WO2020016121A1 - Sensor unit - Google Patents

Sensor unit Download PDF

Info

Publication number
WO2020016121A1
WO2020016121A1 PCT/EP2019/068788 EP2019068788W WO2020016121A1 WO 2020016121 A1 WO2020016121 A1 WO 2020016121A1 EP 2019068788 W EP2019068788 W EP 2019068788W WO 2020016121 A1 WO2020016121 A1 WO 2020016121A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor unit
radar sensor
radar
motor vehicle
unit
Prior art date
Application number
PCT/EP2019/068788
Other languages
German (de)
French (fr)
Inventor
Bernd Herthan
Original Assignee
Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg filed Critical Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg
Publication of WO2020016121A1 publication Critical patent/WO2020016121A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/40Safety devices, e.g. detection of obstructions or end positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05FDEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION; CHECKS FOR WINGS; WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05F15/00Power-operated mechanisms for wings
    • E05F15/70Power-operated mechanisms for wings with automatic actuation
    • E05F15/77Power-operated mechanisms for wings with automatic actuation using wireless control
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME RELATING TO HINGES OR OTHER SUSPENSION DEVICES FOR DOORS, WINDOWS OR WINGS AND DEVICES FOR MOVING WINGS INTO OPEN OR CLOSED POSITION, CHECKS FOR WINGS AND WING FITTINGS NOT OTHERWISE PROVIDED FOR, CONCERNED WITH THE FUNCTIONING OF THE WING
    • E05Y2400/00Electronic control; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/10Electronic control
    • E05Y2400/44Sensors therefore
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/466Indirect determination of position data by Trilateration, i.e. two antennas or two sensors determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the antennas or sensors, the position data of the target is determined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9314Parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area

Definitions

  • the invention relates to a sensor unit of a motor vehicle.
  • the sensor unit is preferably a component of an electromotive adjustment device.
  • the invention further relates to an electromotive adjusting device and the use of a sensor unit.
  • an adjustment part such as a tailgate or a side door
  • an electric motor when activated. It is possible that there is an obstacle in the adjustment area. If the user does not have a complete overview of the adjustment area and activates the adjustment device, or if an obstacle is moved into the adjustment area, the adjustment part moves against the obstacle. It is therefore possible for the adjustment part and / or the obstacle to be damaged.
  • Distance sensors are usually used to avoid this. These work according to the capacitive principle, for example, and the distance sensor thus has electrodes by means of which an electromagnetic field is created.
  • the electromagnetic field is disturbed and the capacitance of the capacitor formed by means of the electrodes of the distance sensor is changed.
  • the obstacle must be in the area of the electrodes.
  • An alternative to this is the use of a sensor unit with a radar sensor.
  • electromagnetic waves are emitted during operation, that are reflected or scattered from the obstacle, provided it has suitable physical properties.
  • the reflected waves are detected again by means of the radar sensor, and the distance of the obstacle to the radar sensor is determined on the basis of the propagation time of the waves. In other words, the time period between the transmission and the reception of the electromagnetic waves is determined and the distance is determined taking into account the propagation speed of the electromagnetic waves.
  • the electromagnetic waves are usually transmitted and received by means of an antenna which has a main lobe.
  • the main lobe is parallel to a main radiation direction and in particular rotationally symmetrical with respect to this.
  • the radiated power and the reception power of the antenna are greatest parallel to the main lobe, so that the obstacle can be detected comparatively reliably if this is located in the main lobe.
  • the sensitivity of the radar sensor is reduced, so that the obstacle cannot be reliably detected, particularly in comparatively poor conditions, for example when it rains or the like.
  • the invention is based on the object of specifying a particularly suitable sensor unit of a motor vehicle and a particularly suitable use of a sensor unit of a motor vehicle and also a particularly suitable electromotive adjusting device, advantageously reducing manufacturing costs and expediently increasing reliability ..
  • the sensor unit is a component of a motor vehicle and is preferably connected to an adjustment part in the installed state. At least it does monitoring of an adjustment range of the adjustment part preferably by means of the sensor unit.
  • the adjustment part is adjustable and preferably guided in a suitable manner, for example by means of a bearing, hinge or guide rails.
  • the adjusting part is expediently part of an electromotive adjusting device and suitably driven by means of an electric motor, for example by means of a worm gear and / or a spindle.
  • the electric motor is designed in particular as a brushed commutator motor or alternatively as a brushless one.
  • the electric motor is expediently a brushless direct current motor (BLDC).
  • the electric motor is an asynchronous motor or a synchronous motor.
  • the electromotive adjustment device is also a component of the motor vehicle and, for example, an electromotive seat adjustment, an electromotive side window or an electromotive sliding roof.
  • the adjustment part is a seat, part of a seat, a window pane or a sliding roof.
  • the electromotive adjustment drive is particularly preferably an electromotive door adjustment, the door being, for example, a side door which is pivoted or displaced in particular.
  • the door is a tailgate and the electromotive adjustment device is an electromotive tailgate drive.
  • the door closes an opening in the motor vehicle. During operation, the door is preferably moved from an open to a closed position or vice versa by means of the electric motor.
  • the adjustment part is therefore a door and part of an electromotive door adjustment.
  • the sensor unit suitably serves as anti-trap protection.
  • the sensor unit is preferably a distance sensor, by means of which a distance of an object to the sensor unit is thus detected and / or determined.
  • a further distance of the object from a reference point is suitably determined on the basis of the distance, and / or the presence of the object is determined by means of the sensor unit.
  • the sensor unit is used to determine a distance of the adjustment part with respect to a reference point and / or an obstacle.
  • the reference point is in particular a seal into which the adjustment part is moved to create a closed position.
  • the obstacle is, for example, an object in the adjustment path, such as a human hand or the like.
  • the sensor unit is used to monitor an adjustment range, in particular a pivoting range, of a door, such as a side door or a tailgate, during operation.
  • the sensor unit is preferably used to monitor whether a side door is pivoted against a curb or the like. If a curb or the like is identified, the electromotive adjusting device in particular is controlled in such a way that an adjusting movement is interrupted or at least reduced, as shortened, so that the door is prevented from being brought against the curb.
  • the sensor unit thus serves as collision protection.
  • a gesture or the like is recognized by a user of the motor vehicle.
  • the sensor unit has a first radar sensor unit, which has an antenna and a transmitter / receiver unit.
  • the antenna is controlled by means of the transmitter / receiver unit, so that radar waves are emitted by the antenna. Radar waves are also received by means of the antenna and the transceiver unit.
  • the transmitter / receiver unit serves to operate the antenna.
  • the sensor unit has a second radar sensor unit, which likewise comprises an antenna and a transmitter / receiver unit.
  • the transmitter / receiver unit serves to operate the antenna.
  • Each of the radar sensor assemblies thus has a transmitting / receiving unit, by means of which the respective antenna is operated.
  • each of the radar sensor assemblies thus has an associated control unit.
  • each of the radar sensor units comprises only a single antenna, which reduces manufacturing costs.
  • each radar sensor assembly has two different antennas, one of which is used for receiving and the other for transmitting radar waves.
  • the two radar sensor units are coupled to one another for signaling purposes. This makes it possible, for example, to control one radar sensor unit as a function of the other radar sensor unit.
  • an exchange of sensor signals takes place during operation, which are generated by means of the respective radar sensor units, so that more information is available, in particular with regard to an object (obstacle) on which the radar waves are scattered and / or reflected.
  • the two radar sensor units are spaced apart.
  • the distance between the radar sensor units is greater than 10 cm, 20 cm, 30 cm or 50 cm.
  • the distance is preferably less than 2 m, 1.5 m or 1.2 m.
  • the distance of the object reflecting / scattering the radar waves is determined in particular by means of trilateration. Due to the spacing, there is a comparatively high angular resolution. Accuracy is improved and robustness is increased. In addition, the reliability of the sensor unit is improved in this way. Even if one of the radar sensor units fails, for example, operation is still possible, which further increases reliability.
  • the position of the object can be determined comparatively precisely by means of trilateration on account of the two radar sensor units which are offset in relation to one another.
  • each of the radar sensor assemblies preferably has only a single antenna, which reduces manufacturing costs. It is also possible to manufacture the radar sensor units comparatively compact, so that an existing installation space can be used comparatively effectively.
  • the transmitter / receiver unit is formed by means of several discrete components.
  • the antenna is designed as a discrete component.
  • each of the radar sensor assemblies is designed as an integrated circuit.
  • each radar sensor assembly is an integrated circuit (IC).
  • the antenna is formed, for example, by means of a metallization layer of the integrated circuit, in particular the uppermost metallization layer. Due to the design as an integrated circuit, one size is further reduced and assembly is simplified. For example, different radar sensor assemblies are used. This enables adjustment to different requirements.
  • the two radar sensor units are particularly preferably identical in construction to one another. This means that identical parts can be used, which further reduces manufacturing costs.
  • the sensor unit particularly preferably has a third radar sensor unit, which has an antenna and a transmitter / receiver unit.
  • the third radar sensor assembly is identical in construction to the first and / or second radar sensor assembly.
  • the third radar sensor unit is preferably designed as an integrated circuit.
  • the third radar sensor unit is coupled to and spaced from the first and second radar sensor units.
  • the sensor unit has several such radar sensor units.
  • the third radar sensor unit enables a three-dimensional determination of the position of the object.
  • the areas monitored by means of the three radar sensor units expediently overlap at least in part.
  • there are additional radar sensor units which increases accuracy. If only the two radar sensor units are present, however, at least a two-dimensional determination of the position of the object is still possible, that is to say the determination of the position of the object in one plane.
  • the sensor unit preferably comprises a control unit which is coupled to the radar sensor units in terms of signal technology.
  • the coupling is expediently carried out by means of a bus system, for example a Lin bus system or a Can bus system.
  • the control device is designed as a master, whereas the radar sensor units act as slaves.
  • the radar sensor modules are preferably coupled to one another by means of the control unit or at least via the bus system.
  • the control device suitably evaluates the sensor signals of the radar sensor modules.
  • the trilateration preferably takes place during operation by means of the control device. Consequently, the position of the object is determined by means of the control device.
  • the transmitter / receiver units each provide a comparatively high computing power, which further reduces manufacturing costs.
  • control unit performs additional tasks, for example the task of a door control unit or a tailgate control unit, in particular if the electromotive adjustment device is the electromotive tailgate drive.
  • the bus system Due to the use of the bus system, further operation is possible, in particular if one of the radar sensor units fails.
  • wiring effort is reduced.
  • all of the radar sensor units are operated at a frequency of essentially 18 GHz.
  • radar waves with a frequency of essentially 18 GHz are emitted during operation.
  • at least one of the radar sensor units preferably all of the radar sensor units, is operated at a frequency between 78 GHz and 81 GHz.
  • a sensor unit of a motor vehicle is expediently used, with a first radar sensor unit and with a second radar sensor unit, which are spaced apart from one another and are coupled to one another in terms of signal technology, each radar sensor unit having an antenna and a transmitting / receiving unit for determining a distance from an obstacle used for the motor vehicle.
  • the sensor unit is thus used to determine the position of the obstacle with respect to the motor vehicle.
  • the sensor unit is in particular a distance sensor.
  • an adjustment path is monitored when the adjustment part of the adjustment device is swiveled / created.
  • the distance with respect to the obstacle is only determined when the adjustment part is moved.
  • the sensor unit is used to check the distance of the obstacle and thus its presence when the vehicle is moving, in particular when reversing.
  • the sensor unit is used here both to check the adjustment range of the adjustment part and the travel route of the motor vehicle.
  • the sensor unit is only used to monitor the travel route of the motor vehicle, in particular when reversing.
  • the distance of the obstacle to the motor vehicle is only determined if the existence of the obstacle has already been determined using a further sensor, for example using a capacitive sensor.
  • the sensor unit is operated essentially continuously, for example when the motor vehicle is operated above or below a specific speed, or whenever the motor vehicle is set to a specific operating state.
  • the sensor unit is used instead or in addition to detect a gesture by a user.
  • the gesture is carried out with one hand and / or one arm of the user.
  • the gesture is carried out with a foot of the user who, for example, moves it around the motor vehicle in a specific area, for example by pivoting it, in particular below a bumper.
  • an action is expediently carried out, preferably an operation of the possible electric motor adjustment device and / or a query of a key, that is to say a check as to whether the user is authorized to gain access or the like to the motor vehicle.
  • the sensor unit When using the sensor unit, further information is preferably also taken into account, which is provided, for example, by means of further sensors, which improves an angle and distance resolution.
  • the sensor unit preferably comprises the control device, by means of which an object card is suitably created, which maps in particular the surroundings of the motor vehicle, preferably if an environment of the motor vehicle is monitored by means of the sensor unit.
  • the electromotive adjustment device is a component of the motor vehicle and has an adjustment part which is actuated by means of an electromotive drive. is driven.
  • the electromotive drive is thus in operative connection with the adjustment part and a position of the adjustment part is set by means of the electromotive drive.
  • the electric motor drive has, in particular, an electric motor, which is, for example, a commutator motor with a brush.
  • the adjusting part is thus driven by the electric motor.
  • the electric motor is particularly preferably designed to be brushless and, for example, a brushless DC motor (BLDC).
  • the electric motor is, for example, an asynchronous motor or a synchronous motor.
  • the drive preferably comprises a transmission which is driven by means of the electric motor.
  • the output side of the transmission is preferably in operative connection with the adjustment part.
  • the gear is, for example, a spindle or a worm gear.
  • the adjustment part is, for example, a window, a seat or part of the seat, such as a backrest, and / or a sliding roof.
  • the adjustment part is particularly preferably a door, such as a side door, which, for example, is displaced or particularly preferably pivoted during operation.
  • the adjustment part is particularly preferably a tailgate, and the electromotive adjustment device is thus an electromotive tailgate drive.
  • at least one of the radar sensor assemblies is connected to the adjustment part, for example the tailgate.
  • the electromotive adjustment drive also has a sensor unit.
  • the sensor unit has a first radar sensor unit and a second radar sensor unit, which are spaced apart and are coupled to one another in terms of signal technology.
  • Each radar sensor unit comprises an antenna and a transmitter / receiver unit.
  • at least one of the radar sensor units is arranged behind a bumper and / or a bumper trim of the motor vehicle. In this way, a monitoring area is enlarged.
  • at least one of the radar sensor units is arranged in a roof area of the motor vehicle.
  • FIG. 1 schematically shows an electromotive adjustment device of a motor vehicle, with a sensor unit having three radar sensor units, and
  • a stain area of a motor vehicle 2 is shown schematically in simplified form in FIG.
  • the motor vehicle 2 has an electromotive adjusting device 4 in the form of an electromotive stain flap drive.
  • the electromotive adjustment device 4 comprises an adjustment part 6 in the form of a stain flap, which is articulated on a body 10 of the motor vehicle 2 by means of a hinge 8.
  • the electromotive adjusting device 4 comprises an electromotive drive with an electric motor 12, by means of which the adjusting part 6 is driven.
  • Flier Members is driven by the electric motor 12 a variable-length component 14 which is connected to the adjustment part 6.
  • the position of the adjustment part 6 with respect to the body 10 is set.
  • the electric motor 12 is coupled in terms of signal technology to a control unit 18 of a sensor unit 20 by means of a flaup bus system 16 which operates according to the CAN standard.
  • the control unit 18 is a stain flap control unit and is permanently installed on the body side.
  • the sensor unit 20 has a first radar sensor module 22, a second radar sensor module 24 and a third radar sensor module 26.
  • the radar sensor units 22, 24, 26 are structurally identical to one another and are coupled to the control unit 18 in terms of signal technology by means of a bus system 28, which operates, for example, according to the LIN standard. So are the radar sensor units 22, 24, 26 are also coupled to one another for signaling purposes.
  • the first radar sensor assembly 22 is attached to the adjustment part 6, namely the tailgate.
  • the second radar sensor assembly 24 is fastened to the body 10 of the motor vehicle 2
  • the third radar sensor assembly 26 is fastened to the inside of a rear bumper 29.
  • the radar sensor assemblies 20, 24, 26 emit radar waves 30 which have a frequency between 78 GHz and 81 GHz.
  • the radar sensor units 20, 24, 26 are thus operated at a frequency between 78 GHz and 81 GHz.
  • the radar waves 30 are scattered and reflected on an obstacle 32, if it is present, and are returned to the radar sensor assemblies 22, 24, 26. If the radar waves 30 are detected by means of the respective radar sensor assembly 22, 24, 26, the time difference between transmission and reception of the radar waves 30 is passed to the control unit 18.
  • the control device 18 is used to determine the radar waves 30, the distance of the obstacle 32 from each of the radar sensor assemblies 20, 24, 26.
  • the position of the obstacle 32 and thus also its distance with respect to the motor vehicle 2 is determined by means of trilateration on the basis of these three determined distances.
  • the sensor unit 20 is thus used to determine the distance of the obstacle 32 from the motor vehicle 2. This takes place in particular when the motor vehicle 2 is reversing. For example, the distance from the obstacle 32 to the motor vehicle 2 is determined continuously by means of the sensor unit 20, in particular as soon as a driver of the motor vehicle 2 has engaged a reverse gear. As an alternative to this, the sensor unit 20 is only operated and the distance is determined when the presence of the obstacle 32 has been determined by means of further sensors, for example a capacitive sensor or a camera. In a further alternative, the adjustment path of the adjustment part 6 is monitored by means of the sensor unit 20, and thus it is checked that the adjustment part 6 is not moved against the obstacle 32 when the electric motor 12 is operated.
  • the sensor unit 20 is only operated when a command for energizing the Electric motor 12 is transmitted. In this way, an energy requirement is reduced.
  • the sensor unit 20 is used, for example, in autonomous driving to detect the obstacle 32. In this case, the sensor unit 20 essentially operates continuously.
  • a gesture of a user is detected by means of the sensor unit 20, for example in a hand or foot gesture.
  • the electric motor 12 in particular is energized and the adjustment part 6 is pivoted.
  • a key query is carried out here, so that no unauthorized persons gain access to motor vehicle 2.
  • each of the radar sensor units 22, 24, 26 is designed as an integrated circuit (IC) and has a transmitter / receiver unit 34, which is provided by means of a silicon substrate (not shown) and doping.
  • a metallization layer 36 is applied to the transmitting / receiving unit 34, by means of which an antenna 38 is formed.
  • the metallization layer 36 is suitably processed, for example opened.
  • the antenna 38 was used to transmit and receive the radar waves 30 during operation.
  • the antenna 38 is operated by means of the transmitting / receiving unit 34 and is thus acted upon with signals so that the radar waves 30 are transmitted.
  • the signals received by means of the antenna 38 are also evaluated.
  • the radar sensor assemblies 20, 24, 26 are thus designed as comparatively small units, which facilitates assembly in the motor vehicle 2.
  • the position of the obstacle 32 is determined very precisely by means of trilatation, in particular on the basis of the two radar sensor units 22, 24 which are spatially offset from one another, three-dimensional detection also being possible on the basis of the third radar sensor unit 26.
  • the obstacle 32 has, for example, an inclined wall or the like, the radar waves 30 become due to the spacing of the radar sensor units 20, 24, 26 nevertheless at least partially directed towards one another on one of the radar sensor units 22, 24, 26, so that the obstacle 32 can be reliably detected. Because of the individual radar sensor units 22, 24, 26, manufacturing costs and a required installation space are reduced. Detection of the obstacle 32 is also improved in the case of angled surroundings of the motor vehicle 2, such as in garages or in parking situations.
  • the radar sensor assemblies 22, 24, 26 are connected to the control unit 18 by means of the bus system 28, by means of which the sensor data are evaluated and, in particular, by means of which an object map of all the obstacles 32 that are located around the motor vehicle 2 is created , Information is also suitably exchanged using the main bus system 16, so that the control unit 18 can also take into account other obstacles that cannot be detected directly by the radar sensor units 20, 24, 26.
  • the obstacle 32 detected by the sensor unit 20 is also preferably fed into the main bus system 16, so that this information is known in assistance systems of the motor vehicle 2.
  • the radar sensor units 22, 24, 26, preferably the complete sensor unit 20, are additionally used for gesture recognition, that is to say for the recognition of gestures. This is preferably only done when the adjustment part 6 is in the closed position.
  • the third radar sensor unit 26 which is installed in the area of the bumper 29, a foot detection or a movement of a foot, that is to say a gesture detection of the foot, is preferably also made possible.
  • a key query of a radio key always takes place after a recognized gesture. This serves on the one hand to check the authorization of the user and on the other hand to check the plausibility of an access request.
  • the radar sensor units 22, 24, 26 are only operated when the adjustment part 6 is to be moved. This leads to a reduced electricity requirement.
  • the radar sensor units 22, 24, 26 are operated when the motor vehicle 2 is moved, for example back. Consequently
  • the sensor unit 20 also serves as a distance warning device, and the possible object map is additionally enriched with movement information of the obstacle 32.
  • sensor unit 20 is used to support a parking process, in particular in autonomous parking.
  • the radar sensor units 22, 24, 26 are only switched on when the motor vehicle 2 is moved into a parking space.
  • the radar sensor units 22, 24, 26 are only operated when the obstacle 32 has already been detected by means of a further sensor, in particular a parking sensor (PDC sensor). In this way, an energy requirement is reduced, an angular resolution being increased due to the sensor unit 20, and the position of the obstacle 32 can thus be determined comparatively reliably.
  • PDC sensor parking sensor

Abstract

The invention relates to a sensor unit (20), in particular an electromotive adjusting device (4) of a motor vehicle (2), having a first radar sensor module (22), and having a second radar sensor module (24) which are spaced apart from one another and are coupled to one another in terms of signal technology. Each radar sensor module (22, 24) has an antenna and a transmitting/receiving unit. The invention further relates to the use of a sensor unit (20) and an electromotive adjusting device (4) of a motor vehicle (2).

Description

Beschreibung  description
Sensoreinheit  sensor unit
Die Erfindung betrifft eine Sensoreinheit eines Kraftfahrzeugs. Die Sensoreinheit ist bevorzugt ein Bestandteil einer elektromotorischen Verstelleinrichtung. Die Er- findung betrifft ferner eine elektromotorische Verstelleinrichtung sowie die Verwen- dung einer Sensoreinheit. The invention relates to a sensor unit of a motor vehicle. The sensor unit is preferably a component of an electromotive adjustment device. The invention further relates to an electromotive adjusting device and the use of a sensor unit.
Kraftfahrzeuge weisen zur Erhöhung des Komforts elektromotorische Verstellein- richtungen auf. Hierbei wird ein Verstellteil, wie eine Heckklappe oder eine Seiten- tür, mittels eines Elektromotors bei Aktivierung verschwenkt. Dabei ist es möglich, dass sich ein Hindernis in dem Verstellbereich befindet. Sofern der Benutzer den Verstellbereich nicht vollständig überblickt und die Verstelleinrichtung aktiviert, o- der falls ein Hindernis in den Verstellbereich hinein bewegt wird, verfährt das Ver- stellteil gegen das Hindernis. Somit ist es möglich, dass das Verstellteil und/oder das Hindernis beschädigt werden. Zur Vermeidung davon werden üblicherweise Abstandssensoren herangezogen. Diese arbeiten beispielsweise nach dem kapa- zitiven Prinzip, und der Abstandssensor weist somit Elektroden auf, mittels derer ein elektromagnetisches Feld erstellt wird. Sofern sich ein Objekt im Nahbereich der Elektroden befindet, wird das elektromagnetische Feld gestört, und somit die Kapazität des mittels der Elektroden des Abstandssensors gebildeten Kondensa- tors verändert. Mittels Auswertung hiervon ist es ermöglicht, das Hindernis zu er- fassen, wobei jedoch lediglich eine vergleichsweise geringe Ortsauflösung ermög- licht ist. Zudem ist es erforderlich, dass sich das Hindernis im Bereich der Elektro- den befindet. Motor vehicles have electromotive adjustment devices to increase comfort. Here, an adjustment part, such as a tailgate or a side door, is pivoted by means of an electric motor when activated. It is possible that there is an obstacle in the adjustment area. If the user does not have a complete overview of the adjustment area and activates the adjustment device, or if an obstacle is moved into the adjustment area, the adjustment part moves against the obstacle. It is therefore possible for the adjustment part and / or the obstacle to be damaged. Distance sensors are usually used to avoid this. These work according to the capacitive principle, for example, and the distance sensor thus has electrodes by means of which an electromagnetic field is created. If an object is located in the vicinity of the electrodes, the electromagnetic field is disturbed and the capacitance of the capacitor formed by means of the electrodes of the distance sensor is changed. By evaluating this, it is possible to detect the obstacle, but only a comparatively low spatial resolution is possible. In addition, the obstacle must be in the area of the electrodes.
Eine Alternative hierzu ist die Verwendung einer Sensoreinheit mit einem Radar- sensor. Mittels dessen werden bei Betrieb elektromagnetische Wellen abgestrahlt, die an dem Hindernis, sofern dieses geeignete physikalische Eigenschaften auf- weist, reflektiert oder gestreut werden. Die reflektierten Wellen werden mittels des Radarsensors erneut erfasst, und anhand der Laufzeit der Wellen wird der Ab- stand des Hindernisses zu dem Radarsensor bestimmt. Mit anderen Worten wird die Zeitspanne zwischen dem Aussenden und dem Empfangen der elektromagne- tischen Wellen bestimmt und unter Berücksichtigung der Fortpflanzungsgeschwin- digkeit der elektromagnetischen Wellen der Abstand bestimmt. An alternative to this is the use of a sensor unit with a radar sensor. By means of this, electromagnetic waves are emitted during operation, that are reflected or scattered from the obstacle, provided it has suitable physical properties. The reflected waves are detected again by means of the radar sensor, and the distance of the obstacle to the radar sensor is determined on the basis of the propagation time of the waves. In other words, the time period between the transmission and the reception of the electromagnetic waves is determined and the distance is determined taking into account the propagation speed of the electromagnetic waves.
Das Aussenden und Empfangen der elektromagnetischen Wellen erfolgt üblicher- weise mittels einer Antenne, die eine Hauptkeule aufweist. Die Hauptkeule ist pa- rallel zu einer Hauptstrahlungsrichtung und insbesondere rotationssymmetrisch bezüglich dieser. Hierbei sind eine abgestrahlte Leistung und eine Empfangsleis- tung der Antenne parallel zur Hauptkeule am größten, sodass das Hindernis ver- gleichsweise sicher erfasst werden kann, sofern sich dies in der Hauptkeule befin- det. Im Bereich außerhalb der Hauptkeule ist eine Sensitivität des Radarsensors verringert, sodass insbesondere bei vergleichsweise schlechten Verhältnissen, beispielsweise bei Regen oder dergleichen, das Hindernis nicht sicher erkannt werden kann. Der Erfindung liegt die Aufgabe zugrunde, eine besonders geeignete Sensorein- heit eines Kraftfahrzeugs sowie eine besonders geeignete Verwendung einer Sen- soreinheit eines Kraftfahrzeugs als auch eine besonders geeignete elektromotori- scher Verstelleinrichtung anzugeben, wobei vorteilhafterweise Herstellungskosten reduziert sind, und wobei zweckmäßigerweise eine Zuverlässigkeit erhöht ist.. The electromagnetic waves are usually transmitted and received by means of an antenna which has a main lobe. The main lobe is parallel to a main radiation direction and in particular rotationally symmetrical with respect to this. In this case, the radiated power and the reception power of the antenna are greatest parallel to the main lobe, so that the obstacle can be detected comparatively reliably if this is located in the main lobe. In the area outside the main lobe, the sensitivity of the radar sensor is reduced, so that the obstacle cannot be reliably detected, particularly in comparatively poor conditions, for example when it rains or the like. The invention is based on the object of specifying a particularly suitable sensor unit of a motor vehicle and a particularly suitable use of a sensor unit of a motor vehicle and also a particularly suitable electromotive adjusting device, advantageously reducing manufacturing costs and expediently increasing reliability ..
Hinsichtlich der Sensoreinheit wird diese Aufgabe durch die Merkmale des An- spruchs 1 , hinsichtlich der Verwendung durch die Merkmale des Anspruchs 7 und hinsichtlich der elektromotorischen Verstelleinrichtung des Anspruchs 8 erfin- dungsgemäß gelöst. Vorteilhafte Weiterbildungen und Ausgestaltungen sind Ge- genstand der jeweiligen Unteransprüche. With regard to the sensor unit, this object is achieved according to the invention by the features of claim 1, with regard to the use by the features of claim 7 and with regard to the electromotive adjusting device. Advantageous further developments and refinements are the subject of the respective subclaims.
Die Sensoreinheit ist ein Bestandteil eines Kraftfahrzeugs und ist im Montagezu- stand vorzugsweise an einem Verstellteil angebunden. Zumindest jedoch erfolgt vorzugsweise mittels der Sensoreinheit eine Überwachung eines Verstellbereichs des Verstellteils. Das Verstellteil ist verstellbar und vorzugsweise geeignet geführt, beispielsweise mittels eines Lagers, Scharniers oder Führungsschienen. Zweck- mäßigerweise ist das Verstellteil ein Bestandteil einer elektromotorischen Verstel- leinrichtung und geeigneterweise mittels eines Elektromotors angetrieben, bei spielsweise mittels eines Schneckengetriebes und/oder einer Spindel. Der Elektro- motor ist insbesondere ein bürstenbehafteter Kommutatormotor oder alternativ bürstenlos ausgestaltet. Zweckmäßigerweise ist der Elektromotor ein bürstenloser Gleichstrommotor (BLDC). Zum Beispiel ist der Elektromotor ein Asynchronmotor oder ein Synchronmotor. The sensor unit is a component of a motor vehicle and is preferably connected to an adjustment part in the installed state. At least it does monitoring of an adjustment range of the adjustment part preferably by means of the sensor unit. The adjustment part is adjustable and preferably guided in a suitable manner, for example by means of a bearing, hinge or guide rails. The adjusting part is expediently part of an electromotive adjusting device and suitably driven by means of an electric motor, for example by means of a worm gear and / or a spindle. The electric motor is designed in particular as a brushed commutator motor or alternatively as a brushless one. The electric motor is expediently a brushless direct current motor (BLDC). For example, the electric motor is an asynchronous motor or a synchronous motor.
Die elektromotorische Verstelleinrichtung ist ebenfalls ein Bestandteil des Kraft- fahrzeugs und beispielsweise eine elektromotorische Sitzverstellung, ein elektro- motorisch betriebenes Seitenfenster oder ein elektromotorisch betriebenes Schie- bedach. In diesem Fall ist das Verstellteil ein Sitz, ein Teil eines Sitzes, eine Fens- terscheibe bzw. ein Schiebedach. Besonders bevorzugt ist der elektromotorische Verstellantrieb eine elektromotorische Türverstellung, wobei die Tür beispiels weise eine Seitentür ist, die insbesondere verschwenkt oder verschoben wird. Al ternativ hierzu ist die Tür eine Heckklappe, und die elektromotorische Verstellein- richtung ist ein elektromotorischer Heckklappenantrieb. Insbesondere verschließt die Tür eine Öffnung des Kraftfahrzeugs. Hierbei wird bei Betrieb die Tür mittels des Elektromotors vorzugsweise von einer geöffneten in eine geschlossene Posi- tion oder umgekehrt verbracht. Somit ist das Verstellteil eine Tür und ein Bestand- teil einer elektromotorischen Türverstellung. The electromotive adjustment device is also a component of the motor vehicle and, for example, an electromotive seat adjustment, an electromotive side window or an electromotive sliding roof. In this case, the adjustment part is a seat, part of a seat, a window pane or a sliding roof. The electromotive adjustment drive is particularly preferably an electromotive door adjustment, the door being, for example, a side door which is pivoted or displaced in particular. Alternatively, the door is a tailgate and the electromotive adjustment device is an electromotive tailgate drive. In particular, the door closes an opening in the motor vehicle. During operation, the door is preferably moved from an open to a closed position or vice versa by means of the electric motor. The adjustment part is therefore a door and part of an electromotive door adjustment.
Die Sensoreinheit dient geeigneterweise dem Einklemmschutz. Vorzugsweise ist die Sensoreinheit ein Abstandssensor, mittels derer somit ein Abstand eines Ob- jekts zu der Sensoreinheit erfasst und/oder bestimmt wird. Geeigneterweise wird anhand des Abstands ein weiterer Abstand des Objekts zu einem Referenzpunkt bestimmt, und/oder das Vorhandensein des Objekts wird mittels der Sensoreinheit bestimmt. Beispielsweise wird mittels der Sensoreinheit eine Entfernung des Ver- stellteils hinsichtlich eines Referenzpunkts und/oder eines Hindernisses bestimmt. Der Referenzpunkt ist insbesondere eine Dichtung, in die das Verstellteil zur Er- stellung einer geschlossenen Position verfahren wird. Das Hindernis ist beispiels weise ein sich in dem Verstellweg befindliches Objekt, wie eine menschliche Hand oder dergleichen. The sensor unit suitably serves as anti-trap protection. The sensor unit is preferably a distance sensor, by means of which a distance of an object to the sensor unit is thus detected and / or determined. A further distance of the object from a reference point is suitably determined on the basis of the distance, and / or the presence of the object is determined by means of the sensor unit. For example, the sensor unit is used to determine a distance of the adjustment part with respect to a reference point and / or an obstacle. The reference point is in particular a seal into which the adjustment part is moved to create a closed position. The obstacle is, for example, an object in the adjustment path, such as a human hand or the like.
Alternativ dient die Sensoreinheit bei Betrieb der Überwachung eines Verstellbe- reichs, insbesondere eines Schwenkbereichs, einer Tür, wie beispielsweise einer Seitentür oder einer Heckklappe. Vorzugsweise wird mittels der Sensoreinheit bei Betrieb überwacht, ob eine Seitentür gegen einen Bordstein oder dergleichen ver- schwenkt wird. Sofern ein Bordstein oder dergleichen identifiziert wird, wird insbe- sondere die elektromotorische Verstelleinrichtung derart angesteuert, dass eine Verstellbewegung unterbrochen oder zumindest verringert, wie verkürzt, ist, so- dass ein Verbringen der Tür gegen den Bordstein verhindert ist. Somit dient die Sensoreinheit dem Kollisionsschutz. Alternativ erfolgt bei Betrieb mittels der Sen- soreinheit eine Erkennung einer Geste oder dergleichen, die ein Benutzer des Kraftfahrzeugs durchführt. Insbesondere wird in Abhängigkeit der erfassten Geste bei Betrieb ein Assistenzsystem des Kraftfahrzeugs aktiviert, beispielsweise die et- waige elektromotorische Verstelleinrichtung. Die Sensoreinheit weist eine erste Radarsensorbaueinheit auf, die eine Antenne sowie eine Sende-/Empfangseinheit aufweist. Mittels der Sende-/Empfangseinheit erfolgt eine Ansteuerung der Antenne, sodass mittels der Antenne Radarwellen ausgesandt werden. Zudem werden mittels der Antenne und der Sende-/Emp- fangseinheit Radarwellen empfangen. Mit anderen Worten dient die Sende-/Emp- fangseinheit dem Betrieb der Antenne. Ferner weist die Sensoreinheit eine zweite Radarsensorbaueinheit auf, die ebenfalls eine Antenne und eine Sende-/Emp- fangseinheit umfasst. Hierbei dient wiederum die Sende-/Empfangseinheit dem Betrieb der Antenne. Somit weist jede der Radarsensorbaueinheiten jeweils eine Sende-/Empfangseinheit auf, mittels derer der Betrieb der jeweiligen Antenne er- folgt. Somit weist jede der Radarsensorbaueinheiten jeweils eine zugeordnete Steuereinheit auf. Insbesondere umfasst jede der Radarsensorbaueinheiten ledig lich eine einzige Antenne, was Herstellungskosten reduziert. Beispielsweise weist jede Radarsensorbaueinheit zwei unterschiedliche Antennen auf, von denen eine dem Empfang und die andere dem Senden von Radarwellen dient. Alternativ hierzu ist lediglich eine einzige Antenne vorhanden, mittels derer die beiden Funk- tionen ausgeführt werden. Die beiden Radarsensorbaueinheiten sind miteinander signaltechnisch gekoppelt. Somit ist es beispielsweise ermöglicht, die eine Radarsensorbaueinheit in Abhän- gigkeit der anderen Radarsensorbaueinheit zu steuern. Besonders bevorzugt je- doch erfolgt bei Betrieb ein Austausch von Sensorsignalen, die mittels der jeweili gen Radarsensorbaueinheiten erstellt sind, sodass mehr Informationen vorhanden sind, insbesondere hinsichtlich eines Objekts (Hindernis), an dem die Radarwellen gestreut und/oder reflektiert werden. Die beiden Radarsensorbaueinheiten sind voneinander beabstandet. Beispielsweise ist der Abstand der Radarsensorbauein- heiten größer als 10 cm, 20 cm, 30 cm oder 50 cm. Vorzugsweise ist der Abstand kleiner als 2 m, 1 ,5 m oder 1 ,2 m. Bei Betrieb wird insbesondere mittels Trilatera- tion der Abstand des die Radarwellen reflektierenden/streuenden Objekts ermittelt. Aufgrund der Beabstandung ist eine vergleichsweise hohe Winkelauflösung gege- ben. Somit ist die Genauigkeit verbessert und daher eine Robustheit erhöht. Zu dem ist auf diese Weise eine Zuverlässigkeit der Sensoreinheit verbessert. Auch ist bei beispielsweise einem Ausfall einer der Radarsensorbaueinheiten auch wei- terhin ein Betrieb möglich, was eine Zuverlässigkeit weiter erhöht. Zusammenfas- send ist aufgrund der zwei räumlich zueinander versetzten Radarsensorbaueinhei- ten die Position des Objekts mittels Trilateration vergleichsweise genau bestimm- bar. Somit ist eine Winkelauflösung erhöht. Zudem ist aufgrund der beiden Radar- sensorbaueinheiten eine Wahrscheinlichkeit erhöht, dass zumindest eine der zuei- nander beabstandeten Radarsensorbaueinheiten hinsichtlich des Objekts geeignet ausgerichtet ist, sodass eine vergleichsweise effiziente Reflexion der Radarwellen erfolgt. Zweckmäßigerweise überlappen die Bereiche, die mittels der beiden Ra- darsensorbaueinheiten überwacht werden, also zweckmäßigerweise die Bereiche, in die jeweils die Radarwellen ausgesandt werden. Geeigneterweise überlappen somit die Hauptkeulen, die den beiden Radarsensorbaueinheiten zugeordnet sind. Vorzugsweise weist jede der Radarsensorbaueinheiten jeweils lediglich eine ein- zige Antenne auf, was Herstellungskosten reduziert. Auch ist es möglich, die Ra- darsensorbaueinheiten vergleichsweise kompakt zu fertigen, sodass ein vorhan- dener Bauraum vergleichsweise effektiv ausgenutzt werden kann. Aufgrund des Abstands der beiden Radarsensorbaueinheiten ist zudem auch ein Betrieb bei ver- gleichsweise verwinkelten oder unübersichtlichen Gegebenheiten möglich, da dann mittels zumindest einer der Radarsensorbaueinheiten das jeweilige Objekt erfasst werden kann. Beispielsweise ist die Sende-/Empfangseinheit mittels mehrerer diskreter Bauele- mente gebildet. Alternative oder in Kombination hierzu ist die Antenne als diskre- tes Bauteil ausgestaltet. Besonders bevorzugt jedoch ist jede der Radarsensor- baueinheiten als integrierter Schaltkreis ausgestaltet. Mit anderen Worten ist jede Radarsensorbaueinheit ein integrierter Schaltkreis (IC). Hierbei ist die Antenne beispielsweise mittels einer Metallisierungslage des integrierten Schaltkreises ge- bildet, insbesondere der obersten Metallisierungslage. Aufgrund der Ausgestal- tung als integrierter Schaltkreis ist eine Baugröße weiter verringert und eine Mon- tage vereinfacht. Zum Beispiel werden unterschiedliche Radarsensorbaueinheiten verwendet. Somit ist eine Abstimmung auf unterschiedliche Anforderungen ermöglicht. Besonders bevorzugt jedoch sind die beiden Radarsensorbaueinheiten zueinander baugleich. Somit können Gleichteile verwendet werden, was Herstellungskosten weiter redu- ziert. Alternatively, the sensor unit is used to monitor an adjustment range, in particular a pivoting range, of a door, such as a side door or a tailgate, during operation. During operation, the sensor unit is preferably used to monitor whether a side door is pivoted against a curb or the like. If a curb or the like is identified, the electromotive adjusting device in particular is controlled in such a way that an adjusting movement is interrupted or at least reduced, as shortened, so that the door is prevented from being brought against the curb. The sensor unit thus serves as collision protection. Alternatively, during operation by means of the sensor unit, a gesture or the like is recognized by a user of the motor vehicle. In particular, depending on the detected gesture, an assistance system of the motor vehicle is activated during operation, for example the possible electromotive adjusting device. The sensor unit has a first radar sensor unit, which has an antenna and a transmitter / receiver unit. The antenna is controlled by means of the transmitter / receiver unit, so that radar waves are emitted by the antenna. Radar waves are also received by means of the antenna and the transceiver unit. In other words, the transmitter / receiver unit serves to operate the antenna. Furthermore, the sensor unit has a second radar sensor unit, which likewise comprises an antenna and a transmitter / receiver unit. Here again the transmitter / receiver unit serves to operate the antenna. Each of the radar sensor assemblies thus has a transmitting / receiving unit, by means of which the respective antenna is operated. Each of the radar sensor assemblies thus has an associated control unit. In particular, each of the radar sensor units comprises only a single antenna, which reduces manufacturing costs. For example, each radar sensor assembly has two different antennas, one of which is used for receiving and the other for transmitting radar waves. Alternatively, there is only a single antenna by means of which the two functions are carried out. The two radar sensor units are coupled to one another for signaling purposes. This makes it possible, for example, to control one radar sensor unit as a function of the other radar sensor unit. Particularly preferably, however, an exchange of sensor signals takes place during operation, which are generated by means of the respective radar sensor units, so that more information is available, in particular with regard to an object (obstacle) on which the radar waves are scattered and / or reflected. The two radar sensor units are spaced apart. For example, the distance between the radar sensor units is greater than 10 cm, 20 cm, 30 cm or 50 cm. The distance is preferably less than 2 m, 1.5 m or 1.2 m. During operation, the distance of the object reflecting / scattering the radar waves is determined in particular by means of trilateration. Due to the spacing, there is a comparatively high angular resolution. Accuracy is improved and robustness is increased. In addition, the reliability of the sensor unit is improved in this way. Even if one of the radar sensor units fails, for example, operation is still possible, which further increases reliability. In summary, the position of the object can be determined comparatively precisely by means of trilateration on account of the two radar sensor units which are offset in relation to one another. An angular resolution is thus increased. In addition, due to the two radar sensor assemblies, there is an increased probability that at least one of the spaced-apart radar sensor assemblies is suitably aligned with respect to the object, so that the radar waves are comparatively efficiently reflected. The regions which are monitored by means of the two radar sensor units expediently overlap, that is to say expediently the regions into which the radar waves are respectively emitted. The main lobes assigned to the two radar sensor units thus suitably overlap. Each of the radar sensor assemblies preferably has only a single antenna, which reduces manufacturing costs. It is also possible to manufacture the radar sensor units comparatively compact, so that an existing installation space can be used comparatively effectively. On account of the distance between the two radar sensor units, operation is also possible in circumstances that are comparatively angled or confusing, since the respective object can then be detected by means of at least one of the radar sensor units. For example, the transmitter / receiver unit is formed by means of several discrete components. Alternatively or in combination, the antenna is designed as a discrete component. However, it is particularly preferred that each of the radar sensor assemblies is designed as an integrated circuit. In other words, each radar sensor assembly is an integrated circuit (IC). Here, the antenna is formed, for example, by means of a metallization layer of the integrated circuit, in particular the uppermost metallization layer. Due to the design as an integrated circuit, one size is further reduced and assembly is simplified. For example, different radar sensor assemblies are used. This enables adjustment to different requirements. However, the two radar sensor units are particularly preferably identical in construction to one another. This means that identical parts can be used, which further reduces manufacturing costs.
Besonders bevorzugt weist die Sensoreinheit eine dritte Radarsensorbaueinheit auf, die eine Antenne und eine Sende-/Empfangseinheit aufweist. Insbesondere ist die dritte Radarsensorbaueinheit baugleich zu der ersten und/oder zweiten Ra- darsensorbaueinheit. Vorzugsweise ist die dritte Radarsensorbaueinheit als inte- grierter Schaltkreis ausgestaltet. Die dritte Radarsensorbaueinheit ist signaltech- nisch mit der ersten und der zweiten Radarsensorbaueinheit gekoppelt und von diesen beabstandet. Somit ist mittels der drei zueinander räumlich versetzten Ra- darsensorbaueinheiten eine verbesserte Trilateration zur Bestimmung der Lage (Position) des etwaigen Objekts ermöglicht, was eine Winkelauflösung weiter er- höht. Zudem ist bei Ausfall einer der Radarsensorbaueinheiten auch weiterhin ein vergleichsweise sicherer Betrieb ermöglicht. Ferner ist eine Wahrscheinlichkeit weiter erhöht, dass zumindest mittels einer der drei Radarsensorbaueinheiten die rückgestreuten/reflektierten Radarwellen empfangen werden. Beispielsweise weist die Sensoreinheit mehrere derartige Radarsensorbaueinheiten auf. Aufgrund der dritten Radarsensorbaueinheit ist eine dreidimensionale Bestimmung der Lage des Objekts ermöglicht. Hierfür überlappen zweckmäßigerweise zumindest teil- weise die mittels der drei Radarsensorbaueinheiten überwachten Bereiche. Vor- zugsweise überlappen also die Hauptkeulen, die jeder der Antennen der Radar- sensorbaueinheiten zugeordnet sind. Zum Beispiel sind noch weitere Radar- sensorbaueinheiten vorhanden, was eine Genauigkeit erhöht. Sofern lediglich die beiden Radarsensorbaueinheiten vorhanden sind, ist zumindest jedoch noch eine zweidimensionale Bestimmung der Lage des Objekts ermöglicht, also die Bestim- mung der Lage des Objekts in einer Ebene. The sensor unit particularly preferably has a third radar sensor unit, which has an antenna and a transmitter / receiver unit. In particular, the third radar sensor assembly is identical in construction to the first and / or second radar sensor assembly. The third radar sensor unit is preferably designed as an integrated circuit. In terms of signal technology, the third radar sensor unit is coupled to and spaced from the first and second radar sensor units. Thus, by means of the three radar sensor units which are spatially offset from one another, an improved trilateration for determining the position is possible (Position) of the possible object, which further increases an angular resolution. In addition, if one of the radar sensor units fails, comparatively safe operation is still possible. Furthermore, a probability is further increased that the backscattered / reflected radar waves are received at least by means of one of the three radar sensor assemblies. For example, the sensor unit has several such radar sensor units. The third radar sensor unit enables a three-dimensional determination of the position of the object. For this purpose, the areas monitored by means of the three radar sensor units expediently overlap at least in part. The main lobes, which are assigned to each of the antennas of the radar sensor units, therefore preferably overlap. For example, there are additional radar sensor units, which increases accuracy. If only the two radar sensor units are present, however, at least a two-dimensional determination of the position of the object is still possible, that is to say the determination of the position of the object in one plane.
Vorzugsweise umfasst die Sensoreinheit ein Steuergerät, das signaltechnisch mit den Radarsensorbaueinheiten gekoppelt ist. Die Kopplung erfolgt zweckmäßiger- weise mittels eines Bus-Systems, beispielsweise eines Lin-Bus-Systems oder ei- nes Can-Bus-Systems. Insbesondere ist das Steuergerät als Master ausgestaltet, wohingegen die Radarsensorbaueinheiten als Slave fungieren. Vorzugsweise er- folgt die signaltechnische Kopplung der Radarsensorbaueinheiten miteinander mit- tels des Steuergeräts oder zumindest über das Bus-System. Mittels des Steuerge- räts erfolgt geeigneterweise eine Auswertung der Sensorsignale der Radarsensor- baueinheiten. Vorzugsweise erfolgt bei Betrieb mittels des Steuergeräts die Trila- teration. Folglich wird mittels des Steuergeräts die Position des Objekts bestimmt. Infolgedessen ist es nicht erforderlich, dass die Sende-/Empfangseinheiten jeweils eine vergleichsweise hohe Rechenleistung bereitstellen, was Herstellungskosten weiter reduziert. Beispielsweise nimmt das Steuergerät zusätzliche Aufgaben wahr, beispielsweise die Aufgabe eines Türsteuergeräts oder eines Heckklappen- Steuergeräts, insbesondere sofern die elektromotorische Verstelleinrichtung der elektromotorische Heckklappenantrieb ist. Aufgrund der Verwendung des Bus- Systems ist insbesondere bei einem Ausfall einer der Radarsensorbaueinheiten ein weiterer Betrieb ermöglicht. Zudem ist ein Verkabelungsaufwand reduziert. Beispielsweise sind sämtliche der Radarsensorbaueinheiten mit einer Frequenz von im Wesentlichen 18 GHz betrieben. Somit werden bei Betrieb Radarwellen mit einer Frequenz von im Wesentlichen 18 GHz ausgesandt. Besonders bevorzugt jedoch ist zumindest eine der Radarsensorbaueinheiten, vorzugsweise sämtliche Radarsensorbaueinheiten, mit einer Frequenz zwischen 78 GHz und 81 GHz be- trieben. Folglich werden bei Betrieb Radarwellen mit einer Frequenz zwischen 78 GHz und 81 GHz ausgesandt/empfangen. Aufgrund der erhöhten Frequenz sind eine Bandbreite und auch eine Entfernungsauflösung erhöht. Zudem ist es mög- lieh, die Radarsensorbaueinheiten mit jeweils unterschiedlichen Frequenzen aber in demselben Frequenzband, nämlich 78 GHz bis 81 GHz, zu betreiben. Aufgrund der unterschiedlichen Frequenzen ist hierbei eine Interferenz im Wesentlichen ausgeschlossen, was eine Robustheit und Zuverlässigkeit weiter erhöht. Zweckmäßigerweise wird eine Sensoreinheit eines Kraftfahrzeugs, mit einer ers- ten Radarsensorbaueinheit, und mit einer zweiten Radarsensorbaueinheit, die zu- einander beabstandet und signaltechnisch miteinander gekoppelt sind, wobei jede Radarsensorbaueinheit eine Antenne und eine Sende-/Empfangseinheit aufweist, zur Bestimmung eines Abstands eines Hindernisses zu dem Kraftfahrzeug ver- wendet. Somit wird die Sensoreinheit zur Bestimmung der Position des Hindernis- ses bezüglich des Kraftfahrzeugs verwendet. Mit anderen Worten ist die Sen- soreinheit insbesondere ein Abstandssensor. Beispielsweise wird hierbei bei ei- nem VerschwenkenA/erstellen des Verstellteils der etwaigen Verstelleinrichtung ein Verstellweg überwacht. Insbesondere wird lediglich dann der Abstand bezüg- lieh des Hindernisses bestimmt, wenn das Verstellteil verbracht wird. The sensor unit preferably comprises a control unit which is coupled to the radar sensor units in terms of signal technology. The coupling is expediently carried out by means of a bus system, for example a Lin bus system or a Can bus system. In particular, the control device is designed as a master, whereas the radar sensor units act as slaves. The radar sensor modules are preferably coupled to one another by means of the control unit or at least via the bus system. The control device suitably evaluates the sensor signals of the radar sensor modules. The trilateration preferably takes place during operation by means of the control device. Consequently, the position of the object is determined by means of the control device. As a result, it is not necessary that the transmitter / receiver units each provide a comparatively high computing power, which further reduces manufacturing costs. For example, the control unit performs additional tasks, for example the task of a door control unit or a tailgate control unit, in particular if the electromotive adjustment device is the electromotive tailgate drive. Due to the use of the bus system, further operation is possible, in particular if one of the radar sensor units fails. In addition, wiring effort is reduced. For example, all of the radar sensor units are operated at a frequency of essentially 18 GHz. Thus, radar waves with a frequency of essentially 18 GHz are emitted during operation. However, it is particularly preferred that at least one of the radar sensor units, preferably all of the radar sensor units, is operated at a frequency between 78 GHz and 81 GHz. As a result, radar waves with a frequency between 78 GHz and 81 GHz are transmitted / received during operation. Due to the increased frequency, a bandwidth and also a range resolution are increased. In addition, it is possible to borrow the radar sensor units with different frequencies but in the same frequency band, namely 78 GHz to 81 GHz. Due to the different frequencies, interference is essentially excluded, which further increases robustness and reliability. A sensor unit of a motor vehicle is expediently used, with a first radar sensor unit and with a second radar sensor unit, which are spaced apart from one another and are coupled to one another in terms of signal technology, each radar sensor unit having an antenna and a transmitting / receiving unit for determining a distance from an obstacle used for the motor vehicle. The sensor unit is thus used to determine the position of the obstacle with respect to the motor vehicle. In other words, the sensor unit is in particular a distance sensor. For example, an adjustment path is monitored when the adjustment part of the adjustment device is swiveled / created. In particular, the distance with respect to the obstacle is only determined when the adjustment part is moved.
Alternativ oder in Kombination hierzu wird mittels der Sensoreinheit bei einem Be- wegen des Fahrzeugs, insbesondere beim Rückwärtsfahren, der Abstand des Hin- dernisses und somit auf dessen Vorhandensein überprüft. Beispielsweise wird hierbei die Sensoreinheit sowohl zur Überprüfung des Verstellbereichs des Ver- stellteils als auch des Fahrtwegs des Kraftfahrzeugs verwendet. Alternativ hierzu wird die Sensoreinheit lediglich zur Überwachung des Fahrtweges des Kraftfahr- zeugs herangezogen, insbesondere bei einer Rückwärtsfahrt. Beispielsweise wird die Sensoreinheit bei einem autonomen Fahren zur Erkennung des etwaigen Hin- dernisses in dem Fahrweg des Kraftfahrzeugs verwendet. Zum Beispiel wird der Abstand des Flindernisses zu dem Kraftfahrzeug lediglich dann bestimmt, wenn bereits mittels eines weiteren Sensors die Existenz des Hindernisses bestimmt wurde, beispielsweise mittels eines kapazitiven Sensors. Alternativ hierzu erfolgt ein im Wesentlicher kontinuierlicher Betrieb der Sensoreinheit, beispielsweise wenn das Kraftfahrzeug oberhalb oder unterhalb einer bestimmten Geschwindig- keit betrieben wird, oder immer dann, wenn das Kraftfahrzeug in einen bestimmten Betriebszustand versetzt ist. Alternatively or in combination with this, the sensor unit is used to check the distance of the obstacle and thus its presence when the vehicle is moving, in particular when reversing. For example, the sensor unit is used here both to check the adjustment range of the adjustment part and the travel route of the motor vehicle. As an alternative to this, the sensor unit is only used to monitor the travel route of the motor vehicle, in particular when reversing. For example uses the sensor unit in autonomous driving to detect the possible obstacle in the route of the motor vehicle. For example, the distance of the obstacle to the motor vehicle is only determined if the existence of the obstacle has already been determined using a further sensor, for example using a capacitive sensor. As an alternative to this, the sensor unit is operated essentially continuously, for example when the motor vehicle is operated above or below a specific speed, or whenever the motor vehicle is set to a specific operating state.
In einer alternativen Ausführungsform wird anstatt dessen oder zusätzlich die Sen- soreinheit zur Erfassung einer Geste eines Benutzers herangezogen. Beispiels- weise wird hierbei die Geste mit einer Hand und/oder einem Arm des Nutzers durchgeführt. In einer weiteren Alternative wird die Geste mit einem Fuß des Nut- zers durchgeführt, der diesen zum Beispiel in einem bestimmten Bereich um das Kraftfahrzeug herum bewegt, beispielsweise verschwenkt, insbesondere unterhalb eines Stoßfängers. In Abhängigkeit der erfassten Geste wird zweckmäßigerweise eine Aktion durchgeführt, vorzugsweise ein Betrieb der etwaigen elektromotori- schen Verstelleinrichtung und/oder eine Abfrage eines Schlüssels, also eine Über- prüfung ob der Benutzer berechtigt ist, Zutritt oder dergleichen zu dem Kraftfahr- zeug zu erlangen. In an alternative embodiment, the sensor unit is used instead or in addition to detect a gesture by a user. For example, the gesture is carried out with one hand and / or one arm of the user. In a further alternative, the gesture is carried out with a foot of the user who, for example, moves it around the motor vehicle in a specific area, for example by pivoting it, in particular below a bumper. Depending on the detected gesture, an action is expediently carried out, preferably an operation of the possible electric motor adjustment device and / or a query of a key, that is to say a check as to whether the user is authorized to gain access or the like to the motor vehicle.
Vorzugsweise werden bei der Verwendung der Sensoreinheit auch weitere Infor- mationen berücksichtigt, die beispielsweise mittels weiterer Sensoren bereitge- stellt sind, was einen Winkel-und Abstandsauflösung verbessert. Vorzugsweise umfasst die Sensoreinheit hierbei das Steuergerät, mittels dessen geeigneter- weise eine Objektkarte erstellt wird, die insbesondere die Umgebung des Kraft- fahrzeugs abbildet, vorzugsweise sofern mittels der Sensoreinheit eine Umgebung des Kraftfahrzeugs überwacht wird. When using the sensor unit, further information is preferably also taken into account, which is provided, for example, by means of further sensors, which improves an angle and distance resolution. In this case, the sensor unit preferably comprises the control device, by means of which an object card is suitably created, which maps in particular the surroundings of the motor vehicle, preferably if an environment of the motor vehicle is monitored by means of the sensor unit.
Die elektromotorische Verstelleinrichtung ist ein Bestandteil des Kraftfahrzeugs und weist ein Verstellteil auf, das mittels eines elektromotorischen Antriebs ange- trieben ist. Der elektromotorische Antrieb ist somit in Wirkverbindung mit dem Ver- stellteil und eine Position des Verstellteils wird mittels des elektromotorischen An- triebs eingestellt. Der elektromotorische Antrieb weist insbesondere einen Elektro- motor auf, der beispielsweise ein bürstenbehafteter Kommutatormotor ist. Somit ist das Verstellteil mittels des Elektromotors angetrieben. Besonders bevorzugt je- doch ist der Elektromotor bürstenlos ausgestalteten und beispielsweise ein bürs- tenloser Gleichstrommotor (BLDC). Der Elektromotor ist beispielsweise ein Asyn- chronmotor oder ein Synchronmotor. Vorzugsweise umfasst der Antrieb ein Ge- triebe, welches mittels des Elektromotors angetrieben ist. Die Abtriebsseite des Getriebes ist vorzugsweise in Wirkverbindung mit dem Verstellteil. Das Getriebe ist beispielsweise eine Spindel oder ein Schneckenradgetriebe. Das Verstellteil ist beispielsweise ein Fenster, ein Sitz oder ein Bestandteil des Sitzes, wie eine Lehne, und/oder ein Schiebedach. Besonders bevorzugt jedoch ist das Verstellteil eine Tür, wie eine Seitentür, die bei Betrieb beispielsweise verschoben oder be- sonders bevorzugt verschwenkt wird. Besonders bevorzugt jedoch ist das Verstell- teil eine Heckklappe, und die elektromotorische Verstelleinrichtung ist somit ein elektromotorischer Heckklappenantrieb. Insbesondere zumindest eine der Radar- sensorbaueinheiten an dem Verstellteil, beispielsweise der Heckklappe, angebun- den. The electromotive adjustment device is a component of the motor vehicle and has an adjustment part which is actuated by means of an electromotive drive. is driven. The electromotive drive is thus in operative connection with the adjustment part and a position of the adjustment part is set by means of the electromotive drive. The electric motor drive has, in particular, an electric motor, which is, for example, a commutator motor with a brush. The adjusting part is thus driven by the electric motor. However, the electric motor is particularly preferably designed to be brushless and, for example, a brushless DC motor (BLDC). The electric motor is, for example, an asynchronous motor or a synchronous motor. The drive preferably comprises a transmission which is driven by means of the electric motor. The output side of the transmission is preferably in operative connection with the adjustment part. The gear is, for example, a spindle or a worm gear. The adjustment part is, for example, a window, a seat or part of the seat, such as a backrest, and / or a sliding roof. However, the adjustment part is particularly preferably a door, such as a side door, which, for example, is displaced or particularly preferably pivoted during operation. However, the adjustment part is particularly preferably a tailgate, and the electromotive adjustment device is thus an electromotive tailgate drive. In particular, at least one of the radar sensor assemblies is connected to the adjustment part, for example the tailgate.
Der elektromotorische Verstellantrieb weist ferner eine Sensoreinheit auf. Die Sen- soreinheit weist eine ersten Radarsensorbaueinheit und eine zweite Radarsensor- baueinheit auf, die zueinander beabstandet und signaltechnisch miteinander ge- koppelt sind. Jede Radarsensorbaueinheit umfasst eine Antenne und eine Sende- /Empfangseinheit. Beispielsweise ist zumindest eine der Radarsensorbaueinheiten hinter einem Stoßfänger und/oder einer Stoßfängerverkleidung des Kraftfahrzeugs angeordnet. Auf diese Weise ist ein Überwachungsbereich vergrößert. Alternativ oder in Kombination hierzu ist zumindest eine der Radarsensorbaueinheiten in ei- nem Dachbereich des Kraftfahrzeugs angeordnet. The electromotive adjustment drive also has a sensor unit. The sensor unit has a first radar sensor unit and a second radar sensor unit, which are spaced apart and are coupled to one another in terms of signal technology. Each radar sensor unit comprises an antenna and a transmitter / receiver unit. For example, at least one of the radar sensor units is arranged behind a bumper and / or a bumper trim of the motor vehicle. In this way, a monitoring area is enlarged. Alternatively or in combination with this, at least one of the radar sensor units is arranged in a roof area of the motor vehicle.
Die im Zusammenhang mit der Sensoreinheit ausgeführten Weiterbildungen und Vorteile sind sinngemäß auch auf den elektromotorischen Verstellantrieb//die Ver- wendung zu übertragen und umgekehrt. Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen: Fig. 1 schematisch eine elektromotorische Verstelleinrichtung eines Kraft- fahrzeugs, mit einer drei Radarsensorbaueinheiten aufweisenden Sensoreinheit, und The further developments and advantages carried out in connection with the sensor unit are to be applied analogously to the electromotive adjusting drive // the use and vice versa. An exemplary embodiment of the invention is explained in more detail below with reference to a drawing. 1 schematically shows an electromotive adjustment device of a motor vehicle, with a sensor unit having three radar sensor units, and
Fig. 2 perspektivisch vereinfacht eine der drei baugleichen Radarsensor- baueinheiten.  2 perspectively simplifies one of the three structurally identical radar sensor units.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszei- chen versehen. Corresponding parts are provided with the same reference symbols in all the figures.
In Figur 1 ist schematisch vereinfacht ein Fleckbereich eines Kraftfahrzeugs 2 dar- gestellt. Das Kraftfahrzeug 2 weist eine elektromotorische Verstelleinrichtung 4 in Form eines elektromotorischen Fleckklappenantriebs auf. Die elektromotorische Verstelleinrichtung 4 umfasst ein Verstellteil 6 in Form einer Fleckklappe, das mit- tels eines Scharniers 8 an einer Karosserie 10 des Kraftfahrzeugs 2 angelenkt ist. Ferner umfasst die elektromotorische Verstelleinrichtung 4 einen elektromotori- sehen Antrieb mit einem Elektromotor 12, mittels dessen das Verstellteil 6 ange- trieben ist. Flierfür wird mittels des Elektromotors 12 ein längenveränderliches Bauteil 14 angetrieben, das an dem Verstellteil 6 angebunden ist. Je nach Aus- dehnung des längenveränderlichen Bauteils 14 ist die Stellung des Verstellteils 6 bezüglich der Karosserie 10 eingestellt. A stain area of a motor vehicle 2 is shown schematically in simplified form in FIG. The motor vehicle 2 has an electromotive adjusting device 4 in the form of an electromotive stain flap drive. The electromotive adjustment device 4 comprises an adjustment part 6 in the form of a stain flap, which is articulated on a body 10 of the motor vehicle 2 by means of a hinge 8. Furthermore, the electromotive adjusting device 4 comprises an electromotive drive with an electric motor 12, by means of which the adjusting part 6 is driven. Flierfür is driven by the electric motor 12 a variable-length component 14 which is connected to the adjustment part 6. Depending on the extension of the variable-length component 14, the position of the adjustment part 6 with respect to the body 10 is set.
Der Elektromotor 12 ist mittels eines Flaupt-Bus-Systems 16, das nach dem CAN- Standard arbeitet, signaltechnisch mit einem Steuergerät 18 einer Sensoreinheit 20 gekoppelt. Das Steuergerät 18 ist ein Fleckklappensteuergerät und karosserie- seitig fest installiert. Zudem weist die Sensoreinheit 20 eine erste Radarsensor- baueinheit 22, eine zweite Radarsensorbaueinheit 24 und eine dritte Radarsensor- baueinheit 26 auf. Die Radarsensorbaueinheiten 22, 24, 26 sind zueinander bau- gleich und mittels eines Bus-Systems 28, das beispielsweise nach dem LIN- Standard arbeitet, signaltechnisch mit dem Steuergerät 18 gekoppelt. Somit sind auch die Radarsensorbaueinheiten 22, 24, 26 signaltechnisch miteinander gekop- pelt. Die erste Radarsensorbaueinheit 22 ist an dem Verstellteil 6, nämlich der Heckklappe, befestigt. Die zweite Radarsensorbaueinheit 24 ist an der Karosserie 10 des Kraftfahrzeugs 2 befestigt, und die dritte Radarsensorbaueinheit 26 ist in- nenseitig eines hinteren Stoßfängers 29 befestigt. The electric motor 12 is coupled in terms of signal technology to a control unit 18 of a sensor unit 20 by means of a flaup bus system 16 which operates according to the CAN standard. The control unit 18 is a stain flap control unit and is permanently installed on the body side. In addition, the sensor unit 20 has a first radar sensor module 22, a second radar sensor module 24 and a third radar sensor module 26. The radar sensor units 22, 24, 26 are structurally identical to one another and are coupled to the control unit 18 in terms of signal technology by means of a bus system 28, which operates, for example, according to the LIN standard. So are the radar sensor units 22, 24, 26 are also coupled to one another for signaling purposes. The first radar sensor assembly 22 is attached to the adjustment part 6, namely the tailgate. The second radar sensor assembly 24 is fastened to the body 10 of the motor vehicle 2, and the third radar sensor assembly 26 is fastened to the inside of a rear bumper 29.
Bei Betrieb werden mittels der Radarsensorbaueinheiten 20, 24, 26 Radarwellen 30 ausgesandt, die eine Frequenz zwischen 78 GHz und 81 GHz aufweisen. So- mit sind die Radarsensorbaueinheiten 20, 24, 26 mit einer Frequenz zwischen 78 GHz und 81 GHz betrieben. Die Radarwellen 30 werden an einem Hindernis 32, sofern dieses vorhanden ist, gestreut sowie reflektiert und zu den Radarsensor- baueinheiten 22, 24, 26 zurückgeleitet. Sofern die Radarwellen 30 mittels der je- weiligen Radarsensorbaueinheit 22, 24, 26 erfasst werden, wird die Zeitdifferenz zwischen Aussenden und Empfangen der Radarwellen 30 zu der Steuergerät 18 geleitet. Mittels des Steuergeräts 18 wird unter Zuhilfenahme der Ausbreitungsge- schwindigkeit die Radarwellen 30 der Abstand des Hindernisses 32 zu jedem der Radarsensorbaueinheiten 20, 24, 26 bestimmt. Mittels Trilateration wird anhand dieser drei ermittelten Abstände die Position des Hindernisses 32 und somit auch dessen Abstand bezüglich des Kraftfahrzeugs 2 bestimmt. In operation, the radar sensor assemblies 20, 24, 26 emit radar waves 30 which have a frequency between 78 GHz and 81 GHz. The radar sensor units 20, 24, 26 are thus operated at a frequency between 78 GHz and 81 GHz. The radar waves 30 are scattered and reflected on an obstacle 32, if it is present, and are returned to the radar sensor assemblies 22, 24, 26. If the radar waves 30 are detected by means of the respective radar sensor assembly 22, 24, 26, the time difference between transmission and reception of the radar waves 30 is passed to the control unit 18. With the aid of the propagation speed, the control device 18 is used to determine the radar waves 30, the distance of the obstacle 32 from each of the radar sensor assemblies 20, 24, 26. The position of the obstacle 32 and thus also its distance with respect to the motor vehicle 2 is determined by means of trilateration on the basis of these three determined distances.
Somit wird die Sensoreinheit 20 zur Bestimmung des Abstandes des Hindernisses 32 zu dem Kraftfahrzeug 2 verwendet. Dies erfolgt insbesondere bei einer Rück- wärtsfahrt des Kraftfahrzeugs 2. Beispielsweise wird hierbei mittels der Sensorein- heit 20 kontinuierlich der Abstand des Hindernisses 32 zu dem Kraftfahrzeug 2 be- stimmt, insbesondere sobald ein Fahrer des Kraftfahrzeugs 2 einen Rückwärts- gang eingelegt hat. Alternativ hierzu wird die Sensoreinheit 20 lediglich dann be- trieben und der Abstand bestimmt, wenn das Vorhandensein des Hindernisses 32 mittels weiterer Sensoren, beispielsweise eines kapazitive Sensors oder einer Ka- mera, bestimmt wurde. In einer weiteren Alternative wird mittels der Sensoreinheit 20 der Verstellweg des Verstellteils 6 überwacht, und somit überprüft, dass das Verstellteil 6 nicht gegen das Hindernis 32 verbracht wird, wenn der Elektromotor 12 betrieben wird. Hierbei wird beispielsweise die Sensoreinheit 20 erst dann be- trieben, wenn über das Haupt-Bus-System 16 ein Befehl zur Bestromung des Elektromotors 12 übertragen wird. Auf diese Weise ist ein Energiebedarf reduziert. In einer weiteren Alternative wird die Sensoreinheit 20 beispielsweise beim auto- nomen Fahren verwendet, um das Hindernis 32 zu erfassen. Hierbei erfolgt im Wesentlichen ein kontinuierlicher Betrieb der Sensoreinheit 20. The sensor unit 20 is thus used to determine the distance of the obstacle 32 from the motor vehicle 2. This takes place in particular when the motor vehicle 2 is reversing. For example, the distance from the obstacle 32 to the motor vehicle 2 is determined continuously by means of the sensor unit 20, in particular as soon as a driver of the motor vehicle 2 has engaged a reverse gear. As an alternative to this, the sensor unit 20 is only operated and the distance is determined when the presence of the obstacle 32 has been determined by means of further sensors, for example a capacitive sensor or a camera. In a further alternative, the adjustment path of the adjustment part 6 is monitored by means of the sensor unit 20, and thus it is checked that the adjustment part 6 is not moved against the obstacle 32 when the electric motor 12 is operated. Here, for example, the sensor unit 20 is only operated when a command for energizing the Electric motor 12 is transmitted. In this way, an energy requirement is reduced. In a further alternative, the sensor unit 20 is used, for example, in autonomous driving to detect the obstacle 32. In this case, the sensor unit 20 essentially operates continuously.
In einer weiteren Alternative wird mittels der Sensoreinheit 20 eine Geste eines nicht näher dargestellten Nutzers erfasst, beispielsweise in Hand- oder Fußgeste. In Abhängigkeit der erfassten Geste wird insbesondere der Elektromotor 12 bestromt und das Verstellteil 6 verschwenkt. Beispielsweise erfolgt hierbei zusätz- lieh eine Schlüsselabfrage, sodass keine unbefugten Personen Zutritt zu dem Kraftfahrzeug 2 erlangen. In a further alternative, a gesture of a user, not shown, is detected by means of the sensor unit 20, for example in a hand or foot gesture. Depending on the detected gesture, the electric motor 12 in particular is energized and the adjustment part 6 is pivoted. For example, a key query is carried out here, so that no unauthorized persons gain access to motor vehicle 2.
In Figur 2 ist schematisch vereinfacht perspektivisch eine der zueinander bauglei- chen Radarsensorbaueinheiten 22, 24, 26 gezeigt. Jede der Radarsensorbauein- heiten 22, 24, 26 ist als integrierter Schaltkreis (IC) ausgestaltet und weist eine Sende-/Empfangseinheit 34 auf, die mittels eines nicht näher dargestellten Silizi- umsubstrats sowie Dotierungen bereitgestellt ist. Auf die Sende-/Empfangseinheit 34 ist eine Metallisierungslage 36 aufgebracht, mittels derer eine Antenne 38 ge- bildet ist. Hierfür ist die Metallisierungslage 36 geeignet bearbeitet, beispielsweise geöffnet. Mittels der Antenne 38 erfolgte bei Betrieb das Aussenden sowie das Empfangen der Radarwellen 30. Mittels der Sende-/Empfangseinheit 34 wird die Antenne 38 betrieben, und diese somit mit Signalen beaufschlagt, sodass die Ra- darwellen 30 ausgesandt werden. Auch werden die mittels der Antenne 38 emp- fangenen Signalen ausgewertet. Die Radarsensorbaueinheiten 20, 24, 26 sind so- mit als vergleichsweise klein bauende Einheiten ausgestaltet, was eine Montage in dem Kraftfahrzeug 2 erleichtert. In FIG. 2, one of the radar sensor units 22, 24, 26 that are identical to one another is shown in a schematically simplified perspective. Each of the radar sensor units 22, 24, 26 is designed as an integrated circuit (IC) and has a transmitter / receiver unit 34, which is provided by means of a silicon substrate (not shown) and doping. A metallization layer 36 is applied to the transmitting / receiving unit 34, by means of which an antenna 38 is formed. For this purpose, the metallization layer 36 is suitably processed, for example opened. The antenna 38 was used to transmit and receive the radar waves 30 during operation. The antenna 38 is operated by means of the transmitting / receiving unit 34 and is thus acted upon with signals so that the radar waves 30 are transmitted. The signals received by means of the antenna 38 are also evaluated. The radar sensor assemblies 20, 24, 26 are thus designed as comparatively small units, which facilitates assembly in the motor vehicle 2.
Zusammenfassend wird insbesondere aufgrund der zwei räumlich zueinander ver- setzt Radarsensorbaueinheiten 22, 24 die Position des Hindernis 32 mittels Trila- teration sehr genau bestimmt, wobei aufgrund der dritten Radarsensorbaueinheit 26 auch eine dreidimensionale Erkennung möglich ist. Sofern das Hindernis 32 beispielsweise eine schiefe Wand oder dergleichen aufweist, werden die Radar- wellen 30 aufgrund der Beabstandung der Radarsensorbaueinheiten 20, 24, 26 zueinander dennoch zumindest teilweise auf eine der Radarsensorbaueinheiten 22, 24, 26 geleitet, sodass das Hindernis 32 sicher erkannt werden kann. Auf- grund der einzelnen Radarsensorbaueinheiten 22, 24, 26 sind Herstellungskosten sowie ein benötigter Bauraum reduziert. Auch ist eine Erfassung des Hindernisses 32 auch bei verwinkelten Umgebungen des Kraftfahrzeugs 2, wie in Garagen oder bei Parksituationen, verbessert. In summary, the position of the obstacle 32 is determined very precisely by means of trilatation, in particular on the basis of the two radar sensor units 22, 24 which are spatially offset from one another, three-dimensional detection also being possible on the basis of the third radar sensor unit 26. If the obstacle 32 has, for example, an inclined wall or the like, the radar waves 30 become due to the spacing of the radar sensor units 20, 24, 26 nevertheless at least partially directed towards one another on one of the radar sensor units 22, 24, 26, so that the obstacle 32 can be reliably detected. Because of the individual radar sensor units 22, 24, 26, manufacturing costs and a required installation space are reduced. Detection of the obstacle 32 is also improved in the case of angled surroundings of the motor vehicle 2, such as in garages or in parking situations.
Insbesondere sind die Radarsensorbaueinheiten 22, 24, 26 mittels des Bus-Sys- tems 28 mit dem Steuergerät 18 verbunden, mittels dessen eine Auswertung der Sensordaten erfolgt, und mittels dessen insbesondere eine Objektkarte sämtlicher Hindernissen 32 erstellt wird, die sich um das Kraftfahrzeug 2 befinden. Geeigne- terweise erfolgt ferner ein Informationsaustausch mittels des Haupt-Bus-Systems 16, sodass mittels des Steuergeräts 18 auch weitere Hindernisse berücksichtigt werden können, die nicht direkt mittels der Radarsensorbaueinheiten 20, 24,26 er- fasst werden können. Auch wird vorzugsweise das mittels der Sensoreinheit 20 er- fasste Hindernis 32 in das Haupt-Bus-System 16 eingespeist, sodass diese Infor- mation bei Assistenzsystemen des Kraftfahrzeugs 2 bekannt ist. In particular, the radar sensor assemblies 22, 24, 26 are connected to the control unit 18 by means of the bus system 28, by means of which the sensor data are evaluated and, in particular, by means of which an object map of all the obstacles 32 that are located around the motor vehicle 2 is created , Information is also suitably exchanged using the main bus system 16, so that the control unit 18 can also take into account other obstacles that cannot be detected directly by the radar sensor units 20, 24, 26. The obstacle 32 detected by the sensor unit 20 is also preferably fed into the main bus system 16, so that this information is known in assistance systems of the motor vehicle 2.
Insbesondere werden zusätzlich die Radarsensorbaueinheiten 22, 24, 26, vor- zugsweise die vollständige Sensoreinheit 20, zur Gestenerkennung verwendet, also zur Erkennung von Gesten. Dies wird vorzugsweise lediglich dann vorgenom- men, wenn das Verstellteil 6 sich in der geschlossenen Position befindet. Mittels der dritten Radarsensorbaueinheit 26, die im Bereich des Stoßfängers 29 verbaut ist, ist zudem vorzugsweise eine Fußerkennung oder ein Bewegen eines Fußes, also eine Gestenerkennung des Fußes, ermöglicht. Insbesondere erfolgt stets nach erkannter Geste eine Schlüsselabfrage eines Funkschlüssels. Dies dient ei- nerseits der Überprüfung der Berechtigung des Nutzers und andererseits zur Plau- sibilisierung eines Zugangswunsches. Beispielsweise werden die Radarsensorbaueinheiten 22, 24, 26 lediglich dann be- trieben, wenn das Verstellteil 6 verfahren werden soll. Dies führt zu einem verrin- gerten Strombedarf. Alternativ hierzu werden die Radarsensorbaueinheiten 22, 24, 26 betrieben, wenn das Kraftfahrzeug 2 bewegt wird, beispielsweise zurück. Somit dient die Sensoreinheit 20 zusätzlich als Abstandswarner, und die etwaige Objekt- karte wird zusätzlich mit Bewegungsinformationen des Hindernisses 32 angerei- chert. Dies steigert die Winkel- und Abstandsauflösung. Zum Beispiel wird die Sensoreinheit 20 zur Unterstützung eines Einparkvorgangs verwendet, insbeson- dere beim autonomen Einparken. Hierfür werden die Radarsensorbaueinheiten 22, 24, 26 lediglich dann eingeschaltet, wenn das Kraftfahrzeug 2 in eine Parklü- cke bewegt wird. In einer weiteren Alternative werden die Radarsensorbaueinhei- ten 22, 24,26 lediglich dann betrieben, wenn mittels eines weiteren Sensors, ins- besondere eines Parksensors (PDC-Sensor), das Hindernis 32 bereits erfasst wurde. Auf diese Weise ist ein Energiebedarf verringert, wobei aufgrund der Sen- soreinheit 20 eine Winkelauflösung erhöht ist und somit die Position des Hinder- nisses 32 vergleichsweise sicher bestimmt werden kann. In particular, the radar sensor units 22, 24, 26, preferably the complete sensor unit 20, are additionally used for gesture recognition, that is to say for the recognition of gestures. This is preferably only done when the adjustment part 6 is in the closed position. By means of the third radar sensor unit 26, which is installed in the area of the bumper 29, a foot detection or a movement of a foot, that is to say a gesture detection of the foot, is preferably also made possible. In particular, a key query of a radio key always takes place after a recognized gesture. This serves on the one hand to check the authorization of the user and on the other hand to check the plausibility of an access request. For example, the radar sensor units 22, 24, 26 are only operated when the adjustment part 6 is to be moved. This leads to a reduced electricity requirement. As an alternative to this, the radar sensor units 22, 24, 26 are operated when the motor vehicle 2 is moved, for example back. Consequently The sensor unit 20 also serves as a distance warning device, and the possible object map is additionally enriched with movement information of the obstacle 32. This increases the angular and distance resolution. For example, sensor unit 20 is used to support a parking process, in particular in autonomous parking. For this purpose, the radar sensor units 22, 24, 26 are only switched on when the motor vehicle 2 is moved into a parking space. In a further alternative, the radar sensor units 22, 24, 26 are only operated when the obstacle 32 has already been detected by means of a further sensor, in particular a parking sensor (PDC sensor). In this way, an energy requirement is reduced, an angular resolution being increased due to the sensor unit 20, and the position of the obstacle 32 can thus be determined comparatively reliably.
Die Erfindung ist nicht auf das vorstehend beschriebene Ausführungsbeispiel be- schränkt. Vielmehr können auch andere Varianten der Erfindung von dem Fach- mann hieraus abgeleitet werden, ohne den Gegenstand der Erfindung zu verlas- sen. Insbesondere sind ferner alle im Zusammenhang mit dem Ausführungsbei- spiel beschriebene Einzelmerkmale auch auf andere Weise miteinander kombi- nierbar, ohne den Gegenstand der Erfindung zu verlassen. The invention is not restricted to the exemplary embodiment described above. Rather, other variants of the invention can also be derived from this by the person skilled in the art without departing from the subject matter of the invention. In particular, all of the individual features described in connection with the exemplary embodiment can also be combined with one another in other ways without departing from the subject matter of the invention.
Bezugszeichenliste LIST OF REFERENCE NUMBERS
2 Kraftfahrzeug 2 motor vehicle
4 elektromotorische Verstelleinrichtung 6 Verstellteil  4 electromotive adjustment device 6 adjustment part
8 Scharnier  8 hinge
10 Karosserie  10 body
12 Elektromotor  12 electric motor
14 längenveränderliches Bauteil 16 Haupt-Bus-System  14 variable-length component 16 main bus system
18 Steuergerät  18 control unit
20 Sensoreinheit  20 sensor unit
22 erste Radarsensorbaueinheit 22 first radar sensor assembly
24 zweite Radarsensorbaueinheit 26 dritte Radarsensorbaueinheit24 second radar sensor unit 26 third radar sensor unit
28 Bus-System 28 bus system
29 Stoßfänger  29 bumpers
30 Radarwelle  30 radar wave
32 Hindernis  32 obstacle
34 Sende-/Empfangseinheit 34 Transceiver unit
36 Metallisierungslage  36 metallization layer
38 Antenne  38 antenna

Claims

Ansprüche Expectations
1. Sensoreinheit (20), insbesondere einer elektromotorischen Verstelleinrich- tung (4), eines Kraftfahrzeugs (2), mit einer ersten Radarsensorbaueinheit (22), und mit einer zweiten Radarsensorbaueinheit (24), die zueinander be- abstandet und signaltechnisch miteinander gekoppelt sind, wobei jede Ra- darsensorbaueinheit (22, 24) eine Antenne (38) und eine Sende-/Emp- fangseinheit (34) aufweist. 1. Sensor unit (20), in particular an electromotive adjusting device (4), a motor vehicle (2), with a first radar sensor unit (22), and with a second radar sensor unit (24), which are spaced apart and signal-coupled to one another , wherein each radar sensor unit (22, 24) has an antenna (38) and a transceiver unit (34).
2. Sensoreinheit (20) nach Anspruch 1 , 2. Sensor unit (20) according to claim 1,
dadurch gekennzeichnet,  characterized,
dass jede Radarsensorbaueinheit (22, 24, 26) als integrierter Schaltkreis ausgestaltet ist.  that each radar sensor unit (22, 24, 26) is designed as an integrated circuit.
3. Sensoreinheit (20) nach Anspruch 1 oder 2, 3. Sensor unit (20) according to claim 1 or 2,
dadurch gekennzeichnet,  characterized,
dass die Radarsensorbaueinheiten (22, 24, 26) zueinander baugleich sind.  that the radar sensor units (22, 24, 26) are identical to one another.
4. Sensoreinheit (20) nach einem der Ansprüche 1 bis 3, 4. Sensor unit (20) according to one of claims 1 to 3,
gekennzeichnet durch  marked by
eine dritte Radarsensorbaueinheit (26), die eine Antenne (38) und eine Sende-/Empfangseinheit (34) aufweist, und die zu der ersten und zweiten Radarsensorbaueinheit (22, 24) beabstandet und signaltechnisch mit die sen gekoppelt ist.  a third radar sensor unit (26), which has an antenna (38) and a transceiver unit (34), and which is spaced apart from the first and second radar sensor units (22, 24) and is signal-coupled to them.
5. Sensoreinheit (20) nach einem der Ansprüche 1 bis 4, 5. Sensor unit (20) according to one of claims 1 to 4,
gekennzeichnet durch  marked by
ein Steuergerät (18), das mittels eines Bus-Systems (28) mit den Radar- sensorbaueinheiten (22, 24, 26) gekoppelt ist.  a control unit (18) which is coupled to the radar sensor units (22, 24, 26) by means of a bus system (28).
6. Sensoreinheit (20) nach einem der Ansprüche 1 bis 5, 6. Sensor unit (20) according to one of claims 1 to 5,
dadurch gekennzeichnet, dass die Radarsensorbaueinheiten (22, 24, 26) mit einer Frequenz zwi- schen 78 GHz und 81 GHz betrieben sind. characterized, that the radar sensor units (22, 24, 26) are operated at a frequency between 78 GHz and 81 GHz.
7. Verwendung einer Sensoreinheit (20) nach einem der Ansprüche 1 bis 6 zur Bestimmung eines Abstands eines Hindernisses (32) zu dem Kraftfahr- zeug (2). 7. Use of a sensor unit (20) according to one of claims 1 to 6 for determining a distance of an obstacle (32) to the motor vehicle (2).
8. Elektromotorischer Verstelleinrichtung (4), insbesondere Heckklappenan- trieb, eines Kraftfahrzeugs (2), mit einem Verstellteil (6), das mittels eines Elektromotors (12) angetrieben ist, und mit einer Sensoreinheit (20) nach einem der Ansprüche 1 bis 6. 8. Electromotive adjusting device (4), in particular tailgate drive, of a motor vehicle (2), with an adjusting part (6) which is driven by means of an electric motor (12), and with a sensor unit (20) according to one of claims 1 to 6 ,
PCT/EP2019/068788 2018-07-16 2019-07-12 Sensor unit WO2020016121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018211805.1 2018-07-16
DE102018211805.1A DE102018211805A1 (en) 2018-07-16 2018-07-16 sensor unit

Publications (1)

Publication Number Publication Date
WO2020016121A1 true WO2020016121A1 (en) 2020-01-23

Family

ID=67262331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/068788 WO2020016121A1 (en) 2018-07-16 2019-07-12 Sensor unit

Country Status (2)

Country Link
DE (1) DE102018211805A1 (en)
WO (1) WO2020016121A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11847833B2 (en) 2020-02-12 2023-12-19 Strattec Security Corporation Broad coverage non-contact obstacle detection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022128826A1 (en) 2022-10-31 2024-05-02 Brose Fahrzeugteile Se & Co. Kommanditgesellschaft, Bamberg Radar arrangement for a motorised flap arrangement of a motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002920A2 (en) * 1998-11-19 2000-05-24 Volkswagen Aktiengesellschaft Automatic door opening system
DE102006021152A1 (en) * 2005-08-10 2007-02-15 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Vehicle comprises a radar sensor for emitting and receiving radar signals connected to an object acquisition unit
DE102014011121A1 (en) * 2014-07-26 2016-01-28 Audi Ag Motor vehicle with a collision protection system for at least one door
WO2016070967A1 (en) * 2014-11-08 2016-05-12 Audi Ag Radar sensor for use on a mobile part od a motor vehicle, motor vehicle and method for operating a radar sensor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9647325B2 (en) * 2014-08-29 2017-05-09 GM Global Technology Operations LLC Flexible artificial impedance surface antennas for automotive radar sensors
DE102016125371A1 (en) * 2016-12-22 2018-06-28 HELLA GmbH & Co. KGaA System for detecting a gesture of a user in a vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1002920A2 (en) * 1998-11-19 2000-05-24 Volkswagen Aktiengesellschaft Automatic door opening system
DE102006021152A1 (en) * 2005-08-10 2007-02-15 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Coburg Vehicle comprises a radar sensor for emitting and receiving radar signals connected to an object acquisition unit
DE102014011121A1 (en) * 2014-07-26 2016-01-28 Audi Ag Motor vehicle with a collision protection system for at least one door
WO2016070967A1 (en) * 2014-11-08 2016-05-12 Audi Ag Radar sensor for use on a mobile part od a motor vehicle, motor vehicle and method for operating a radar sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11847833B2 (en) 2020-02-12 2023-12-19 Strattec Security Corporation Broad coverage non-contact obstacle detection

Also Published As

Publication number Publication date
DE102018211805A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
DE102018127038A1 (en) Radar-based multifunction detector system for a vehicle lift door
DE102018202343A1 (en) POWER SWING DOOR WITH VIRTUAL HANDLE POST CONTROL
DE112020000634T5 (en) VEHICLE POSITION ESTIMATION SYSTEM
EP1407106B2 (en) Method for opening and closing a part which can be rotated or tilted on a vehicle
WO2018197065A1 (en) Vehicle authentication system
DE102005023002A1 (en) Door opening system e.g. for door collision warning system and limitation of door opening angle, has sensor connected to controller so that distance from objects to that of door is evaluated by sensor signals
EP3215866B1 (en) Radar sensor for the use on a movable part of a vehicle, vehicle and method for the operation of a radar sensor
WO2020016121A1 (en) Sensor unit
DE112020000644T5 (en) Vehicle position estimation system
WO2020016101A1 (en) Method for operating a functional unit of a motor vehicle by means of an identification system in which two authorisations are necessary, and identification system
DE102020203376A1 (en) Vehicle access arrangement, method and vehicle
DE102016220084A1 (en) Motor vehicle with at least one door and a radar sensor, method for controlling a drive device for a door of a motor vehicle
DE102013215815B4 (en) Arrangement for controlling an automatically opening side sliding door
EP1879774B1 (en) Vehicle locking system and method for gaining access to a motor vehicle using such a system
DE102020114403A1 (en) Access control system and method for controlling access control
DE10105191B4 (en) Antenna arrangement for a motor vehicle for determining the authorization of a portable transponder
EP3599136A1 (en) Sensor device for a vehicle
DE102010062987A1 (en) Method for controlling lock of door in motor car during parking, involves detecting movement of objects relative to vehicle or projected roadway, and activating lock when detected object movement is directed toward vehicle or roadway
EP0990757B1 (en) Motor vehicles device for user identification
EP3734559A1 (en) Safety system for a vehicle
EP3864427A1 (en) Device for determining the position of an object that can be moved relative to a vehicle and vehicle equipped therewith
DE102019205070A1 (en) Method for operating an assistance system
DE102018204546A1 (en) sensor unit
DE102013212755A1 (en) Arrangement for controlling an automatically opening vehicle tailgate
DE102022128406A1 (en) Radar sensor system, radar sensor system module and motor vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19739600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19739600

Country of ref document: EP

Kind code of ref document: A1