WO2020016326A1 - Capteur omnidirectionnel pour la determination d'une valeur environnementale d'un objet pivotant - Google Patents

Capteur omnidirectionnel pour la determination d'une valeur environnementale d'un objet pivotant Download PDF

Info

Publication number
WO2020016326A1
WO2020016326A1 PCT/EP2019/069294 EP2019069294W WO2020016326A1 WO 2020016326 A1 WO2020016326 A1 WO 2020016326A1 EP 2019069294 W EP2019069294 W EP 2019069294W WO 2020016326 A1 WO2020016326 A1 WO 2020016326A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
pivoting
rotation
pivoting object
communication means
Prior art date
Application number
PCT/EP2019/069294
Other languages
English (en)
Inventor
Ricardo Garcia
Jean Podlecki
Alain Foucaran
Fabrice CANO
Thomas Cohen
Original Assignee
Université De Montpellier
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Université De Montpellier, Centre National De La Recherche Scientifique filed Critical Université De Montpellier
Publication of WO2020016326A1 publication Critical patent/WO2020016326A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/24Housings ; Casings for instruments
    • G01D11/245Housings for sensors

Definitions

  • the present invention relates to an omnidirectional sensor for determining an environmental value of a pivoting object, said sensor being intended to measure the rotation of a pivoting object around an axis of rotation.
  • the sensor is omnidirectional because the axis of rotation can be oriented in any direction of space.
  • Another object of the invention is a pivoting object or device comprising the omnidirectional angular sensor according to the invention.
  • a third object of the invention is a network of pivoting objects comprising an omnidirectional angular sensor according to the invention.
  • the metrology of urban areas constitutes a fundamental pillar for the modernization and sustainable development of these.
  • Sensors coupled with physical models and data representation tools, allow the development of decision support means that improve the everyday living environment of populations. These improvements also save money and resources.
  • the management of fluid distribution networks involves the need to frequently measure the angular position of objects pivoting around an axis such as valves or taps arranged throughout the networks.
  • crank for a valve which plugs into a square tap head of the valve and which is equipped with a screen and an electronic system allowing a user to follow the rotation of the crank.
  • an object of the present invention is an omnidirectional sensor for determining a value environmental of a pivoting object comprising a maneuvering square, the environmental value comprising at least the angular position of the pivoting object around an axis of rotation, said angular position being an angle of rotation of the pivoting object measured relative to at a predetermined reference position, said sensor comprising:
  • a sensor body comprising fixing means adapted to fix said sensor to the pivoting object whose angular position is to be measured, the fixing means being adapted to be fixed to the operating square;
  • - Measuring means adapted to measure at least one environmental variable representative of the angular position of the object pivoting around the axis of rotation;
  • the sensor body comprising:
  • a first housing intended to accommodate the maneuvering square
  • environmental value is meant a set of data representative of the state of a pivoting object.
  • the environmental variable includes at least the angular position of the pivoting object. It can also include other data from other sensors installed on or near the pivoting object.
  • the environmental variable can include data from a sound or optical sensor.
  • the environmental value can also include information concerning the operating state of the omnidirectional sensor.
  • operating state is meant information on the operation of the sensor, such as the energy level in the battery or in the supply means or the presence of an operating error.
  • the senor according to the invention will be called either omnidirectional sensor for determining an environmental value of a pivoting object, omnidirectional sensor for determining an angular position of a pivoting object or simply a sensor omnidirectional.
  • Omnidirectional sensor means a sensor capable of detecting the angular position of an object pivoting about an axis of rotation, said axis of rotation being able to be oriented in any direction of space.
  • angular position is meant an angle of rotation measured from a predetermined reference position.
  • the position sensor according to the invention can take into account several turns of the object pivoting around the axis of rotation. It is therefore a multi-turn position sensor.
  • sensor body is meant a mechanical element comprising fixing means for fixing the angular position sensor according to the invention to the pivoting object.
  • fixing means which comprise the first housing intended to receive the operating square, the sensor can be fixed to the pivoting object in order to follow its angular position, without requiring modification of the structure of the pivoting object.
  • the sensor body can thus be fixed directly to the operating square in a particularly simple manner.
  • the first housing intended to receive the maneuvering square which for example has a shape complementary to the maneuvering square of the pivoting object, is shaped to receive the maneuvering square and to come into engagement with the maneuvering square so as to be able to train it in rotation.
  • the first housing may for example have a square section along a section plane normal to the axis of rotation of the sensor, or a generally square section having a clearance at each vertex of the square. More generally, the section of the first housing comprises four sides perpendicular, or substantially perpendicular, two by two.
  • the first housing comprises four faces, substantially perpendicular two by two. It is noted that the section of the first housing is not necessarily constant along the axis of rotation: the first housing may have a slightly pyramidal shape, the four faces of the housing being slightly inclined towards the axis of the sensor (as this is often the case for a male operating square, which the first housing is intended to receive).
  • the part of the body of the sensor constituted by the “projecting body” may have a shape complementary to the first housing.
  • the protruding body can be shaped so that it can be inserted into a housing, identical to the first housing in question, and made for example at the end of a valve operating rod, in order to come into engagement with the walls of the housing this rod so as to drive the sensor in rotation.
  • This protruding body is therefore, in a way, a male operating square, present on the sensor itself.
  • the protruding body is preferably centered on the axis of the first housing (it is therefore understood that several sensors, of the type described above, could be inserted one after the other, by inserting the protruding body of a sensor in the first housing of the following sensor).
  • the omnidirectional sensor according to the invention can moreover be easily placed on the operating square of the pivoting object, using a clamp having elongated arms.
  • measuring means adapted to measure at least one environmental variable representative of the angular position of the object pivoting about the axis of rotation one or more sensors capable of measuring variables representative of the rotation such as the angular position and / or the number of turns. In other words, these are variables that allow us to go back to the angular position and / or the number of turns.
  • these measurement means are suitable for measuring a rotation about an axis oriented in any direction of space, which makes the sensor according to the invention an omnidirectional sensor.
  • Such measurement means is constituted by a nine-axis inertial unit.
  • a nine-axis inertial unit comprises a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer.
  • the combination of the three measurements makes it possible to obtain an omnidirectional sensor.
  • signal processing means is understood to mean means for measuring computer means comprising at least one microprocessor and one memory. These processing means are suitable for analyzing the measurements from the measurement means and ascending to the angular position of the pivoting object following a rotation about the axis of rotation.
  • the axis of rotation can be oriented in any direction.
  • the communication means constitute a communication module using a communication protocol suitable for wireless transmission. Examples of a such protocol are Bluetooth, 6L0WPAN, ZigBee, Z-Wave, LoRaWAN or Sigfox protocols.
  • the communication module can be a module transmitting the angular position measured to a local reading device, for example by means of an RFID type chip.
  • the angular position sensor according to the invention makes it possible to know the angular position of a pivoting object independently of the orientation of its axis of rotation. It allows for example to know the opening state of a pivoting object such as a manual valve remotely or locally after reading its memory.
  • the installation of this device does not require any modification of the internal structure of the pivoting object.
  • the sensor according to the invention can be installed on several types of pivoting objects, without the need to dismantle them.
  • the angular position sensor makes it possible to measure and follow the position of pivoting objects for manual use and to transmit this information wirelessly, for example to a local reading device or to a database on the web.
  • the communication means may include short-range communication means and long-range communication means
  • the sensor according to the invention is particularly suitable for buried pivoting objects.
  • the senor according to the invention can be used in the automatic tracking / reading of the manipulation of a pivoting object because it can automatically detect and memorize any movement of the pivoting object.
  • the collected data can then be transmitted to a database, for example via a smartphone, a dedicated device resident on site or directly integrated on a reading device housed in the rod (ie the rod) (for example a fountain key) with a display at the level of the T and an electronic part integrated in the key.
  • the sensor according to the invention it is possible to optimize the travel costs of operators in the field. Provision may be made in particular for the body of the sensor to extend in the direction corresponding to the axis of rotation of the pivoting object and for it to have, externally, a square section along a section plane normal to said axis of rotation.
  • the overall external shape of the sensor then resumes the shape of the first housing (which constitutes a sort of female operating square) as well as the shape of the body projecting from the sensor (sort of male operating square present on the sensor). Thanks to this similarity in shape, it is possible to obtain a very compact sensor, the sensor being, from a transverse point of view (perpendicular to the axis of rotation), almost as small as the operating square of the pivoting object. .
  • the sensor according to the invention may also have one or more of the characteristics below, considered individually or in all the technically possible combinations:
  • the body of the sensor comprises a second housing intended to at least partially accommodate the measurement means, the signal processing means and the communication means.
  • the measurement means include an accelerometer and / or a gyroscope and / or a magnetometer.
  • the measurement means include a 9-axis inertial unit.
  • the signal processing means comprise at least one data storage unit and a calculation unit.
  • the communication means include a wireless communication module.
  • the means of communication include long-range means of communication.
  • the communication means include short-range communication means and long-range communication means, the short-range communication means being installed inside the sensor body.
  • the short-range communication means and the long-range communication means are connected by a wired link.
  • the sensor according to the invention further comprises an energy management module.
  • Another object of the invention is a pivoting object intended to control the flow of a fluid along a pipe and comprising an omnidirectional sensor for determining an environmental value of the pivoting object as described above , the environmental value comprising at least the angular position of the pivoting object, said angular position being a measure of the opening state of the pivoting object.
  • a system of pivoting objects according to the invention can be deployed on a water network which would make it possible to optimize the management of said network by remotely monitoring the opening state of each pivoting object.
  • a third object of the invention is a network of pivoting objects comprising:
  • At least one pivoting object comprising an omnidirectional sensor according to the invention
  • a central unit configured to collect the angular positions of the pivoting objects included in the network, said positions being measured by the omnidirectional sensors according to the invention.
  • the central unit collects the measurements transmitted by the various connected pivoting objects present in the network.
  • the central unit can be a dedicated device configured to retransmit the collected data.
  • the central unit can include means for local reading of the measured angular positions.
  • the central unit can be a smartphone connected to pivoting objects via Bluetooth or another wireless communication protocol.
  • FIG. 1 a schematically illustrates the sensor according to the invention ready to be installed on a pivoting object
  • FIG. 1b schematically shows the different modules included in the sensor of Figure 1a according to the invention
  • FIG. 2b shows the cover of the sensor body illustrated in Figure 2a
  • - Figure 2c shows a sectional view of the sensor body illustrated in Figure 2a;
  • FIG. 3 schematically illustrates a network of pivoting objects connected through the sensor according to the invention.
  • FIG. 4 schematically illustrates the installation method of the omnidirectional sensor according to the invention
  • FIG. 5 schematically illustrates the method of using the omnidirectional sensor according to the invention in the absence of a wireless device
  • FIG. 1 a schematically illustrates a sensor 1 according to the invention.
  • the sensor 1 is an omnidirectional sensor for determining the angular position of the pivoting object P according to the invention.
  • the pivoting object P can pivot around an axis of rotation A.
  • the sensor 1 is fixed to the operating square CM of the pivoting object.
  • the electronic modules making up the sensor 1 according to the invention are not shown in FIG. 1 a.
  • the sensor 1 according to the invention can be fixed to the operating square by means of an extension rod.
  • this makes it possible to use the sensor 1 according to the invention even in the event of spatial constraints or of restricted accessibility.
  • FIG. 1 b schematically shows the different modules included in the sensor 1 according to the invention:
  • the measuring means M intended to measure a rotation of the pivoting object P around the axis of rotation A;
  • the measurement means M comprise at least one accelerometer or a gyroscope or a magnetometer.
  • the measurement means M comprise a three-axis accelerometer, a three-axis gyroscope and a three-axis magnetometer.
  • the combination of the three measurements makes it possible to measure the rotation of the pivoting object or, in other words, to measure the number of turns in any direction.
  • the rotation and / or the number of revolutions are measured with respect to a predetermined reference position.
  • the processing means T are configured to analyze the signal from the measurement means M and to determine the angular position of the pivoting device P.
  • the processing means T comprise a microprocessor and a memory for storing the data.
  • the Corn communication means can for example comprise a wireless communication module of the Bluetooth, 6L0WPAN, Zigbee, Z-Wave, LoRaWAN or Sigfox type.
  • the communication means can also include an antenna compatible with the communication protocol used.
  • the communication means are long-range communication means, for example in the case of non-buried pivoting objects.
  • the communication means comprise short-range communication means and long communication means scope.
  • the short-range communication means can be installed inside the sensor body C.
  • the long-range communication means can be installed outside the sensor body C. This configuration is particularly suited to buried pivoting objects.
  • the short-range communication means transmit the measured environmental value to the long-range communication means.
  • the latter not being buried, can transmit information over a long distance.
  • the long-range communication means can be installed at ground level, which facilitates long-distance data transmission when the sensor is installed on a buried pivoting object.
  • short-range communication means communication means capable of transmitting information at distances of less than about ten meters.
  • long-range communication means of communication that can transmit information to a remote user, for example several hundred kilometers away.
  • the short-range communication means and the long-range communication means can be connected by a wired link.
  • the Corn communication means can be configured to be read locally by an operator.
  • the energy management module comprises at least one microprocessor and one power supply or energy recovery source and makes it possible to optimize the energy consumption of the sensor 1 according to the invention.
  • the power source may include, for example, a solar panel or a thermoelectric module.
  • the angular position sensor according to the invention has very low energy consumption and therefore prolonged autonomy.
  • the sensor according to the invention requires a battery capable of providing a charge of the order of 0.3-0.5 mAh.
  • FIG. 2a illustrates the sensor body C used when the sensor 1 according to the invention is fixed to the operating square of the pivoting object.
  • the sensor body C extends in a direction chosen to correspond to the axis of rotation A of the pivoting object and has a square section along a section plane normal to said axis of rotation A.
  • the sensor body C includes: - A first housing L1 intended to receive the square for maneuvering the pivoting object;
  • a second housing L2 intended to at least partially accommodate the measurement means M, the signal processing means T and the Corn communication means;
  • the first housing L1 makes it possible to fix the sensor body C to the operating square of the pivoting object, after having removed the handle of the pivoting object. It is therefore possible to install the sensor 1 according to the invention without modifying the internal structure of the pivoting object.
  • the second housing L2 accommodates the measurement means and the signal processing means. Housing L2 can also include an O-ring for sealing.
  • the cover of FIG. 2b can be used to close the second housing L2, so as to protect the means of measurement M and of processing of the signal T.
  • the second housing L2 can also accommodate the wireless communication means.
  • This embodiment is suitable for easily accessible pivoting objects.
  • the Corn communication means may comprise short-range communication means and long-range communication means, the short-range communication means being placed in the sensor body and the long communication means scope being distant from the sensor body.
  • the means of Long range communication can be installed at ground level to facilitate long distance data transmission.
  • the positioning of the long-range communication means allows the sensor to send information concerning the environmental variable of the pivoting object.
  • the positioning of the means of communication allows local reading by an operator.
  • the body protruding S in the direction of the axis of rotation has substantially the same shape as the square for operating the pivoting object on which the sensor 1 is installed.
  • the protruding body S and the first housing L1 have a complementary shape.
  • FIG. 2c shows a sectional view of the sensor body C.
  • FIG. 2c illustrates that the projecting body S and the first housing L1 have a complementary shape.
  • the body of the sensor C also has a housing LB intended to accommodate a battery.
  • the measurement means M, the processing means T and the energy management module E are installed and connected to each other using a printed circuit.
  • the printed circuit can also accommodate the Corn communication means.
  • the senor 1 according to the invention has a very small volume of the order of 3-4 cm 3 . It is therefore possible to install it in places with limited accessibility, for example buried pivoting objects.
  • the sensor is in standby mode and exits from this mode if the measurement means detect a rotation.
  • the measured data such as the angle of rotation, the number of revolutions and the time stamp are stored in the internal memory and successively transmitted.
  • Another object of the invention is a pivoting object intended to control the flow of a fluid along a pipe.
  • the pivoting object according to the invention comprises an omnidirectional sensor for determining an environmental variable according to the invention.
  • the environmental variable includes at least the angular position of the pivoting object, namely a measure of its opening state.
  • the angular position of the pivoting object is an angle measuring the rotation of the pivoting object about its axis of rotation, said rotation being measured from a reference position of the pivoting object.
  • the reference position of the pivoting object can correspond to the closed state of the pivoting object.
  • the pivoting object according to the invention is capable of measuring its opening state and of communicating it remotely or during a local reading.
  • the pivoting object according to the invention is capable of detecting the number of turns made in any direction.
  • Figure 3 illustrates a network of pivoting objects comprising:
  • At least one pivoting object comprising an omnidirectional angular position sensor according to the invention
  • a central unit configured to collect the angular positions of the pivoting objects included in the network.
  • the central unit collects the measurements transmitted by the various connected pivoting objects present in the network.
  • the central unit can be a dedicated device configured to retransmit the collected data.
  • the central unit can include means for local reading of the angular positions.
  • the central unit can be a smartphone connected to pivoting objects, for example via Bluetooth or another protocol suitable for wireless communications.
  • the central unit allows local monitoring of the network of connected pivoting objects, each pivoting object comprising a sensor 1 according to the invention.
  • the central unit can also be connected to an external network for remote monitoring of the pivoting object system.
  • Figure 4 schematically illustrates the method of installing the omnidirectional sensor according to the invention when used to detect the position angle of a pivoting object. This process includes the steps to be carried out during the installation and calibration of the sensor according to the invention.
  • the operator O activates both the sensor according to the invention and a wireless device.
  • the wireless device then connects to the sensor according to the invention to trigger a calibration of the measurement means.
  • the measurement means may include an accelerometer and / or a gyroscope. In the example illustrated in Figure 4, the connection is made using a BLE or Bluetooth Low Energy communication protocol. Other communication protocols can also be used.
  • the measuring means also include a magnetometer, intervention by the operator O is required. The operator O rotates the pivoting object by a predetermined angle. The magnetometer is then calibrated by rotating a predetermined angle.
  • FIG. 5 illustrates the use of the sensor according to the invention in the absence of a wireless device.
  • the sensor saves the new position in an internal memory and transmits it using the Corn communication means.
  • the operation of the pivoting object on the part of the operator switches the sensor from standby mode to active mode, which allows energy savings.
  • FIG. 6 illustrates the use of the omnidirectional sensor according to the invention using a wireless device.
  • the wireless device is used by the operator O to read the position of the rotating object.
  • the operator connects the wireless device to the sensor.
  • the application installed on the wireless device allows the operator to choose the type of sensor to connect to. Then the wireless device can connect to the sensor.
  • Reading the position of the pivoting object using the wireless device takes place differently depending on whether there is an operation of the pivoting object or not. If the pivoting object is not operated by the operator, the position of the pivoting object is read using the wireless device. The wireless device sends a position request to the sensor and receives a communication from the sensor including the position of the pivoting object. If the pivoting object is operated by the operator, the new position is saved and transmitted using the Corn wireless communication means. The sensor also transmits the new position to the wireless device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Capteur (1) omnidirectionnel pour la détermination d'une valeur environnementale d'un objet pivotant (P), la valeur environnementale comprenant au moins la position angulaire de l'objet pivotant (P) autour d'un axe de rotation (A), ladite position angulaire étant un angle de rotation de l'objet pivotant mesuré par rapport à une position de référence prédéterminée, ledit capteur comprenant: - un corps (C) de capteur comprenant des moyens de fixation adaptés pour fixer ledit capteur à l'objet pivotant (P) dont la position angulaire est à mesurer; - des moyens de mesure (M) adaptés pour mesurer au moins une variable environnementale représentative de la position angulaire de l'objet pivotant (P) autour de l'axe de rotation (A); - des moyens de traitement (T) du signal issu des moyens de mesure, le traitement étant adapté pour fournir une position angulaire de l'objet pivotant (P); - des moyens de communication (Com) adaptés pour communiquer la valeur environnementale de l'objet pivotant (P).

Description

CAPTEUR OMNIDIRECTIONNEL POUR LA DETERMINATION D’UNE VALEUR ENVIRONNEMENTALE D’UN OBJET PIVOTANT
DOMAINE TECHNIQUE
La présente invention se rapporte à un capteur omnidirectionnel pour la détermination d’une valeur environnementale d’un objet pivotant, ledit capteur étant destiné à mesurer la rotation d’un objet pivotant autour d’un axe de rotation. Selon un aspect de l’invention, le capteur est omnidirectionnel car l’axe de rotation peut être orienté dans n’importe quelle direction de l’espace. Un autre objet de l’invention est un objet ou un dispositif pivotant comportant le capteur angulaire omnidirectionnel selon l’invention. Un troisième objet de l’invention est un réseau d’objets pivotants comprenant un capteur angulaire omnidirectionnel selon l’invention.
ETAT DE L’ART
La métrologie des aires urbaines constitue un pilier fondamental pour la modernisation et le développement durable de celles-ci. Les capteurs, couplés à des modèles physiques et à des outils de représentation des données, permettent le développement des moyens d’aide à la décision qui améliorent au quotidien le cadre de vie des populations. Ces améliorations permettent également de réaliser des économies d’argent et de ressources.
Dans ce contexte, la gestion de réseaux de distribution de fluides comporte la nécessité de mesurer fréquemment la position angulaire d’objets pivotants autour d’un axe tels que les vannes ou les robinets disposés tout au long des réseaux.
Par exemple, dans le cas d’un réseau de distribution d’eau, la grande majorité des vannes est laissée sans surveillance et il est difficile de récolter des informations concernant l’état d’ouverture des vannes manuelles. Il s’ensuit que, souvent, seuls les opérateurs chargés de leur maintenance pour un secteur géographique particulier savent dans quel état de fermeture sont les vannes manuelles et il est impossible de centraliser les informations sur l’état d’ouverture de l’ensemble des vannes.
Par ailleurs, une restriction importante à l’installation de systèmes de surveillance est la nécessité d’utiliser des fils pour connecter les capteurs, l’installation de ces connexions étant très longue et coûteuse. Ces problèmes sont particulièrement importants dans le cas des systèmes d’objets pivotants enterrées. Dans ce cas, l’accès aux objets pivotants est particulièrement difficile, ce qui rend leur surveillance de la part d’un opérateur encore plus compliquée. Certaines solutions techniques permettent de connaître la position d’une vanne, voir par exemple les documents WO 0029812 A2 « Piezo-resistive position indicator », US 85501 15 « Valve position indicator » or « Magnetic absolute angular position sensor for valves with electric actuators », EP 1596165.
Toutefois ces solutions techniques requièrent une modification de la vanne et elles ne sont pas compatibles avec des dispositifs/objets pivotants enterrées déjà installées. De plus, ces solutions ne permettent pas de communiquer à distance l’état du dispositif/objet pivotant.
D’autres solutions techniques, telles que celles décrites dans les documents US 201502044571 « Visual valve position indicator with wireless transmitter » ou US 20100294373 « Compact Valve position Indicator » requièrent une modification de l’objet pivotant.
Aucune de ces solutions techniques ne permet de mesurer la position angulaire d’un objet pivotant autour d’un axe orienté selon une direction quelconque de l’espace.
On connaît aussi du document US 20017/0255189 une manivelle pour vanne, qui s’enfiche sur une tête de robinet carrée de la vanne et qui est équipée d’un écran et d’un système électronique permettant à un utilisateur de suivre la rotation de la manivelle.
PROBLEME TECHNIQUE
Il n’existe pas aujourd’hui un capteur de position angulaire pour un objet pivotant autour d’un axe, ledit capteur étant simple à installer, de faible encombrement, omnidirectionnel, adapté à être mis en réseau pour communiquer à distance et compatible avec des objets pivotants enterrés.
RESUME DE L’INVENTION
Pour résoudre au moins partiellement ces problèmes techniques, un objet de la présente invention est un capteur omnidirectionnel pour la détermination d’une valeur environnementale d’un objet pivotant comportant un carré de manoeuvre, la valeur environnementale comprenant au moins la position angulaire de l’objet pivotant autour d’un axe de rotation, ladite position angulaire étant un angle de rotation de l’objet pivotant mesuré par rapport à une position de référence prédéterminée, ledit capteur comprenant :
- Un corps de capteur comprenant des moyens de fixation adaptés pour fixer ledit capteur à l’objet pivotant dont la position angulaire est à mesurer, les moyens de fixation étant adaptés pour être fixés au carré de manoeuvre ;
- Des moyens de mesure adaptés pour mesurer au moins une variable environnementale représentative de la position angulaire de l’objet pivotant autour de l’axe de rotation ;
- Des moyens de traitement du signal issu des moyens de mesure, le traitement étant adapté pour fournir une position angulaire de l’objet pivotant ;
- Des moyens de communication adaptés pour communiquer la valeur environnementale de l’objet pivotant
le corps de capteur comprenant :
- Un premier logement destiné à accueillir le carré de manoeuvre ; et
- Un corps faisant saillie selon une direction correspondant à l’axe de rotation de l’objet pivotant.
On peut prévoir que le corps faisant saillie selon la direction correspondant à l’axe de rotation soit conformé pour pouvoir être inséré dans un logement d’un outil de manoeuvre identique audit premier logement et pour venir en prise avec les parois du logement de l’outil de manière à coupler en rotation le capteur et l’outil de
manoeuvre.
On peut prévoir que le corps faisant saillie selon la direction correspondante à l’axe de rotation et que le premier logement destiné à accueillir le carré de manoeuvre de l’objet pivotant aient une forme complémentaire.
On entend par valeur environnementale un ensemble de données représentatives de l’état d’un objet pivotant. La variable environnementale comprend au moins la position angulaire de l’objet pivotant. Elle peut également comprendre d’autres données issus d’autres capteurs installés sur l’objet pivotant ou à proximité. Par exemple, la variable environnementale peut comprendre des données issues d’un capteur sonore ou optique. La valeur environnementale peut également comprendre une information concernant l’état de fonctionnement du capteur omnidirectionnel. On entend par état de fonctionnement une information sur le fonctionnement du capteur, tel que le niveau d’énergie dans la batterie ou dans les moyens d’alimentation ou encore la présence d’une erreur de fonctionnement.
Dans la suite de cette description, le capteur selon l’invention sera appelé indifféremment capteur omnidirectionnel pour la détermination d’une valeur environnementale d’un objet pivotant, capteur omnidirectionnel pour la détermination d’une position angulaire d’un objet pivotant ou simplement capteur omnidirectionnel.
On entend par capteur omnidirectionnel un capteur capable de détecter la position angulaire d’un objet pivotant autour d’un axe de rotation, ledit axe de rotation pouvant être orienté selon une direction quelconque de l’espace.
On entend par position angulaire un angle de rotation mesuré à partir d’une position de référence prédéterminée. En d’autres termes, le capteur de position selon l’invention peut prendre en compte plusieurs tours de l’objet pivotant autour de l’axe de rotation. Il s’agit donc d’un capteur de position multi-tours.
On entend par corps de capteur un élément mécanique comprenant des moyens de fixation pour fixer le capteur de position angulaire selon l’invention à l’objet pivotant. Grâce aux moyens de fixations, qui comprennent le premier logement destiné à accueillir le carré de manoeuvre, le capteur peut être fixé à l’objet pivotant afin de suivre sa position angulaire, sans nécessiter de modification de la structure de l’objet pivotant.
Le corps de capteur peut ainsi être fixé directement au carré de manoeuvre de manière particulièrement simple.
Le premier logement destiné à accueillir le carré de manoeuvre, qui a par exemple une forme complémentaire du carré de manoeuvre de l’objet pivotant, est conformé pour accueillir le carré de manoeuvre et pour venir en prise avec le carré de manoeuvre de manière à pouvoir l’entrainer en rotation. Ainsi, une fois que le carré de manoeuvre est inséré dans le premier logement, le carré de manoeuvre se trouve couplé en rotation avec le capteur, le capteur étant alors en quelque sorte solidaire du carré de manœuvre. Le premier logement peut par exemple avoir une section carrée selon un plan de coupe normal à l’axe de rotation du capteur, ou une section globalement carrée comportant un dégagement à chaque sommet du carré. Plus généralement, la section du premier logement comprend quatre côtés perpendiculaires, ou sensiblement perpendiculaires, deux à deux.
Le premier logement comprend quatre faces, sensiblement perpendiculaires deux à deux. Il est noté que la section du premier logement n’est pas nécessairement constante le long de l’axe de rotation : le premier logement peut avoir une forme légèrement pyramidale, les quatre faces du logement étant légèrement inclinées vers l’axe du capteur (comme cela est souvent le cas pour un carré de manœuvre mâle, que le premier logement est destiné à recevoir).
La partie du corps du capteur constituée par le « corps faisant saillie » peut avoir une forme complémentaire du premier logement. Le corps faisant saillie peut être conformé pour pouvoir être inséré dans un logement, identique au premier logement en question, et pratiqué par exemple à l’extrémité d’une canne de manœuvre de vanne, afin de venir en prise avec les parois du logement de cette canne de manière à entraîner le capteur en rotation. Ce corps faisant saillie est donc, en quelque sorte, un carré de manœuvre mâle, présent sur le capteur lui-même. Le corps faisant saillie est préférentiellement centré sur l’axe du premier logement (on comprend donc que plusieurs capteurs, du type décrit ci-dessus, pourraient être enfichés les uns à la suite des autres, en enfichant le corps faisant saillie d’un capteur dans le premier logement du capter suivant).
La présence de cette sorte de carré de manœuvre mâle sur le capteur lui-même permet de manœuvrer l’objet pivotant, avec le capteur est en position d’usage sur l’objet pivotant, et cela au moyen du même outil de manœuvre (par exemple une canne de fontainier) que celui destiné initialement à manœuvrer l’objet pivotant nu (dépourvu de capteur). Ainsi, à titre d’exemple, une vanne d’un réseau de distribution équipée de ce capteur reste compatible avec les outils de manœuvre standards existant, dont disposent les équipes de maintenance de ce réseau.
Par ailleurs, réaliser les moyens d’entrainement en rotation du capteur sous la forme d’un tel carré de manœuvre mâle, centré sur l’axe du capteur, permet d’obtenir un capteur particulièrement compact, qui n’augmente que très peu l’espace total occupé par la vanne. Et la vanne munie de ce capteur reste facilement manœuvrable à distance, par exemple au moyen d’une canne de manœuvre longue (du type canne de fontainier), ce qui est intéressant pour des vannes enterrées.
Dans le cas d’un objet pivotant enterré, le capteur omnidirectionnel selon l’invention peut d’ailleurs être facilement mis en place sur le carré de manœuvre de l’objet pivotant, à l’aide d’une pince ayant des bras allongés.
On entend par moyens de mesure adaptés pour mesurer au moins une variable environnementale représentative de la position angulaire de l’objet pivotant autour de l’axe de rotation un ou plusieurs capteurs capables de mesurer des variables représentatives de la rotation telles que la position angulaire et/ou le nombre de tours. En d’autres termes, il s’agit donc de variables permettant de remonter à la position angulaire et/ou au nombre de tours. De plus ces moyens de mesure sont adaptés pour mesurer une rotation autour d’un axe orienté selon n’importe quelle direction de l’espace, ce qui rend le capteur selon l’invention un capteur omnidirectionnel.
Un exemple de tels moyens de mesure est constitué par une centrale inertielle à neuf axes. Par exemple une telle centrale inertielle à neuf axes comprend un accéléromètre trois axes, un gyroscope trois axes et un magnétomètre trois axes.
Avantageusement, grâce à la combinaison des trois mesures, accélèrometrique, gyroscopyque et magnétomètrique il est possible de déterminer la position angulaire et le nombre de tours.
Avantageusement, la combinaison des trois mesures permet d’obtenir un capteur omnidirectionnel.
On entend par moyens de traitement du signal issu des moyens de mesure des moyens informatiques comprenant au moins un microprocesseur et une mémoire. Ces moyens de traitement sont adaptés pour analyser les mesures issues des moyens de mesure et remonter à la position angulaire de l’objet pivotant suite à une rotation autour de l’axe de rotation. L’axe de rotation peut être orienté selon une direction quelconque. Les moyens de communication constituent un module de communication utilisant un protocole de communication adapté à une transmission sans fils. Des exemples d’un tel protocole sont les protocoles Bluetooth, 6L0WPAN, ZigBee, Z-Wave, LoRaWAN ou Sigfox. Alternativement le module de communication peut être un module transmettant la position angulaire mesurée à un dispositif de lecture local par exemple grâce à une puce de type RFID. Le capteur de position angulaire selon l’invention permet de connaître la position angulaire d’un objet pivotant indépendamment de l’orientation de son axe de rotation. Il permet par exemple de connaître l’état d’ouverture d’un objet pivotant tel qu’une vanne manuelle à distance ou en local après lecture de sa mémoire.
Avantageusement, l’installation de ce dispositif ne nécessite d’aucune modification de la structure interne de l’objet pivotant. En d’autres termes, le capteur selon l’invention peut être installé sur plusieurs type d’objets pivotants, sans besoin de les démonter.
Avantageusement, le capteur selon l’invention est très compact et consomme très peu d’énergie. Le capteur de position angulaire permet de mesurer et de suivre la position des objets pivotants à usage manuel et de transmettre cette information sans fils, par exemple à un dispositif de lecture local ou à une base de données sur le web.
Par ailleurs, les moyens de communication pouvant comprendre des moyens de communication courte portée et des moyens de communication longue portée, le capteur selon l’invention est particulièrement adapté aux objets pivotants enterrés.
Par exemple, le capteur selon l’invention peut être utilisé dans le suivi/relevé automatique de la manipulation d’un objet pivotant car il peut détecter et mémoriser automatiquement tout mouvement de l’objet pivotant. Les données récoltées peuvent ensuite être transmises à une base de données par exemple par l’intermédiaire d’un smartphone, d’un dispositif dédié résidant sur place ou directement intégré sur un dispositif de lecture logé dans la canne (i.e. la tige) de manoeuvre (par exemple une clé de fontainier) avec un affichage au niveau du T et une partie électronique intégrée dans la clé.
Grâce au capteur selon l’invention, il est possible d’optimiser les coûts de déplacement des opérateurs sur le terrain. On peut prévoir en particulier que le corps du capteur s’étende selon la direction correspondant à l’axe de rotation de l’objet pivotant et qu’il possède, extérieurement, une section carrée selon un plan de coupe normal audit axe de rotation.
La forme externe globale du capteur reprend alors la forme du premier logement (qui constitue une sorte de carré de manoeuvre femelle) ainsi que la forme du corps faisant saillie sur le capteur (sorte de carré de manoeuvre mâle présent sur le capteur). Grâce à cette similitude de forme, on peut obtenir un capteur très peu encombrement, le capteur étant, d’un point de vue transverse (perpendiculairement à l’axe de rotation), presque aussi petit que le carré de manoeuvre de l’objet pivotant.
Le capteur selon l’invention peut également présenter une ou plusieurs des caractéristiques ci-dessous, considérées individuellement ou selon toutes les combinaisons techniquement possibles :
- Le corps du capteur comprend un deuxième logement destiné à accueillir au moins partiellement les moyens de mesure, les moyens de traitement du signal et les moyens de communication.
- Les moyens de mesure comprennent un accéléromètre et/ou un gyroscope et/ou un magnétomètre.
- Les moyens de mesure comprennent une centrale inertielle à 9 axes.
- Les moyens de traitement du signal comprennent au moins une unité de stockage des données et une unité de calcul.
- Les moyens de communication comprennent un module de communication sans-fils.
- Les moyens de communications comprennent des moyens de communication longue portée.
- Les moyens de communication comprennent des moyens de communication courte portée et des moyens de communication longue portée, les moyens de communication courte portée étant installés à l’intérieur du corps de capteur.
- Les moyens de communication courte portée et les moyens de communication longue portée sont connectés par une liaison filaire.
- Le capteur selon l’invention comprend en outre un module de gestion d’énergie. Un autre objet de l’invention est un objet pivotant destiné à contrôler le débit d’un fluide le long d’une conduite et comprenant un capteur omnidirectionnel pour la détermination d’une valeur environnementale de l’objet pivotant tel que décrit ci- dessus, la valeur environnementale comprenant au moins la position angulaire de l’objet pivotant, ladite position angulaire étant une mesure de l’état d’ouverture de l’objet pivotant.
Avantageusement, un système d’objets pivotants selon l’invention peut être déployé sur un réseau d’eau ce qui permettrait d’optimiser la gestion dudit réseau grâce au suivi à distance de l’état d’ouverture de chaque objet pivotant.
Un troisième objet de l’invention est un réseau d’objets pivotants comprenant :
- Au moins un objet pivotant comprenant un capteur omnidirectionnel selon l’invention ;
- Une unité centrale configurée pour récolter les positions angulaires des objets pivotants compris dans le réseau, lesdites positions étant mesurées par les capteurs omnidirectionnels selon l’invention.
L’unité centrale récolte les mesures transmises par les différents objets pivotants connectés présents dans le réseau. L’unité centrale peut être un dispositif dédié et configuré pour retransmettre les données récoltées. Alternativement, l’unité centrale peut comprendre des moyens de lecture locale des positions angulaire mesurées. Par exemple, l’unité centrale peut être un smartphone connecté aux objets pivotants via Bluetooth ou un autre protocole de communication sans-fils.
LISTE DES FIGURES D’autres caractéristiques et avantages de l’invention ressortiront clairement de la description qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figure annexées, parmi lesquelles :
- La figure 1 a illustre schématiquement le capteur selon l’invention prêt à être installé sur un objet pivotant ; - La figure 1 b montre schématiquement les différents modules compris dans le capteur de figure 1 a selon l’invention ;
- La figure 2a montre le corps du capteur selon l’invention ;
- La figure 2b montre le capot du corps de capteur illustré à la figure 2a ; - La figure 2c montre une vue en coupe du corps de capteur illustré à la figure 2a ;
- La figure 3 illustre schématiquement un réseau d’objets pivotants connectés grâce au capteur selon l’invention.
- La figure 4 illustre schématiquement le procédé d’installation du capteur omnidirectionnel selon l’invention ;
- La figure 5 illustre schématiquement le procédé d’utilisation du capteur omnidirectionnel selon l’invention en l’absence d’un périphérique sans fils ;
- La figure 6 illustre schématiquement le procédé d’utilisation du capteur omnidirectionnel selon l’invention en présence d’un périphérique sans fils. DESCRIPTION DETAILLEE
La figure 1 a illustre schématiquement un capteur 1 selon l’invention. Le capteur 1 est un capteur omnidirectionnel pour la détermination de la position angulaire de l’objet pivotant P selon l’invention. L’objet pivotant P peut pivoter autour d’un axe de rotation A. Dans l’exemple illustré à la figure 1 a, le capteur 1 est fixé au carré de manoeuvre CM de l’objet pivotant. Par souci de clarté, les modules électroniques composant les capteur 1 selon l’invention ne sont pas représentés sur la figure 1 a.
Selon un mode de réalisation, le capteur 1 selon l’invention peut être fixé au carré de manoeuvre grâce à une tige à rallonge. Avantageusement, cela permet d’utiliser le capteur 1 selon l’invention même en cas de contraintes spatiales ou d’accessibilité restreinte.
La figure 1 b montre schématiquement les différents modules compris dans le capteur 1 selon l’invention :
- Les moyens de mesure M destinés à mesurer une rotation de l’objet pivotant P autour de l’axe de rotation A ;
- Les moyens de traitement T du signal issu des moyens de mesure M ; les moyens de traitement T comprennent au moins un microprocesseur et une mémoire pour le stockage des données ; - Un module de gestion de l’énergie E comprenant une source d’énergie telle qu’une batterie ou une source de récupération d’énergie ;
- Des moyens de communications Corn destinés à transmettre la valeur environnementale de l’objet pivotant P. Les moyens de mesure M comprennent au moins un accéléromètre ou un gyroscope ou un magnétomètre.
Selon un mode de réalisation du capteur selon l’invention, les moyens de mesure M comprennent un accéléromètre trois axes, un gyroscope trois axes et un magnétomètre trois axes. Avantageusement, la combinaison des trois mesures permet de mesurer la rotation de l’objet pivotant ou, en d’autres termes, de mesurer le nombre de tours dans n’importe quelle direction.
La rotation et/ou le nombre de tours sont mesurés par rapport à une position de référence prédéterminée. Les moyens de traitement T sont configurés pour analyser le signal issu des moyens de mesure M et pour déterminer la position angulaire du dispositif pivotant P.
Selon un mode de réalisation, les moyens de traitement T comprennent un microprocesseur et une mémoire pour le stockage des données.
Une fois la position angulaire de l’objet pivotant déterminée par les moyens de traitement T, elle est communiquée par les moyens de communications sans fils Corn.
Les moyens de communication Corn peuvent par exemple comprendre un module de communication sans fils de type Bluetooth, 6L0WPAN, Zigbee, Z-Wave, LoRaWAN ou Sigfox. Les moyens de communication peuvent comprendre également une antenne compatible avec le protocole de communication utilisé.
Selon un mode de réalisation, les moyens de communication sont des moyens de communication longue portée, par exemple dans le cas des objets pivotants non enterrés.
Selon un mode de réalisation, les moyens de communication comprennent des moyens de communication courte portée et des moyens de communication longue portée. Les moyens de communication courte portée peuvent être installés à l’intérieur du corps de capteur C. Les moyens de communication longue portée peuvent être installés à l’extérieur du corps du capteur C. Cette configuration est particulièrement adaptée aux objets pivotants enterrés. Dans ce cas, les moyens de communication courte portée transmettent la valeur environnementale mesurée aux moyens de communication longue portée. Ces derniers, n’étant pas enterrés, peuvent transmettre l’information à longue distance. Par exemple, les moyens de communication longue portée peuvent être installés au niveau du sol, ce qui facilite la transmission des données à longue distance quand le capteur est installé sur un objet pivotant enterré.
On entend par moyens de communication courte portée des moyens de communication pouvant transmettre une information à des distances inférieures à quelque dizaine de mètres.
On entend par moyens de communication longue portée des moyens de communication pouvant transmettre une information à un utilisateur distant, par exemple à plusieurs centaines de kilomètres de distance.
Selon un mode de réalisation, les moyens de communication courte portée et les moyens de communication longue portée peuvent être connectés par une liaison filaire. Alternativement, les moyens de communication Corn peuvent être configurés pour être lus en local par un opérateur.
Le module de gestion d’énergie comprend au moins un microprocesseur et une source d’alimentation ou de récupération d’énergie et permet d’optimiser la consommation d’énergie du capteur 1 selon l’invention. La source d’alimentation peut comprendre par exemple un panneau solaire ou un module thermoélectrique.
Avantageusement, le capteur de position angulaire selon l’invention a une très faible consommation d’énergie et donc une autonomie prolongée. Par exemple le capteur selon l’invention requiert une batterie capable de fournir une charge de l’ordre de 0,3- 0.5 mAh. La figure 2a illustre le corps de capteur C utilisé quand le capteur 1 selon l’invention est fixé au carré de manoeuvre de l’objet pivotant. Le corps de capteur C s’étend selon une direction choisie pour correspondre à l’axe de rotation A de l’objet pivotant et possède une section carrée selon un plan de coupe normale audit axe de rotation A.
Le corps de capteur C comprend : - Un premier logement L1 destiné à accueillir le carré de manœuvre de l’objet pivotant ;
- Un deuxième logement L2 destiné à accueillir au moins partiellement les moyens de mesure M, les moyens de traitement du signal T et les moyens de communication Corn ;
- Un corps faisant saillie S selon la direction correspondante à l’axe de rotation ;
- Des logements F destinés à accueillir des aimants pour fixer le corps de capteur C au carré de manœuvre de l’objet pivotant ;
Avantageusement, le premier logement L1 permet de fixer le corps de capteur C au carré de manœuvre de l’objet pivotant, après avoir enlevée la poignée de l’objet pivotant. Il est donc possible d’installer le capteur 1 selon l’invention sans modifier la structure interne de l’objet pivotant.
Le deuxième logement L2 accueille les moyens de mesure et les moyens de traitement du signal. Le logement L2 peut également comprendre un joint torique pour l’étanchéité.
Le capot de figure 2b peut être utilisé pour fermer le deuxième logement L2, de sorte à protéger les moyens de mesure M et de traitement du signal T.
Selon un mode de réalisation, le deuxième logement L2 peut également accueillir les moyens de communication sans fils. Ce mode de réalisation est adapté aux objets pivotants facilement accessibles.
Alternativement, en cas d’objets pivotants enterrés, les moyens de communications Corn peuvent comprendre des moyens de communication courte portée et des moyens de communication longue portée, les moyens de communication courte portée étant placés dans le corps de capteur et les moyens de communication longue portée étant éloignés du corps de capteur. Par exemple, les moyens de communication longue portée peuvent être installés au niveau du sol pour faciliter la transmission de données à grande distance.
Avantageusement, en cas d’objets pivotants enterrés, le positionnement des moyens de communication longue portée permet au capteur d’envoyer les informations concernant la variable environnementale de l’objet pivotant. Alternativement, le positionnement des moyens de communication permet une lecture locale par un opérateur.
Le corps faisant saillie S dans la direction de l’axe de rotation possède sensiblement la même forme du carré de manœuvre de l’objet pivotant sur laquelle le capteur 1 est installé. En d’autres termes, le corps faisant saillie S et le premier logement L1 ont une forme complémentaire.
Avantageusement, la forme du corps faisant saillie S permet d’installer la poignée de l’objet pivotant pour permettre à un opérateur de changer facilement l’état d’ouverture. La figure 2c montre une vue en coupe du corps de capteur C. La figure 2c illustre que le corps en saillie S et le premier logement L1 possèdent une forme complémentaire.
Le corps du capteur C présente également un logement LB destiné à accueillir une batterie. Les moyens de mesure M, les moyens de traitement T et le module de gestion de l’énergie E sont installés et connectés entre eux à l’aide d’un circuit imprimé.
Le circuit imprimé peut également accueillir les moyens de communication Corn.
Avantageusement, le capteur 1 selon l’invention possède un volume très faible de l’ordre de 3-4 cm3. Il est donc possible de l’installer à des endroits avec une accessibilité restreinte, par exemple des objets pivotants enterrés.
Selon un mode de fonctionnement du dispositif, le capteur est en mode veille et sort de ce mode si les moyens de mesure détectent une rotation. Les données mesurées telles que l’angle de rotation, le nombre de tours et l’horodatage sont stockées dans la mémoire interne et successivement transmis. Un autre objet de l’invention est un objet pivotant destiné à contrôler le débit d’un fluide le long d’une conduite. L’objet pivotant selon l’invention comprend un capteur omnidirectionnel pour la détermination d’une variable environnementale selon l’invention. La variable environnementale comprend au moins la position angulaire de l’objet pivotant, à savoir une mesure de son état d’ouverture.
En d’autres termes, la position angulaire de l’objet pivotant est un angle mesurant la rotation de l’objet pivotant autour de son axe de rotation, ladite rotation étant mesurée à partir d’une position de référence de l’objet pivotant. Par exemple, la position de référence de l’objet pivotant peut correspondre à l’état de fermeture de l’objet pivotant.
Avantageusement, l’objet pivotant selon l’invention est capable de mesurer son état d’ouverture et de le communiquer à distance ou lors d’une lecture locale.
En d’autres termes, l’objet pivotant selon l’invention est capable de détecter le nombre de tours effectués dans n’importe quelle direction.
La figure 3 illustre un réseau d’objets pivotants comprenant :
- Au moins un objet pivotant comprenant un capteur omnidirectionnel de position angulaire selon l’invention ;
- Une unité centrale configurée pour récolter les positions angulaires des objets pivotants compris dans le réseau.
L’unité centrale récolte les mesures transmises par les différents objets pivotant connectés présents dans le réseau. L’unité centrale peut être un dispositif dédié et configuré pour retransmettre les données récoltées. Alternativement, l’unité centrale peut comprendre des moyens de lecture locale des positions angulaires. Par exemple l’unité centrale peut être un smartphone connecté aux objets pivotants, par exemple via Bluetooth ou un autre protocole adapté aux communications sans fils.
L’unité centrale permet la surveillance locale du réseau d’objets pivotants connectés, chaque objet pivotant comprenant un capteur 1 selon l’invention. L’unité centrale peut également être connectée à un réseau extérieur pour la surveillance à distance du système d’objets pivotants.
La figure 4 illustre schématiquement le procédé d’installation du capteur omnidirectionnel selon l’invention en cas d’utilisation pour détecter la position angulaire d’un objet pivotant. Ce procédé comprend les étapes à réaliser lors de l'installation et de la calibration du capteur selon l’invention.
L’opérateur O met en route à la fois le capteur selon l’invention et un périphérique sans fil. Le périphérique sans fil se connecte ensuite au capteur selon l’invention pour déclencher une calibration des moyens de mesure. Les moyens de mesure peuvent comprendre un accéléromètre et/ou un gyroscope. Dans l’exemple illustré à la figure 4 la connexion se fait en utilisant un protocole de communication BLE ou Bluetooth Low Energy. D’autres protocoles de communication sont également utilisables. Si les moyens de mesure comprennent également un magnétomètre, une intervention de l’opérateur O est requise. L’opérateur O tourne l’objet pivotant d’un angle prédéterminé. Le magnétomètre est ensuite calibré grâce à la rotation d’un angle prédéterminé.
La figure 5 illustre l’utilisation du capteur selon l’invention en l’absence d’un périphérique sans fils. Dans ce cas, suite à la manoeuvre de l’objet pivotant par l’opérateur O, le capteur sauvegarde la nouvelle position dans une mémoire interne et la transmet grâce aux moyens de communication Corn.
Selon un mode de réalisation, la manoeuvre de l’objet pivotant de la part de l’opérateur fait basculer le capteur du mode veille au mode actif, ce qui permet de réaliser des économies d’énergie.
La figure 6 illustre l’utilisation du capteur omnidirectionnel selon l’invention à l’aide d’un périphérique sans fils. Le périphérique sans fils est utilisé par l’opérateur O pour lire la position de l’objet pivotant.
Tout d’abord, l’opérateur connecte le périphérique sans fils au capteur. L’application installée sur le périphérique sans fils permet à l’opérateur de choisir le type de capteur auquel se connecter. Ensuite le périphérique sans fils peut se connecter au capteur.
La lecture de la position de l’objet pivotant à l’aide du périphérique sans fils se déroule différemment selon qu’il y ait une manoeuvre de l’objet pivotant ou pas. Si l’objet pivotant n’est pas manoeuvré par l’opérateur, la lecture de la position de l’objet pivotant est réalisée à l’aide du périphérique sans fils. Le périphérique sans fils envoie une demande de position au capteur et reçoit une communication de la part du capteur comprenant la position de l’objet pivotant. Si l’objet pivotant est manoeuvré par l’opérateur, la nouvelle position est sauvegardée et transmise grâce aux moyens de communication sans fils Corn. Le capteur transmet également la nouvelle position au périphérique sans fils.

Claims

REVENDICATIONS
1. Capteur (1 ) omnidirectionnel pour la détermination d’une valeur environnementale d’un objet pivotant (P) comportant un carré de manoeuvre (CM), la valeur environnementale comprenant au moins la position angulaire de l’objet pivotant (P) autour d’un axe de rotation (A), ladite position angulaire étant un angle de rotation de l’objet pivotant mesuré par rapport à une position de référence prédéterminée, ledit capteur comprenant :
- Un corps (C) de capteur comprenant des moyens de fixation adaptés pour fixer ledit capteur à l’objet pivotant (P) dont la position angulaire est à mesurer, les moyens de fixation étant adaptés pour être fixés au carré de manoeuvre (CM) ;
- Des moyens de mesure (M) adaptés pour mesurer au moins une variable environnementale représentative de la position angulaire de l’objet pivotant (P) autour de l’axe de rotation (A) ;
- Des moyens de traitement (T) du signal issu des moyens de mesure, le traitement étant adapté pour fournir une position angulaire de l’objet pivotant (P) ;
- Des moyens de communication (Corn) adaptés pour communiquer la valeur environnementale de l’objet pivotant (P)
le corps de capteur (C) comprenant :
- Un premier logement (L1 ) destiné à accueillir le carré de manoeuvre ; et
- Un corps faisant saillie (S) selon une direction correspondant à l’axe de rotation (A) de l’objet pivotant ;
le corps faisant saillie (S) selon la direction correspondant à l’axe de rotation étant conformé pour pouvoir être inséré dans un logement d’un outil de manoeuvre identique audit premier logement et pour venir en prise avec les parois du logement de cet outil de manière à coupler en rotation le capteur et l’outil de manoeuvre.
2. Capteur (1 ) selon la revendication précédente caractérisé en ce que le corps faisant saillie (S) selon la direction correspondante à l’axe de rotation et le premier logement (L1 ) destiné à accueillir le carré de manoeuvre de l’objet pivotant (L) ont une forme complémentaire, afin que le corps faisant saillie (S) puisse être inséré dans le logement de l’outil de manoeuvre et vienne en prise avec les parois du logement de l’outil pour coupler en rotation le capteur (C) et l’outil de manoeuvre.
3. Capteur (1 ) selon la revendication précédente caractérisé en ce que le corps (C) du capteur s’étend selon la direction correspondant à l’axe de rotation (A) dudit objet pivotant (P) et possède une section carrée selon un plan de coupe normale audit axe de rotation (A), le corps du capteur comprenant en outre un deuxième logement (L2) destiné à accueillir au moins partiellement les moyens de mesure, les moyens de traitement du signal et les moyens de communication.
4. Capteur (1 ) selon l’une des revendications précédentes caractérisé en ce que les moyens de mesure (M) comprennent un accéléromètre et/ou un gyroscope et/ou un magnétomètre.
5. Capteur (1 ) selon l’une des revendications précédentes caractérisé en ce que les moyens de mesure (M) comprennent une centrale inertielle à 9 axes.
6. Capteur (1 ) selon l’une des revendications précédentes caractérisé en ce que les moyens de traitement du signal comprennent au moins une unité de stockage des données et une unité de calcul.
7. Capteur (1 ) selon l’une des revendications précédentes caractérisé en ce que les moyens de communication comprennent un module de communication sans-fils.
8. Capteur (1 ) selon l’une des revendications précédentes caractérisé en ce que les moyens de communications (Corn) comprennent des moyens de communication longue portée.
9. Capteur (1 ) selon l’une des revendications 1 à 7 caractérisé en ce que les moyens de communication (Corn) comprennent des moyens de communication courte portée et des moyens de communication longue portée, les moyens de communication courte portée étant installés à l’intérieur du corps de capteur (C).
10. Capteur (1 ) selon la revendication précédente caractérisé en ce que les moyens de communication courte portée et les moyens de communication longue portée sont connectés par une liaison filaire.
11. Capteur selon l’une des revendications précédentes caractérisé en ce qu’il comprend en outre un module de gestion d’énergie (E).
12. Objet pivotant destiné à contrôler le débit d’un fluide le long d’une conduite et caractérisé en ce qu’il comprend un capteur omnidirectionnel pour la détermination d’une valeur environnementale de l’objet pivotant selon l’une des revendications 1 à 1 1 , la valeur environnementale comprenant au moins la position angulaire de l’objet pivotant, ladite position angulaire étant une mesure de l’état d’ouverture de ledit objet pivotant.
13. Réseau d’objets pivotants connectés comprenant :
- Au moins un objet pivotant comprenant un capteur omnidirectionnel selon l’une des revendications 1 à 1 1 ;
- Une unité centrale configurée pour récolter les positions angulaires des objets pivotants compris dans le réseau, lesdites positions angulaires étant mesurées par les capteurs omnidirectionnels selon l’une des revendications 1 à 1 1.
PCT/EP2019/069294 2018-07-18 2019-07-17 Capteur omnidirectionnel pour la determination d'une valeur environnementale d'un objet pivotant WO2020016326A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1856655A FR3084155B1 (fr) 2018-07-18 2018-07-18 Capteur omnidirectionnel pour la determination d’une valeur environnementale d’un objet pivotant
FR1856655 2018-07-18

Publications (1)

Publication Number Publication Date
WO2020016326A1 true WO2020016326A1 (fr) 2020-01-23

Family

ID=65031457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/069294 WO2020016326A1 (fr) 2018-07-18 2019-07-17 Capteur omnidirectionnel pour la determination d'une valeur environnementale d'un objet pivotant

Country Status (2)

Country Link
FR (1) FR3084155B1 (fr)
WO (1) WO2020016326A1 (fr)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029812A2 (fr) 1998-11-18 2000-05-25 Alliedsignal Inc. Indicateur de position piezo-resistif
EP1596165A2 (fr) 2004-05-11 2005-11-16 BIFFI ITALIA S.r.L. Capteur magnétique de la position angulaire absolue pour vannes avec actionneurs électriques
US20100294373A1 (en) 2009-05-19 2010-11-25 Automatic Switch Company Compact valve position indicator
US8353309B1 (en) * 2010-04-16 2013-01-15 Joel Embry Hydrant lock
FR2982774A1 (fr) * 2011-11-22 2013-05-24 Protect O Dispositif de surveillance de bornes incendie.
US8550115B2 (en) 2009-07-21 2013-10-08 Trumbull Industries, Inc. Valve position indicator
US20140373941A1 (en) * 2011-09-12 2014-12-25 Raziel Varman Protective fire hydrant casing and method of use thereof
US20150204457A1 (en) 2014-01-17 2015-07-23 Pentair Flow Services Ag Visual Valve Position Indicator with Wireless Transmitter
US20160025765A1 (en) * 2014-07-22 2016-01-28 Fisher Controls International Llc Control device position feedback with accelerometer
WO2016175800A1 (fr) * 2015-04-29 2016-11-03 Fmc Technologies, Inc. Procédé de détermination d'une position d'un élément de fermeture de soupape déplacé par un arbre d'actionneur de soupape rotatif
US20170255189A1 (en) * 2014-08-01 2017-09-07 Chargepoint Technology Limited Configurable monitoring system and method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029812A2 (fr) 1998-11-18 2000-05-25 Alliedsignal Inc. Indicateur de position piezo-resistif
EP1596165A2 (fr) 2004-05-11 2005-11-16 BIFFI ITALIA S.r.L. Capteur magnétique de la position angulaire absolue pour vannes avec actionneurs électriques
US20100294373A1 (en) 2009-05-19 2010-11-25 Automatic Switch Company Compact valve position indicator
US8550115B2 (en) 2009-07-21 2013-10-08 Trumbull Industries, Inc. Valve position indicator
US8353309B1 (en) * 2010-04-16 2013-01-15 Joel Embry Hydrant lock
US20140373941A1 (en) * 2011-09-12 2014-12-25 Raziel Varman Protective fire hydrant casing and method of use thereof
FR2982774A1 (fr) * 2011-11-22 2013-05-24 Protect O Dispositif de surveillance de bornes incendie.
US20150204457A1 (en) 2014-01-17 2015-07-23 Pentair Flow Services Ag Visual Valve Position Indicator with Wireless Transmitter
US20160025765A1 (en) * 2014-07-22 2016-01-28 Fisher Controls International Llc Control device position feedback with accelerometer
US20170255189A1 (en) * 2014-08-01 2017-09-07 Chargepoint Technology Limited Configurable monitoring system and method
WO2016175800A1 (fr) * 2015-04-29 2016-11-03 Fmc Technologies, Inc. Procédé de détermination d'une position d'un élément de fermeture de soupape déplacé par un arbre d'actionneur de soupape rotatif

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FABIEN JOSEPH CHRAIM ET AL: "Wireless Sensing Applications for Critical Industrial Environments", 2014, XP055585688, ISBN: 978-1-321-62984-2, Retrieved from the Internet <URL:https://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-215.pdf> [retrieved on 20190506] *

Also Published As

Publication number Publication date
FR3084155A1 (fr) 2020-01-24
FR3084155B1 (fr) 2021-08-20

Similar Documents

Publication Publication Date Title
US11821769B2 (en) Flow imaging and monitoring for synchronized management of wide area drainage
US20170234709A1 (en) Retrofit Device And Method Of Retrofitting A Flow Meter
FR2721395A1 (fr) Procédé de repérage positionnel d&#39;un trièdre dans l&#39;espace et dispositif pour la mise en Óoeuvre de ce procédé.
US11939750B2 (en) Adapter cap for a fire hydrant, a fire hydrant and a method for remote monitoring an open-close status of a fire hydrant
EP3275129B1 (fr) Systeme de communication universelle pour appareils de mesure, procede de communication s&#39;y rapportant
FR2938929A1 (fr) Station meteorologique
EP3175234B1 (fr) Systeme de mesure intelligent au point de livraison d&#39;un fluide
WO2020016326A1 (fr) Capteur omnidirectionnel pour la determination d&#39;une valeur environnementale d&#39;un objet pivotant
FR2645304A1 (fr) Systeme de surveillance d&#39;installations industrielles
FR3071794B1 (fr) Balai d&#39;essuie-glace
EP3379269B1 (fr) Accessoire de contrôle pour un appareil électrique pourvu d&#39;une borne de raccordement
FR2812084A1 (fr) Capteur transmetteur de donnees, notamment de donnees de comptage de fluide ou d&#39;evenements ou de donnees de mesures physiques, dispositif concentrateur et procede de transmission associes
EP2884412A1 (fr) Procede de gestion d&#39;une installation electrique et systeme de gestion d&#39;une telle installation
FR3038381A1 (fr) Dispositif capteur prevu pour etre embarque de maniere interchangeable sur un vecteur robotise, drone equipe d&#39;un tel dispositif.
EP3775757A1 (fr) Procede de surveillance d&#39;au moins une mesure de l&#39;etat structurel d&#39;un edifice
EP2387693A2 (fr) Dispositif de panneaux solaires
EP0580520A1 (fr) Procédé et dispositif d&#39;adaptation de systèmes électroniques à des compteurs d&#39;eau
EP2887042B1 (fr) Dispositif et procede de mesure de pression avec couplage electromagnetique
EP3631377B1 (fr) Detendeur pour bouteille de gaz
EP3098375A1 (fr) Charnière équipée d&#39;une unité de détection
WO2014106663A1 (fr) Dispositif et procédé de télérelève de compteur
EP3690458A1 (fr) Procede de suivi de temps d&#39;utilisation d&#39;un groupe electrogene, dispositif autonome, procede de suivi de la maintenance, et systeme correspondants
FR3093810A1 (fr) Dispositif pour le test d’une interface communicante pour compteur de fluide
FR3135558A1 (fr) Compteur d’activité doté d’un module électronique enregistrant des données d’utilisation d’un véhicule horodatées par une horloge embarquée
FR3098294A1 (fr) Dispositif de mesure de l’écartement de deux éléments d’un appareil tendeur d’une caténaire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19739316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19739316

Country of ref document: EP

Kind code of ref document: A1