WO2020017140A1 - Video display device and video display system - Google Patents

Video display device and video display system Download PDF

Info

Publication number
WO2020017140A1
WO2020017140A1 PCT/JP2019/019534 JP2019019534W WO2020017140A1 WO 2020017140 A1 WO2020017140 A1 WO 2020017140A1 JP 2019019534 W JP2019019534 W JP 2019019534W WO 2020017140 A1 WO2020017140 A1 WO 2020017140A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image
image light
display device
unit
Prior art date
Application number
PCT/JP2019/019534
Other languages
French (fr)
Japanese (ja)
Inventor
竜志 鵜飼
誠治 村田
俊輝 中村
大内 敏
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2020017140A1 publication Critical patent/WO2020017140A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/02Viewing or reading apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a video display device and a video display system.
  • the present invention claims the priority of Japanese Patent Application No. 2018-136391, filed on July 20, 2018, and, for designated countries where weaving by reference to documents is permitted, the contents described in that application are Incorporated by reference into this application.
  • an image display device of a system using a light guide plate represented by a head-mounted display is known.
  • Japanese Patent Application Laid-Open Publication No. HEI 11-163572 discloses a technique in which a laser beam having directivity is emitted from the tip of a fiber and the tip of the fiber is related to an image display apparatus using the above-described method using a light guide plate (hereinafter, referred to as a light guide plate method).
  • a technology related to a fiber-scanning image generation apparatus that generates an image by scanning an image. According to the fiber-scanning image generation apparatus, a projection lens for projecting an image is not required, so that the apparatus scale can be reduced.
  • Patent Document 2 discloses a technique related to a light guide plate that enlarges a pupil size, which is a light beam diameter of image light displayed on an image display device, and transmits image light to a pupil of a user's eye. According to the light guide plate, since the pupil size is enlarged, an eye box (an area where a user can visually recognize an image) can be enlarged.
  • a pupil size which is a light beam diameter of image light displayed on an image display device
  • the size of the light guide plate type image display device can be reduced.
  • the diameter of the exit pupil of the image light supplied to the light guide plate from the fiber scanning image generation device is substantially equal to the diameter of the directional laser light, and Is very small compared to the interval of the image light.
  • the plurality of image lights output from the light guide plate do not overlap each other, and the image light does not enter the pupil of the user's eye. This may cause the user to visually recognize at least a part of the image. It can happen.
  • the present invention has been made in view of such a situation, and an object of the present invention is to realize a light guide plate type image display device in which a user can visually recognize the entire image.
  • an image display device includes an image projection unit that scans light to generate image light having a predetermined angle of view, and internally transmits the image light incident from a light input unit.
  • a light guide plate that propagates through the light output unit and outputs a light beam of the image light, and an image light duplication unit that duplicates the light beam of the image light, wherein the image light duplication unit has an angle of view substantially the same as the incident image light. It is characterized in that two or more of the video lights included are duplicated.
  • FIG. 1 is a block diagram illustrating a configuration example of a video display system according to an embodiment of the present invention.
  • FIG. 3 is a block diagram illustrating a first configuration example of a video display device.
  • FIG. 3 is a diagram illustrating an example of a video generation device that can be employed in a video projection unit. It is a figure for explaining propagation of image light in a light guide plate.
  • FIG. 3 is a diagram illustrating an example of a diffraction direction of image light by a light guide plate.
  • FIG. 3 is a cross-sectional view illustrating a first configuration example of a video light duplicating unit in the first configuration example of the video display device.
  • FIG. 3 is a block diagram illustrating a configuration example of a video display device.
  • FIG. 5 is a cross-sectional view illustrating a second configuration example of the video light duplicating section in the first configuration example of the video display device.
  • FIG. 5 is a cross-sectional view illustrating a third configuration example of the video light duplicating section in the first configuration example of the video display device.
  • It is a block diagram showing the 2nd example of composition of a picture display. It is sectional drawing which shows the 1st example of a structure of the light guide plate containing the image light duplication part in the 2nd example of a structure of an image display device. It is sectional drawing which shows the 2nd example of a structure of the light guide plate containing the image light duplication part in the 2nd example of a structure of an image display device.
  • FIG. 13 is a block diagram illustrating a third configuration example of the video display device. It is sectional drawing which shows the example of a structure of the light guide plate in which the image light duplication part in the 3rd example of a structure of an image display apparatus was bonded. It is sectional drawing which shows the 1st modification of the 1st structural example of a video display apparatus. It is sectional drawing which shows the 2nd modification of the 1st structural example of a video display apparatus. It is sectional drawing which shows the modification of the 2nd example of a structure of a video display apparatus.
  • FIG. 1 shows a configuration example of a video display system according to an embodiment of the present invention.
  • the video display system 10 includes a video display device 11, a control device 12, a video signal processing device 13, a power supply device 14, a storage device 15, a sensing device 16, a communication device 18, and an audio processing device 20.
  • the image display device 11 is a light guide plate type display device using a light guide plate represented by, for example, a head mounted display.
  • the video display device 11 receives a video signal generated by the video signal processing device 13 and supplied via the control device 12, and displays a video based on the video signal to a user. The details of the video display device 11 will be described later.
  • the control device 12 controls the whole of the video display system 10 as a whole.
  • the control device 12 can realize its function by executing a predetermined program by, for example, a CPU (Central Processing Unit) or a computer.
  • a CPU Central Processing Unit
  • the video signal processing device 13 generates a video signal to be supplied to the video display device 11.
  • the power supply device 14 supplies power to each device constituting the video display system 10.
  • the storage device 15 stores a program executed by the control device 12, information necessary for processing of each device constituting the video display system 10, information generated by each device, and the like.
  • the storage device 15 includes, for example, a random access memory (RAM), a flash memory, a hard disk drive (HDD), a solid state drive (SSD), a compact disc-recordable (CD-R), and a digital versatile disk-random access (DVD-RAM). Memory) or a writable and readable storage medium or a storage medium drive.
  • the sensing device 16 detects the surrounding situation using each sensor connected via the sensor input / output unit 17.
  • a posture sensor for example, a posture sensor, an inclination sensor for detecting the posture and movement of the user, an acceleration sensor, a gaze sensor for detecting the physical condition of the user, a temperature sensor, and a GPS (Global Positioning System) for detecting position information of the user
  • a GPS Global Positioning System
  • the communication device 18 uses the communication input / output unit 19 to perform wireless communication using, for example, Bluetooth (registered trademark), Wi-Fi (registered trademark), UHF (Ultra-High Frequency) wave, VHF (Very High Frequency) wave, or the like.
  • communication is performed by connecting to a predetermined communication network (a mobile phone communication network, the Internet, or the like) using wired communication.
  • the audio processing device 20 is connected to a microphone, an earphone, or the like via the audio input / output unit 21 to input and output an audio signal.
  • FIG. 2 shows a video display device 101 as a first configuration example of the video display device 11.
  • the video display device 101 includes a video projection unit 200, a video light duplication unit 210, and a light guide plate 220.
  • the video projection unit 200 receives a video signal generated by the video signal processing device 13 and supplied via the control device 12 and generates video light serving as a video displayed by the video display device 11 based on the video signal. And project it to the subsequent stage.
  • the image light projected by the image projection unit 200 is incident on the image light duplication unit 210.
  • FIG. 3 shows an example of a video generation device that can be employed in the video projection unit 200.
  • FIG. 1A shows a fiber scanning type projector 201 that can be employed in the video projection unit 200.
  • FIG. 2B shows a mirror scanning type projector 202 that can be employed in the video projection unit 200.
  • the fiber scanning projector 201 shown in FIG. 1A includes a light source unit 900, a fiber 901, a fiber scanning element 902, and a collimating lens 903.
  • the light source unit 900 emits, for example, laser light.
  • the laser light emitted from the light source unit 900 propagates inside the fiber 901 and exits from the end face 904 of the fiber 901.
  • the light emitted from the fiber 901 passes through the collimator lens 903 and becomes light having high directivity.
  • the fiber scanning element 902 attached to the fiber 901 vibrates the end face 904 of the fiber 901 and scans the light emitted from the fiber 901.
  • the fiber scanning type projector 201 can project an image by synchronizing the intensity of the laser light output from the light source unit 900 and the vibration of the end surface 904 by the fiber scanning element 902 with the image signal.
  • the mirror scanning type projector 202 shown in FIG. 2B includes a light source unit 900 and a scanning element 911.
  • the scanning element 911 has a scanning mirror (not shown).
  • the laser light output from the light source unit 900 has directivity, and the laser light enters a scanning mirror of the scanning element 911 and is reflected. At this time, the scanning element 911 can scan the reflected light by vibrating the scanning mirror.
  • the mirror scanning projector 202 can project an image by synchronizing the intensity of the laser light output from the light source unit 900 and the vibration of the scanning element 911 with the image signal.
  • the image light duplicating unit 210 duplicates the light beam of the image light into two or more light beams while substantially preserving the angle of view of the incident image light, and outputs the duplicated two or more image light to the light guide plate 220.
  • the details of the video light duplication unit 210 will be described later.
  • the light guide plate 220 includes a light input unit 221 into which the image light from the image light duplicating unit 210 enters, and a light output unit 222 that emits the image light to the user's eyes.
  • FIG. 4 is a diagram for explaining the propagation of image light in the light guide plate 220.
  • the image light k from the image light duplicating unit 210 enters the inside of the light guide plate 220 from the light input unit 221 (the upper surface in the figure), and all the light on the inner reflection surfaces 223 and 224 facing the xz plane of the light guide plate 220 is opposed.
  • the light propagates inside the light guide plate 220 by reflection.
  • the light guide plate 220 has a function of enlarging the pupil size, which is the light beam diameter of the image light displayed on the image display device 101, and duplicates the image light k incident on the light guide plate 220 from the light input unit 221.
  • the light is output from the light output unit 222 (the lower surface in the figure).
  • FIG. 5 is a diagram illustrating an example of the light guide plate 220. It should be noted that the illustration of the image light duplication unit 210 provided between the image projection unit 200 and the light guide plate 220 is omitted in FIG.
  • a light guide plate 801 which is an example of the light guide plate 220 shown in FIG. 9A includes three diffraction regions 802, 803, and 804.
  • the diffraction region 802 has a structure that diffracts light substantially parallel to the y-axis in a direction substantially parallel to the z-axis.
  • the diffraction region 803 has a structure that diffracts light substantially parallel to the z-axis in the xz plane in a direction substantially parallel to the x-axis.
  • the diffraction region 804 has a structure that diffracts light substantially parallel to the x-axis in a direction substantially parallel to the y-axis.
  • the pitches of the diffraction structures of the diffraction region 802 and the diffraction region 804 are substantially equal to each other, and the pitch of the diffraction structure of the diffraction region 803 is substantially equal to 1 / ⁇ 2 times the pitch of the diffraction structure of the diffraction region 802.
  • the image light from the image projection unit 200 enters the diffraction area 802 corresponding to the light input unit 221.
  • the image light incident on the diffraction region 802 is diffracted, taken into the light guide plate 801, totally internally reflected and guided inside the light guide plate 801, and reaches the diffraction region 803.
  • Part of the image light that has reached the diffraction region 803 is diffracted by the diffraction region 803, and the image light that has not been diffracted is totally reflected inside the light guide plate 801 and reaches the diffraction region 803 again.
  • the image light is duplicated, and the duplicated image light is totally reflected and guided inside the light guide plate 801, and reaches the diffraction region 804 corresponding to the light output unit 222.
  • the pupil size which is the light beam diameter of the image light
  • the light guide plate 801 includes three diffraction regions 802 to 804, for example, two diffraction regions may be provided in the light guide plate and the directions and the periods (pitch) of the diffraction structures of the two diffraction regions may be substantially the same. . Thereby, the structure of the light guide plate can be simplified, and the cost of the light guide plate can be reduced.
  • a light guide plate 811 which is an example of the light guide plate 220 shown in FIG. 2B includes two diffraction regions 812 and 813.
  • the diffraction region 812 has a structure that diffracts light substantially parallel to the y-axis in a direction substantially parallel to the x-axis in the xz plane.
  • the diffraction region 813 has a structure in which light substantially parallel to the x-axis is diffracted in two directions of approximately 60 degrees and approximately ⁇ 60 degrees counterclockwise from the x-axis on the xz plane.
  • the pitch of the diffraction structure in the diffraction region 812 and the pitch of the diffraction structure in the two directions of the diffraction region 813 are substantially equal to each other.
  • the image light from the image projection unit 200 enters the diffraction area 812 corresponding to the light input unit 221.
  • the image light incident on the diffraction region 812 is diffracted, taken into the light guide plate 811, totally reflected and guided inside the light guide plate 811, and reaches the diffraction region 813 corresponding to the light output unit 222.
  • the diffractive region 813 has a structure that diffracts image light in two directions. In the process of total reflection and light guiding inside the light guide plate 811, when diffracted once by each of the two-directional diffractive structures of the diffractive region 813, The image light exits from the light guide plate 811.
  • the pupil size which is the light beam diameter of the image light
  • the light guide plate 811 can also be enlarged in the two-dimensional direction by the light guide plate 811.
  • a light guide plate 821 which is an example of the light guide plate 220 shown in FIG. 9C, includes an incident surface 822 and a plurality of partially reflecting surfaces 823.
  • the plurality of partial reflecting surfaces 823 are a plurality of beam splitter surfaces that are parallel to each other, reflect at least part of incident light, and transmit the rest.
  • the image light from the image projection unit 200 enters the incident surface 822 corresponding to the light input unit 221.
  • the image light incident on the incident surface 822 is totally reflected and guided inside the light guide plate 821, and reaches a plurality of partially reflective surfaces 823.
  • the image light is emitted from the light output surface 824 corresponding to the light output unit 222 by reflecting the image light on each of the beam splitter surfaces constituting the plurality of partial reflection surfaces 823.
  • the pupil size which is the light beam diameter of the image light, can be enlarged in a one-dimensional direction.
  • part of the image light emitted from the light guide plates 801, 811, and 821 enters the user's eyes 120.
  • the user can visually recognize the image displayed on the image display device 101 by perceiving the light that has entered the eye 120.
  • the pupil size ⁇ 2 (FIG. 4) of the image light output from the light output unit 222 of the light guide plate 220 is changed by the function of enlarging the pupil size of the light guide plate 220 so that the pupil size of the image light incident on the light guide plate 220 is reduced. Since it is larger than ⁇ 1 (FIG. 4), compared with the case where the user directly sees the image light that enters the light guide plate 220 without passing through the light guide plate 220, the case where the image light emitted from the light guide plate 220 is viewed This makes it possible to increase the area (eye box) where the user can visually recognize the image when the user's eyes 120 move.
  • an image generation device that scans with directional light (laser light) and generates an image, such as the fiber scanning projector 201 and the mirror scanning projector 202 shown in FIG.
  • the exit pupil diameter of the image light is substantially equal to the diameter of the directional light, and is about 0.1 to 2.0 mm.
  • the exit pupil diameter of the image light of about 0.1 to 2.0 mm is smaller than the interval of about 2 mm to 8 mm of the plurality of image lights output from the light guide plate 220, the plurality of images output from the light guide plate 220 are small.
  • the image light may or may not enter the pupil of the user's eyes. In this case, the user may not be able to visually recognize at least a part of the image, or a part of the image may be noticeably dark.
  • the image light duplication unit 210 is provided between the image projection unit 200 and the light guide plate 220.
  • the image light duplication unit 210 will be described in detail.
  • FIG. 6 is a cross-sectional view illustrating a first configuration example of the video light duplication unit 210 in the video display device 101.
  • the first configuration example of the video light duplication unit 210 includes the video light duplication prism 301.
  • the image light duplicating prism 301 is formed of a transparent glass material or resin, and includes an input surface 302, an output surface 303, and at least two or more substantially flat and substantially parallel image light branch surfaces 304.
  • the image light duplicating prism 301 includes two image light splitting surfaces 304A and 304B.
  • the image light from the image projection unit 200 enters from the input surface 302 and reaches the image light splitting surface 304A.
  • the image light splitting surface 304A reflects at least a part of the incident light and transmits the rest. Therefore, the image light that has reached and transmitted the image light branching surface 304 ⁇ / b> A exits from the output surface 303. Further, the image light that has reached the image light branch surface 304A and is reflected reaches the image light branch surface 304B.
  • the image light splitting surface 304B reflects at least a part of the light. Therefore, the light that reaches and is reflected by the image light branch surface 304 ⁇ / b> B exits from the output surface 303.
  • the image light duplicating prism 301 includes two image light beams having substantially the same angle of view as the image light incident on the image light duplicating prism 301. And output it.
  • each of the two image lights output by the image light duplicating prism 301 enters the light input unit 221 of the light guide plate 220.
  • the two video lights incident on the light input unit 221 are duplicated by the function of expanding the pupil size of the light guide plate 220 and output from the light output unit 222.
  • the two image lights output by the image light duplicating prism 301 enter different positions of the light input unit 221 of the light guide plate 220, and are output from different positions of the light output unit 222. Therefore, the gap between the video lights output from the light guide plate 220 is reduced. As a result, the image light enters the pupil of the user's eye, and the user can visually recognize the entire image.
  • the image light splitting surface 304B (the image light splitting surface 304 of the plurality of image light splitting surfaces 304 where the image light reaches the end) reflects all the image light. This makes it possible to increase the light use efficiency.
  • the energy reflectance (hereinafter, abbreviated to reflectivity) of the image light branch surface 304A is RA and the reflectivity of the image light branch surface 304B is RB
  • (1-RA) is substantially equal to RA ⁇ RB.
  • the intensities of the two image light beams emitted from the image light duplicating prism 301 become substantially equal to each other, and the image viewed by the user can be made more uniform.
  • the image light duplicating prism 301 has been described as including two image light branch surfaces 304, but may have two or more image light branch surfaces 304. Even when the image light duplicating prism 301 includes two or more image light branch surfaces 304, all the image light branch surfaces 304 are formed to be substantially flat and substantially parallel to each other.
  • the number of image light splitting surfaces 304 is N, and among the N image light splitting surfaces 304, the first, second,...
  • the image light incident from the input surface 302 enters the first image light splitting surface 304.
  • At least a part of the light incident on the first image light branch surface 304 passes through the first image light branch surface 304, exits from the output surface 303, and at least the light incident on the first image light branch surface 304.
  • Part of the light is reflected by the first image light splitting surface 304 and enters the second image light splitting surface 304.
  • the image light duplicating prism 301 can duplicate and output N pieces of image light having substantially the same angle of view as the image light incident on the image light duplicating prism 301.
  • the reflectance of the first image light splitting surface 304 is the highest, and the reflectance of the second to N-th image light splitting surfaces 304 is higher than the input surface. It is good to constitute so that it may become low, so that it is near.
  • the reflectance of the first image light splitting surface 304 is (N-1) / N, and the reflectance of the k-th image light splitting surface 304 is 1 for an integer k of 2 or more and N or less. / (N ⁇ k + 1). Thereby, it is possible to make the video visually recognized by the user more uniform.
  • the image light duplicating prism 301 is incident on an end surface other than the output surface 303 of the image light duplicating prism 301 before the image light incident on the image light duplicating prism 301 from the input surface 302 is incident on the image light splitting surface 304. It is desirable to be configured not to do so. Thereby, generation of stray light can be prevented.
  • the image light duplicating prism 301 sets the light reflected by the first image light splitting surface 304 before being reflected by the second to N image light splitting surfaces 304 other than the first image light splitting surface 304. It is desirable to configure so as not to enter the end face of the image light duplicating prism 301. Thereby, generation of stray light can be prevented.
  • an image light duplicating prism 301 configured so that light incident on the image light duplicating prism 301 and reflected by the first image light splitting surface 304 exits from the output surface 303 is used. Is also good.
  • video light incident from the input surface 302 is incident on the first video light splitting surface 304.
  • N ⁇ 1 For an integer k equal to or greater than 1 and equal to or less than (N ⁇ 1), at least a portion of the light incident on the k-th image light branch surface 304 is reflected by the k-th image light branch surface 304 and exits from the output surface 303.
  • At least a part of the light incident on the k-th image light splitting surface 304 passes through the k-th image light splitting surface 304 and is incident on the (k + 1) th image light splitting surface 304. At least a part of the light incident on the N-th image light branch surface 304 is reflected by the N-th image light branch surface 304 and exits from the output surface 303. Thereby, the degree of freedom of arrangement can be increased. Further, it is preferable that the reflectance of the first to N-th image light splitting surfaces 304 decreases as the position is closer to the input surface. Preferably, for an integer k of 1 or more and N or less, the reflectance of the k-th image light splitting surface 304 may be 1 / (N ⁇ k + 1). Thereby, it is possible to make the video visually recognized by the user more uniform.
  • the image light duplicating prism 301 has a case where the aperture size of the image projecting unit 200 for emitting image light is ⁇ PJ (not shown) and the arrangement interval of the N image light splitting surfaces 304 of the image light duplicating prism 301 is DistP.
  • DistP may be configured to be substantially equal to ⁇ PJ or smaller than ⁇ PJ.
  • DistP when the interval between a plurality of image lights output from the light guide plate 220 is set to Dwg (not shown) by the function of enlarging the pupil size of the light guide plate 220, DistP is It may be configured to be approximately equal to 1 / N of Dwg or approximately equal to an integral multiple of 1 / N of Dwg. Thereby, the gap between the image lights output from the light guide plate 220 can be further reduced, and the image visually recognized by the user can be made more uniform.
  • FIG. 7 is a cross-sectional view illustrating a second configuration example of the video light duplication unit 210 in the video display device 101.
  • the second configuration example of the image light duplication unit 210 includes the image light duplication diffraction element 311.
  • the image light duplication diffraction element 311 is formed of a transparent glass material or resin, and includes an input surface 312 and an output surface 313.
  • the input surface 312 includes a diffraction region 314 that diffracts at least some light.
  • the output surface 313 includes a plurality of diffraction regions 315 that diffract at least a part of the light. In the case of the drawing, the output surface 313 includes two diffraction regions 315A and 315B.
  • the directions and the periods (pitches) of the diffraction structures of the diffraction region 314 and the diffraction region 315 are substantially the same.
  • the direction of the grooves of the diffraction structure in the diffraction regions 314 and 315 is the z-axis direction
  • the direction of the pitch is the x-axis direction.
  • the image light from the image projection unit 200 enters the diffraction area 314 of the input surface 312.
  • the diffraction region 314 generates zero-order light, first-order light, and -1st-order light.
  • the 0th-order light, the 1st-order light, and the -1st-order light emitted from the diffraction region 314 propagate inside the image light duplication diffraction element 311 respectively.
  • the zero-order light from the diffraction region 314 is output to the light guide plate 220 from a region of the output surface 313 where the diffraction region 315 is not provided.
  • the -1st-order light from the diffraction area 314 reaches the diffraction area 315A, undergoes first-order diffraction, and is output to the light guide plate 220.
  • the first-order light from the diffraction region 314 reaches the diffraction region 315B, is diffracted by ⁇ 1st order, and output to the light guide plate 220.
  • the directions and the periods (pitch) of the diffraction structures of the diffraction region 314 and the diffraction region 315 are configured to be substantially the same. This allows the image light duplication diffraction element 311 to duplicate and output three image lights having substantially the same angle of view as the image light incident on the image light duplication diffraction element 311.
  • diffraction efficiencies of the diffraction region 314 other than the three diffraction orders of the 0th-order diffraction, the 1st-order diffraction, and the -1st-order diffraction be substantially zero. Further, it is desirable that both the first-order diffraction efficiency of the diffraction region 315A and the ⁇ 1st-order diffraction efficiency of the diffraction region 315B are substantially 1. Thereby, light use efficiency can be improved.
  • the intensities of the three image lights output from the image light duplication diffraction element 311 can be made substantially equal, and the image viewed by the user can be made more uniform.
  • the intersections are desirably at substantially the same position.
  • a point that internally divides 1: 1 between the center point of the image light incident on the diffraction area 315A and the center point of the image light incident on the diffraction area 315B, and the image incident on the diffraction area 314 It is desirable that the intersections of the perpendiculars descending from the central point of the light to the output surface 313 and the output surface 313 be substantially at the same position. Thereby, the structure of the image light duplication diffraction element 311 can be simplified, and the cost of the image light duplication diffraction element 311 can be reduced.
  • the aperture size of the image projection unit 200 for emitting image light is ⁇ PJ
  • the distance between the center point of the diffraction area 315 A and the center point of the diffraction area 315 B is DistG 1 (both are not shown).
  • DistG1 is desirably approximately twice as large as ⁇ PJ or smaller than approximately twice.
  • DistG2 when the distance between the center point of the image light incident on the diffraction area 315A and the center point of the image light incident on the diffraction area 315B is DistG2 (not shown), DistG2 is approximately 2 of ⁇ PJ. It is desirable to be smaller than twice or substantially twice. Accordingly, the three image lights output by the image light duplication diffraction element 311 overlap each other, and the image viewed by the user can be made more uniform.
  • the diffraction region 314 has been described as outputting three orders of diffracted light, that is, the 0th-order diffraction, the 1st-order diffraction, and the -1st-order diffraction.
  • Two-order diffracted light such as the second-order diffraction may be output.
  • the diffraction region 314 may output N (N is an integer of 2 or more) orders of diffracted light such as 0th-order diffraction, 1st-order diffraction, -1st-order diffraction, 2nd-order diffraction, and -2nd-order diffraction.
  • N is an integer of 2 or more orders of diffracted light such as 0th-order diffraction, 1st-order diffraction, -1st-order diffraction, 2nd-order diffraction, and -2nd-order diffraction.
  • the light diffracted in the k-th order in the diffraction area 314, where k is an integer is diffracted in the ⁇ k-th order in the diffraction area 315 provided in the output surface 313, and is output from the image light duplication diffraction element 311.
  • the image light duplicating diffraction element 311 can duplicate and output N pieces of image light having substantially the same angle of view as the image light incident on the image light duplicating diffraction element 311, and display the image visually recognized by the user. Can be made more uniform.
  • the image light duplication diffraction element 311 may be configured so that, on the output surface 313, a region where the light diffracted by the k-th order in the diffraction region 314 reaches a diffraction region having a high diffraction efficiency of ⁇ k-th order diffraction. Further, it is desirable that a region of the output surface 313 to which the light diffracted (not diffracted) by the 0th order in the diffraction region 314 reaches does not have a diffraction region. This makes it possible to increase the light use efficiency.
  • a distance DistG3 (not shown) between adjacent image lights that reach the output surface 313 by diffracting in the diffraction area 314 is substantially equal to the opening size ⁇ PJ of the image projection unit 200 for emitting the image light, or ⁇ PJ. Desirably smaller. Thereby, the two or more image lights output from the image light duplication diffraction element 311 overlap each other, and the image visually recognized by the user can be made more uniform.
  • DistG3 is substantially equal to 1 / N of Dwg, or Dwg.
  • the image light duplication diffraction element 311 is preferably configured to be substantially equal to an integral multiple of 1 / N of the above.
  • FIG. 8 is a cross-sectional view illustrating a third configuration example of the video light duplication unit 210 in the video display device 101.
  • the third configuration example of the video light duplication unit 210 includes a video light duplication beam splitter 321.
  • the image light duplication beam splitter 321 is formed of a transparent glass material or resin, and has an input surface 322 and an output surface 323.
  • the image light duplication beam splitter 321 is formed such that the angle formed between the output surface 323 and the light input unit 221 is larger than 0 degree, and the input surface 322 and the output surface 323 are parallel to each other.
  • image light from the image projection unit 200 enters from the input surface 322, and at least a part of the incident image light propagates inside the image light duplication beam splitter 321.
  • the video light that has propagated inside the video light duplication beam splitter 321 reaches the output surface 323.
  • the output surface 323 transmits at least a part of the light and reflects at least a part of the light.
  • the light transmitted through the output surface 323 exits from the image light duplication beam splitter 321.
  • the light reflected on the output surface 323 propagates inside the image light duplication beam splitter 321 to reach the input surface 322, is reflected on the input surface 322, and reaches the output surface 323 again.
  • the video light exits from the output surface 323.
  • the image light duplication beam splitter 321 is substantially the same as the image light incident on the image light duplication beam splitter 321. It becomes possible to duplicate and output at least two or more video lights having corners.
  • the reflectance of a region of the input surface 322 where the image light reflected by the output surface 323 enters is approximately 1. Thereby, light use efficiency can be increased.
  • a region in the output surface where the image light incident from the input surface 322 reaches is a first arrival region, and k is an integer of 1 or more.
  • the image light reflected by the k-th arrival region is reflected by the input surface 322 again.
  • An area in the output plane reaching the output plane 323 is defined as a (k + 1) th arrival area.
  • the output surface 323 is provided from the first reaching region to the N-th reaching region, where N is an integer of 2 or more, and the image light duplication beam splitter 321 outputs N image lights. In this case, it is desirable that the reflectance of the k-th reaching area is larger than the reflectance of the (k + 1) -th reaching area.
  • the reflectance of the k-th reaching area is (N ⁇ k) / (N ⁇ k + 1).
  • the intensities of the image light output from the image light duplication beam splitter 321 become substantially equal to each other, so that the image visually recognized by the user can be made more uniform.
  • the image light duplication beam splitter 321 be configured so that the entire surface of at least one of the input surface 322 and the output surface 323 has a substantially uniform reflectance. As a result, the cost of the image light duplication beam splitter 321 can be reduced.
  • the image projecting unit 200 displays an image having a small exit pupil such as the fiber scanning projector 201 or the mirror scanning projector 202 shown in FIG. Even when the generation device is employed, the image light is incident on the pupil of the user's eye, so that the user can visually recognize the entire image.
  • the image projection unit 200 employs an image generation device with a small exit pupil, such as the fiber scanning projector 201 or the mirror scanning projector 202 shown in FIG. 3, so that the user can view the entire image.
  • the size of the video display device 11 can be reduced.
  • FIG. 9 shows a video display device 102 as a second configuration example of the video display device 11. Note that among the components of the video display device 102, those that are common to the components of the video display device 101 (FIG. 2) are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the image display device 102 includes the image projection unit 200 and the light guide plate 400.
  • the light guide plate 400 includes a light input unit 221, a video light duplication unit 230, and a light output unit 222.
  • image light from the image projection unit 200 enters the light guide plate 400 from the light input unit 221, propagates inside the light guide plate 400, and enters the image light duplication unit 230.
  • the image light duplicating unit 230 duplicates and outputs at least two light beams of the image light while substantially preserving the angle of view of the incident image light.
  • the image light duplicated by the image light duplication unit 230 propagates inside the light guide plate 400 and exits from the light output unit 222 to the outside of the light guide plate 400.
  • FIG. 10 is a cross-sectional view illustrating a first configuration example of the light guide plate 400.
  • a light guide plate 410 which is a first configuration example of the light guide plate 400, includes a light input unit 221, a light output unit 222, and transparent flat plates 401A, 401B, and 402.
  • the transparent flat plates 401A and 401B correspond to the image light duplication unit 230.
  • the transparent flat plates 401A, 401B, 402 are each formed of a transparent glass material or resin.
  • the transparent flat plate 401A and the transparent flat plate 401B are bonded together by a transparent adhesive or an optical contact on a bonding surface 403 parallel to the xz plane.
  • the bonded transparent flat plates 401A and 401B and the transparent flat plate 402 are bonded by a transparent adhesive or an optical contact on a bonding surface 404 parallel to the yz plane.
  • the thickness tt of the transparent flat plate 402 is equal to the thickness of the transparent flat plates 401A and 401B. It has a relationship substantially equal to the sum t1 + t2.
  • the image light from the image projection unit 200 enters the light guide plate 410 from the light input unit 221.
  • Light that has entered the inside of the light guide plate 410 propagates through the inside of the transparent flat plate 401A and reaches the bonding surface 403.
  • At least a part of the bonding surface 403 reflects at least a part of the image light and transmits at least a part of the image light.
  • the image light that has reached the bonding surface 403 is duplicated into two beams depending on whether the light is reflected or transmitted by the bonding surface 403.
  • the image light reflected on the bonding surface 403 is totally reflected on the total reflection surface 405A of the transparent flat plate 401A, and reaches the bonding surface 403 again.
  • the image light transmitted through the bonding surface 403 is totally reflected by the total reflection surface 405B of the transparent flat plate 401B, and reaches the bonding surface 403 again.
  • the image light that has entered the image light duplicating section 230 is duplicated and reaches the bonding surface 404.
  • the plurality of image lights that have reached the bonding surface 404 are incident on the transparent flat plate 402 from the image light duplicating section 230 and reach the light output section 222.
  • the plurality of image lights from the image light duplicating section 230 are further duplicated by the function of enlarging the pupil size of the light guide plate 410 and output from different positions of the light output section 222. Therefore, the gap between the video lights emitted from the light guide plate 410 is reduced. As a result, the image light enters the pupil of the user's eye, and the user can visually recognize the entire image.
  • the image light duplication unit 230 can duplicate the image light into two lines.
  • the reflectance of the bonding surface 403 of the transparent flat plates 401A and 401B is approximately 0.5. Accordingly, the intensities of the plurality of light beams output from the image light duplicating section 230 can be made substantially equal to each other, and the image visually recognized by the user can be made more uniform.
  • the image light duplication unit 230 can duplicate the image light into three lines. Thereby, the gap between the image lights emitted from the light guide plate 410 can be further reduced, and the image visually recognized by the user can be made more uniform.
  • FIG. 11 is a cross-sectional view illustrating a second configuration example of the light guide plate 400.
  • the light guide plate 420 which is a second configuration example of the light guide plate 400, is obtained by adding a transparent flat plate 406 directly below the light input unit 221 to the light guide plate 410 (FIG. 10).
  • the transparent flat plate 406 is formed of a transparent glass material or resin.
  • the bonded transparent flat plates 401A and 401B and the transparent flat plate 406 are bonded by a transparent adhesive or an optical contact on a bonding surface 407 parallel to the yz plane.
  • the image light from the image projection unit 200 enters the light guide plate 420 from the light input unit 221.
  • the light that has entered the inside of the light guide plate 410 propagates through the inside of the transparent flat plate 406 and enters the image light duplication unit 230 from the bonding surface 407.
  • the propagation of the video light after entering the video light duplicating section 230 is the same as that of the light guide plate 410, and thus the description is omitted.
  • the image light duplicated by the image light duplicating unit 230 is further duplicated by the function of enlarging the pupil size of the light guide plate 420 and output from different places of the light output unit 222. Therefore, the gap between the image lights emitted from the light guide plate 420 is reduced. As a result, the image light enters the pupil of the user's eye, and the user can visually recognize the entire image.
  • FIG. 12 is a cross-sectional view illustrating a third configuration example of the light guide plate 400.
  • the light guide plate 430 which is a third configuration example of the light guide plate 400, includes a light input unit 221, a light output unit 222, a transparent flat plate 441, and a transparent flat plate 442.
  • the image light duplication unit 230 is realized by the transparent flat plate 441 and a part of the transparent flat plate 442.
  • the transparent flat plate 441 and the transparent flat plate 442 are bonded by a transparent adhesive or an optical contact on a bonding surface 443 parallel to the xz plane. At least a part of the bonding surface 443 reflects at least a part of the image light and transmits at least a part of the image light.
  • image light from the image projection unit 200 enters the light guide plate 440 from the light input unit 221 and reaches the bonding surface 443.
  • the image light is duplicated into two depending on whether the image light is reflected or transmitted.
  • the image light incident on the image light duplicating section 230 is duplicated into a plurality.
  • the plurality of image lights output from the image light duplicating unit 230 are duplicated by the function of enlarging the pupil size of the light guide plate 430 and output from different positions of the light output unit 222. Therefore, the gap between the video lights output from the light guide plate 430 is reduced. As a result, the image light enters the pupil of the user's eye, and the user can visually recognize the entire image.
  • the image light duplicating unit 230 is formed by two transparent flat plates, but the image light duplicating unit 230 may be formed by two or more transparent flat plates.
  • FIG. 13 is a cross-sectional view illustrating a fourth configuration example of the light guide plate 400.
  • a light guide plate 440 which is a fourth configuration example of the light guide plate 400, includes a light input unit 221, a light output unit 222, a transparent flat plate 402, and three transparent flat plates 421A to 421C.
  • the image light duplication unit 230 is realized by three transparent flat plates 421A to 421C.
  • the transparent flat plates 421A and 421B forming the image light duplication unit 230 are bonded together at a bonding surface 423A parallel to the xz plane, and the transparent flat plates 421B and 421C are bonded together at a bonding surface 423B parallel to the xz plane. Bonded together by an agent or an optical contact.
  • the bonded transparent flat plates 421A to 421C and the transparent flat plate 402 are bonded together by a transparent adhesive or an optical contact on a bonding surface 424 parallel to the yz plane.
  • the thickness of the transparent flat plate 421A is t1
  • the thickness of the transparent flat plate 421B is t2
  • the thickness of the transparent flat plate 421C is t3
  • the thickness of the transparent flat plate 402 is tt
  • the thickness tt of the transparent flat plate 402 is The sum of the thicknesses of 421A, 421B, and 421C is substantially equal to t1 + t2 + t3.
  • At least a part of each of the bonding surfaces 423A and 423B reflects at least a part of the image light and transmits at least a part of the image light.
  • the number of transparent flat plates forming the image light duplicating unit 230 is further increased, the number of image light to be duplicated by the image light duplicating unit 230 can be increased. Thereby, the gap between the image lights output from the light guide plate 440 can be further reduced, and the image visually recognized by the user can be made more uniform.
  • the image display device 102 is provided between the video projection unit 200 and the light guide plate 400. Since there is no need to dispose optical components, the size of the image display device 11 can be further reduced.
  • FIG. 14 shows a video display device 103 which is a third configuration example of the video display device 11.
  • components common to the components of the video display device 101 are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the image display device 103 includes the image projection unit 200, the image light duplication unit 250, and the light guide plate 700.
  • the image light duplicating section 250 is attached to the light guide plate 700 by a transparent adhesive or an optical contact.
  • the light guide plate 700 includes a light input unit 221, a total reflection light guide unit 240, and a light output unit 222.
  • image light from the image projection unit 200 enters the light guide plate 700 from the light input unit 221, and is totally reflected and guided by the total reflection light guide unit 240. Then, in the process of total reflection light guiding, the image light propagates to the image light duplication unit 250.
  • the image light duplication unit 250 duplicates and outputs at least two or more light beams while substantially preserving the angle of view of the transmitted image light.
  • the image light output from the image light duplicating unit 250 is again incident on the total reflection light guiding unit 240 and is totally reflected and guided.
  • the image light emitted from the total reflection light guide 240 is emitted from the light output unit 222 to the outside of the light guide plate 700.
  • FIG. 15 is a cross-sectional view illustrating a configuration example of the light guide plate 700 to which the image light duplication unit 250 is attached.
  • the image light duplicating section 250 is composed of a transparent flat plate 431A formed of a transparent glass material or resin.
  • the total reflection light guide 240 is composed of a transparent flat plate 432 formed of a transparent glass material or resin.
  • the transparent flat plate 431A and the transparent flat plate 432 are bonded by a transparent adhesive or an optical contact on a bonding surface 433 parallel to the xz plane.
  • the image light from the image projection unit 200 enters the inside of the light guide plate 700 from the light input unit 221 and guides the inside of the transparent flat plate 432 (total reflection light guide unit 240) by total reflection.
  • the image light reaches the bonding surface 433 during the process of total reflection light guiding inside the transparent flat plate 432.
  • At least a part of the bonding surface 433 transmits at least a part of the image light and reflects at least a part of the light.
  • the image light transmitted through the bonding surface 433 is totally reflected and guided inside the transparent flat plate 431 and reaches the bonding surface 433 again.
  • the image light reflected on the bonding surface 433 is totally reflected and guided inside the transparent flat plate 432 and reaches the bonding surface 433 again. Therefore, the image light is duplicated each time it reaches the bonding surface 433, whereby the image light duplicating unit 250 can output a plurality of image lights.
  • the plurality of image lights output by the image light duplicating unit 250 are duplicated by the function of enlarging the pupil size of the light guide plate 700, and output from different positions of the light output unit 222. Therefore, the gap between the image lights output from the light guide plate 700 is reduced. As a result, the image light enters the pupil of the user's eye, and the user can visually recognize the entire image.
  • the thickness t1 of the transparent flat plate 431A and the thickness t2 of the transparent flat plate 432 are formed so as to satisfy a relationship of t1 ⁇ t2.
  • the optical components disposed between the video projection unit 200 and the light guide plate 700 Since it becomes unnecessary, the size of the image display device 11 can be further reduced.
  • the image display apparatus 101 described above is configured such that the image light from the image projection unit 200 is duplicated by the image light duplication unit 210 and is incident on one light guide plate 220, as shown in FIGS.
  • the plurality of image lights duplicated by the image light duplication unit 210 may be modified so as to be incident on the plurality of light guide plates 220.
  • FIG. 16 shows a first modification of the video display device 101.
  • the first modified example includes three light guide plates 220A, 220B, and 220C that are arranged so as to overlap in the y-axis direction.
  • the light input unit 221A of the light guide plate 220A captures at least a part of the image light incident from the image light duplication unit 210 into the light guide plate 220A and transmits at least a part of the light.
  • the light input part 221B of the light guide plate 220B captures at least a part of the image light transmitted through the light input part 221A into the light guide plate 220B and transmits at least a part thereof.
  • the light input unit 221C of the light guide plate 220C takes at least a part of the image light transmitted through the light input unit 221B into the light guide plate 220C.
  • the light guide plates 220A to 220C are made to have characteristics of transmitting light of different wavelengths.
  • the light guide plate 220A has a property to propagate light in the blue band
  • the light guide plate 220B has a property to propagate light in the green band
  • the light guide plate 220C has a property to propagate light in the red band. To have.
  • each light guide plate 220 is optimized for the wavelength of the propagating light, so that the optical utilization efficiency and the like can be improved. Characteristics can be improved.
  • the video display apparatus 101 described above replicates and guides the video light from the video projection unit 200 in the one-dimensional direction (x-axis direction) by the video light replication unit 210. Although the light is incident on the light plate 220, the image light may be deformed so that the image light is duplicated in the two-dimensional direction (the x-axis direction and the y-axis direction) by the image light duplication unit 210 and then incident on the light guide plate 220.
  • FIG. 17A and 17B show a second modification of the video display device 101.
  • FIG. 17A is a sectional view of the xy plane of the second modification, and FIG. It is sectional drawing of the yz plane of the modification of 2.
  • the image light duplicating unit 210 in the second modified example includes image light duplicating prisms 301A and 301B.
  • the image light duplicating prism 301A duplicates the image light from the image projection unit 200 in the x-axis direction and outputs the duplicated image light to the image light duplicating prism 301B.
  • the image light duplicating prism 301B duplicates the image light from the image light duplicating prism 301A in the z-axis direction and enters the light guide plate 220 from the light input unit 221.
  • the image light from the image projection unit 200 can be duplicated in the two-dimensional direction by the image light duplication unit 210 before being incident on the light guide plate 220.
  • the gap between the image lights emitted from the light guide plate 220 can be further reduced, and the image visually recognized by the user can be made more uniform.
  • the video light duplicating unit 210 is composed of two video light duplicating prisms 301A and 301B.
  • the image light duplication diffraction element 311 (FIG. 7) or two image light duplication beam splitters 321 (FIG. 8) may be used.
  • FIG. 18 shows a modification of the video display device 102.
  • three light guide plates 400A, 400B, and 400C are provided so as to overlap in the y-axis direction.
  • the light input unit 221A of the light guide plate 400A captures at least a part of the image light from the image projection unit 200 into the light guide plate 400A and transmits at least a part thereof.
  • the light input unit 221B of the light guide plate 400B captures at least a part of the image light transmitted through the light input unit 221A into the light guide plate 400B and transmits at least a part thereof.
  • the light input unit 221C of the light guide plate 400C takes at least a part of the image light transmitted through the light input unit 221B into the light guide plate 400C.
  • the light guide plates 400A to 400C have characteristics of transmitting light of different wavelengths.
  • the light guide plate 400A has a property to propagate light in the blue band
  • the light guide plate 400B has a property to propagate light in the green band
  • the light guide plate 400C has a property to propagate light in the red band. To have.
  • each light guide plate 400 is optimized for the wavelength of the propagating light, so that optical efficiency such as light use efficiency can be improved. Characteristics can be improved.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • each of the above embodiments has been described in detail in order to explain the present invention in an easily understandable manner, and the present invention is not necessarily limited to a configuration including all the described components.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment.
  • DESCRIPTION OF SYMBOLS 10 ... Video display system, 11 ... Video display device, 12 ... Control device, 13 ... Video signal processing device, 14 ... Power supply device, 15 ... Storage device, 16 ... Sensing device, 17 sensor input / output unit, 18 communication device, 19 communication input / output unit, 20 voice processing device, 21 voice input / output unit, 101 to 104 ..
  • Light guide plate 220 220 Light guide plate 221 Light input unit 222 Light output unit 223 Inner reflective surface 224 Inner reflective surface 230 Image light replication Part, 240 ... total reflection light guide part, 250 ... video Duplicating unit, 301: Image light duplicating prism, 302: Input surface, 303: Output surface, 304: Image light splitting surface, 311: Image light duplicating diffraction element, 312: Input Plane, 313 ... output plane, 314 ... diffraction area, 315 ... diffraction area, 315A ... diffraction area, 315B ... diffraction area, 321 ... video light duplication beam splitter, 322 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

Through the present invention, a light-guiding-plate-type video display device in which an entire image is visible to a user is reduced in size. This video display device is characterized by being provided with a video projection part for causing light to scan and generating video light having a predetermined angle of view, a light-guiding plate for causing the video light incident from a light input part to propagate inside the light-guide plate and outputting the video light from a light output part, and a video light reproduction part for reproducing a light beam of the video light, the video light reproduction part reproducing two or more video lights having substantially the same angle of view as the incident video light.

Description

映像表示装置、及び映像表示システムVideo display device and video display system
 本発明は、映像表示装置、及び映像表示システムに関する。本発明は2018年7月20日に出願された日本国特許の出願番号2018-136391の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to a video display device and a video display system. The present invention claims the priority of Japanese Patent Application No. 2018-136391, filed on July 20, 2018, and, for designated countries where weaving by reference to documents is permitted, the contents described in that application are Incorporated by reference into this application.
 従来、ヘッドマウントディスプレイに代表される導光板を用いた方式の映像表示装置が知られている。 Conventionally, an image display device of a system using a light guide plate represented by a head-mounted display is known.
 上述した導光板を用いた方式(以下、導光板方式と称する)の映像表示装置に関連し、例えば、特許文献1には、ファイバの先端から指向性のあるレーザ光を出射し、ファイバの先端を走査することによって映像を生成するファイバ走査型映像生成装置に関する技術が開示されている。該ファイバ走査型映像生成装置によれば、映像を投影するための投射レンズが不要となるので、装置規模を小型化することができる。 For example, Japanese Patent Application Laid-Open Publication No. HEI 11-163572 discloses a technique in which a laser beam having directivity is emitted from the tip of a fiber and the tip of the fiber is related to an image display apparatus using the above-described method using a light guide plate (hereinafter, referred to as a light guide plate method). There is disclosed a technology related to a fiber-scanning image generation apparatus that generates an image by scanning an image. According to the fiber-scanning image generation apparatus, a projection lens for projecting an image is not required, so that the apparatus scale can be reduced.
 また、特許文献2には、映像表示装置に表示する映像光の光束径である瞳サイズを拡大し、映像光をユーザの目の瞳孔まで伝達する導光板に関する技術が開示されている。該導光板によれば、瞳サイズが拡大されたことにより、アイボックス(ユーザが映像を視認できるエリア)を拡大することができる。 Patent Document 2 discloses a technique related to a light guide plate that enlarges a pupil size, which is a light beam diameter of image light displayed on an image display device, and transmits image light to a pupil of a user's eye. According to the light guide plate, since the pupil size is enlarged, an eye box (an area where a user can visually recognize an image) can be enlarged.
国際公開第2017/163386号International Publication No. WO 2017/163386 国際公開第2016/020643号International Publication No. WO 2016/020463
 特許文献2に記載の導光板と、特許文献1に記載のファイバ走査型映像生成装置とを組み合わせれば、導光板方式の映像表示装置を小型化できる。しかしながら、このような構成の場合、ファイバ走査型映像生成装置から導光板に供給される映像光の射出瞳の直径は、指向性のあるレーザ光の直径と略等しく、導光板から出力される複数の映像光の間隔と比べて非常に小さい。このため、導光板から出力される複数の映像光どうしが重なりを持たず、ユーザの目の瞳孔に映像光が入射しないことが発生し、映像の少なくとも一部分をユーザが視認できなってしまうことが起こり得る。 組 み 合 わ せ By combining the light guide plate described in Patent Literature 2 with the fiber-scanning video generation device described in Patent Literature 1, the size of the light guide plate type image display device can be reduced. However, in such a configuration, the diameter of the exit pupil of the image light supplied to the light guide plate from the fiber scanning image generation device is substantially equal to the diameter of the directional laser light, and Is very small compared to the interval of the image light. For this reason, the plurality of image lights output from the light guide plate do not overlap each other, and the image light does not enter the pupil of the user's eye. This may cause the user to visually recognize at least a part of the image. It can happen.
 本発明は、このような状況に鑑みてなされたものであり、ユーザが映像の全体を視認可能な導光板方式の映像表示装置を実現することを目的とする。 The present invention has been made in view of such a situation, and an object of the present invention is to realize a light guide plate type image display device in which a user can visually recognize the entire image.
 本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下のとおりである。上記課題を解決すべく、本発明の一態様に係る映像表示装置は、光を走査して所定の画角の映像光を生成する映像投影部と、光入力部から入射した前記映像光を内部で伝搬させて光出力部から出力する導光板と、前記映像光の光線を複製する映像光複製部と、を備え、前記映像光複製部は、入射した前記映像光と略同一の画角を有する2本以上の映像光を複製することを特徴とする。 Although the present application includes a plurality of means for solving at least a part of the above-described problems, examples thereof are as follows. In order to solve the above problem, an image display device according to one embodiment of the present invention includes an image projection unit that scans light to generate image light having a predetermined angle of view, and internally transmits the image light incident from a light input unit. A light guide plate that propagates through the light output unit and outputs a light beam of the image light, and an image light duplication unit that duplicates the light beam of the image light, wherein the image light duplication unit has an angle of view substantially the same as the incident image light. It is characterized in that two or more of the video lights included are duplicated.
 本発明によれば、ユーザが映像の全体を視認可能な導光板方式の映像表示装置を実現することが可能となる。 According to the present invention, it is possible to realize a light guide plate type image display device in which a user can visually recognize the entire image.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 The problems, configurations, and effects other than those described above will be apparent from the following description of the embodiments.
本発明の一実施の形態に係る映像表示システムの構成例を示すブロック図である。1 is a block diagram illustrating a configuration example of a video display system according to an embodiment of the present invention. 映像表示装置の第1の構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a first configuration example of a video display device. 映像投影部に採用し得る映像生成装置の例を示す図である。FIG. 3 is a diagram illustrating an example of a video generation device that can be employed in a video projection unit. 導光板における映像光の伝搬を説明するための図である。It is a figure for explaining propagation of image light in a light guide plate. 導光板による映像光の回折方向の例を示す図である。FIG. 3 is a diagram illustrating an example of a diffraction direction of image light by a light guide plate. 映像表示装置の第1の構成例における映像光複製部の第1の構成例を示す断面図である。FIG. 3 is a cross-sectional view illustrating a first configuration example of a video light duplicating unit in the first configuration example of the video display device. 映像表示装置の第1の構成例における映像光複製部の第2の構成例を示す断面図である。FIG. 5 is a cross-sectional view illustrating a second configuration example of the video light duplicating section in the first configuration example of the video display device. 映像表示装置の第1の構成例における映像光複製部の第3の構成例を示す断面図である。FIG. 5 is a cross-sectional view illustrating a third configuration example of the video light duplicating section in the first configuration example of the video display device. 映像表示装置の第2の構成例を示すブロック図である。It is a block diagram showing the 2nd example of composition of a picture display. 映像表示装置の第2の構成例における映像光複製部を含む導光板の第1の構成例を示す断面図である。It is sectional drawing which shows the 1st example of a structure of the light guide plate containing the image light duplication part in the 2nd example of a structure of an image display device. 映像表示装置の第2の構成例における映像光複製部を含む導光板の第2の構成例を示す断面図である。It is sectional drawing which shows the 2nd example of a structure of the light guide plate containing the image light duplication part in the 2nd example of a structure of an image display device. 映像表示装置の第2の構成例における映像光複製部を含む導光板の第3の構成例を示す断面図である。It is sectional drawing which shows the 3rd example of a structure of the light guide plate containing the image light duplication part in the 2nd example of a structure of an image display device. 映像表示装置の第2の構成例における映像光複製部を含む導光板の第4の構成例を示す断面図である。It is sectional drawing which shows the 4th example of a structure of the light guide plate containing the image light duplication part in the 2nd example of a structure of an image display device. 映像表示装置の第3の構成例を示すブロック図である。FIG. 13 is a block diagram illustrating a third configuration example of the video display device. 映像表示装置の第3の構成例における映像光複製部が貼り合された導光板の構成例を示す断面図である。It is sectional drawing which shows the example of a structure of the light guide plate in which the image light duplication part in the 3rd example of a structure of an image display apparatus was bonded. 映像表示装置の第1の構成例の第1の変形例を示す断面図である。It is sectional drawing which shows the 1st modification of the 1st structural example of a video display apparatus. 映像表示装置の第1の構成例の第2の変形例を示す断面図である。It is sectional drawing which shows the 2nd modification of the 1st structural example of a video display apparatus. 映像表示装置の第2の構成例の変形例を示す断面図である。It is sectional drawing which shows the modification of the 2nd example of a structure of a video display apparatus.
 以下、本発明に係る複数の実施の形態を図面に基づいて説明する。なお、各実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。 Hereinafter, a plurality of embodiments according to the present invention will be described with reference to the drawings. In all the drawings for describing each embodiment, the same members are denoted by the same reference numerals in principle, and the repeated description thereof will be omitted. Also, in the following embodiments, the components (including element steps, etc.) are not necessarily essential, unless otherwise specified or considered to be indispensable in principle. Needless to say. In addition, when saying “consisting of A”, “consisting of A”, “having A”, or “including A”, other elements are excluded unless otherwise specified. Needless to say, it doesn't. Similarly, in the following embodiments, when referring to the shapes, positional relationships, and the like of the components, the shapes are substantially the same unless otherwise specified, and in cases where it is clearly considered in principle not to be so. And the like.
 <本発明の一実施の形態に係る映像表示システムの構成例>
 図1は、本発明の一実施の形態に係る映像表示システムの構成例を示している。
<Configuration Example of Video Display System According to One Embodiment of the Present Invention>
FIG. 1 shows a configuration example of a video display system according to an embodiment of the present invention.
 該映像表示システム10は、映像表示装置11、制御装置12、映像信号処理装置13、電力供給装置14、記憶装置15、センシング装置16、通信装置18、及び音声処理装置20を有する。 The video display system 10 includes a video display device 11, a control device 12, a video signal processing device 13, a power supply device 14, a storage device 15, a sensing device 16, a communication device 18, and an audio processing device 20.
 映像表示装置11は、例えばヘッドマウントディスプレイに代表される導光板を用いた導光板方式の表示デバイスである。映像表示装置11は、映像信号処理装置13によって生成され、制御装置12を介して供給される映像信号を入力とし、該映像信号に基づく映像をユーザに表示する。映像表示装置11の詳細については後述する。 The image display device 11 is a light guide plate type display device using a light guide plate represented by, for example, a head mounted display. The video display device 11 receives a video signal generated by the video signal processing device 13 and supplied via the control device 12, and displays a video based on the video signal to a user. The details of the video display device 11 will be described later.
 制御装置12は、映像表示システム10の全体を統括的に制御する。制御装置12は、例えばCPU(Central Processing Unit)やコンピュータ等が所定のプログラムを実行することによってその機能を実現することができる。 The control device 12 controls the whole of the video display system 10 as a whole. The control device 12 can realize its function by executing a predetermined program by, for example, a CPU (Central Processing Unit) or a computer.
 映像信号処理装置13は、映像表示装置11に供給するための映像信号を生成する。電力供給装置14は、映像表示システム10を構成する各装置に対して電力を供給する。 The video signal processing device 13 generates a video signal to be supplied to the video display device 11. The power supply device 14 supplies power to each device constituting the video display system 10.
 記憶装置15は、制御装置12が実行するプログラム、映像表示システム10を構成する各装置の処理に必要な情報、各装置によって生成された情報等を記憶する。記憶装置15は、例えば、RAM(Random Access Memory)、フラッシュメモリ、HDD(Hard Disk Drive)、SSD(solid state drive)CD-R(Compact Disc- Recordable)、DVD-RAM(Digital Versatile Disk-Random Access Memory)等の書き込み及び読み出し可能な記憶メディアまたは記憶メディア駆動装置等から成る。 The storage device 15 stores a program executed by the control device 12, information necessary for processing of each device constituting the video display system 10, information generated by each device, and the like. The storage device 15 includes, for example, a random access memory (RAM), a flash memory, a hard disk drive (HDD), a solid state drive (SSD), a compact disc-recordable (CD-R), and a digital versatile disk-random access (DVD-RAM). Memory) or a writable and readable storage medium or a storage medium drive.
 センシング装置16は、センサ入出力部17を介して接続される各センサを用いて周囲の状況を検知する。該センサとしては、例えば、ユーザの体勢、向き、及び動きを検出する傾斜センサ、加速度センサ、ユーザの身体状況を検出する視線センサ、温度センサ、ユーザの位置情報を検出するGPS(Global Positioning System)受信装置、感圧センサ、静電容量センサ、バーコードリーダ等を挙げることができる。 (4) The sensing device 16 detects the surrounding situation using each sensor connected via the sensor input / output unit 17. As the sensor, for example, a posture sensor, an inclination sensor for detecting the posture and movement of the user, an acceleration sensor, a gaze sensor for detecting the physical condition of the user, a temperature sensor, and a GPS (Global Positioning System) for detecting position information of the user A receiving device, a pressure-sensitive sensor, a capacitance sensor, a barcode reader, and the like can be given.
 通信装置18は、通信入出力部19を介し、例えばBluetooth(登録商標)、Wi-Fi(登録商標)、UHF(Ultra-High Frequency)波、VHF(Very High Frequency)波等を用いた無線通信または有線通信を用いて所定の通信ネットワーク(携帯電話通信網、インターネット等)に接続して通信を行う。 The communication device 18 uses the communication input / output unit 19 to perform wireless communication using, for example, Bluetooth (registered trademark), Wi-Fi (registered trademark), UHF (Ultra-High Frequency) wave, VHF (Very High Frequency) wave, or the like. Alternatively, communication is performed by connecting to a predetermined communication network (a mobile phone communication network, the Internet, or the like) using wired communication.
 音声処理装置20は、音声入出力部21を介してマイクやイヤホン等と接続し、音声信号の入出力を行う。 The audio processing device 20 is connected to a microphone, an earphone, or the like via the audio input / output unit 21 to input and output an audio signal.
 <映像表示装置11の第1の構成例>
 次に、図2は、映像表示装置11の第1の構成例としての映像表示装置101を示している。
<First configuration example of video display device 11>
Next, FIG. 2 shows a video display device 101 as a first configuration example of the video display device 11.
 映像表示装置101は、映像投影部200、映像光複製部210、及び導光板220から成る。 The video display device 101 includes a video projection unit 200, a video light duplication unit 210, and a light guide plate 220.
 映像投影部200は、映像信号処理装置13によって生成され、制御装置12を介して供給される映像信号を入力とし、該映像信号に基づき、映像表示装置11が表示する映像となる映像光を生成して後段に投影する。同図の場合、映像投影部200が投影した映像光は、映像光複製部210に入射される。 The video projection unit 200 receives a video signal generated by the video signal processing device 13 and supplied via the control device 12 and generates video light serving as a video displayed by the video display device 11 based on the video signal. And project it to the subsequent stage. In the case of the figure, the image light projected by the image projection unit 200 is incident on the image light duplication unit 210.
 図3は、映像投影部200に採用し得る映像生成装置の例を示している。同図(A)は、映像投影部200に採用し得るファイバ走査型プロジェクタ201を示している。同図(B)は、映像投影部200に採用し得るミラー走査型プロジェクタ202を示している。 FIG. 3 shows an example of a video generation device that can be employed in the video projection unit 200. FIG. 1A shows a fiber scanning type projector 201 that can be employed in the video projection unit 200. FIG. 2B shows a mirror scanning type projector 202 that can be employed in the video projection unit 200.
 同図(A)に示すファイバ走査型プロジェクタ201は、光源部900、ファイバ901、ファイバ走査素子902、及びコリメートレンズ903を備える。 The fiber scanning projector 201 shown in FIG. 1A includes a light source unit 900, a fiber 901, a fiber scanning element 902, and a collimating lens 903.
 光源部900は、例えばレーザ光を発光する。光源部900にて発光されたレーザ光は、ファイバ901の内部を伝搬して、ファイバ901の端面904から出射する。ファイバ901からの出射光は、コリメートレンズ903を通過することにより高い指向性を有する光となる。 The light source unit 900 emits, for example, laser light. The laser light emitted from the light source unit 900 propagates inside the fiber 901 and exits from the end face 904 of the fiber 901. The light emitted from the fiber 901 passes through the collimator lens 903 and becomes light having high directivity.
 ファイバ901に取り付けられたファイバ走査素子902は、ファイバ901の端面904を振動させ、ファイバ901からの出射光を走査する。光源部900が出力するレーザ光の強度と、ファイバ走査素子902による端面904の振動とを、映像信号に同期させることにより、該ファイバ走査型プロジェクタ201は、映像を投影することができる。 The fiber scanning element 902 attached to the fiber 901 vibrates the end face 904 of the fiber 901 and scans the light emitted from the fiber 901. The fiber scanning type projector 201 can project an image by synchronizing the intensity of the laser light output from the light source unit 900 and the vibration of the end surface 904 by the fiber scanning element 902 with the image signal.
 同図(B)に示すミラー走査型プロジェクタ202は、光源部900及び走査素子911を備えている。 ミ ラ ー The mirror scanning type projector 202 shown in FIG. 2B includes a light source unit 900 and a scanning element 911.
 走査素子911は、走査ミラー(不図示)を有する。光源部900が出力したレーザ光には指向性があり、該レーザ光は走査素子911の走査ミラーに入射して反射する。このとき、走査素子911が走査ミラーを振動させることによって反射した反射光を走査することができる。光源部900が出力するレーザ光の強度と、走査素子911の振動とを、映像信号に同期させることにより、ミラー走査型プロジェクタ202は、映像を投影することができる。 The scanning element 911 has a scanning mirror (not shown). The laser light output from the light source unit 900 has directivity, and the laser light enters a scanning mirror of the scanning element 911 and is reflected. At this time, the scanning element 911 can scan the reflected light by vibrating the scanning mirror. The mirror scanning projector 202 can project an image by synchronizing the intensity of the laser light output from the light source unit 900 and the vibration of the scanning element 911 with the image signal.
 図2に戻る。映像光複製部210は、入射された映像光の画角を略保存しながら、映像光の光線を2本以上に複製し、複製した2本以上の映像光を導光板220に出力する。なお、映像光複製部210の詳細は後述する。 戻 る Return to FIG. The image light duplicating unit 210 duplicates the light beam of the image light into two or more light beams while substantially preserving the angle of view of the incident image light, and outputs the duplicated two or more image light to the light guide plate 220. The details of the video light duplication unit 210 will be described later.
 導光板220は、映像光複製部210からの映像光が入射する光入力部221と、ユーザの目に対して映像光を出射する光出力部222を有する。 The light guide plate 220 includes a light input unit 221 into which the image light from the image light duplicating unit 210 enters, and a light output unit 222 that emits the image light to the user's eyes.
 次に、図4は、導光板220における映像光の伝搬を説明するための図である。 Next, FIG. 4 is a diagram for explaining the propagation of image light in the light guide plate 220.
 映像光複製部210からの映像光kは、光入力部221(図における上面)から導光板220の内部に入射し、導光板220のxz面に平行な対向する内側反射面223及び224における全反射により、導光板220の内部を伝搬する。 The image light k from the image light duplicating unit 210 enters the inside of the light guide plate 220 from the light input unit 221 (the upper surface in the figure), and all the light on the inner reflection surfaces 223 and 224 facing the xz plane of the light guide plate 220 is opposed. The light propagates inside the light guide plate 220 by reflection.
 導光板220は、映像表示装置101にて表示する映像光の光束径である瞳サイズを拡大する機能を備えており、光入力部221から導光板220に入射した映像光kを複数に複製して、光出力部222(図における下面)から出力する。これにより、光入力部221から導光板220に入射した映像光kの光束径である瞳サイズφ1よりも大きい瞳サイズφ2の映像光(同図の場合、複製された3本の映像光k)を光出力部222から出力することが可能となる。 The light guide plate 220 has a function of enlarging the pupil size, which is the light beam diameter of the image light displayed on the image display device 101, and duplicates the image light k incident on the light guide plate 220 from the light input unit 221. The light is output from the light output unit 222 (the lower surface in the figure). Thereby, the image light of the pupil size φ2 larger than the pupil size φ1 which is the light beam diameter of the image light k incident on the light guide plate 220 from the light input unit 221 (three replicated image lights k in the case of FIG. 3). Can be output from the light output unit 222.
 次に、図5は、導光板220の例を示す図である。なお、同図においては、映像投影部200と導光板220の間に設けられる映像光複製部210の図示は省略している。 Next, FIG. 5 is a diagram illustrating an example of the light guide plate 220. It should be noted that the illustration of the image light duplication unit 210 provided between the image projection unit 200 and the light guide plate 220 is omitted in FIG.
 同図(A)に示す導光板220の一例である導光板801は、3つの回折領域802,803,804を備える。 光 A light guide plate 801 which is an example of the light guide plate 220 shown in FIG. 9A includes three diffraction regions 802, 803, and 804.
 回折領域802は、y軸に略平行な光をz軸に略平行な方向に回折する構造を有する。回折領域803は、xz面内でz軸に略平行な光をx軸に略平行な方向に回折する構造を有する。回折領域804は、x軸に略平行な光をy軸に略平行な方向に回折する構造を有する。回折領域802と回折領域804の回折構造のピッチは互いに略等しく、回折領域803の回折構造のピッチは、回折領域802の回折構造のピッチの1/√2倍に略等しい。 The diffraction region 802 has a structure that diffracts light substantially parallel to the y-axis in a direction substantially parallel to the z-axis. The diffraction region 803 has a structure that diffracts light substantially parallel to the z-axis in the xz plane in a direction substantially parallel to the x-axis. The diffraction region 804 has a structure that diffracts light substantially parallel to the x-axis in a direction substantially parallel to the y-axis. The pitches of the diffraction structures of the diffraction region 802 and the diffraction region 804 are substantially equal to each other, and the pitch of the diffraction structure of the diffraction region 803 is substantially equal to 1 / √2 times the pitch of the diffraction structure of the diffraction region 802.
 導光板801においては、映像投影部200からの映像光が光入力部221に対応する回折領域802に入射する。回折領域802に入射した映像光は回折して、導光板801の内部に取り込まれ、導光板801の内部を全反射導光し、回折領域803に到達する。回折領域803に到達した映像光の一部は回折領域803で回折し、回折しなかった映像光は導光板801の内部で全反射して、再び回折領域803に到達する。そして、回折領域803に到達するごとに映像光は複数に複製され、複製された映像光は導光板801の内部を全反射導光し、光出力部222に対応する回折領域804に到達する。 In the light guide plate 801, the image light from the image projection unit 200 enters the diffraction area 802 corresponding to the light input unit 221. The image light incident on the diffraction region 802 is diffracted, taken into the light guide plate 801, totally internally reflected and guided inside the light guide plate 801, and reaches the diffraction region 803. Part of the image light that has reached the diffraction region 803 is diffracted by the diffraction region 803, and the image light that has not been diffracted is totally reflected inside the light guide plate 801 and reaches the diffraction region 803 again. Each time the light reaches the diffraction region 803, the image light is duplicated, and the duplicated image light is totally reflected and guided inside the light guide plate 801, and reaches the diffraction region 804 corresponding to the light output unit 222.
 回折領域804に到達した映像光の一部は回折領域804で回折し、回折しなかった映像光は導光板801の内部で全反射して、再び回折領域804に到達する。そして、回折領域804に到達するごとに映像光は複数に複製されて導光板801から出射する。 Part of the image light that has reached the diffraction area 804 is diffracted by the diffraction area 804, and the image light that has not been diffracted is totally reflected inside the light guide plate 801 and reaches the diffraction area 804 again. Each time the light reaches the diffraction region 804, the image light is duplicated and emitted from the light guide plate 801.
 したがって、導光板801によれば、映像光の光束径である瞳サイズを2次元方向に拡大することができる。なお、導光板801は、3つの回折領域802~804を備えるが、例えば、導光板に2つの回折領域を設け、2つの回折領域の回折構造の方向と周期(ピッチ)を略同一としてもよい。これにより、導光板の構造を平易にすることができ、導光板のコストを低減できる。 Therefore, according to the light guide plate 801, the pupil size, which is the light beam diameter of the image light, can be enlarged in the two-dimensional direction. Although the light guide plate 801 includes three diffraction regions 802 to 804, for example, two diffraction regions may be provided in the light guide plate and the directions and the periods (pitch) of the diffraction structures of the two diffraction regions may be substantially the same. . Thereby, the structure of the light guide plate can be simplified, and the cost of the light guide plate can be reduced.
 次に、同図(B)に示す導光板220の一例である導光板811は、2つの回折領域812,813を備える。 Next, a light guide plate 811 which is an example of the light guide plate 220 shown in FIG. 2B includes two diffraction regions 812 and 813.
 回折領域812は、y軸に略平行な光をxz平面内でx軸に略平行な方向に回折する構造を有する。回折領域813は、xz面において、x軸に略平行な光をx軸から反時計回りに略60度と、略-60度の2方向に回折する構造を有する。回折領域812の回折構造のピッチと、回折領域813の2つの方向の回折構造のピッチは、互いに全て略等しい。 The diffraction region 812 has a structure that diffracts light substantially parallel to the y-axis in a direction substantially parallel to the x-axis in the xz plane. The diffraction region 813 has a structure in which light substantially parallel to the x-axis is diffracted in two directions of approximately 60 degrees and approximately −60 degrees counterclockwise from the x-axis on the xz plane. The pitch of the diffraction structure in the diffraction region 812 and the pitch of the diffraction structure in the two directions of the diffraction region 813 are substantially equal to each other.
 導光板811においては、映像投影部200からの映像光が光入力部221に対応する回折領域812に入射する。回折領域812に入射した映像光は回折して、導光板811の内部に取り込まれ、導光板811の内部を全反射導光し、光出力部222に対応する回折領域813に到達する。回折領域813は映像光を2方向に回折する構造を有するが、導光板811の内部で全反射導光する過程で、回折領域813が有する2方向の回折構造のそれぞれで1回ずつ回折すると、映像光は導光板811から出射する。 In the light guide plate 811, the image light from the image projection unit 200 enters the diffraction area 812 corresponding to the light input unit 221. The image light incident on the diffraction region 812 is diffracted, taken into the light guide plate 811, totally reflected and guided inside the light guide plate 811, and reaches the diffraction region 813 corresponding to the light output unit 222. The diffractive region 813 has a structure that diffracts image light in two directions. In the process of total reflection and light guiding inside the light guide plate 811, when diffracted once by each of the two-directional diffractive structures of the diffractive region 813, The image light exits from the light guide plate 811.
 したがって、導光板811によっても、映像光の光束径である瞳サイズを2次元方向に拡大することができる。 Therefore, the pupil size, which is the light beam diameter of the image light, can also be enlarged in the two-dimensional direction by the light guide plate 811.
 次に、同図(C)に示す導光板220の一例である導光板821は、入射面822、及び複数の部分反射面823を備える。 Next, a light guide plate 821, which is an example of the light guide plate 220 shown in FIG. 9C, includes an incident surface 822 and a plurality of partially reflecting surfaces 823.
 複数の部分反射面823は、互いに平行で、入射した光の少なくとも一部を反射し、残りを透過する複数枚のビームスプリッタ面である。 The plurality of partial reflecting surfaces 823 are a plurality of beam splitter surfaces that are parallel to each other, reflect at least part of incident light, and transmit the rest.
 導光板821においては、映像投影部200からの映像光が光入力部221に対応する入射面822に入射する。入射面822に入射した映像光は、導光板821の内部で全反射導光し、複数の部分反射面823に到達する。複数の部分反射面823を構成するそれぞれのビームスプリッタ面が映像光を反射することにより、光出力部222に対応する光出力面824から映像光が出射する。 In the light guide plate 821, the image light from the image projection unit 200 enters the incident surface 822 corresponding to the light input unit 221. The image light incident on the incident surface 822 is totally reflected and guided inside the light guide plate 821, and reaches a plurality of partially reflective surfaces 823. The image light is emitted from the light output surface 824 corresponding to the light output unit 222 by reflecting the image light on each of the beam splitter surfaces constituting the plurality of partial reflection surfaces 823.
 したがって、導光板821によれば、映像光の光束径である瞳サイズを1次元方向に拡大することが可能となる。 Therefore, according to the light guide plate 821, the pupil size, which is the light beam diameter of the image light, can be enlarged in a one-dimensional direction.
 上述したように、導光板801,811,821から出射された映像光の一部は、ユーザの目120に入射する。ユーザは、目120に入射した光を知覚することで、映像表示装置101が表示する映像を視認することができる。 As described above, part of the image light emitted from the light guide plates 801, 811, and 821 enters the user's eyes 120. The user can visually recognize the image displayed on the image display device 101 by perceiving the light that has entered the eye 120.
 なお、導光板220が有する瞳サイズを拡大する機能により、導光板220の光出力部222から出力される映像光の瞳サイズφ2(図4)は、導光板220に入射する映像光の瞳サイズφ1(図4)よりも大きくなっているため、導光板220を経ずに導光板220に入射する映像光をユーザが直接見る場合と比べて、導光板220を出射した映像光を見る場合の方が、ユーザの目120が移動した際にユーザが映像を視認できるエリア(アイボックス)を広くすることが可能となる。 Note that the pupil size φ2 (FIG. 4) of the image light output from the light output unit 222 of the light guide plate 220 is changed by the function of enlarging the pupil size of the light guide plate 220 so that the pupil size of the image light incident on the light guide plate 220 is reduced. Since it is larger than φ1 (FIG. 4), compared with the case where the user directly sees the image light that enters the light guide plate 220 without passing through the light guide plate 220, the case where the image light emitted from the light guide plate 220 is viewed This makes it possible to increase the area (eye box) where the user can visually recognize the image when the user's eyes 120 move.
 しかしながら、図3に示されたファイバ走査型プロジェクタ201やミラー走査型プロジェクタ202のような指向性のある光(レーザ光)を走査して映像を生成する映像生成装置を映像投影部200に採用した場合、映像光の射出瞳直径が指向性のある光の直径とほぼ等しく、0.1~2.0mm程度である。 However, an image generation device that scans with directional light (laser light) and generates an image, such as the fiber scanning projector 201 and the mirror scanning projector 202 shown in FIG. In this case, the exit pupil diameter of the image light is substantially equal to the diameter of the directional light, and is about 0.1 to 2.0 mm.
 0.1~2.0mm程度の映像光の射出瞳直径は、導光板220から出力される複数の映像光の間隔2mm~8mm程度と比べて小さいため、導光板220から出力される複数の映像光どうしが重なりを持たず、ユーザの目が複数の映像光の隙間に位置した際に、ユーザの目の瞳孔に映像光が入射しないか、ほとんど入射しない場合がある。この場合、ユーザは映像の少なくとも一部分を視認することができないか、映像の一部分が顕著に暗く見えてしまう事態が起こり得る。 Since the exit pupil diameter of the image light of about 0.1 to 2.0 mm is smaller than the interval of about 2 mm to 8 mm of the plurality of image lights output from the light guide plate 220, the plurality of images output from the light guide plate 220 are small. When the lights do not overlap with each other and the user's eyes are located in the gap between the plurality of image lights, the image light may or may not enter the pupil of the user's eyes. In this case, the user may not be able to visually recognize at least a part of the image, or a part of the image may be noticeably dark.
 このような事態の発生を抑止するために、映像表示装置101では、映像投影部200と導光板220の間に、映像光複製部210が設けられている。以下、映像光複製部210について詳述する。 、 In order to prevent such a situation from occurring, in the image display device 101, the image light duplication unit 210 is provided between the image projection unit 200 and the light guide plate 220. Hereinafter, the image light duplication unit 210 will be described in detail.
 <映像光複製部210の第1の構成例>
 次に、図6は、映像表示装置101における映像光複製部210の第1の構成例を示す断面図である。
<First Configuration Example of Video Light Duplicating Unit 210>
Next, FIG. 6 is a cross-sectional view illustrating a first configuration example of the video light duplication unit 210 in the video display device 101.
 映像光複製部210の第1の構成例は、映像光複製プリズム301から成る。映像光複製プリズム301は、透明な硝材または樹脂によって形成されており、入力面302、出力面303、及び、少なくとも2つ以上の略平面で互いに略平行な映像光分岐面304を備える。同図の場合、映像光複製プリズム301は、2つの映像光分岐面304A,304Bを備える。 The first configuration example of the video light duplication unit 210 includes the video light duplication prism 301. The image light duplicating prism 301 is formed of a transparent glass material or resin, and includes an input surface 302, an output surface 303, and at least two or more substantially flat and substantially parallel image light branch surfaces 304. In the case of the figure, the image light duplicating prism 301 includes two image light splitting surfaces 304A and 304B.
 映像光複製プリズム301においては、映像投影部200からの映像光が入力面302から入射し、映像光分岐面304Aに到達する。映像光分岐面304Aは、入射した光の少なくとも一部を反射し、残りを透過する。よって、映像光分岐面304Aに到達して透過した映像光は、出力面303から出射する。また、映像光分岐面304Aに到達して反射した映像光は、映像光分岐面304Bに到達する。映像光分岐面304Bは、少なくとも一部の光を反射する。よって、映像光分岐面304Bに到達して反射した光は、出力面303から出射する。 In the image light duplicating prism 301, the image light from the image projection unit 200 enters from the input surface 302 and reaches the image light splitting surface 304A. The image light splitting surface 304A reflects at least a part of the incident light and transmits the rest. Therefore, the image light that has reached and transmitted the image light branching surface 304 </ b> A exits from the output surface 303. Further, the image light that has reached the image light branch surface 304A and is reflected reaches the image light branch surface 304B. The image light splitting surface 304B reflects at least a part of the light. Therefore, the light that reaches and is reflected by the image light branch surface 304 </ b> B exits from the output surface 303.
 映像光分岐面304A,304Bは、何れも略平面で、互いに略平行なので、映像光複製プリズム301は、映像光複製プリズム301に入射した映像光と略同一の画角を持つ映像光を2本に複製して出力することが可能となる。 Since the image light splitting surfaces 304A and 304B are both substantially flat and substantially parallel to each other, the image light duplicating prism 301 includes two image light beams having substantially the same angle of view as the image light incident on the image light duplicating prism 301. And output it.
 映像光複製プリズム301が出力した2本の映像光は、何れも導光板220の光入力部221に入射する。光入力部221に入射した2本の映像光は、それぞれ導光板220が有する瞳サイズを拡大する機能により複製されて光出力部222から出力する。 2Each of the two image lights output by the image light duplicating prism 301 enters the light input unit 221 of the light guide plate 220. The two video lights incident on the light input unit 221 are duplicated by the function of expanding the pupil size of the light guide plate 220 and output from the light output unit 222.
 映像光複製プリズム301が出力した2つの映像光は、導光板220の光入力部221の異なる場所に入射するため、光出力部222の異なる場所から出力される。そのため、導光板220から出力される映像光どうしの隙間が少なくなる。これにより、ユーザの目の瞳孔に映像光が入射するようになり、ユーザは映像の全体を視認することが可能となる。 (2) The two image lights output by the image light duplicating prism 301 enter different positions of the light input unit 221 of the light guide plate 220, and are output from different positions of the light output unit 222. Therefore, the gap between the video lights output from the light guide plate 220 is reduced. As a result, the image light enters the pupil of the user's eye, and the user can visually recognize the entire image.
 なお、映像光分岐面304B(複数の映像光分岐面304のうち、映像光が最後に到達する映像光分岐面304)は、全ての映像光を反射することが望ましい。これにより、光利用効率を高めることが可能となる。 It is preferable that the image light splitting surface 304B (the image light splitting surface 304 of the plurality of image light splitting surfaces 304 where the image light reaches the end) reflects all the image light. This makes it possible to increase the light use efficiency.
 また、映像光分岐面304Aのエネルギ反射率(以下、反射率と略称する)をRA、映像光分岐面304Bの反射率をRBとした場合、(1-RA)とRA×RBが略等しくなるように、映像光分岐面304A,304Bを形成することが望ましい。 Further, when the energy reflectance (hereinafter, abbreviated to reflectivity) of the image light branch surface 304A is RA and the reflectivity of the image light branch surface 304B is RB, (1-RA) is substantially equal to RA × RB. Thus, it is desirable to form the image light branch surfaces 304A and 304B.
 特に、映像光分岐面304Bが映像光を全反射するようにした場合、すなわち、RB=1とした場合、RA=0.5とすることが望ましい。これにより、映像光複製プリズム301から出射する2つの映像光の強度が互いに略等しくなり、ユーザが視認する映像をより均一にすることができる。 In particular, when the image light splitting surface 304B totally reflects the image light, that is, when RB = 1, it is preferable that RA = 0.5. Thereby, the intensities of the two image light beams emitted from the image light duplicating prism 301 become substantially equal to each other, and the image viewed by the user can be made more uniform.
 なお、同図の場合、映像光複製プリズム301は、2つの映像光分岐面304を備えるとして説明したが、2つ以上の映像光分岐面304を備えていてもよい。映像光複製プリズム301が2つ以上の映像光分岐面304を備える場合においても、全ての映像光分岐面304を略平面で互いに略平行となるように形成する。 In addition, in the case of the drawing, the image light duplicating prism 301 has been described as including two image light branch surfaces 304, but may have two or more image light branch surfaces 304. Even when the image light duplicating prism 301 includes two or more image light branch surfaces 304, all the image light branch surfaces 304 are formed to be substantially flat and substantially parallel to each other.
 例えば、映像光分岐面304の数をN枚とし、N枚の映像光分岐面304のうち、入力面302に近いものから順に第1、第2、…、第Nの映像光分岐面304とした場合、入力面302から入射した映像光は、第1の映像光分岐面304に入射する。第1の映像光分岐面304に入射した光の少なくとも一部は第1の映像光分岐面304を透過して出力面303から出射し、第1の映像光分岐面304に入射した光の少なくとも一部は第1の映像光分岐面304で反射して第2の映像光分岐面304に入射する。2以上(N-1)以下の整数kに対して、第kの映像光分岐面304に入射した光の少なくとも一部は第kの映像光分岐面304で反射して出力面303から出射し、第kの映像光分岐面304に入射した光の少なくとも一部は第kの映像光分岐面304を透過して第(k+1)の映像光分岐面304に入射する。第Nの映像光分岐面304に入射した光の少なくとも一部は、第Nの映像光分岐面304で反射して出力面303から出射する。これにより、映像光複製プリズム301は、映像光複製プリズム301に入射した映像光と略同一の画角を持つ映像光をN本に複製して出力することが可能となる。 For example, the number of image light splitting surfaces 304 is N, and among the N image light splitting surfaces 304, the first, second,... In this case, the image light incident from the input surface 302 enters the first image light splitting surface 304. At least a part of the light incident on the first image light branch surface 304 passes through the first image light branch surface 304, exits from the output surface 303, and at least the light incident on the first image light branch surface 304. Part of the light is reflected by the first image light splitting surface 304 and enters the second image light splitting surface 304. For an integer k equal to or greater than 2 and equal to or less than (N-1), at least a portion of the light incident on the k-th image light splitting surface 304 is reflected by the k-th image light splitting surface 304 and exits from the output surface 303. At least a part of the light incident on the k-th image light splitting surface 304 passes through the k-th image light splitting surface 304 and is incident on the (k + 1) th image light splitting surface 304. At least a part of the light incident on the N-th image light branch surface 304 is reflected by the N-th image light branch surface 304 and exits from the output surface 303. Thus, the image light duplicating prism 301 can duplicate and output N pieces of image light having substantially the same angle of view as the image light incident on the image light duplicating prism 301.
 また、第1~第Nの映像光分岐面304のうち、第1の映像光分岐面304の反射率が最も高く、第2~第Nの映像光分岐面304の反射率は、入力面に近いほど低くなるように構成するとよい。好適には、第1の映像光分岐面304の反射率は(N-1)/Nであり、2以上N以下の整数kに対して、第kの映像光分岐面304の反射率は1/(N-k+1)とするとよい。これにより、ユーザが視認する映像をより均一にすることが可能となる。 Further, among the first to N-th image light splitting surfaces 304, the reflectance of the first image light splitting surface 304 is the highest, and the reflectance of the second to N-th image light splitting surfaces 304 is higher than the input surface. It is good to constitute so that it may become low, so that it is near. Preferably, the reflectance of the first image light splitting surface 304 is (N-1) / N, and the reflectance of the k-th image light splitting surface 304 is 1 for an integer k of 2 or more and N or less. / (N−k + 1). Thereby, it is possible to make the video visually recognized by the user more uniform.
 さらに、映像光複製プリズム301は、入力面302から映像光複製プリズム301に入射した映像光が、映像光分岐面304に入射する前に、映像光複製プリズム301の出力面303以外の端面に入射しないように構成することが望ましい。これにより、迷光が発生することを防ぐことができる。 Further, the image light duplicating prism 301 is incident on an end surface other than the output surface 303 of the image light duplicating prism 301 before the image light incident on the image light duplicating prism 301 from the input surface 302 is incident on the image light splitting surface 304. It is desirable to be configured not to do so. Thereby, generation of stray light can be prevented.
 またさらに、映像光複製プリズム301は、第1の映像光分岐面304で反射した光が、第1の映像光分岐面304以外の第2~Nの映像光分岐面304で反射する前に、映像光複製プリズム301の端面に入射しないように構成することが望ましい。これにより、迷光が発生することを防ぐことができる。 Further, the image light duplicating prism 301 sets the light reflected by the first image light splitting surface 304 before being reflected by the second to N image light splitting surfaces 304 other than the first image light splitting surface 304. It is desirable to configure so as not to enter the end face of the image light duplicating prism 301. Thereby, generation of stray light can be prevented.
 別の映像光複製プリズム301として、映像光複製プリズム301に入射して第1の映像光分岐面304で反射した光が出力面303から出射するように構成した映像光複製プリズム301を利用してもよい。例えば、入力面302から入射した映像光は、第1の映像光分岐面304に入射する。1以上(N-1)以下の整数kに対して、第kの映像光分岐面304に入射した光の少なくとも一部は第kの映像光分岐面304で反射して出力面303から出射し、第kの映像光分岐面304に入射した光の少なくとも一部は第kの映像光分岐面304を透過して第(k+1)の映像光分岐面304に入射する。第Nの映像光分岐面304に入射した光の少なくとも一部は、第Nの映像光分岐面304で反射して出力面303から出射する。これにより、配置の自由度を高めることが可能である。また、第1~第Nの映像光分岐面304の反射率は、入力面に近いほど低くなるように構成するとよい。好適には、1以上N以下の整数kに対して、第kの映像光分岐面304の反射率は1/(N-k+1)とするとよい。これにより、ユーザが視認する映像をより均一にすることが可能となる。 As another image light duplicating prism 301, an image light duplicating prism 301 configured so that light incident on the image light duplicating prism 301 and reflected by the first image light splitting surface 304 exits from the output surface 303 is used. Is also good. For example, video light incident from the input surface 302 is incident on the first video light splitting surface 304. For an integer k equal to or greater than 1 and equal to or less than (N−1), at least a portion of the light incident on the k-th image light branch surface 304 is reflected by the k-th image light branch surface 304 and exits from the output surface 303. At least a part of the light incident on the k-th image light splitting surface 304 passes through the k-th image light splitting surface 304 and is incident on the (k + 1) th image light splitting surface 304. At least a part of the light incident on the N-th image light branch surface 304 is reflected by the N-th image light branch surface 304 and exits from the output surface 303. Thereby, the degree of freedom of arrangement can be increased. Further, it is preferable that the reflectance of the first to N-th image light splitting surfaces 304 decreases as the position is closer to the input surface. Preferably, for an integer k of 1 or more and N or less, the reflectance of the k-th image light splitting surface 304 may be 1 / (N−k + 1). Thereby, it is possible to make the video visually recognized by the user more uniform.
 さらに、映像光複製プリズム301は、映像投影部200の映像光を出射する開口サイズをφPJ(不図示)、映像光複製プリズム301のN枚の映像光分岐面304の配置間隔をDistPとした場合、DistPはφPJと略等しいか、またはφPJよりも小さくなるように構成するとよい。これにより、映像光複製プリズム301が出力する2本以上の映像光は互いに重なりを持つようになり、ユーザが視認する映像をより均一にすることが可能となる。 Further, the image light duplicating prism 301 has a case where the aperture size of the image projecting unit 200 for emitting image light is φPJ (not shown) and the arrangement interval of the N image light splitting surfaces 304 of the image light duplicating prism 301 is DistP. , DistP may be configured to be substantially equal to φPJ or smaller than φPJ. Thereby, the two or more image lights output by the image light duplicating prism 301 overlap each other, and the image viewed by the user can be made more uniform.
 また、別の観点から、映像光複製プリズム301は、導光板220の瞳サイズを拡大する機能により導光板220から出力される複数の映像光の間隔をDwg(不図示)とした場合、DistPはDwgの1/Nと略等しいか、Dwgの1/Nの整数倍と略等しくなるように構成するとよい。これにより、導光板220から出力される映像光どうしの隙間をより少なくすることができ、ユーザが視認する映像をより均一にすることが可能となる。 Further, from another viewpoint, when the interval between a plurality of image lights output from the light guide plate 220 is set to Dwg (not shown) by the function of enlarging the pupil size of the light guide plate 220, DistP is It may be configured to be approximately equal to 1 / N of Dwg or approximately equal to an integral multiple of 1 / N of Dwg. Thereby, the gap between the image lights output from the light guide plate 220 can be further reduced, and the image visually recognized by the user can be made more uniform.
 <映像光複製部210の第2の構成例>
 次に、図7は、映像表示装置101における映像光複製部210の第2の構成例を示す断面図である。
<Second Configuration Example of Video Light Duplicating Unit 210>
Next, FIG. 7 is a cross-sectional view illustrating a second configuration example of the video light duplication unit 210 in the video display device 101.
 映像光複製部210の第2の構成例は、映像光複製回折素子311から成る。映像光複製回折素子311は、透明な硝材または樹脂によって形成されており、入力面312、および出力面313を備える。入力面312は、少なくとも一部の光を回折する回折領域314を備える。出力面313は、少なくとも一部の光を回折する複数の回折領域315を備える。同図の場合、出力面313は、2つの回折領域315A、315Bを備える。 The second configuration example of the image light duplication unit 210 includes the image light duplication diffraction element 311. The image light duplication diffraction element 311 is formed of a transparent glass material or resin, and includes an input surface 312 and an output surface 313. The input surface 312 includes a diffraction region 314 that diffracts at least some light. The output surface 313 includes a plurality of diffraction regions 315 that diffract at least a part of the light. In the case of the drawing, the output surface 313 includes two diffraction regions 315A and 315B.
 回折領域314と回折領域315の回折構造の方向と周期(ピッチ)は、略同一とする。同図の場合、回折領域314,315の回折構造の溝の方向はz軸方向であり、ピッチの方向はx軸方向である。 方向 The directions and the periods (pitches) of the diffraction structures of the diffraction region 314 and the diffraction region 315 are substantially the same. In the case of the drawing, the direction of the grooves of the diffraction structure in the diffraction regions 314 and 315 is the z-axis direction, and the direction of the pitch is the x-axis direction.
 映像光複製回折素子311においては、映像投影部200からの映像光が入力面312の回折領域314に入射する。回折領域314は、0次光と、1次光と、-1次光と、を発生させる。回折領域314から出射した0次光と、1次光と、-1次光は、それぞれ映像光複製回折素子311の内部を伝搬する。回折領域314からの0次光は、出力面313のうち、回折領域315が設けられていない領域から導光板220に出力される。回折領域314からの-1次光は、回折領域315Aに到達し、1次回折して導光板220に出力される。回折領域314からの1次光は、回折領域315Bに到達し、-1次回折して導光板220に出力される。 In the image light duplication diffraction element 311, the image light from the image projection unit 200 enters the diffraction area 314 of the input surface 312. The diffraction region 314 generates zero-order light, first-order light, and -1st-order light. The 0th-order light, the 1st-order light, and the -1st-order light emitted from the diffraction region 314 propagate inside the image light duplication diffraction element 311 respectively. The zero-order light from the diffraction region 314 is output to the light guide plate 220 from a region of the output surface 313 where the diffraction region 315 is not provided. The -1st-order light from the diffraction area 314 reaches the diffraction area 315A, undergoes first-order diffraction, and is output to the light guide plate 220. The first-order light from the diffraction region 314 reaches the diffraction region 315B, is diffracted by −1st order, and output to the light guide plate 220.
 上述したように、回折領域314と回折領域315の回折構造の方向と周期(ピッチ)は、略同一となるように構成されている。これにより、映像光複製回折素子311は、映像光複製回折素子311に入射した映像光と略同一の画角を持つ映像光を3本に複製して出力することが可能となる。 As described above, the directions and the periods (pitch) of the diffraction structures of the diffraction region 314 and the diffraction region 315 are configured to be substantially the same. This allows the image light duplication diffraction element 311 to duplicate and output three image lights having substantially the same angle of view as the image light incident on the image light duplication diffraction element 311.
 なお、回折領域314による0次回折、1次回折、及び-1次回折の3つの回折次数以外の回折効率は、略0であることが望ましい。また、回折領域315Aの1次の回折効率と、回折領域315Bの-1次の回折効率とは、何れも略1であることが望ましい。これにより、光利用効率を高めることができる。 回 折 It is desirable that diffraction efficiencies of the diffraction region 314 other than the three diffraction orders of the 0th-order diffraction, the 1st-order diffraction, and the -1st-order diffraction be substantially zero. Further, it is desirable that both the first-order diffraction efficiency of the diffraction region 315A and the −1st-order diffraction efficiency of the diffraction region 315B are substantially 1. Thereby, light use efficiency can be improved.
 さらに、回折領域314の0次回折、1次回折、及び-1次回折それぞれの回折効率は、互いに略等しいことが望ましい。これにより、映像光複製回折素子311から出力される3本の映像光の強度を略等しくすることができ、ユーザが視認する映像をより均一にすることが可能となる。 Further, it is desirable that the diffraction efficiencies of the 0th-order diffraction, the 1st-order diffraction, and the -1st-order diffraction of the diffraction region 314 are substantially equal to each other. Thereby, the intensities of the three image lights output from the image light duplication diffraction element 311 can be made substantially equal, and the image viewed by the user can be made more uniform.
 またさらに、回折領域315Aの中心点と回折領域315Bの中心点との間を1:1に内分する点と、回折領域314の中心点から出力面313に下した垂線と出力面313との交点は、略同一の位置であることが望ましい。これにより、映像光複製回折素子311の構造を平易にすることができ、映像光複製回折素子311のコストを低減することが可能となる。 Further, a point that internally divides the center between the diffraction area 315A and the center of the diffraction area 315B by 1: 1 and a vertical line extending from the center of the diffraction area 314 to the output plane 313 and the output plane 313. The intersections are desirably at substantially the same position. Thereby, the structure of the image light duplication diffraction element 311 can be simplified, and the cost of the image light duplication diffraction element 311 can be reduced.
 また別の観点では、回折領域315Aに入射する映像光の中心点と回折領域315Bに入射する映像光の中心点との間を1:1に内分する点と、回折領域314に入射する映像光の中心点から出力面313に下した垂線と出力面313との交点は、略同一の位置であることが望ましい。これにより、映像光複製回折素子311の構造を平易にすることができ、映像光複製回折素子311のコストを低減することが可能となる。 In another aspect, a point that internally divides 1: 1 between the center point of the image light incident on the diffraction area 315A and the center point of the image light incident on the diffraction area 315B, and the image incident on the diffraction area 314 It is desirable that the intersections of the perpendiculars descending from the central point of the light to the output surface 313 and the output surface 313 be substantially at the same position. Thereby, the structure of the image light duplication diffraction element 311 can be simplified, and the cost of the image light duplication diffraction element 311 can be reduced.
 映像光複製回折素子311は、映像投影部200の映像光を出射する開口サイズをφPJ、回折領域315Aの中心点と回折領域315Bの中心点の間の距離をDistG1(どちらも不図示)とした場合、DistG1はφPJの略2倍であるか、略2倍より小さいことが望ましい。これにより、映像光複製回折素子311が出力する3つの映像光は互いに重なりを持つようになり、ユーザが視認する映像をより均一にすることが可能となる。 In the image light duplication diffraction element 311, the aperture size of the image projection unit 200 for emitting image light is φPJ, and the distance between the center point of the diffraction area 315 A and the center point of the diffraction area 315 B is DistG 1 (both are not shown). In this case, DistG1 is desirably approximately twice as large as φPJ or smaller than approximately twice. Thus, the three image lights output from the image light duplication diffraction element 311 overlap each other, and the image viewed by the user can be made more uniform.
 また、別の観点では、回折領域315Aに入射する映像光の中心点と回折領域315Bに入射する映像光の中心点の間の距離をDistG2(不図示)とした場合、DistG2はφPJの略2倍か略2倍より小さいことが望ましい。これにより、映像光複製回折素子311が出力する3つの映像光は互いに重なりを持つようになり、ユーザが視認する映像をより均一にすることが可能となる。 From another viewpoint, when the distance between the center point of the image light incident on the diffraction area 315A and the center point of the image light incident on the diffraction area 315B is DistG2 (not shown), DistG2 is approximately 2 of φPJ. It is desirable to be smaller than twice or substantially twice. Accordingly, the three image lights output by the image light duplication diffraction element 311 overlap each other, and the image viewed by the user can be made more uniform.
 なお、上述した説明では、回折領域314は、0次回折と、1次回折と、-1次回折との3つの次数の回折光を出力するとして説明したが、例えば、1次回折と-1次回折などの2つの次数の回折光を出力するとしてもよい。これにより、映像光複製回折素子311の構造を平易にすることができ、映像光複製回折素子311のコストを低減することができる。 In the above description, the diffraction region 314 has been described as outputting three orders of diffracted light, that is, the 0th-order diffraction, the 1st-order diffraction, and the -1st-order diffraction. Two-order diffracted light such as the second-order diffraction may be output. Thereby, the structure of the image light duplication diffraction element 311 can be simplified, and the cost of the image light duplication diffraction element 311 can be reduced.
 または、回折領域314は、0次回折と1次回折と-1次回折と2次回折と-2次回折などN個(Nは2以上の整数)の次数の回折光を出力するとしてもよい。kを整数として、回折領域314でk次回折した光は、出力面313が備える回折領域315で-k次回折して、映像光複製回折素子311から出力される。これにより、映像光複製回折素子311は、映像光複製回折素子311に入射した映像光と略同一の画角を持つ映像光をN本に複製して出力することができ、ユーザが視認する映像をより均一にすることが可能となる。 Alternatively, the diffraction region 314 may output N (N is an integer of 2 or more) orders of diffracted light such as 0th-order diffraction, 1st-order diffraction, -1st-order diffraction, 2nd-order diffraction, and -2nd-order diffraction. . The light diffracted in the k-th order in the diffraction area 314, where k is an integer, is diffracted in the −k-th order in the diffraction area 315 provided in the output surface 313, and is output from the image light duplication diffraction element 311. As a result, the image light duplicating diffraction element 311 can duplicate and output N pieces of image light having substantially the same angle of view as the image light incident on the image light duplicating diffraction element 311, and display the image visually recognized by the user. Can be made more uniform.
 また、出力面313のうち、回折領域314でk次回折した光が到達する領域は、-k次回折の回折効率が高い回折領域を備えるように映像光複製回折素子311を構成するとよい。さらに、出力面313のうち、回折領域314で0次回折した(回折しなかった)光が到達する領域は、回折領域を備えていないことが望ましい。これにより、光利用効率を高くすることが可能となる。 The image light duplication diffraction element 311 may be configured so that, on the output surface 313, a region where the light diffracted by the k-th order in the diffraction region 314 reaches a diffraction region having a high diffraction efficiency of −k-th order diffraction. Further, it is desirable that a region of the output surface 313 to which the light diffracted (not diffracted) by the 0th order in the diffraction region 314 reaches does not have a diffraction region. This makes it possible to increase the light use efficiency.
 さらに、回折領域314で回折して出力面313に到達する隣接した映像光どうしの間の距離DistG3(不図示)は、映像投影部200の映像光を出射する開口サイズφPJと略等しいか、φPJより小さいことが望ましい。これにより、映像光複製回折素子311が出力する2つ以上の映像光は互いに重なりを持つようになり、ユーザが視認する映像をより均一にすることが可能となる。 Further, a distance DistG3 (not shown) between adjacent image lights that reach the output surface 313 by diffracting in the diffraction area 314 is substantially equal to the opening size φPJ of the image projection unit 200 for emitting the image light, or φPJ. Desirably smaller. Thereby, the two or more image lights output from the image light duplication diffraction element 311 overlap each other, and the image visually recognized by the user can be made more uniform.
 また、別の観点では、導光板220の瞳サイズを拡大する機能により導光板220から出力される複数の映像光の間隔をDwgとした場合、DistG3はDwgの1/Nと略等しいか、Dwgの1/Nの整数倍と略等しくなるように映像光複製回折素子311を構成するとよい。これにより、導光板から出力される映像光どうしの隙間をより少なくすることができ、ユーザが視認する映像をより均一にすることが可能となる。 Further, from another viewpoint, when an interval between a plurality of image lights output from the light guide plate 220 is set to Dwg by a function of enlarging a pupil size of the light guide plate 220, DistG3 is substantially equal to 1 / N of Dwg, or Dwg. The image light duplication diffraction element 311 is preferably configured to be substantially equal to an integral multiple of 1 / N of the above. Thereby, the gap between the image lights output from the light guide plate can be further reduced, and the image visually recognized by the user can be made more uniform.
 <映像光複製部210の第3の構成例>
 次に、図8は、映像表示装置101における映像光複製部210の第3の構成例を示す断面図である。
<Third Configuration Example of Video Light Duplicating Unit 210>
Next, FIG. 8 is a cross-sectional view illustrating a third configuration example of the video light duplication unit 210 in the video display device 101.
 映像光複製部210の第3の構成例は、映像光複製ビームスプリッタ321から成る。映像光複製ビームスプリッタ321は、透明な硝材または樹脂によって形成されており、入力面322、及び出力面323を有する。映像光複製ビームスプリッタ321は、出力面323と光入力部221とがなす角が0度より大きく、入力面322と出力面323とが互いに平行となるように形成されている。 The third configuration example of the video light duplication unit 210 includes a video light duplication beam splitter 321. The image light duplication beam splitter 321 is formed of a transparent glass material or resin, and has an input surface 322 and an output surface 323. The image light duplication beam splitter 321 is formed such that the angle formed between the output surface 323 and the light input unit 221 is larger than 0 degree, and the input surface 322 and the output surface 323 are parallel to each other.
 映像光複製ビームスプリッタ321においては、映像投影部200からの映像光が入力面322から入射し、入射した映像光の少なくとも一部は映像光複製ビームスプリッタ321の内部を伝搬する。映像光複製ビームスプリッタ321の内部を伝搬した映像光は、出力面323に到達する。出力面323は少なくとも一部の光を透過し、少なくとも一部の光を反射する。出力面323を透過した光は映像光複製ビームスプリッタ321から出射する。出力面323で反射した光は、映像光複製ビームスプリッタ321の内部を伝搬して入力面322に到達し、入力面322で反射し、再び出力面323に到達する。入力面322から入射した光が出力面323に到達するごとに、映像光が出力面323から出射する。 In the image light duplication beam splitter 321, image light from the image projection unit 200 enters from the input surface 322, and at least a part of the incident image light propagates inside the image light duplication beam splitter 321. The video light that has propagated inside the video light duplication beam splitter 321 reaches the output surface 323. The output surface 323 transmits at least a part of the light and reflects at least a part of the light. The light transmitted through the output surface 323 exits from the image light duplication beam splitter 321. The light reflected on the output surface 323 propagates inside the image light duplication beam splitter 321 to reach the input surface 322, is reflected on the input surface 322, and reaches the output surface 323 again. Each time the light incident from the input surface 322 reaches the output surface 323, the video light exits from the output surface 323.
 上述したように、入力面322と出力面323とは互いに平行となるように形成されているので、映像光複製ビームスプリッタ321は、映像光複製ビームスプリッタ321に入射する映像光と略同一の画角を持つ複数の映像光を少なくとも2本以上に複製して出力することが可能となる。 As described above, since the input surface 322 and the output surface 323 are formed so as to be parallel to each other, the image light duplication beam splitter 321 is substantially the same as the image light incident on the image light duplication beam splitter 321. It becomes possible to duplicate and output at least two or more video lights having corners.
 入力面322のうち、映像投影部200からの映像光が入射するエリアの透過率は、略1であることが望ましい。これにより光利用効率を高くすることができる。 透過 It is desirable that the transmittance of an area of the input surface 322 where the image light from the image projection unit 200 is incident is approximately 1. Thereby, the light use efficiency can be increased.
 また、入力面322のうち、出力面323で反射した映像光が入射する領域の反射率は、略1であることが望ましい。これにより、光利用効率を高くすることができる。 反射 In addition, it is desirable that the reflectance of a region of the input surface 322 where the image light reflected by the output surface 323 enters is approximately 1. Thereby, light use efficiency can be increased.
 入力面322から入射した映像光が到達する出力面内の領域を第1到達領域、kを1以上の整数として、第k到達領域で反射して、入力面322で反射した映像光が、再び出力面323に到達する出力面内の領域を第(k+1)到達領域と定義する。また、Nを2以上の整数として、出力面323は第1到達領域から第N到達領域まで備え、映像光複製ビームスプリッタ321はN本の映像光を出力するものとする。この場合、第k到達領域の反射率は、第(k+1)到達領域の反射率より大きいことが望ましい。好適には、第k到達領域の反射率は(N-k)/(N-k+1)とする。これにより、映像光複製ビームスプリッタ321が出力する映像光の強度が互いに略等しくなるため、ユーザが視認する映像をより均一にすることが可能となる。 A region in the output surface where the image light incident from the input surface 322 reaches is a first arrival region, and k is an integer of 1 or more. The image light reflected by the k-th arrival region is reflected by the input surface 322 again. An area in the output plane reaching the output plane 323 is defined as a (k + 1) th arrival area. The output surface 323 is provided from the first reaching region to the N-th reaching region, where N is an integer of 2 or more, and the image light duplication beam splitter 321 outputs N image lights. In this case, it is desirable that the reflectance of the k-th reaching area is larger than the reflectance of the (k + 1) -th reaching area. Preferably, the reflectance of the k-th reaching area is (N−k) / (N−k + 1). Thereby, the intensities of the image light output from the image light duplication beam splitter 321 become substantially equal to each other, so that the image visually recognized by the user can be made more uniform.
 別の観点では、映像光複製ビームスプリッタ321は、入力面322と出力面323のうちの少なくとも一方の全面が略均一の反射率となるように構成することが望ましい。これにより映像光複製ビームスプリッタ321のコストを抑えることが可能となる。 From another viewpoint, it is desirable that the image light duplication beam splitter 321 be configured so that the entire surface of at least one of the input surface 322 and the output surface 323 has a substantially uniform reflectance. As a result, the cost of the image light duplication beam splitter 321 can be reduced.
 以上に説明した映像光複製部210を備える映像表示装置101によれば、映像投影部200に、図3に示されたファイバ走査型プロジェクタ201やミラー走査型プロジェクタ202のような射出瞳が小さい映像生成装置が採用されていても、ユーザの目の瞳孔に映像光が入射するようになるため、ユーザは映像の全体を視認可能となる。換言すれば、映像投影部200に、図3に示されたファイバ走査型プロジェクタ201やミラー走査型プロジェクタ202のような射出瞳が小さい映像生成装置を採用して、ユーザが映像の全体を視認可能であって、映像表示装置11を小型化することが可能となる。 According to the image display device 101 including the image light duplicating unit 210 described above, the image projecting unit 200 displays an image having a small exit pupil such as the fiber scanning projector 201 or the mirror scanning projector 202 shown in FIG. Even when the generation device is employed, the image light is incident on the pupil of the user's eye, so that the user can visually recognize the entire image. In other words, the image projection unit 200 employs an image generation device with a small exit pupil, such as the fiber scanning projector 201 or the mirror scanning projector 202 shown in FIG. 3, so that the user can view the entire image. Thus, the size of the video display device 11 can be reduced.
 <映像表示装置の第2の構成例>
 次に、図9は、映像表示装置11の第2の構成例としての映像表示装置102を示している。なお、該映像表示装置102の構成要素のうち、映像表示装置101(図2)の構成要素と共通するものについては、同一の符号を付してその説明を適宜省略する。
<Second configuration example of video display device>
Next, FIG. 9 shows a video display device 102 as a second configuration example of the video display device 11. Note that among the components of the video display device 102, those that are common to the components of the video display device 101 (FIG. 2) are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 映像表示装置102は、映像投影部200、及び導光板400から成る。導光板400は、光入力部221、映像光複製部230、及び光出力部222を有する。 The image display device 102 includes the image projection unit 200 and the light guide plate 400. The light guide plate 400 includes a light input unit 221, a video light duplication unit 230, and a light output unit 222.
 映像表示装置102においては、映像投影部200からの映像光が、光入力部221から導光板400の内部に入射し、導光板400の内部を伝搬して映像光複製部230に入射する。映像光複製部230は、入射した映像光の画角を略保存しながら、映像光の光線を少なくとも2本以上に複製して出力する。映像光複製部230にて複製された映像光は、導光板400の内部を伝搬して光出力部222から導光板400の外部に出射する。 In the image display device 102, image light from the image projection unit 200 enters the light guide plate 400 from the light input unit 221, propagates inside the light guide plate 400, and enters the image light duplication unit 230. The image light duplicating unit 230 duplicates and outputs at least two light beams of the image light while substantially preserving the angle of view of the incident image light. The image light duplicated by the image light duplication unit 230 propagates inside the light guide plate 400 and exits from the light output unit 222 to the outside of the light guide plate 400.
 <映像光複製部230を含む導光板400の構成例>
 次に、映像光複製部230を含む導光板400の複数の構成例について、図10~図13を参照して説明する。
<Configuration Example of Light Guide Plate 400 Including Image Light Duplicating Unit 230>
Next, a plurality of configuration examples of the light guide plate 400 including the image light duplication unit 230 will be described with reference to FIGS.
 図10は、導光板400の第1の構成例を示す断面図である。導光板400の第1の構成例である導光板410は、光入力部221、光出力部222、及び透明平板401A,401B,402なら成る。 FIG. 10 is a cross-sectional view illustrating a first configuration example of the light guide plate 400. A light guide plate 410, which is a first configuration example of the light guide plate 400, includes a light input unit 221, a light output unit 222, and transparent flat plates 401A, 401B, and 402.
 透明平板401A,401Bは、映像光複製部230に相当する。透明平板401A,401B,402は、それぞれ透明な硝材または樹脂により形成されている。透明平板401Aと透明平板401Bは、xz面に平行な貼り合せ面403で透明な接着剤、またはオプティカルコンタクトにより貼り合わされている。同様に、貼り合わされた透明平板401A,401Bと、透明平板402とは、yz面に平行な貼り合せ面404にて透明な接着剤、またはオプティカルコンタクトにより貼り合わされている。 (4) The transparent flat plates 401A and 401B correspond to the image light duplication unit 230. The transparent flat plates 401A, 401B, 402 are each formed of a transparent glass material or resin. The transparent flat plate 401A and the transparent flat plate 401B are bonded together by a transparent adhesive or an optical contact on a bonding surface 403 parallel to the xz plane. Similarly, the bonded transparent flat plates 401A and 401B and the transparent flat plate 402 are bonded by a transparent adhesive or an optical contact on a bonding surface 404 parallel to the yz plane.
 さらに、透明平板401Aの厚さをt1、透明平板401Bの厚さをt2、透明平板402の厚さをttとした場合、透明平板402の厚さttは、透明平板401A,401Bの厚さの加算値t1+t2に略等しい関係を有する。 Further, when the thickness of the transparent flat plate 401A is t1, the thickness of the transparent flat plate 401B is t2, and the thickness of the transparent flat plate 402 is tt, the thickness tt of the transparent flat plate 402 is equal to the thickness of the transparent flat plates 401A and 401B. It has a relationship substantially equal to the sum t1 + t2.
 導光板410においては、映像投影部200からの映像光が、光入力部221から導光板410の内部に入射する。導光板410の内部に入射した光は、透明平板401Aの内部を伝搬し、貼り合せ面403に到達する。貼り合せ面403では、その少なくとも一部の領域が、少なくとも一部の映像光を反射し、少なくとも一部の映像光を透過する。これにより、貼り合せ面403に到達した映像光は、貼り合せ面403で反射するか、または透過するかによって2本に複製される。 In the light guide plate 410, the image light from the image projection unit 200 enters the light guide plate 410 from the light input unit 221. Light that has entered the inside of the light guide plate 410 propagates through the inside of the transparent flat plate 401A and reaches the bonding surface 403. At least a part of the bonding surface 403 reflects at least a part of the image light and transmits at least a part of the image light. Thus, the image light that has reached the bonding surface 403 is duplicated into two beams depending on whether the light is reflected or transmitted by the bonding surface 403.
 貼り合せ面403にて反射した映像光は、透明平板401Aの全反射面405Aで全反射し、再び貼り合せ面403に到達する。一方、貼り合せ面403を透過した映像光は、透明平板401Bの全反射面405Bで全反射し、再び貼り合せ面403に到達する。貼り合せ面403に映像光が到達するごとに、貼り合せ面403で反射するかまたは透過するかにより2本に複製される。これにより、映像光複製部230に入射した映像光は複数に複製され、貼り合せ面404に到達する。貼り合せ面404に到達した複数の映像光は、映像光複製部230から透明平板402に入射し、光出力部222に到達する。 映像 The image light reflected on the bonding surface 403 is totally reflected on the total reflection surface 405A of the transparent flat plate 401A, and reaches the bonding surface 403 again. On the other hand, the image light transmitted through the bonding surface 403 is totally reflected by the total reflection surface 405B of the transparent flat plate 401B, and reaches the bonding surface 403 again. Each time the image light reaches the bonding surface 403, it is duplicated into two depending on whether it is reflected or transmitted by the bonding surface 403. As a result, the image light that has entered the image light duplicating section 230 is duplicated and reaches the bonding surface 404. The plurality of image lights that have reached the bonding surface 404 are incident on the transparent flat plate 402 from the image light duplicating section 230 and reach the light output section 222.
 なお、映像光複製部230からの複数の映像光は、それぞれ導光板410が有する瞳サイズを拡大する機能によりさらに複製されて光出力部222の互いに異なる場所から出力される。よって、導光板410から出射される映像光どうしの隙間が少なくなる。これにより、ユーザの目の瞳孔に映像光が入射するようになり、ユーザは映像の全体を視認可能となる。 The plurality of image lights from the image light duplicating section 230 are further duplicated by the function of enlarging the pupil size of the light guide plate 410 and output from different positions of the light output section 222. Therefore, the gap between the video lights emitted from the light guide plate 410 is reduced. As a result, the image light enters the pupil of the user's eye, and the user can visually recognize the entire image.
 なお、透明平板401Aの厚さt1と透明平板401Bの厚さt2とを略等しく形成した場合、透明平板401A及び透明平板401Bが薄くなることを防ぐことができ、導光板410の強度を高くすることが可能となる。また、この場合、映像光複製部230では映像光を2本に複製することができる。 When the thickness t1 of the transparent flat plate 401A and the thickness t2 of the transparent flat plate 401B are substantially equal to each other, it is possible to prevent the transparent flat plate 401A and the transparent flat plate 401B from becoming thin, and to increase the strength of the light guide plate 410. It becomes possible. Also, in this case, the image light duplication unit 230 can duplicate the image light into two lines.
 また、透明平板401A,401Bの貼り合せ面403の反射率は、略0.5であることが望ましい。これにより、映像光複製部230が出力する複数の光線の強度を互いに略等しくすることができ、ユーザが視認する映像をより均一にすることが可能となる。 Further, it is desirable that the reflectance of the bonding surface 403 of the transparent flat plates 401A and 401B is approximately 0.5. Accordingly, the intensities of the plurality of light beams output from the image light duplicating section 230 can be made substantially equal to each other, and the image visually recognized by the user can be made more uniform.
 また、別の観点では、透明平板401Aの厚さt1と透明平板401Bの厚さt2との関係を、0.2≦t2/t1<5とした場合、導光板410の強度を低下させることなく、映像光複製部230が出力する映像光の数を増やすことが可能となる。 From another viewpoint, when the relationship between the thickness t1 of the transparent flat plate 401A and the thickness t2 of the transparent flat plate 401B is set to 0.2 ≦ t2 / t1 <5, the strength of the light guide plate 410 is not reduced. Thus, it is possible to increase the number of image lights output by the image light duplicating section 230.
 例えば、t2/t1=0.5またはt2/t1=2とした場合、映像光複製部230は、映像光を3本に複製することができる。これにより、導光板410から出射される映像光どうしの隙間をより少なくすることができ、ユーザが視認する映像をより均一にすることが可能となる。 For example, when t2 / t1 = 0.5 or t2 / t1 = 2, the image light duplication unit 230 can duplicate the image light into three lines. Thereby, the gap between the image lights emitted from the light guide plate 410 can be further reduced, and the image visually recognized by the user can be made more uniform.
 次に、図11は、導光板400の第2の構成例を示す断面図である。導光板400の第2の構成例である導光板420は、導光板410(図10)に対し、光入力部221の直下に透明平板406を追加したものである。 Next, FIG. 11 is a cross-sectional view illustrating a second configuration example of the light guide plate 400. The light guide plate 420, which is a second configuration example of the light guide plate 400, is obtained by adding a transparent flat plate 406 directly below the light input unit 221 to the light guide plate 410 (FIG. 10).
 透明平板406は、透明な硝材または樹脂により形成されている。貼り合わされた透明平板401A,401Bと、透明平板406とは、yz面に平行な貼り合せ面407にて透明な接着剤、またはオプティカルコンタクトにより貼り合わされている。 The transparent flat plate 406 is formed of a transparent glass material or resin. The bonded transparent flat plates 401A and 401B and the transparent flat plate 406 are bonded by a transparent adhesive or an optical contact on a bonding surface 407 parallel to the yz plane.
 導光板420においては、映像投影部200からの映像光が、光入力部221から導光板420の内部に入射する。導光板410の内部に入射した光は、透明平板406の内部を伝搬し、貼り合せ面407から映像光複製部230に入射する。映像光複製部230に入射した後の映像光の伝搬については、導光板410と同様なので、その説明は省略する。 In the light guide plate 420, the image light from the image projection unit 200 enters the light guide plate 420 from the light input unit 221. The light that has entered the inside of the light guide plate 410 propagates through the inside of the transparent flat plate 406 and enters the image light duplication unit 230 from the bonding surface 407. The propagation of the video light after entering the video light duplicating section 230 is the same as that of the light guide plate 410, and thus the description is omitted.
 映像光複製部230にて複製された映像光は、それぞれ導光板420が有する瞳サイズを拡大する機能によりさらに複製されて光出力部222の互いに異なる場所から出力される。よって、導光板420から出射される映像光どうしの隙間が少なくなる。これにより、ユーザの目の瞳孔に映像光が入射するようになり、ユーザは映像の全体を視認可能となる。 The image light duplicated by the image light duplicating unit 230 is further duplicated by the function of enlarging the pupil size of the light guide plate 420 and output from different places of the light output unit 222. Therefore, the gap between the image lights emitted from the light guide plate 420 is reduced. As a result, the image light enters the pupil of the user's eye, and the user can visually recognize the entire image.
 次に、図12は、導光板400の第3の構成例を示す断面図である。導光板400の第3の構成例である導光板430は、光入力部221、光出力部222、透明平板441、及び透明平板442から成る。 FIG. 12 is a cross-sectional view illustrating a third configuration example of the light guide plate 400. The light guide plate 430, which is a third configuration example of the light guide plate 400, includes a light input unit 221, a light output unit 222, a transparent flat plate 441, and a transparent flat plate 442.
 映像光複製部230は、透明平板441と、透明平板442の一部とによって実現される。 The image light duplication unit 230 is realized by the transparent flat plate 441 and a part of the transparent flat plate 442.
 透明平板441と透明平板442とは、xz面に平行な貼り合せ面443において、透明な接着剤、またはオプティカルコンタクトにより貼り合わされている。貼り合せ面443の少なくとも一部の領域は、少なくとも一部の映像光を反射し、少なくとも一部の映像光を透過する。 (4) The transparent flat plate 441 and the transparent flat plate 442 are bonded by a transparent adhesive or an optical contact on a bonding surface 443 parallel to the xz plane. At least a part of the bonding surface 443 reflects at least a part of the image light and transmits at least a part of the image light.
 導光板430においては、映像投影部200からの映像光が、光入力部221から導光板440の内部に入射し、貼り合せ面443に到達する。貼り合せ面443では、映像光が反射するか、または透過するかによって2本に複製される。これにより、映像光複製部230に入射した映像光は複数に複製される。映像光複製部230から出力された複数の映像光は、それぞれ導光板430が有する瞳サイズを拡大する機能により複製されて光出力部222の互いに異なる場所から出力される。よって、導光板430から出力される映像光どうしの隙間が少なくなる。これにより、ユーザの目の瞳孔に映像光が入射するようになり、ユーザは映像の全体を視認可能となる。 映像 In the light guide plate 430, image light from the image projection unit 200 enters the light guide plate 440 from the light input unit 221 and reaches the bonding surface 443. On the bonding surface 443, the image light is duplicated into two depending on whether the image light is reflected or transmitted. Thereby, the image light incident on the image light duplicating section 230 is duplicated into a plurality. The plurality of image lights output from the image light duplicating unit 230 are duplicated by the function of enlarging the pupil size of the light guide plate 430 and output from different positions of the light output unit 222. Therefore, the gap between the video lights output from the light guide plate 430 is reduced. As a result, the image light enters the pupil of the user's eye, and the user can visually recognize the entire image.
 上述した導光板410,420,430では、映像光複製部230を2枚の透明平板によって形成していたが、2枚以上の透明平板によって映像光複製部230を形成するようにしてもよい。 In the light guide plates 410, 420, and 430 described above, the image light duplicating unit 230 is formed by two transparent flat plates, but the image light duplicating unit 230 may be formed by two or more transparent flat plates.
 次に、図13は、導光板400の第4の構成例を示す断面図である。導光板400の第4の構成例である導光板440は、光入力部221、光出力部222、透明平板402、及び3枚の透明平板421A~421Cから成る。 Next, FIG. 13 is a cross-sectional view illustrating a fourth configuration example of the light guide plate 400. A light guide plate 440, which is a fourth configuration example of the light guide plate 400, includes a light input unit 221, a light output unit 222, a transparent flat plate 402, and three transparent flat plates 421A to 421C.
 映像光複製部230は、3枚の透明平板421A~421Cによって実現される。映像光複製部230を成す透明平板421Aと421Bとは、xz面に平行な貼り合せ面423Aで、透明平板421Bと透明平板421Cとは、xz面に平行な貼り合せ面423Bで、透明な接着剤、またはオプティカルコンタクトにより貼り合わされている。貼り合わされた透明平板421A~421Cと透明平板402とは、yz面に平行な貼り合せ面424で透明な接着剤、またはオプティカルコンタクトにより貼り合わされている。 The image light duplication unit 230 is realized by three transparent flat plates 421A to 421C. The transparent flat plates 421A and 421B forming the image light duplication unit 230 are bonded together at a bonding surface 423A parallel to the xz plane, and the transparent flat plates 421B and 421C are bonded together at a bonding surface 423B parallel to the xz plane. Bonded together by an agent or an optical contact. The bonded transparent flat plates 421A to 421C and the transparent flat plate 402 are bonded together by a transparent adhesive or an optical contact on a bonding surface 424 parallel to the yz plane.
 透明平板421Aの厚さをt1、透明平板421Bの厚さをt2、透明平板421Cの厚さをt3、透明平板402の厚さをttとした場合、透明平板402の厚さttは、透明平板421A,421B,421Cの厚さの加算値t1+t2+t3と略等しい。 When the thickness of the transparent flat plate 421A is t1, the thickness of the transparent flat plate 421B is t2, the thickness of the transparent flat plate 421C is t3, and the thickness of the transparent flat plate 402 is tt, the thickness tt of the transparent flat plate 402 is The sum of the thicknesses of 421A, 421B, and 421C is substantially equal to t1 + t2 + t3.
 貼り合せ面423A,423Bは、それぞれ少なくとも一部の領域が、少なくとも一部の映像光を反射し、少なくとも一部の映像光を透過する。 At least a part of each of the bonding surfaces 423A and 423B reflects at least a part of the image light and transmits at least a part of the image light.
 なお、映像光複製部230を成す透明平板の枚数をより増やせば、映像光複製部230が複製する映像光の本数を増やすことができる。これにより、導光板440から出力される映像光どうしの隙間をより少なくすることができ、ユーザが視認する映像をより均一にすることが可能となる。 Note that if the number of transparent flat plates forming the image light duplicating unit 230 is further increased, the number of image light to be duplicated by the image light duplicating unit 230 can be increased. Thereby, the gap between the image lights output from the light guide plate 440 can be further reduced, and the image visually recognized by the user can be made more uniform.
 以上に説明した導光板410~440のいずれかを備える映像表示装置102によれば、上述した映像表示装置101が得られる作用・効果に加えて、映像投影部200と導光板400との間に配置する光学部品が不要となるので、映像表示装置11をより小型化することができる。 According to the video display device 102 including any one of the light guide plates 410 to 440 described above, in addition to the operation and effect obtained by the video display device 101 described above, the image display device 102 is provided between the video projection unit 200 and the light guide plate 400. Since there is no need to dispose optical components, the size of the image display device 11 can be further reduced.
 <映像表示装置の第3の構成例>
 次に、図14は、映像表示装置11の第3の構成例である映像表示装置103を示している。映像表示装置103の構成要素のうち、映像表示装置101(図2)の構成要素と共通するものについては、同一の符号を付してその説明を適宜省略する。
<Third Configuration Example of Video Display Device>
Next, FIG. 14 shows a video display device 103 which is a third configuration example of the video display device 11. Among the components of the video display device 103, components common to the components of the video display device 101 (FIG. 2) are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 映像表示装置103は、映像投影部200、映像光複製部250、及び導光板700から成る。映像光複製部250は、導光板700に対して透明な接着剤、またはオプティカルコンタクトにより貼り合わされている。 The image display device 103 includes the image projection unit 200, the image light duplication unit 250, and the light guide plate 700. The image light duplicating section 250 is attached to the light guide plate 700 by a transparent adhesive or an optical contact.
 導光板700は、光入力部221、全反射導光部240、及び光出力部222を有する。 The light guide plate 700 includes a light input unit 221, a total reflection light guide unit 240, and a light output unit 222.
 映像表示装置103においては、映像投影部200からの映像光が光入力部221から導光板700の内部に入射し、全反射導光部240にて全反射導光する。そして、全反射導光する過程で、映像光は映像光複製部250に伝搬する。映像光複製部250は、伝搬してきた映像光の画角を略保存しながら、少なくとも2本以上に複製して出力する。映像光複製部250から出力された映像光は、再び全反射導光部240に入射して全反射導光する。全反射導光部240を出射した映像光は、光出力部222から導光板700の外部に出射する。 In the image display device 103, image light from the image projection unit 200 enters the light guide plate 700 from the light input unit 221, and is totally reflected and guided by the total reflection light guide unit 240. Then, in the process of total reflection light guiding, the image light propagates to the image light duplication unit 250. The image light duplication unit 250 duplicates and outputs at least two or more light beams while substantially preserving the angle of view of the transmitted image light. The image light output from the image light duplicating unit 250 is again incident on the total reflection light guiding unit 240 and is totally reflected and guided. The image light emitted from the total reflection light guide 240 is emitted from the light output unit 222 to the outside of the light guide plate 700.
 図15は、映像光複製部250が貼り合わされた導光板700の構成例を示す断面図である。 FIG. 15 is a cross-sectional view illustrating a configuration example of the light guide plate 700 to which the image light duplication unit 250 is attached.
 映像光複製部250は、透明な硝材または樹脂で形成された透明平板431Aから成る。全反射導光部240は、透明な硝材または樹脂で形成された透明平板432から成る。 (4) The image light duplicating section 250 is composed of a transparent flat plate 431A formed of a transparent glass material or resin. The total reflection light guide 240 is composed of a transparent flat plate 432 formed of a transparent glass material or resin.
 透明平板431Aと透明平板432とは、xz面に平行な貼り合せ面433にて透明な接着剤またはオプティカルコンタクトにより貼り合わされている。 (4) The transparent flat plate 431A and the transparent flat plate 432 are bonded by a transparent adhesive or an optical contact on a bonding surface 433 parallel to the xz plane.
 導光板700においては、映像投影部200からの映像光が光入力部221から導光板700の内部に入射し、透明平板432(全反射導光部240)の内部を全反射導光する。透明平板432の内部で全反射導光する過程で、映像光は貼り合せ面433に到達する。貼り合せ面433の少なくとも一部の領域は、少なくとも一部の映像光を透過し、少なくとも一部の光を反射する。貼り合せ面433を透過した映像光は、透明平板431の内部で全反射導光して、再び貼り合せ面433に到達する。一方、貼り合せ面433で反射した映像光は、透明平板432の内部で全反射導光して、再び貼り合せ面433に到達する。よって、映像光は、貼り合せ面433に到達するごとに複製されることになり、これにより、映像光複製部250は複数の映像光を出力することができる。 In the light guide plate 700, the image light from the image projection unit 200 enters the inside of the light guide plate 700 from the light input unit 221 and guides the inside of the transparent flat plate 432 (total reflection light guide unit 240) by total reflection. The image light reaches the bonding surface 433 during the process of total reflection light guiding inside the transparent flat plate 432. At least a part of the bonding surface 433 transmits at least a part of the image light and reflects at least a part of the light. The image light transmitted through the bonding surface 433 is totally reflected and guided inside the transparent flat plate 431 and reaches the bonding surface 433 again. On the other hand, the image light reflected on the bonding surface 433 is totally reflected and guided inside the transparent flat plate 432 and reaches the bonding surface 433 again. Therefore, the image light is duplicated each time it reaches the bonding surface 433, whereby the image light duplicating unit 250 can output a plurality of image lights.
 映像光複製部250が出力した複数の映像光は、それぞれ導光板700が有する瞳サイズを拡大する機能により複製されて光出力部222の互いに異なる場所から出力される。このため、導光板700から出力される映像光どうしの隙間が少なくなる。これにより、ユーザの目の瞳孔に映像光が入射するようになり、ユーザは映像の全体を視認可能となる。 (4) The plurality of image lights output by the image light duplicating unit 250 are duplicated by the function of enlarging the pupil size of the light guide plate 700, and output from different positions of the light output unit 222. Therefore, the gap between the image lights output from the light guide plate 700 is reduced. As a result, the image light enters the pupil of the user's eye, and the user can visually recognize the entire image.
 なお、透明平板431Aの厚さt1と、透明平板432の厚さt2とは、t1<t2の関係が成立するように形成する。これにより、透明平板431Aの内部における全反射の一往復の距離が短くなり、映像光複製部250による映像光の複製数を増やすことができ、ユーザが視認する映像をより均一にすることが可能となる。 Note that the thickness t1 of the transparent flat plate 431A and the thickness t2 of the transparent flat plate 432 are formed so as to satisfy a relationship of t1 <t2. Thereby, the distance of one round trip of total reflection inside the transparent flat plate 431A is shortened, the number of copies of the image light by the image light duplicating unit 250 can be increased, and the image viewed by the user can be made more uniform. Becomes
 以上に説明した導光板700を備える映像表示装置103によれば、上述した映像表示装置101が得られる作用・効果に加えて、映像投影部200と導光板700との間に配置する光学部品が不要となるので、映像表示装置11をより小型化することができる。 According to the video display device 103 including the light guide plate 700 described above, in addition to the functions and effects obtained by the above-described video display device 101, the optical components disposed between the video projection unit 200 and the light guide plate 700 Since it becomes unnecessary, the size of the image display device 11 can be further reduced.
 <映像表示装置101の第1の変形例>
 次に、映像表示装置11の第1の構成例である映像表示装置101の第1の変形例について説明する。上述した映像表示装置101は、図6~図8に示されたように、映像投影部200からの映像光を映像光複製部210にて複製して1枚の導光板220に入射するようにしたが、映像光複製部210にて複製した複数の映像光を複数の導光板220に入射するように変形してもよい。
<First Modification of Video Display Device 101>
Next, a first modified example of the video display device 101 which is a first configuration example of the video display device 11 will be described. The image display apparatus 101 described above is configured such that the image light from the image projection unit 200 is duplicated by the image light duplication unit 210 and is incident on one light guide plate 220, as shown in FIGS. However, the plurality of image lights duplicated by the image light duplication unit 210 may be modified so as to be incident on the plurality of light guide plates 220.
 図16は、映像表示装置101の第1の変形例を示している。該第1の変形例は、y軸方向に重ねて配置した3枚の導光板220A,220B,220Cを備える。 FIG. 16 shows a first modification of the video display device 101. The first modified example includes three light guide plates 220A, 220B, and 220C that are arranged so as to overlap in the y-axis direction.
 導光板220Aの光入力部221Aは、映像光複製部210から入射した映像光の少なくとも一部を導光板220Aに取り込み、少なくとも一部を透過させる。導光板220Bの光入力部221Bは、光入力部221Aを透過した映像光の少なくとも一部を導光板220Bに取り込み、少なくとも一部を透過させる。導光板220Cの光入力部221Cは、光入力部221Bを透過した映像光の少なくとも一部を導光板220Cに取り込む。 (4) The light input unit 221A of the light guide plate 220A captures at least a part of the image light incident from the image light duplication unit 210 into the light guide plate 220A and transmits at least a part of the light. The light input part 221B of the light guide plate 220B captures at least a part of the image light transmitted through the light input part 221A into the light guide plate 220B and transmits at least a part thereof. The light input unit 221C of the light guide plate 220C takes at least a part of the image light transmitted through the light input unit 221B into the light guide plate 220C.
 なお、導光板220A~220Cには、それぞれ異なる波長の光を伝搬する特性を持たせるようにする。例えば、導光板220Aには青色帯域の光を伝搬する特性を持たせ、導光板220Bには緑色帯域の光を伝搬する特性を持たせ、導光板220Cには赤色帯域の光を伝搬する特性を持たせる。 (4) The light guide plates 220A to 220C are made to have characteristics of transmitting light of different wavelengths. For example, the light guide plate 220A has a property to propagate light in the blue band, the light guide plate 220B has a property to propagate light in the green band, and the light guide plate 220C has a property to propagate light in the red band. To have.
 これにより、映像光が有する色に応じて導光板220A~220Cのいずれかにて映像光を伝搬することが可能となる。さらに、導光板220A~220Cそれぞれで伝搬する映像光の波長を狭帯域にすることができるので、各導光板220の構成を伝搬する光の波長に最適化することにより、光利用効率等の光学特性を高めることが可能となる。 This allows the image light to propagate through any of the light guide plates 220A to 220C according to the color of the image light. Further, since the wavelength of the image light propagating in each of the light guide plates 220A to 220C can be made narrower, the configuration of each light guide plate 220 is optimized for the wavelength of the propagating light, so that the optical utilization efficiency and the like can be improved. Characteristics can be improved.
 <映像表示装置101の第2の変形例>
 次に、映像表示装置11の第1の構成例である映像表示装置101の第2の変形例について説明する。上述した映像表示装置101は、図6~図8に示されたように、映像投影部200からの映像光を、映像光複製部210にて1次元方向(x軸方向)に複製して導光板220に入射するようにしたが、映像光複製部210にて2次元方向(x軸方向及びy軸方向)に映像光を複製して導光板220に入射するように変形してもよい。
<Second Modification of Image Display Device 101>
Next, a second modification of the video display device 101, which is a first configuration example of the video display device 11, will be described. As shown in FIGS. 6 to 8, the video display apparatus 101 described above replicates and guides the video light from the video projection unit 200 in the one-dimensional direction (x-axis direction) by the video light replication unit 210. Although the light is incident on the light plate 220, the image light may be deformed so that the image light is duplicated in the two-dimensional direction (the x-axis direction and the y-axis direction) by the image light duplication unit 210 and then incident on the light guide plate 220.
 図17は、映像表示装置101の第2の変形例を示しており、同図(A)は、該第2の変形例のxy面の断面図であり、同図(B)は、該第2の変形例のyz面の断面図である。 17A and 17B show a second modification of the video display device 101. FIG. 17A is a sectional view of the xy plane of the second modification, and FIG. It is sectional drawing of the yz plane of the modification of 2.
 該第2の変形例における映像光複製部210は、映像光複製プリズム301A,301Bから成る。映像光複製プリズム301Aは、映像投影部200からの映像光をx軸方向に複製して映像光複製プリズム301Bに出力する。映像光複製プリズム301Bは、映像光複製プリズム301Aからの映像光をz軸方向に複製して光入力部221から導光板220に入射する。 映像 The image light duplicating unit 210 in the second modified example includes image light duplicating prisms 301A and 301B. The image light duplicating prism 301A duplicates the image light from the image projection unit 200 in the x-axis direction and outputs the duplicated image light to the image light duplicating prism 301B. The image light duplicating prism 301B duplicates the image light from the image light duplicating prism 301A in the z-axis direction and enters the light guide plate 220 from the light input unit 221.
 したがって、該第2の変形例においては、映像投影部200からの映像光を映像光複製部210にて2次元方向に複製してから導光板220に入射することができる。これにより、導光板220から出射される映像光どうしの隙間をより少なくすることができ、ユーザが視認する映像をより均一にすることが可能となる。 Therefore, in the second modified example, the image light from the image projection unit 200 can be duplicated in the two-dimensional direction by the image light duplication unit 210 before being incident on the light guide plate 220. Thereby, the gap between the image lights emitted from the light guide plate 220 can be further reduced, and the image visually recognized by the user can be made more uniform.
 なお、図17に示された第2の変形例では、映像光複製部210を2つの映像光複製プリズム301A,301Bから構成したが、該第2の変形例における映像光複製部210を2つの映像光複製回折素子311(図7)や、2つの映像光複製ビームスプリッタ321(図8)から構成してもよい。 In the second modified example shown in FIG. 17, the video light duplicating unit 210 is composed of two video light duplicating prisms 301A and 301B. The image light duplication diffraction element 311 (FIG. 7) or two image light duplication beam splitters 321 (FIG. 8) may be used.
 <映像表示装置102の変形例>
 次に、映像表示装置11の第2の構成例である映像表示装置102の変形例について説明する。上述した映像表示装置102は、図10~図13に示されたように、映像投影部200からの映像光を、1枚の導光板400に入射するようにしたが、映像投影部200からの映像光を複数の導光板400に入射するようにしてもよい。
<Modification of the video display device 102>
Next, a modified example of the video display device 102 which is the second configuration example of the video display device 11 will be described. In the above-described image display device 102, as shown in FIGS. 10 to 13, the image light from the image projection unit 200 is made to enter one light guide plate 400. The image light may be made incident on the plurality of light guide plates 400.
 図18は、映像表示装置102の変形例を示している。該変形例では、y軸方向に重ねて配置した3枚の導光板400A,400B,400Cを備える。 FIG. 18 shows a modification of the video display device 102. In this modification, three light guide plates 400A, 400B, and 400C are provided so as to overlap in the y-axis direction.
 導光板400Aの光入力部221Aは、映像投影部200からの映像光の少なくとも一部を導光板400Aに取り込み、少なくとも一部を透過させる。導光板400Bの光入力部221Bは、光入力部221Aを透過した映像光の少なくとも一部を導光板400Bに取り込み、少なくとも一部を透過させる。導光板400Cの光入力部221Cは、光入力部221Bを透過した映像光の少なくとも一部を導光板400Cに取り込む。 (4) The light input unit 221A of the light guide plate 400A captures at least a part of the image light from the image projection unit 200 into the light guide plate 400A and transmits at least a part thereof. The light input unit 221B of the light guide plate 400B captures at least a part of the image light transmitted through the light input unit 221A into the light guide plate 400B and transmits at least a part thereof. The light input unit 221C of the light guide plate 400C takes at least a part of the image light transmitted through the light input unit 221B into the light guide plate 400C.
 なお、導光板400A~400Cには、それぞれ異なる波長の光を伝搬する特性を持たせるようにする。例えば、導光板400Aには青色帯域の光を伝搬する特性を持たせ、導光板400Bには緑色帯域の光を伝搬する特性を持たせ、導光板400Cには赤色帯域の光を伝搬する特性を持たせる。 (4) The light guide plates 400A to 400C have characteristics of transmitting light of different wavelengths. For example, the light guide plate 400A has a property to propagate light in the blue band, the light guide plate 400B has a property to propagate light in the green band, and the light guide plate 400C has a property to propagate light in the red band. To have.
 これにより、映像光が有する色に応じて導光板400A~400Cのいずれかにて映像光を伝搬することが可能となる。さらに、導光板400A~400Cそれぞれで伝搬する映像光の波長を狭帯域にすることができるので、各導光板400の構成を伝搬する光の波長に最適化することにより、光利用効率等の光学特性を高めることが可能となる。 This makes it possible for the image light to propagate through any of the light guide plates 400A to 400C according to the color of the image light. Furthermore, since the wavelength of the image light propagating in each of the light guide plates 400A to 400C can be narrowed, the configuration of each light guide plate 400 is optimized for the wavelength of the propagating light, so that optical efficiency such as light use efficiency can be improved. Characteristics can be improved.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。 The effects described in this specification are merely examples and are not limited. Other effects may be provided.
 本発明は、上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した各実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明が、必ずしも説明した全ての構成要素を備えるものに限定されるものではない。また、ある実施形態の構成の一部を、他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に、他の実施形態の構成を加えることも可能となる。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能となる。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, each of the above embodiments has been described in detail in order to explain the present invention in an easily understandable manner, and the present invention is not necessarily limited to a configuration including all the described components. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, for a part of the configuration of each embodiment, it is possible to add, delete, or replace another configuration.
10・・・映像表示システム、11・・・映像表示装置、12・・・制御装置、13・・・映像信号処理装置、14・・・電力供給装置、15・・・記憶装置、16・・・センシング装置、17・・・センサ入出力部、18・・・通信装置、19・・・通信入出力部、20・・・音声処理装置、21・・・音声入出力部、101~104・・・映像表示装置、120・・・目、200・・・映像投影部、201・・・ファイバ走査型プロジェクタ、202・・・ミラー走査型プロジェクタ、210・・・映像光複製部、220・・・導光板、220・・・導光板、221・・・光入力部、222・・・光出力部、223・・・内側反射面、224・・・内側反射面、230・・・映像光複製部、240・・・全反射導光部、250・・・映像光複製部、301・・・映像光複製プリズム、302・・・入力面、303・・・出力面、304・・・映像光分岐面、311・・・映像光複製回折素子、312・・・入力面、313・・・出力面、314・・・回折領域、315・・・回折領域、315A・・・回折領域、315B・・・回折領域、321・・・映像光複製ビームスプリッタ、322・・・入力面、323・・・出力面、400・・・導光板、401・・・透明平板、402・・・透明平板、403・・・貼り合せ面、404・・・貼り合せ面、405・・・全反射面、406・・・透明平板、407・・・貼り合せ面、410・・・導光板、420・・・導光板、421・・・映像光複製部、421・・・透明平板、423・・・貼り合せ面、424・・・貼り合せ面、430・・・導光板、431・・・透明平板、431・・・映像光複製部、432・・・透明平板、433・・・貼り合せ面、440・・・導光板、441・・・透明平板、442・・・透明平板、443・・・貼り合せ面、700・・・導光板、801・・・導光板、802・・・回折領域、803・・・回折領域、804・・・回折領域、811・・・導光板、812・・・回折領域、813・・・回折領域、821・・・導光板、822・・・入射面、823・・・部分反射面、824・・・光出力面、900・・・光源部、901・・・ファイバ、902・・・ファイバ走査素子、903・・・コリメートレンズ、904・・・端面、911・・・走査素子 DESCRIPTION OF SYMBOLS 10 ... Video display system, 11 ... Video display device, 12 ... Control device, 13 ... Video signal processing device, 14 ... Power supply device, 15 ... Storage device, 16 ... Sensing device, 17 sensor input / output unit, 18 communication device, 19 communication input / output unit, 20 voice processing device, 21 voice input / output unit, 101 to 104 .. An image display device, 120 ... eyes, 200 ... an image projection unit, 201 ... a fiber scanning projector, 202 ... a mirror scanning projector, 210 ... an image light duplication unit, 220 ... Light guide plate 220 220 Light guide plate 221 Light input unit 222 Light output unit 223 Inner reflective surface 224 Inner reflective surface 230 Image light replication Part, 240 ... total reflection light guide part, 250 ... video Duplicating unit, 301: Image light duplicating prism, 302: Input surface, 303: Output surface, 304: Image light splitting surface, 311: Image light duplicating diffraction element, 312: Input Plane, 313 ... output plane, 314 ... diffraction area, 315 ... diffraction area, 315A ... diffraction area, 315B ... diffraction area, 321 ... video light duplication beam splitter, 322 ... -Input surface, 323-Output surface, 400-Light guide plate, 401-Transparent flat plate, 402-Transparent flat plate, 403-Laminated surface, 404-Laminated surface, 405- ..Total reflection surface, 406: Transparent flat plate, 407: Bonding surface, 410: Light guide plate, 420: Light guide plate, 421: Image light duplicating unit, 421: Transparent flat plate , 423: bonding surface 424: bonding surface 430: light guide plate, 431: transparent flat plate, 431: video light duplicating part, 432: transparent flat plate, 433: bonding surface, 440: light guide plate, 441: transparent Flat plate, 442: transparent flat plate, 443: bonding surface, 700: light guide plate, 801: light guide plate, 802: diffraction region, 803: diffraction region, 804: diffraction Area, 811: Light guide plate, 812: Diffraction area, 813: Diffraction area, 821: Light guide plate, 822: Incident surface, 823: Partially reflective surface, 824: Light Output surface, 900: light source unit, 901: fiber, 902: fiber scanning element, 903: collimating lens, 904: end face, 911: scanning element

Claims (15)

  1.  光を走査して所定の画角の映像光を生成する映像投影部と、
     光入力部から入射した前記映像光を内部で伝搬させて光出力部から出力する導光板と、
     前記映像光の光線を複製する映像光複製部と、
     を備え、
     前記映像光複製部は、入射した前記映像光と略同一の画角を有する2本以上の映像光を複製する
     ことを特徴とする映像表示装置。
    An image projection unit that scans light to generate image light having a predetermined angle of view,
    A light guide plate that propagates the image light incident from the light input unit inside and outputs the light from the light output unit,
    An image light duplicating unit that duplicates the light beam of the image light,
    With
    The image display device, wherein the image light duplication unit duplicates two or more image lights having substantially the same angle of view as the incident image light.
  2.  請求項1に記載の映像表示装置であって、
     前記映像光複製部は、前記映像投影部からの前記映像光を複製した前記2本以上の映像光を前記導光板に出力し、
     前記導光板は、前記映像光複製部から出力され、前記光入力部から入射した前記映像光を内部で伝搬させて前記光出力部から出力する
     ことを特徴とする映像表示装置。
    The video display device according to claim 1,
    The image light duplicating section outputs the two or more image lights obtained by duplicating the image light from the image projecting section to the light guide plate,
    The image display device, wherein the light guide plate outputs the image light, which is output from the image light replication unit, enters the image light from the light input unit, and outputs the image light from the light output unit.
  3.  請求項2に記載の映像表示装置であって、
     前記映像光複製部は、
      前記映像投影部からの前記映像光が入射する入力面と、
      入射した前記映像光を反射するか、または、前記映像光の一部を反射して残りを透過する互いに平行な複数の映像光分岐面と、
     を有する映像光複製プリズムから成る
     ことを特徴とする映像表示装置。
    The video display device according to claim 2,
    The image light replication unit,
    An input surface on which the image light from the image projection unit is incident,
    Reflecting the incident image light, or a plurality of parallel image light branch surfaces that reflect a part of the image light and transmit the rest,
    An image display device comprising an image light duplicating prism having:
  4.  請求項3に記載の映像表示装置であって、
     前記複数の映像光分岐面の反射率は、前記入力面に最も近い前記映像光分岐面を除いて、前記入力面に近いほど低い
     ことを特徴とする映像表示装置。
    The video display device according to claim 3, wherein
    The video display device, wherein the reflectance of the plurality of image light branching surfaces is lower as being closer to the input surface except for the image light branching surface closest to the input surface.
  5.  請求項3に記載の映像表示装置であって、
     前記映像光複製部は、前記複数の映像光分岐面の配置間隔Distが、前記映像投影部からの映像光の開口サイズφPJと略等しいか、または開口サイズφPJよりも小さく形成されている
     ことを特徴とする映像表示装置。
    The video display device according to claim 3, wherein
    The image light duplicating unit may be configured such that the arrangement interval Dist of the plurality of image light branch surfaces is substantially equal to or smaller than the opening size φPJ of the image light from the image projecting unit. Characteristic video display device.
  6.  請求項2に記載の映像表示装置であって、
     前記映像光複製部は、
      前記映像投影部から入射した前記映像光を回折する回折領域を備える入力面と、
      前記入力面の前記回折領域で回折された前記映像光を回折する複数の回折領域を備える出力面と、
     を有する映像光複製回折素子から成り、
     前記入力面の前記回折領域と前記出力面の前記回折領域との回折構造の方向及び周期が略同一である
     ことを特徴とする映像表示装置。
    The video display device according to claim 2,
    The image light replication unit,
    An input surface including a diffraction region that diffracts the image light incident from the image projection unit,
    An output surface including a plurality of diffraction regions that diffract the image light diffracted by the diffraction region of the input surface,
    Consisting of an image light duplicating diffraction element having
    The image display device, wherein directions and periods of diffraction structures of the diffraction area on the input surface and the diffraction area on the output surface are substantially the same.
  7.  請求項2に記載の映像表示装置であって、
     前記映像光複製部は、映像光複製ビームスプリッタから成る
     ことを特徴とする映像表示装置。
    The video display device according to claim 2,
    The image display device, wherein the image light duplication unit comprises an image light duplication beam splitter.
  8.  請求項1に記載の映像表示装置であって、
     前記映像光複製部は、前記導光板の前記光入力部から入射した前記映像光を前記2本以上の映像光に複製し、
     前記導光板は、前記映像光複製部にて複製された前記2本以上の映像光を内部で伝搬させて前記光出力部から出力する
     ことを特徴とする映像表示装置。
    The video display device according to claim 1,
    The image light duplicating section duplicates the image light incident from the light input section of the light guide plate into the two or more image lights,
    The image display device, wherein the light guide plate propagates the two or more image lights duplicated by the image light duplication unit inside and outputs the light from the light output unit.
  9.  請求項8に記載の映像表示装置であって、
     前記映像光複製部は、少なくとも2枚以上の透明平板が積層されて成り、
     前記2枚以上の透明平板の境界面は、前記映像光の一部を反射し、残りを透過する
     ことを特徴とする映像表示装置。
    The video display device according to claim 8,
    The image light duplication unit is formed by stacking at least two or more transparent flat plates,
    An image display device, wherein a boundary surface between the two or more transparent flat plates reflects a part of the image light and transmits the rest.
  10.  請求項9に記載の映像表示装置であって、
     前記映像光複製部を成す前記2枚以上の透明平板は、それぞれの厚さが異なる
     ことを特徴とする映像表示装置。
    The video display device according to claim 9,
    The image display device, wherein the two or more transparent flat plates forming the image light duplicating section have different thicknesses.
  11.  請求項1に記載の映像表示装置であって、
     前記映像投影部は、ファイバ走査型プロジェクタから成る
     ことを特徴とする映像表示装置。
    The video display device according to claim 1,
    The video display device, wherein the video projection unit is a fiber scanning projector.
  12.  請求項1に記載の映像表示装置であって、
     前記映像投影部は、ミラー走査型プロジェクタから成る
     ことを特徴とする映像表示装置。
    The video display device according to claim 1,
    The image display device, wherein the image projection unit includes a mirror scanning type projector.
  13.  請求項1に記載の映像表示装置であって、
     前記導光板は、複数の回折領域を有し、
     前記光入力部及び前記光出力部は、それぞれ前記複数の回折領域のうちの1つである
     ことを特徴とする映像表示装置。
    The video display device according to claim 1,
    The light guide plate has a plurality of diffraction regions,
    The image display device, wherein the light input unit and the light output unit are each one of the plurality of diffraction regions.
  14.  請求項1記載の映像表示装置において、
     前記導光板は、
      前記光入力部に相当する入射面と、
      略平行に配置された複数の部分反射面と、を有し、
     前記複数の部分反射面は、それぞれ前記入射面から入射した映像光の少なくとも一部を反射するとともに残りを透過する
     ことを特徴とする映像表示装置。
    The video display device according to claim 1,
    The light guide plate includes:
    An incident surface corresponding to the light input unit,
    A plurality of partially reflecting surfaces arranged substantially in parallel,
    The image display device, wherein each of the plurality of partial reflection surfaces reflects at least a part of the image light incident from the incident surface and transmits the rest.
  15.  映像信号を生成する映像信号処理装置と、
     前記映像信号に基づく映像を表示する映像表示装置と、
     を備え、
     前記映像表示装置は、
      前記映像信号に基づく光を走査して所定の画角の映像光を生成する映像投影部と、
      光入力部から入射した前記映像光を内部で伝搬させて光出力部から出力する導光板と、
      前記映像光の光線を複製する映像光複製部と、
     を備え、
     前記映像光複製部は、入射した前記映像光と略同一の画角を有する2本以上の映像光を複製する
     ことを特徴とする映像表示システム。
    A video signal processing device for generating a video signal,
    A video display device that displays a video based on the video signal,
    With
    The image display device,
    An image projection unit that scans light based on the image signal to generate image light of a predetermined angle of view,
    A light guide plate that propagates the image light incident from the light input unit inside and outputs the light from the light output unit,
    An image light duplicating unit that duplicates the light beam of the image light,
    With
    The image display system, wherein the image light duplicating unit duplicates two or more image lights having substantially the same angle of view as the incident image light.
PCT/JP2019/019534 2018-07-20 2019-05-16 Video display device and video display system WO2020017140A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-136391 2018-07-20
JP2018136391A JP7137273B2 (en) 2018-07-20 2018-07-20 Video display device and video display system

Publications (1)

Publication Number Publication Date
WO2020017140A1 true WO2020017140A1 (en) 2020-01-23

Family

ID=69163635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019534 WO2020017140A1 (en) 2018-07-20 2019-05-16 Video display device and video display system

Country Status (2)

Country Link
JP (1) JP7137273B2 (en)
WO (1) WO2020017140A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114686A (en) * 2020-08-28 2022-03-01 日立乐金光科技株式会社 Head-mounted display
WO2024004289A1 (en) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 Optical system and image display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7163950B2 (en) * 2020-11-27 2022-11-01 カシオ計算機株式会社 Retinal scanning projection device, image light emitting method and combiner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536102A (en) * 2000-06-05 2003-12-02 ラマス リミテッド Optical beam expander guided by substrate
JP2006501499A (en) * 2002-09-30 2006-01-12 ノキア コーポレイション Beam light expanding method and system in display device
JP2010164988A (en) * 2002-03-21 2010-07-29 Lumus Ltd Light guide optical device
US8233204B1 (en) * 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
JP2016085426A (en) * 2014-10-29 2016-05-19 セイコーエプソン株式会社 Optical element, electro-optic device, mount-type display device, and optical element manufacturing method
JP2018510379A (en) * 2015-03-20 2018-04-12 マジック リープ, インコーポレイテッドMagic Leap,Inc. Optical combiner for augmented reality display systems

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589901B2 (en) * 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
US7613373B1 (en) * 2008-07-03 2009-11-03 Microvision, Inc. Substrate guided relay with homogenizing input relay
JP7232182B2 (en) * 2016-11-30 2023-03-02 マジック リープ, インコーポレイテッド Method and system for high resolution digitized display
JP2018132603A (en) * 2017-02-14 2018-08-23 株式会社リコー Virtual image optical system and virtual image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536102A (en) * 2000-06-05 2003-12-02 ラマス リミテッド Optical beam expander guided by substrate
JP2010164988A (en) * 2002-03-21 2010-07-29 Lumus Ltd Light guide optical device
JP2006501499A (en) * 2002-09-30 2006-01-12 ノキア コーポレイション Beam light expanding method and system in display device
US8233204B1 (en) * 2009-09-30 2012-07-31 Rockwell Collins, Inc. Optical displays
JP2016085426A (en) * 2014-10-29 2016-05-19 セイコーエプソン株式会社 Optical element, electro-optic device, mount-type display device, and optical element manufacturing method
JP2018510379A (en) * 2015-03-20 2018-04-12 マジック リープ, インコーポレイテッドMagic Leap,Inc. Optical combiner for augmented reality display systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114686A (en) * 2020-08-28 2022-03-01 日立乐金光科技株式会社 Head-mounted display
WO2024004289A1 (en) * 2022-06-29 2024-01-04 パナソニックIpマネジメント株式会社 Optical system and image display device

Also Published As

Publication number Publication date
JP7137273B2 (en) 2022-09-14
JP2020013041A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US9726890B2 (en) Light beam expanding device, image display device, and optical device
US10386642B2 (en) Holographic see-through optical device, stereoscopic imaging system, and multimedia head mounted system
US20180267316A1 (en) Display device and light guide device
WO2020017140A1 (en) Video display device and video display system
JP6720315B2 (en) Imaging light guide with reflective conversion array
JPWO2005073798A1 (en) Light source device and two-dimensional image display device
CN111355939B (en) Image display device and image display system
US11067810B2 (en) Head-mounted display apparatus
CN113167946B (en) Projector integrated with scanning mirror
JP2016166930A (en) Image display device
CN111983812A (en) Micromirror laser scanning near-to-eye display system
KR20230053605A (en) A near-eye image projection system and a wearable device including the near-eye image projection system
CN114730086A (en) Display employing astigmatic optics and aberration compensation
CN112513718B (en) Method and system for RGB luminaire
CN215813552U (en) Optical waveguide system and display device
CN216449827U (en) Near-to-eye display system
JP2023549313A (en) Slab waveguide and projector with intermodal coupling
CN112433368B (en) Image display device and head-mounted display using the same
US11604352B2 (en) Waveguide-based projector
US11513473B2 (en) Waveguide, waveguide manufacturing apparatus, waveguide manufacturing method, and video display device using the same
US20210003763A1 (en) Light-guiding plate, and hologram recording device and hologram recording method used for the same
JP7261724B2 (en) Video display device and video display system
CN111399328A (en) Lighting device and projection display system
KR20210042217A (en) Augmented reality device including a flat combiner and electronic device including the same
US20230114190A1 (en) Waveguide and augmented reality device employing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837653

Country of ref document: EP

Kind code of ref document: A1