WO2020017844A1 - 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법 - Google Patents

클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법 Download PDF

Info

Publication number
WO2020017844A1
WO2020017844A1 PCT/KR2019/008698 KR2019008698W WO2020017844A1 WO 2020017844 A1 WO2020017844 A1 WO 2020017844A1 KR 2019008698 W KR2019008698 W KR 2019008698W WO 2020017844 A1 WO2020017844 A1 WO 2020017844A1
Authority
WO
WIPO (PCT)
Prior art keywords
status
cluster
application
cloud
monitoring
Prior art date
Application number
PCT/KR2019/008698
Other languages
English (en)
French (fr)
Inventor
우광택
Original Assignee
나무기술 주식회사
아콘소프트 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나무기술 주식회사, 아콘소프트 주식회사 filed Critical 나무기술 주식회사
Priority to US17/257,497 priority Critical patent/US20210279157A1/en
Priority to JP2021502746A priority patent/JP2021530802A/ja
Priority to CN201980047585.3A priority patent/CN112437915A/zh
Priority to SG11202100290UA priority patent/SG11202100290UA/en
Publication of WO2020017844A1 publication Critical patent/WO2020017844A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3006Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is distributed, e.g. networked systems, clusters, multiprocessor systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/302Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a software system
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/301Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system is a virtual computing platform, e.g. logically partitioned systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3003Monitoring arrangements specially adapted to the computing system or computing system component being monitored
    • G06F11/3034Monitoring arrangements specially adapted to the computing system or computing system component being monitored where the computing system component is a storage system, e.g. DASD based or network based
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/3055Monitoring arrangements for monitoring the status of the computing system or of the computing system component, e.g. monitoring if the computing system is on, off, available, not available
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/32Monitoring with visual or acoustical indication of the functioning of the machine
    • G06F11/324Display of status information
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/32Monitoring with visual or acoustical indication of the functioning of the machine
    • G06F11/324Display of status information
    • G06F11/328Computer systems status display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/30Monitoring
    • G06F11/34Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment
    • G06F11/3409Recording or statistical evaluation of computer activity, e.g. of down time, of input/output operation ; Recording or statistical evaluation of user activity, e.g. usability assessment for performance assessment

Definitions

  • the present invention relates to a method for monitoring a plurality of clusters and applications in a cloud platform, and more particularly, a plurality of container clusters and a plurality of service clusters in a cloud platform that can be easily managed by being able to monitor service applications operating in the clusters.
  • a method for monitoring clusters and applications is described in detail below.
  • the cloud is referred to as the 'service provider's server' according to the practice of displaying the computing service provider server in a cloud shape.
  • SoaaS Software as a Service
  • AWS RDS Google AppEngine
  • Google AppEngine application services that are provided on-demand to many users, such as Salesforce.com and Google e-mail.
  • IaaS Infrastructure as a Service
  • PaaS Platform as a Service
  • AWS EC2 AWS EC2.
  • the cloud is a private cloud that operates only for one organization depending on the type of introduction and distribution, a public cloud rendered through an open network for public use, and two that remain distinct but tied together. It can also be divided into a hybrid cloud (hybrid cloud) that is a combination of the above clouds.
  • the most important thing is to customize and optimize the technology and infrastructure around the application service, which is the cloud that implements the enterprise's business and IT strategy, and it is easy to configure or deploy the application on various infrastructures. shall.
  • the present invention was created to solve the above problems, and a method for monitoring a plurality of clusters and applications in a cloud platform that can easily monitor a plurality of container clusters and service applications operating in the clusters is easy to manage.
  • the purpose is to provide.
  • Method for monitoring a plurality of clusters and applications in the cloud platform comprises the steps of creating a plurality of container cluster environment in which the cloud platform system can operate the container-based application in a variety of infrastructure; Integrally monitoring the plurality of container clusters and information of applications running on the clusters; And providing a monitoring screen reflecting the monitoring result, wherein the monitoring screen includes a cluster status showing a node, a CPU, a memory, an application, a server, a node status of each cluster, an application status of each cluster, and storage of each cluster.
  • each node status of each cluster includes CPU, memory, disk, network usage trend, node list, node list, node name, label, status, CPU capacity, memory capacity, Including disk capacity, instance quota, age
  • the application status of each cluster includes CPU, memory, network usage trend, application map list, the application map list is namespace name, application Including map name, service, number of servers, CPU usage, memory usage, age
  • the storage status includes name, type, storage class name, policy, and status
  • the volume status includes volume name, status, usage, access mode, and age.
  • the method for monitoring a plurality of clusters and applications in the cloud platform can monitor the service applications operating in the plurality of container clusters and clusters in an integrated manner, and thus the management is easy.
  • FIG. 1 is a block diagram of a cloud platform system according to an embodiment of the present invention.
  • FIG. 2 briefly illustrates the function of the cloud integrator of FIG. 1.
  • FIG. 3 briefly illustrates the function of the service manager of FIG. 1.
  • FIG. 4 briefly illustrates the function of the application orchestration unit of FIG. 1.
  • FIG. 5 illustrates a framework of application containerization according to one embodiment of the invention.
  • FIG. 12 illustrates an architecture of a cloud platform system according to an embodiment of the invention.
  • FIG 13 shows the configuration of the cocktail server and its surrounding architecture.
  • FIG. 14 is a flowchart illustrating a cluster integration monitoring method of a cloud platform system according to an exemplary embodiment of the present invention.
  • 15 is a diagram illustrating a cluster integration monitoring screen according to an embodiment of the present invention.
  • FIG. 16 illustrates a screen for monitoring the overall status of nodes included in a cluster and CPU, memory, storage, and network usage trends of individual nodes according to an embodiment of the present invention.
  • FIG. 17 illustrates a screen for monitoring the overall status of applications operating in a cluster and CPU, memory, and network usage trends of individual nodes according to an embodiment of the present invention.
  • FIG. 18 illustrates a screen for monitoring storage / volume usage connected to a cluster according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of a cloud platform system according to an exemplary embodiment of the present invention
  • FIG. 2 schematically illustrates the function of the cloud integrator of FIG. 1
  • FIG. 3 briefly illustrates the function of the service manager of FIG. 1.
  • 4 schematically illustrates the function of the application orchestration unit of FIG. 1.
  • FIG. 5 illustrates a framework of application containerization according to an embodiment of the present invention
  • FIGS. 6 to 11 briefly illustrate functions of the development / operation unit of FIG. 1.
  • the cloud platform system of FIG. 1 provides a view and a tool for ensuring application availability and scalability and streamlining development and operation based on multi / hybrid cloud integrated management.
  • the cloud platform system of the present invention will be referred to as " Cocktail Cloud ".
  • the cocktail cloud includes a cloud integration unit (100), a service management unit (Service Management) 110, an application orchestration unit (Orchestration 120), a development / operation unit (DevOps View, 140), and a DB / repository. And 150.
  • the cloud integration unit 100 automatically configures the infrastructure of the multi / hybrid cloud to provide the application and synchronize configuration information for management.
  • the cloud integrator 100 performs the functions of cloud provisioning and cloud synchronization.
  • the cloud provisioning function is a function of configuring and providing a cloud network infrastructure in an application cluster (cocktail cluster), and configuring and providing a cloud computing infrastructure in an application. And for physical infrastructure (bare metal), cluster configuration tool is provided.
  • Support Cloud is AWS, Azure, Aliyun, Google Computing Engine for Public, Openstack, VMWear for Private, and On-premise, Datacenter BareMetal Infra.
  • the cloud synchronization function is a function of storing and managing cloud infrastructure configuration information in the integrated configuration DB 160 and synchronizing infrastructure change information with the integrated configuration DB 160 during operation.
  • the service management unit 110 is a logical group managing an application cluster, and allocates and manages cloud accounts, users, and network resources. In other words, the service manager 110 performs an integrated account management function, a network management function, and a user management function.
  • an integrated account management (Cloud Provider) function is a function used to collectively manage multi-cloud accounts and access information, and to configure a network and cloud provisioning.
  • Network management is the ability to configure cloud networks and assign them to services.
  • it may be a VPC Subnet of AWS.
  • One service creates a cluster using a multi-cloud provider's network to configure and operate an application.
  • User management function is to manage the team members who manage the service and the authority required for development / operation.
  • the authority may include an enterprise service management authority (Admin), an enterprise service inquiry authority (Manager), and a service management authority (DevOps) assigned as a member. Users can participate as members in various services.
  • Admin enterprise service management authority
  • Manager enterprise service inquiry authority
  • DevOps service management authority assigned as a member. Users can participate as members in various services.
  • the Application Orchestration Department (120) is responsible for the core functionality of the Cocktail Cluster, with the ability to ensure application deployment, availability, and scalability.
  • the application orchestration unit 120 performs an application deployment function, a replication control function, a rolling update function, a scaling function, and a monitoring function.
  • the application distribution function is a container image-based distribution that provides ease of requiring no separate setting and configuration, and automatically provisions a cloud infrastructure when the application is distributed.
  • an application container (hereinafter referred to as a " container ”) refers to an independent system on an OS virtualized by allocating and isolating host resources to an application process.
  • cgroup creates a process group and allocates and manages resources to allocate host resources to processes on the OS.
  • a namespace is a technique that isolates a process, network mount, etc. into a specific name space.
  • a container is an independent system virtualized on an OS that allocates resources to an application process through cgroups and is isolated with a namespace.
  • Container is a lightweight OS virtualization method that does not use a hardware emulator and guest OS. It is a technology suitable for application virtualization because it consumes little host resources and requires little startup time. In addition, virtualization on the OS enables configuration and deployment of infrastructures independent of existing physical servers (bare metals) and virtual servers (virtual machines).
  • Converting an existing application to a container requires switching between the configuration of the application and the configuration, rather than the source.
  • workload-specific role-specific configurations are common, and multiplexing and scaling through replication Consideration should be given to the design and application of the configuration.
  • a cluster-oriented infrastructure for container orchestration must be configured, and computing capacity considering replication and scaling needs to be estimated (minimizing reserve capacity and easily scaleable if necessary), and related to shared storage, security, network, etc. You will need to configure your infrastructure.
  • containerization is largely divided into analysis and configuration design (S100), container switching (S200), operation transfer (S300).
  • the container switching target is selected from existing applications in consideration of the purpose and strategy of container / cloud introduction (S110).
  • the target application When the target application is selected, the target application is analyzed (S120). At this time, application status and data survey of application, infrastructure, data, and linkage structure are conducted, and the needs of development, operation, and manager are collected. Then, the direction, issues, and solutions of container composition are drawn.
  • the container configuration for each target application is designed in consideration of separation / integration, linkage, availability, scalability, and security (S130). At this point, you can define image build templates such as base images, environment variables, inclusion items, and commands.
  • S140 design the infrastructure configuration (S140). Select a transition infrastructure (cloud / bare metal) provider and calculate capacity per application container. It calculates the number of container cluster nodes and infrastructure capacity, and designs storage, network, and security configurations.
  • the infrastructure configuration is designed to establish a container switching method (S150).
  • S150 container switching method
  • the detailed conversion plan for each application is established, the transition task and organization / role are defined, and the transition schedule is established. And reflect reporting and feedback.
  • the cocktail cloud platform is installed and configured, and the infrastructure, such as network, shared storage, and security, is configured (provided by cocktail in the case of cloud). Create a cocktail service and cluster and validate the cluster configuration through infrastructure infrastructure assignment and user registration.
  • an application container is configured for application switching (S230), and if necessary, the application setting and source are changed. Verifies the function and setting of the switching container, and builds the container deployment image and registers it in the registry. Then create and test the cocktail server.
  • Switch the target application container for data conversion (S240), and set the cocktail server through the Persistence volume setting, and extracts data and transmits to the cocktail server.
  • this model DB solution data conversion is performed and data consistency is checked.
  • data synchronization solutions are applied to minimize downtime.
  • the verified container is distributed to the cocktail server, the application function and performance tests are performed, and the test results are reflected in the container and the infrastructure (S250 and S260).
  • Operational distribution / opening (S310) is performed for the operation transfer (S300). Specifically, an operation cocktail cluster is created and a cocktail server is generated and linked based on the converted image. Then migrate the operational data and open the application.
  • container orchestration The technology for distributing, operating, and managing such application containers is called container orchestration.
  • Container orchestration is a technology that deploys, operates, and manages application containers by forming managed clusters in physical and virtual infrastructures, and utilizes the advantages of light, fast mobility and mobility of containers to cloud existing on-premises and data center infrastructure. And application management platforms in private and public clouds.
  • the container has the following advantages.
  • containers implement lightweight virtualization.
  • OS-level virtualization (Non Hypervisor) is possible, fast operation (creation, execution, restart, etc.), and small sized container image is efficient to deploy and update.
  • the container is mobile.
  • the replication function is faster and more efficient than the OS reboot method by maintaining the initial number of replications (multiplexing) for application stability and availability, and restarting in case of abnormality through the application container health check.
  • the cloned application is serviced through load balancing.
  • Rolling update function performs update operation such as deployment and infrastructure change without interruption of application service, and configures automation through job management function of DevOps View when there is dependency between several applications.
  • Scaling function is to scale up / out of instance through monitoring of application, and to scale up / down of resource capacity in case of application infrastructure.
  • the monitoring information then configures the scaling automation.
  • the monitoring function monitors an application instance (container + infrastructure) and generates and manages alarms through threshold setting.
  • DevOps View includes service status function, cluster map function, monitoring view function, resource management function, metering function, task management function, and enterprise status management / analysis function. Each function will be described with reference to FIGS. 6 to 11 as follows.
  • the service status function provides a view (see FIG. 6) that provides a service-oriented view of the status of the entire application cluster of the cocktail cloud. Accordingly, items such as service status, cluster status, and monitoring alarm may be displayed.
  • the cluster refers to an application unit and a service refers to a logical group of the cluster.
  • the supplier, region, server, cloud component, and monthly usage costs of the cluster can be viewed in the form of a card.
  • the usage costs can be excluded.
  • the cluster card In the monitoring alarm display function, if an alarm occurs in an application or infrastructure in a cluster, the cluster card can be checked.
  • the cluster map function provides a view for visualizing and managing the configuration and state information of the cocktail server (application) in a map form (see FIG. 7).
  • the cluster map improves the visibility of configuration information by inquiring and managing the server and cloud component configuration of the cluster in a map form.
  • the cluster map may include items such as a cocktail server, a cloud component, and a server group.
  • Cocktail Server is a basic unit of application orchestration, consisting of load balancing, application containers, and infrastructure, providing a standardized interface for multi / hybrid cloud management.
  • the cocktail server checks application status, replication, resource usage, and manages scaling and rolling updates in the server.
  • Cocktail servers are divided into multi- and single-instance types depending on whether they have replication capabilities or not.
  • AWS supports multizone options.
  • Cloud components manage PaaS services provided by providers.
  • it can be RDS, a DB service of AWS.
  • Server groups provide administrative convenience for logical groups of server configurations.
  • the monitoring view function checks the resource capacity and status of applications and infrastructure in the cluster and provides information for checking the status of cloud resources (see FIG. 8).
  • the monitoring view visualizes and provides monitoring information about the applications and infrastructure in the cluster, and provides the average and TOP information of CPU, memory, and disk so that resource usage can be checked and responded to in operation.
  • the monitoring view may include a view switch (trend / data) item, a target switch (server / resource) item, and the like.
  • Trend View provides hourly monitoring information about servers and replicated instance and application containers
  • Data View provides average and TOP monitoring values of the current time.
  • the monitored targets are divided into servers in the cluster and resources in the cloud infrastructure.
  • Cloud resources use information provided by providers.
  • the resource management function provides a view (hereinafter referred to as a " resource management view") for identifying resources of the cloud infrastructure constituting the application and adjusting detailed settings as necessary (see FIG. 9).
  • the resource management view allows you to view the cloud infrastructure resources that make up the cocktail server and to change settings in detail.
  • the Cocktail Server automatically performs the basic configuration for application orchestration, but is used when you need to adjust cloud resources yourself if necessary.
  • the resource management view includes resource information / action items.
  • the application manages container setting and distribution information.
  • Cloud resource information is composed of load balancer, instance (VM) and security, and instance manages capacity and volume. Resource information that needs to be adjusted is performed through actions.
  • the metering function provides a view (hereinafter referred to as a "metering view ”) that allows you to check the cost information of the cloud infrastructure resources used by the application (see FIG. 10).
  • the metering view may include cluster infrastructure usage cost items, server and resource cost items, and the like.
  • the cost category by server and resource provides the cost of cloud resources used by each cocktail server based on the TOP, and the cost of using cloud resources by type based on the TOP.
  • the job management function provides an administrative view (hereinafter referred to as " job management view") for scheduling / automating operational tasks such as distribution, remote command, resource management, and the like (see FIG. 11).
  • job management view an administrative view for scheduling / automating operational tasks such as distribution, remote command, resource management, and the like (see FIG. 11).
  • Job management views provide scheduling and batch processing for the operation of applications and infrastructure.
  • the work management view may include a work status item, a work management item, and the like.
  • the task status items in the task management view are divided into distribution, remote command, and resource management tasks, and are composed by combining each task.
  • Deployment refers to application deployment, remote commands to perform OS commands remotely, and resource management to scale and state / configuration changes.
  • work management items can be set up according to immediate execution, scheduling, and alarm occurrence.
  • Execution according to the alarm occurrence is used, for example, automatic scaling according to the capacity monitoring standard.
  • the task management section provides a check of the execution status and logs of the task.
  • Enterprise Status Management / Analysis provides a Cocktail Dashboard for identifying and analyzing enterprise application, cloud and cost status.
  • the Cocktail Dashboard is a view of the application and cloud infrastructure at the enterprise level, providing cost / budget management, cost optimization analysis, and statistical reports.
  • the cocktail dashboard may include application status items, cloud status items, cost / budget management, cost optimization analysis items, and statistics / report items.
  • the application and infrastructure status can be identified and viewed company-wide based on the standardized elements of the cocktail server, cluster, and cloud component, and the service-oriented status view is provided.
  • the cloud used by the company can be identified by provider, region, and resource, and the infrastructure-oriented status view is provided.
  • the company can identify the enterprise cloud cost status and provide the information to make cloud resource cost effective through budget allocation / control and optimization analysis by service.
  • Statistics / Report item provides statistical information and report view for analysis and reporting.
  • Image storage (registry) 180 in the DB / repository 150 manages the registration, sharing, download, search, version of the application container
  • monitoring DB 170 manages the monitoring information of the application and infrastructure
  • the DB Configuration Management DB, CMDB, 160
  • FIG. 12 illustrates an architecture of a cloud platform according to an exemplary embodiment of the present invention
  • FIG. 13 illustrates a configuration of a cocktail server and its surrounding architecture.
  • the cocktail cloud includes a cocktail cluster 200, a provider plug-in 210, a server manager 220, a DevOps manager, a CMDB 160, a monitoring DB 170, an image registry 180, an API server ( 290, a user console 300.
  • the cocktail cluster 200 provides an orchestration-based architecture and the provider plug-in 210 is used as a basic module for integrated management through the cloud provider API 280.
  • the cluster 200 is composed of a node and a master.
  • the cluster 200 processes a command of a master through a worker 310.
  • the worker 310 is in charge of communication with the master and is supported by the executor according to the execution instruction.
  • the monitoring executor 320 collects node and container monitoring information, and the command executor 330 executes an OS and a container command.
  • Container Engine Docker, 340.
  • the provider plug-in 210 is an API Rapper for Kubernetes API support for multi-cloud and bare metal, and is composed of a plug-in module for provider extension.
  • the cocktail server is a basic unit of application orchestration, and performs replication, scaling, and rolling updates of containers and cloud infrastructure through the cluster master 200 and the provider plug-in 210.
  • the cocktail server is composed of a container and a cloud infrastructure as shown in FIG. 13, and is composed of a load balancer, an instance (node), a container, a volume, security, and the like, and examples of AWS include ELB, EC2 Instance, and Security Group. It may be an ESB.
  • Cocktail Server provides cloud components for PaaS of cloud providers. For example, it can be RDS from AWS.
  • the server manager 220 is a control module that orchestrates application containers and infrastructure in a server, and performs replication control for restarting / recovering abnormally terminated containers, scaling in / out, and scaling up and down through instance types and volume expansion. It provides a rolling update function that continuously and nondisruptively distributes application containers.
  • DevOps Manager includes configuration management for provisioning multi-cloud infrastructure (Configuration Manager, 230), metering management (Metering Manager, 240) for multi-cloud resource usage and cost management, and resource management for multi-cloud resource status and configuration management. Manager, 250), monitoring and management for collecting and managing container / infrastructure monitoring information (Monitoring Manager, 260), and a combination of several task tasks for immediate execution, execution time, and event occurrence. It is a manager module for DevOps that provides job management (Job Manager, 270) for remote command tasks.
  • Cocktail Cloud provides a DB for managing configuration information, monitoring information management, and application container image management of applications and infrastructure, and provides an interface for users and programming.
  • the CMDB 160 manages configuration information of provider networks, services, clusters, servers, components, and cloud resources.
  • the monitoring DB 170 manages monitoring information of applications and infrastructure.
  • the image registry 180 manages registration, sharing, download, search, and version of application containers.
  • the API server 290 provides all the functions of the cocktail cloud to the API 280, and supports customization according to the corporate strategy and linkage with other solutions.
  • the user console 300 is provided in the form of a Web GUI.
  • This cocktail cloud can be utilized as follows.
  • Cocktail Cloud is a platform for integrated management of heterogeneous and complex multicloud environments through standardized components. It also implements the entire application-oriented enterprise cloud. Specifically, Cocktail Cloud is a standardized management component that standardizes managed objects through providers, networks, services, clusters, servers, and cloud components, and integrates and manages heterogeneous and complex multi-cloud resources (integrated accounts, resources, and costs). In addition, applications are a key resource of the business. Cocktail clusters can be used to increase application availability and scalability, and cocktail-driven devOps View can streamline development / operational tasks to enable an application-centric enterprise cloud.
  • Cocktail Cloud provides the foundation for building / operating hybrid cloud through cloudization of in-house and data center bare metal infrastructure. It also provides integrated management and efficient development / operation of complex hybrid infrastructures.
  • application clusters are built in-house and in the data center bare metal infrastructure to create a container-based cloud environment, eliminating the need for a platform for virtualization, providing scalability such as availability and scaling, and integrating existing private and public clouds. You can implement cloudization of a manageable physical infrastructure.
  • Cocktail Cloud DevOps View It is also managed through standard components of the Cocktail Cloud and provides streamlined development and operation tasks through the Cocktail Cloud DevOps View.
  • Cocktail Cloud provides an efficient management of applications on the cloud and a microservice construction and operation platform through automation for containers and CI / CD.
  • Cocktail Cluster provides container-based application deployment and management environment (cloud-native applications) in the cloud infrastructure. Cocktail clusters are the basic units for building and managing microservices.
  • Task management in the Cocktail DevOps view provides an automation foundation for building and deploying applications, and containers are a lighter and easier way to perform CI / CD.
  • Cocktail Cloud provides a platform for deploying / operating applications on multi / hybrid clouds.
  • Cocktail Cloud can also be used as an infrastructure resale and service delivery platform for cloud service brokers.
  • CSB Build and operate a platform for CSB as a cocktail cloud that integrates and manages public cloud data center infrastructure and provides users with resale and cloud management platforms as a service, and provides multi-tenancy and billing systems for SaaS. Can be used as an affiliate cloud delivery and management platform.
  • PaaS fire cloud components
  • FIG. 14 is a flowchart illustrating a cluster integration monitoring method of a cloud platform system according to an exemplary embodiment of the present invention.
  • a cocktail cloud which is a cloud platform system according to the present invention, generates a plurality of container cluster environments in which container-based applications can operate in various infrastructures such as bare metal, cloud platform, and public cloud (S400). It monitors the status information, service log, resource usage and node placement information of the container cluster and the service application operating in the cluster, and provides the monitoring screen as shown in Figure 15 (S410, S420). 15 shows a cluster status showing nodes, CPUs, memory, applications, and servers.
  • FIG. 16 illustrates a screen for monitoring the overall status of nodes included in a cluster and CPU, memory, storage, and network usage trends of individual nodes according to an embodiment of the present invention.
  • the node status of each cluster includes CPU, memory, disk, network usage trend, node list, and node list includes node name, label, status, CPU capacity, memory capacity, disk capacity, instance quota, Include age.
  • FIG. 17 illustrates a screen for monitoring the overall status of applications operating in a cluster and CPU, memory, and network usage trends of individual nodes according to an embodiment of the present invention.
  • the application status of each cluster includes CPU, memory, network usage trend, and application map list.
  • the application map list includes namespace name, application map name, service, number of servers, CPU usage, memory usage, and age. Include.
  • FIG. 18 illustrates a screen for monitoring storage / volume usage connected to a cluster according to an embodiment of the present invention.
  • the storage / volume status screen for each cluster is displayed.
  • the storage status includes name, type, storage class name, policy, and status.
  • the volume status includes volume name, status, usage, access mode, and age.
  • the above-described embodiments of the present invention can be written as a program that can be executed in a computer, and can be implemented in a general-purpose digital computer that operates the program using a computer-readable recording medium.
  • the computer-readable recording medium may be a magnetic storage medium (for example, a ROM, a floppy disk, a hard disk, etc.), an optical reading medium (for example, a CD-ROM, a DVD, etc.) and a carrier wave (for example, over the Internet Storage media).
  • the method of containerizing an application in the cloud platform provides an isolated application execution environment, enables independent resource allocation, enables multiple applications to operate on the same host, and enables fast operation with OS-level virtualization.
  • This small, container-size image is efficient to deploy and update, and can be moved anywhere.
  • the cloud platform system can easily monitor a plurality of container clusters and service applications operating in the clusters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Debugging And Monitoring (AREA)
  • Stored Programmes (AREA)

Abstract

본 발명은 클라우드 플랫폼 시스템이 다양한 인프라에 컨테이너 기반 어플리케이션이 동작할 수 있는 복수의 컨테이너 클러스터 환경을 생성하는 단계; 상기 복수의 컨테이너 클러스터 및 상기 클러스터에 운영되고 있는 어플리케이션의 정보를 통합적으로 감시하는 단계; 및 상기 감시 결과가 반영된 모니터링 화면을 제공하는 단계를 포함하고, 상기 모니터링 화면은 노드, CPU, 메모리, 어플리케이션, 서버를 나타낸 클러스터 현황, 각 클러스터별 노드 현황, 각 클러스터별 어플리케이션 현황, 각 클러스터별 스토리지/볼륨 현황 화면을 포함하고, 상기 각 클러스터별 노드 현황은 CPU, 메모리, 디스크, 네트워크 사용량 추이, 노드 목록을 포함하며, 상기 노드 목록은 노드명, 라벨, 상태, CPU 가용량, 메모리 가용량, 디스크 가용량, 인스턴스(instance) 할당량, 나이(age)를 포함하고, 상기 각 클러스터별 어플리케이션 현황은 CPU, 메모리, 네트워크 사용량 추이, 어플리케이션 맵 목록을 포함하며, 상기 어플리케이션 맵 목록은 네임스페이스 명, 어플리케이션 맵 명, 서비스, 서버 수, CPU 사용량, 메모리 사용량, 나이(age)를 포함하고, 상기 스토리지 현황은 이름, 타입, 스토리지 클래스 이름, 정책, 상태를 포함하고, 상기 볼륨 현황은 볼륨 이름, 상태, 사용량, 접속모드, 나이(age)를 포함하는 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법을 제공한다. 본 발명에 의한 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법은 복수의 컨테이너 클러스터 및 클러스터에 운영되고 있는 서비스 어플리케이션을 통합적으로 감시할 수 있어 관리가 수월한 장점을 갖는다.

Description

클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법
본 발명은 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법에 관한 것으로서, 보다 상세하게는 복수의 컨테이너 클러스터 및 클러스터에 운영되고 있는 서비스 어플리케이션을 통합적으로 감시할 수 있어 관리가 수월한 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법에 관한 것이다.
클라우드(Cloud)는 컴퓨팅 서비스 사업자 서버를 구름 모양으로 표시하는 관행에 따라 '서비스 사업자의 서버'로 통한다. 소프트웨어와 데이터를 인터넷과 연결된 중앙 컴퓨터에 저장하고 인터넷에 접속하기만 하면 언제 어디서든 데이터를 이용할 수 있도록 하는 것이다.
이러한 클라우드는 서비스 제공 형태에 따라 Salesforce.com·Google e-mail 등과 같이 다수의 사용자에게 온디맨드(On-demand)로 제공되는 애플리케이션 서비스인 Software as a Service(SaaS), AWS RDS·Google AppEngine 등과 같이 개발용 플랫폼 또는 어플리케이션 실행에 필요한 소프트웨어 스택인 Platform as a Service(PaaS), AWS EC2 등과 같이 서버 또는 스토리지 등을 사용자에게 서비스 형태로 제공하는 Infrastructure as a Service(IaaS) 등으로 나눌 수 있다.
또한 클라우드는 도입과 배포 형태에 따라 오직 하나의 단체를 위해서만 운영되는 프라이빗 클라우드(Private cloud), 공개적 이용을 위해 열린 네트워크를 통해 렌더링되는 퍼블릭 클라우드(Public cloud), 뚜렷한 실체는 유지하지만 함께 묶여 있는 둘 이상의 클라우드의 조합인 하이브리드 클라우드(Hybrid cloud) 등으로도 나눌 수 있다.
한편 엔터프라이즈 클라우드(Enterprise Cloud) 경우 기업의 비즈니스와 IT 전략을 구현한 클라우드로 어플리케이션 서비스를 중심으로 기술과 인프라를 맞춤화하고 최적화하는 것이 무엇보다 중요하며, 또한 어플리케이션을 다양한 인프라에 구성하거나 배포하기에 용이하여야 한다.
그리고 배포된 어플리케이션이나 어플리케이션이 운영되는 환경인 클러스터를 모니터링하는 방법이 필요하다.
이에 본 발명은 이러한 상기 문제점을 해결하기 위해 창출된 것으로, 복수의 컨테이너 클러스터 및 클러스터에 운영되고 있는 서비스 어플리케이션을 통합적으로 감시할 수 있어 관리가 수월한 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법을 제공하는 데 그 목적이 있다.
그러나 본 발명의 기술적 과제들은 위에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시례에 따른 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법은 클라우드 플랫폼 시스템이 다양한 인프라에 컨테이너 기반 어플리케이션이 동작할 수 있는 복수의 컨테이너 클러스터 환경을 생성하는 단계; 상기 복수의 컨테이너 클러스터 및 상기 클러스터에 운영되고 있는 어플리케이션의 정보를 통합적으로 감시하는 단계; 및 상기 감시 결과가 반영된 모니터링 화면을 제공하는 단계를 포함하고, 상기 모니터링 화면은 노드, CPU, 메모리, 어플리케이션, 서버를 나타낸 클러스터 현황, 각 클러스터별 노드 현황, 각 클러스터별 어플리케이션 현황, 각 클러스터별 스토리지/볼륨 현황 화면을 포함하고, 상기 각 클러스터별 노드 현황은 CPU, 메모리, 디스크, 네트워크 사용량 추이, 노드 목록을 포함하며, 상기 노드 목록은 노드명, 라벨, 상태, CPU 가용량, 메모리 가용량, 디스크 가용량, 인스턴스(instance) 할당량, 나이(age)를 포함하고, 상기 각 클러스터별 어플리케이션 현황은 CPU, 메모리, 네트워크 사용량 추이, 어플리케이션 맵 목록을 포함하며, 상기 어플리케이션 맵 목록은 네임스페이스 명, 어플리케이션 맵 명, 서비스, 서버 수, CPU 사용량, 메모리 사용량, 나이(age)를 포함하고, 상기 스토리지 현황은 이름, 타입, 스토리지 클래스 이름, 정책, 상태를 포함하고, 상기 볼륨 현황은 볼륨 이름, 상태, 사용량, 접속모드, 나이(age)를 포함한다.
본 발명에 의한 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법은 복수의 컨테이너 클러스터 및 클러스터에 운영되고 있는 서비스 어플리케이션을 통합적으로 감시할 수 있어 관리가 수월한 효과를 갖는다.
도 1은 본 발명의 일 실시례에 따른 클라우드 플랫폼 시스템의 구성도를 나타낸다.
도 2는 도 1의 클라우드 통합부의 기능을 간략히 도시한 것이다.
도 3은 도 1의 서비스 관리부의 기능을 간략히 도시한 것이다.
도 4는 도 1의 어플리케이션 오케스트레이션부의 기능을 간략히 도시한 것이다.
도 5는 본 발명의 일 실시례에 따른 어플리케이션 컨테이너화의 프레임워크를 나타낸다.
도 6 내지 도 11은 도 1의 개발/운영부의 기능을 간략히 도시한 것이다.
도 12는 본 발명의 일 실시례에 따른 클라우드 플랫폼 시스템의 아키텍쳐를 나타낸다.
도 13은 칵테일 서버의 구성과 그 주변 아키텍쳐를 나타낸다.
도 14는 본 발명의 일 실시례에 따른 클라우드 플랫폼 시스템의 클러스터 통합 모니터링 방법을 나타낸 흐름도이다.
도 15는 본 발명의 일 실시례에 따른 클러스터 통합 모니터링 화면을 나타낸 도면이다.
도 16은 본 발명의 일 실시례에 따른 클러스터에 포함된 노드 전체 현황 및 개별 노드의 CPU, 메모리, 스토리지, 네트워크 사용량 추이를 모니터링하는 화면을 나타낸다.
도 17은 본 발명의 일 실시례에 따른 클러스터에 운영 중인 어플리케이션의 전체 현황 및 개별 노드의 CPU, 메모리, 네트워크 사용량 추이를 모니터링하는 화면을 나타낸다.
도 18은 본 발명의 일 실시례에 따른 클러스터에 연결된 스토리지/볼륨 사용량을 모니터링하는 화면을 나타낸다.
본 발명의 장점 및 특징 그리고 그것들을 달성하는 방법들은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시례들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시례들에 한정되는 것이 아니라 또 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시례들은 본 발명의 개시가 완전하도록 하고 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 단지 청구항에 의해 정의될 뿐이다.
명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다.
이하 첨부된 도면들을 참고하여 본 발명의 실시례에 따른 클라우드 플랫폼 시스템에 대해 설명하도록 한다.
도 1은 본 발명의 일 실시례에 따른 클라우드 플랫폼 시스템의 구성도를 나타내고, 도 2는 도 1의 클라우드 통합부의 기능을 간략히 도시한 것이며, 도 3은 도 1의 서비스 관리부의 기능을 간략히 도시한 것이고, 도 4는 도 1의 어플리케이션 오케스트레이션부의 기능을 간략히 도시한 것이다.
도 5는 본 발명의 일 실시례에 따른 어플리케이션 컨테이너화의 프레임워크를 나타내며, 도 6 내지 도 11은 도 1의 개발/운영부의 기능을 간략히 도시한 것이다.
도 1의 클라우드 플랫폼 시스템은 멀티/하이브리드 클라우드 통합 관리를 기반으로 어플리케이션 가용성·확장성을 보장하고 개발·운영의 효율화를 위한 뷰와 도구를 제공한다. 이하 본 발명의 클라우드 플랫폼 시스템을 "칵테일 클라우드(Cocktail Cloud)"라고 칭하기로 한다.
도 1을 참조하면, 칵테일 클라우드는 클라우드 통합부(Cloud Integration, 100)·서비스 관리부(Service Management, 110)·어플리케이션 오케스트레이션부(Orchestration, 120)·개발/운영부(DevOps View, 140) 및 DB/저장소(150)를 포함한다.
클라우드 통합부(Cloud Integration, 100)는 멀티/하이브리드 클라우드의 인프라를 자동 구성하여 어플리케이션에 제공하고 관리를 위한 구성 정보를 동기화하는 역할을 수행한다.
클라우드 통합부(100)는 클라우드 프로비져닝(Cloud Provisioning)과 클라우드 동기화(Cloud Synchronization)의 기능을 수행한다.
도 2를 참조하면 클라우드 프로비져닝 기능은 어플리케이션 클러스터(칵테일 클러스터)에 클라우드 네트워크 인프라를 구성 및 제공하고, 어플리케이션에 클라우드의 컴퓨팅 인프라를 구성 및 제공하는 기능이다. 그리고 물리 인프라(Bare Metal)의 경우 클러스터 설정 도구를 제공한다. 지원 클라우드는 Public의 경우 AWS·Azure·Aliyun·Google Computing Engine이고, Private의 경우 Openstack· VMWear이며, 이외에 On-premise·Datacenter BareMetal Infra가 있을 수 있다.
클라우드 동기화 기능은 클라우드 인프라 구성 정보를 통합 구성 DB(160)에 저장 및 관리하고, 운영 시 인프라 변경 정보를 통합 구성 DB(160)와 동기화하는 기능이다.
서비스 관리부(Service Management, 110)는 어플리케이션 클러스터를 관리하는 논리적 그룹으로 클라우드 계정과 사용자, 네트워크 자원을 할당 및 관리하는 역할을 수행한다. 즉 서비스 관리부(110)는 통합 계정 관리 기능·네트워크 관리 기능 및 사용자 관리 기능을 수행한다.
도 3을 참조하면 통합 계정 관리(Cloud Provider) 기능은 멀티 클라우드 계정 및 접속 정보를 통합 관리하고, 네트워크와 클라우드 프로비져닝 구성에 사용되는 기능이다.
네트워크 관리 기능은 클라우드 네트워크를 구성하고 서비스에 할당하는 기능이다. 예를 들면 AWS의 VPC·Subnet일 수 있다. 하나의 서비스는 멀티 클라우드의 공급자의 네트워크를 사용하여 클러스터를 생성하여 어플리케이션을 구성·운영한다.
사용자 관리 기능은 서비스를 관리하는 팀 구성원과 개발/운영에 필요한 권한을 관리하는 기능이다. 여기서 권한은 전사 서비스 관리 권한(Admin), 전사 서비스 조회 권한(Manager), 구성원으로 배정된 서비스 관리 권한(DevOps) 등을 포함할 수 있다. 사용자는 여러 서비스에 구성원으로 참여 가능하다.
어플리케이션 오케스트레이션부(Orchestration, 120)는 어플리케이션의 배포와 가용성·확장성을 보장하는 기능으로 칵테일 클러스터(Cluster)의 핵심 기능을 담당한다.
어플리케이션 오케스트레이션부(120)는 어플리케이션 배포(Deployment) 기능·복제(Replication Control) 기능·롤링 업데이트(Rolling Update) 기능·스케일링(Scaling) 기능 및 모니터링(Monitoring) 기능을 수행한다.
도 4를 참조하면 어플리케이션 배포 기능은 컨테이너 이미지 기반의 배포로 별도 설정과 구성 작업이 필요 없는 용이성을 제공하며, 어플리케이션 배포 시 클라우드 인프라를 자동 프로비져닝하는 기능이다.
여기서 어플리케이션은 컨테이너화되어 배포되게 되는데, 어플리케이션 컨테이너(이하 "컨테이너"라고 한다)는 어플리케이션 프로세스에 호스트 자원을 할당하고 격리하여 가상화한 OS상의 독립시스템을 말한다.
컨테이너에 사용되는 핵심 기술은 Linux의 cgroup(control group)과 namespace이다. cgroup은 OS상의 프로세스에 호스트 자원을 할당하기 위해 해당 프로세스 그룹을 만들고 자원의 할당 및 관리를 수행한다. namespace는 프로세스· 네트워크·마운드(mount) 등을 특정 name space로 격리하는 기술이다. 이에 따라 컨테이너는 cgroup을 통해 어플리케이션 프로세스에 자원을 할당하고, namespace로 격리한 OS상에 가상화된 독립 시스템을 말한다.
컨테이너는 하이퍼바이저(Hardware emulator)와 게스트 OS를 사용하지 않는 가벼운 OS 가상화 방식으로 호스트 자원의 소모량이 거의 없고 기동에 드는 시간이 매우 적어 어플리케이션 가상화에 적합한 기술이다. 또한 OS상의 가상화로 기존 물리 서버(Bare Metal)·가상 서버(Virtual Machine) 등 인프라에 독립적인 구성과 배포가 가능하다.
이렇게 기존 또는 신규 어플리케이션 구성을 컨테이너로 전환하기 위해서는 컨테이너화(Containerization) 과정이 수반되어야 한다. 그리고 이에 따른 개발· 테스트·운영 방식의 전환 및 운영 인프라 구성(칵테일 클라우드 플랫폼) 최적화 작업을 병행해야 한다.
기존 어플리케이션을 컨테이너로 전환하기 위해서는 어플리케이션의 설정 및 소스가 아닌 구성의 전환이 필요하며, 배포와 운영 효율을 고려할 때 워크로드(Workload) 중심의 역할별 독립적 구성이 일반적이고, 복제를 통한 다중화와 스케일링을 고려한 구성이 설계되고 적용되어야 할 것이다.
어플리케이션 개발·테스트·운영 방식의 전환을 위해서는 이미지 기반의 어플리케이션 빌드·테스트·배포와 베이스 이미지를 통한 어플리케이션 구성이 표준화되어야 할 것이다.
어플리케이션 컨테이너 운영 인프라 구성 최적화를 위해서는 컨테이너 오케스트레이션을 위한 클러스터 중심의 인프라가 구성되고, 복제·스케일링을 고려한 컴퓨팅 용량이 산정(예비 용량 최소화, 필요 시 확장 용이)되어야 하며, 공유 스토리지·보안·네트워크 등 관련 인프라를 구성하여야 할 것이다.
도 5를 참조하면 컨테이너화는 크게 분석 및 구성 설계(S100)·컨테이너 전환(S200)·운영 이관(S300)으로 구분된다.
분석 및 구성 설계(S100)를 위해 컨테이너/클라우드 도입 목적과 전략을 고려하여 기존 어플리케이션 중 컨테이너 전환 대상을 선정한다(S110).
대상 어플리케이션이 선정되면 대상 어플리케이션을 분석한다(S120). 이때 어플리케이션·인프라·데이터·연계 구조 등의 어플리케이션 현황 및 자료 조사를 하고, 개발 및 운영·관리자의 요구를 수집한다. 그리고 컨테이너 구성 방향·이슈 및 해결 방안을 도출한다.
그리고 분리/통합·연계·가용성·확장성·보안 등을 고려하여 대상 어플리케이션별 컨테이너 구성을 설계한다(S130). 이때 베이스 이미지·환경 변수·포함 항목·코맨드 등의 이미지 빌드 템플릿을 정의할 수 있다.
그 후 인프라 구성을 설계한다(S140). 전환 인프라(클라우드/베어 메탈) 공급자를 선정하고, 어플리케이션 컨테이너별 용량을 산정한다. 그리고 컨테이너 클러스터 노드 수 및 인프라 용량을 산정하며, 스토리지·네트워크·보안 구성을 설계한다.
인프라 구성이 설계되면 컨테이너 전환 방안을 수립한다(S150). 이때 어플리케이션별 전환 세부 방안을 수립하고, 전환 업무 및 조직/역할을 정의하며, 전환 일정을 수립한다. 그리고 보고 및 피드백을 반영한다.
컨테이너 전환(S200)을 위해서는 반복/점증적 전환(S210)이 필요하다. 사전 테스트(PoC), 어플리케이션별 단계적 전환 등 반복적이고 점증적으로 전환한다.
그리고 칵테일 클러스터를 구성(S220)하기 위해 칵테일 클라우드 플랫폼을 설치 및 구성하고, 네트워크·공유 스토리지·보안 등 기반 인프라를 구성한다(클라우드의 경우 칵테일에서 프로비져닝). 기반 인프라 할당 및 사용자 등록을 통해 칵테일 서비스와 클러스터를 생성하고, 클러스터 구성을 검증한다.
그리고 어플리케이션 전환(S230)을 위해 어플리케이션 컨테이너를 구성하고, 필요 시 어플리케이션 설정 및 소스를 변경한다. 전환 컨테이너의 기능 및 설정 등을 검증하며, 컨테이너 배포 이미지 빌드 및 레지스트리에 등록한다. 그리고 칵테일 서버를 생성하고 테스트 한다.
데이터 전환(S240)을 위해 대상 어플리케이션 컨테이너 전환하며, Persistence 볼륨 설정 등을 통해 칵테일 서버를 설정하고, 데이터를 추출하고 칵테일 서버에 전송한다. 이 기종 DB 솔루션 적용의 경우 데이터 변환을 수행하며, 데이터 정합성을 확인한다. 운영 어플리케이션의 경우 다운타임을 최소화하기 위해 데이터 동기화 솔루션을 적용한다.
그 후 검증된 컨테이너를 칵테일 서버에 배포하고, 어플리케이션 기능 및 성능 테스트를 수행하며, 컨테이너 및 인프라에 테스트 결과를 반영한다(S250, S260).
운영 이관(S300)을 위해 운영 배포/오픈(S310)이 수행되는데 구체적으로 운영 칵테일 클러스터를 생성하고 전환 완료된 이미지를 기반으로 칵테일 서버를 생성하고 연계 구성한다. 그리고 운영 데이터를 이관하고 어플리케이션을 오픈한다. 이러한 어플리케이션 컨테이너를 배포·운영·관리하는 기술을 컨테이너 오케스트레이션(Orchestration)이라 칭한다.
컨테이너 오케스트레이션은 물리/가상 인프라에 관리 클러스터(Managed Cluster)를 구성하여 어플리케이션 컨테이너를 배포·운영·관리하는 기술로, 컨테이너의 가볍고 빠른 기동성과 이동성의 장점을 활용하여 기존 사내, 데이터 센터 인프라의 클라우드화와 프라이빗/퍼블릭 클라우드의 어플리케이션 관리 플랫폼으로 확산되고 있다.
칵테일 클라우드 모니터링 뷰를 통해 어플리케이션 및 인프라 운영 모니터링을 수행하고 성능 이슈 및 오류를 반영한다(S320).
개발·운영 체계 이관 및 적용(S330)을 위해 컨테이너 이관 결과를 리포트하고, 담당 개발 및 운영 조직에 컨테이너 기반 개발/운영 체계 교육을 실시하며, 칵테일 클라우드 플랫폼 사용 교육을 실시한다.
이에 따라 컨테이너는 다음과 같은 장점을 갖는다.
첫째, 컨테이너는 독립성을 갖는다.
격리된 어플리케이션 실행 환경이며, 독립적인 자원이 할당되고(CPU, Memory, Disk, Network 등), 동일 호스트상 다중 어플리케이션이 운영된다.
둘째, 컨테이너는 가벼운 가상화를 구현한다.
OS 수준의 가상화(Non Hypervisor)가 가능하며, 빠른 조작이 가능하고(생성·실행·재시작 등), 적은 크기의 컨테이너 이미지로 배포 및 업데이트가 효율적이다.
셋째, 컨테이너는 이동성을 갖는다.
인프라 독립적 이미지를 가지며, 베어메탈(Bare Metal)·가상 머신(Virtual Machine)·클라우드(Cloud) 등 어디든지 이동이 가능하고, 이미지 레지스트리를 통한 온라인 배포 및 버전 관리가 가능하고, 주요 호스트 OS(Linux 계열, Windows)를 지원한다. 이러한 컨테이너의 이동성은 멀티/하이브리드 클라우드 환경하에 어플리케이션 운영/개발의 생산성 및 효율을 높이며 특히 규격화된 컨테이너 이미지로 이종의 인프라에 어플리케이션 배포 및 이전의 어려움을 해결하고 특정 클라우드에 종속되는 락인(Lock-in) 문제를 해결해 준다.
복제 기능은 어플리케이션 안정성과 가용성을 위해 초기 지정한 복제수(다중화)를 유지하고, 어플리케이션 컨테이너 헬스 체크(Health Check)를 통해 이상 시 재기동하는 방식으로 OS 재부팅 방식보다 빠르고 효율적이다. 복제된 어플리케이션은 로드밸런싱을 통해 서비스된다.
롤링 업데이트 기능은 어플리케이션 서비스의 중단 없이 배포·인프라 변경 등의 업데이트 작업을 수행하고, 여러 어플리케이션 간 의존성이 있을 경우 DevOps View의 작업(job) 관리 기능을 통해 자동화를 구성하는 기능이다.
스케일링 기능은 어플리케이션의 모니터링을 통해 인스턴스의 스케일링을 인(In)/아웃(Out)하며, 어플리케이션 인프라의 경우 자원 용량의 스케일을 업(Up)/다운(Down)하는 기능이다. 그리고 모니터링 정보를 통해 스케일링 자동화를 구성한다.
모니터링 기능은 어플리케이션 인스턴스(컨테이너+인프라)를 모니터링하고, 임계치 설정을 통한 알람을 발생 및 관리하는 기능이다.
개발/운영부(DevOps View, 140)는 서비스 현황 기능, 클러스터 맵기능, 모니터링 뷰기능, 리소스 관리기능, 미터링 기능, 작업 관리기능, 및 전사 현황 관리/분석기능을 포함한다. 각각의 기능을 도 6 내지 도 11을 참조하여 설명하면 다음과 같다.
서비스 현황 기능은 칵테일 클라우드의 전체 어플리케이션 클러스터의 현황을 서비스 중심으로 파악할 수 있는 뷰(도 6 참조)를 제공한다. 이에 서비스 현황·클러스터 현황·모니터링 알람 등의 항목이 표시될 수 있다.
서비스 현황에서는 칵테일 클라우드의 전체 서비스 현황을 조회할 수 있고, 서비스 내 클러스터의 구성 현황을 종합하여 클라우드 공급자·클러스터·서버· 클라우드 컴포넌트·현재 월 사용 비용 등을 파악할 수 있다. 여기서 클러스터는 어플리케이션의 구성 단위를 의미하며, 서비스는 클러스터의 논리적 그룹을 의미한다.
클러스터 현황에서는 클러스터의 공급자·리젼·서버·클라우드 컴포넌트· 월 사용 비용을 카드 형태로 조회 가능하고, 물리(Bare Metal) 클러스터의 경우 사용 비용은 제외될 수 있다.
모니터링 알람 표시 기능에서는 클러스터 내 어플리케이션과 인프라에서 알람이 발생한 경우, 클러스터 카드에서 확인이 가능하다.
클러스터 맵기능은 칵테일 서버(어플리케이션)의 구성과 상태 정보를 맵 형태로 시각화하여 관리할 수 있는 뷰를 제공한다(도 7 참조).
클러스터 맵은 클러스터의 서버와 클라우드 컴포넌트 구성을 맵 형태로 조회/관리하여 구성 정보의 가시성을 높인다. 클러스터 맵에서는 칵테일 서버·클라우드 컴포넌트·서버 그룹 등의 항목을 포함할 수 있다.
칵테일 서버는 어플리케이션 오케스트레이션의 기본 단위로 로드 밸런싱·어플리케이션 컨테이너·인프라로 구성되며, 멀티/하이브리드 클라우드 관리에 표준화된 인터페이스를 제공한다. 칵테일 서버는 서버 내 어플리케이션 상태와 복제, 자원 사용량을 확인하고 스케일링·롤링 업데이트 등을 관리 수행한다. 칵테일 서버는 복제 기능의 유무에 따라 멀티와 싱글 인스턴스 타입으로 구분된다. AWS에서는 멀티존 옵션을 지원한다.
클라우드 컴포넌트는 공급자가 제공하는 PaaS 서비스를 관리한다. 예를 들면 AWS의 DB 서비스인 RDS일 수 있다.
서버 그룹은 서버 구성의 논리적 그룹을 관리적 편의성을 제공한다.
모니터링 뷰기능은 클러스터 내 어플리케이션과 인프라의 자원 용량과 상태를 확인하고 클라우드 리소스의 상태를 확인할 수 있는 정보를 제공한다(도 8 참조).
모니터링 뷰는 클러스터 내 어플리케이션과 인프라에 대한 모니터링 정보를 시각화하여 제공하고, CPU·메모리·디스크의 평균·TOP 정보 제공으로 자원의 사용량을 확인하고 운영에서 대응할 수 있도록 한다.
모니터링 뷰는 뷰 전환(트랜드/데이터) 항목, 대상 전환(서버/리소스) 항목 등을 포함할 수 있다.
뷰 전환 항목에서 트랜드뷰는 서버와 복제된 인스턴스·어플리케이션 컨테이너에 대한 시간별 모니터링 정보를 제공하고, 데이터뷰는 현재 시간의 평균·TOP 모니터링 수치를 제공한다.
대상 전환 항목에서 모니터링 대상은 클러스터 내 서버와 클라우드 인프라의 리소스로 구분된다. 클라우드 리소스는 공급자가 제공하는 정보를 사용한다.
리소스 관리 기능은 어플리케이션을 구성하는 클라우드 인프라의 리소스를 확인하고 필요 시 세부 설정을 조정할 수 있는 뷰(이하 "리소스 관리뷰"라고 한다)를 제공한다(도 9 참조).
리소스 관리뷰는 칵테일 서버를 구성하는 클라우드 인프라 리소스를 확인하고 설정을 세부적으로 변경할 수 있다. 여기서 칵테일 서버는 어플리케이션 오케스트레이션을 위한 기본 구성을 자동으로 수행하지만 필요한 경우 직접 클라우드 리소스를 조정할 필요가 있을 때 사용된다.
리소스 관리뷰는 리소스 정보/액션 항목을 포함하는데, 리소스 정보 중 어플리케이션은 컨테이너 설정과 배포 정보를 관리한다. 클라우드 리소스 정보는 로드 밸런서·인스턴스(VM)·보안으로 구성되며, 인스턴스는 용량과 볼륨을 관리한다. 조정이 필요한 리소스 정보는 액션을 통해 수행된다.
미터링 기능은 어플리케이션이 사용하는 클라우드 인프라 리소스의 비용 정보를 확인할 수 있는 뷰(이하 "미터링뷰"라고 한다)를 제공한다(도 10 참조). 미터링뷰는 클러스터 인프라 사용 비용 항목·서버·리소스별 비용 항목 등을 포함할 수 있다.
클러스터 인프라 사용 비용 항목에서는 클러스터와 칵테일 서버가 사용하는 클라우드 리소스의 비용 현황을 확인할 수 있으며, 전월·현재월 비용 정보와 익월 추정 비용을 제공한다. 또한 월별로 비용 증감 추이 그래프를 제공한다.
서버·리소스별 비용 항목은 칵테일 서버별로 사용하는 클라우드 리소스 비용을 TOP을 기준으로 제공하고, 클라우드 리소스 종류별로 사용하는 비용을 TOP을 기준으로 제공한다.
작업 관리기능은 배포·원격 명령·리소스 관리 등의 운영 작업을 스케줄링/자동화할 수 있는 관리 뷰(이하 "작업 관리뷰"라고 한다)를 제공한다(도 11 참조).
작업 관리뷰는 어플리케이션과 인프라의 운영을 위한 스케줄링 및 일괄 처리 기능을 제공한다. 이러한 작업 관리뷰는 작업 현황 항목, 작업 관리 항목 등을 포함할 수 있다.
작업 관리뷰에서 작업 현황 항목은 배포·원격 명령어·리소스 관리 태스크로 구분하고 각 태스크를 조합하여 구성된다. 여기서 배포는 어플리케이션 배포, 원격 명령어는 OS 명령어를 원격에서 수행, 리소스 관리는 스케일링, 상태/설정 변경을 의미한다.
작업 관리뷰에서 작업 관리 항목은 즉시 수행·스케줄링·알람 발생에 따라 수행 방식을 설정할 수 있다. 알람 발생에 따른 수행은 용량 모니터링의 기준치에 따른 자동 스케일링 등에서 사용된다. 작업 관리 항목에서 작업의 실행 상태와 로그 확인을 제공한다.
전사 현황 관리/분석기능은 전사 어플리케이션·클라우드·비용 현황을 파악하고 분석할 수 있는 칵테일 대시보드(Dashboard)를 제공한다.
칵테일 대시보드는 전사 차원에서 어플리케이션과 클라우드 인프라의 현황을 조회하고 비용/예산 관리, 비용 최적화 분석, 통계 리포트를 제공하는 뷰이다. 이러한 칵테일 대시보드는 어플리케이션 현황 항목, 클라우드 현황 항목, 비용/예산 관리, 비용 최적화 분석 항목, 통계/리포트 항목을 포함할 수 있다.
어플리케이션 현황 항목을 통해 칵테일 서버·클러스터·클라우드 컴포넌트의 표준화된 요소를 기준으로 어플리케이션과 인프라 현황을 전사적으로 파악하고 조회할 수 있고, 서비스 중심의 현황뷰를 제공한다.
클라우드 현황 항목을 통해 전사에서 사용하는 클라우드를 공급자·리젼· 리소스별로 현황을 파악할 수 있으며, 인프라 중심의 현황뷰를 제공한다.
비용/예산 관리, 비용 최적화 분석 항목을 통해 전사 클라우드 비용 현황을 파악하고 서비스별 예산 할당/통제와 최적화 분석을 통해 클라우드 리소스 비용 효율화를 할 수 있는 정보를 제공한다.
통계/리포트 항목은 분석 및 보고에 필요한 통계 정보와 리포트뷰를 제공한다.
DB/저장소(150)에서 이미지 저장소(레지스트리)(180)는 어플리케이션 컨테이너의 등록·공유·다운로드·검색·버전을 관리하며, 모니터링 DB(170)는 어플리케이션과 인프라의 모니터링 정보를 관리하고, 통합 구성 DB(Configuration Management DB, CMDB, 160)는 프로바이더·네트워크·서비스·클러스터·서버·컴포넌트·클라우드 리소스의 구성 정보를 관리한다.
도 12는 본 발명의 일 실시례에 따른 클라우드 플랫폼의 아키텍쳐를 나타내며, 도 13은 칵테일 서버의 구성과 그 주변 아키텍쳐를 나타낸다.
도 12를 참조하면 칵테일 클라우드는 칵테일 클러스터(200), 프로바이더 플러그인(210), 서버 매니저(220), DevOps 매니저, CMDB(160), 모니터링 DB(170), 이미지 레지스트리(180), API 서버(290), 사용자 콘솔(300)을 포함한다.
칵테일 클러스터(200)는 오케스트레이션 기반 아키텍쳐를 제공하고 프로바이더 플러그인(210)은 클라우드 공급자 API(280)를 통해 통합 관리를 위한 기본 모듈로 사용된다.
클러스터(200)는 노드와 마스터로 구성되며, 노드의 경우 워커(worker, 310)를 통해 마스터의 명령어를 처리하는 구조이다. 워커(310)는 마스터와의 통신을 담당하고 수행 명령어에 따라 Executor가 지원된다. Monitoring Executor(320)는 노드와 컨테이너 모니터링 정보를 수집하고, Command Executor(330)는 OS와 컨테이너 명령을 수행한다. 그 외에 Container Engine(Docker, 340)이 있다.
프로바이더 플러그인(210)은 멀티 클라우드와 Bare Metal을 위한 Kubernetes API 지원을 위한 API Rapper이며, 프로바이더 확장을 위한 플러그인 모듈로 구성된다. 칵테일 서버는 어플리케이션 오케스트레이션의 기본 단위이며, 클러스터 마스터(200)와 프로바이더 플러그인(210)을 통해 컨테이너와 클라우드 인프라의 복제·스케일링·롤링 업데이트를 수행한다.
칵테일 서버는 도 13에 도시된 바와 같이 컨테이너와 클라우드 인프라로 구성되는데, 로드 밸런서·인스턴스(노드)·컨테이너·볼륨·보안 등으로 구성되며, AWS의 예를 들면, ELB·EC2 Instance·Security Group·ESB일 수 있다. 칵테일 서버는 클라우드 제공자의 PaaS를 위해 클라우드 컴포넌트를 제공한다. 예를 들면 AWS의 RDS일 수 있다.
서버 매니저(220)는 서버 내 어플리케이션 컨테이너와 인프라의 오케스트레이션을 수행하는 제어 모듈로서, 비정상 종료된 컨테이너를 재시작/복구하는 복제 제어, 스케일 인/아웃과 인스턴스 타입과 볼륨 확장을 통한 업다운을 수행하는 스케일링, 어플리케이션 컨테이너 배포를 순차적으로 무중단으로 수행하는 롤링 업데이트 기능을 제공한다.
DevOps 매니저는 멀티 클라우드 인프라 프로비져닝을 위한 구성 관리(Configuration Manager, 230), 멀티 클라우드 자원의 사용량 및 비용 관리를 위한 미터링 관리(Metering Manager, 240), 멀티 클라우드 자원 현황 및 설정 관리를 위한 자원 관리(Resource Manager, 250), 컨테이너/인프라 모니터링 정보 수집 및 관리를 위한 모니터링 관리(Monitoring Manager, 260), 여러 작업 태스크를 결합하여 일괄 수행하고 즉시 수행·수행 시간·이벤트 발생이 수행 조건이며, 배포·서버 액션·원격 명령어의 태스크를 위한 작업 관리(Job Manager, 270)를 제공하는 것으로서 DevOps를 위한 매니저 모듈이다.
칵테일 클라우드는 어플리케이션과 인프라의 구성 정보 관리·모니터링 정보 관리·어플리케이션 컨테이너 이미지 관리를 위한 DB를 제공하고, 사용자와 프로그래밍을 위한 인터페이스를 제공한다.
CMDB(160)는 프로바이더·네트워크·서비스·클러스터·서버·컴포넌트·클라우드 리소스의 구성 정보를 관리한다.
모니터링 DB(170)는 어플리케이션과 인프라의 모니터링 정보를 관리한다.
이미지 레지스트리(180)는 어플리케이션 컨테이너의 등록·공유·다운로드· 검색·버전을 관리한다.
API 서버(290)는 칵테일 클라우드의 모든 기능을 API(280)로 제공하고, 기업 전략에 따른 맞춤화와 타 솔루션과의 연계를 지원한다.
사용자 콘솔(Console)(300)은 Web GUI 형태로 제공된다.
이러한 칵테일 클라우드는 다음과 같이 활용될 수 있다.
첫째, 멀티 클라우드로서 활용될 수 있다.
칵테일 클라우드는 표준화 컴포넌트를 통해 이질적이고 복잡한 멀티클라우드 환경의 통합 관리를 위한 플랫폼이며, 또한 어플리케이션 중심의 기업 클라우드 전량을 구현한다. 구체적으로 칵테일 클라우드는 프로바이더·네트워크·서비스·클러스터·서버·클라우드 컴포넌트를 통해 관리 대상을 표준화하고 이질적이고 복잡한 멀티 클라우드 리소스의 통합 관리(통합 계정·자원·비용)하는 표준화 관리 컴포넌트이다. 또한 어플리케이션은 비즈니스의 핵심 자원인데, 칵테일 클러스터를 통해 어플리케이션 가용성과 확장성이 강화되고, 칵테일 DevOps View를 통한 개발/운영 업무 효율화를 통해 어플리케이션 중심의 기업 클라우드를 구현할 수 있다.
둘째, 칵테일 클라우드는 사내, 데이터 센터 Bare Metal 인프라의 클라우드화를 통해 하이브리드 클라우드를 구축/운영의 기반을 제공한다. 또한 복잡한 하이브리드 인프라의 통합 관리와 개발/운영 효율화를 제공한다.
구체적으로 사내, 데이터 센터의 Bare Metal 인프라에 어플리케이션 클러스터를 구성하여 컨테이너 기반의 클라우드 환경을 구축함으로써 별도 가상화를 위한 플랫폼이 불필요하며, 가용성·스케일링 등 확장성을 제공하고, 기존 프라이빗과 퍼블릭 클라우드를 통합 관리할 수 있는 물리 인프라의 클라우드화를 구현할 수 있다.
또한 칵테일 클라우드의 표준 컴포넌트를 통해 관리하고, 칵테일 클라우드 DevOps 뷰를 통한 개발/운영 업무 효율화를 제공한다.
셋째, 칵테일 클라우드는 컨테이너와 CI/CD를 위한 자동화를 통해 클라우드 상의 어플리케이션의 효율적 관리와 마이크로서비스의 구축 및 운영 플랫폼을 제공한다.
칵테일 클러스터는 컨테이너를 기반으로 클라우드 인프라에서 어플리케이션 배포 및 관리 환경을 제공(클라우드 네이티브 어플리케이션)한다. 여기서 칵테일 클러스터는 마이크로 서비스를 구축하고 관리하는 기본 단위이다.
칵테일 DevOps 뷰의 작업 관리는 어플리케이션을 빌드하고 배포할 수 있는 자동화 기반을 제공하고, 컨테이너는 CI/CD를 보다 가볍고 용이하게 수행할 수 있는 기술이다. 칵테일 클라우드는 멀티/하이브리드 클라우드 상에 어플리케이션을 배포/운영할 수 있는 플랫폼을 제공한다.
넷째, 칵테일 클라우드는 클라우드 서비스 브로커의 인프라 재판매 및 서비스 제공 플랫폼으로도 활용될 수 있다.
퍼블릭 클라우드·데이터 센터 인프라를 통합 관리하고 사용자에게 재판매와 클라우드 관리 플랫폼을 서비스 형태로 제공하는 CSB용 플랫폼을 칵테일 클라우드로 구축·운영하고, SaaS를 위한 멀티테넌시와 빌링 시스템을 제공하며, 큰 규모의 기업의 경우 계열사 클라우드 제공 및 관리 플랫폼으로 활용 가능하다.
또한 기존 데이터 센터 사업자의 인프라를 클라우드화하여 제공하고, 퍼블릭 클라우드 제공자에 특화된 서비스(칵테일 클라우드 컴포넌트(PaaS))를 제공한다.
한편 도 14는 본 발명의 일 실시례에 따른 클라우드 플랫폼 시스템의 클러스터 통합 모니터링 방법을 나타낸 흐름도이다.
도 14를 참조하면, 본 발명에 따른 클라우드 플랫폼 시스템인 칵테일 클라우드는 Bare metal, cloud platform, public cloud 등 다양한 인프라에 컨테이너 기반 어플리케이션이 동작할 수 있는 복수의 컨테이너 클러스터 환경을 생성하되(S400), 복수의 컨테이너 클러스터 및 클러스터에 운영되고 있는 서비스 어플리케이션의 상태 정보와 서비스 로그, 리소스 사용량 및 노드 배치 정보를 통합적으로 감시하여 도 15와 같은 모니터링 화면을 제공한다(S410, S420). 도 15는 노드, CPU, 메모리, 어플리케이션, 서버를 나타낸 클러스터 현황을 보여준다.
도 16은 본 발명의 일 실시례에 따른 클러스터에 포함된 노드 전체 현황 및 개별 노드의 CPU, 메모리, 스토리지, 네트워크 사용량 추이를 모니터링하는 화면을 나타낸다.
각 클러스터별 노드 현황은 CPU, 메모리, 디스크, 네트워크 사용량 추이, 노드 목록을 포함하며, 노드 목록은 노드명, 라벨, 상태, CPU 가용량, 메모리 가용량, 디스크 가용량, 인스턴스(instance) 할당량, 나이(age)를 포함한다.
도 17은 본 발명의 일 실시례에 따른 클러스터에 운영 중인 어플리케이션의 전체 현황 및 개별 노드의 CPU, 메모리, 네트워크 사용량 추이를 모니터링하는 화면을 나타낸다.
각 클러스터별 어플리케이션 현황은 CPU, 메모리, 네트워크 사용량 추이, 어플리케이션 맵 목록을 포함하며, 상기 어플리케이션 맵 목록은 네임스페이스 명, 어플리케이션 맵 명, 서비스, 서버 수, CPU 사용량, 메모리 사용량, 나이(age)를 포함한다.
도 18은 본 발명의 일 실시례에 따른 클러스터에 연결된 스토리지/볼륨 사용량을 모니터링하는 화면을 나타낸다.
각 클러스터별 스토리지/볼륨 현황 화면을 나타내고, 스토리지 현황은 이름, 타입, 스토리지 클래스 이름, 정책, 상태를 포함하고, 볼륨 현황은 볼륨 이름, 상태, 사용량, 접속모드, 나이(age)를 포함한다.
한편 상술한 본 발명의 실시례들은 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터로 읽을 수 있는 기록 매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 상기 컴퓨터로 읽을 수 있는 기록매체는 마그네틱 저장매체(예를 들면 롬· 플로피 디스크·하드디스크 등), 광학적 판독 매체(예를 들면 CD-ROM·DVD 등) 및 캐리어 웨이브(예를 들면 인터넷을 통한 전송)와 같은 저장 매체를 포함한다.
이와 같이 본 발명에 의한 클라우드 플랫폼에서 어플리케이션을 컨테이너화하는 방법에 따르면 격리된 어플리케이션 실행 환경을 제공하고, 독립적인 자원 할당이 가능하며, 동일 호스트상 다중 어플리케이션 운영이 가능할 뿐만 아니라 OS 수준의 가상화로 빠른 조작이 가능하고, 적은 크기의 컨테이너 이미지로 배포 및 업데이트가 효율적이며, 어디든지 이동이 가능하다.
또한 본 발명에 의한 클라우드 플랫폼 시스템은 복수의 컨테이너 클러스터 및 클러스터에 운영되고 있는 서비스 어플리케이션을 통합적으로 감시할 수 있어 관리가 수월하다.
이제까지 본 발명에 대하여 그 바람직한 실시례들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시례들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (1)

  1. 클라우드 플랫폼 시스템이 다양한 인프라에 컨테이너 기반 어플리케이션이 동작할 수 있는 복수의 컨테이너 클러스터 환경을 생성하는 단계;
    상기 복수의 컨테이너 클러스터 및 상기 클러스터에 운영되고 있는 어플리케이션의 정보를 통합적으로 감시하는 단계; 및
    상기 감시 결과가 반영된 모니터링 화면을 제공하는 단계를 포함하고,
    상기 모니터링 화면은 노드, CPU, 메모리, 어플리케이션, 서버를 나타낸 클러스터 현황, 각 클러스터별 노드 현황, 각 클러스터별 어플리케이션 현황, 각 클러스터별 스토리지/볼륨 현황 화면을 포함하고,
    상기 각 클러스터별 노드 현황은 CPU, 메모리, 디스크, 네트워크 사용량 추이, 노드 목록을 포함하며, 상기 노드 목록은 노드명, 라벨, 상태, CPU 가용량, 메모리 가용량, 디스크 가용량, 인스턴스(instance) 할당량, 나이(age)를 포함하고,
    상기 각 클러스터별 어플리케이션 현황은 CPU, 메모리, 네트워크 사용량 추이, 어플리케이션 맵 목록을 포함하며, 상기 어플리케이션 맵 목록은 네임스페이스 명, 어플리케이션 맵 명, 서비스, 서버 수, CPU 사용량, 메모리 사용량, 나이(age)를 포함하고,
    상기 스토리지 현황은 이름, 타입, 스토리지 클래스 이름, 정책, 상태를 포함하고, 상기 볼륨 현황은 볼륨 이름, 상태, 사용량, 접속모드, 나이(age)를 포함하는 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법.
PCT/KR2019/008698 2018-07-19 2019-07-15 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법 WO2020017844A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/257,497 US20210279157A1 (en) 2018-07-19 2019-07-15 Method for monitoring plurality of clusters and applications in cloud platform
JP2021502746A JP2021530802A (ja) 2018-07-19 2019-07-15 クラウドプラットフォームで複数のクラスター及びアプリケーションをモニタリングする方法
CN201980047585.3A CN112437915A (zh) 2018-07-19 2019-07-15 云平台上监测多个集群和应用程序的方法
SG11202100290UA SG11202100290UA (en) 2018-07-19 2019-07-15 Method for monitoring plurality of clusters and applications in cloud platform

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0084017 2018-07-19
KR1020180084017A KR101987664B1 (ko) 2018-07-19 2018-07-19 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법

Publications (1)

Publication Number Publication Date
WO2020017844A1 true WO2020017844A1 (ko) 2020-01-23

Family

ID=66847138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008698 WO2020017844A1 (ko) 2018-07-19 2019-07-15 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법

Country Status (6)

Country Link
US (1) US20210279157A1 (ko)
JP (1) JP2021530802A (ko)
KR (1) KR101987664B1 (ko)
CN (1) CN112437915A (ko)
SG (1) SG11202100290UA (ko)
WO (1) WO2020017844A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210101111A (ko) * 2020-02-07 2021-08-18 쿠팡 주식회사 실시간 가상 서버 성능 데이터의 중앙 집중화 및 진단을 위한 시스템 및 방법
CN113392029A (zh) * 2021-07-27 2021-09-14 西安电子科技大学 针对容器云平台不同层次的综合性能测试装置及方法
US11474851B2 (en) * 2020-04-08 2022-10-18 Open Text Holdings, Inc. Systems and methods for efficient scalability and high availability of applications in container orchestration cloud environment
US11477090B1 (en) 2021-10-28 2022-10-18 Red Hat, Inc. Detecting deployment problems of containerized applications in a multiple-cluster environment
US11836523B2 (en) 2020-10-28 2023-12-05 Red Hat, Inc. Introspection of a containerized application in a runtime environment
US12112187B2 (en) 2020-11-30 2024-10-08 Red Hat, Inc. Scalable visualization of a containerized application in a multiple-cluster environment

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101987664B1 (ko) * 2018-07-19 2019-06-11 나무기술 주식회사 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법
US11579941B2 (en) * 2019-05-05 2023-02-14 Mastercard International Incorporated Control cluster for multi-cluster container environments
US11507392B2 (en) 2020-02-26 2022-11-22 Red Hat, Inc. Automatically configuring computing clusters
CN111597253B (zh) * 2020-04-03 2023-11-07 浙江工业大学 一种基于Quota的集群模糊控制容量规划方法
KR102289100B1 (ko) * 2020-05-07 2021-08-11 한전케이디엔주식회사 빅데이터 분석을 위한 컨테이너 기반의 클러스터 구축 방법 및 클러스터 장치
KR102164915B1 (ko) * 2020-06-11 2020-10-13 (주)아스트론시큐리티 클라우드 보안토폴로지 생성 시스템
KR102187384B1 (ko) * 2020-07-31 2020-12-07 나무기술 주식회사 클라우드 인프라 기반의 컨테이너 가상os 통합 표준화 시스템
KR102375509B1 (ko) * 2020-09-07 2022-03-17 주식회사 한글과컴퓨터 복수의 포맷 변환 서버들에 문서의 포맷 변환을 위한 작업 할당을 수행하는 문서 파일의 포맷 변환 작업 할당 장치 및 그 동작 방법
CN112214280B (zh) * 2020-09-16 2023-09-12 中国科学院计算技术研究所 一种电力系统仿真的云化方法及系统
CN112162821B (zh) * 2020-09-25 2022-04-26 中国电力科学研究院有限公司 容器集群资源监视方法、装置及系统
US11803429B2 (en) 2020-10-30 2023-10-31 Red Hat, Inc. Managing alert messages for applications and access permissions
KR20220153815A (ko) * 2021-05-12 2022-11-21 (주)모니터랩 멀티 노드 환경에서 컨테이너 관리 운영 방법과 시스템
CN113242147B (zh) * 2021-05-17 2023-09-12 上海八彦图信息科技有限公司 多云环境的自动化运维部署方法、装置、设备和存储介质
CN113535513B (zh) * 2021-07-02 2024-05-24 厦门点触科技股份有限公司 一种基于微服务架构的全球后台服务端运行状态监控系统及方法
CN113641503B (zh) * 2021-09-01 2024-05-14 上海联蔚盘云科技有限公司 多云多集群的Kubernetes管理系统及方法与设备
US11733729B2 (en) * 2021-09-27 2023-08-22 International Business Machines Corporation Centralized imposing of multi-cloud clock speeds
CN113986371A (zh) * 2021-09-30 2022-01-28 浪潮云信息技术股份公司 一种重启Kubernetes Pod的方法
CN113671322A (zh) * 2021-10-25 2021-11-19 广东电网有限责任公司东莞供电局 一种微电网状态在线监测方法及装置
KR102549159B1 (ko) * 2021-12-30 2023-06-29 아콘소프트 주식회사 엣지 클라우드에 대한 검증 자동화가 가능한 엣지 클라우드 구축 시스템 및 방법
CN114615268B (zh) * 2022-03-28 2023-09-12 阿里巴巴(中国)有限公司 基于Kubernetes集群的服务网络、监控节点、容器节点及设备
KR102483422B1 (ko) * 2022-04-20 2022-12-30 주식회사 정데이타시스템 클라우드 서비스 융복합 시스템
KR102579705B1 (ko) * 2022-04-30 2023-09-15 (주)아스트론시큐리티 클라우드 보안 토폴로지 가시화 장치 및 이를 이용한 통합 클라우드 워크로드 운영 및 보안 관리 시스템
CN115314403B (zh) * 2022-07-29 2024-05-28 郑州浪潮数据技术有限公司 一种混沌工程平台集成私有云的方法、系统及装置
KR20240021585A (ko) 2022-08-10 2024-02-19 충남대학교산학협력단 약동력학 연구를 위한 r언어와 도커를 활용한 컨테이너 기반 비선형 모수 최적화 시스템
KR20240077270A (ko) 2022-11-24 2024-05-31 주식회사 이노그리드 멀티 클러스터를 위한 통합 모니터링 시스템 및 방법
TWI838000B (zh) * 2022-12-09 2024-04-01 財團法人工業技術研究院 雲端資源配置系統、裝置及方法
KR102569001B1 (ko) * 2022-12-16 2023-08-23 스트라토 주식회사 클라우드의 가상 머신 자동 최적화를 위한 장치 및 방법
CN115965517B (zh) * 2023-01-09 2023-10-20 摩尔线程智能科技(北京)有限责任公司 图形处理器资源管理方法及装置、电子设备和存储介质
US20240289158A1 (en) * 2023-02-23 2024-08-29 VMware LLC Health monitoring architecture for multi-tenant system
CN117170985B (zh) * 2023-11-02 2024-01-12 武汉大学 面向开放式地理信息网络服务的分布式监测方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103559072A (zh) * 2013-10-22 2014-02-05 无锡中科方德软件有限公司 虚拟机双向自动伸缩服务实现方法及其系统
KR20140128188A (ko) * 2013-04-27 2014-11-05 (주)이공감 가상화 데스크탑 인프라 시스템
US20160337226A1 (en) * 2015-05-13 2016-11-17 Vmware, Inc. Method and system that analyzes operational characteristics of multi-tier applications
KR101807806B1 (ko) * 2017-05-02 2017-12-11 나무기술 주식회사 클라우드 플랫폼에서 어플리케이션을 컨테이너화하는 방법
KR101826498B1 (ko) * 2017-05-02 2018-02-07 나무기술 주식회사 클라우드 플랫폼 시스템
KR20180068002A (ko) * 2016-12-13 2018-06-21 나무기술 주식회사 빅데이터 기반의 클라우드 인프라 실시간 분석 시스템 및 그 제공방법
KR101987664B1 (ko) * 2018-07-19 2019-06-11 나무기술 주식회사 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9170797B2 (en) * 2012-01-31 2015-10-27 Red Hat, Inc. Automated deployment of an application in a computing platform
CN103024060B (zh) * 2012-12-20 2015-05-13 中国科学院深圳先进技术研究院 一种开放式云计算大规模集群监控系统及方法
CN103167041B (zh) * 2013-03-28 2016-04-20 广州中国科学院软件应用技术研究所 一种支持云环境应用集群自动化部署的系统及方法
CN103944769B (zh) * 2014-05-05 2017-04-05 江苏物联网研究发展中心 基于rpc协议的集群资源统一管理系统
KR20150142871A (ko) 2014-06-12 2015-12-23 주홍찬 인터렉티브 푸쉬 클라우드 시스템 장치 및 방법
WO2017029700A1 (ja) * 2015-08-17 2017-02-23 株式会社日立製作所 情報システムを管理する管理システム
CN105337765B (zh) * 2015-10-10 2018-10-12 上海新炬网络信息技术股份有限公司 一种分布式hadoop集群故障自动诊断修复系统
CN105653329A (zh) * 2015-12-30 2016-06-08 国网信息通信产业集团有限公司 一种应用管理的方法、装置及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140128188A (ko) * 2013-04-27 2014-11-05 (주)이공감 가상화 데스크탑 인프라 시스템
CN103559072A (zh) * 2013-10-22 2014-02-05 无锡中科方德软件有限公司 虚拟机双向自动伸缩服务实现方法及其系统
US20160337226A1 (en) * 2015-05-13 2016-11-17 Vmware, Inc. Method and system that analyzes operational characteristics of multi-tier applications
KR20180068002A (ko) * 2016-12-13 2018-06-21 나무기술 주식회사 빅데이터 기반의 클라우드 인프라 실시간 분석 시스템 및 그 제공방법
KR101807806B1 (ko) * 2017-05-02 2017-12-11 나무기술 주식회사 클라우드 플랫폼에서 어플리케이션을 컨테이너화하는 방법
KR101826498B1 (ko) * 2017-05-02 2018-02-07 나무기술 주식회사 클라우드 플랫폼 시스템
KR101987664B1 (ko) * 2018-07-19 2019-06-11 나무기술 주식회사 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210101111A (ko) * 2020-02-07 2021-08-18 쿠팡 주식회사 실시간 가상 서버 성능 데이터의 중앙 집중화 및 진단을 위한 시스템 및 방법
KR102309806B1 (ko) 2020-02-07 2021-10-08 쿠팡 주식회사 실시간 가상 서버 성능 데이터의 중앙 집중화 및 진단을 위한 시스템 및 방법
US11544098B2 (en) 2020-02-07 2023-01-03 Coupang Corp. Systems and methods for centralization and diagnostics for live virtual server performance data
US11474851B2 (en) * 2020-04-08 2022-10-18 Open Text Holdings, Inc. Systems and methods for efficient scalability and high availability of applications in container orchestration cloud environment
US11836523B2 (en) 2020-10-28 2023-12-05 Red Hat, Inc. Introspection of a containerized application in a runtime environment
US12112187B2 (en) 2020-11-30 2024-10-08 Red Hat, Inc. Scalable visualization of a containerized application in a multiple-cluster environment
CN113392029A (zh) * 2021-07-27 2021-09-14 西安电子科技大学 针对容器云平台不同层次的综合性能测试装置及方法
CN113392029B (zh) * 2021-07-27 2022-12-02 西安电子科技大学 针对容器云平台不同层次的综合性能测试装置及方法
US11477090B1 (en) 2021-10-28 2022-10-18 Red Hat, Inc. Detecting deployment problems of containerized applications in a multiple-cluster environment

Also Published As

Publication number Publication date
CN112437915A (zh) 2021-03-02
SG11202100290UA (en) 2021-02-25
JP2021530802A (ja) 2021-11-11
US20210279157A1 (en) 2021-09-09
KR101987664B1 (ko) 2019-06-11

Similar Documents

Publication Publication Date Title
WO2020017844A1 (ko) 클라우드 플랫폼에서 복수의 클러스터 및 어플리케이션을 모니터링하는 방법
WO2020017847A1 (ko) 클라우드 플랫폼에서의 멀티 클러스터 프로비저닝 및 관리 방법
WO2018203635A1 (ko) 클라우드 플랫폼에서 어플리케이션을 컨테이너화하는 방법
WO2020017843A1 (ko) 클라우드 플랫폼에서의 클러스터 리소스 할당 및 관리 방법
WO2018203634A1 (ko) 클라우드 플랫폼 시스템
WO2020017846A1 (ko) 클라우드 플랫폼에서 어플리케이션 컨테이너의 볼륨(스토리지) 프로비저닝 방법
US11288130B2 (en) Container-based application data protection method and system
US10635496B2 (en) Thread pool management
Bakshi Microservices-based software architecture and approaches
US11461034B2 (en) Envoy for multi-tenant compute infrastructure
Vayghan et al. A Kubernetes controller for managing the availability of elastic microservice based stateful applications
US20190052528A1 (en) Network function virtualization management orchestration apparatus, method
KR20200027783A (ko) 분산 지능모듈의 통합관리 시스템
US20090204961A1 (en) Systems and methods for distributing and managing virtual machines
EP3616058B1 (en) Managing multi-single-tenant saas services
Wang Towards service discovery and autonomic version management in self-healing microservices architecture
Hadley et al. Multibox: Lightweight containers for vendor-independent multi-cloud deployments
Alyas et al. Resource Based Automatic Calibration System (RBACS) Using Kubernetes Framework.
WO2018088629A1 (ko) 읽기 및 쓰기가 가능한 가상 디스크의 병합 마운팅을 통한 가상 클러스터 구축 방법 및 장치
WO2021094913A1 (en) Virtual machine migration detection by hosted operating system
WO2023128699A1 (ko) 서비스 레벨 협약 기반의 클라우드 네이티브 네트워크 기능의 자원 할당 장치 및 방법
Sabharwal et al. Container overview
Ward et al. Deploying Azure SQL
Mustafa Microservices vs. Monolithic
US7529654B2 (en) System and procedure for controlling and monitoring programs in a computer network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021502746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837490

Country of ref document: EP

Kind code of ref document: A1