 도면.
도 12 및 도 13은 본 발명의 실시 예에 따른 드론 스테이션의 변형 예를 설명하기 위한 도면.
도 14 내지 도 20은 도 2의 무선 충전 기재를 설명하기 위한 도면.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시 예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 1을 참조하면, 드론 스테이션(100)은 상부에 착륙한 드론(200)으로 전력을 무선 전송(송신)한다. 즉, 드론 스테이션(100)은 가로등, 차량 등에 설치되어 상부에 착륙한 드론(200)을 감지한 후 드론(200)으로 전력을 무선 전송한다.
이를 위해, 도 2 내지 도 4를 참조하면, 드론 스테이션(100)은 착륙 유도 기재(120), 무선 충전 기재(140)를 포함한다.
착륙 유도 기재(120)는 드론 스테이션(100)을 구성하는 판상 기재로, 원형, 사각형 등과 같은 다양한 형상을 갖는 판상 기재로 형성될 수 있다.
착륙 유도 기재(120)는 수용 홈(122)이 형성된다. 수용 홈(122)에는 무선 충전 기재(140)가 수용된다. 수용 홈(122)은 무선 충전 기재(140)의 형상에 대응되는 형상을 갖도록 형성된다. 수용 홈(122)은 착륙 유도 기재(120)의 중심점을 포함하도록 형성되는 것을 일례로 한다.
착륙 유도 기재(120)는 드론(200)이 무선 충전 효율이 가장 높은 위치에 착륙하도록 유도하기 위한 경사면(124)이 형성된다. 경사면(124)은 착륙 유도 기재(120)의 외주에서 수용 홈(122)으로 갈수록 낮아지는 경사를 갖는다. 경사면(124)은 설정 각도(θ)의 경사를 갖는다.
착륙 유도 기재(120)에 착륙한 드론(200)은 경사면(124)을 따라 미끄러지면서 중앙에 위치한 무선 충전 기재(140)의 상부로 이동한다. 이때, 경사면(124)이 급격한 경사를 이루면 경사면(124)을 따라 이동하는 드론(200)이 넘어질 수 있기 때문에, 경사면(124)은 드론(200)이 넘어지지 않는 범위 이내인 설정 각도(θ)의 경사를 이루도록 형성된다.
이를 통해, 착륙 유도 기재(120)는 상부에 착륙한 드론(200)을 경사면(124)을 따라 이동시켜 무선 충전 기재(140)의 상부에 위치하도록 유도한다.
착륙 유도 기재(120)는 경사면(124)을 따른 드론(200)의 이동을 보조하기 위해서 보조 부재를 포함할 수 있다. 이때, 경사면(124)은 보조 부재를 포함하는 않는 착륙 유도 기재(120)에 비해 완만한 경사로 형성되더라도 드론(200)을 무선 충전 기재(140)로 이동시킬 수 있다.
도 5를 참조하면, 착륙 유도 기재(120)는 진동을 발생시키는 진동 부재(126)를 포함할 수 있다. 진동 부재(126)는 착륙 유도 기재(120)에 진동을 발생시켜 드론(200)의 이동을 보조한다. 진동 부재(126)는 착륙 유도 기재(120)의 상부에 착륙한 드론(200)이 경사면(124)을 따라 원활하게 이동하도록 착륙 유도 기재(120)에 진동을 발생시킨다. 진동 부재(126)는 드론(200)이 착륙 유도 기재(120)의 상부에 착륙하면 동작한다. 진동 부재(126)가 동작하면, 착륙 유도 기재(120)에는 진동이 발생한다. 드론(200)은 착륙 유도 기재(120)의 진동(vibration)으로 인해 무선 충전 기재(140) 방향으로 미끄러지면서 이동한다.
도 6을 참조하면, 착륙 유도 기재(120)는 경사면(124)을 따른 드론(200)의 이동을 보조하기 위해서 롤링 부재(128)를 포함할 수 있다. 롤링 부재(128)는 착륙 유도 기재(120)의 경사면(124)에 배치된 복수의 구(sphere, 球)를 포함하는 것을 일례로 한다. 롤링 부재(128)는 드론(200)이 착륙 유도 기재(120)의 상부에 착륙함에 따라 회전하여 드론(200)을 착륙 유도 기재(120) 방향으로 이동시킨다.
착륙 유도 기재(120)는 상술한 진동 부재(126), 롤링 부재(128) 이외에도 경사면(124)을 따른 드론(200)의 이동을 보조할 수 있는 부재라면 적용이 가능하다.
무선 충전 기재(140)는 드론(200)을 무선 충전하는 판상 기재로, 원형, 사각형 등과 같은 다양한 형상을 갖는 판상 기재로 형성될 수 있다. 무선 충전 기재(140)는 착륙 유도 기재(120)에 형성된 수용 홈(122)의 형상에 대응되는 형상으로 형성된다.
도 7을 참조하면, 무선 충전 기재(140)는 드론(200)의 무선 충전을 위한 전력 전송 코일(142)을 포함한다.
전력 전송 코일(142)을 무선 충전 기재(140)의 상면에 배치된다. 전력 전송 코일(142)은 자기 공명 방식의 무선 전력 전송(WPT(Wireless Power Transmission))을 통해 드론(200)의 전력 수신 코일(110)로 전력을 무선 전송한다. 전력 전송 코일(142)은 무선 충전 기재(140)의 하면에 배치되거나, 무선 충전 기재(140)에 내부에 배치될 수도 있다.
전력 전송 코일(142)을 권취축을 복수회 권선하는 루프 형상으로 형성된다. 전력 전송 코일(142)을 드론 스테이션(100)과 직교하는 권취축을 복수회 권선하여 드론 스테이션(100)과 평행하게 형성되는 것을 일례로 한다.
전력 전송 코일(142)을 자성체에 와이어를 권선한 솔레노이드 형태로 구성될 수도 있다. 다만, 전력 전송 코일(142)은 무선 충전 영역을 확보하기 위해 소정 면적을 갖는 루프 형상으로 형성되는 것이 바람직하다. 여기서, 도 7에 도시하지는 않았지만, 전력 전송 코일(142)의 양단을 전력 공급원(미도시)과 연결된다.
도 8을 참조하면, 드론(200)에 배치되는 전력 수신 코일(110)은 자성체에 와이어를 권선한 솔레노이드 형태로 구성되는 것이 바람직하다. 즉, 루프 형태의 전력 전송 코일(142)과 솔레노이드 형태의 전력 수신 코일(110) 구성하여 드론(200)의 충전 효율을 최대화할 수 있다.
한편, 드론(200)의 충전 효율을 높이기 위해서 전력 전송 코일(142)과 드론(200)의 전력 수신 코일(110) 간의 공명 중심 정렬이 필요하다.
도 9를 참조하면, 전력 전송 코일(142)의 편심 거리에 따라 최대 충전 효율을 갖는 코일의 위치가 변화된다. 즉, 전력 전송 코일(142)의 편심 거리가 증가함에 따라 최대 충전 효율을 갖는 코일의 위치가 내측 코일에서 외측 코일로 변화된다.
또한, 드론(200)은 무선 충전 시 바람, 진동 등의 외부 환경 요인으로 인해 드론(200)이 충전 위치에서 벗어나거나, 드론 스테이션(100)에서 추락할 가능성이 존재한다.
이에, 도 10 및 도 11을 참조하면, 무선 충전 기재(140)는 전력 전송 코일(142)과 드론(200)의 전력 수신 코일(110)의 정렬 및 이탈 방지를 위한 가이드 부재(144)를 더 포함할 수 있다.
가이드 부재(144)는 전력 전송 코일(142)의 외주에 배치된다. 가이드 부재(144)는 전력 전송 코일(142)과 이격되어 배치된다. 가이드 부재(144)는 전자기력을 발생하여 드론(200)을 고정하는 전자기 자석인 것을 일례로 한다.
여기서, 도 11에서는 무선 충전 기재(140)의 상면에 원형의 가이드 부재(144)가 배치된 것으로 도시하였으나, 이에 한정되지 않고, 사각형, 평행선 등과 같이 다양한 형상으로 형성될 수 있다.
또한, 가이드 부재(144)는 최적의 충전 효율을 갖는 위치에 드론(200)을 착륙 및 고정시키기 위해 특정 위치서만 전자기력을 발생하여 드론(200)을 고정할 수도 있다.
이를 통해, 무선 충전 기재(140)는 최적의 무선 충전 효율을 갖는 위치에 드론(200)을 착륙시키고, 충전중인 드론(200)이 외부 환경 요인에 의해 충전 위치에서 이탈하는 것을 방지할 수 있다.
도 12 및 도 13을 참조하면, 드론 스테이션(100)은 착륙한 드론(200)을 보호하기 위한 보호 커버(160)를 더 포함할 수 있다. 여기서, 도 12에서는 보호 커버(160)가 무선 충전 기재(140) 만을 커버하는 것으로 도시하였으나, 드론 스테이션(100) 전체를 커버할 수도 있다.
보호 커버(160)는 반구형 형상으로 형성된다. 보호 커버(160)는 평상시 닫힘 상태를 유지하고, 드론(200)의 이착륙시 열림 상태로 변경된다. 보호 커버(160)는 평상시 닫힘 상태를 유지하며, 착륙을 위해 드론 스테이션(100)에 드론(200)이 근접하거나, 드론 스테이션(100)으로부터 드론(200)이 이륙하는 경우 열림 상태로 변경된다.
여기서, 보호 커버(160)를 용이하게 설명하기 위해서 반구형으로 형성된 것으로 도시하였으나 보호 커버(160)의 형상을 반구형으로 한정되지 않고, 드론 스테이션(100)에 착륙한 드론(200)을 보호할 수 있는 형상이라면 적용 가능하다
일례로, 보호 커버(160)는 모터에 의해 구동하는 회전 축(162), 회전 축(162)의 회전에 의해 회동하는 제1 커버(164) 및 제2 커버(166)를 포함하여 구성될 수 있다. 제1 커버(164) 및 제2 커버(166)는 모터의 구동에 의해 회전 축(162)의 회전하면 서로 다른 방향으로 회동한다. 제1 커버(164) 및 제2 커버(166)가 서로 다른 방향으로 회동함에 따라 보호 커버(160)가 개폐된다.
드론 스테이션(100)은 보호 커버(160)의 동작을 제어하는 제어회로(미도시)를 더 포함할 수 있다. 제어회로는 드론(200) 또는 드론 제어 장치와의 통신을 통해 드론(200)의 이착륙을 판단하고, 드론(200)의 이륙 또는 착륙으로 판단하면 보호 커버(160)를 개방시킨다.
도 14 및 도 15를 참조하면, 드론 스테이션(100)의 무선 충전 기재(140)는 무선 전력 송신 모듈(310)을 포함한다. 이때, 드론(200)은 무선 전력 송신 모듈(310)과 대응되는 무선 전력 수신 모듈(320)을 포함한다. 여기서, 무선 전력 송신 모듈(310)은 상술한 무선 충전 기재의 전력 전송 코일(142)에 대응되고, 무선 전력 수신 모듈(320)은 드론(200)에 배치된 전력 수신 코일(210)에 대응된다.
무선 전력 송신 모듈(310)은 전원공급원을 통해 공급된 전원을 이용하여 자기장을 발생시키고 자기장과 함께 전력을 무선방식으로 송출하기 위한 것이며, 무선 전력 수신 모듈(320)은 무선 전력 송신 모듈(310)로부터 송출되는 전력을 수신하여 유도기전력이 발생됨으로써 전력을 생산하기 위한 것이다.
여기서, 전원공급원은 전원라인을 통해 공급되는 상용전원일 수도 있고, 공지의 배터리일 수도 있다.
이때, 무선 전력 송신 모듈(310) 및 무선 전력 수신 모듈(320)은 무선 전력을 송신하거나 수신하기 위한 무선 전력 송신용 안테나(311) 및 무선 전력 수신용 안테나(321)가 서로 다른 형태로 구성될 수 있다.
구체적으로, 무선 전력 송신 모듈(310)은 무선 전력을 송출하기 위한 무선 전력 송신용 안테나(311)가 루프 형상으로 감긴 평판형으로 구성될 수 있으며, 무선 전력 송신용 안테나(311)의 일면에 차폐 시트(312)가 배치된 형태일 수 있다.
또한, 무선 전력 수신 모듈(320)은 소정의 길이를 갖는 바(BAR) 형상의 자성체 코어(322)와, 자성체 코어(322)의 둘레면을 감싸도록 길이 방향을 따라 도전성 부재가 권선된 코일을 포함하는 솔레노이드 형태일 수 있으며, 코일이 무선 전력 수신용 안테나(321)의 역할을 수행할 수 있다.
여기서, 무선 전력 송신용 안테나(311)는 도전성 부재가 복수 회 권선된 평판형 코일일 수도 있고(도 14 참조), 회로기판(313)의 적어도 일면에 동박 등과 같은 도전성 부재가 패턴형성된 안테나 패턴일 수도 있다(도 15 참조).
또한, 도면에는 무선 전력 송신용 안테나(311)가 하나로 구성되는 것으로 도시하였지만 이에 한정하는 것은 아니며 무선 전력 송신용 안테나(311)는 복수 개로 구성될 수도 있음을 밝혀둔다.
더불어, 자성체 코어(322)에 권선된 코일의 턴수는 목적하는 전송 전력에 맞게 적절하게 가변될 수 있으며, 자성체 코어(322) 및 차폐 시트(312)의 재질은 사용되는 주파수에 따라 적절하게 변경될 수 있다.
한편, 자성체 코어(322) 및/또는 차폐 시트(312)는 투자율이 높고 투자손실률이 낮으며 Q값이 높은 재질이 사용될 수 있으며, 포화자속밀도가 높은 재질이 사용될 수 있다. 구체적인 일례로써, 자성체 코어(322) 및/또는 차폐 시트(312)는 Ni-Zn 페라이트, Mn-Zn 페라이트, 폴리머 및 비정질 리본 중 적어도 15종 이상을 포함하는 자성체로 이루어질 수 있다.
더불어, 차폐 시트(312)는 유연성을 개선하거나 와전류의 발생을 억제할 수 있도록 플레이크 처리되어 복수 개의 미세조각으로 분리형성될 수도 있다. 또한, 자성체 코어(322) 및/또는 차폐 시트(312)는 다층으로 적층된 형태일 수도 있다. 그러나 자성체의 재질을 이에 한정하는 것은 아니며 무선 전력 전송기술에서 사용될 수 있는 공지의 모든 자성체가 적절하게 사용될 수 있음을 밝혀둔다.
이와 같이, 드론 스테이션(100)은 무선 전력 전송을 위하여 무선 전력 송신 모듈(310)과 무선 전력 수신 모듈(320)이 서로 정렬되는 경우 자성체 코어(322)의 일단부측이 무선 전력 송신용 안테나(311)의 중공부(S) 측에 위치하도록 배치될 수 있으며, 더욱 바람직하게는 자성체 코어(322)의 일단부측이 무선 전력 송신용 안테나(311)의 중공부의 중심부(O) 측에 위치하도록 정렬될 수 있다.
이를 통해, 평판 형태로 구현된 무선 전력 송신 모듈(310)로부터 방출되는 자기장이 솔레노이드 형태로 구현된 무선 전력 수신 모듈(320) 측으로 원활하게 유기될 수 있다.
즉, 무선 전력 안테나가 평판형으로 구성되는 경우 안테나의 중공부 측에 주자기장의 경로가 형성될 수 있으며, 무선 전력 안테나가 솔레노이드 형으로 구성되는 경우 자성체 코어(322)의 단부측에서 주자기장의 경로가 형성될 수 있다.
이로 인해, 자성체 코어(322)의 일단부측이 무선 전력 송신용 안테나(311)의 중공부(S) 측에 위치하도록 배치되는 경우, 평판 형태로 구현된 무선 전력 송신 모듈(310)로부터 방출되는 주자기장은 솔레노이드 형태로 구현된 무선 전력 수신 모듈(320)의 주자기장의 방향과 일치됨으로써 무선 전력 수신용 안테나(321) 측으로 원활하게 유기될 수 있다.
더불어, 무선 전력 송신 모듈(310)에 포함된 무선 전력 송신용 안테나(311)가 루프 형상의 평판형으로 구성되고 무선 전력 수신 모듈(320)이 솔레노이드 형태로 구성되는 경우 자성체 코어(322)가 X축 또는 Y축에 대하여 임의의 각도로 기울어진 상태로 배치되더라도 자성체 코어(322)의 단부가 무선 전력 송신용 안테나(311)의 중공부(S) 내에 위치되면 최적의 무선충전효율을 얻을 수 있다.
다시 말하면, 도 16에 도시된 바와 같이 무선 전력 수신 모듈(320)에 포함된 자성체 코어(322)의 길이 방향과 무선 전력 송신용 안테나(311)의 반경방향 또는 폭방향이 이루는 각도를 고려할 필요 없이 자성체 코어(322)의 단부가 무선 전력 송신용 안테나(311)의 중공부(S) 내에 위치되면 최적의 무선충전효율을 얻을 수 있는 상태로 정렬될 수 있음으로써 최적의 충전효율을 구현하기 위한 충전자유도를 높일 수 있다.
더하여, 드론 스테이션(100)은 무선 전력 송신 모듈(310)에 포함된 무선 전력 송신용 안테나(311)를 통한 무선 전력전송이 대면적으로 이루어질 수 있으므로 kW급의 대용량 전송이 가능하고, 무선 전력 송신용 안테나(311)를 보다 넓은 면적에 형성할 수 있으므로 방열 성능을 높여 충전효율을 높이거나 충전시간을 단축시킬 수 있다.
한편, 상술한 드론 스테이션(100)은 드론(200)에 내장된 배터리(미도시)를 충전하기 위한 충전시스템을 구성할 수 있다.
도 17 및 도 19를 참조하면, 드론(200) 측에는 무선 전력을 수신하기 위한 무선 전력 수신 모듈(320)이 내장될 수 있으며, 드론 스테이션(100) 측에는 무선 전력을 송출하기 위한 무선 전력 송신 모듈(310)이 각각 내장될 수 있다.
본 실시예에서, 무선 전력 송신 모듈(310)은 전원공급원(417)을 통해 공급된 전원을 이용하여 자기장을 발생시키고 자기장과 함께 전력을 무선방식으로 송출하기 위한 것이며, 무선 전력 수신 모듈(320)은 무선 전력 송신 모듈(310)로부터 송출되는 전력을 수신하여 유도기전력이 발생됨으로써 드론(200)에 내장된 배터리를 충전하기 위한 전력을 생산하기 위한 것이다.
여기서, 무선 전력 송신 모듈(310) 및 무선 전력 수신 모듈(320)에 대한 상세한 설명은 도 14 및 도 15를 참조하여 설명한 내용과 동일하므로 생략하기로 한다.
더불어, 전원공급원(417)은 전원라인을 통해 공급되는 상용전원일 수도 있고, 드론 스테이션(100)에 자체 내장되는 별도의 배터리일 수도 있으며, 드론 스테이션(100)에 내장되는 제어 모듈(416)을 통해 전원공급원(417)으로부터 공급되는 전원이 무선 전력 송신 모듈(310) 측으로 공급되거나 차단될 수 있다.
본 발명의 실시 예에서 드론(200)은 수직 하강 및 수직 상승이 가능한 헬리콥터 또는 쿼드콥터 방식의 드론일 수 있다.
즉, 드론(200)은 몸체부(211), 동력 발생부(212) 및 랜딩기어(213)를 포함할 수 있다.
몸체부(211)는 사용 목적에 맞는 다양한 전자 유닛들이 실장될 수 있으며, 다양한 전자 유닛들을 구동하기 위한 배터리(215)가 내장될 수 있다. 이러한 몸체부(211)의 형상은 공지의 다양한 형상이 적용될 수 있다.
동력 발생부(212)는 몸체부(211)에 연결되어 몸체부(211)의 비행을 위한 동력을 발생시킬 수 있다. 일례로, 동력 발생부(212)는 모터의 구동을 통해 프로펠러가 회전하는 형태일 수 있다. 이와 같은 동력 발생부(212)는 하나일 수도 있으나, 자유로운 방향전환이 가능하도록 복수 개로 구비될 수 있으며, 몸체부(211)에 내장되는 제어부(미도시)를 통해 전반적인 구동이 제어될 수 있다.
이에 따라, 제어부를 통해 모터가 구동되면, 프로펠러가 회전되면서 양력 또는 추진력이 발생됨으로써 드론(200)이 공중으로 부양될 수 있으며, 동력 발생부(212)가 복수 개로 구비되는 경우 각각의 동력 발생부(212)들의 출력 차이에 따라 비행 방향이 가변될 수 있다.
여기서, 몸체부(211)에 내장되는 제어부는 드론(200)의 전반적인 동작 및 구동을 제어할 수 있으며, 회로기판(미도시)에 실장된 칩셋 형태일 수 있다. 일례로, 제어부는 마이크로프로세서(microprocessor)일 수 있다.
랜딩기어(213)는 드론(200)이 이착륙을 하거나 드론 스테이션(100) 측에 계류하는 경우 몸체부(211)의 무게를 지지하기 위한 구조물이다. 이와 같은 랜딩기어(213)는 몸체부(211)로부터 연장되는 복수 개의 다리부(213a) 및 다리부의 하부단 측을 연결하는 연결부(213b)를 포함하는 형태일 수 있다. 이와 같은 랜딩기어(213)는 하나로 구비될 수도 있고 복수 개가 간격을 두고 이격 배치되는 형태일 수도 있다.
더불어, 드론(200)은 지상 또는 주변의 영상을 촬영하기 위한 적어도 하나의 카메라 유닛(214)이 포함될 수 있다. 더불어, 드론(200)의 상태 및 주변 환경에 대한 다양한 정보를 수집하거나 감지하기 위한 다양한 센서들(미도시)이 포함될 수 있다. 일례로, 센서들은 자이로 센서, 지자계 센서, 중력 센서, 고도 센서, 기울기 센서, 습도 센서, 풍력감지센서, 공기흐름 감지센서, 온도 센서, 음향센서, 조도센서 등과 같은 공지의 다양한 센서들이 적절하게 설치될 수 있다. 이와 같은 카메라 유닛(214) 및 센서들은 제어부를 통해 제어될 수 있다.
또한, 제어부는 카메라 유닛에서 촬영된 영상을 전송하거나 드론(200)의 운항 정보와 같은 데이터나 외부로부터 전송되는 제어 명령을 송수신하기 위한 통신 모듈을 더 포함할 수 있으며, 공지의 드론에 적용되는 다양한 전자 장비들이 추가로 탑재될 수 있다.
그러나, 본 발명의 실시 예에 적용될 수 있는 드론(200)을 상술한 구조에 한정하는 것은 아니며, 드론(200)의 사용 목적에 따라 공지의 드론(200)에 적용될 수 있는 다양한 유닛들이 추가로 장착될 수도 있다. 더불어, 드론(200)은 레저용, 감시용, 산업용, 정보 수집용 등과 같은 다양한 목적으로 사용될 수 있으며, 양력을 발생시키기 위한 적어도 하나의 날개가 유선형의 동체에 고정결합된 형태일 수도 있다.
이때, 무선 전력 수신 모듈(320)은 드론(200)의 랜딩기어(213) 측에 내장될 수 있으며, 무선 전력 수신 모듈(320)은 몸체부(211)에 포함된 제어부를 매개로 배터리(215)와 전기적으로 연결될 수 있다.
여기서, 랜딩기어(213) 측에 내장되는 무선 전력 수신 모듈(320)은 하나일 수도 있고, 복수 개일 수도 있다. 더불어, 랜딩기어(213) 측에 복수 개의 무선 전력 수신 모듈(320)이 내장되는 경우 동일한 랜딩기어 측에 내장될 수도 있으나, 드론(200)의 무게 균형성을 높일 수 있도록 드론(200)의 무게중심을 기준으로 양측에 동등한 개수의 무선 전력 수신 모듈(320)이 각각 내장될 수 있다. 일례로, 도 19에 도시된 바와 같이 드론(200)이 서로 간격을 두고 이격 배치되는 두 개의 랜딩기어(213)를 포함하는 경우, 두 개의 랜딩기어(213) 측에 무선 전력 수신 모듈(320)이 각각 내장될 수 있다. 더불어, 랜딩기어(213) 측에 무선 전력 수신 모듈(320)이 복수 개로 내장되는 경우 스테이션(820) 측에 내장되는 무선 전력 송신 모듈(310) 역시 복수 개로 구비될 수 있으며, 무선 전력 수신 모듈(320)의 개수와 일대일로 매칭되도록 구비될 수도 있다.
또한, 무선 전력 수신 모듈(320)은 상술한 바와 같이 소정의 길이를 갖는 자성체 코어의 길이방향을 따라 도전성부재가 권선된 코일을 포함하는 솔레노이드 형태일 수 있다.
더불어, 무선 전력 수신 모듈(320)은 드론(200)이 드론 스테이션(100)의 일면에 착륙한 상태에서 자성체 코어의 일면이 드론 스테이션(100)의 일면과 평행한 상태가 되도록 랜딩기어(213)의 연결부(213b) 측에 내장될 수 있으며, 무선 전력 수신 모듈(320)은 드론 스테이션(100)의 일면과 평행한 평면상에 배치되도록 드론 스테이션(100)에 내장될 수 있다.
이에 따라, 드론(200)은 드론 스테이션(100)의 일면에 착륙된 상태 또는 대기 상태에서 무선 전력 수신 모듈(320)과 무선 전력 송신 모듈(310)이 서로 정렬된 경우 무선 전력 수신 모듈(320)을 통해 드론 스테이션(100) 측으로부터 송출되는 무선 전력을 수신함으로써 드론(200)을 구동하기 위하여 몸체부(211)에 내장되는 배터리(215)가 충전될 수 있다.
이때, 무선 전력 송신 모듈(310)은 서로 직교하는 X축 및 Y축 방향을 따라 이동가능하도록 드론 스테이션(100)에 내장될 수 있다.
이에 따라, 드론 스테이션(100)의 일면에 드론(200)이 랜딩기어(213)를 통해 착륙된 경우, 무선 전력 송신 모듈(310)은 위치이동을 통해 평판형으로 구성되는 무선 전력 송신용 안테나의 중공부(S) 측에 자성체 코어의 단부가 위치하도록 정렬될 수 있다.
이로 인해, 무선 전력 송신 모듈(310) 및 무선 전력 수신 모듈(320)의 위치가 정렬됨으로써 최적의 충전효율로 드론(200)에 내장된 배터리(215)가 충전될 수 있다.
더불어, 무선 전력 송신 모듈(310)에 포함된 무선 전력 송신용 안테나가 루프 형상의 평판형으로 구성되어 드론 스테이션(100)의 일면과 평행한 평면상에 배치되도록 드론 스테이션(100)에 내장되고 무선 전력 수신 모듈(320)이 솔레노이드 형태로 구성되어 드론 스테이션(100)의 일면과 평행한 상태가 되도록 랜딩기어(213)에 내장되므로, 드론(200)이 드론 스테이션(100)에 착륙된 경우 무선 전력 송신 모듈(310)의 무선 전력 송신용 안테나는 무선 전력 수신 모듈(320)에 포함된 자성체 코어의 일면과 항상 평행한 상태를 유지할 수 있으며, 자성체 코어가 X축 또는 Y축에 대하여 임의의 각도로 기울어진 상태로 배치되더라도 무선 전력 송신 모듈(310)의 위치이동을 통해 자성체 코어의 단부가 무선 전력 송신용 안테나의 중공부(S) 내에 용이하게 위치될 수 있다.
다시 말하면, 무선 전력 수신 모듈(320)이 내장된 랜딩기어(213)가 드론 스테이션(100)의 일면 중 임의의 위치에 배치되더라도 무선 전력 수신 모듈(320)에 포함된 자성체 코어의 길이방향과 무선 전력 송신용 안테나의 반경방향 또는 폭방향이 이루는 각도를 고려할 필요없이 자성체 코어의 단부가 무선 전력 송신용 안테나의 중공부(S) 내에 위치되면 최적의 무선충전효율을 얻을 수 있는 상태로 정렬될 수 있다. 이를 통해, 본 발명의 실시 예에 따른 드론 스테이션(100)은 충전자유도를 높일 수 있다.
더불어, 무선 전력 송신 모듈(310)에 포함된 무선 전력 송신용 안테나를 통한 무선 전력전송이 대면적으로 이루어질 수 있으므로 kW급의 대용량 전송이 가능하고, 무선 전력 송신용 안테나를 보다 넓은 면적에 형성할 수 있으므로 방열 성능을 높여 충전효율을 높이거나 충전시간을 단축시킬 수 있다.
또한, 랜딩기어(213)에 내장되는 무선 전력 송신 모듈(310)이 솔레노이드 형태로 구성됨으로써 평판형에 비하여 랜딩기어(213)의 사이즈를 변경하지 않더라도 용이하게 내장될 수 있다. 이로 인해, 무선 전력 송신 모듈(310)을 적용하는 과정에서 랜딩기어(213)의 사이즈가 커지는 것을 방지할 수 있으므로 사이즈 증가에 의한 공기저항의 증가를 미연에 방지할 수 있다.
이를 위해, 드론 스테이션(100)은 도 17 내지 도 20에 도시된 바와 같이 하우징(411)과, X축 및 Y축을 따라 이동가능하게 하우징(411)에 내장되는 가동부재 및 가동부재를 구동하기 위한 제어 모듈(416)을 포함할 수 있으며, 가동부재 측에 무선 전력 송신 모듈(310)이 고정될 수 있다. 이를 통해, 무선 전력 송신 모듈(310)은 제어 모듈(416)에 의한 가동부재의 이동시 가동부재와 함께 위치가 변경될 수 있다. 여기서, 하우징(411)은 드론(200)이 착륙할 수 있도록 적어도 일면이 소정의 면적을 갖는 수평면을 갖도록 형성될 수 있으며, 지면에 매립된 형태일 수도 있고 수평면이 외부로 노출되도록 다른 구조물에 고정된 형태일 수도 있다.
한편, 가동부재는 X축을 따라 왕복 이동되는 제1슬라이더(412)와 Y축 방향을 따라 왕복 이동되는 제2슬라이더(413) 중 어느 하나일 수 있고, 제1슬라이더(412) 및 제2슬라이더(413) 중 어느 하나는 다른 하나의 이동방향과 수직한 방향으로 왕복 이동가능하게 결합될 수 있으며, 제1슬라이더(412) 및 제2슬라이더(413)는 제어 모듈(416)에 의해 제어되는 모터(M1, M2)의 구동을 통해 왕복 이동될 수 있다. 여기서, 모터(M1, M2)에서 발생되는 구동력이 제1슬라이더(412) 및 제2슬라이더(413)에 전달되는 방식은 풀리 방식, 스크류 방식, 기어방식 등 공지의 다양한 방식이 모두 적용될 수 있다.
구체적인 일례로써, 제1슬라이더(412)는 제1모터(M1)의 구동을 통해 하우징(411)의 바닥면에 대하여 X축과 평행한 방향으로 배치된 제1가이드(414)를 따라 왕복이동 가능하게 배치될 수 있고, 제2슬라이더(413)는 제1슬라이더(412)에 대하여 제2모터(M2)의 구동을 통해 Y축과 평행한 방향으로 배치된 제2가이드(415)를 따라 왕복이동 가능하게 배치될 수 있으며, 무선 전력 송신 모듈(310)은 제2슬라이더(413)의 상면에 고정 설치될 수 있다.
여기서, 제1모터(M1) 및 제2모터(M2)는 제어 모듈(416)을 통해 전반적인 동작이 제어될 수 있으며, 무선 전력 송신 모듈(310) 역시 제어 모듈(416)과 전기적으로 연결되어 전반적인 구동이 제어될 수 있다. 더불어, 제어 모듈(416) 은 무선 전력 송신 모듈(310)을 구동하기 위한 일반적인 회로소자 등이 포함될 수 있다.
이에 따라, 드론 스테이션(100)에 드론(200)이 착륙된 경우 제어 모듈(416)의 제어를 통해 제1슬라이더(412) 및 제2슬라이더(413)의 위치가 변경되어 랜딩기어(213)에 내장된 무선 전력 수신 모듈(320)의 자성체 코어의 단부가 무선 전력 송신용 안테나의 중공부(S) 내에 위치하도록 배치됨으로써 최적의 충전효율을 구현할 수 있다.
일례로, 제2슬라이더(413)는 도 19에 도시된 바와 같이 하우징(411)의 내부에서 제어 모듈(416)의 구동을 통해 X축 방향과 Y축 방향을 교번적으로 소정의 거리만큼 이동함으로써 무선 전력 송신 모듈(310)의 위치가 무선 전력 수신 모듈(320)과 정렬된 위치로 변경될 수 있다. 그러나, 제2슬라이더(413)의 이동경로를 이에 한정하는 것은 아니며, 다양한 경로로 이동될 수 있음을 밝혀 둔다.
이때, 제2슬라이더(413) 또는 무선 전력 송신 모듈(310) 측에는 자성체 코어와의 정렬상태를 감지하기 위한 센싱부(미도시)가 포함될 수 있으며, 센싱부는 제어 모듈(416)을 통해 제어될 수 있다. 이에 따라, 제어 모듈(416)은 센싱부를 통해 감지된 정보를 기반으로 제2슬라이더(413)의 위치를 조정함으로써 무선 전력 송신 모듈(310)과 무선 전력 수신 모듈(320)을 정렬시킬 수 있다.
일례로, 센싱부는 적외선을 통해 자성체 코어의 단부 위치를 확인하기 위한 적외선 센서일 수도 있고 무선 전력 수신용 안테나에 유기되는 자기장의 크기를 감지하기 위한 자기장 센서일 수도 있다. 그러나, 센싱부를 이에 한정하는 것은 아니며, 제2슬라이더(413)와 자성체 코어의 단부 간의 상호 위치를 확인할 수 있는 방식이라면 공지의 다양한 센서가 적용될 수 있음을 밝혀 둔다. 더불어, 제어 모듈(416)의 제어를 통해 무선 전력 송신 모듈(310)의 위치가 2개의 슬라이더(412,323)를 통해 변경되는 것으로 설명하였지만 이에 한정하는 것은 아니며 서로 직교하는 2축 방향으로 위치가 변경될 수 있는 공지의 모든 방식이 적용될 수 있음을 밝혀 둔다.
다른 예로써, 스테이션(820)은 전술한 실시예와 마찬가지로 하우징(411)과, X축 및 Y축을 따라 이동가능하게 하우징(411)에 내장되는 가동부재 및 가동부재를 구동하기 위한 제어 모듈(416)을 포함할 수 있으며, 가동부재에 회전 가능하게 결합되는 회전부재(418)를 포함할 수 있다. 여기서, 무선 전력 수신 모듈(320)은 드론(200)에서 서로 간격을 두고 이격 배치된 두 개의 랜딩기어(213) 측에 각각 내장된 형태일 수 있다.
이때, 회전부재(418) 측에는 두 개의 무선 전력 송신 모듈(310)이 고정될 수 있으며, 두 개의 무선 전력 송신 모듈(310)은 두 개의 무선 전력 수신 모듈(320)이 각각 내장된 두 개의 랜딩기어(213) 사이의 거리만큼 이격된 상태로 회전부재(418)의 상면에 고정될 수 있다. 이를 통해, 회전부재(418) 측에 고정된 무선 전력 송신 모듈(310)은 제어 모듈(416)에 의한 가동부재의 이동시 가동부재의 이동을 통해 X축과 Y축 방향을 따라 위치가 변경될 수 있으며, 회전부재(418)의 회전을 통해 Z축을 중심으로 회전됨으로써 각도가 변경될 수 있다.
일례로, 가동부재는 X축을 따라 왕복 이동되는 제1슬라이더(412)와 Y축 방향을 따라 왕복 이동되는 제2슬라이더(413) 중 어느 하나일 수 있고, 제1슬라이더(412) 및 제2슬라이더(413) 중 어느 하나는 다른 하나의 이동 방향과 수직한 방향으로 슬라이딩 이동가능하게 결합될 수 있으며, 회전부재(418)가 제1슬라이더(412) 및 제2슬라이더(413) 중 어느 하나에 대하여 Z축을 중심으로 회전 가능하게 결합될 수 있다.
더불어, 제1슬라이더(412), 제2슬라이더(413) 및 회전부재(418)는 제어 모듈(416)에 의해 제어되는 모터(M1, M2, M3)의 구동을 통해 왕복 이동되거나 회전될 수 있다. 여기서, 모터(M1, M2)에서 발생되는 구동력이 제1슬라이더(412) 및 제2슬라이더(413)에 전달되는 방식은 풀리 방식, 스크류 방식, 기어방식 등 공지의 다양한 방식이 모두 적용될 수 있다.
구체적인 일례로써, 제1슬라이더(412)는 제1모터(M1)의 구동을 통해 하우징(411)의 바닥면에 대하여 X축과 평행한 방향으로 배치된 제1가이드(414)를 따라 왕복이동 가능하게 배치될 수 있고, 제2슬라이더(413)는 제1슬라이더(412)에 대하여 제2모터(M2)의 구동을 통해 Y축과 평행한 방향으로 배치된 제2가이드(415)를 따라 왕복이동 가능하게 배치될 수 있다. 더불어, 회전부재(418)는 제2슬라이더(413)에 대하여 제3모터(M3)의 구동을 통해 Z축을 중심으로 회전될 수 있으며, 무선 전력 송신 모듈(310)은 회전부재(418)의 상면에 고정 설치될 수 있다.
여기서, 제1모터(M1), 제2모터(M2) 및 제3모터(M3)는 제어 모듈(416)을 통해 전반적인 동작이 제어될 수 있으며, 무선 전력 송신 모듈(310) 역시 제어 모듈(416)과 전기적으로 연결되어 전반적인 구동이 제어될 수 있다. 더불어, 제어 모듈(416) 은 무선 전력 송신 모듈(310)을 구동하기 위한 일반적인 회로소자 등이 포함될 수 있다.
이에 따라, 스테이션(820)에 드론(200)이 착륙된 경우 제어 모듈(416)의 제어를 통해 제1슬라이더(412) 및 제2슬라이더(413)의 위치가 변경된 후 회전부재(418)의 회전을 통해 두 개의 랜딩기어(213)에 각각 내장된 무선 전력 수신 모듈(320)의 자성체 코어의 단부가 두 개의 무선 전력 송신용 안테나의 중공부(S) 내에 위치하도록 배치됨으로써 최적의 충전효율을 구현할 수 있다.
더불어, 두 개의 무선 전력 송신 모듈(310) 및 무선 전력 수신 모듈(320)이 서로 정렬된 상태에서 동시에 무선 전력 전송이 이루어질 수 있음으로써 드론(200)에 내장된 배터리(215)의 충전시간을 단축시킬 수 있다.
한편, 도면에는 도시하지 않았지만 무선 전력 송신 모듈(310)이 복수 개로 구비되는 경우 복수 개의 무선 전력 송신 모듈(310) 중 어느 하나는 회전부재(418)의 회전 중심축 상에 위치하도록 고정될 수 있다. 이를 통해, 전술한 실시예에서 설명한 방식으로 제1슬라이더(412) 및 제2슬라이더(413)의 위치 이동을 통해 회전부재(418)의 회전 중심축 상에 고정된 무선 전력 송신 모듈(310)과 랜딩기어(213) 측에 내장된 무선 전력 수신 모듈(320) 중 어느 하나의 위치를 먼저 정렬시킨 후 회전부재(418)를 회전시키게 되면 회전부재(418)의 회전 중심축에서 벗어난 위치에 고정된 다른 무선 전력 송신 모듈(310)과 랜딩기어(213)에 내장된 다른 무선 전력 수신 모듈(320)을 용이하게 정렬시킬 수 있다.
한편, 상술한 드론 스테이션(100)은 드론 외에도 다양한 전자제품에 적용될 수 있음을 밝혀 둔다. 일례로, TV, 로봇청소기 등을 포함하는 생활가전, 노트북 컴퓨터, 전기자동차 등에도 적용될 수 있다.
더불어, 본 발명의 실시 예에 따른 드론 스테이션(100)은 상술한 설명과는 달리 무선 전력 송신 모듈(310)이 솔레노이드형으로 구성되고, 드론(200)에 내장된 무선 전력 수신 모듈(320)이 평판형으로 구성될 수도 있음을 밝혀 둔다.
더하여, 도면에는 도시하지 않았지만 드론 스테이션(100) 및 드론(200)에 내장되는 무선 전력 송신 모듈(310) 및 무선 전력 수신 모듈(320)이 모두 평판형으로 구성되거나 솔레노이드형으로 구성될 수도 있음을 밝혀 둔다.
이상에서 본 발명에 따른 바람직한 실시 예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형 예 및 수정 예를 실시할 수 있을 것으로 이해된다.

Claims (20)

  1. 착륙 유도 기재; 및
    상기 착륙 유도 기재 상에 형성되고, 상부에 위치하는 드론으로 전력을 무선 전송하는 무선 충전 기재를 포함하고,
    상기 착륙 유도 기재는 착륙한 드론을 상기 무선 충전 기재의 상부로 이동시키는 경사면이 형성된 드론 스테이션.
  2. 제1항에 있어서,
    상기 무선 충전 기재는 루프 형상으로 형성되고, 상부에 위치한 드론으로 전력을 무선 전송하는 전력 전송 코일을 포함하는 드론 스테이션.
  3. 제2항에 있어서,
    상기 전력 전송 코일과 이격되고, 전자기력을 발생하여 상기 무선 충전 기재의 상부에 위치한 드론을 고정하는 가이드 부재를 더 포함하는 드론 스테이션.
  4. 제3항에 있어서,
    상기 가이드 부재는 상기 전력 전송 코일의 외주에 배치된 드론 스테이션.
  5. 제1항에 있어서,
    상기 착륙 유도 기재는 상기 무선 충전 기재가 수용되는 수용 홈이 형성된 드론 스테이션.
  6. 제5항에 있어서,
    상기 경사면은 상기 착륙 유도 기재의 외주에서 상기 수용 홈으로 갈수록 낮아지는 경사를 갖는 드론 스테이션.
  7. 제1항에 있어서,
    상기 착륙 유도 기재는 상기 경사면의 하부에서 진동을 발생시키는 진동 부재를 더 포함하는 드론 스테이션.
  8. 제1항에 있어서,
    상기 착륙 유도 기재는 상기 경사면에 배치된 복수의 구체로 구성된 롤링 부재를 더 포함하는 드론 스테이션.
  9. 제1항에 있어서,
    상기 무선 충전 기재에 위치한 드론을 커버하는 보호 커버를 더 포함하고,
    상기 보호 커버는 상기 드론의 이착륙시 열림 상태로 변경되는 드론 스테이션.
  10. 제9항에 있어서,
    상기 보호 커버는
    회전 축;
    상기 회전 축의 회전에 의해 회동하는 제1 커버; 및
    상기 회전 축의 회전에 의해 회동하되, 상기 제1 커버와 대향되는 방향으로 회동하는 제2 커버를 포함하는 드론 스테이션.
  11. 제1항에 있어서,
    상기 무선 충전 기재는 무선 전력 송신 모듈을 포함하고,
    상기 무선 전력 송신 모듈은 전원을 무선 방식으로 송출하기 위한 무선 전력 송신용 안테나를 포함하되,
    상기 무선 전력 송신용 안테나는 도전성 부재가 루프 형상으로 감긴 평판형인 드론 스테이션.
  12. 제11항에 있어서,
    상기 무선 충전 기재는,
    제어모듈; 및
    상기 제어모듈의 제어를 통해 서로 직교하는 X축 방향과 Y축 방향을 따라 이동되는 적어도 하나의 가동부재를 더 포함하고,
    상기 무선 전력 송신 모듈은 상기 가동부재의 일측에 고정되어 상기 가동부재의 이동을 통해 위치가 변경되는 드론 스테이션.
  13. 제11항에 있어서,
    상기 무선 전력 송신 모듈은 상기 무선 전력 송신용 안테나의 일면에 배치되는 차폐시트를 포함하는 드론 스테이션.
  14. 제13항에 있어서,
    상기 차폐시트는 페라이트, 폴리머, 비정질 리본 중 적어도 1종 이상을 포함하는 판상의 시트인 드론 스테이션.
  15. 제11항에 있어서,
    상기 무선 전력 송신용 안테나는 회로기판의 일면에 루프 형상으로 패턴형성되는 안테나 패턴 및 평판형 코일 중 하나인 하는 드론 스테이션.
  16. 제11항에 있어서,
    상기 드론에는 상기 무선 전력 송신 모듈로부터 송출되는 무선 전력을 수신하는 무선 전력 수신 모듈이 내장되고,
    상기 무선 전력 수신 모듈은 도전성 부재가 소정의 길이를 갖는 자성체 코어의 둘레면을 감싸도록 길이방향을 따라 권선된 코일로 구성된 무선 전력 수신용 안테나를 포함하는 드론 스테이션.
  17. 제16항에 있어서,
    상기 무선 전력 수신 모듈과 무선 전력 송신 모듈의 정렬시 상기 자성체 코어는 일단부측이 상기 무선 전력 송신용 안테나의 중앙영역에 형성되는 중공부 측에 위치하도록 배치되는 드론 스테이션.
  18. 제16항에 있어서,
    상기 무선 전력 수신 모듈은 상기 드론의 착륙시 상기 무선 충전 기재와 접촉되는 랜딩기어 측에 내장되고,
    상기 무선 전력 송신 모듈은 상기 무선 충전 기재에 포함된 가동부재의 이동을 통해 상기 자성체 코어의 단부측이 상기 무선 전력 수신용 안테나의 중앙영역에 형성되는 중공부 내에 위치하도록 이동되는 드론 스테이션.
  19. 제18항에 있어서,
    상기 무선 전력 수신 모듈은 서로 간격을 두고 이격배치되는 두 개의 랜딩기어 측에 각각 내장되고,
    상기 무선 충전 기재는 상기 가동부재에 회전가능하게 결합되는 회전부재를 더 포함하며,
    상기 회전부재의 일면에는 두 개의 무선 전력 송신 모듈이 소정의 간격을 두고 이격배치된 드론 스테이션.
  20. 제19항에 있어서,
    상기 두 개의 무선 전력 송신 모듈 사이의 거리는 상기 두 개의 랜딩기어 사이의 거리와 동일한 크기를 갖는 드론 스테이션.
PCT/KR2019/008992 2018-07-20 2019-07-19 드론 스테이션 WO2020017938A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980053506.XA CN112567171B (zh) 2018-07-20 2019-07-19 无人机站
US17/261,452 US20210163135A1 (en) 2018-07-20 2019-07-19 Drone station

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0084810 2018-07-20
KR20180084810 2018-07-20
KR20180158876 2018-12-11
KR10-2018-0158876 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020017938A1 true WO2020017938A1 (ko) 2020-01-23

Family

ID=69165171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008992 WO2020017938A1 (ko) 2018-07-20 2019-07-19 드론 스테이션

Country Status (4)

Country Link
US (1) US20210163135A1 (ko)
KR (1) KR102273975B1 (ko)
CN (1) CN112567171B (ko)
WO (1) WO2020017938A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014787A1 (ko) * 2020-07-17 2022-01-20 주시회사 휴머놀러지 드론 스테이션

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111483336B (zh) * 2019-01-28 2021-11-23 中光电智能机器人股份有限公司 无人机的充电站、充电系统及充电方法
US11897630B2 (en) * 2019-10-24 2024-02-13 Alarm.Com Incorporated Drone landing ground station with magnetic fields
US11787564B2 (en) 2020-04-06 2023-10-17 Workhorse Group Inc. Carriage lock mechanism for an unmanned aerial vehicle
KR102195933B1 (ko) 2020-09-10 2020-12-29 황건호 드론용 도킹장치
KR20220059771A (ko) * 2020-11-03 2022-05-10 에스케이씨 주식회사 무선충전 장치, 및 이를 포함하는 이동 수단 및 무선충전 시스템
KR102492944B1 (ko) * 2021-06-07 2023-01-30 한국생산기술연구원 무인 이동체용 무선충전 장치
IT202100022652A1 (it) 2021-09-01 2023-03-01 Rithema S R L S Lampione stradale con integrata piattaforma per ricarica di droni ad elevata efficienza energetica
KR102576265B1 (ko) 2021-10-15 2023-09-07 단국대학교 산학협력단 무인 항공체의 자율 무선 배터리 충전 장치, 방법 및 프로그램
US11691718B2 (en) * 2021-10-29 2023-07-04 Toyota Motor Engineering & Manufacturing North America, Inc. Aerial vehicle
US11618331B1 (en) * 2021-10-31 2023-04-04 Beta Air, Llc Proximity detection systems and methods for facilitating charging of electric aircraft
KR102538053B1 (ko) * 2022-04-29 2023-05-30 (주)위플로 비행체의 이착륙용 스테이션 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101700396B1 (ko) * 2016-05-27 2017-01-31 (주)삼성정보통신 법규 위반 단속 드론, 드론 충전 스테이션 및 법규 위반 단속 시스템
JP2017124758A (ja) * 2016-01-14 2017-07-20 田淵電機株式会社 飛行体の着陸対象装置、および飛行体の制御方法
KR20170132923A (ko) * 2016-05-24 2017-12-05 (주)이랩코리아 드론의 무인 임무 제어 시스템
US20180056794A1 (en) * 2016-08-24 2018-03-01 Korea Advanced Institute Of Science And Technology Three-Phase Wireless Power Transfer System And Three-Phase Wireless Chargeable Unmanned Aerial Vehicle System Based On The Same
KR20180082164A (ko) * 2017-01-10 2018-07-18 한국기술교육대학교 산학협력단 무인 드론 충전 스테이션

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8297552B2 (en) * 2010-01-21 2012-10-30 I/O Controls Corporation Helicopter landing pad
US9073645B2 (en) * 2012-06-20 2015-07-07 Raytheon Company Apparatus and method for retrieving unmanned aerial vehicles
JP2015517293A (ja) * 2013-03-06 2015-06-18 ハンシンキジョン カンパニー, リミテッドHanshinkijeonco., Ltd. 自動位置調整無線充電器及びそれを用いた充電方法
CN103441579A (zh) * 2013-08-07 2013-12-11 深圳市合元科技有限公司 无线充电能量发射装置
KR20160097399A (ko) 2015-02-06 2016-08-18 주식회사 공간정보 시료채취용 무인비행시스템
WO2017044798A1 (en) * 2015-09-11 2017-03-16 Mozer Reese Alexander Drone aircraft landing and docking systems
KR101926634B1 (ko) * 2015-09-30 2018-12-11 주식회사 아모센스 무선전력 전송용 자기장 차폐유닛, 이를 포함하는 무선전력 전송모듈 및 휴대용 기기
KR20170040961A (ko) * 2015-10-06 2017-04-14 엘지이노텍 주식회사 무인비행체 무선충전 시스템 및 이의 구동 방법
WO2017069581A1 (ko) * 2015-10-23 2017-04-27 주식회사 아모텍 차량용 안테나 모듈
KR20170049840A (ko) * 2015-10-29 2017-05-11 주식회사 담스테크 무인 비행기의 옥외용 격납 장치
KR20170078318A (ko) * 2015-12-29 2017-07-07 한국전자통신연구원 비행체에 대한 무선 전력 전송 장치 및 비행체
KR101883196B1 (ko) * 2016-01-11 2018-07-31 드림스페이스월드주식회사 수직이착륙 드론 및 도킹 스테이션
CN106230049B (zh) * 2016-08-01 2020-02-14 安克创新科技股份有限公司 无线充电装置与方法
EE05810B1 (et) * 2016-08-31 2018-09-17 Oü Eli Seade ja meetod mehitamata õhusõiduki automaatseks positsioneerimiseks maandumisplatvormil
KR20180089763A (ko) * 2017-02-01 2018-08-09 삼성전자주식회사 디스플레이 시스템, 무선 전력 송신 장치 및 무선 전력 수신 장치
CN107394873B (zh) * 2017-08-18 2023-05-23 华南理工大学 一种电力巡检无人机的全自动环保无线充电系统
US11148805B2 (en) * 2018-04-10 2021-10-19 Government Of The United States, As Represented By The Secretary Of The Army Enclosure for an unmanned aerial system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124758A (ja) * 2016-01-14 2017-07-20 田淵電機株式会社 飛行体の着陸対象装置、および飛行体の制御方法
KR20170132923A (ko) * 2016-05-24 2017-12-05 (주)이랩코리아 드론의 무인 임무 제어 시스템
KR101700396B1 (ko) * 2016-05-27 2017-01-31 (주)삼성정보통신 법규 위반 단속 드론, 드론 충전 스테이션 및 법규 위반 단속 시스템
US20180056794A1 (en) * 2016-08-24 2018-03-01 Korea Advanced Institute Of Science And Technology Three-Phase Wireless Power Transfer System And Three-Phase Wireless Chargeable Unmanned Aerial Vehicle System Based On The Same
KR20180082164A (ko) * 2017-01-10 2018-07-18 한국기술교육대학교 산학협력단 무인 드론 충전 스테이션

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022014787A1 (ko) * 2020-07-17 2022-01-20 주시회사 휴머놀러지 드론 스테이션

Also Published As

Publication number Publication date
US20210163135A1 (en) 2021-06-03
KR20200010133A (ko) 2020-01-30
CN112567171A (zh) 2021-03-26
KR102273975B1 (ko) 2021-07-08
CN112567171B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2020017938A1 (ko) 드론 스테이션
WO2016200021A1 (ko) 비행체의 자율유도를 통한 충전시스템
KR102394878B1 (ko) 자동 이·착륙 및 무선자동충전 기능을 포함한 드론 스테이션 장치
CN101667032B (zh) 基于视觉的无人直升机目标跟踪系统
JP7015734B2 (ja) 送電装置、移動体および無線電力伝送装置
US7714536B1 (en) Battery charging arrangement for unmanned aerial vehicle utilizing the electromagnetic field associated with utility power lines to generate power to inductively charge energy supplies
WO2018139723A1 (ko) 수직이착륙 무인기의 무인 운영 시스템
WO2014075609A1 (en) A multi-rotor unmanned aerial vehicle
WO2017023080A1 (ko) 차량용 무선전력 송신모듈
WO2017069581A1 (ko) 차량용 안테나 모듈
WO2015182806A1 (ko) 이동 단말기의 부상 시스템
WO2018066822A1 (ko) 무선 충전을 위한 코일 블록 및 그것의 제조 방법
KR101867424B1 (ko) 비행 중인 드론에 무선으로 전력을 전송하는 무선충전장치
JP6954044B2 (ja) 無人飛行体の制御方法
WO2019054747A2 (ko) 무선전력 송신장치
CN102114635A (zh) 巡线机器人智能控制器
WO2018147649A1 (ko) 자성시트 및 이를 포함하는 무선 전력 수신 장치
WO2018174597A1 (ko) 복합형 무선전력 전송 시스템 및 이를 포함하는 무인비행장치용 무선전력 전송 시스템
WO2017058548A1 (en) Magnetic charging and optical data transfer system
CN106791418A (zh) 一种独立式航拍云台系统及其控制方法
WO2019027172A1 (ko) 분리형 프로펠러를 포함한 추진 시스템 및 이를 포함하는 무인 비행체
WO2017135485A1 (ko) 무인항공체
CN105302155A (zh) 一种以电力载波辐射确定安全距离的无人机巡线方法
GB2553604A (en) A drone and drone recharging and storage station
KR102122396B1 (ko) 복합형 무선전력 전송 시스템 및 이를 포함하는 무인비행장치용 무선전력 전송 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837104

Country of ref document: EP

Kind code of ref document: A1