WO2020017125A1 - Water boat device and printing machine - Google Patents

Water boat device and printing machine Download PDF

Info

Publication number
WO2020017125A1
WO2020017125A1 PCT/JP2019/017367 JP2019017367W WO2020017125A1 WO 2020017125 A1 WO2020017125 A1 WO 2020017125A1 JP 2019017367 W JP2019017367 W JP 2019017367W WO 2020017125 A1 WO2020017125 A1 WO 2020017125A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
water
watercraft
dampening
printing press
Prior art date
Application number
PCT/JP2019/017367
Other languages
French (fr)
Japanese (ja)
Inventor
隆史 新開
英治 奥薗
閲男 加藤
浅尾 栄次
一雄 山田
豊 神
Original Assignee
パナソニックIpマネジメント株式会社
テクノロール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社, テクノロール株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020017125A1 publication Critical patent/WO2020017125A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/04Tripping devices or stop-motions
    • B41F33/10Tripping devices or stop-motions for starting or stopping operation of damping or inking units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F7/00Rotary lithographic machines
    • B41F7/02Rotary lithographic machines for offset printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F7/00Rotary lithographic machines
    • B41F7/02Rotary lithographic machines for offset printing
    • B41F7/04Rotary lithographic machines for offset printing using printing units incorporating one forme cylinder, one transfer cylinder, and one impression cylinder, e.g. for printing on webs
    • B41F7/06Rotary lithographic machines for offset printing using printing units incorporating one forme cylinder, one transfer cylinder, and one impression cylinder, e.g. for printing on webs for printing on sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F7/00Rotary lithographic machines
    • B41F7/20Details
    • B41F7/24Damping devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F7/00Rotary lithographic machines
    • B41F7/20Details
    • B41F7/24Damping devices
    • B41F7/32Ducts, containers, or like supply devices for liquids

Definitions

  • the present invention relates to a watercraft device for supplying dampening water and a printing machine provided with the watercraft device.
  • various rollers such as an ink roller, a plate cylinder, a blanket, and an impression cylinder have been used in a lithographic offset printing press.
  • a plurality of ink rollers are arranged between the ink reservoir and the plate cylinder, and guide the ink from the ink reservoir to the plate cylinder while being in rotational contact with the ink.
  • the printing press is provided with a configuration for guiding the dampening solution to the plate cylinder.
  • a watercraft device is installed as a source of dampening water, and dampening water is supplied to the plate cylinder from the watercraft device via a plurality of rollers.
  • Patent Document 1 describes a watercraft device provided with a dampening water cooling mechanism.
  • a pipe is attached so as to be in contact with the outer bottom surface of the watercraft, and a cooling medium flows through the pipe.
  • the cooling medium is stored in the tank while being cooled by the refrigerator.
  • the temperature of the dampening solution is measured by a temperature sensor. When the temperature of the dampening solution rises, the temperature of the cooling medium is lowered by the refrigerator, and the dampening solution is cooled. Thereby, the fountain solution in the watercraft is maintained at a predetermined temperature.
  • Patent Document 1 requires a refrigerator for cooling the cooling medium and a tank for storing the cooling medium. For this reason, the cost of the watercraft device increases, and the space for arranging these devices increases the size of the watercraft device.
  • piping is provided on the outer bottom surface of the watercraft, the configuration of the watercraft device is complicated.
  • the outer bottom surface of the watercraft is cooled, there is a temperature difference between the dampening water near the bottom of the watercraft and the vicinity of the fountain roller. Cooling and temperature control may not be possible.
  • an object of the present invention is to provide a watercraft device capable of appropriately controlling the temperature of dampening water with a simple configuration, and a printing machine including the same.
  • the first aspect of the present invention relates to a watercraft device.
  • the watercraft device includes a watercraft for storing dampening water, a water source roller that rotates in contact with the dampening water stored in the watercraft, and a water source roller installed inside the water source roller. And a thermoelectric converter for controlling the temperature of the water supply roller.
  • thermoelectric converter is disposed inside the water roller, it is not necessary to separately provide a refrigerator or a tank around the water roller and the watercraft. Also, there is no need for a pipe for sending dampening water from the watercraft to the refrigerator or the tank. Therefore, the configuration of the watercraft device can be simplified, and the size and cost of the watercraft device can be reduced.
  • the temperature of the fountain roller is controlled by the thermoelectric converter, the temperature of the fountain solution is adjusted in a process in which the fountain solution contacts the fountain roller and is transferred. Therefore, dampening water can be supplied to the plate cylinder or the like at an appropriate temperature.
  • a printing press according to a second aspect includes the watercraft device according to the first aspect, and a plate cylinder to which dampening water is supplied from the watercraft device and ink is supplied from an ink reservoir.
  • the size and cost of the printing press can be reduced.
  • the temperature of the dampening solution can be properly controlled, printing can be performed with higher quality.
  • FIG. 1 is a diagram schematically illustrating a configuration of a printing press according to an embodiment.
  • FIG. 2A is a side view schematically illustrating the configuration near the plate cylinder of the printing unit according to the embodiment.
  • FIG. 2B is a perspective view illustrating a configuration of the watercraft according to the embodiment.
  • FIG. 2C is a diagram schematically illustrating a printing method of the printing unit according to the embodiment.
  • FIG. 3A is a diagram illustrating a configuration of a water source roller according to the embodiment.
  • FIG. 3B is a diagram illustrating a state in which a water roller is installed on a frame according to the embodiment.
  • FIGS. 4A and 4B are diagrams schematically illustrating a state in which the roller body is viewed from the cooling air outlet side according to the embodiment.
  • FIG. 5 is a partially exploded perspective view showing a structure including an upper heat sink, a thermoelectric converter, and a heat pipe and a press-fit member according to the embodiment.
  • FIG. 6A is an exploded perspective view schematically illustrating a configuration of a part of the thermoelectric converter according to the embodiment.
  • FIG. 6B is a perspective view schematically illustrating a configuration in a state where the thermoelectric converter according to the embodiment is substantially assembled.
  • FIG. 7 is a side view illustrating the configuration of the watercraft device according to the embodiment.
  • FIG. 8A is a perspective view illustrating a configuration of an exhaust unit according to the embodiment.
  • FIG. 8B is a perspective view illustrating the configuration of the exhaust unit according to the embodiment with the chamber removed.
  • FIG. 9 is a cross-sectional view of the exhaust unit cut along a plane passing through a central axis of the exhaust unit according to the embodiment.
  • FIG. 10 is a cross-sectional view schematically illustrating a configuration near a water roller according to the embodiment.
  • FIGS. 11A and 11B are cross-sectional views schematically illustrating a configuration near a water roller according to a modification.
  • FIG. 1 is a diagram schematically showing the configuration of the printing press 1.
  • a configuration example of the printing press 1 that performs printing on one side of the printing paper P10 is shown.
  • the printing press 1 includes a paper feed unit 2, four printing units 3, and an accumulation unit 4.
  • the paper feeding unit 2 stores printing paper P10 of a predetermined size, which is an object to be printed, and sequentially sends out the stored printing paper P10 to the printing unit 3 closest to the Y-axis negative side.
  • the printing paper P10 sent from the paper feeding unit 2 is sequentially sent to the four printing units 3 by the transport mechanism of each printing unit 3.
  • the four printing units 3 print a pattern image of a predetermined color on the printing paper P10 sent from the paper feeding unit 2, respectively.
  • the four printing units 3 respectively print yellow, cyan, magenta, and black pattern images on printing paper P10.
  • Each of the three printing units 3 on the negative side of the Y-axis sends out the printed printing paper P10 to the adjacent printing units 3 in the positive Y-axis direction by the transport mechanism.
  • the printing unit 3 on the Y axis positive side sends out the printed printing paper P10 to the stacking unit 4 by the transport mechanism.
  • the stacking unit 4 sequentially conveys the sent printing paper P10 to the stacking unit.
  • the printing paper P10 on which printing of all colors has been completed is stacked on the stacking unit 4.
  • Each printing unit 3 includes an ink reservoir 3a for storing ink of each color.
  • Each printing unit 3 includes four ink rollers 10, a plate cylinder 21, a blanket 22, and an impression cylinder 23.
  • the ink roller 10, plate cylinder 21, blanket 22, and impression cylinder 23 each have a columnar shape, and rotate in a direction parallel to the YZ plane about a rotation axis parallel to the X axis.
  • the four ink rollers 10 guide the ink from the ink reservoir 3a to the plate cylinder 21 while rotatingly contacting the ink.
  • the ink guided to the plate cylinder 21 is printed on the outer peripheral surface of the plate cylinder 21 in a predetermined drawing pattern.
  • the ink printed on the outer peripheral surface of the plate cylinder 21 is transferred to the blanket 22 at a contact position between the plate cylinder 21 and the blanket 22.
  • the ink transferred to the blanket 22 in this manner is transferred to the printing paper P10 sent between the blanket 22 and the impression cylinder 23.
  • FIG. 2A is a side view schematically showing a configuration near the plate cylinder 21 of the printing unit 3.
  • FIG. 2B is a diagram illustrating a configuration of the watercraft 24.
  • FIG. 2C is a diagram schematically illustrating a printing method of the printing unit 3.
  • the printing unit 3 further includes a watercraft 24, a water source roller 25, rubber rollers 26 and 28, and an intermediate roller 27 at a position close to the plate cylinder 21.
  • the water roller 25 and the intermediate roller 27 have members that form the outer peripheral surface made of a metal material such as copper or aluminum.
  • members constituting the outer peripheral surface are made of a rubber material.
  • the watercraft 24 has a boat-like shape having an arc-shaped concave portion 24a formed on the upper surface.
  • the recess 24a is curved only in a direction parallel to the YZ plane.
  • the curvature of the concave portion 24a is constant at all positions in the X-axis direction. That is, the concave portion 24a is configured such that the inner side surface is aligned with a predetermined cylindrical surface.
  • the X-axis positive / negative ends of the concave portion 24a are smoothly connected to the wall surface 24b via the inclined surface 24c.
  • the wall surface 24b is perpendicular to the X axis.
  • the width of the concave portion 24a in the X-axis direction is slightly larger than the body of the water source roller 25, that is, the width of the roller body 25a in the X-axis direction described later.
  • the watercraft 24 stores the dampening water A20 in the concave portion 24a.
  • the dampening solution A20 is a mixture of tap water and an etchant.
  • the dampening water A20 is supplied from the dampening water supplier 30 to the watercraft 24.
  • dampening solution A20 is supplied to recess 24a from a supply port (not shown) formed on the bottom surface or side surface of watercraft 24.
  • the fountain roller 25 is fitted in the concave portion 24a while being separated from the inner side surface of the concave portion 24a. That is, a part of the water roller 25 on the negative side of the Z axis is fitted in the concave portion 24a with a predetermined gap.
  • the radius of curvature of the water source roller 25 is smaller than the radius of curvature of the concave portion 24a.
  • the two rubber rollers 26, 28, and the intermediate roller 27 rotate in the directions of the arrows shown in FIG. It is applied to the outer peripheral surface of the plate cylinder 21 along the rollers. At this time, the intermediate roller 27 is swung in the radial direction, and the dampening solution A20 propagating from the rubber roller 26 to the rubber roller 28 is leveled. Thereby, the dampening solution A20 is evenly applied to the plate cylinder 21.
  • a plate for drawing is installed on the outer peripheral surface of the plate cylinder 21 in advance.
  • the printing plate is configured such that dampening solution A20 adheres to the non-drawing portion. Therefore, the dampening solution A20 applied to the outer peripheral surface of the plate cylinder 21 by the fountain roller 25, the two rubber rollers 26 and 28, and the intermediate roller 27 remains only in the non-drawing portion and does not remain in the drawing portion. Therefore, the ink A10 guided from the ink roller 10 to the outer peripheral surface of the plate cylinder 21 adheres only to the drawing portion of the outer peripheral surface of the plate cylinder 21 where no dampening solution A20 remains.
  • FIG. 2C shows a state where the ink A10 and the dampening solution A20 adhere to the outer peripheral surface of the plate cylinder 21.
  • the ink A10 printed on the outer peripheral surface of the plate cylinder 21 in the above process is transferred to the blanket 22 as described above, and then transferred to the printing paper P10.
  • a pattern image corresponding to the plate attached to the outer peripheral surface of the plate cylinder 21 is printed on the printing paper P10.
  • the dampening solution A20 serves to attach the ink A10 to the outer peripheral surface of the plate cylinder 21 and also cools the plate cylinder 21 and adjusts the temperature of the plate cylinder 21 to a predetermined temperature. It also plays a role.
  • the ink roller 10 is rotated about an axis parallel to the X axis while being driven in the X axis direction by a drive mechanism (not shown).
  • a drive mechanism not shown.
  • the dampening solution A20 plays a role of cooling the plate cylinder 21 by being applied to the plate cylinder 21. Therefore, the dampening solution A20 needs to be adjusted to a predetermined temperature so that the plate cylinder 21 can be cooled efficiently.
  • thermoelectric converter 500 is installed inside the water supply roller 25, and the water supply roller 25 is cooled by the thermoelectric converter 500. Thereby, the dampening solution A20 is cooled when coming into contact with the fountain roller 25, and is adjusted to an appropriate temperature range.
  • a supply port (not shown) for supplying dampening water A20 is formed on the bottom or side surface of the watercraft 24, but a discharge port for discharging dampening water A20 from the watercraft 24 is formed. Not done. This is because the dampening water A20 in the watercraft 24 can be directly cooled by the water source roller 25, so that a refrigerator or a tank for cooling the dampening water A20 becomes unnecessary, and the dampening water from the watercraft 24 to the refrigerator or the tank is eliminated. This is because no pipe for sending A20 is required.
  • FIG. 3A is a diagram illustrating the configuration of the water supply roller 25.
  • the water source roller 25 includes a roller main body 25a and support members 25b and 25c.
  • the roller body 25a has a cylindrical structure.
  • the outer peripheral surface of the roller body 25a contacts the dampening solution A20.
  • the support members 25b and 25c are cylindrical members and have holes 25d and 25e penetrating in the X-axis direction.
  • the support members 25b and 25c are symmetrical with respect to a central axis parallel to the X axis.
  • the support members 25b and 25c are made of a metal material.
  • the support members 25b and 25c are mounted on the roller main body 25a so as to cover both ends of the roller main body 25a with circular flanges 25f and 25g. In FIGS. 3A and 3B, for convenience, screws for fixing the flanges 25f and 25g to both ends of the roller body 25a are omitted.
  • FIG. 3B is a view showing a state in which the water roller 25 is installed on the frames 41 and 42.
  • FIG. 3B shows a state in which the joints between the frames 41 and 42 and the support members 25b and 25c are seen through in the Y-axis direction.
  • the water source roller 25 is supported by the frames 41 and 42 by fitting the support members 25b and 25c into the bearings 41a and 42a.
  • the water source roller 25 is rotatable about an axis parallel to the X axis.
  • the water source roller 25 is rotated around an axis parallel to the X axis by a drive mechanism (not shown).
  • the thermoelectric converter is installed on the inner peripheral surface of the roller body 25a of the water source roller 25.
  • the heat of the outer peripheral surface of the roller main body 25a is moved to the inner peripheral side of the roller main body 25a by the thermoelectric converter.
  • cooling air is circulated inside the roller main body 25a via the support members 25b and 25c, and heat transferred by the thermoelectric converter is removed.
  • the outer peripheral surface of the roller main body 25a is effectively cooled, and the dampening solution A20 in contact with the outer peripheral surface of the roller main body 25a is appropriately cooled.
  • FIGS. 4A and 4B are diagrams schematically illustrating a state where the roller main body 25a is viewed from the cooling air outlet side.
  • FIGS. 4A and 4B show the roller body 25a with the support members 25b and 25c removed.
  • FIG. 4A shows a state before the press-fitting member 400 is mounted.
  • the roller main body 25a includes a cylinder 100, a heat sink 200, a heat pipe 300, a press-fit member 400, and a thermoelectric converter 500.
  • the cylindrical body 100 has a cylindrical shape and is made of a metal material having excellent thermal conductivity, such as copper or aluminum.
  • the cylindrical body 100 is formed with a circular through-hole 101 penetrating in the X-axis direction.
  • the cylindrical body 100 has six screw holes 102 for screwing the support members 25b and 25c shown in FIG. 3A on the end surface on the X axis negative side and the end surface on the X axis positive side, respectively. Is provided.
  • 2Two heat sinks 200 each having the heat pipe 300 and the thermoelectric converter 500 mounted therein are accommodated in the through hole 101 of the cylindrical body 100.
  • the press-fitting member 400 is press-fitted between the two heat sinks 200.
  • the two heat sinks 200 are separated from each other and pressed against the inner surface of the through hole 101.
  • the two heat sinks 200 are fixed to the through holes 101 of the cylindrical body 100.
  • FIG. 5 is a partially exploded perspective view showing the structure including the upper heat sink 200, the thermoelectric converter 500, and the heat pipe 300, and the press-fit member 400.
  • the structure including the lower heat sink 200, the thermoelectric converter 500, and the heat pipe 300 is the same as that in FIG.
  • the heat sink 200 has a semi-cylindrical shape and is made of a material having excellent heat conduction properties such as copper and aluminum.
  • the length of the heat sink 200 is slightly shorter than the length of the cylinder 100.
  • the two heat sinks 200 have the same shape. When the two heat sinks 200 are vertically stacked, a substantially columnar structure is formed. The outer diameter of this structure is slightly smaller than the inner diameter of the cylinder 100.
  • the heat sink 200 has a top surface 201, two holes 202, a groove 203, a plurality of fins 204, and two recesses 205 integrally formed.
  • the top surface 201 is an arc-shaped curved surface. On this top surface 201, ten thermoelectric converters 500 are installed at substantially equal intervals. As described later, the thermoelectric converter 500 has a structure that can be bent in a direction parallel to the YZ plane. The thermoelectric converter 500 is installed on the top surface 201 by a bonding means such as an adhesive or heat radiation grease while being curved in a shape along the top surface 201.
  • a bonding means such as an adhesive or heat radiation grease
  • the two holes 202 have a circular shape, extend in the X-axis direction, and penetrate the heat sink 200.
  • the diameter of the hole 202 is slightly larger than the diameter of the heat pipe 300.
  • the two holes 202 are provided at symmetrical positions in the Y-axis direction.
  • a heat pipe 300 is inserted into each of the two holes 202 and attached.
  • the heat pipe 300 is inserted into the hole 202 so as to extend from near one end in the longitudinal direction of the heat sink 200 to near the other end. That is, the heat pipe 300 extends so as to cover all the installation positions of the ten thermoelectric converters 500 installed on the top surface 201 of the heat sink 200.
  • the heat pipe 300 is installed to make the temperature of the top surface 201 of the heat sink 200 uniform in the X-axis direction. As the working fluid circulates in the heat pipe 300 while repeating vaporization and liquefaction, heat moves from the high temperature part to the low temperature part. Thereby, the temperature of the top surface 201 of the heat sink 200 is made substantially uniform. By making the temperature of the top surface 201 uniform in this way, the temperatures of the heat radiation surfaces of the ten thermoelectric converters 500 become substantially the same, and the cooling capacity of all the thermoelectric converters 500 can be kept high.
  • the groove 203 is provided to regulate the position of the press-fitting member 400.
  • the groove 203 has a substantially V-shaped cross-sectional shape, and extends in the X-axis direction from the end surface on the X-axis negative side of the heat sink 200 to the end surface on the X-axis positive side.
  • the groove 203 has two flat surfaces 203a and 203b for receiving the press-fit member 400. When a virtual plane parallel to the XZ plane is set at the deepest position of the groove 203, the two planes 203a and 203b are inclined at substantially the same angle in directions opposite to each other with respect to this virtual plane.
  • the bottom of the groove 203 is slightly rounded.
  • a plurality of notches are formed substantially radially from the center of the bottom surface of the heat sink 200 in the Y-axis direction, so that a plurality of fins 204 are formed.
  • Each fin 204 extends in the X-axis direction from the end surface on the X-axis negative side of the heat sink 200 to the end surface on the X-axis positive side.
  • the recess 205 is provided to lead out a lead wire for supplying power to the thermoelectric converter 500.
  • the concave portion 205 has a shape in which the outer peripheral surface of the heat sink 200 is cut out in an arc shape.
  • the concave portion 205 extends in the X-axis direction from the end surface on the X-axis negative side of the heat sink 200 to the end surface on the X-axis positive side.
  • the lead wire drawn from each thermoelectric converter 500 is housed in the recess 205 and drawn out.
  • the press-fitting member 400 is a rod-shaped member having a circular cross section, and is made of a highly rigid material such as stainless steel. In the present embodiment, four press-fitting members 400 are used. The length of each press fitting member 400 is half the length of the heat sink 200. The four press-fitting members 400 have the same shape as each other.
  • the press-fitting member 400 has a conical shape in which the end 401 in the press-fitting direction becomes narrower toward the tip.
  • the two press-fit members 400 are arranged in one groove 203 of the heat sink 200 so as to be arranged in the X-axis direction. Therefore, the two press-fitting members 400 arranged in the X-axis direction are arranged so as to cover substantially the entire range of the heat sink 200 in the longitudinal direction.
  • FIG. 6A is an exploded perspective view schematically illustrating a configuration of a part of the thermoelectric converter 500
  • FIG. 6B is a schematic diagram illustrating a configuration in which the thermoelectric converter 500 is substantially assembled.
  • FIG. 6A and 6B x, y, and z axes orthogonal to each other are newly added for convenience.
  • the x-axis, y-axis, and z-axis directions are the vertical direction, the horizontal direction, and the thickness direction of the thermoelectric converter 500, respectively.
  • the thermoelectric converter 500 includes a substrate 501, an electrode 502, a thermoelectric conversion element 503, a lead wire 504, and an electrode 505.
  • the substrate 501 has a contour in which the corners of a square are rounded in plan view.
  • the substrate 501 is made of a material having excellent thermal conductivity and flexibility.
  • a thin copper plate can be used as the substrate 501.
  • the substrate 501 may be made of aluminum, silicon resin, epoxy resin, or the like.
  • An electrode 502 is provided on the upper surface of the substrate 501.
  • the electrode 502 is made of copper, aluminum, or the like.
  • an insulating layer is provided between the substrate 501 and the electrode 502.
  • the electrode 502 and the electrode 505 on the upper surface side are arranged so as to connect the thermoelectric converters 500 in series.
  • the thermoelectric conversion element 503 has a substantially cubic shape.
  • the thermoelectric conversion element 503 is an element that controls heat with electric power, such as a Peltier element.
  • the thermoelectric conversion elements 503 are arranged in a matrix in the y-axis direction and the x-axis direction.
  • the lower surface of thermoelectric conversion element 503 is joined to the upper surface of electrode 502 by solder.
  • Lead wires 504 are connected to the electrodes 502 on the y-axis positive and negative ends, respectively.
  • an electrode 505 is joined to the upper surface of the thermoelectric conversion element 503 by solder.
  • all the thermoelectric conversion elements 503 are connected in series to the two lead wires 504 via the electrodes 502 and 505.
  • a voltage is applied to all the thermoelectric conversion elements 503 via the electrodes 502 and 505.
  • thermoelectric conversion element 503 In place of the thermoelectric conversion element 503, four reinforcing members 506 each having substantially the same shape as the thermoelectric conversion element 503 are provided on the electrode 502 on the y-axis positive / negative end, respectively.
  • the reinforcing member 506 is for reinforcing the thermoelectric converter 500, and does not exhibit a temperature control action even when a voltage is applied to the lead wire 504.
  • a reinforcing plate 507 extending in the x-axis direction is provided on the upper surfaces of the reinforcing members 506. This makes it difficult for the thermoelectric converter 500 to bend in a direction parallel to the xz plane.
  • thermoelectric converter 500 is configured.
  • thermoelectric converter 500 When a voltage is applied to the thermoelectric converter 500 via the two lead wires 504, heat on the upper surface of the thermoelectric converter 500 moves to the lower surface of the thermoelectric converter 500 (the surface of the substrate 508 on the negative side of the Z axis). I do.
  • the polarity of each of the plurality of thermoelectric converters 500 installed on the substrate 501 is adjusted such that heat is transferred from the lower surface to the upper surface when a voltage is applied via the two lead wires 504.
  • thermoelectric converter 500 is located at the position P1 of the gap between the adjacent electrodes 502. , Yz plane. Thereby, thermoelectric converter 500 can be installed on top surface 201 so as to follow the shape of top surface 201 of heat sink 200.
  • thermoelectric converters 500 are installed on the top surface 201 of the heat sink 200, and further, the heat pipes 300 are attached to the two holes 202 of the heat sink 200, respectively. Be composed. Then, as shown in FIG. 4A, the two structures are inserted into the through-hole 101 of the cylindrical body 100 so as to overlap each other. Then, two press-fitting members 400 are press-fitted into the grooves 203 of each heat sink 200 from the X-axis positive side and the X-axis negative side. Thus, as shown in FIG. 4B, the assembly of the roller body 25a is completed.
  • the cooling air that has flowed into the cylinder 100 is discharged from the cylinder 100 through the gap between the fins 204.
  • the heat that has moved from the cylindrical body 100 to the thermoelectric converter 500 and further has moved from the thermoelectric converter 500 to the fins 204 is removed by the cooling air.
  • accumulation of heat on the heat radiation surface of the thermoelectric converter 500 is suppressed, and the cooling action of the thermoelectric converter 500 is maintained.
  • the cylinder 100 (the roller body 25a) is effectively cooled.
  • FIG. 7 is a side view showing the configuration of the watercraft device 29.
  • the watercraft device 29 includes an intake unit 60 and an exhaust unit 70 in addition to the water source roller 25 having the above configuration.
  • the intake unit 60 is installed on the side surface on the X axis positive side of the frame 42.
  • the intake unit 60 connects the end of the support member 25b on the X axis negative side to the duct 53.
  • the other end of the duct 53 is connected to the outside via an opening provided in the cover 51.
  • the intake unit 60 includes a motor 61 for rotating the roller body 25a of the water source roller 25 about a rotation center axis parallel to the X axis.
  • the cable drawn from the motor 61 is attached so as to extend downward along the inner surface of the cover 51, and is drawn out of the cover 51 at a predetermined drawing position.
  • the exhaust unit 70 is installed on the side surface on the X axis positive side of the frame 42.
  • the cable drawn from the thermoelectric converter 500 installed on the inner peripheral surface of the roller body 25a of the water source roller 25 is connected to a slip ring installed in the exhaust unit 70.
  • the cable pulled out from the slip ring is attached so as to extend downward along the inner surface of the cover 52, and is drawn out of the cover 52 at a predetermined drawing position.
  • the exhaust unit 70 connects the end on the X-axis positive side of the support member 25c and the duct 54, and the other end of the duct 54 is connected to a blower (not shown) via an opening provided in the cover 52. ing. Cooling air (air) is taken into the duct 53 from the outside by the suction force of the blower. Thereafter, the cooling air is guided to the water roller 25 via the intake unit 60, takes heat from the water roller 25, and is exhausted through the exhaust unit 70 and the duct 53.
  • a blower not shown
  • the configuration of the exhaust unit 70 will be described later with reference to FIGS. 8A and 8B and FIG.
  • the configuration of the intake unit 60 is the same as the configuration of the exhaust unit 70 except that the slip ring is replaced with a motor 61.
  • a region R1 is a region for supplying ink from the ink reservoir 3a to the plate cylinder 21, and regions R2 and R3 are ink rollers 10, the plate cylinder 21, the blanket 22, the impression cylinder 23, and the water source roller.
  • This is an area where a mechanism for driving the 25 and the like is arranged. Therefore, ink and fountain solution are filled in the region R1, and oil mist is generated in the regions R2 and R3.
  • the frames 41 and 42 and the covers 51 and 52 are barriers for separating these areas. Therefore, the intake unit 60 and the exhaust unit 70 need to have a configuration for allowing the cooling air to flow without leakage and a configuration for preventing the oil mist from entering inside.
  • FIG. 8A is a perspective view showing the configuration of the exhaust unit 70.
  • FIG. 8B is a perspective view showing the configuration of the exhaust unit 70 with the chamber 120 removed.
  • the exhaust unit 70 includes a hood member 110, a chamber 120, two support shafts 130, and two guide shafts 140.
  • the hood member 110 has a hollow cylindrical shape with both ends opened.
  • the support member 25c of the water roller 25 is fitted into the hood member 110 at the end on the X-axis negative side without a gap, and is connected to the support member 25c.
  • a coupling member 220 attached to the rotation shaft 213 (see FIG. 9) of the slip ring 210 is fitted to the end of the hood member 110 on the X-axis positive side, and the slip ring 210 is attached.
  • the hood member 110 covers an area between the rotation shaft 213 of the slip ring 210 and the end of the water roller 25.
  • the coupling member 220 is a disk-shaped member having substantially the same diameter as the inner diameter of the end of the hood member 110 on the X axis positive side. By fitting the coupling member 220 into the end of the hood member 110, the end of the hood member 110 is closed by the rotation shaft 213 of the slip ring 210 and the coupling member 220. On the side of the coupling member 220 on the negative side of the X-axis, a flange portion for collectively holding the cables drawn from the rotation shaft 213 of the slip ring 210 is provided.
  • the hood member 110 has an opening 111 formed therein.
  • the opening 111 is provided not only on the upper surface but also on the lower surface of the hood member 110.
  • the two openings 111 are provided at the same position in the longitudinal direction (X-axis direction).
  • a chamber 120 is mounted on the hood member 110 so as to cover these openings 111.
  • the chamber 120 includes a box portion 121 and a tube portion 122.
  • the box portion 121 has a substantially cubic shape, and the inside is hollow.
  • the cylindrical portion 122 has a cylindrical shape and is integrally formed on the upper surface of the box portion 121 so as to communicate with the inside of the box portion 121.
  • the duct 54 shown in FIG. 7 is connected to the cylindrical portion 122.
  • a circular hole 123 penetrating in the X-axis direction is formed in the box portion 121. That is, the two holes 123 are formed coaxially on the X-axis positive side surface and the X-axis negative side surface of the box portion 121, respectively.
  • the diameter of the hole 123 is substantially the same as or slightly larger than the outer diameter of the hood member 110.
  • the hood member 110 is passed through the hole 123.
  • An oil seal or an O-ring is preferably further provided to fill a gap between the hole 123 and the outer surface of the hood member 110.
  • the chamber 120 is fixed to the frame 42 by two support shafts 130. Specifically, a screw portion having a smaller diameter than the shaft portion of the support shaft 130 is provided at the end of the support shaft 130 on the X-axis positive side. Further, on the side surface on the X axis positive side of the box portion 121, support holes through which the screw portions of the support shaft 130 are passed are provided at diagonal positions. Further, on the side surface on the negative side of the X-axis of the box portion 121, the support holes through which the shaft portions of the support shafts 130 pass are respectively coaxial with the support holes on the X-axis positive side at diagonal positions. Is provided.
  • the screw portion and the shaft portion of the support shaft 130 are respectively passed through two support holes provided on the X axis positive side and the X axis negative side of the box portion 121, and the nut 131 is fixed to the screw portion from the X axis positive side. .
  • the end on the X axis negative side of the support shaft 130 is fixed to the frame 42.
  • the chamber 120 is fixed to the frame 42.
  • the slip ring 210 includes four holes 211 in a flange provided on the X axis negative side.
  • the guide shaft 140 is passed through two of the four holes 211 at diagonal positions, and a fastener 141 is attached to an end of the guide shaft 140.
  • the slip ring 210 is supported by the chamber 120 via the guide shaft 140.
  • the cable drawn from the rotation shaft 213 of the slip ring 210 (see FIG. 9) is connected to the cables connected to the plurality of thermoelectric converters 500 inside the water source roller 25 inside the hood member 110. Thereby, the electric power supplied to the cable 212 of the slip ring 210 is supplied to each thermoelectric converter 500 inside the water source roller 25.
  • the intake unit 60 also has the same configuration as in FIGS. 8 (a) and 8 (b).
  • the slip ring 210 is replaced with a motor 61.
  • the motor 61 is driven, the roller body 25a rotates together with the support member 25b, and at the same time, the rotation shaft 213 (see FIG. 9) of the slip ring 210 rotates together with the support member 25c.
  • the rotation of the water source roller 25 is performed.
  • FIG. 9 is a cross-sectional view of the exhaust unit 70 cut in a plane parallel to the XZ plane and passing through the central axis of the exhaust unit 70.
  • the flow of the cooling air is indicated by broken-line arrows.
  • the cooling air flowing into the hood member 110 from the inside of the water source roller 25 via the support member 25c is guided to the internal space of the chamber 120 through the opening 111 of the hood member 110.
  • the end on the X-axis positive side of the hood member 110 is closed by the coupling member 220 and the rotating shaft 213. That is, the inside of the hood member 110 is a closed space.
  • the cooling air flowing into the hood member 110 is efficiently guided from the opening 111 to the internal space of the chamber 120.
  • the cooling air is exhausted to the outside through the duct 54 connected to the cylindrical portion 122 of the chamber 120.
  • the cooling air flows inside the water source roller 25.
  • the hood member 110 Since the hood member 110 is inserted into the hole 123 of the chamber 120, the hood member 110 rotates along with the rotation shaft 213 of the slip ring 210 along the inner side surface of the hole 123 with the rotation of the ink roller 10. At this time, since the chamber 120 covers the entire periphery of the hood member 110 as shown in FIG. 8A, even if the hood member 110 makes one rotation, the hood member 110 The opening 111 does not come off the chamber 120.
  • the chamber 120 is configured to cover the entire movement range of the opening 111 of the hood member 110 that moves with the rotation of the water source roller 25. Therefore, during the printing operation, the cooling air can be smoothly circulated inside the water supply roller 25 while rotating the hood member 110 together with the water supply roller 25.
  • the intake unit 60 is configured similarly to the exhaust unit 70, even if the water source roller 25 rotates during the printing operation, the cooling air can be smoothly taken into the intake unit 60 via the duct 53, Further, the taken-in cooling air can be smoothly circulated from the intake unit 60 to the inside of the water supply roller 25.
  • FIG. 10 is a cross-sectional view schematically showing a configuration near the water supply roller 25.
  • FIG. 10 shows a state where the center position of the roller body 25a in the X-axis direction is cut along a plane parallel to the YZ plane. For convenience, hatching indicating a cross section is omitted in FIG.
  • a straight line (a straight line parallel to the X axis) that defines the center of curvature C10 of the inner side surface of the concave portion 24 a coincides with the rotation center axis R10 of the water source roller 25.
  • the watercraft 24 is disposed with respect to the water source roller 25.
  • the rotation center axis R10 coincides with the center axis of the roller main body 25a. Therefore, in this embodiment, the watercraft 24 and the water supply roller 25 are arranged such that the center axis of the water supply roller 25 and the center of curvature C10 of the inner surface of the concave portion 24a coincide.
  • the gap D2 between the concave portion 24a and the outer peripheral surface of the water roller 25 becomes constant at an arbitrary position of the concave portion 24a.
  • the outer diameter D1 of the roller body 25a of the water source roller 25 is, for example, about 80 to 100 mm
  • the gap D2 is, for example, about 5 to 8 mm. That is, the gap D2 is significantly smaller than the outer diameter D1 of the roller body 25a.
  • the dampening solution A20 stored in the concave portion 24a can be effectively stirred with the rotation of the roller body 25a. Thereby, the temperature of the dampening solution A20 stored in the concave portion 24a hardly varies, and the temperature of the dampening solution A20 can be made substantially uniform.
  • the dampening water A20 stored in the concave portion 24a is transferred to the thermoelectric conversion device installed on the inner surface of the roller main body 25a.
  • the container 500 can be cooled effectively, and the temperature difference of the stored dampening solution A20 can be substantially eliminated.
  • the dampening solution A20 stored in the recess 24a can be effectively cooled without a temperature difference.
  • the dampening solution A20 moves from the concave portion 24a to the outer peripheral surface of the roller main body 25a with the rotation of the roller main body 25a, and is transported in a state of being spread thinly on the outer peripheral surface of the roller main body 25a. Therefore, also in this transfer process, the dampening solution A20 is effectively cooled by the thermoelectric converter 500.
  • the appropriately cooled dampening solution A20 can be supplied to the plate cylinder 21. Therefore, the plate cylinder 21 can be appropriately cooled, and the printing performance of the printing press 1 can be improved.
  • thermoelectric converter 500 Since the thermoelectric converter 500 is disposed inside the water source roller 25, there is no need to separately provide a refrigerator or a tank for cooling the dampening water A20 around the water source roller 25 and the watercraft 24. . Further, a pipe for sending dampening water A20 from the watercraft 24 to the refrigerator or the tank is not required. Therefore, the configuration of the watercraft device 29 can be simplified, and the size and cost of the watercraft device 29 can be reduced. Further, since the configuration is such that the temperature of the fountain roller 25 is controlled by the thermoelectric converter 500, the temperature of the fountain solution A20 is efficiently and in the process of being transferred while the fountain solution A20 contacts the fountain roller 25. Can be adjusted stably. Therefore, the dampening solution A20 having a more appropriate temperature can be supplied to the plate cylinder and the like.
  • the water roller 25 (roller body 25a) has a columnar shape, and the watercraft 24 has a concave portion 24a that curves along the outer surface of the water roller 25, and dampening water A20 is provided in the concave portion 24a.
  • the stored water source roller 25 is fitted in the concave portion 24a while being separated from the inner side surface of the concave portion 24a.
  • the dampening solution A20 stored in the concave portion 24a is effectively stirred without stagnation with the rotation of the water roller 25. it can. Therefore, the temperature of the dampening solution A20 stored in the concave portion 24a can be made uniform, and the temperature of the dampening solution A20 can be appropriately managed. Thereby, the quality of printing can be improved.
  • the watercraft 24 is moved relative to the water base roller 25 so that the straight line defining the center of curvature C100 of the inner surface of the recess 24a coincides with the rotation center axis R10 of the water base roller 25. Are located.
  • the gap between the inner side surface of the concave portion 24a and the outer peripheral surface of the water roller 25 is constant, the temperature of the dampening solution A20 stored in the concave portion 24a can be more reliably made uniform, The temperature of the water A20 can be managed more appropriately. Thereby, the quality of printing can be further improved.
  • thermoelectric converter 500 is installed on the inner side surface of the water roller 25 and distributes cooling air along the inside of the water roller 25.
  • a ventilation mechanism (intake unit 60, exhaust unit 70) is provided.
  • the efficiency of the thermoelectric converter 500 can be improved, and the outer peripheral surface of the water source roller 25 (the roller main body 25a) can be effectively cooled. Therefore, the temperature of the dampening solution A20 can be more appropriately controlled, and as a result, the quality of printing can be further improved.
  • the watercraft 24 is adjusted so that the straight line defining the center of curvature C100 of the inner surface of the concave portion 24 a coincides with the rotation center axis R10 of the water source roller 25.
  • the arrangement of the watercraft 24 and the water source roller 25 is not limited to this.
  • the watercraft 24 is shifted in the negative Z-axis direction from the state of FIG. 10, and a straight line defining the center of curvature C10 on the inner side surface of the concave portion 24a is formed by the water source roller 25. It may be shifted in the Z-axis negative direction with respect to the rotation center axis R10.
  • the radius of curvature of the concave portion 24a of the watercraft 24 is enlarged from the state of FIG. 10, and a straight line defining the center of curvature C10 on the inner side surface of the concave portion 24a is formed by the water source roller 25. May be shifted in the Z-axis negative direction with respect to the rotation center axis R10.
  • the inner surface of the concave portion 24a has a shape along the outer peripheral surface of the water roller 25, and the straight line defining the center of curvature C10 of the inner surface of the concave portion 24a is Is parallel to the rotation center axis R10. Therefore, the dampening solution A20 stored in the concave portion 24a can be smoothly stirred with the rotation of the water supply roller 25, and the temperature of the dampening solution A20 stored in the concave portion 24a can be made uniform.
  • the gap between the inner surface of the concave portion 24a and the outer peripheral surface of the water roller 25 is not constant, so the configuration of the above embodiment shown in FIG. In comparison with the above, a slight temperature difference is more likely to occur in the dampening solution A20 stored in the concave portion 24a. Therefore, in order to more appropriately equalize the temperature of the dampening solution A20 stored in the concave portion 24a, a straight line that defines the center of curvature C10 of the inner side surface of the concave portion 24a is drawn as in the above-described embodiment. It can be said that it is preferable to make the gap between the inner surface of the concave portion 24a and the outer peripheral surface of the water source roller 25 constant in accordance with the rotation center axis R10.
  • thermoelectric converter 500 is installed inside the water roller 25 to control the temperature of the outer peripheral surface of the water roller 25.
  • the temperature of the outer peripheral surface of the intermediate roller 27 may be controlled by installing the container 500.
  • the intermediate roller 27 includes a roller body made of a metal material having excellent thermal conductivity and support members provided at both ends of the roller body, similarly to the water roller 25, and a thermoelectric conversion device is provided inside the roller body.
  • a vessel is installed.
  • the configuration for installing the thermoelectric converter is the same as the configuration shown in FIGS.
  • the same configuration as the intake unit 60 and the exhaust unit 70 shown in FIGS. 7 to 9 is applied to the intermediate roller 27.
  • the temperature of the dampening solution A20 when the dampening solution A20 propagates on the outer surface of the intermediate roller 27, the temperature of the dampening solution A20 can be controlled. Therefore, the temperature of the dampening solution A20 can be controlled more precisely and appropriately than in the above embodiment.
  • the structure for adjusting the temperature including the thermoelectric converter 500, the intake unit 60, and the exhaust unit 70 may be further applied to the ink roller 10.
  • the temperature of the ink A10 applied to the plate cylinder 21 can be more appropriately controlled together with the temperature control by the dampening solution A20, and as a result, the printing quality can be further improved.
  • the shape of the watercraft 24 is not limited to the shapes shown in the above-described embodiment and modified examples, and can be variously changed. However, in order to equalize the temperature of the dampening solution A20 stored in the watercraft 24, it is preferable that the inner surface of the concave portion 24a is curved so as to follow the shape of the outer peripheral surface of the water source roller 25. Further, the curvature of the concave portion 24a may not be uniform over the entire range in the longitudinal direction, and may smoothly change in the longitudinal direction.
  • the dampening solution A20 stored in the watercraft 24 can be effectively stirred with the rotation of the water supply roller 25 as long as the inner side surface of the concave portion 24a follows the shape of the outer peripheral surface of the water supply roller 25.
  • the temperature of the dampening solution A20 can be made uniform.
  • one watercraft device 29 is arranged for one plate cylinder 21, but a plurality of watercraft devices 29 may be arranged for one plate cylinder 21.
  • the ventilation mechanism that allows the cooling air to flow inside the water source roller 25 is not limited to the configuration illustrated in FIGS. 8A and 8B, and may have another configuration.
  • thermoelectric converter 500 is installed on the inner peripheral surface of the water source roller 25 by the configuration shown in FIGS. 4A, 4B, and 5, but the thermoelectric converter 500 is installed.
  • the configuration is not limited to this.
  • the number of thermoelectric converters 500 arranged on the water source roller 25 is not necessarily limited to ten, and may be another number.
  • rollers disposed between the water source roller 25 and the plate cylinder 21 are not limited to the two rubber rollers 26 and 28 and the intermediate roller 27 shown in FIG. May be added. Further, the arrangement order and arrangement position of these rollers are not limited to the example of FIG. 2A, and can be changed as appropriate.
  • the number of ink rollers 10 arranged in the printing unit 3 is not limited to four.
  • the printing machine 1 may be configured to perform printing on both sides in addition to the configuration performing printing on one side of the printing paper P10. In this case, the number of installed printing units 3 is appropriately changed, and accordingly, the number of installed watercraft devices 29 is also changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)

Abstract

A water boat device is provided with: a water boat 24 for storing dampening water A20; a water source roller 25 that rotates in contact with the dampening water A20 stored in the water boat 24; and a thermoelectric convertor 500 that is installed inside the water source roller 25 and controls the temperature of the water source roller 25. The water source roller 25 has a cylindrical shape, and the water boat 24 has a recessed part 24a curved along the outside surface of the water source roller 25. The dampening water A20 is stored in the recessed part 24a. The water source roller 25 is fitted into the recessed part 24a in a state of being separated from the inside surface of the recessed part 24a.

Description

水舟装置および印刷機Watercraft equipment and printing press
 本発明は、湿し水を供給するための水舟装置およびそれを備えた印刷機に関する。 The present invention relates to a watercraft device for supplying dampening water and a printing machine provided with the watercraft device.
 従来、平版方式のオフセット印刷機には、インキローラ、版胴、ブランケットおよび圧胴等の各種ローラが用いられている。このうち、インキローラは、インク溜めから版胴までの間に複数配置され、インクと回転接触しながらインクをインク溜めから版胴へと導く。さらに、印刷機には、湿し水を版胴に導くための構成が設けられている。たとえば、湿し水の供給源として、水舟装置が設置され、水舟装置から複数のローラを介して、湿し水が版胴に供給される。 Conventionally, various rollers such as an ink roller, a plate cylinder, a blanket, and an impression cylinder have been used in a lithographic offset printing press. Among them, a plurality of ink rollers are arranged between the ink reservoir and the plate cylinder, and guide the ink from the ink reservoir to the plate cylinder while being in rotational contact with the ink. Further, the printing press is provided with a configuration for guiding the dampening solution to the plate cylinder. For example, a watercraft device is installed as a source of dampening water, and dampening water is supplied to the plate cylinder from the watercraft device via a plurality of rollers.
 以下の特許文献1には、湿し水の冷却機構を備えた水舟装置が記載されている。この水舟装置では、水舟の外底面に接するように配管が付設され、この配管に冷却媒体が流される。冷却媒体は、冷凍機によって冷却された状態でタンクに貯留される。また、温度センサによって湿し水の温度が計測される。湿し水の温度が上昇すると、冷凍機により冷却媒体の温度が下げられて、湿し水が冷やされる。これにより、水舟内の湿し水が所定の温度に保たれる。 特許 Patent Document 1 below describes a watercraft device provided with a dampening water cooling mechanism. In this watercraft device, a pipe is attached so as to be in contact with the outer bottom surface of the watercraft, and a cooling medium flows through the pipe. The cooling medium is stored in the tank while being cooled by the refrigerator. The temperature of the dampening solution is measured by a temperature sensor. When the temperature of the dampening solution rises, the temperature of the cooling medium is lowered by the refrigerator, and the dampening solution is cooled. Thereby, the fountain solution in the watercraft is maintained at a predetermined temperature.
特開2010-201763号公報JP 2010-201763 A
 しかしながら、上記特許文献1の構成では、冷却媒体を冷却するための冷凍機と、冷却媒体を貯留するためのタンクとが必要となる。このため、水舟装置のコストが上昇し、さらに、これらの機器を配置するためのスペースによって、水舟装置が大型化する。また、水舟の外底面に配管を付設するため、水舟装置の構成が複雑化する。さらに、水舟の外底面を冷却する構成であるため、水舟の底付近と水元ローラ付近との間で湿し水に温度差が生じ、版胴に供給される湿し水を適正に冷却および温度管理できないおそれがある。 However, the configuration of Patent Document 1 requires a refrigerator for cooling the cooling medium and a tank for storing the cooling medium. For this reason, the cost of the watercraft device increases, and the space for arranging these devices increases the size of the watercraft device. In addition, since piping is provided on the outer bottom surface of the watercraft, the configuration of the watercraft device is complicated. Furthermore, since the outer bottom surface of the watercraft is cooled, there is a temperature difference between the dampening water near the bottom of the watercraft and the vicinity of the fountain roller. Cooling and temperature control may not be possible.
 かかる課題に鑑み、本発明は、簡素な構成により、適正に、湿し水の温度を管理することが可能な水舟装置およびそれを備えて印刷機を提供することを目的とする。 In view of such a problem, an object of the present invention is to provide a watercraft device capable of appropriately controlling the temperature of dampening water with a simple configuration, and a printing machine including the same.
 本発明の第1の態様は、水舟装置に関する。この態様に係る水舟装置は、湿し水を溜めるための水舟と、前記水舟に溜められた前記湿し水に接触して回転する水元ローラと、前記水元ローラの内部に設置され前記水元ローラの温度を制御する熱電変換器と、を備える。 第 The first aspect of the present invention relates to a watercraft device. The watercraft device according to this aspect includes a watercraft for storing dampening water, a water source roller that rotates in contact with the dampening water stored in the watercraft, and a water source roller installed inside the water source roller. And a thermoelectric converter for controlling the temperature of the water supply roller.
 本態様に係る水舟装置によれば、水元ローラの内部に熱電変換器が配置されているため、水元ローラおよび水舟の周囲に、別途、冷凍機やタンクを設ける必要がない。また、水舟から冷凍機やタンクへ湿し水を送るためのパイプも必要としない。よって、水舟装置の構成を簡素化でき、水舟装置の小型化とコストの低減を図ることができる。また、水元ローラの温度を熱電変換器により制御する構成であるため、水元ローラに湿し水が接触して移送される過程において、湿し水の温度が調整される。よって、適正な温度で湿し水を版胴等に供給することができる。 According to the watercraft device according to this aspect, since the thermoelectric converter is disposed inside the water roller, it is not necessary to separately provide a refrigerator or a tank around the water roller and the watercraft. Also, there is no need for a pipe for sending dampening water from the watercraft to the refrigerator or the tank. Therefore, the configuration of the watercraft device can be simplified, and the size and cost of the watercraft device can be reduced. In addition, since the temperature of the fountain roller is controlled by the thermoelectric converter, the temperature of the fountain solution is adjusted in a process in which the fountain solution contacts the fountain roller and is transferred. Therefore, dampening water can be supplied to the plate cylinder or the like at an appropriate temperature.
 本発明の第2の態様は、印刷機に関する。第2の態様に係る印刷機は、第1の態様に係る水舟装置と、前記水舟装置から湿し水が供給されるとともにインク溜めからインクが供給される版胴と、を備える。 The second aspect of the present invention relates to a printing press. A printing press according to a second aspect includes the watercraft device according to the first aspect, and a plate cylinder to which dampening water is supplied from the watercraft device and ink is supplied from an ink reservoir.
 本態様に係る印刷機によれば、第1の態様に係る水舟装置を備えるため、印刷機の小型化とコストの低減を図ることができる。また、湿し水を適正に温度管理できるため、より高品質に印刷を行うことができる。 According to the printing press according to the present aspect, since the watercraft device according to the first aspect is provided, the size and cost of the printing press can be reduced. In addition, since the temperature of the dampening solution can be properly controlled, printing can be performed with higher quality.
 以上のとおり、本発明によれば、簡素な構成により、適正に、湿し水の温度を管理することが可能な水舟装置およびそれを備えた印刷機を提供できる。 As described above, according to the present invention, it is possible to provide a watercraft device capable of appropriately controlling the temperature of dampening water with a simple configuration, and a printing press including the same.
 本発明の効果ないし意義は、以下に示す実施形態の説明により更に明らかとなろう。ただし、以下に示す実施形態は、あくまでも、本発明を実施化する際の一つの例示であって、本発明は、以下の実施形態に記載されたものに何ら制限されるものではない。 The effects and significance of the present invention will be more apparent from the following description of the embodiments. However, the embodiment described below is merely an example when embodying the present invention, and the present invention is not limited to what is described in the following embodiment.
図1は、実施形態に係る印刷機の構成を模式的に示す図である。FIG. 1 is a diagram schematically illustrating a configuration of a printing press according to an embodiment. 図2(a)は、実施形態に係る印刷ユニットの版胴付近の構成を模式的に示す側面図である。図2(b)は、実施形態に係る水舟の構成を示す斜視図である。図2(c)は、実施形態に係る印刷ユニットの印刷方法を模式的に示す図である。FIG. 2A is a side view schematically illustrating the configuration near the plate cylinder of the printing unit according to the embodiment. FIG. 2B is a perspective view illustrating a configuration of the watercraft according to the embodiment. FIG. 2C is a diagram schematically illustrating a printing method of the printing unit according to the embodiment. 図3(a)は、実施形態に係る水元ローラの構成を示す図である。図3(b)は、実施形態に係る、水元ローラがフレームに設置された状態を示す図である。FIG. 3A is a diagram illustrating a configuration of a water source roller according to the embodiment. FIG. 3B is a diagram illustrating a state in which a water roller is installed on a frame according to the embodiment. 図4(a)、(b)は、実施形態に係る、ローラ本体を冷却風の出口側から見た状態を模式的に示す図である。FIGS. 4A and 4B are diagrams schematically illustrating a state in which the roller body is viewed from the cooling air outlet side according to the embodiment. 図5は、実施形態に係る、上側のヒートシンク、熱電変換器およびヒートパイプからなる構造体と、圧入部材とを示す一部分解斜視図である。FIG. 5 is a partially exploded perspective view showing a structure including an upper heat sink, a thermoelectric converter, and a heat pipe and a press-fit member according to the embodiment. 図6(a)は、実施形態に係る熱電変換器一部の構成を模式的に示す分解斜視図である。図6(b)は、実施形態に係る熱電変換器が略組み立てられた状態の構成を模式的に示す斜視図である。FIG. 6A is an exploded perspective view schematically illustrating a configuration of a part of the thermoelectric converter according to the embodiment. FIG. 6B is a perspective view schematically illustrating a configuration in a state where the thermoelectric converter according to the embodiment is substantially assembled. 図7は、実施形態に係る水舟装置の構成を示す側面図である。FIG. 7 is a side view illustrating the configuration of the watercraft device according to the embodiment. 図8(a)は、実施形態に係る排気ユニットの構成を示す斜視図である。図8(b)は、実施形態に係る、チャンバを取り除いた状態の排気ユニットの構成を示す斜視図である。FIG. 8A is a perspective view illustrating a configuration of an exhaust unit according to the embodiment. FIG. 8B is a perspective view illustrating the configuration of the exhaust unit according to the embodiment with the chamber removed. 図9は、実施形態に係る、排気ユニットの中心軸を通る平面で排気ユニットを切断した断面図である。FIG. 9 is a cross-sectional view of the exhaust unit cut along a plane passing through a central axis of the exhaust unit according to the embodiment. 図10は、実施形態に係る水元ローラ付近の構成を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically illustrating a configuration near a water roller according to the embodiment. 図11(a)、(b)は、変更例に係る水元ローラ付近の構成を模式的に示す断面図である。FIGS. 11A and 11B are cross-sectional views schematically illustrating a configuration near a water roller according to a modification.
 ただし、図面はもっぱら説明のためのものであって、この発明の範囲を限定するものではない。 However, the drawings are merely for explanation, and do not limit the scope of the present invention.
 以下、本発明の実施形態について図を参照して説明する。便宜上、各図には、互いに直交するX、Y、Z軸が付記されている。なお、以下の説明において、インキローラにおける「インキ」の用語は、「インク」と同じ意味である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. For convenience, X, Y, and Z axes orthogonal to each other are additionally shown in each drawing. In the following description, the term “ink” in the ink roller has the same meaning as “ink”.
 図1は、印刷機1の構成を模式的に示す図である。ここでは、印刷用紙P10の片面に印刷を行う印刷機1の構成例が示されている。 FIG. 1 is a diagram schematically showing the configuration of the printing press 1. Here, a configuration example of the printing press 1 that performs printing on one side of the printing paper P10 is shown.
 図1に示すように、印刷機1は、給紙ユニット2と、4つの印刷ユニット3と、集積ユニット4と、を備えている。給紙ユニット2は、被印刷物である所定サイズの印刷用紙P10を収容し、収容した印刷用紙P10を順次、最もY軸負側の印刷ユニット3に送り出す。給紙ユニット2から送り出された印刷用紙P10は、各印刷ユニット3の搬送機構によって、4つの印刷ユニット3に順番に送られる。 As shown in FIG. 1, the printing press 1 includes a paper feed unit 2, four printing units 3, and an accumulation unit 4. The paper feeding unit 2 stores printing paper P10 of a predetermined size, which is an object to be printed, and sequentially sends out the stored printing paper P10 to the printing unit 3 closest to the Y-axis negative side. The printing paper P10 sent from the paper feeding unit 2 is sequentially sent to the four printing units 3 by the transport mechanism of each printing unit 3.
 4つの印刷ユニット3は、それぞれ、給紙ユニット2から送り出された印刷用紙P10に所定の色のパターン画像を印刷する。たとえば、4つの印刷ユニット3は、それぞれ、イエロー、シアン、マゼンタ、ブラックのパターン画像を印刷用紙P10に印刷する。 #The four printing units 3 print a pattern image of a predetermined color on the printing paper P10 sent from the paper feeding unit 2, respectively. For example, the four printing units 3 respectively print yellow, cyan, magenta, and black pattern images on printing paper P10.
 Y軸負側の3つの印刷ユニット3は、それぞれ、搬送機構によって、印刷後の印刷用紙P10をY軸正方向に隣り合う印刷ユニット3に送り出す。最もY軸正側の印刷ユニット3は、搬送機構によって、印刷後の印刷用紙P10を、集積ユニット4に送り出す。集積ユニット4は、送り出された印刷用紙P10を、順次、集積部に搬送する。こうして、全ての色の印刷が終了した印刷用紙P10が、集積ユニット4に集積される。 Each of the three printing units 3 on the negative side of the Y-axis sends out the printed printing paper P10 to the adjacent printing units 3 in the positive Y-axis direction by the transport mechanism. The printing unit 3 on the Y axis positive side sends out the printed printing paper P10 to the stacking unit 4 by the transport mechanism. The stacking unit 4 sequentially conveys the sent printing paper P10 to the stacking unit. Thus, the printing paper P10 on which printing of all colors has been completed is stacked on the stacking unit 4.
 4つの印刷ユニット3は、互いに同様の構成を備えている。各印刷ユニット3は、各色のインクを貯留するためのインク溜め3aを備えている。また、各印刷ユニット3は、4つのインキローラ10と、版胴21と、ブランケット22と、圧胴23とを備えている。インキローラ10、版胴21、ブランケット22および圧胴23は、それぞれ、柱状の形状を有し、X軸に平行な回転軸を中心に、Y-Z平面に平行な方向に回転する。 #The four printing units 3 have the same configuration as each other. Each printing unit 3 includes an ink reservoir 3a for storing ink of each color. Each printing unit 3 includes four ink rollers 10, a plate cylinder 21, a blanket 22, and an impression cylinder 23. The ink roller 10, plate cylinder 21, blanket 22, and impression cylinder 23 each have a columnar shape, and rotate in a direction parallel to the YZ plane about a rotation axis parallel to the X axis.
 4つのインキローラ10は、インクと回転接触しながら、インクをインク溜め3aから版胴21へと導く。こうして、版胴21に導かれたインクが、所定の描画パターンで、版胴21の外周面に印写される。版胴21の外周面に印写されたインクが、版胴21とブランケット22の接触位置において、ブランケット22に転写される。こうしてブランケット22に転写されたインクが、ブランケット22と圧胴23との間に送り込まれた印刷用紙P10に転写される。 (4) The four ink rollers 10 guide the ink from the ink reservoir 3a to the plate cylinder 21 while rotatingly contacting the ink. In this way, the ink guided to the plate cylinder 21 is printed on the outer peripheral surface of the plate cylinder 21 in a predetermined drawing pattern. The ink printed on the outer peripheral surface of the plate cylinder 21 is transferred to the blanket 22 at a contact position between the plate cylinder 21 and the blanket 22. The ink transferred to the blanket 22 in this manner is transferred to the printing paper P10 sent between the blanket 22 and the impression cylinder 23.
 図2(a)は、印刷ユニット3の版胴21付近の構成を模式的に示す側面図である。図2(b)は、水舟24の構成を示す図である。図2(c)は、印刷ユニット3の印刷方法を模式的に示す図である。 FIG. 2A is a side view schematically showing a configuration near the plate cylinder 21 of the printing unit 3. FIG. 2B is a diagram illustrating a configuration of the watercraft 24. FIG. 2C is a diagram schematically illustrating a printing method of the printing unit 3.
 図2(a)に示すように、印刷ユニット3は、さらに、版胴21に近接する位置に、水舟24と、水元ローラ25と、ゴムローラ26、28と、中間ローラ27を備えている。水元ローラ25と中間ローラ27は、外周面を構成する部材が、銅やアルミニウム等の金属材料により構成されている。ゴムローラ26、28は、外周面を構成する部材がゴム材料により構成されている。 As shown in FIG. 2A, the printing unit 3 further includes a watercraft 24, a water source roller 25, rubber rollers 26 and 28, and an intermediate roller 27 at a position close to the plate cylinder 21. . The water roller 25 and the intermediate roller 27 have members that form the outer peripheral surface made of a metal material such as copper or aluminum. In the rubber rollers 26 and 28, members constituting the outer peripheral surface are made of a rubber material.
 図2(b)に示すように、水舟24は、上面に円弧状の凹部24aが形成された舟型の形状を有する。凹部24aは、Y-Z平面に平行な方向にのみ湾曲している。凹部24aの曲率は、X軸方向の全ての位置において一定である。すなわち、凹部24aは、内側面が所定の円筒面に整合するように構成されている。凹部24aのX軸正負側の端部は、それぞれ、傾斜面24cを介して、壁面24bに滑らかに繋がっている。壁面24bは、X軸に垂直である。凹部24aのX軸方向の幅は、水元ローラ25の胴部、すなわち、後述のローラ本体25aのX軸方向の幅よりもやや大きい。 水 As shown in FIG. 2B, the watercraft 24 has a boat-like shape having an arc-shaped concave portion 24a formed on the upper surface. The recess 24a is curved only in a direction parallel to the YZ plane. The curvature of the concave portion 24a is constant at all positions in the X-axis direction. That is, the concave portion 24a is configured such that the inner side surface is aligned with a predetermined cylindrical surface. The X-axis positive / negative ends of the concave portion 24a are smoothly connected to the wall surface 24b via the inclined surface 24c. The wall surface 24b is perpendicular to the X axis. The width of the concave portion 24a in the X-axis direction is slightly larger than the body of the water source roller 25, that is, the width of the roller body 25a in the X-axis direction described later.
 水舟24は、凹部24aに湿し水A20を貯留する。湿し水A20は、水道水にエッチ液を混合したものである。湿し水A20は、湿し水供給器30から水舟24に供給される。たとえば、水舟24の底面または側面に形成された供給口(図示せず)から、凹部24aに湿し水A20が供給される。水元ローラ25は、凹部24aの内側面から離間した状態で凹部24aに嵌まっている。すなわち、水元ローラ25のZ軸負側の一部が、所定の隙間をもって、凹部24aに嵌まっている。水元ローラ25の曲率半径は、凹部24aの曲率半径よりも小さい。 The watercraft 24 stores the dampening water A20 in the concave portion 24a. The dampening solution A20 is a mixture of tap water and an etchant. The dampening water A20 is supplied from the dampening water supplier 30 to the watercraft 24. For example, dampening solution A20 is supplied to recess 24a from a supply port (not shown) formed on the bottom surface or side surface of watercraft 24. The fountain roller 25 is fitted in the concave portion 24a while being separated from the inner side surface of the concave portion 24a. That is, a part of the water roller 25 on the negative side of the Z axis is fitted in the concave portion 24a with a predetermined gap. The radius of curvature of the water source roller 25 is smaller than the radius of curvature of the concave portion 24a.
 水元ローラ25と、2つのゴムローラ26、28および中間ローラ27が、それぞれ、図2(a)に示す矢印の方向に回転することにより、水舟24に貯留された湿し水A20が、これらローラを伝って、版胴21の外周面に塗布される。このとき、中間ローラ27が径方向に振られて、ゴムローラ26からゴムローラ28へと伝搬する湿し水A20が均される。これにより、版胴21に対して均等に湿し水A20が塗布される。 When the water source roller 25, the two rubber rollers 26, 28, and the intermediate roller 27 rotate in the directions of the arrows shown in FIG. It is applied to the outer peripheral surface of the plate cylinder 21 along the rollers. At this time, the intermediate roller 27 is swung in the radial direction, and the dampening solution A20 propagating from the rubber roller 26 to the rubber roller 28 is leveled. Thereby, the dampening solution A20 is evenly applied to the plate cylinder 21.
 ここで、版胴21の外周面には、予め、描画用の版が設置されている。版は、非描画部分に湿し水A20が付着するように構成されている。したがって、水元ローラ25、2つのゴムローラ26、28および中間ローラ27によって版胴21の外周面に塗布された湿し水A20は、非描画部分のみに残り、描画部分には残らない。このため、インキローラ10から版胴21の外周面に導かれたインクA10は、版胴21の外周面のうち、湿し水A20が残っていない描画部分のみに付着する。 Here, a plate for drawing is installed on the outer peripheral surface of the plate cylinder 21 in advance. The printing plate is configured such that dampening solution A20 adheres to the non-drawing portion. Therefore, the dampening solution A20 applied to the outer peripheral surface of the plate cylinder 21 by the fountain roller 25, the two rubber rollers 26 and 28, and the intermediate roller 27 remains only in the non-drawing portion and does not remain in the drawing portion. Therefore, the ink A10 guided from the ink roller 10 to the outer peripheral surface of the plate cylinder 21 adheres only to the drawing portion of the outer peripheral surface of the plate cylinder 21 where no dampening solution A20 remains.
 図2(c)は、版胴21の外周面にインクA10と湿し水A20が付着した状態を示している。上記工程により版胴21の外周面に印写されたインクA10が、上記のようにブランケット22に転写され、その後、印刷用紙P10に転写される。これにより、版胴21の外周面に付設された版に応じたパターン画像が、印刷用紙P10に印刷される。 FIG. 2C shows a state where the ink A10 and the dampening solution A20 adhere to the outer peripheral surface of the plate cylinder 21. The ink A10 printed on the outer peripheral surface of the plate cylinder 21 in the above process is transferred to the blanket 22 as described above, and then transferred to the printing paper P10. Thus, a pattern image corresponding to the plate attached to the outer peripheral surface of the plate cylinder 21 is printed on the printing paper P10.
 ところで、湿し水A20は、上記のように、版胴21の外周面にインクA10を付着させる役割を果たす他、版胴21を冷却して、版胴21の温度を所定の温度に調節する役割をも果たしている。 As described above, the dampening solution A20 serves to attach the ink A10 to the outer peripheral surface of the plate cylinder 21 and also cools the plate cylinder 21 and adjusts the temperature of the plate cylinder 21 to a predetermined temperature. It also plays a role.
 すなわち、インキローラ10は、図示しない駆動機構によって、X軸方向に駆動されつつ、X軸に平行な軸の周りに回転される。このようにインキローラ10が駆動されながら、インキローラ10の外周面に希釈液が供給されることにより、インキローラ10に接するインクに希釈液が混合され、インクA10が適度な乳化状態(粘度)に調整される。 That is, the ink roller 10 is rotated about an axis parallel to the X axis while being driven in the X axis direction by a drive mechanism (not shown). By supplying the diluting liquid to the outer peripheral surface of the ink roller 10 while the ink roller 10 is driven as described above, the diluting liquid is mixed with the ink in contact with the ink roller 10, and the ink A10 has an appropriate emulsified state (viscosity). It is adjusted to.
 しかしながら、このようにインキローラ10が駆動されると、インキローラ10とインクA10との間に摩擦熱が生じ、インクA10の温度が上昇する。このため、インクA10がインキローラ10から版胴21に付着すると、版胴21の温度が上昇する。インクA10の温度上昇は、印刷の性能に大きく関与する。このため、版胴21を冷却して版胴21に転写されたインクA10の温度を適正な範囲に管理する必要がある。ここで、湿し水A20は、版胴21に塗布されることにより、版胴21を冷却する役割を果たしている。したがって、湿し水A20は、版胴21を効率的に冷却可能なように、所定の温度に調節される必要がある。 However, when the ink roller 10 is driven in this manner, frictional heat is generated between the ink roller 10 and the ink A10, and the temperature of the ink A10 increases. For this reason, when the ink A10 adheres to the plate cylinder 21 from the ink roller 10, the temperature of the plate cylinder 21 increases. The rise in the temperature of the ink A10 greatly affects the printing performance. Therefore, it is necessary to cool the plate cylinder 21 and control the temperature of the ink A10 transferred to the plate cylinder 21 within an appropriate range. Here, the dampening solution A20 plays a role of cooling the plate cylinder 21 by being applied to the plate cylinder 21. Therefore, the dampening solution A20 needs to be adjusted to a predetermined temperature so that the plate cylinder 21 can be cooled efficiently.
 そこで、本実施形態では、湿し水A20を冷却するための構成が設けられている。具体的には、水元ローラ25の内部に熱電変換器500が設置され、熱電変換器500によって水元ローラ25が冷却される。これにより、湿し水A20が、水元ローラ25に接触する際に冷却され、適正な温度範囲に調整される。 Therefore, in the present embodiment, a configuration for cooling the dampening solution A20 is provided. Specifically, the thermoelectric converter 500 is installed inside the water supply roller 25, and the water supply roller 25 is cooled by the thermoelectric converter 500. Thereby, the dampening solution A20 is cooled when coming into contact with the fountain roller 25, and is adjusted to an appropriate temperature range.
 なお、本実施形態では、水舟24の底面または側面に湿し水A20を供給する供給口(図示せず)が形成されるが、水舟24から湿し水A20を排出する排出口は形成されない。これは、水舟24内の湿し水A20を水元ローラ25により直接冷却できるため、湿し水A20を冷却する冷凍機やタンクが不要となり、水舟24から冷凍機やタンクへ湿し水A20を送るためのパイプも必要としないためである。 In the present embodiment, a supply port (not shown) for supplying dampening water A20 is formed on the bottom or side surface of the watercraft 24, but a discharge port for discharging dampening water A20 from the watercraft 24 is formed. Not done. This is because the dampening water A20 in the watercraft 24 can be directly cooled by the water source roller 25, so that a refrigerator or a tank for cooling the dampening water A20 becomes unnecessary, and the dampening water from the watercraft 24 to the refrigerator or the tank is eliminated. This is because no pipe for sending A20 is required.
 以下、水元ローラ25およびその冷却機構の構成について説明する。 Hereinafter, the configuration of the water supply roller 25 and its cooling mechanism will be described.
 図3(a)は、水元ローラ25の構成を示す図である。 FIG. 3A is a diagram illustrating the configuration of the water supply roller 25.
 水元ローラ25は、ローラ本体25aと、支持部材25b、25cとを備えている。ローラ本体25aは、筒状の構造体からなっている。ローラ本体25aの外周面が、湿し水A20と接触する。支持部材25b、25cは、円筒状の部材であって、X軸方向に貫通する孔25d、25eを有している。支持部材25b、25cは、X軸に平行な中心軸に対して対称な形状である。支持部材25b、25cは、金属材料からなっている。支持部材25b、25cは、円形の鍔部25f、25gでローラ本体25aの両端を塞ぐようにして、ローラ本体25aに装着される。なお、図3(a)、(b)では、便宜上、鍔部25f、25gをローラ本体25aの両端に留めるためのネジの図示が省略されている。 The water source roller 25 includes a roller main body 25a and support members 25b and 25c. The roller body 25a has a cylindrical structure. The outer peripheral surface of the roller body 25a contacts the dampening solution A20. The support members 25b and 25c are cylindrical members and have holes 25d and 25e penetrating in the X-axis direction. The support members 25b and 25c are symmetrical with respect to a central axis parallel to the X axis. The support members 25b and 25c are made of a metal material. The support members 25b and 25c are mounted on the roller main body 25a so as to cover both ends of the roller main body 25a with circular flanges 25f and 25g. In FIGS. 3A and 3B, for convenience, screws for fixing the flanges 25f and 25g to both ends of the roller body 25a are omitted.
 図3(b)は、水元ローラ25がフレーム41、42に設置された状態を示す図である。便宜上、図3(b)では、フレーム41、42と、支持部材25b、25cとの接合部分がY軸方向に透視された状態で図示されている。 FIG. 3B is a view showing a state in which the water roller 25 is installed on the frames 41 and 42. For convenience, FIG. 3B shows a state in which the joints between the frames 41 and 42 and the support members 25b and 25c are seen through in the Y-axis direction.
 水元ローラ25は、支持部材25b、25cをベアリング41a、42aに嵌め込むことにより、フレーム41、42に支持される。水元ローラ25は、X軸に平行な軸の周りに回転可能である。水元ローラ25は、図示しない駆動機構によって、X軸に平行な軸の周りに回転される。 The water source roller 25 is supported by the frames 41 and 42 by fitting the support members 25b and 25c into the bearings 41a and 42a. The water source roller 25 is rotatable about an axis parallel to the X axis. The water source roller 25 is rotated around an axis parallel to the X axis by a drive mechanism (not shown).
 上記のように、本実施形態では、水元ローラ25のローラ本体25aの内周面に熱電変換器が設置される。この熱電変換器により、ローラ本体25aの外周面の熱がローラ本体25aの内周側に移動される。さらに、支持部材25b、25cを介して、ローラ本体25aの内部に冷却風が流通されて、熱電変換器で移動された熱が除去される。これにより、ローラ本体25aの外周面が効果的に冷却され、ローラ本体25aの外周面に接する湿し水A20が適正に冷却される。 As described above, in the present embodiment, the thermoelectric converter is installed on the inner peripheral surface of the roller body 25a of the water source roller 25. The heat of the outer peripheral surface of the roller main body 25a is moved to the inner peripheral side of the roller main body 25a by the thermoelectric converter. Further, cooling air is circulated inside the roller main body 25a via the support members 25b and 25c, and heat transferred by the thermoelectric converter is removed. Thereby, the outer peripheral surface of the roller main body 25a is effectively cooled, and the dampening solution A20 in contact with the outer peripheral surface of the roller main body 25a is appropriately cooled.
 図4(a)、(b)は、ローラ本体25aを冷却風の出口側から見た状態を模式的に示す図である。図4(a)、(b)には、支持部材25b、25cが取り外された状態のローラ本体25aが示されている。また、図4(a)には、圧入部材400を装着する前の状態が示されている。 FIGS. 4A and 4B are diagrams schematically illustrating a state where the roller main body 25a is viewed from the cooling air outlet side. FIGS. 4A and 4B show the roller body 25a with the support members 25b and 25c removed. FIG. 4A shows a state before the press-fitting member 400 is mounted.
 図4(a)、(b)に示すように、ローラ本体25aは、筒体100と、ヒートシンク200と、ヒートパイプ300と、圧入部材400と、熱電変換器500とを備えている。 ロ ー ラ As shown in FIGS. 4A and 4B, the roller main body 25a includes a cylinder 100, a heat sink 200, a heat pipe 300, a press-fit member 400, and a thermoelectric converter 500.
 筒体100は、円筒形状を有し、銅やアルミニウム等の熱伝導性に優れた金属材料からなっている。筒体100には、X軸方向に貫通する円形の貫通孔101が形成されている。また、筒体100には、X軸負側の端面とX軸正側の端面に、それぞれ、図3(a)に示した支持部材25b、25cをネジ止めするための6つのネジ孔102が設けられている。 The cylindrical body 100 has a cylindrical shape and is made of a metal material having excellent thermal conductivity, such as copper or aluminum. The cylindrical body 100 is formed with a circular through-hole 101 penetrating in the X-axis direction. The cylindrical body 100 has six screw holes 102 for screwing the support members 25b and 25c shown in FIG. 3A on the end surface on the X axis negative side and the end surface on the X axis positive side, respectively. Is provided.
 筒体100の貫通孔101に、ヒートパイプ300と熱電変換器500が装着された2つのヒートシンク200が収容される。この状態で、2つのヒートシンク200の間に圧入部材400が圧入される。これにより、2つのヒートシンク200が互いに離間して貫通孔101の内側面に押しつけられる。こうして、2つのヒートシンク200が筒体100の貫通孔101に固定される。 2Two heat sinks 200 each having the heat pipe 300 and the thermoelectric converter 500 mounted therein are accommodated in the through hole 101 of the cylindrical body 100. In this state, the press-fitting member 400 is press-fitted between the two heat sinks 200. Thereby, the two heat sinks 200 are separated from each other and pressed against the inner surface of the through hole 101. Thus, the two heat sinks 200 are fixed to the through holes 101 of the cylindrical body 100.
 図5は、上側のヒートシンク200、熱電変換器500およびヒートパイプ300からなる構造体と、圧入部材400とを示す一部分解斜視図である。下側のヒートシンク200、熱電変換器500およびヒートパイプ300からなる構造体も、図5と同様である。 FIG. 5 is a partially exploded perspective view showing the structure including the upper heat sink 200, the thermoelectric converter 500, and the heat pipe 300, and the press-fit member 400. The structure including the lower heat sink 200, the thermoelectric converter 500, and the heat pipe 300 is the same as that in FIG.
 ヒートシンク200は、半円柱状の形状を有し、銅やアルミニウム等の熱伝導特性に優れた材料から構成されている。ヒートシンク200の長さは、筒体100の長さよりもやや短い。2つのヒートシンク200は、互いに同じ形状である。2つのヒートシンク200を上下に重ねると、略円柱状の構造体が構成される。この構造体の外径は、筒体100の内径よりもやや小さい。 The heat sink 200 has a semi-cylindrical shape and is made of a material having excellent heat conduction properties such as copper and aluminum. The length of the heat sink 200 is slightly shorter than the length of the cylinder 100. The two heat sinks 200 have the same shape. When the two heat sinks 200 are vertically stacked, a substantially columnar structure is formed. The outer diameter of this structure is slightly smaller than the inner diameter of the cylinder 100.
 ヒートシンク200には、天面201と、2つの孔202と、溝203と、複数のフィン204と、2つの凹部205が、一体形成されている。 The heat sink 200 has a top surface 201, two holes 202, a groove 203, a plurality of fins 204, and two recesses 205 integrally formed.
 天面201は、円弧状の曲面となっている。この天面201に、10個の熱電変換器500が略等間隔で設置される。後述のように、熱電変換器500は、Y-Z平面に平行な方向に湾曲可能な構造となっている。熱電変換器500は、天面201に沿う形状に湾曲された状態で、接着剤や放熱グリス等の接着手段により、天面201に設置される。 The top surface 201 is an arc-shaped curved surface. On this top surface 201, ten thermoelectric converters 500 are installed at substantially equal intervals. As described later, the thermoelectric converter 500 has a structure that can be bent in a direction parallel to the YZ plane. The thermoelectric converter 500 is installed on the top surface 201 by a bonding means such as an adhesive or heat radiation grease while being curved in a shape along the top surface 201.
 2つの孔202は、円形の形状を有し、X軸方向に延びてヒートシンク200を貫通している。孔202の径は、ヒートパイプ300の径よりもやや大きい。2つの孔202は、Y軸方向に対称な位置に設けられている。これら2つの孔202に、それぞれ、ヒートパイプ300が差し込まれて装着される。ヒートパイプ300は、ヒートシンク200の長手方向の一方の端部付近から他方の端部付近まで延びるように、孔202に挿入される。すなわち、ヒートパイプ300は、ヒートシンク200の天面201に設置される10個の熱電変換器500の全ての設置位置に掛かるように延びている。 The two holes 202 have a circular shape, extend in the X-axis direction, and penetrate the heat sink 200. The diameter of the hole 202 is slightly larger than the diameter of the heat pipe 300. The two holes 202 are provided at symmetrical positions in the Y-axis direction. A heat pipe 300 is inserted into each of the two holes 202 and attached. The heat pipe 300 is inserted into the hole 202 so as to extend from near one end in the longitudinal direction of the heat sink 200 to near the other end. That is, the heat pipe 300 extends so as to cover all the installation positions of the ten thermoelectric converters 500 installed on the top surface 201 of the heat sink 200.
 ヒートパイプ300は、ヒートシンク200の天面201の温度をX軸方向において均一化するために設置される。ヒートパイプ300内で作動液が気化と液化を繰り返しながら循環することにより、熱が高温部から低温部へと移動する。これにより、ヒートシンク200の天面201の温度が略均一化される。このように天面201の温度が均一化されることにより、10個の熱電変換器500の放熱面の温度が略同じとなり、全ての熱電変換器500の冷却能力を高く維持できる。 The heat pipe 300 is installed to make the temperature of the top surface 201 of the heat sink 200 uniform in the X-axis direction. As the working fluid circulates in the heat pipe 300 while repeating vaporization and liquefaction, heat moves from the high temperature part to the low temperature part. Thereby, the temperature of the top surface 201 of the heat sink 200 is made substantially uniform. By making the temperature of the top surface 201 uniform in this way, the temperatures of the heat radiation surfaces of the ten thermoelectric converters 500 become substantially the same, and the cooling capacity of all the thermoelectric converters 500 can be kept high.
 溝203は、圧入部材400の位置を規制するために設けられている。溝203は、略V字状の断面形状を有し、ヒートシンク200のX軸負側の端面からX軸正側の端面までX軸方向に延びている。溝203は、圧入部材400を受けるための2つの平面203a、203bを有している。溝203の最深位置にX-Z平面に平行な仮想面を設定した場合、2つの平面203a、203bは、この仮想面に対して互いに逆方向にほぼ同じ角度で傾斜している。溝203の底部はやや丸まっている。 The groove 203 is provided to regulate the position of the press-fitting member 400. The groove 203 has a substantially V-shaped cross-sectional shape, and extends in the X-axis direction from the end surface on the X-axis negative side of the heat sink 200 to the end surface on the X-axis positive side. The groove 203 has two flat surfaces 203a and 203b for receiving the press-fit member 400. When a virtual plane parallel to the XZ plane is set at the deepest position of the groove 203, the two planes 203a and 203b are inclined at substantially the same angle in directions opposite to each other with respect to this virtual plane. The bottom of the groove 203 is slightly rounded.
 ヒートシンク200底面のY軸方向の中央位置から複数の切欠きが略放射状に形成されることにより、複数のフィン204が形成されている。各フィン204は、ヒートシンク200のX軸負側の端面からX軸正側の端面までX軸方向に延びている。これらフィン204の間の隙間を冷却風がX軸方向に流通することにより、筒体100からヒートシンク200に移動した熱が除去される。 (4) A plurality of notches are formed substantially radially from the center of the bottom surface of the heat sink 200 in the Y-axis direction, so that a plurality of fins 204 are formed. Each fin 204 extends in the X-axis direction from the end surface on the X-axis negative side of the heat sink 200 to the end surface on the X-axis positive side. When the cooling air flows in the gap between the fins 204 in the X-axis direction, heat transferred from the cylindrical body 100 to the heat sink 200 is removed.
 凹部205は、熱電変換器500に電力を供給するためのリード線を引き出すために設けられている。凹部205は、ヒートシンク200の外周面が円弧状に切欠かれた形状となっている。凹部205は、ヒートシンク200のX軸負側の端面からX軸正側の端面までX軸方向に延びている。各熱電変換器500から引き出されたリード線は、凹部205に収容されて外部に引き出される。 The recess 205 is provided to lead out a lead wire for supplying power to the thermoelectric converter 500. The concave portion 205 has a shape in which the outer peripheral surface of the heat sink 200 is cut out in an arc shape. The concave portion 205 extends in the X-axis direction from the end surface on the X-axis negative side of the heat sink 200 to the end surface on the X-axis positive side. The lead wire drawn from each thermoelectric converter 500 is housed in the recess 205 and drawn out.
 圧入部材400は、断面が円形の棒状の部材からなっており、ステンレス等の剛性の高い材料で構成されている。本実施形態では、4つの圧入部材400が用いられる。各圧入部材400の長さは、ヒートシンク200の長さの半分である。4つの圧入部材400は、互いに同じ形状を有している。 The press-fitting member 400 is a rod-shaped member having a circular cross section, and is made of a highly rigid material such as stainless steel. In the present embodiment, four press-fitting members 400 are used. The length of each press fitting member 400 is half the length of the heat sink 200. The four press-fitting members 400 have the same shape as each other.
 圧入部材400は、圧入方向の端部401が、先端に向かうほど幅狭な円錐形状となっている。2つの圧入部材400が、X軸方向に並ぶように、ヒートシンク200の1つの溝203に配置される。したがって、X軸方向に並ぶ2つの圧入部材400は、ヒートシンク200の長手方向の略全範囲をカバーするように配置される。 The press-fitting member 400 has a conical shape in which the end 401 in the press-fitting direction becomes narrower toward the tip. The two press-fit members 400 are arranged in one groove 203 of the heat sink 200 so as to be arranged in the X-axis direction. Therefore, the two press-fitting members 400 arranged in the X-axis direction are arranged so as to cover substantially the entire range of the heat sink 200 in the longitudinal direction.
 図6(a)は、熱電変換器500の一部の構成を模式的に示す分解斜視図であり、図6(b)は、熱電変換器500が略組み立てられた状態の構成を模式的に示す斜視図である。なお、図6(a)、(b)には、便宜上、互いに直交するx、y、z軸が新たに付されている。x軸、y軸およびz軸方向は、それぞれ、熱電変換器500の縦方向、横方向および厚み方向である。 FIG. 6A is an exploded perspective view schematically illustrating a configuration of a part of the thermoelectric converter 500, and FIG. 6B is a schematic diagram illustrating a configuration in which the thermoelectric converter 500 is substantially assembled. FIG. In FIGS. 6A and 6B, x, y, and z axes orthogonal to each other are newly added for convenience. The x-axis, y-axis, and z-axis directions are the vertical direction, the horizontal direction, and the thickness direction of the thermoelectric converter 500, respectively.
 図6(a)、(b)に示すように、熱電変換器500は、基板501と、電極502と、熱電変換素子503と、リード線504と、電極505と、を備える。 熱 As shown in FIGS. 6A and 6B, the thermoelectric converter 500 includes a substrate 501, an electrode 502, a thermoelectric conversion element 503, a lead wire 504, and an electrode 505.
 図6(a)に示すように、基板501は、平面視において正方形の角を丸めた輪郭を有する。基板501は、熱伝導性に優れ、且つ、可撓性を有する材料により構成される。基板501として、薄い銅板を用いることができる。この他、基板501は、アルミニウム、シリコン樹脂、エポキシ樹脂等により構成されてもよい。 基板 As shown in FIG. 6A, the substrate 501 has a contour in which the corners of a square are rounded in plan view. The substrate 501 is made of a material having excellent thermal conductivity and flexibility. As the substrate 501, a thin copper plate can be used. In addition, the substrate 501 may be made of aluminum, silicon resin, epoxy resin, or the like.
 基板501の上面には、電極502が設けられている。電極502は、銅やアルミニウム等により構成される。基板501が導電性材料により構成される場合、基板501と、電極502との間に絶縁層が設けられる。電極502は、上面側の電極505とともに、熱電変換器500を直列に接続するように配置されている。 電極 An electrode 502 is provided on the upper surface of the substrate 501. The electrode 502 is made of copper, aluminum, or the like. When the substrate 501 is formed using a conductive material, an insulating layer is provided between the substrate 501 and the electrode 502. The electrode 502 and the electrode 505 on the upper surface side are arranged so as to connect the thermoelectric converters 500 in series.
 熱電変換素子503は、略立方体の形状を有する。熱電変換素子503は、ペルチェ素子等の、電力により熱を制御する素子からなっている。熱電変換素子503は、y軸方向およびx軸方向にマトリックス状に並ぶように配置される。電極502の上面に、半田によって熱電変換素子503の下面が接合される。y軸正負側の端の電極502に、それぞれ、リード線504が接続される。さらに、図6(b)に示すように、熱電変換素子503の上面に、半田によって電極505が接合される。これにより、2つのリード線504に対し、全ての熱電変換素子503が電極502、505を介して直列に接続される。リード線504から電圧が印加されると、電極502、505を介して、全ての熱電変換素子503に電圧が印加される。 The thermoelectric conversion element 503 has a substantially cubic shape. The thermoelectric conversion element 503 is an element that controls heat with electric power, such as a Peltier element. The thermoelectric conversion elements 503 are arranged in a matrix in the y-axis direction and the x-axis direction. The lower surface of thermoelectric conversion element 503 is joined to the upper surface of electrode 502 by solder. Lead wires 504 are connected to the electrodes 502 on the y-axis positive and negative ends, respectively. Further, as shown in FIG. 6B, an electrode 505 is joined to the upper surface of the thermoelectric conversion element 503 by solder. Thus, all the thermoelectric conversion elements 503 are connected in series to the two lead wires 504 via the electrodes 502 and 505. When a voltage is applied from the lead wire 504, a voltage is applied to all the thermoelectric conversion elements 503 via the electrodes 502 and 505.
 なお、y軸正負側の端の電極502には、熱電変換素子503に代えて、熱電変換素子503と略同形状の補強部材506が、それぞれ、4つずつ設置されている。補強部材506は、熱電変換器500を補強するためのものであって、リード線504に電圧が印加されても、温調作用を発現しない。図6(b)に示すように、これら補強部材506の上面に、x軸方向に延びる補強板507が設置される。これにより、熱電変換器500は、x-z平面に平行な方向に曲がりにくくなっている。 In place of the thermoelectric conversion element 503, four reinforcing members 506 each having substantially the same shape as the thermoelectric conversion element 503 are provided on the electrode 502 on the y-axis positive / negative end, respectively. The reinforcing member 506 is for reinforcing the thermoelectric converter 500, and does not exhibit a temperature control action even when a voltage is applied to the lead wire 504. As shown in FIG. 6B, a reinforcing plate 507 extending in the x-axis direction is provided on the upper surfaces of the reinforcing members 506. This makes it difficult for the thermoelectric converter 500 to bend in a direction parallel to the xz plane.
 さらに、電極505および補強板507の上面に、基板508が設置される。基板508は、基板501と同様の形状および構成である。実際には、基板508の下面に、予め、電極505および補強板507が設けられている。基板508が熱電変換素子503および補強部材506の上面に載せられることにより、電極505および補強板507が熱電変換素子503および補強部材506に接合される。こうして、熱電変換器500が構成される。 Furthermore, a substrate 508 is provided on the upper surface of the electrode 505 and the reinforcing plate 507. The substrate 508 has the same shape and configuration as the substrate 501. Actually, an electrode 505 and a reinforcing plate 507 are provided on the lower surface of the substrate 508 in advance. The electrode 505 and the reinforcing plate 507 are joined to the thermoelectric conversion element 503 and the reinforcing member 506 by placing the substrate 508 on the upper surface of the thermoelectric conversion element 503 and the reinforcing member 506. Thus, the thermoelectric converter 500 is configured.
 2つのリード線504を介して熱電変換器500に電圧が印加されると、熱電変換器500の上面の熱が、熱電変換器500の下面(基板508のZ軸負側の面)へと移動する。基板501に設置された複数の熱電変換器500は、それぞれ、2つのリード線504を介して電圧が印加されると、下面から上面へと熱が移動するように、極性が調整されている。 When a voltage is applied to the thermoelectric converter 500 via the two lead wires 504, heat on the upper surface of the thermoelectric converter 500 moves to the lower surface of the thermoelectric converter 500 (the surface of the substrate 508 on the negative side of the Z axis). I do. The polarity of each of the plurality of thermoelectric converters 500 installed on the substrate 501 is adjusted such that heat is transferred from the lower surface to the upper surface when a voltage is applied via the two lead wires 504.
 図6(a)、(b)に示した構成では、基板501、508が可撓性を有する材料により構成されているため、熱電変換器500は、隣り合う電極502間の隙間の位置P1において、y-z平面に平行な方向に曲がり得る。これにより、熱電変換器500を、ヒートシンク200の天面201の形状に沿うように、天面201に設置することができる。 6A and 6B, since the substrates 501 and 508 are made of a flexible material, the thermoelectric converter 500 is located at the position P1 of the gap between the adjacent electrodes 502. , Yz plane. Thereby, thermoelectric converter 500 can be installed on top surface 201 so as to follow the shape of top surface 201 of heat sink 200.
 図5に戻り、こうして、ヒートシンク200の天面201に10個の熱電変換器500が設置され、さらに、ヒートシンク200の2つの孔202にそれぞれヒートパイプ300が装着されて、図5の構造体が構成される。そして、図4(a)に示すように、2つの構造体が、互いに重なるようにして、筒体100の貫通孔101に挿入される。その後、各ヒートシンク200の溝203に、X軸正側およびX軸負側からそれぞれ2本ずつ、圧入部材400が圧入される。こうして、図4(b)に示すように、ローラ本体25aの組み立てが完了する。 Returning to FIG. 5, thus, ten thermoelectric converters 500 are installed on the top surface 201 of the heat sink 200, and further, the heat pipes 300 are attached to the two holes 202 of the heat sink 200, respectively. Be composed. Then, as shown in FIG. 4A, the two structures are inserted into the through-hole 101 of the cylindrical body 100 so as to overlap each other. Then, two press-fitting members 400 are press-fitted into the grooves 203 of each heat sink 200 from the X-axis positive side and the X-axis negative side. Thus, as shown in FIG. 4B, the assembly of the roller body 25a is completed.
 筒体100に流入した冷却風は、フィン204の間の隙間を通って筒体100から排出される。これにより、筒体100から熱電変換器500へと移動し、さらに、熱電変換器500からフィン204へと移動した熱が、冷却風によって取り除かれる。こうして、熱電変換器500の放熱面に熱が溜まることが抑止され、熱電変換器500における冷却作用が維持される。これにより、筒体100(ローラ本体25a)が効果的に冷却される。 冷却 The cooling air that has flowed into the cylinder 100 is discharged from the cylinder 100 through the gap between the fins 204. As a result, the heat that has moved from the cylindrical body 100 to the thermoelectric converter 500 and further has moved from the thermoelectric converter 500 to the fins 204 is removed by the cooling air. Thus, accumulation of heat on the heat radiation surface of the thermoelectric converter 500 is suppressed, and the cooling action of the thermoelectric converter 500 is maintained. Thereby, the cylinder 100 (the roller body 25a) is effectively cooled.
 図7は、水舟装置29の構成を示す側面図である。 FIG. 7 is a side view showing the configuration of the watercraft device 29.
 水舟装置29は、上記構成を備えた水元ローラ25の他、吸気ユニット60と排気ユニット70とを備えている。吸気ユニット60は、フレーム42のX軸正側の側面に設置されている。吸気ユニット60は、支持部材25bのX軸負側の端部とダクト53とを接続する。ダクト53の他端は、カバー51に設けられた開口を介して外部に接続されている。吸気ユニット60は、水元ローラ25のローラ本体25aをX軸に平行な回転中心軸について回転させるためのモータ61を備えている。モータ61から引き出されたケーブルは、カバー51の内側面に沿って下方に延びるように付設されて、所定の引き出し位置において、カバー51の外部に引き出される。 The watercraft device 29 includes an intake unit 60 and an exhaust unit 70 in addition to the water source roller 25 having the above configuration. The intake unit 60 is installed on the side surface on the X axis positive side of the frame 42. The intake unit 60 connects the end of the support member 25b on the X axis negative side to the duct 53. The other end of the duct 53 is connected to the outside via an opening provided in the cover 51. The intake unit 60 includes a motor 61 for rotating the roller body 25a of the water source roller 25 about a rotation center axis parallel to the X axis. The cable drawn from the motor 61 is attached so as to extend downward along the inner surface of the cover 51, and is drawn out of the cover 51 at a predetermined drawing position.
 排気ユニット70は、フレーム42のX軸正側の側面に設置されている。水元ローラ25のローラ本体25aの内周面に設置された熱電変換器500から引き出されたケーブルは、排気ユニット70内に設置されたスリップリングに接続される。スリップリングから引き出されたケーブルは、カバー52の内側面に沿って下方に延びるように付設されて、所定の引き出し位置において、カバー52の外部に引き出される。 The exhaust unit 70 is installed on the side surface on the X axis positive side of the frame 42. The cable drawn from the thermoelectric converter 500 installed on the inner peripheral surface of the roller body 25a of the water source roller 25 is connected to a slip ring installed in the exhaust unit 70. The cable pulled out from the slip ring is attached so as to extend downward along the inner surface of the cover 52, and is drawn out of the cover 52 at a predetermined drawing position.
 排気ユニット70は、支持部材25cのX軸正側の端部とダクト54とを接続し、ダクト54の他端は、カバー52に設けられた開口を介してブロア(図示せず)に接続されている。ブロアによる吸引力によって、外部からダクト53に冷却風(空気)が取り込まれる。その後、冷却風は、吸気ユニット60を介して水元ローラ25へと導かれ、水元ローラ25で熱を奪った後、排気ユニット70およびダクト53を通って排気される。 The exhaust unit 70 connects the end on the X-axis positive side of the support member 25c and the duct 54, and the other end of the duct 54 is connected to a blower (not shown) via an opening provided in the cover 52. ing. Cooling air (air) is taken into the duct 53 from the outside by the suction force of the blower. Thereafter, the cooling air is guided to the water roller 25 via the intake unit 60, takes heat from the water roller 25, and is exhausted through the exhaust unit 70 and the duct 53.
 排気ユニット70の構成は、追って、図8(a)、(b)および図9を参照して説明する。なお、吸気ユニット60の構成は、スリップリングがモータ61に置き換えられる点を除いて、排気ユニット70の構成と同様である。 The configuration of the exhaust unit 70 will be described later with reference to FIGS. 8A and 8B and FIG. The configuration of the intake unit 60 is the same as the configuration of the exhaust unit 70 except that the slip ring is replaced with a motor 61.
 図7において、領域R1は、インク溜め3aから版胴21にインクを供給するための領域であり、領域R2、R3は、インキローラ10、版胴21、ブランケット22、圧胴23および水元ローラ25等を駆動するための機構部が配置される領域である。したがって、領域R1においてはインクおよび湿し水が充填され、領域R2、R3においてはオイルミストが生じる。フレーム41、42およびカバー51、52は、これら領域を区分するための障壁となっている。したがって、吸気ユニット60および排気ユニット70は、冷却風を漏れなく流通させる構成とともに、オイルミストが内部に進入することを抑制するための構成が必要となる。 In FIG. 7, a region R1 is a region for supplying ink from the ink reservoir 3a to the plate cylinder 21, and regions R2 and R3 are ink rollers 10, the plate cylinder 21, the blanket 22, the impression cylinder 23, and the water source roller. This is an area where a mechanism for driving the 25 and the like is arranged. Therefore, ink and fountain solution are filled in the region R1, and oil mist is generated in the regions R2 and R3. The frames 41 and 42 and the covers 51 and 52 are barriers for separating these areas. Therefore, the intake unit 60 and the exhaust unit 70 need to have a configuration for allowing the cooling air to flow without leakage and a configuration for preventing the oil mist from entering inside.
 以下、図8(a)、(b)および図9を参照して、排気ユニット70の構成を説明する。 Hereinafter, the configuration of the exhaust unit 70 will be described with reference to FIGS. 8A and 8B and FIG.
 図8(a)は、排気ユニット70の構成を示す斜視図である。図8(b)は、チャンバ120を取り除いた状態の排気ユニット70の構成を示す斜視図である。 FIG. 8A is a perspective view showing the configuration of the exhaust unit 70. FIG. FIG. 8B is a perspective view showing the configuration of the exhaust unit 70 with the chamber 120 removed.
 排気ユニット70は、フード部材110と、チャンバ120と、2つの支持シャフト130と、2つのガイドシャフト140とを備える。 The exhaust unit 70 includes a hood member 110, a chamber 120, two support shafts 130, and two guide shafts 140.
 フード部材110は、両端が開放された中空の円筒形状を有する。フード部材110は、X軸負側の端部に水元ローラ25の支持部材25cが隙間なく嵌め込まれて、支持部材25cに連結されている。また、フード部材110のX軸正側の端部には、スリップリング210の回転軸213(図9参照)に装着されたカップリング部材220が嵌め込まれて、スリップリング210が装着されている。こうして、フード部材110は、スリップリング210の回転軸213と水元ローラ25の端部との間の領域を覆う。 The hood member 110 has a hollow cylindrical shape with both ends opened. The support member 25c of the water roller 25 is fitted into the hood member 110 at the end on the X-axis negative side without a gap, and is connected to the support member 25c. A coupling member 220 attached to the rotation shaft 213 (see FIG. 9) of the slip ring 210 is fitted to the end of the hood member 110 on the X-axis positive side, and the slip ring 210 is attached. Thus, the hood member 110 covers an area between the rotation shaft 213 of the slip ring 210 and the end of the water roller 25.
 カップリング部材220は、フード部材110のX軸正側の端部の内径と略同径の円板状の部材である。フード部材110の端部にカップリング部材220が嵌め込まれることにより、フード部材110の端部が、スリップリング210の回転軸213とカップリング部材220とで塞がれる。カップリング部材220のX軸負側の側面には、スリップリング210の回転軸213から引き出されたケーブルを纏めて保持するための鍔部が設けられている。 The coupling member 220 is a disk-shaped member having substantially the same diameter as the inner diameter of the end of the hood member 110 on the X axis positive side. By fitting the coupling member 220 into the end of the hood member 110, the end of the hood member 110 is closed by the rotation shaft 213 of the slip ring 210 and the coupling member 220. On the side of the coupling member 220 on the negative side of the X-axis, a flange portion for collectively holding the cables drawn from the rotation shaft 213 of the slip ring 210 is provided.
 図8(b)に示すように、フード部材110は、開口111が形成されている。開口111は、フード部材110の上面のみならず下面にも設けられている。2つの開口111は、長手方向(X軸方向)の同じ位置に設けられている。これらの開口111を覆うようにチャンバ120がフード部材110に装着されている。 フ ー ド As shown in FIG. 8B, the hood member 110 has an opening 111 formed therein. The opening 111 is provided not only on the upper surface but also on the lower surface of the hood member 110. The two openings 111 are provided at the same position in the longitudinal direction (X-axis direction). A chamber 120 is mounted on the hood member 110 so as to cover these openings 111.
 チャンバ120は、箱部121と、筒部122とを備える。箱部121は、略立方体の形状を有し、内部が中空となっている。筒部122は、円筒形状を有し、箱部121の内部に連通するように、箱部121の上面に一体的に形成されている。この筒部122に、図7に示したダクト54が接続される。 The chamber 120 includes a box portion 121 and a tube portion 122. The box portion 121 has a substantially cubic shape, and the inside is hollow. The cylindrical portion 122 has a cylindrical shape and is integrally formed on the upper surface of the box portion 121 so as to communicate with the inside of the box portion 121. The duct 54 shown in FIG. 7 is connected to the cylindrical portion 122.
 箱部121には、X軸方向に貫通する円形の孔123が形成されている。すなわち、2つの孔123が、箱部121のX軸正側の面およびX軸負側の面にそれぞれ同軸で形成されている。孔123の径は、フード部材110の外径と略同じか僅かに大きい。この孔123にフード部材110が通される。孔123とフード部材110の外側面との間の隙間を埋めるために、オイルシールやOリングがさらに設けられることが好ましい。 A circular hole 123 penetrating in the X-axis direction is formed in the box portion 121. That is, the two holes 123 are formed coaxially on the X-axis positive side surface and the X-axis negative side surface of the box portion 121, respectively. The diameter of the hole 123 is substantially the same as or slightly larger than the outer diameter of the hood member 110. The hood member 110 is passed through the hole 123. An oil seal or an O-ring is preferably further provided to fill a gap between the hole 123 and the outer surface of the hood member 110.
 チャンバ120は、2つの支持シャフト130によってフレーム42に固定されている。具体的には、支持シャフト130のX軸正側の端部に、支持シャフト130の軸部よりも小径のネジ部が設けられている。また、箱部121のX軸正側の側面には、対角の位置に、それぞれ、支持シャフト130のネジ部が通される支持孔が設けられている。さらに、箱部121のX軸負側の側面には、対角の位置に、それぞれ、支持シャフト130の軸部が通される支持孔が、X軸正側の支持孔と同軸となるように設けられている。箱部121のX軸正側およびX軸負側に設けられた2つの支持孔にそれぞれ支持シャフト130のネジ部と軸部が通されて、X軸正側からネジ部にナット131が留められる。支持シャフト130のX軸負側の端部は、フレーム42に固定される。これにより、チャンバ120がフレーム42に固定される。 The chamber 120 is fixed to the frame 42 by two support shafts 130. Specifically, a screw portion having a smaller diameter than the shaft portion of the support shaft 130 is provided at the end of the support shaft 130 on the X-axis positive side. Further, on the side surface on the X axis positive side of the box portion 121, support holes through which the screw portions of the support shaft 130 are passed are provided at diagonal positions. Further, on the side surface on the negative side of the X-axis of the box portion 121, the support holes through which the shaft portions of the support shafts 130 pass are respectively coaxial with the support holes on the X-axis positive side at diagonal positions. Is provided. The screw portion and the shaft portion of the support shaft 130 are respectively passed through two support holes provided on the X axis positive side and the X axis negative side of the box portion 121, and the nut 131 is fixed to the screw portion from the X axis positive side. . The end on the X axis negative side of the support shaft 130 is fixed to the frame 42. As a result, the chamber 120 is fixed to the frame 42.
 スリップリング210は、X軸負側に設けられた鍔部に4つの孔211を備える。これら4つの孔211のうち対角の位置にある2つの孔211にそれぞれガイドシャフト140が通され、ガイドシャフト140の端部に留め具141が装着される。これにより、スリップリング210が、ガイドシャフト140を介して、チャンバ120に支持される。 The slip ring 210 includes four holes 211 in a flange provided on the X axis negative side. The guide shaft 140 is passed through two of the four holes 211 at diagonal positions, and a fastener 141 is attached to an end of the guide shaft 140. Thus, the slip ring 210 is supported by the chamber 120 via the guide shaft 140.
 スリップリング210の回転軸213(図9参照)から引き出されたケーブルは、フード部材110の内部において、水元ローラ25内部の複数の熱電変換器500にそれぞれ繋がるケーブルと接続される。これにより、スリップリング210のケーブル212に供給される電力が、水元ローラ25内部の各熱電変換器500に供給される。 The cable drawn from the rotation shaft 213 of the slip ring 210 (see FIG. 9) is connected to the cables connected to the plurality of thermoelectric converters 500 inside the water source roller 25 inside the hood member 110. Thereby, the electric power supplied to the cable 212 of the slip ring 210 is supplied to each thermoelectric converter 500 inside the water source roller 25.
 吸気ユニット60も、図8(a)、(b)と同様の構成となっている。吸気ユニット60では、スリップリング210がモータ61に置き換えられる。モータ61が駆動されると、支持部材25bとともにローラ本体25aが回転し、同時に、支持部材25cとともにスリップリング210の回転軸213(図9参照)が回転する。こうして、水元ローラ25の回転駆動がなされる。 The intake unit 60 also has the same configuration as in FIGS. 8 (a) and 8 (b). In the intake unit 60, the slip ring 210 is replaced with a motor 61. When the motor 61 is driven, the roller body 25a rotates together with the support member 25b, and at the same time, the rotation shaft 213 (see FIG. 9) of the slip ring 210 rotates together with the support member 25c. Thus, the rotation of the water source roller 25 is performed.
 図9は、排気ユニット70を、X-Z平面に平行で、且つ、排気ユニット70の中心軸を通る平面で切断した断面図である。図9には、冷却風の流れが破線矢印で示されている。 FIG. 9 is a cross-sectional view of the exhaust unit 70 cut in a plane parallel to the XZ plane and passing through the central axis of the exhaust unit 70. In FIG. 9, the flow of the cooling air is indicated by broken-line arrows.
 図9に示すように、水元ローラ25の内部から支持部材25cを介してフード部材110に流れ込んだ冷却風は、フード部材110の開口111を介して、チャンバ120の内部空間へと導かれる。ここで、フード部材110のX軸正側の端部は、カップリング部材220と回転軸213で塞がれている。すなわち、フード部材110の内部は、閉空間となっている。このため、フード部材110に流入した冷却風は、開口111からチャンバ120の内部空間へと効率的に導かれる。その後、冷却風は、チャンバ120の筒部122に接続されたダクト54を通って、外部に排気される。こうして、水元ローラ25の内部を冷却風が流通する。 As shown in FIG. 9, the cooling air flowing into the hood member 110 from the inside of the water source roller 25 via the support member 25c is guided to the internal space of the chamber 120 through the opening 111 of the hood member 110. Here, the end on the X-axis positive side of the hood member 110 is closed by the coupling member 220 and the rotating shaft 213. That is, the inside of the hood member 110 is a closed space. For this reason, the cooling air flowing into the hood member 110 is efficiently guided from the opening 111 to the internal space of the chamber 120. Thereafter, the cooling air is exhausted to the outside through the duct 54 connected to the cylindrical portion 122 of the chamber 120. Thus, the cooling air flows inside the water source roller 25.
 また、フード部材110は、チャンバ120の孔123に挿入された状態にあるため、インキローラ10の回転に伴い、スリップリング210の回転軸213とともに、孔123の内側面に沿って回転する。このとき、チャンバ120は、図8(a)に示すように、フード部材110の外周を全周に亘って覆っているため、フード部材110が1回転しても、その間に、フード部材110の開口111がチャンバ120から外れることはない。 Since the hood member 110 is inserted into the hole 123 of the chamber 120, the hood member 110 rotates along with the rotation shaft 213 of the slip ring 210 along the inner side surface of the hole 123 with the rotation of the ink roller 10. At this time, since the chamber 120 covers the entire periphery of the hood member 110 as shown in FIG. 8A, even if the hood member 110 makes one rotation, the hood member 110 The opening 111 does not come off the chamber 120.
 このように、本実施形態では、水元ローラ25の回転に伴い移動するフード部材110の開口111の移動範囲を全て覆うように、チャンバ120が構成されている。よって、印刷動作時において、水元ローラ25とともにフード部材110を回転させながら、水元ローラ25の内部に冷却風を円滑に流通させることができる。 As described above, in the present embodiment, the chamber 120 is configured to cover the entire movement range of the opening 111 of the hood member 110 that moves with the rotation of the water source roller 25. Therefore, during the printing operation, the cooling air can be smoothly circulated inside the water supply roller 25 while rotating the hood member 110 together with the water supply roller 25.
 なお、吸気ユニット60も排気ユニット70と同様に構成されているため、印刷動作時に水元ローラ25が回転しても、ダクト53を介して冷却風を吸気ユニット60に円滑に取り込むことができ、さらに、取り込んだ冷却風を、吸気ユニット60から水元ローラ25の内部に円滑に流通させることができる。 In addition, since the intake unit 60 is configured similarly to the exhaust unit 70, even if the water source roller 25 rotates during the printing operation, the cooling air can be smoothly taken into the intake unit 60 via the duct 53, Further, the taken-in cooling air can be smoothly circulated from the intake unit 60 to the inside of the water supply roller 25.
 図10は、水元ローラ25付近の構成を模式的に示す断面図である。図10には、ローラ本体25aのX軸方向の中央位置をY-Z平面に平行な平面で切断した状態が示されている。便宜上、図10では、断面を示すハッチングが省略されている。 FIG. 10 is a cross-sectional view schematically showing a configuration near the water supply roller 25. FIG. 10 shows a state where the center position of the roller body 25a in the X-axis direction is cut along a plane parallel to the YZ plane. For convenience, hatching indicating a cross section is omitted in FIG.
 図10に示すように、本実施形態では、凹部24aの内側面の曲率中心C10を規定する直線(X軸に平行な直線)が、水元ローラ25の回転中心軸R10に一致するように、水舟24が、水元ローラ25に対して配置されている。ここで、回転中心軸R10は、ローラ本体25aの中心軸に一致する。したがって、本実施形態では、水元ローラ25の中心軸と凹部24aの内側面の曲率中心C10とが一致するように、水舟24と水元ローラ25が配置されている。 As shown in FIG. 10, in the present embodiment, a straight line (a straight line parallel to the X axis) that defines the center of curvature C10 of the inner side surface of the concave portion 24 a coincides with the rotation center axis R10 of the water source roller 25. The watercraft 24 is disposed with respect to the water source roller 25. Here, the rotation center axis R10 coincides with the center axis of the roller main body 25a. Therefore, in this embodiment, the watercraft 24 and the water supply roller 25 are arranged such that the center axis of the water supply roller 25 and the center of curvature C10 of the inner surface of the concave portion 24a coincide.
 このように水舟24と水元ローラ25とが配置されることにより、凹部24aと水元ローラ25の外周面との間の隙間D2は、凹部24aの任意の位置において一定となる。ここで、水元ローラ25のローラ本体25aの外径D1は、たとえば、80~100mm程度であり、隙間D2は、たとえば、5~8mm程度である。すなわち、隙間D2は、ローラ本体25aの外径D1に対して、顕著に小さくなっている。 に よ り By arranging the watercraft 24 and the water roller 25 in this manner, the gap D2 between the concave portion 24a and the outer peripheral surface of the water roller 25 becomes constant at an arbitrary position of the concave portion 24a. Here, the outer diameter D1 of the roller body 25a of the water source roller 25 is, for example, about 80 to 100 mm, and the gap D2 is, for example, about 5 to 8 mm. That is, the gap D2 is significantly smaller than the outer diameter D1 of the roller body 25a.
 このように、隙間D2が小さく設定されることにより、凹部24aに貯留された湿し水A20が、ローラ本体25aの回転に伴い効果的に撹拌され得る。これにより、凹部24aに貯留された湿し水A20には、殆ど温度差が生じることがなく、湿し水A20の温度が略均一化され得る。 湿 By setting the gap D2 small, the dampening solution A20 stored in the concave portion 24a can be effectively stirred with the rotation of the roller body 25a. Thereby, the temperature of the dampening solution A20 stored in the concave portion 24a hardly varies, and the temperature of the dampening solution A20 can be made substantially uniform.
 また、隙間D2に存在する湿し水A20は、ローラ本体25aの外周面に沿って浅く広がるため、凹部24aに貯留された湿し水A20を、ローラ本体25aの内側面に設置された熱電変換器500によって、効果的に冷却でき、貯留された湿し水A20の温度差を略無くすことができる。 Further, since the dampening solution A20 existing in the gap D2 spreads shallowly along the outer peripheral surface of the roller main body 25a, the dampening water A20 stored in the concave portion 24a is transferred to the thermoelectric conversion device installed on the inner surface of the roller main body 25a. The container 500 can be cooled effectively, and the temperature difference of the stored dampening solution A20 can be substantially eliminated.
 このように、本実施形態では、凹部24aに貯留されている湿し水A20を、温度差なく効果的に冷却することができる。 As described above, in the present embodiment, the dampening solution A20 stored in the recess 24a can be effectively cooled without a temperature difference.
 さらに、湿し水A20は、ローラ本体25aの回転に伴い、凹部24aからローラ本体25aの外周面へと移り、ローラ本体25aの外周面に薄く広がった状態で移送される。したがって、この移送過程においても、湿し水A20は、熱電変換器500によって効果的に冷却される。よって、本実施形態では、適切に冷却された湿し水A20を、版胴21に供給できる。よって、版胴21を適切に冷却でき、印刷機1の印刷性能を向上させることができる。 Furthermore, the dampening solution A20 moves from the concave portion 24a to the outer peripheral surface of the roller main body 25a with the rotation of the roller main body 25a, and is transported in a state of being spread thinly on the outer peripheral surface of the roller main body 25a. Therefore, also in this transfer process, the dampening solution A20 is effectively cooled by the thermoelectric converter 500. Thus, in the present embodiment, the appropriately cooled dampening solution A20 can be supplied to the plate cylinder 21. Therefore, the plate cylinder 21 can be appropriately cooled, and the printing performance of the printing press 1 can be improved.
 <実施形態の効果>
 本実施形態によれば、以下の効果が奏される。
<Effects of Embodiment>
According to the present embodiment, the following effects can be obtained.
 水元ローラ25の内部に熱電変換器500が配置されているため、水元ローラ25および水舟24の周囲に、別途、湿し水A20を冷却するための冷凍機やタンクを設ける必要がない。また、水舟24から冷凍機やタンクへ湿し水A20を送るためのパイプも必要としない。よって、水舟装置29の構成を簡素化でき、水舟装置29の小型化とコストの低減を図ることができる。また、水元ローラ25の温度を熱電変換器500により制御する構成であるため、水元ローラ25に湿し水A20が接触して移送される過程において、湿し水A20の温度を効率的かつ安定的に調整できる。よって、より適正な温度の湿し水A20を版胴等に供給することができる。 Since the thermoelectric converter 500 is disposed inside the water source roller 25, there is no need to separately provide a refrigerator or a tank for cooling the dampening water A20 around the water source roller 25 and the watercraft 24. . Further, a pipe for sending dampening water A20 from the watercraft 24 to the refrigerator or the tank is not required. Therefore, the configuration of the watercraft device 29 can be simplified, and the size and cost of the watercraft device 29 can be reduced. Further, since the configuration is such that the temperature of the fountain roller 25 is controlled by the thermoelectric converter 500, the temperature of the fountain solution A20 is efficiently and in the process of being transferred while the fountain solution A20 contacts the fountain roller 25. Can be adjusted stably. Therefore, the dampening solution A20 having a more appropriate temperature can be supplied to the plate cylinder and the like.
 また、水元ローラ25(ローラ本体25a)は、円柱形状を有し、水舟24は、水元ローラ25の外側面に沿って湾曲する凹部24aを有し、凹部24aに湿し水A20が貯留され、水元ローラ25は、凹部24aの内側面から離間した状態で凹部24aに嵌まっている。このように、凹部24aが水元ローラ25の外側面に沿って湾曲する形状であるため、凹部24aに貯留する湿し水A20を、水元ローラ25の回転に伴い、滞留なく効果的に撹拌できる。よって、凹部24aに貯留された湿し水A20の温度を均一化でき、且つ、湿し水A20の温度を適切に管理できる。これにより、印刷の品質を向上させることができる。 The water roller 25 (roller body 25a) has a columnar shape, and the watercraft 24 has a concave portion 24a that curves along the outer surface of the water roller 25, and dampening water A20 is provided in the concave portion 24a. The stored water source roller 25 is fitted in the concave portion 24a while being separated from the inner side surface of the concave portion 24a. As described above, since the concave portion 24a is curved along the outer surface of the water roller 25, the dampening solution A20 stored in the concave portion 24a is effectively stirred without stagnation with the rotation of the water roller 25. it can. Therefore, the temperature of the dampening solution A20 stored in the concave portion 24a can be made uniform, and the temperature of the dampening solution A20 can be appropriately managed. Thereby, the quality of printing can be improved.
 また、図10に示したように、凹部24aの内側面の曲率中心C100を規定する直線が水元ローラ25の回転中心軸R10に一致するように、水舟24が水元ローラ25に対して配置されている。この構成によれば、凹部24aの内側面と水元ローラ25の外周面との間の隙間が一定となるため、凹部24aに貯留する湿し水A20の温度をより確実に均一化でき、湿し水A20の温度をより適切に管理できる。これにより、印刷の品質をより一層向上させることができる。 Further, as shown in FIG. 10, the watercraft 24 is moved relative to the water base roller 25 so that the straight line defining the center of curvature C100 of the inner surface of the recess 24a coincides with the rotation center axis R10 of the water base roller 25. Are located. According to this configuration, since the gap between the inner side surface of the concave portion 24a and the outer peripheral surface of the water roller 25 is constant, the temperature of the dampening solution A20 stored in the concave portion 24a can be more reliably made uniform, The temperature of the water A20 can be managed more appropriately. Thereby, the quality of printing can be further improved.
 なお、このように、ローラ本体25aの外周面と凹部24aの内側面との間の隙間が一定である場合、水元ローラ25の回転に伴い、適量の湿し水A20を水元ローラ25(ローラ本体25a)の外周面に広げて搬送できる。このため、版胴21の全ての領域に適量の湿し水A20を円滑に供給できる。したがって、版胴21から余分な湿し水A20を取り除いて水舟24に戻す必要がなく、そのための構成を省略することができる。これにより、さらなる構成の簡素化を図ることができる。また、版胴21に付着された後の湿し水A20が水舟24に戻されないため、水舟24に貯留される湿し水を綺麗に保つことができる。よって、印刷の品質をさらに高めることができる。 When the gap between the outer peripheral surface of the roller main body 25a and the inner side surface of the concave portion 24a is constant, an appropriate amount of dampening solution A20 is supplied with the rotation of the water supply roller 25 as shown in FIG. It can be spread over the outer peripheral surface of the roller body 25a) and transported. Therefore, an appropriate amount of dampening solution A20 can be smoothly supplied to all regions of the plate cylinder 21. Therefore, there is no need to remove the excess dampening solution A20 from the plate cylinder 21 and return it to the watercraft 24, and a configuration for that purpose can be omitted. Thereby, the structure can be further simplified. In addition, since the dampening solution A20 attached to the plate cylinder 21 is not returned to the watercraft 24, the dampening water stored in the watercraft 24 can be kept clean. Therefore, the quality of printing can be further improved.
 また、図4(a)~図9を参照して説明したように、熱電変換器500は、水元ローラ25の内側面に設置され、水元ローラ25の内部に沿って冷却風を流通させる通風機構(吸気ユニット60、排気ユニット70)が設けられている。これにより、熱電変換器500の効率を高めることができ、水元ローラ25(ローラ本体25a)の外周面を効果的に冷却することができる。よって、湿し水A20の温度をより適切に制御でき、結果、印刷の品質をさらに高めることができる。 Also, as described with reference to FIGS. 4A to 9, the thermoelectric converter 500 is installed on the inner side surface of the water roller 25 and distributes cooling air along the inside of the water roller 25. A ventilation mechanism (intake unit 60, exhaust unit 70) is provided. Thereby, the efficiency of the thermoelectric converter 500 can be improved, and the outer peripheral surface of the water source roller 25 (the roller main body 25a) can be effectively cooled. Therefore, the temperature of the dampening solution A20 can be more appropriately controlled, and as a result, the quality of printing can be further improved.
 <変更例>
 上記実施形態では、図10に示したように、凹部24aの内側面の曲率中心C100を規定する直線が水元ローラ25の回転中心軸R10に一致するように、水舟24が水元ローラ25に対して配置されたが、水舟24と水元ローラ25の配置はこれに限られるものではない。
<Example of change>
In the above embodiment, as shown in FIG. 10, the watercraft 24 is adjusted so that the straight line defining the center of curvature C100 of the inner surface of the concave portion 24 a coincides with the rotation center axis R10 of the water source roller 25. However, the arrangement of the watercraft 24 and the water source roller 25 is not limited to this.
 たとえば、図11(a)に示すように、図10の状態から水舟24がZ軸負方向にシフトされて、凹部24aの内側面の曲率中心C10を規定する直線が、水元ローラ25の回転中心軸R10に対して、Z軸負方向にずれていてもよい。また、図11(b)に示すように、図10の状態から水舟24の凹部24aの曲率半径が拡大されて、凹部24aの内側面の曲率中心C10を規定する直線が、水元ローラ25の回転中心軸R10に対して、Z軸負方向にずれていてもよい。 For example, as shown in FIG. 11A, the watercraft 24 is shifted in the negative Z-axis direction from the state of FIG. 10, and a straight line defining the center of curvature C10 on the inner side surface of the concave portion 24a is formed by the water source roller 25. It may be shifted in the Z-axis negative direction with respect to the rotation center axis R10. Further, as shown in FIG. 11B, the radius of curvature of the concave portion 24a of the watercraft 24 is enlarged from the state of FIG. 10, and a straight line defining the center of curvature C10 on the inner side surface of the concave portion 24a is formed by the water source roller 25. May be shifted in the Z-axis negative direction with respect to the rotation center axis R10.
 これらの変更例においても、凹部24aの内側面は水元ローラ25の外周面に沿った形状となっており、且つ、凹部24aの内側面の曲率中心C10を規定する直線は、水元ローラ25の回転中心軸R10に対して平行となっている。このため、凹部24aに貯留された湿し水A20を、水元ローラ25の回転に伴い円滑に撹拌でき、凹部24aに貯留された湿し水A20の温度を均一化することができる。 Also in these modifications, the inner surface of the concave portion 24a has a shape along the outer peripheral surface of the water roller 25, and the straight line defining the center of curvature C10 of the inner surface of the concave portion 24a is Is parallel to the rotation center axis R10. Therefore, the dampening solution A20 stored in the concave portion 24a can be smoothly stirred with the rotation of the water supply roller 25, and the temperature of the dampening solution A20 stored in the concave portion 24a can be made uniform.
 なお、図11(a)、(b)に示す変更例では、凹部24aの内側面と水元ローラ25の外周面との間に隙間が一定でないため、図10に示した上記実施形態の構成に比べると、凹部24aに貯留された湿し水A20にやや温度差が生じ易くなる。したがって、凹部24aに貯留された湿し水A20の温度をより適正に均一化するためには、上記実施形態のように、凹部24aの内側面の曲率中心C10を規定する直線を水元ローラ25の回転中心軸R10に一致させて、凹部24aの内側面と水元ローラ25の外周面との間に隙間を一定にすることが好ましいと言える。 In the modified examples shown in FIGS. 11A and 11B, the gap between the inner surface of the concave portion 24a and the outer peripheral surface of the water roller 25 is not constant, so the configuration of the above embodiment shown in FIG. In comparison with the above, a slight temperature difference is more likely to occur in the dampening solution A20 stored in the concave portion 24a. Therefore, in order to more appropriately equalize the temperature of the dampening solution A20 stored in the concave portion 24a, a straight line that defines the center of curvature C10 of the inner side surface of the concave portion 24a is drawn as in the above-described embodiment. It can be said that it is preferable to make the gap between the inner surface of the concave portion 24a and the outer peripheral surface of the water source roller 25 constant in accordance with the rotation center axis R10.
 また、上記実施形態では、水元ローラ25の内部に熱電変換器500を設置して水元ローラ25の外周面の温度を制御するようにしたが、さらに、中間ローラ27の内部にも熱電変換器500を設置して、中間ローラ27の外周面の温度を制御するようにしてもよい。 In the above embodiment, the thermoelectric converter 500 is installed inside the water roller 25 to control the temperature of the outer peripheral surface of the water roller 25. The temperature of the outer peripheral surface of the intermediate roller 27 may be controlled by installing the container 500.
 この場合、中間ローラ27は、水元ローラ25と同様、熱伝導性に優れた金属材料からなるローラ本体と、ローラ本体の両端に設置された支持部材とを備え、ローラ本体の内部に熱電変換器が設置される。熱電変換器を設置するための構成は、図4(a)~図5と同様の構成である。また、中間ローラ27に対しても、図7~図9に示した吸気ユニット60および排気ユニット70と同様の構成が適用される。 In this case, the intermediate roller 27 includes a roller body made of a metal material having excellent thermal conductivity and support members provided at both ends of the roller body, similarly to the water roller 25, and a thermoelectric conversion device is provided inside the roller body. A vessel is installed. The configuration for installing the thermoelectric converter is the same as the configuration shown in FIGS. The same configuration as the intake unit 60 and the exhaust unit 70 shown in FIGS. 7 to 9 is applied to the intermediate roller 27.
 この変更例によれば、湿し水A20が中間ローラ27の外側面を伝搬する際に、湿し水A20に対する温度制御を行うことができる。よって、上記実施形態に比べて、より精緻かつ適切に、湿し水A20の温度制御を行うことができる。 According to this modification, when the dampening solution A20 propagates on the outer surface of the intermediate roller 27, the temperature of the dampening solution A20 can be controlled. Therefore, the temperature of the dampening solution A20 can be controlled more precisely and appropriately than in the above embodiment.
 なお、熱電変換器500と吸気ユニット60および排気ユニット70とからなる温度調節のための構造は、さらに、インキローラ10にも適用されてもよい。これにより、版胴21に塗布されるインクA10の温度を、湿し水A20による温度制御とともに、より適正に制御でき、結果、印刷の品質をより一層、高めることができる。 The structure for adjusting the temperature including the thermoelectric converter 500, the intake unit 60, and the exhaust unit 70 may be further applied to the ink roller 10. Thereby, the temperature of the ink A10 applied to the plate cylinder 21 can be more appropriately controlled together with the temperature control by the dampening solution A20, and as a result, the printing quality can be further improved.
 また、水舟24の形状は、上記実施形態および変更例に示した形状に限られるものではく、種々変更可能である。但し、水舟24に貯留する湿し水A20の温度を均一化するためには、凹部24aの内側面が水元ローラ25の外周面の形状に沿うように湾曲していることが好ましい。また、凹部24aの曲率は、長手方向の全範囲において均一でなくてもよく、長手方向に滑らかに変化していてもよい。この場合も、凹部24aの内側面が水元ローラ25の外周面の形状に沿う限りにおいて、水舟24に貯留する湿し水A20を水元ローラ25の回転の回転に伴い効果的に撹拌でき、湿し水A20の温度を均一化することができる。 形状 Further, the shape of the watercraft 24 is not limited to the shapes shown in the above-described embodiment and modified examples, and can be variously changed. However, in order to equalize the temperature of the dampening solution A20 stored in the watercraft 24, it is preferable that the inner surface of the concave portion 24a is curved so as to follow the shape of the outer peripheral surface of the water source roller 25. Further, the curvature of the concave portion 24a may not be uniform over the entire range in the longitudinal direction, and may smoothly change in the longitudinal direction. Also in this case, the dampening solution A20 stored in the watercraft 24 can be effectively stirred with the rotation of the water supply roller 25 as long as the inner side surface of the concave portion 24a follows the shape of the outer peripheral surface of the water supply roller 25. The temperature of the dampening solution A20 can be made uniform.
 また、上記実施形態では、1つの版胴21に対して1つの水舟装置29が配置されたが、1つの版胴21に対して複数の水舟装置29が配置されてもよい。 In the above embodiment, one watercraft device 29 is arranged for one plate cylinder 21, but a plurality of watercraft devices 29 may be arranged for one plate cylinder 21.
 また、水元ローラ25の内部に冷却風を流通させる通風機構は、図8(a)、(b)に示した構成に限られるものではなく、他の構成であってもよい。 The ventilation mechanism that allows the cooling air to flow inside the water source roller 25 is not limited to the configuration illustrated in FIGS. 8A and 8B, and may have another configuration.
 また、上記実施形態では、図4(a)、(b)および図5に示す構成により、水元ローラ25の内周面に熱電変換器500が設置されたが、熱電変換器500を設置する構成は、これに限られるものではない。また、水元ローラ25に配置される熱電変換器500の数は、必ずしも10に限られるものではなく、他の数であってもよい。 Further, in the above embodiment, the thermoelectric converter 500 is installed on the inner peripheral surface of the water source roller 25 by the configuration shown in FIGS. 4A, 4B, and 5, but the thermoelectric converter 500 is installed. The configuration is not limited to this. Further, the number of thermoelectric converters 500 arranged on the water source roller 25 is not necessarily limited to ten, and may be another number.
 また、水元ローラ25から版胴21の間に配置されるローラは、図2(a)に示した2つのゴムローラ26、28と中間ローラ27に限られるものではなく、たとえば、さらに中間ローラが追加されてもよい。また、これらローラの並び順や配置位置も、図2(a)の例に限定されるものではなく、適宜、変更され得る。 Further, the rollers disposed between the water source roller 25 and the plate cylinder 21 are not limited to the two rubber rollers 26 and 28 and the intermediate roller 27 shown in FIG. May be added. Further, the arrangement order and arrangement position of these rollers are not limited to the example of FIG. 2A, and can be changed as appropriate.
 この他、印刷ユニット3に配置されるインキローラ10の数も4つに限られるものではない。印刷機1は、印刷用紙P10の片面に印刷を行う構成の他、両面に印刷を行う構成であってもよい。この場合、印刷ユニット3の設置数が適宜変更され、これに伴い、水舟装置29の設置数も変更される。 他 In addition, the number of ink rollers 10 arranged in the printing unit 3 is not limited to four. The printing machine 1 may be configured to perform printing on both sides in addition to the configuration performing printing on one side of the printing paper P10. In this case, the number of installed printing units 3 is appropriately changed, and accordingly, the number of installed watercraft devices 29 is also changed.
 本発明の実施形態は、特許請求の範囲に示された技術的思想の範囲内において、適宜、種々の変更が可能である。 実 施 Various changes can be made to the embodiments of the present invention as appropriate within the scope of the technical idea described in the claims.
  1 … 印刷機
 24 … 水舟
 24a … 凹部
 25 … 水元ローラ
 27 … 中間ローラ
 29 … 水舟装置
 60 … 吸気ユニット
 70 … 排気ユニット
 500 … 熱電変換器
 C1 … 曲率中心
 R1 … 回転中心軸
DESCRIPTION OF SYMBOLS 1 ... Printing machine 24 ... Watercraft 24a ... Concave part 25 ... Water source roller 27 ... Intermediate roller 29 ... Watercraft device 60 ... Intake unit 70 ... Exhaust unit 500 ... Thermoelectric converter C1 ... Center of curvature R1 ... Rotation center axis

Claims (11)

  1.  湿し水を溜めるための水舟と、
     前記水舟に溜められた前記湿し水に接触して回転する水元ローラと、
     前記水元ローラの内部に設置され前記水元ローラの温度を制御する熱電変換器と、
    を備える、水舟装置。
     
    A watercraft for storing dampening water,
    A water source roller that rotates in contact with the dampening solution stored in the watercraft,
    A thermoelectric converter installed inside the water roller and controlling the temperature of the water roller,
    A watercraft device comprising:
  2.  請求項1に記載の水舟装置において、
     前記水元ローラは、円柱形状を有し、
     前記水舟は、前記水元ローラの外側面に沿って湾曲する凹部を有し、
     前記凹部に前記湿し水が貯留され、
     前記水元ローラは、前記凹部の内側面から離間した状態で前記凹部に嵌まっている、水舟装置。
     
    The watercraft device according to claim 1,
    The water roller has a cylindrical shape,
    The watercraft has a concave portion that curves along the outer surface of the water roller,
    The dampening solution is stored in the recess,
    The watercraft device, wherein the water source roller is fitted in the recess while being separated from an inner side surface of the recess.
  3.  請求項2に記載の水舟装置において、
     前記凹部は、内側面が所定の円筒面に整合するよう構成され、
     前記凹部の前記内側面の曲率中心を規定する直線が前記水元ローラの回転中心軸に平行となるように、前記水舟が前記水元ローラに対して配置されている、水舟装置。
     
    The watercraft device according to claim 2,
    The recess is configured such that an inner surface is aligned with a predetermined cylindrical surface,
    The watercraft device, wherein the watercraft is arranged with respect to the water source roller such that a straight line defining a center of curvature of the inner surface of the concave part is parallel to a rotation center axis of the water source roller.
  4.  請求項3に記載の水舟装置において、
     前記曲率中心を規定する前記直線が前記水元ローラの回転中心軸に一致するように、前記水舟が前記水元ローラに対して配置されている、水舟装置。
     
    The watercraft device according to claim 3,
    A watercraft device, wherein the watercraft is arranged with respect to the watercraft roller such that the straight line defining the center of curvature coincides with the rotation center axis of the watercraft roller.
  5.  請求項1~4の何れか一項に記載の水舟装置において、
     前記熱電変換器は、前記水元ローラの内側面に設置され、
     前記水元ローラの内部に沿って冷却風を流通させる通風機構を備える、水舟装置。
     
    The watercraft device according to any one of claims 1 to 4,
    The thermoelectric converter is installed on the inner surface of the water roller,
    A watercraft device comprising a ventilation mechanism that circulates cooling air along the inside of the water roller.
  6.  水舟装置と、
     前記水舟装置から湿し水が供給されるとともにインク溜めからインクが供給される版胴と、を備え、
     前記水舟装置は、
      湿し水を溜めるための水舟と、
      前記水舟に溜められた前記湿し水に接触して回転する水元ローラと、
      前記水元ローラの内部に設置され前記水元ローラの温度を制御する熱電変換器と、を備える、印刷機。
     
    Watercraft equipment,
    A plate cylinder to which dampening water is supplied from the watercraft device and ink is supplied from an ink reservoir,
    The watercraft device,
    A watercraft for storing dampening water,
    A water source roller that rotates in contact with the dampening solution stored in the watercraft,
    A thermoelectric converter installed inside the water roller and controlling the temperature of the water roller.
  7.  請求項6に記載の印刷機において、
     前記水元ローラは、円柱形状を有し、
     前記水舟は、前記水元ローラの外側面に沿って湾曲する凹部を有し、
     前記凹部に前記湿し水が貯留され、
     前記水元ローラは、前記凹部の内側面から離間した状態で前記凹部に嵌まっている、印刷機。
     
    The printing press according to claim 6,
    The water roller has a cylindrical shape,
    The watercraft has a concave portion that curves along the outer surface of the water roller,
    The dampening solution is stored in the recess,
    The printing press, wherein the fountain roller is fitted in the recess while being separated from an inner side surface of the recess.
  8.  請求項7に記載の印刷機において、
     前記凹部は、内側面が所定の円筒面に整合するよう構成され、
     前記凹部の前記内側面の曲率中心を規定する直線が前記水元ローラの回転中心軸に平行となるように、前記水舟が前記水元ローラに対して配置されている、印刷機。
     
    The printing press according to claim 7,
    The recess is configured such that an inner surface is aligned with a predetermined cylindrical surface,
    The printing press, wherein the watercraft is arranged with respect to the water roller so that a straight line defining a center of curvature of the inner surface of the concave portion is parallel to a rotation center axis of the water roller.
  9.  請求項8に記載の印刷機において、
     前記曲率中心を規定する前記直線が前記水元ローラの回転中心軸に一致するように、前記水舟が前記水元ローラに対して配置されている、印刷機。
     
    The printing press according to claim 8,
    The printing press, wherein the watercraft is arranged with respect to the water-source roller such that the straight line defining the center of curvature coincides with the rotation center axis of the water-source roller.
  10.  請求項6~9の何れか一項に記載の印刷機において、
     前記熱電変換器は、前記水元ローラの内側面に設置され、
     前記水元ローラの内部に沿って冷却風を流通させる通風機構を備える、印刷機。
     
    The printing press according to any one of claims 6 to 9,
    The thermoelectric converter is installed on the inner surface of the water roller,
    A printing press, comprising: a ventilation mechanism that circulates cooling air along the inside of the water roller.
  11.  請求項6~10の何れか一項に記載の印刷機において、
     水元ローラと前記版胴との間に前記湿し水を仲介する中間ローラを備え、
     前記中間ローラの内部に前記中間ローラの温度を制御するための他の熱電変換器が設置されている、印刷機。
    The printing press according to any one of claims 6 to 10,
    An intermediate roller that mediates the dampening solution between a fountain roller and the plate cylinder,
    A printing press, wherein another thermoelectric converter for controlling the temperature of the intermediate roller is installed inside the intermediate roller.
PCT/JP2019/017367 2018-07-19 2019-04-24 Water boat device and printing machine WO2020017125A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018135464 2018-07-19
JP2018-135464 2018-07-19

Publications (1)

Publication Number Publication Date
WO2020017125A1 true WO2020017125A1 (en) 2020-01-23

Family

ID=69164460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017367 WO2020017125A1 (en) 2018-07-19 2019-04-24 Water boat device and printing machine

Country Status (1)

Country Link
WO (1) WO2020017125A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024081889A1 (en) 2022-10-14 2024-04-18 Genesis Therapeutics, Inc. 4h-pyrido[1,2-a]pyrimidin-4-one derivatives for treating cancer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135665A (en) * 1979-04-10 1980-10-22 Takeshi Hashimoto Dampening water cooling device in printing press
JPS6435114A (en) * 1987-07-30 1989-02-06 Toppan Printing Co Ltd Cooling and heating roll
JPH04359765A (en) * 1991-02-12 1992-12-14 Baldwin Printing Controls Ltd Cylinder or roller adapted to be heated or cooled using electronic cooling and heating element and its heating and cooling system
JP2002361826A (en) * 2001-06-05 2002-12-18 Heidelberger Druckmas Ag Water reservoir for dampening unit of offset printer
US8001894B2 (en) * 2006-05-10 2011-08-23 Koenig & Bauer Aktiengesellschaft Roller of a printing machine comprising a device for generating an axial oscillating movement of the rotating roller
JP2016107616A (en) * 2014-12-09 2016-06-20 パナソニックIpマネジメント株式会社 Sheet-like object cooling device and printer including the same
JP2017205958A (en) * 2016-05-19 2017-11-24 アイマー・プランニング株式会社 Dampening water apparatus of printer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55135665A (en) * 1979-04-10 1980-10-22 Takeshi Hashimoto Dampening water cooling device in printing press
JPS6435114A (en) * 1987-07-30 1989-02-06 Toppan Printing Co Ltd Cooling and heating roll
JPH04359765A (en) * 1991-02-12 1992-12-14 Baldwin Printing Controls Ltd Cylinder or roller adapted to be heated or cooled using electronic cooling and heating element and its heating and cooling system
JP2002361826A (en) * 2001-06-05 2002-12-18 Heidelberger Druckmas Ag Water reservoir for dampening unit of offset printer
US8001894B2 (en) * 2006-05-10 2011-08-23 Koenig & Bauer Aktiengesellschaft Roller of a printing machine comprising a device for generating an axial oscillating movement of the rotating roller
JP2016107616A (en) * 2014-12-09 2016-06-20 パナソニックIpマネジメント株式会社 Sheet-like object cooling device and printer including the same
JP2017205958A (en) * 2016-05-19 2017-11-24 アイマー・プランニング株式会社 Dampening water apparatus of printer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024081889A1 (en) 2022-10-14 2024-04-18 Genesis Therapeutics, Inc. 4h-pyrido[1,2-a]pyrimidin-4-one derivatives for treating cancer

Similar Documents

Publication Publication Date Title
KR102155975B1 (en) Method for control of print gap
US9158276B2 (en) Cooling system and image forming apparatus incorporating same
WO2020017125A1 (en) Water boat device and printing machine
JP4854553B2 (en) Heat exchanger and image forming apparatus having the same
JP5052992B2 (en) Temperature control system for rollers in image forming apparatus
WO2019235129A1 (en) Roller device and printer
WO2018211907A1 (en) Roller device and printing machine
JP2020168777A (en) Water trough device and printer
US10680496B2 (en) Motor attachment bracket, motor attachment structure, and substrate processing apparatus
US20190351672A1 (en) Roller device and printer
US9804541B2 (en) Heating device
CN214164395U (en) Printing roller cooling device for printing equipment
CN220513909U (en) Mixing device
JPH03290256A (en) Ink jet recording head unit and ink jet recording device installed with same unit
CN218232439U (en) Perfusion culture device
CN114472080B (en) Cooling system suitable for vacuum environment and use method thereof
CN117340286A (en) Cooling method and cooling device for solid-state additive manufacturing
CN219745350U (en) Gluing jig and gluing equipment
US20220200371A1 (en) Cooling arrangement for cooling a stator for an electric motor
JP2010073826A (en) Processing liquid feeding device
CN217654182U (en) Compound fertilizer cooling device capable of improving heat transfer efficiency
CN111725112B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JPH03290252A (en) Ink jet record head unit and ink jet recorder equipped with same unit
JP4085241B2 (en) Ink tank and ink jet recording apparatus
WO2018105371A1 (en) Thermoelectric conversion device and printing machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19837420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19837420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP