WO2020015756A1 - 换电控制系统及方法 - Google Patents

换电控制系统及方法 Download PDF

Info

Publication number
WO2020015756A1
WO2020015756A1 PCT/CN2019/096897 CN2019096897W WO2020015756A1 WO 2020015756 A1 WO2020015756 A1 WO 2020015756A1 CN 2019096897 W CN2019096897 W CN 2019096897W WO 2020015756 A1 WO2020015756 A1 WO 2020015756A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
power exchange
power
rack
electric vehicle
Prior art date
Application number
PCT/CN2019/096897
Other languages
English (en)
French (fr)
Inventor
张建平
陆文成
Original Assignee
奥动新能源汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810805316.6A external-priority patent/CN110745108B/zh
Priority claimed from CN201810805306.2A external-priority patent/CN110803139B/zh
Priority claimed from CN201810805309.6A external-priority patent/CN110733375B/zh
Application filed by 奥动新能源汽车科技有限公司 filed Critical 奥动新能源汽车科技有限公司
Priority to US17/261,631 priority Critical patent/US20210268930A1/en
Priority to JP2021503103A priority patent/JP7405824B2/ja
Priority to KR1020217005126A priority patent/KR20210034644A/ko
Publication of WO2020015756A1 publication Critical patent/WO2020015756A1/zh
Priority to JP2023211352A priority patent/JP2024037901A/ja
Priority to JP2023211355A priority patent/JP2024037902A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S5/00Servicing, maintaining, repairing, or refitting of vehicles
    • B60S5/06Supplying batteries to, or removing batteries from, vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the invention belongs to the field of power exchange control, and particularly relates to a power exchange control system and method.
  • the quick-change type is usually performed in a substation.
  • the substation s power exchange equipment removes the insufficient or no-charged batteries from the vehicle, puts them on a unified charging stand, and then charges them on the secondary charging stand. Remove the new or fully charged battery and insert it into the vehicle. In this way, both the battery replacement and the battery replacement need to be performed between the vehicle and the charging stand. The power exchange takes longer and the efficiency is lower.
  • the technical problem to be solved by the present invention is to overcome the disadvantages of using the same power exchange equipment in the prior art to remove the battery and insert the battery, which results in a long time consuming and low efficiency of power exchange, and provides a power exchange control system and method. .
  • the present invention provides a power exchange control system, including: a control unit and a power exchange device;
  • the control unit is configured to determine a battery model suitable for an electric vehicle
  • the control unit is further configured to select a battery placement rack that meets the first condition from at least one battery placement rack as the first battery placement rack, and select a battery placement rack that meets the second condition from the at least one battery placement rack as the first battery placement rack.
  • the power exchange device is used to move to a preset power exchange position, remove a power-deficient battery from the electric vehicle, transport the power-deficient battery to the second rack and place the empty battery And then move to the first battery placing rack, remove the battery type battery from the first battery placing rack, transport the battery type battery to the preset power exchange position and install it in the In the electric vehicle, the preset power exchange position is a position suitable for taking out and installing a battery from the electric vehicle.
  • control unit is further configured to monitor the power of a battery placed on the battery placing rack;
  • the first condition is set as a fully charged battery in which the battery model is placed;
  • the first condition is preferentially set as a fully charged battery in which the battery type is placed, and if the at least one battery placing rack does not have a battery placing rack that meets the first condition, the first condition
  • the setting is modified to be the battery with the highest battery capacity in which the battery model is placed.
  • control unit is further configured to randomly select a battery placement rack as the first battery placement rack from the battery placement racks that meet the first condition when more than one battery placement rack meets the first condition.
  • a battery rack, or a battery rack closest to the electric vehicle or a platform for parking the electric vehicle as the first battery rack, or a second battery rack and a battery rack A battery placing rack on a path between battery vehicles is used as the first battery placing rack, or a battery placing rack located on the path and closest to the electric vehicle or the vehicle carrying platform is selected as the first battery placing rack.
  • control unit is further configured to randomly select a battery placement rack as the second battery placement rack from the battery placement racks that meet the second condition when more than one battery placement rack meets the second condition.
  • the battery placing rack, or a battery placing rack closest to the electric vehicle or the vehicle carrying platform is selected as the second battery placing rack.
  • the battery placing racks are arranged on both sides of the vehicle-carrying platform in a direction in which the electric vehicle enters the vehicle-carrying platform.
  • the control The unit is also used for:
  • the multifunctional battery placing rack is used as the first battery placing rack and the second battery placing rack at the same time.
  • the empty battery storage compartment is further used for charging the power-deficient battery.
  • the empty battery storage compartment has a battery charging circuit
  • the battery charging circuit has fixed power parameters, and the power parameters match the battery model
  • the battery charging circuit has an adjustable power parameter
  • the control unit is further configured to adjust the power parameter according to the battery model so that the power parameter matches the battery model.
  • control unit is further configured to scan a license plate of the electric vehicle, and determine a battery model applicable to the electric vehicle through the license plate.
  • the power exchange device is controlled by the control unit:
  • control unit Before the electric vehicle is parked on the vehicle carrying platform, the control unit sends the following instructions to the power exchange equipment and is executed by the power exchange equipment:
  • a parking instruction is used to order the power exchange device to be parked in a preset waiting position in advance.
  • the preset waiting position is the same position as the preset power exchange position.
  • the preset waiting position is a position within a first distance threshold from the preset power exchange position
  • the control unit is further configured to send a fine-tuning instruction to the battery-removing and power-changing device after the electric vehicle is parked on the vehicle-carrying platform, and the fine-tuning instruction is used to instruct the power-changing device from the preset The waiting position is moved to the preset power exchange position.
  • the preset power-changing position is a dockable state when the following conditions are simultaneously satisfied; otherwise, the preset power-changing position is a non-parking state:
  • the preset power exchange position is vacant
  • the preset power exchange position is determined to be below or above the vehicle-carrying platform according to the structure of the vehicle-carrying platform.
  • the power exchange device is controlled by the control unit:
  • the control unit is further configured to send the following instructions to the electric vehicle after the electric vehicle is parked on a vehicle carrying platform and be executed by the power exchange device:
  • a battery unloading instruction for instructing the power exchange device to remove the power-deficient battery from the electric vehicle
  • a first movement instruction for instructing the power exchange device to move to the second battery placement rack
  • a battery discharge instruction for instructing the power exchange device to place the power-deficient battery in the empty battery storage bin
  • a second movement instruction for instructing the power exchange device to move to the first battery placement rack
  • a third movement instruction for instructing the power exchange device to move to the preset power exchange position
  • the battery installation instruction is used to instruct the power exchange device to install the battery of the battery type on the electric vehicle.
  • the invention also provides a power exchange control system, comprising: a control unit and at least two power exchange equipment;
  • the control unit is configured to select a battery placement rack that meets the first condition from at least one battery placement rack as the first battery placement rack, and select a battery placement rack that meets the second condition from the at least one battery placement rack as the second battery placement rack.
  • the control unit is further configured to configure at least one of the at least two power-changing devices as a battery-replacement device, and configure at least one of the at least two power-changing devices to replace the battery.
  • the battery-equipped power exchange device is used for transporting a battery to be installed, and the battery to be installed is a battery that is removed from the first battery rack and is suitable for the electric vehicle and is to be installed in the electric vehicle;
  • the battery-removing and power-changing device is used for transporting a power-deficient battery, and the power-deficient battery is a battery removed from the electric vehicle and to be placed in the empty battery storage compartment.
  • control unit is further configured to monitor the power of a battery placed on the battery placing rack;
  • the first condition is set to place a fully-charged battery suitable for the electric vehicle
  • the first condition is preferentially set to place a fully-charged battery suitable for the electric vehicle. If the at least one battery rack does not have a battery rack that meets the first condition, the first A conditional modification is set to place a battery with the highest power suitable for the electric vehicle.
  • control unit is further configured to randomly select a battery placement rack as the first battery placement rack from the battery placement racks that meet the first condition when more than one battery placement rack meets the first condition.
  • control unit is further configured to randomly select a battery placement rack as the second battery placement rack from the battery placement racks that meet the second condition when more than one battery placement rack meets the second condition.
  • the battery placing rack, or a battery placing rack closest to the electric vehicle or a vehicle carrying platform for parking the electric vehicle is selected as the second battery placing rack.
  • the battery placing racks are arranged on both sides of the vehicle-carrying platform in a direction in which the electric vehicle enters the vehicle-carrying platform.
  • the control The unit is also used for:
  • the multifunctional battery placing rack as any one of the first battery placing rack and the second battery placing rack;
  • any one of the following conditions is used as a necessary condition for using the multi-functional battery rack as the first battery rack:
  • the number of battery placement racks that meet the first condition is less than the number of battery placement racks that meet the second condition;
  • the number of battery racks that meet the first condition is less than the number of battery racks that meet the second condition, and the absolute value of the difference between the two is less than the first difference threshold.
  • the number of battery racks that meet the first condition is less than the first number threshold
  • the number of battery placement racks that meet the second condition is less than the number of battery placement racks that meet the first condition
  • the number of battery racks that meet the second condition is less than the number of battery racks that meet the first condition, and the absolute value of the difference between the two is less than the second difference threshold.
  • the number of battery racks that meet the second condition is less than the second number threshold.
  • the battery storage compartment is further used for charging the battery.
  • the at least two power replacement devices are single-function power replacement devices
  • the single-function power exchange device has a first structure and can only be configured as a battery-replacement device, or has a second structure and can only be configured as a battery-replacement device;
  • the multifunctional power exchange device has both a first structure and a second structure, and can be configured as any one of a battery-removal device and a battery-replacement device.
  • the power exchange device configured as the battery-equipped power exchange device is a power exchange device closest to the first battery rack;
  • the power exchange device configured as the battery discharge power exchange device is a power exchange device closest to the electric vehicle or a vehicle carrying platform for parking the electric vehicle;
  • each of the battery placing racks has a predetermined binding relationship with at least one of the power exchange apparatuses;
  • the power exchange apparatus configured as the battery-mounted power exchange apparatus has a binding with the first battery placing rack A power exchange device with a fixed relationship, or a power exchange device that has a binding relationship with the first battery placing rack and is closest to the first battery placing rack;
  • the power exchange device configured as the battery discharge replacing device is A power exchange device having a binding relationship with the second battery placing rack, or a battery changing rack having a binding relationship with the second battery placing rack and closest to the electric vehicle or a vehicle carrying platform for parking the electric vehicle Power exchange equipment.
  • the applicable battery model of the electric vehicle is predictable:
  • the control unit is further configured to select a battery placement rack that meets a first condition from the at least one battery placement rack as the first battery placement rack before the electric vehicle is parked on the vehicle carrying platform, and to provide the first battery placement rack to the electric vehicle.
  • the battery-replacement device sends a battery-receiving instruction, and the battery-receiving instruction is used to instruct the battery-replacement device to remove the battery to be installed from the first battery placing rack;
  • the battery loading and power exchange device is further configured to execute the battery taking instruction
  • the control unit is further configured to send a first movement instruction to the battery replacement device after the battery replacement device executes the battery taking instruction, and the first movement instruction is used to instruct the battery replacement device
  • the battery replacement device is parked in advance at a first preset waiting position, where the first preset waiting position is a position that does not exceed a first distance threshold from the vehicle platform;
  • the battery-equipped power exchange device is further configured to execute the first movement instruction.
  • the battery model applicable to the electric vehicle is predicted in the following manner: the vehicle carrying platform is limited to parking of the electric vehicle to which the battery of the model is applicable.
  • control unit is further configured to send a second movement instruction to the battery unloading and power exchange device before the electric vehicle is parked on a vehicle carrying platform, and the second movement instruction is used to instruct the battery unloading
  • the power exchange device is parked in advance at a second preset waiting position; the battery discharge power exchange device is further configured to execute the second movement instruction.
  • the second preset waiting position is the same position as the preset power exchange position, and the preset power exchange position is suitable for being parked from The location of the battery in the electric vehicle on the vehicle platform will be described.
  • the second preset waiting position is a position that does not exceed a second distance threshold from the preset power exchange position
  • the preset power exchange position is A position suitable for taking a battery from an electric vehicle parked on the car platform
  • the control unit is further configured to send a fine-tuning instruction to the battery-removing and power-changing device after the electric vehicle is parked on the vehicle-carrying platform, and the fine-tuning instruction is used to instruct the battery-removing and power-changing device from the The second preset waiting position is moved to the preset power exchange position.
  • the preset power-changing position is a dockable state when the following conditions are simultaneously satisfied; otherwise, the preset power-changing position is a non-parking state:
  • the preset power exchange position is vacant
  • the preset power exchange position is determined to be below or above the vehicle-carrying platform according to the structure of the vehicle-carrying platform.
  • control unit is further configured to send a third movement instruction to the battery unloading and power exchange device after the electric vehicle is parked on a vehicle carrying platform, and the third movement instruction is used to instruct the battery unloading
  • the power exchange device is moved and parked at a preset power exchange position, the preset power exchange position is a position suitable for taking a battery from an electric vehicle parked on the car platform; the battery discharge power exchange device is also used to perform The third movement instruction.
  • control unit is further configured to: after the electric vehicle is parked on the vehicle carrying platform and the battery-removing and power-changing device is parked at the preset power-changing position, the battery-removing and power-changing device is Sending a battery unloading instruction, the battery unloading instruction being used to instruct the battery unloading and power exchange device to remove the lacking battery from the electric vehicle;
  • the battery discharging and power replacement device is further configured to execute the battery discharging instruction
  • the control unit is further configured to send a fourth movement instruction to the battery removal and power exchange device after the battery removal and power exchange device executes the battery removal instruction, and the fourth movement instruction is used to instruct the battery removal
  • the battery replacement device is moved to the second battery placement rack and the lacking battery is placed in the empty battery placement bin;
  • the battery discharging and power replacement device is further configured to execute the fourth movement instruction.
  • control unit is further configured to change the power to the installed battery after the battery-removing power-removing device leaves the preset power-changing position or leaves the preset power-changing position beyond a third distance threshold.
  • the device sends a fifth movement instruction, where the fifth movement instruction is used to instruct the battery-equipped power exchange device to move to the preset power exchange position;
  • the battery-equipped power exchange device is further configured to execute the fifth movement instruction
  • the control unit is further configured to send a battery-installation instruction to the battery-replacement device after the battery-replacement device executes the fifth movement instruction, and the battery-replacement instruction is used to instruct the battery-replacement device to change
  • the electric equipment installs the battery to be installed in the electric vehicle;
  • the battery-packed power exchange device is further configured to execute the battery-packed instruction.
  • the invention also provides a power exchange control system, comprising: a control unit and at least two power exchange equipment;
  • the control unit is configured to determine a battery model applicable to the electric vehicle to be replaced
  • the control unit is further configured to select a battery placement rack that meets the first condition from at least one battery placement rack as the first battery placement rack, and select a battery placement rack that meets the second condition from the at least one battery placement rack as the first battery placement rack.
  • the control unit is further configured to configure at least one of the at least two power-changing devices as a battery-replacement device, and configure at least one of the at least two power-changing devices to replace the battery.
  • the battery-equipped power exchange device is used for transporting a battery to be installed, and the battery to be installed is a battery of the battery type that is removed from the first battery rack and is to be installed in the electric vehicle;
  • the battery-removing and power-changing device is used for transporting a power-deficient battery, and the power-deficient battery is a battery removed from the electric vehicle and to be placed in the empty battery storage compartment.
  • control unit is further configured to monitor the power of a battery placed on the battery placing rack;
  • the first condition is set as a fully charged battery in which the battery model is placed;
  • the first condition is preferentially set as a fully charged battery in which the battery type is placed, and if the at least one battery placing rack does not have a battery placing rack that meets the first condition, the first condition
  • the setting is modified to be the battery with the highest battery capacity in which the battery model is placed.
  • control unit is further configured to randomly select a battery placement rack as the first battery placement rack from the battery placement racks that meet the first condition when more than one battery placement rack meets the first condition.
  • control unit is further configured to randomly select a battery placement rack as the second battery placement rack from the battery placement racks that meet the second condition when more than one battery placement rack meets the second condition.
  • the battery placing rack, or a battery placing rack closest to the electric vehicle or the vehicle carrying platform is selected as the second battery placing rack.
  • the battery placing racks are arranged on both sides of the vehicle-carrying platform in a direction in which the electric vehicle enters the vehicle-carrying platform.
  • the control The unit is also used for:
  • the multifunctional battery placing rack as any one of the first battery placing rack and the second battery placing rack;
  • any one of the following conditions is used as a necessary condition for using the multi-functional battery rack as the first battery rack:
  • the number of battery placement racks that meet the first condition is less than the number of battery placement racks that meet the second condition;
  • the number of battery racks that meet the first condition is less than the number of battery racks that meet the second condition, and the absolute value of the difference between the two is less than the first difference threshold.
  • the number of battery racks that meet the first condition is less than the first number threshold
  • the number of battery placement racks that meet the second condition is less than the number of battery placement racks that meet the first condition
  • the number of battery racks that meet the second condition is less than the number of battery racks that meet the first condition, and the absolute value of the difference between the two is less than the second difference threshold.
  • the number of battery racks that meet the second condition is less than the second number threshold.
  • the battery storage compartment is further used for charging the battery.
  • the at least two power replacement devices are single-function power replacement devices
  • the single-function power exchange device has a first structure and can only be configured as a battery-replacement device, or has a second structure and can only be configured as a battery-replacement device;
  • the multifunctional power exchange device has both a first structure and a second structure, and can be configured as any one of a battery-removal device and a battery-replacement device.
  • the power exchange device configured as the battery-equipped power exchange device is a power exchange device closest to the first battery rack;
  • the power exchange device configured as the battery discharge power exchange device is a power exchange device closest to the electric vehicle or a vehicle carrying platform for parking the electric vehicle;
  • each of the battery placing racks has a predetermined binding relationship with at least one of the power exchange apparatuses;
  • the power exchange apparatus configured as the battery-mounted power exchange apparatus has a binding with the first battery placing rack A power exchange device with a fixed relationship, or a power exchange device that has a binding relationship with the first battery placing rack and is closest to the first battery placing rack;
  • the power exchange device configured as the battery discharge replacing device is A power exchange device having a binding relationship with the second battery placing rack, or a battery changing rack having a binding relationship with the second battery placing rack and closest to the electric vehicle or a vehicle carrying platform for parking the electric vehicle Power exchange equipment.
  • control unit is further configured to send a battery-receiving instruction to the battery-recharging device after selecting the first battery rack, and the battery-receiving instruction is used to instruct the battery-recharging device Removing the battery to be installed from the first battery placing rack;
  • the battery loading and power exchange device is further configured to execute the battery taking instruction
  • the control unit is further configured to send a first movement instruction to the battery replacement device after the battery replacement device executes the battery taking instruction, and the first movement instruction is used to instruct the battery replacement device
  • the battery replacement device is parked in advance at a first preset waiting position, where the first preset waiting position is a position that does not exceed a first distance threshold from the vehicle platform;
  • the battery-equipped power exchange device is further configured to execute the first movement instruction.
  • control unit is further configured to scan a license plate of the electric vehicle, and determine a battery model applicable to the electric vehicle through the license plate.
  • control unit is further configured to send a second movement instruction to the battery unloading and power exchange device before the electric vehicle is parked on a vehicle carrying platform, and the second movement instruction is used to instruct the battery unloading
  • the power exchange device is parked in advance at a second preset waiting position; the battery discharge power exchange device is further configured to execute the second movement instruction.
  • the second preset waiting position is the same position as the preset power exchange position, and the preset power exchange position is suitable for being parked from The location of the battery in the electric vehicle on the vehicle platform will be described.
  • the second preset waiting position is a position that does not exceed a second distance threshold from the preset power exchange position
  • the preset power exchange position is A position suitable for taking a battery from an electric vehicle parked on the car platform
  • the control unit is further configured to send a fine-tuning instruction to the battery-removing and power-changing device after the electric vehicle is parked on the vehicle-carrying platform, and the fine-tuning instruction is used to instruct the battery-removing and power-changing device from the The second preset waiting position is moved to the preset power exchange position.
  • the preset power-changing position is a dockable state when the following conditions are simultaneously satisfied; otherwise, the preset power-changing position is a non-parking state:
  • the preset power exchange position is vacant
  • the preset power exchange position is determined to be below or above the vehicle-carrying platform according to the structure of the vehicle-carrying platform.
  • control unit is further configured to send a third movement instruction to the battery unloading and power exchange device after the electric vehicle is parked on a vehicle carrying platform, and the third movement instruction is used to instruct the battery unloading
  • the power exchange device is moved and parked at a preset power exchange position, the preset power exchange position is a position suitable for taking a battery from an electric vehicle parked on the car platform; the battery discharge power exchange device is also used to perform The third movement instruction.
  • control unit is further configured to: after the electric vehicle is parked on the vehicle carrying platform and the battery-removing and power-changing device is parked at the preset power-changing position, the battery-removing and power-changing device is Sending a battery unloading instruction, the battery unloading instruction being used to instruct the battery unloading and power exchange device to remove the lacking battery from the electric vehicle;
  • the battery discharging and power replacement device is further configured to execute the battery discharging instruction
  • the control unit is further configured to send a fourth movement instruction to the battery removal and power exchange device after the battery removal and power exchange device executes the battery removal instruction, and the fourth movement instruction is used to instruct the battery removal
  • the battery replacement device is moved to the second battery placement rack and the lacking battery is placed in the empty battery placement bin;
  • the battery discharging and power replacement device is further configured to execute the fourth movement instruction.
  • control unit is further configured to change the power to the installed battery after the battery-removing power-removing device leaves the preset power-changing position or leaves the preset power-changing position beyond a third distance threshold.
  • the device sends a fifth movement instruction, where the fifth movement instruction is used to instruct the battery-equipped power exchange device to move to the preset power exchange position;
  • the battery-equipped power exchange device is further configured to execute the fifth movement instruction
  • the control unit is further configured to send a battery-installation instruction to the battery-replacement device after the battery-replacement device executes the fifth movement instruction, and the battery-replacement instruction is used to instruct the battery-replacement device to change
  • the electric equipment installs the battery to be installed in the electric vehicle;
  • the battery-packed power exchange device is further configured to execute the battery-packed instruction.
  • the invention also provides a power exchange control method, including:
  • a battery placement rack that meets a first condition is selected from at least one battery placement rack as a first battery placement rack, the battery placement rack has a plurality of battery placement bins for placing batteries, and the first condition is set to place the Battery type battery;
  • the preset power exchange position is a position suitable for taking out and installing a battery from the electric vehicle;
  • the power replacement control method further includes: monitoring the power of a battery placed on the battery placing rack;
  • the first condition is set as a fully charged battery in which the battery model is placed;
  • the first condition is preferentially set as a fully charged battery in which the battery type is placed, and if the at least one battery placing rack does not have a battery placing rack that meets the first condition, the first condition
  • the setting is modified to be the battery with the highest battery capacity in which the battery model is placed.
  • the power exchange control method further includes:
  • a battery rack is randomly selected from the battery racks that meet the first condition as the first battery rack, or a distance from the electric vehicle is selected. Or the nearest battery placing rack for parking the electric vehicle as the first battery placing rack, or selecting a battery located on the path between the second battery placing rack and the battery vehicle
  • the placement rack is used as the first battery placement rack, or a battery placement rack located on the path and closest to the electric vehicle or the vehicle carrying platform is selected as the first battery placement rack;
  • a battery rack is randomly selected from the battery racks meeting the second condition as the second battery rack, or a distance is selected
  • the nearest battery placement rack of the electric vehicle or the vehicle carrying platform serves as the second battery placement rack.
  • the power exchange control method further includes:
  • the multifunctional battery placing rack is used as the first battery placing rack and the second battery placing rack at the same time.
  • the empty battery storage compartment is further used for charging the power-deficient battery.
  • the empty battery storage compartment has a battery charging circuit
  • the battery charging circuit has fixed power parameters, and the power parameters match the battery model
  • the battery charging circuit has an adjustable power parameter
  • the power exchange control method further includes: adjusting the power parameter according to the battery model so that the power parameter matches the battery model.
  • the determining a battery model applicable to the electric vehicle to be replaced includes:
  • the license plate of the electric vehicle is scanned, and the battery model applicable to the electric vehicle is determined by the license plate.
  • the method for controlling a power exchange device further includes:
  • the power exchange device Before the electric vehicle is parked on the vehicle carrying platform, the power exchange device is caused to park in advance at a preset waiting position.
  • the preset waiting position is the same position as the preset power exchange position.
  • the preset waiting position is a position within a first distance threshold from the preset power exchange position
  • the power exchange control method further includes:
  • the power exchange device After the electric vehicle is parked on the vehicle-carrying platform, the power exchange device is caused to move from the preset waiting position to the preset power exchange position.
  • the preset power-changing position is a dockable state when the following conditions are simultaneously satisfied; otherwise, the preset power-changing position is a non-parking state:
  • the preset power exchange position is vacant
  • the preset power exchange position is determined to be below or above the vehicle-carrying platform according to the structure of the vehicle-carrying platform.
  • the invention also provides a power exchange control method, including:
  • a battery placement rack that meets a first condition is selected from at least one battery placement rack, and the battery placement rack has a plurality of battery placement bins for placing batteries, and the first condition is set to be suitable for Batteries for electric vehicles;
  • At least one of the at least two power replacement devices as a battery-mounted power replacement device, where the battery-mounted power replacement device is used to transport a battery to be installed, and the battery to be installed is placed from the first battery Removing a battery suitable for the electric vehicle and to be installed in the electric vehicle;
  • the battery removal power replacement device is used for transporting a power shortage battery, and the power shortage battery is removed from the electric vehicle And a battery to be placed in the empty battery storage compartment.
  • the power replacement control method further includes: monitoring the power of a battery placed on the battery placing rack;
  • the first condition is set to place a fully-charged battery suitable for the electric vehicle
  • the first condition is preferentially set to place a fully-charged battery suitable for the electric vehicle. If the at least one battery rack does not have a battery rack that meets the first condition, the first A conditional modification is set to place a battery with the highest power suitable for the electric vehicle.
  • the power exchange control method further includes:
  • a battery rack is randomly selected from the battery racks that meet the first condition as the first battery rack, or a distance from the electric vehicle is selected. Or the nearest battery placing rack for parking the electric vehicle carrying platform as the first battery placing rack;
  • a battery rack is randomly selected from the battery racks meeting the second condition as the second battery rack, or a distance is selected
  • the nearest battery placement rack of the electric vehicle or the vehicle carrying platform serves as the second battery placement rack.
  • the power exchange control method further includes:
  • the multifunctional battery placing rack as any one of the first battery placing rack and the second battery placing rack;
  • any one of the following conditions is used as a necessary condition for using the multi-functional battery rack as the first battery rack:
  • the number of battery placement racks that meet the first condition is less than the number of battery placement racks that meet the second condition;
  • the number of battery racks that meet the first condition is less than the number of battery racks that meet the second condition, and the absolute value of the difference between the two is less than the first difference threshold.
  • the number of battery racks that meet the first condition is less than the first number threshold
  • the number of battery placement racks that meet the second condition is less than the number of battery placement racks that meet the first condition
  • the number of battery racks that meet the second condition is less than the number of battery racks that meet the first condition, and the absolute value of the difference between the two is less than the second difference threshold.
  • the number of battery racks that meet the second condition is less than the second number threshold.
  • the at least two power replacement devices are single-function power replacement devices
  • the single-function power exchange device has a first structure and can only be configured as a battery-replacement device, or has a second structure and can only be configured as a battery-replacement device;
  • the multifunctional power exchange device has both a first structure and a second structure, and can be configured as any one of a battery-removal device and a battery-replacement device.
  • the power exchange device configured as the battery-equipped power exchange device is a power exchange device closest to the first battery rack;
  • the power exchange device configured as the battery discharge power exchange device is a power exchange device closest to the electric vehicle or a vehicle carrying platform for parking the electric vehicle;
  • each of the battery placing racks has a predetermined binding relationship with at least one of the power exchange apparatuses;
  • the power exchange apparatus configured as the battery-mounted power exchange apparatus has a binding with the first battery placing rack A power exchange device with a fixed relationship, or a power exchange device that has a binding relationship with the first battery placing rack and is closest to the first battery placing rack;
  • the power exchange device configured as the battery discharge replacing device is A power exchange device having a binding relationship with the second battery placing rack, or a battery changing rack having a binding relationship with the second battery placing rack and closest to the electric vehicle or a vehicle carrying platform for parking the electric vehicle Power exchange equipment.
  • the battery model applicable to the electric vehicle is predictable before the electric vehicle is parked on a vehicle carrying platform;
  • the power exchange control method further includes:
  • a battery placement rack that meets a first condition is selected from the at least one battery placement rack as a first battery placement rack, and the battery-replacement equipment is ordered to The first battery placing rack removes the battery to be installed;
  • the battery replacement device After the battery replacement device removes the battery to be installed from the first battery rack, the battery replacement device is commanded to be parked in a first preset waiting position in advance, the first preset waiting The position is a position that does not exceed a first distance threshold from the vehicle-carrying platform.
  • the battery model applicable to the electric vehicle is predicted in the following manner: the vehicle carrying platform is limited to parking of the electric vehicle to which the battery of the model is applicable.
  • the power exchange control method further includes:
  • the battery-removing and power-changing device is ordered to park in advance at a second preset waiting position.
  • the second preset waiting position is the same position as the preset power exchange position, and the preset power exchange position is suitable for being parked from The location of the battery in the electric vehicle on the vehicle platform will be described.
  • the second preset waiting position is a position that does not exceed a second distance threshold from the preset power exchange position
  • the preset power exchange position is A position suitable for taking a battery from an electric vehicle parked on the car platform
  • the power exchange control method further includes: after the electric vehicle is parked on the vehicle carrying platform, instructing the battery unloading power exchange device to move from the second preset waiting position to the preset power exchange position.
  • the preset power-changing position is a dockable state when the following conditions are simultaneously satisfied; otherwise, the preset power-changing position is a non-parking state:
  • the preset power exchange position is vacant
  • the preset power exchange position is determined to be below or above the vehicle-carrying platform according to the structure of the vehicle-carrying platform.
  • the power exchange control method further includes:
  • the battery-removing and power-changing device is ordered to move and park at a preset power-changing position, and the preset power-changing position is suitable for the electric vehicle parked from the car-carrying platform.
  • the location where the vehicle takes the battery is not limited to the battery.
  • the power exchange control method further includes:
  • the battery-removing power exchange device After the electric vehicle is parked on the car-carrying platform and the battery-removing power exchange device is parked at the preset power-changing position, the battery-removing power exchange device is ordered to remove the power shortage from the electric vehicle. battery;
  • the battery-removing and power-removing device After the battery-removing and power-removing device removes the power-loss battery from the electric vehicle, the battery-removing and power-removing device is commanded to move to the second battery placing rack and place the power-losing battery in the Empty battery compartment.
  • the power exchange control method further includes:
  • the battery-equipped power exchange device After the battery-equipped power exchange device is moved to the preset power exchange position, the battery-equipped power exchange device is commanded to load the battery to be installed into the electric vehicle.
  • the battery-replacement equipment has a movement track between the first battery rack and the electric vehicle to realize the transportation of the battery to be installed;
  • the unloading and battery replacement equipment has a movement trajectory between the electric vehicle and the second battery placing rack, so as to realize the transportation of the lack of batteries.
  • the two power exchange devices have different responsibilities and jointly complete the power exchange task, so that the entire power exchange time is shortened by at least half the time compared to the case where only one power exchange device is used to achieve power exchange, and the power exchange speed and efficiency are improved.
  • the invention also provides a power exchange control method, including:
  • a battery placement rack that meets a first condition is selected from at least one battery placement rack as a first battery placement rack, the battery placement rack has a plurality of battery placement bins for placing batteries, and the first condition is set to place the Battery type battery;
  • At least one of the at least two power replacement devices as a battery-mounted power replacement device, where the battery-mounted power replacement device is used to transport a battery to be installed, and the battery to be installed is placed from the first battery Removing the battery of the battery model that is to be installed in the electric vehicle;
  • the battery removal power replacement device is used for transporting a power shortage battery, and the power shortage battery is removed from the electric vehicle And a battery to be placed in the empty battery storage compartment.
  • the power replacement control method further includes: monitoring the power of a battery placed on the battery placing rack;
  • the first condition is set as a fully charged battery in which the battery model is placed;
  • the first condition is preferentially set as a fully charged battery in which the battery type is placed, and if the at least one battery placing rack does not have a battery placing rack that meets the first condition, the first condition
  • the setting is modified to be the battery with the highest battery capacity in which the battery model is placed.
  • the power exchange control method further includes:
  • a battery rack is randomly selected from the battery racks that meet the first condition as the first battery rack, or a distance from the electric vehicle is selected. Or the nearest battery placing rack for parking the electric vehicle carrying platform as the first battery placing rack;
  • a battery rack is randomly selected from the battery racks meeting the second condition as the second battery rack, or a distance is selected
  • the nearest battery placement rack of the electric vehicle or the vehicle carrying platform serves as the second battery placement rack.
  • the power exchange control method further includes:
  • the multifunctional battery placing rack as any one of the first battery placing rack and the second battery placing rack;
  • any one of the following conditions is used as a necessary condition for using the multi-functional battery rack as the first battery rack:
  • the number of battery placement racks that meet the first condition is less than the number of battery placement racks that meet the second condition;
  • the number of battery racks that meet the first condition is less than the number of battery racks that meet the second condition, and the absolute value of the difference between the two is less than the first difference threshold.
  • the number of battery racks that meet the first condition is less than the first number threshold
  • the number of battery placement racks that meet the second condition is less than the number of battery placement racks that meet the first condition
  • the number of battery racks that meet the second condition is less than the number of battery racks that meet the first condition, and the absolute value of the difference between the two is less than the second difference threshold.
  • the number of battery racks that meet the second condition is less than the second number threshold.
  • the at least two power replacement devices are single-function power replacement devices
  • the single-function power exchange device has a first structure and can only be configured as a battery-replacement device, or has a second structure and can only be configured as a battery-replacement device;
  • the multifunctional power exchange device has both a first structure and a second structure, and can be configured as any one of a battery-removal device and a battery-replacement device.
  • the power exchange device configured as the battery-equipped power exchange device is a power exchange device closest to the first battery rack;
  • the power exchange device configured as the battery discharge power exchange device is a power exchange device closest to the electric vehicle or a vehicle carrying platform for parking the electric vehicle;
  • each of the battery placing racks has a predetermined binding relationship with at least one of the power exchange apparatuses;
  • the power exchange apparatus configured as the battery-mounted power exchange apparatus has a binding with the first battery placing rack A power exchange device with a fixed relationship, or a power exchange device that has a binding relationship with the first battery placing rack and is closest to the first battery placing rack;
  • the power exchange device configured as the battery discharge replacing device is A power exchange device having a binding relationship with the second battery placing rack, or a battery changing rack having a binding relationship with the second battery placing rack and closest to the electric vehicle or a vehicle carrying platform for parking the electric vehicle Power exchange equipment.
  • the power exchange control method further includes:
  • the battery replacement device After the battery replacement device removes the battery to be installed from the first battery rack, the battery replacement device is commanded to be parked in a first preset waiting position in advance, the first preset waiting The position is a position that does not exceed a first distance threshold from the vehicle-carrying platform.
  • the determining a battery model applicable to the electric vehicle to be replaced includes:
  • the license plate of the electric vehicle is scanned, and the battery model applicable to the electric vehicle is determined by the license plate.
  • the power exchange control method further includes:
  • the battery-removing and power-changing device is ordered to park in advance at a second preset waiting position.
  • the second preset waiting position is the same position as the preset power exchange position, and the preset power exchange position is suitable for being parked from The location of the battery in the electric vehicle on the vehicle platform will be described.
  • the second preset waiting position is a position that does not exceed a second distance threshold from the preset power exchange position
  • the preset power exchange position is A position suitable for taking a battery from an electric vehicle parked on the car platform
  • the power exchange control method further includes: after the electric vehicle is parked on the vehicle carrying platform, instructing the battery unloading power exchange device to move from the second preset waiting position to the preset power exchange position.
  • the preset power-changing position is a dockable state when the following conditions are simultaneously satisfied; otherwise, the preset power-changing position is a non-parking state:
  • the preset power exchange position is vacant
  • the preset power exchange position is determined to be below or above the vehicle-carrying platform according to the structure of the vehicle-carrying platform.
  • the power exchange control method further includes:
  • the battery-removing and power-changing device is ordered to move and park at a preset power-changing position, and the preset power-changing position is suitable for the electric vehicle parked from the car-carrying platform.
  • the location where the vehicle takes the battery is not limited to the battery.
  • the power exchange control method further includes:
  • the battery-removing power exchange device After the electric vehicle is parked on the car-carrying platform and the battery-removing power exchange device is parked at the preset power-changing position, the battery-removing power exchange device is ordered to remove the power shortage from the electric vehicle. battery;
  • the battery-removing and power-removing device After the battery-removing and power-removing device removes the power-loss battery from the electric vehicle, the battery-removing and power-removing device is commanded to move to the second battery placing rack and place the power-losing battery in the Empty battery compartment.
  • the power exchange control method further includes:
  • the battery-removing power exchange device After the battery-removing power exchange device leaves the preset power-changing position or leaves the preset power-changing position for more than a third distance threshold, ordering the battery-replacement power-changing device to move to the preset power-changing position;
  • the battery-equipped power exchange device After the battery-equipped power exchange device is moved to the preset power exchange position, the battery-equipped power exchange device is commanded to load the battery to be installed into the electric vehicle.
  • the positive progress effect of the present invention is that the present invention confirms the battery model applicable to the electric vehicle through the control unit, and facilitates the selection of the first battery rack and the battery to be installed.
  • the control of the control unit is used to change the vehicle. Two power-changing devices were used throughout the electricity process:
  • the battery-replacement equipment has a movement track between the first battery rack and the electric vehicle to realize the transportation of the battery to be installed;
  • the unloading and battery replacement equipment has a movement trajectory between the electric vehicle and the second battery placing rack, so as to realize the transportation of the lack of batteries.
  • the two power exchange devices have different responsibilities and jointly complete the power exchange task, so that the entire power exchange time is shortened by at least half the time compared to the case where only one power exchange device is used to achieve power exchange, and the power exchange speed and efficiency are improved.
  • the positive progress effect of the present invention is that the present invention can reduce the number of movements of the power exchange equipment during the power exchange process, shorten the time for power exchange, and improve the power exchange efficiency.
  • FIG. 1 is a schematic block diagram of a power exchange control system according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic side view of a vehicle-carrying platform with a first structure according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic side view of a vehicle-carrying platform with a second structure according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic block diagram of a power exchange control system according to Embodiments 2 and 8 of the present invention.
  • FIG. 5 is a schematic plan view of a power exchange control system configured with a battery replacement device and a battery replacement device in Embodiments 10 and 12 of the present invention
  • FIG. 6 is a schematic side view of a vehicle-carrying platform with a first structure in Embodiments 11 and 13 of the present invention.
  • FIG. 7 is a schematic side view of a vehicle-carrying platform with a second structure according to Embodiments 11 and 13 of the present invention.
  • FIG. 8 is a flowchart of a power exchange control method according to Embodiment 20 of the present invention.
  • FIG. 9 is a flowchart of a power exchange control method according to Embodiment 24 of the present invention.
  • FIG. 10 is a flowchart of a power exchange control method according to Embodiment 25 of the present invention.
  • FIG. 11 is a flowchart of a power exchange control method according to Embodiment 30 of the present invention.
  • FIG. 12 is a flowchart of a power exchange control method according to Embodiment 31 of the present invention.
  • FIG. 13 is a flowchart of a power exchange control method according to Embodiment 32 of the present invention.
  • FIG. 15 is a flowchart of a power exchange control method according to Embodiment 38 of the present invention.
  • FIG. 1 shows a power exchange control system of this embodiment.
  • the power exchange control system 10 includes a control unit 11 and a power exchange device 12.
  • the control unit 11 is in communication connection with the power exchange device 12, and the communication connection is preferably a wireless communication connection, which can be specifically implemented through communication means such as 2G, 3G, 4G, Bluetooth, and of course, it is not excluded in some special
  • the communication connection may also be a wired communication connection.
  • the control unit 11 is configured to determine a battery model suitable for an electric vehicle. Specifically, the control unit 11 may scan the license plate of the electric vehicle, and determine the battery model applicable to the electric vehicle through the license plate.
  • the control unit 11 is further configured to select a battery placement rack that meets the first condition from at least one battery placement rack 13 as the first battery placement rack 13A, and select a battery that meets the second condition from the at least one battery placement rack 13
  • the placement rack serves as a second battery placement rack 13B.
  • the battery placement rack has a plurality of battery placement bins for placing batteries.
  • the first condition is set to store the battery of the battery type, and the second condition is set to have Empty battery compartment.
  • the power exchange device 12 is configured to move to a preset power exchange position, remove a power-deficient battery from the electric vehicle, transport the power-deficient battery to the second rack 13B, and place it in the empty A battery storage compartment, and then moved to the first battery storage rack 13A, removing the battery type battery from the first battery storage rack 13A, and transporting the battery type battery to the preset power exchange position
  • the preset power exchange position is a position suitable for taking out and installing a battery from the electric vehicle.
  • control unit 11 confirms the battery model applicable to the electric vehicle, which can facilitate the selection of the first battery rack; during the entire process of powering the vehicle, the power-changing device 12 moves smoothly and improves the power-changing. Speed and efficiency.
  • the preset power exchange position can be understood as that when the power exchange device 12 is located in the preset power exchange position, the battery can be removed from the electric vehicle or the battery can be installed in the electric vehicle with minimal movement.
  • the preset power exchange position may be determined according to a structure of a car loading platform where the electric vehicle is parked, and the preset power exchange position is located below or above the car loading platform.
  • the car platform 15 is higher than the ground level and has a hollow area in the middle.
  • the battery box of the electric vehicle 14 is located above the hollowed-out area.
  • the preset power exchange position P1 is usually located below the car-mounted platform, especially below the hollowed-out area. Aim at the battery case of the electric vehicle 14.
  • the electricity exchange device 12 For the electric vehicle 14 parked on the vehicle carrying platform 15 to exchange electricity, the electricity exchange device 12 only needs to be vertically raised at the preset electricity exchange position P1 for removing the power-deficient battery from the electric vehicle
  • the unlocked unlocking mechanism passing through the hollowed out area, inserting the unlocking mechanism into the gap between the battery outer box and the battery of the electric vehicle 14, and the lock block of the battery box can be touched to switch the lack of battery Unlock to remove the lacking battery.
  • the power exchange device 12 only needs to vertically lift the battery to be installed in the electric vehicle, and the installation can be completed.
  • a lifting platform 151 is provided in the middle of the vehicle platform 15, and a hollow area is provided in the middle of the lifting platform 151.
  • the electric vehicle 14 changes power
  • the vehicle platform 15 needs to be driven in and parked on the lifting platform 151 and the battery box of the electric vehicle 14 is located above the hollowed out area.
  • the preset power exchange position P2 is usually It is located above the vehicle-carrying platform 15, especially below the hollowed-out area after the lifting platform 151 is raised.
  • the power exchange device 12 For the electric vehicle 14 parked on the lifting platform 151 for power exchange, the power exchange device 12 only needs to be vertically raised at the preset power exchange position P2 for lifting the power-deficient battery from the electric vehicle 14
  • the unlocked unlocking mechanism through the hollowed out area, inserting the unlocking structure into the gap between the battery outer box and the battery of the electric vehicle 14, and the lock block of the battery box can be touched to unlock the lack of battery Unlock to remove the lacking battery.
  • the power exchange device 12 only needs to vertically lift the battery to be installed in the electric vehicle, and then the installation can be completed.
  • the vehicle-carrying platform is not limited to the above-mentioned structure, and may also be other structures.
  • the preset power exchange position may further be based on the structure of the vehicle-carrying platform, in combination with the power-changing device 12 to obtain a power-loss battery or Set the conditions such as the moving path of the structure required to install the battery.
  • the power exchange control system of this embodiment is a further improvement based on Embodiment 1, and is mainly reflected in the setting of the first condition.
  • the first condition is used as a basis for selecting the first battery placing rack 13A.
  • other preferred matching conditions may be further set.
  • the matching conditions are mainly related to the power of the battery, and the control unit 11 is further configured to monitor the power of the battery placed on the battery rack.
  • the first condition may be set as a fully charged battery in which the battery model is placed.
  • the control unit 11 is configured to determine whether there is a battery placement rack that meets the first condition in the at least one battery placement rack, and if so, select one of them as the first battery placement rack 13A. If there is no battery rack that meets the first condition, the control unit 11 may issue an alarm signal to indicate that the electric vehicle cannot be replaced with electricity.
  • the first condition may be preferentially set as a battery with the battery model and fully charged, if the at least one battery rack does not have a battery that meets the first
  • the battery placing rack with conditions the first condition is modified and set to a battery with the highest battery type in which the battery model is placed.
  • the first condition is set to a fully charged battery with the battery model placed by default, and the control unit 11 is configured to determine whether there is a battery placement in the at least one battery placement rack that meets the default first condition. If it is, then select one of them as the first battery placement rack 13A. If not, then:
  • the first condition is modified to set the battery with the highest battery type and the battery with the highest capacity, and it is judged again whether there is a battery shelf in the at least one battery shelf that meets the current first condition, and if so, one of them is selected as First battery holder 13A. If there is still no battery rack that meets the first condition, the control unit 11 may issue an alarm signal to indicate that the electric vehicle cannot be replaced with electricity.
  • the empty battery storage compartment is also used to charge the power-deficient battery.
  • the empty battery storage bin has a battery charging circuit, and the battery charging circuit may have fixed power parameters that match the battery model; or the battery charging circuit has an adjustable A power parameter, the control unit is further configured to adjust the power parameter according to the battery model, so that the power parameter matches the battery model.
  • the power parameters include current, voltage, and the like.
  • the first condition may be set to other conditions according to requirements.
  • the power exchange control system of this embodiment is a further improvement on the basis of Embodiment 1 or 2. It is mainly reflected in the selection of the first battery placing frame 13A and the second battery placing frame 13B by the control unit 11. When the number of battery placing racks is two or even more, it is likely that two or more battery placing racks meet the first condition or the second condition at the same time.
  • the control unit 11 may further set selection requirements of the first battery placing rack 13A and the second battery placing rack 13B according to requirements.
  • control unit 11 may be used to determine whether more than one battery racks meet the first condition. If yes, then:
  • a battery placing rack or a distance closest to the electric vehicle is selected from the battery placing racks that meet the first condition.
  • the closest battery placement rack for the vehicle platform platform where the electric vehicle is parked serves as the first battery placement rack 13A;
  • a battery placement rack located on a path between the second battery placement rack and the battery vehicle is selected as the first battery placement rack, or a path located away from the electric vehicle or vehicle is selected.
  • the nearest battery placing rack of the vehicle carrying platform is used as the first battery placing rack.
  • control unit 11 may be used to determine that there are more than one battery racks that meet the second condition. If yes, then :
  • a battery placing rack or a distance closest to the electric vehicle is selected from the battery placing racks that meet the second condition.
  • the closest battery placement rack for the vehicle platform on which the electric vehicle is parked serves as the second battery placement rack 13B.
  • the battery rack can be driven into the electric vehicle along the electric vehicle.
  • the direction of the car platform is arranged on both sides of the car platform.
  • the vehicle-carrying platform may be a dedicated platform for vehicle power exchange or other common platforms that can be parked by the vehicle and facilitate power exchange.
  • the selection of the first battery placing frame 13A and the second battery placing frame 13B is relatively independent, that is, the first battery placing frame 13A and the second battery placing can be set according to different needs, respectively. Requirements for the selection of frame 13B.
  • the power exchange control system of this embodiment is a further improvement on the basis of Embodiment 1 or 2. It is mainly reflected in the selection of the first battery placing frame 13A and the second battery placing frame 13B by the control unit 11. Different from Embodiment 3, in this embodiment, when selecting the first battery placing rack 13A and the second battery placing rack 13B, the relationship between the two will be considered to a certain extent.
  • control unit 11 may be configured to determine whether a multi-functional battery placing rack exists in the at least one battery placing rack, and the multi-functional battery placing rack satisfies both the first condition and the second condition. Battery holder.
  • the first battery rack 13A can be selected from the battery racks that meet the first condition and the battery rack that meets the second condition can be selected according to the solution in Embodiment 3.
  • the second battery placing rack 13B can be selected from the battery racks that meet the first condition and the battery rack that meets the second condition can be selected according to the solution in Embodiment 3.
  • control unit 11 may also use the multifunctional battery placing rack as the first battery placing rack and the second battery placing rack at the same time. This reduces the travel distance of the power exchange device 12.
  • the power exchange control system of this embodiment is a further improvement on the basis of Embodiment 1, and is mainly reflected in the control process of the power exchange device 12 by the control unit 11.
  • the entire power exchange process can be divided into a power exchange preparation process before the electric vehicle is parked on the car platform and an electric power exchange operation process after the electric vehicle is parked on the car platform.
  • the power exchange device 12 is controlled by the control unit 11.
  • control unit 11 sends the following instructions to the power exchange device 12 and is executed by the power exchange device 12:
  • a parking instruction is used to instruct the power exchange device 12 to be parked in a preset waiting position in advance.
  • the preset waiting position is related to the preset power exchange position, and may be the same position as the preset power exchange position or a position near the preset power exchange position.
  • control unit 11 determines whether the preset power exchange position is a parkable state, thereby setting the preset waiting position. When the following conditions are met at the same time, the preset power exchange position is a parkable state; otherwise, the preset power exchange position is a non-parkable state:
  • Condition (2) There is a path for the power exchange device 12 to move to the preset power exchange position
  • Condition (3) It is predicted that when the power exchange device 12 is parked at the preset power exchange position, the power exchange device 12 will not cause an obstacle to the electric vehicle driving into the vehicle carrying platform.
  • condition (3) can be satisfied is usually related to the structure of the car platform.
  • Embodiment 1 Taking the car platform of the first structure in Embodiment 1 as an example, since an electric vehicle is parked on the car platform when the power is changed, and the preset power exchange position is usually located below the car platform, In general, even if the power exchange device 12 is parked at the preset power exchange position before the electric vehicle enters the vehicle carrying platform, the power exchange device 12 will not drive into the vehicle The electric vehicle on the platform creates a barrier and can satisfy condition (3).
  • the preset power-changing position is usually also located above the vehicle-carrying platform. Therefore, if the power exchange device 12 is parked at the preset power exchange position before the electric vehicle enters the car platform, then when the electric vehicle enters the car platform, the power exchange device 12 is likely to block incoming electric vehicles. Therefore, for the vehicle platform of the second structure, the preset power exchange position usually cannot meet the condition (3), and thus becomes a non-parking state.
  • the preset waiting position is the same position as the preset power exchange position.
  • the preset waiting position is a position that does not exceed a second distance threshold from the preset power exchange position, that is, a position near the preset power exchange position.
  • the power exchange preparation process is completed, and the power exchange control system waits for the electric vehicle to drive in and park on the car loading platform to enter the power exchange operation process.
  • control unit 11 determines whether the preset waiting position is the same position as the preset power exchange position:
  • a battery removal instruction is sent to the power exchange device 12, and the battery removal instruction is used to instruct the power exchange device 12 to remove the power shortage battery from the electric vehicle, and the power exchange device 12 executes all The battery removal instructions;
  • a fine adjustment instruction is sent to the power exchange device 12, and the fine adjustment instruction is used to instruct the power exchange device 12 to move from the preset waiting position to the preset power exchange position, the power exchange device 12 executes the fine-tuning instruction; then, the control unit 11 sends the battery-removal instruction to the power-changing device 12 after the power-changing device 12 executes the fine-tuning instruction, and the power-changing device 12 executes The battery removal instruction.
  • control unit 11 sends a first movement instruction to the power exchange device 12, and the first movement instruction is used to instruct the power exchange device to move to the second battery rack; the power exchange device 12 Executing the first movement instruction.
  • control unit 11 sends a battery discharge instruction to the power exchange device 12, and the battery discharge instruction is used to instruct the power exchange device to place the lacking battery in the empty battery storage bin;
  • the power exchange device 12 executes the battery discharge instruction.
  • control unit 11 sends a second movement instruction to the power exchange device 12, and the second movement instruction is used to instruct the power exchange device to move to the first battery rack; the power exchange device 12 Executing the second movement instruction.
  • control unit 11 sends a battery fetch instruction to the power exchange device 12, the battery fetch instruction is used to instruct the power exchange device to remove the battery of the battery type from the first battery rack;
  • the power exchange device 12 executes the battery fetch instruction.
  • control unit 11 sends a third movement instruction to the power exchange device 12, and the battery fetch instruction is used to instruct the power exchange device to move to the preset power exchange position; the power exchange device 12 executes The battery fetch instruction.
  • control unit 11 sends a battery loading instruction to the power exchange device 12, and the battery loading instruction is used to instruct the power exchange device to install the battery of the battery type in the electric vehicle;
  • the device 12 executes the battery loading instruction.
  • the control unit 11 instructs the power exchange device 12 to drive away from the preset power exchange position.
  • the power exchange control system of this embodiment completes part of the control during the power exchange preparation process, which greatly shortens the power exchange time after the electric vehicle enters the loading platform and improves the power exchange efficiency.
  • FIG. 4 shows a power exchange control system of this embodiment. This system is basically the same as Embodiment 1, except that it includes at least two power exchange devices 12.
  • the control unit 11 is further configured to configure at least one of the at least two power exchange devices 12 as a battery-equipped power exchange device 12A.
  • the battery-equipped power exchange device 12A is used for transporting a battery to be installed, and the battery to be installed is a battery of the battery type that is removed from the first battery rack 13A and is to be installed in the electric vehicle.
  • the control unit 11 is further configured to configure at least one of the at least two power exchange devices 12 as a battery discharge power exchange device 12B.
  • the battery-removing and battery-changing device 12B is used for transporting a battery that is lacking in electricity, and that battery is a battery that is removed from the electric vehicle and is to be placed in the empty battery storage compartment.
  • the control unit 11 confirms the battery model applicable to the electric vehicle, which can facilitate the selection of the first battery rack and the battery to be installed; in the entire process of powering the vehicle, two power replacements are used
  • Device 12 is a battery-replacement device 12A and a battery-removal device 12B, respectively.
  • the movement trajectory of the battery-replacement device 12A is between the first battery rack 13A and the electric vehicle to realize the transportation of the battery to be installed and the battery to be unloaded.
  • the movement trajectory of the power exchange device 12B is between the electric vehicle and the second battery rack 13B to realize the transportation of the power shortage battery.
  • the two power exchange devices have different responsibilities and jointly complete the power exchange task, so that the entire power exchange time Compared with using only one power exchange device to achieve power exchange, it shortens the time by at least half, and improves the power exchange speed and efficiency.
  • the power exchange control system of this embodiment is a further improvement based on Embodiment 6.
  • the improvement of Embodiment 6 in this embodiment is basically the same as the improvement of Embodiment 2 in Embodiment 1.
  • the difference is that the control unit 11 also The power of each battery can be monitored in real time, which facilitates the selection of the first battery rack 13A.
  • the power exchange control system of this embodiment is a further improvement on the basis of Embodiment 6 or 7.
  • the improvement of Embodiment 6 or 7 of this embodiment is basically the same as the improvement of Embodiment 3 from Embodiment 1 or 2.
  • the difference is The reason is that in this embodiment, in order to further facilitate the location of each battery rack, the first battery rack 13A / the second battery rack 13B are selected, and the moving distance of the battery-replacement device 12A / the battery-removal device 12B is shortened.
  • the battery racks can be arranged on both sides of the vehicle-carrying platform along the direction in which the electric vehicle enters the vehicle-carrying platform.
  • the power exchange control system of this embodiment is a further improvement on the basis of Embodiment 6 or 7. It is mainly reflected in the selection of the first battery placing frame 13A and the second battery placing frame 13B by the control unit 11. Different from Embodiment 8, in this embodiment, when the first battery placing rack 13A and the second battery placing rack 13B are selected, the relationship between the two is considered to a certain extent.
  • control unit 11 may be configured to determine whether a multi-functional battery placing rack exists in the at least one battery placing rack, and the multi-functional battery placing rack satisfies both the first condition and the second condition. Battery holder.
  • the first battery rack 13A can be selected from the battery racks that meet the first condition and the battery rack that meets the second condition can be selected according to the solution of Embodiment 8.
  • the second battery placing rack 13B can be selected from the battery racks that meet the first condition and the battery rack that meets the second condition can be selected according to the solution of Embodiment 8.
  • control unit 11 may also preferentially use the multi-functional battery placing rack, and select an identity from any of the following four ways to configure its identity:
  • the multi-functional battery placing rack is used as the first battery placing rack 13A and the second battery placing rack 13B at the same time.
  • the second method is to use the multifunctional battery placing rack as any one of the first battery placing rack 13A and the second battery placing rack 13B.
  • any one of the following conditions is used as the multi-functional battery placement rack as the first battery placement rack 13A Necessary conditions:
  • Condition (2) among the remaining battery placement racks, the number of battery placement racks that meet the first condition is less than the number of battery placement racks that meet the second condition;
  • Condition (3) Among the remaining battery racks, the number of battery racks that meet the first condition is less than the number of battery racks that meet the second condition, and the absolute value of the difference between the two is less than A first difference threshold;
  • Condition (4) Of the remaining battery racks, the number of battery racks that meet the first condition is less than the first number threshold.
  • condition (1) is taken as a necessary condition for using the multi-functional battery placing rack as the first battery placing rack 13A, that is, correspondingly, the control unit 11 needs to judge the at least one battery placement Except for the multi-functional battery placement rack in the rack, whether the remaining battery placement racks do not meet the first condition, and if so, use the multi-purpose battery placement rack as the first battery placement rack 13A;
  • condition (2) is taken as a necessary condition for the multi-functional battery rack as the first battery rack 13A, that is, correspondingly, the control unit 11 needs to determine that the at least one battery rack is Whether the number of battery racks that meet the first condition in the remaining battery racks is less than the number of battery racks that meet the second condition, and if so, the multi-function battery rack The rack is used as the first battery rack 13A (for example, there are two battery racks that meet the first condition and three battery racks that meet the second condition, then the multifunctional battery rack is used as the first battery Frame 13A);
  • condition (3) is taken as a necessary condition for the multi-functional battery rack as the first battery rack 13A, that is, correspondingly, the control unit 11 needs to determine whether the at least one battery rack is The multi-functional battery rack, whether the number of battery racks in the remaining battery racks that meet the first condition is less than the number of battery racks that meet the second condition, and the absolute value of the difference between the two is small Based on the first difference threshold, if yes, use the multi-functional battery rack as the first battery rack 13A (for example, there are two battery racks that meet the first condition, and six battery racks that meet the second condition If the first difference threshold is 3, the multi-functional battery rack is used as the first battery rack 13A);
  • condition (4) is taken as a necessary condition for the multi-functional battery rack as the first battery rack 13A, that is, correspondingly, the control unit 11 needs to determine whether the at least one battery rack is Whether the number of battery placement racks in the remaining battery placement racks that meet the first condition is less than the first number threshold, and if so, using the multi-purpose battery placement racks as the first battery placement racks 13A (for example, if there is one battery placement rack that meets the first condition and the first quantity threshold is 2, the multi-functional battery placement rack is used as the first battery placement rack 13A).
  • any one of the conditions is used as the second battery placement rack 13B. Necessary conditions:
  • Condition (2) among the remaining battery placement racks, the number of battery placement racks that meet the second condition is less than the number of battery placement racks that meet the first condition;
  • Condition (3) Among the remaining battery racks, the number of battery racks that meet the second condition is less than the number of battery racks that meet the first condition, and the absolute value of the difference between the two is less than A second difference threshold;
  • Condition (4) Of the remaining battery racks, the number of battery racks that meet the second condition is less than the second number threshold.
  • the power exchange control system of this embodiment is a further improvement on the basis of Embodiment 6, and is mainly reflected in the configuration of the control unit 11 for the battery-replaced equipment 12A and the battery-removed equipment 12B.
  • the power exchange device 12 can be roughly divided into two types:
  • the single-function power exchange device has a relatively simple structure, which can have a first structure and can only be configured as a battery replacement device 12A, or a second structure and can only be configured as a battery discharge device 12B;
  • the multifunctional power exchange device has a relatively complicated structure, and has both the first structure and the second structure, and can be configured as any one of a battery replacement device 12B and a battery replacement device 12A.
  • the first structure includes a structure required to realize removal of the battery to be installed from the first battery rack 13A and installation on the electric vehicle, for example, removing the battery to be installed from the first battery A gripping mechanism removed from a battery placing rack 13A, a lifting mechanism for mounting the battery to be mounted on the electric vehicle, and the like.
  • the second structure includes a structure required to realize the removal of the power-deficient battery from the electric vehicle and placement on the second battery rack 13B. For example, the power-deficient battery is removed from the electric vehicle.
  • the at least two power exchange devices 12 may be single-function power exchange devices (but the single-function power exchange device having the first structure and the single-function power device having the second structure All of the power exchange equipment are required); or, they are all multi-function power exchange equipment; or, some are single-function power exchange equipment, and some are multi-function power exchange equipment.
  • the control unit 11 may determine the position of the first battery placing rack 13A after selecting the first battery placing rack 13A, and screen the single-function power exchange equipment having the first structure and Multifunctional power exchange equipment (indicated by ⁇ in the figure), calculate the distance from each single-function power exchange equipment and multifunctional power exchange equipment with the first structure to the first battery rack 13A, and select the closest one
  • the battery replacement device is configured as a battery-mounted battery replacement device 12A, and an arrow at 12A in the figure indicates a moving direction of the battery-mounted battery replacement device 12A.
  • the control unit 11 may screen the single-function power exchange equipment and the multi-function power exchange equipment (shown with ⁇ in the figure) having the second structure, and calculate each of the single-function power exchange equipment and the multi-function electricity exchange equipment having the second structure.
  • the distance from the functional power exchange equipment to the electric vehicle 14 or the vehicle carrying platform 15 is selected as the closest power exchange equipment to be configured as a battery discharge power exchange equipment 12B.
  • the arrow at 12B in the figure indicates the equipment The moving direction of the battery replacement device 12B.
  • each of the battery racks has a predetermined binding relationship with at least one of the power exchange apparatuses, that is, each battery rack can only be bound by Take out and discharge the battery of the power exchange equipment with a fixed relationship.
  • the control unit 11 When the control unit 11 is configured with a battery-replacement device 12A, the control unit 11 preferably has a binding relationship with the first battery rack 13A, or has a binding relationship with the first battery rack 13A and a distance.
  • the first battery placing rack 13A is the closest power exchange device. Specifically, after the control unit 11 selects the first battery rack 13A, the control unit 11 may screen single-function power exchange equipment and multi-function power exchange that have a binding relationship with the first battery rack 13A and have a first structure.
  • the closest power exchange device is configured as a battery-replacement device 12A.
  • the power exchange device has a binding relationship with the second battery placing rack 13B, or has a binding relationship with the second battery placing rack 13B and has a distance.
  • the control unit 11 selects the second battery rack 13B, it can screen single-function power exchange equipment and multi-function power exchange that have a binding relationship with the second battery rack 13B and have a second structure.
  • Equipment randomly select a battery replacement device 12B configured therefrom, or further calculate the distance from the screened electrical replacement device to the electric vehicle or the distance to the vehicle platform, and select the closest electrical replacement device It is configured as a battery-removing device 12B.
  • the power exchange control system of this embodiment is a further improvement based on Embodiment 6, and is mainly reflected in the power exchange control process of the power exchange control system.
  • the power exchange control process in this embodiment is divided into a power exchange preparation process before the electric vehicle is parked on the car platform and a power exchange operation process after the electric vehicle is parked on the car platform.
  • control unit 11 is configured to select the second battery placing rack 13B in advance before the electric vehicle is parked on the vehicle carrying platform, and then configure a battery discharging power replacement device 12B.
  • select the second battery placing rack 13B refer to Embodiment 7-9
  • configuring the battery unloading and power replacement device 12B refer to Embodiment 10.
  • control unit 11 is further configured to send a third movement instruction to the battery-removal power-replacement device 12B after the electric vehicle is parked on a vehicle carrying platform, and the third movement instruction is used for
  • the battery-removing and power-changing device 12B is instructed to move and park at a preset power-changing position.
  • the battery discharging and power replacement device 12B is further configured to execute the third movement instruction.
  • the control unit 11 is further configured to send the electric vehicle to the battery-removing device 12B after the electric vehicle is parked on the vehicle-carrying platform and the battery-removing device 12B is parked at the preset power-changing position.
  • a battery unloading instruction which is used to instruct the battery unloading replacement device 12B to remove the lacking battery from the electric vehicle.
  • the battery discharging and power replacement device 12B is further configured to execute the battery removing instruction.
  • the preset power exchange position is a position suitable for taking a battery from an electric vehicle parked on the vehicle carrying platform. It can be understood that the battery unloading power exchange device 12B is located in the preset power exchange When in position, the battery-removing and power-changing device 12B can remove the battery from the electric vehicle parked on the car platform with a minimum of actions.
  • the preset power exchange position may be determined according to the structure of the vehicle-carrying platform. The preset power-changing position is located below or above the vehicle-carrying platform.
  • the car-carrying platform is basically the same as the car-carrying platform in Embodiment 6, except that the battery-changing device 12 is replaced with the battery-changing device in Embodiment 6. 12B, as shown in FIG. 6, the car platform 15 is higher than the ground level and has a hollow area in the middle.
  • the preset power exchange position P1 is usually located below the car-mounted platform, especially below the hollowed-out area, aligned with the battery of the electric vehicle 14 Out of the box.
  • the battery-removal power exchange device 12B For the electric vehicle 14 parked on the vehicle carrying platform 15 for power exchange, the battery-removal power exchange device 12B only needs to be vertically raised at the preset power exchange position P1 for lifting the power-deficient battery from the electric power.
  • the unlocking mechanism unlocked on the vehicle penetrates the hollowed out area, inserts the unlocking mechanism into the gap between the battery outer box and the battery of the electric vehicle 14, and the lock block of the battery box is touched to unlock the The electric battery is unlocked, and then the lack of battery is removed.
  • the car platform is basically the same as the car platform in Example 6. The difference is that the battery replacement device 12 in Example 6 is replaced by a battery discharge and power replacement.
  • the device 12B as shown in FIG. 7, has a lifting platform 151 in the middle of the car platform 15, and a hollow area is provided in the middle of the lifting platform 151.
  • the electric vehicle 14 changes power, it needs to drive into the car platform 15 and park on the car platform 15.
  • the preset power exchange position P2 is usually located above the vehicle carrying platform 15, Especially after the lifting platform 151 is raised, the hollowed area is below.
  • the battery-removal power exchange device 12B For the electric vehicle 14 parked on the lifting platform 151 for power exchange, the battery-removal power exchange device 12B only needs to be vertically raised at the preset power exchange position P2 for lifting the power-deficient battery from the electric vehicle
  • the vehicle-carrying platform is not limited to the above structure, and may also be other structures.
  • the preset power exchange position may be further combined with the second structure of the battery-removing power-changing device 12B according to the structure of the vehicle-carrying platform.
  • the structure is set based on conditions such as the moving path of the second structure when the battery is lacking.
  • the control unit 11 is further configured to send a fourth movement instruction to the battery removal power exchange device 12B after the battery removal power exchange device 12B executes the battery removal instruction, and the fourth movement instruction is used to command
  • the battery-removing and power-changing device 12B is moved to the second battery placing rack 13B and the deficient battery is placed in the empty battery placing bin.
  • the battery discharging and power replacement device 12B is further configured to execute the fourth movement instruction.
  • the control unit 11 is further configured to scan the license plate of the electric vehicle after the electric vehicle is parked on a car platform or when the license plate of the electric vehicle can be observed, and pass the license plate. Determine the battery model applicable to the electric vehicle, and then select the first battery rack 13A, and then configure a battery-replacement device 12A, and send a battery-receiving instruction to the battery-replacement device 12A.
  • the battery-replacement device 12A is instructed to remove the battery to be installed from the first battery placing rack 13A.
  • the battery-equipped power exchange device 12A is further configured to execute the battery fetch instruction.
  • For the process of selecting the first battery placing rack 13A refer to Embodiment 7-9, and for the process of configuring the battery-replacement device 12A, refer to Embodiment 10.
  • the control unit 11 is further configured to send a first movement instruction to the battery replacement device 12A after the battery replacement device 12A executes the battery taking instruction, and the first movement instruction is used to instruct
  • the battery-equipped power exchange device 12A is parked in advance at a first preset waiting position, and the first preset waiting position is a position within a first distance threshold from the vehicle-carrying platform.
  • the battery-equipped power exchange device is further configured to execute the first movement instruction.
  • the control unit 11 is further configured to, after the battery-removing and power-changing device 12B leaves the preset power-changing position or leaves the predetermined-power-changing position and exceeds a third distance threshold, send a signal to the battery-powered power-changing device 12A.
  • a fifth movement instruction is sent, and the fifth movement instruction is used to instruct the battery-equipped power exchange device 12A to move to the preset power exchange position.
  • the battery-equipped power exchange device 12A is further configured to execute the fifth movement instruction.
  • the control unit 11 is further configured to send a battery loading instruction to the battery loading and replacing device 12A after the battery loading and replacing device 12A executes the fifth movement instruction, and the battery loading and charging instruction is used to instruct the battery loading and replacement device 12A.
  • the battery-equipped power exchange device 12A loads the battery to be loaded into the electric vehicle.
  • the battery-packed power exchange device 12A is further configured to execute the battery-packed instruction. So far, the electric vehicle has been replaced with electricity, and the battery-equipped electricity exchange device 12A is driven away from the preset electricity exchange position.
  • the power exchange control system of this embodiment is a further improvement based on Embodiment 6, and is mainly reflected in the power exchange control process of the power exchange control system.
  • the power exchange control process in this embodiment is divided into a power exchange preparation process before the electric vehicle is parked on the car platform and a power exchange operation process after the electric vehicle is parked on the car platform.
  • the control instructions of the control unit are different from those in the eleventh embodiment during the power replacement preparation process and the power replacement operation process.
  • control unit 11 may select the second battery rack 13B in advance, configure the battery removal power replacement device 12B, and control the battery removal power replacement device 12B to complete a part of the instructions. Save time when removing batteries.
  • selecting the second battery placing rack 13B refer to Embodiment 7-9
  • configuring the battery unloading and power replacement device 12B refer to Embodiment 10.
  • control unit 11 controls the battery-removing and power-changing device 12B to complete a part of the instructions, including: the control unit 11 determines whether the preset power-changing position is a parkable state, thereby setting a second preset waiting Position, a second movement instruction is sent to the battery unloading and power exchange device 12B, and the second movement instruction is used to instruct the battery unloading and power exchange device 12B to park in advance at the second preset waiting position.
  • the battery-removing and power-changing device 12B is further configured to execute the second movement instruction.
  • the second preset waiting position is related to the preset power exchange position, and may be the same position as the preset power exchange position or a position near the preset power exchange position (for the preset power exchange position). For a description of setting the power exchange position, refer to Example 11).
  • the determining whether the preset power exchange position is a parkingable state may specifically include:
  • the preset power exchange position is a parking-capable state; otherwise, the preset power exchange position is a non-parking state:
  • Condition (3) It is predicted that when the battery-removing and power-changing device 12B is parked at the preset power-changing position, the battery-removing and power-changing device 12B will not cause an obstacle to the electric vehicle driving into the vehicle carrying platform.
  • condition (3) can be satisfied is usually related to the structure of the car platform.
  • Example 11 Taking the vehicle-carrying platform of the first structure in Example 11 as an example, since the electric vehicle is parked on the vehicle-carrying platform when the power is changed, and the preset power-changing position is usually located below the vehicle-carrying platform, In general, even if the battery-removing and power-changing device 12B is parked at the preset power-changing position before the electric vehicle enters the car platform, the battery-removing and power-changing device 12B will not The electric vehicle on the vehicle-carrying platform causes obstruction and can satisfy the condition (3).
  • the preset power-changing position is usually also located above the vehicle-carrying platform. Therefore, if the battery-removing and power-changing device 12B is parked at the preset power-changing position before the electric vehicle enters the car-carrying platform, then when the electric vehicle enters the car-carrying platform, the The battery replacement device 12B is likely to block the incoming electric vehicle. Therefore, for the vehicle platform of the second structure, the preset power exchange position usually cannot meet the condition (3), and thus becomes a non-parking state.
  • the second preset waiting position is the same position as the preset power exchange position.
  • the second preset waiting position is a position that does not exceed a second distance threshold from the preset power exchange position, that is, near the preset power exchange position. position.
  • the power exchange preparation process is completed, and the power exchange control system waits for the electric vehicle to drive in and park on the car loading platform to enter the power exchange operation process.
  • control unit 11 determines whether the second preset waiting position where the battery discharge power replacement device 12B is located is the same as the preset power exchange position:
  • the electric device 12B is further configured to execute the battery unloading instruction;
  • a fine-tuning instruction is sent to the battery-removing and power-changing device 12B, and the fine-tuning instruction is used to instruct the battery-removing and power-changing device 12B to move from the second preset waiting position to the preset power-changing position
  • the battery-removing and power-changing device 12B is used to execute the fine-tuning instruction; then, the control unit 11 sends the battery-removing instruction to the battery-removing and power-changing device 12B; And execute the battery unloading instruction.
  • the control unit 11 is further configured to send a fourth movement instruction to the battery removal power exchange device 12B after the battery removal power exchange device 12B executes the battery removal instruction, and the fourth movement instruction is used to command
  • the battery-removing and power-changing device 12B is moved to the second battery placing rack 13B and the deficient battery is placed in the empty battery placing bin.
  • the battery discharging and power replacement device 12B is further configured to execute the fourth movement instruction.
  • control unit 11 is further configured to scan the license plate of the electric vehicle after the electric vehicle is parked on a car platform or when the license plate of the electric vehicle can be observed, and pass the license plate. Determine the battery model applicable to the electric vehicle, and then select the first rack 13A, and then configure the battery-replacement device 12A, and send a battery-receiving instruction to the battery-replacement device 12A.
  • the battery-packed power exchange device 12A is instructed to remove the battery to be mounted from the first battery rack.
  • the battery-equipped power exchange device 12A is further configured to execute the battery fetch instruction.
  • the control unit 11 is further configured to send a first movement instruction to the battery replacement device 12A after the battery replacement device 12A executes the battery taking instruction, and the first movement instruction is used to instruct
  • the battery-equipped power exchange device 12A is parked in advance at a first preset waiting position, and the first preset waiting position is a position within a first distance threshold from the vehicle-carrying platform.
  • the battery-equipped power exchange device 12A is further configured to execute the first movement instruction.
  • the control unit 11 is further configured to, after the battery-removing and power-changing device 12B leaves the preset power-changing position or leaves the predetermined-power-changing position and exceeds a third distance threshold, send a signal to the battery-powered power-changing device 12A.
  • a fifth movement instruction is sent, and the fifth movement instruction is used to instruct the battery-equipped power exchange device 12A to move to the preset power exchange position.
  • the battery-equipped power exchange device 12A is further configured to execute the fifth movement instruction.
  • the control unit 11 is further configured to send a battery loading instruction to the battery loading and replacing device 12A after the battery loading and replacing device 12A executes the fifth movement instruction, and the battery loading and charging instruction is used to instruct the battery loading and replacement device 12A.
  • the battery-equipped power exchange device 12A loads the battery to be loaded into the electric vehicle.
  • the battery-packed power exchange device 12A is further configured to execute the battery-packed instruction. So far, the electric vehicle has been replaced with electricity, and the control unit 11 instructs the battery-equipped electricity exchange device 12A to drive away from the preset electricity exchange position.
  • the power exchange control system of this embodiment completes part of the control during the power exchange preparation process, which greatly shortens the power exchange time after the electric vehicle enters the loading platform and improves the power exchange efficiency.
  • FIG. 4 shows a power exchange control system of this embodiment.
  • This embodiment is basically the same as Embodiment 6, except that the battery suitable for an electric vehicle in this embodiment generally refers to the same battery type as that of the electric vehicle.
  • the power exchange control system of this embodiment is a further improvement based on Embodiment 13.
  • the improvement of Embodiment 13 in this embodiment is basically the same as the improvement of Embodiment 7 over Embodiment 6.
  • the difference is that the first The condition may be set to place a fully-charged battery suitable for the electric vehicle;
  • the first condition may be preferentially set to place a fully charged battery suitable for the electric vehicle, if the at least one battery rack does not have
  • the battery condition rack of the first condition is modified to set the first condition to store a battery suitable for the electric vehicle and having the highest power.
  • the first condition is set by default to a battery that is suitable for the electric vehicle and is fully charged, and the control unit 11 is configured to determine whether there is a battery in the at least one battery rack that meets the default first condition. Battery rack, if yes, select one of them as the first battery rack 13A, if not, then:
  • the first condition is modified to set a battery with the highest capacity suitable for the electric vehicle, and it is judged again whether there is a battery placement rack that meets the current first condition in the at least one battery placement rack, and if so, select from it One serves as a first battery placing stand 13A. If there is still no battery rack that meets the first condition, the control unit 11 may issue an alarm signal to indicate that the electric vehicle cannot be replaced with electricity.
  • the power exchange control system of this embodiment is a further improvement on the basis of Embodiment 13 or 14.
  • the improvement of Embodiment 13 or 14 in this embodiment is basically the same as that of Embodiment 8 or 6 or 7. The difference is that, in this embodiment, if the battery vehicle is not parked yet, a battery rack closest to the vehicle platform for parking the electric vehicle is selected as the first battery rack 13A. . Similarly, if the battery vehicle has not been parked, a battery rack closest to the vehicle platform for parking the electric vehicle is selected as the second battery rack 13B.
  • the vehicle-carrying platform may be a dedicated platform for vehicle power exchange or other common platforms for vehicle parking and convenient power exchange.
  • the power exchange control system of this embodiment is a further improvement based on Embodiment 13 or 14.
  • Embodiment 13 or 14 in this embodiment please refer to the improvement of Embodiment 9 to Embodiment 6 or 7.
  • the power exchange control system of this embodiment is a further improvement on Embodiment 13.
  • the improvement of Embodiment 13 in this embodiment is basically the same as that of Embodiment 10 over Embodiment 6. The difference is that if If the electric vehicle is not parked yet, it is preferred that the electric power exchange equipment is closest to the vehicle carrying platform for parking the electric vehicle. Similarly, if the electric vehicle 14 has not been parked, the distances between the screened power exchange equipment and the car platform 15 are calculated.
  • each of the battery placing racks has a preset binding relationship with at least one of the power exchange devices
  • the battery vehicle has not been parked, it is preferable to have a binding relationship with the second battery placing frame 13B and the closest power exchange device to the vehicle platform for parking the electric vehicle. Similarly, if the battery vehicle has not been parked, the distance from the screened power exchange equipment to the vehicle carrying platform is calculated.
  • the power exchange control system of this embodiment is a further improvement based on Embodiment 13.
  • the improvement of Embodiment 13 in this embodiment is basically the same as the improvement of Embodiment 11 in Embodiment 6. The difference is that this implementation
  • this implementation For a process of selecting the second battery placing rack 13B in the example, refer to Embodiment 14-16, and for a process of configuring the battery unloading and power replacement device 12B, refer to Embodiment 17.
  • control unit 11 is further configured to select the first battery placing rack 13A after the electric vehicle is parked on a vehicle carrying platform, and then configure a battery-replacement device 12A to the battery-receiving device.
  • the battery replacement device 12A sends a battery take instruction, which is used to instruct the battery replacement device 12A to remove the battery to be installed from the first battery placing rack 13A.
  • the battery-equipped power exchange device 12A is further configured to execute the battery fetch instruction.
  • the power exchange control system of this embodiment is a further improvement based on Embodiment 13.
  • the improvement of Embodiment 13 in this embodiment is basically the same as the improvement of Embodiment 12 in Embodiment 6. The difference is that in this embodiment,
  • the control unit 11 may also select The first battery placing rack 13A, the battery-replacement device 12A is configured, and the battery-replacement device 12A is controlled to complete a part of the instructions to save battery installation time.
  • the process of selecting the second battery placing rack 13B refer to Embodiment 14-16
  • for the process of configuring the battery unloading and power replacement device 12B refer to Embodiment 17.
  • the battery model applicable to the electric vehicle can be predicted in the following manner: the vehicle-carrying platform is limited to parking of the electric vehicle to which the battery of the model is applicable. For example, it is preset that a certain vehicle-carrying platform is limited to parking of electric vehicles of a specific type of battery. Then, whether or not the electric vehicle has been parked on the vehicle-carrying platform, it can be determined that the applicable battery type of the electric vehicle must be the specific model.
  • control unit 11 controls the battery replacement device 12A to complete a part of the instructions, including: the control unit 11 sends a battery take instruction to the battery replacement device 12A, and the battery take instruction is used to instruct the
  • the battery-replacement device 12A removes the battery to be installed from the first battery placing rack 13A.
  • the battery-equipped power exchange device 12A is further configured to execute the battery fetch instruction.
  • the control unit 11 is further configured to send a first movement instruction to the battery replacement device 12A after the battery replacement device 12A executes the battery taking instruction, and the first movement instruction is used to instruct
  • the battery-equipped power exchange device 12A is parked in advance at a first preset waiting position, the first preset waiting position is near the vehicle-carrying platform, and is a position that is within a first distance threshold from the vehicle-carrying platform .
  • the battery-equipped power exchange device 12A is further configured to execute the first movement instruction.
  • the power exchange preparation process is completed, and the power exchange control system waits for the electric vehicle to drive in and park on the car loading platform to enter the power exchange operation process.
  • control unit 11 determines whether the second preset waiting position where the battery discharge power replacement device 12B is located is the same as the preset power exchange position:
  • the electric device 12B is further configured to execute the battery unloading instruction;
  • a fine-tuning instruction is sent to the battery-removing and power-changing device 12B, and the fine-tuning instruction is used to instruct the battery-removing and power-changing device 12B to move from the second preset waiting position to the preset power-changing position
  • the battery-removing and power-changing device 12B is used to execute the fine-tuning instruction; then, the control unit 11 sends the battery-removing instruction to the battery-removing and power-changing device 12B; And execute the battery unloading instruction.
  • the control unit 11 is further configured to send a fourth movement instruction to the battery removal power exchange device 12B after the battery removal power exchange device 12B executes the battery removal instruction, and the fourth movement instruction is used to command
  • the battery-removing and power-changing device 12B is moved to the second battery placing rack 13B and the deficient battery is placed in the empty battery placing bin.
  • the battery discharging and power replacement device 12B is further configured to execute the fourth movement instruction.
  • the control unit 11 is further configured to send to the battery-installed power exchange device after the battery-removed power replacement device 12B leaves the preset power-change location or leaves the preset power-change location beyond a third distance threshold.
  • a fifth movement instruction where the fifth movement instruction is used to instruct the battery-equipped power exchange device 12A to move to the preset power exchange position.
  • the battery-equipped power exchange device 12A is further configured to execute the fifth movement instruction.
  • the control unit 11 is further configured to send a battery loading instruction to the battery loading and replacing device 12A after the battery loading and replacing device 12A executes the fifth movement instruction, and the battery loading and charging instruction is used to instruct the battery loading and replacement device 12A.
  • the battery-equipped power exchange device 12A loads the battery to be loaded into the electric vehicle.
  • the battery-packed power exchange device 12A is further configured to execute the battery-packed instruction. So far, the electric vehicle has been replaced with electricity, and the control unit 11 instructs the battery-equipped electricity exchange device 12A to drive away from the preset electricity exchange position.
  • the power exchange control system of this embodiment completes part of the control during the power exchange preparation process, which greatly shortens the power exchange time after the electric vehicle enters the loading platform and improves the power exchange efficiency.
  • FIG. 8 shows a power exchange control method in this embodiment.
  • the power exchange control method includes:
  • Step 21 Determine the battery model applicable to the electric vehicle. Specifically, the license plate of the electric vehicle may be scanned, and the battery model applicable to the electric vehicle may be determined through the license plate.
  • Step 22 Select a battery placement rack that meets the first condition from at least one battery placement rack as the first battery placement rack.
  • the battery placement rack has a plurality of battery placement bins for placing batteries, and the first condition is set to place There is a battery of said battery type.
  • Step 23 Select a battery placement rack that meets the second condition from the at least one battery placement rack as the second battery placement rack, and the second strip is set to have an empty battery placement bin.
  • Step 24 The power replacement device is moved to a preset power replacement position, the power-deficient battery is removed from the electric vehicle, and the power-deficient battery is transported to the second rack and placed on the empty battery.
  • the preset power exchange position is a position suitable for taking out and installing a battery from the electric vehicle.
  • Step 25 Move the power exchange device to the first battery rack, remove the battery of the battery type from the first battery rack, and transport the battery of the battery type to the preset battery replacement.
  • the electric position is installed on the electric vehicle.
  • confirming the applicable battery model of the electric vehicle can facilitate the selection of the first battery placement rack; during the entire process of powering the vehicle, the power-changing device moves smoothly, improving the power-changing speed and efficiency.
  • the preset power exchange position can be understood as that when the power exchange device is located at the preset power exchange position, the battery can be removed from the electric vehicle or installed in the electric vehicle with minimal movement.
  • the preset power exchange position may be determined according to a structure of a car loading platform where the electric vehicle is parked, and the preset power exchange position is located below or above the car loading platform.
  • the power exchange control method in this embodiment is a further improvement based on Embodiment 20, and is mainly reflected in the setting of the first condition.
  • the first condition is used as a basis for selecting the first battery placing rack.
  • other preferred matching conditions may be further set.
  • the matching condition is mainly related to the power of the battery, and the power exchange control method further includes: monitoring the power of the battery placed on the battery rack.
  • the first condition is set as a fully charged battery in which the battery model is placed.
  • step 22 determines whether there is a battery placement rack that meets the first condition in the at least one battery placement rack, and if so, selects one of them as the first battery placement rack. If there is no battery rack that meets the first condition, a warning signal is issued, indicating that the electric vehicle cannot be replaced with electricity.
  • the first condition is preferentially set as a battery with the battery model and fully charged, if the at least one battery rack does not have the first condition
  • the battery placement rack the first condition is modified to set the battery with the highest battery capacity and the battery type.
  • the first condition is set as a fully charged battery by default, and step 22 determines whether there is a battery placement rack that meets the default first condition in the at least one battery placement rack. If yes, then choose one of them as the first battery holder, if not, then:
  • the first condition is modified to set the battery with the highest battery type and the battery with the highest capacity, and it is judged again whether there is a battery shelf in the at least one battery shelf that meets the current first condition, and if so, one of them is selected as First battery holder. If there is still no battery rack that meets the first condition, an alarm signal may be issued to indicate that the electric vehicle cannot be replaced with electricity.
  • the empty battery storage compartment is also used to charge the power-deficient battery.
  • the empty battery storage bin has a battery charging circuit, and the battery charging circuit may have fixed power parameters that match the battery model; or the battery charging circuit has an adjustable A power parameter, the control unit is further configured to adjust the power parameter according to the battery model, so that the power parameter matches the battery model.
  • the power parameters include current, voltage, and the like.
  • the first condition may be set to other conditions according to requirements.
  • the power exchange control method in this embodiment is a further improvement on the basis of Embodiment 20 or 21, which is mainly reflected in the selection of the first battery placing rack and the second battery placing rack.
  • the method may further set the selection requirements of the first battery placing rack and the second battery placing rack according to requirements.
  • step 22 further includes determining whether there are more than one battery racks that meet the first condition, and if so, then :
  • a battery rack closest to the electric vehicle or a distance from the battery rack that meets the first condition is selected for parking.
  • the closest battery placing rack of the vehicle carrying platform of the electric vehicle is used as the first battery placing rack;
  • a battery placement rack located on a path between the second battery placement rack and the battery vehicle is selected as the first battery placement rack, or a path located away from the electric vehicle or vehicle is selected.
  • the nearest battery placing rack of the vehicle carrying platform is used as the first battery placing rack.
  • step 23 further includes determining that there are more than one battery racks that meet the second condition. If yes, then:
  • a battery placing rack closest to the electric vehicle or a distance for parking is selected from the battery placing racks that meet the second condition.
  • the nearest battery placement rack of the vehicle platform of the electric vehicle serves as the second battery placement rack.
  • the battery placement rack can be driven into the car carrying platform along the electric vehicle
  • the directions are arranged on both sides of the vehicle-carrying platform.
  • the vehicle-carrying platform may be a dedicated platform for vehicle power exchange or other common platforms that can be parked by the vehicle and facilitate power exchange.
  • the selection of the first battery placement rack and the second battery placement rack is relatively independent, that is, the selection of the first battery placement rack and the second battery placement rack can be set according to different needs, respectively. Claim.
  • the power exchange control method in this embodiment is a further improvement on the basis of Embodiment 20 or 21, which is mainly reflected in the selection of the first battery placing rack and the second battery placing rack. Different from Embodiment 21, in this embodiment, when selecting the first battery placing rack and the second battery placing rack, the relationship between the two will be considered to a certain extent.
  • the method further includes determining whether a multi-functional battery rack exists in the at least one battery rack, and the multi-function battery rack is a battery rack that meets the first condition and the second condition. .
  • the first battery rack can be selected from the battery racks that meet the first condition, and the first battery rack can be selected from the battery racks that meet the second condition according to the solution in Embodiment 21. Two battery racks.
  • the multifunctional battery placing rack can also be used as the first battery placing rack and the second battery placing rack at the same time. This reduces the moving distance of the power exchange equipment.
  • the power exchange control method in this embodiment is a further improvement based on Embodiment 20, and is mainly reflected in the control flow of the power exchange equipment.
  • the entire power exchange process can be divided into a power exchange preparation process before the electric vehicle is parked on the car platform and an electric power exchange operation process after the electric vehicle is parked on the car platform.
  • the power exchange control method includes: causing the power exchange equipment to be parked in a preset waiting position in advance.
  • the preset waiting position is related to the preset power exchange position, and may be the same position as the preset power exchange position or a position near the preset power exchange position.
  • the preset waiting position is the same position as the preset power exchange position.
  • the preset waiting position is a position that does not exceed a first distance threshold from the preset power exchange position.
  • the preset power exchange position is a parkable state; otherwise, the preset power exchange position is a non-parkable state:
  • the preset power exchange position is vacant
  • the power replacement control method includes:
  • the power exchange device After the power exchange device removes the power-deficient battery from the electric vehicle, causing the power exchange device to move to the second battery rack;
  • the power exchange control system of this embodiment completes part of the control during the power exchange preparation process, which greatly shortens the power exchange time after the electric vehicle enters the loading platform and improves the power exchange efficiency.
  • FIG. 10 illustrates a power exchange control method in this embodiment.
  • the power exchange control method includes:
  • Step 21 ' Select a battery placement rack that meets the first condition from at least one battery placement rack as the first battery placement rack.
  • the battery rack includes a plurality of battery storage bins for storing batteries.
  • the first condition is set to store batteries suitable for electric vehicles.
  • the batteries suitable for electric vehicles generally refer to the same as the electric vehicles.
  • the batteries used are of the same type.
  • Step 22 ' Select a battery placement rack that meets the second condition from the at least one battery placement rack as the second battery placement rack.
  • the second condition is set to have an empty battery storage compartment.
  • Step 23 ' Configure at least one of the at least two power replacement devices as a battery-mounted power replacement device.
  • the battery-replacement device is used to transport batteries to be installed, and the batteries to be installed are batteries that are removed from the first battery rack and are suitable for the electric vehicle and are to be installed in the electric vehicle. .
  • Step 24 ' Configure at least one of the at least two power exchange devices as a battery discharge power replacement device.
  • the battery-removing and power-changing device is used for transporting a power-deficient battery
  • the power-deficient battery is a battery removed from the electric vehicle and to be placed in the empty battery storage compartment.
  • step 22 ' may adopt other sequences, such as first performing step 22 ', then step 24', step 21 ', and step 23 in this order. ', Or step 21', then step 23 ', step 22', and step 24 '.
  • two power-changing devices are used, which are a battery-powered power-removal device and a battery-power-removal power-replacement device.
  • the two electric replacement devices have different The responsibility of jointly completing the task of power exchange makes the entire time of power exchange shorten at least half of the time compared with the use of only one power exchange equipment to improve the speed and efficiency of power exchange.
  • the power exchange control method of this embodiment is a further improvement based on Embodiment 25.
  • the improvement of Embodiment 25 in this embodiment is basically the same as the improvement of Embodiment 21 in Embodiment 20.
  • the difference is that the power exchange The control method further includes: monitoring a power amount of a battery placed on the battery placing rack, which is helpful for selecting a first battery placing rack.
  • the power exchange control method of this embodiment is a further improvement on the basis of Embodiment 25 or 26.
  • the improvement of Embodiment 25 or 26 in this embodiment is basically the same as that of Embodiment 22 or 20 or 21.
  • the battery The racks can be arranged on both sides of the vehicle-carrying platform in the direction that the electric vehicle drives into the vehicle-carrying platform.
  • the power exchange control method in this embodiment is a further improvement on the basis of Embodiment 25 or 26, which is mainly reflected in the selection of the first battery placing rack and the second battery placing rack. Different from Embodiment 27, in this embodiment, when the first battery placing rack and the second battery placing rack are selected, the relationship between the two is considered to a certain extent.
  • the power exchange control method further includes:
  • the first battery placement rack can be selected from the battery placement racks that meet the first condition, and the second battery placement rack is selected from the battery placement racks that meet the second condition, according to the solution of Embodiment 27.
  • the multi-functional battery placing rack is preferentially used, and any one of the following four ways is used to configure identity:
  • the first method is to use the multifunctional battery placing rack as the first battery placing rack and the second battery placing rack simultaneously.
  • the second method is to use the multifunctional battery placing rack as any one of the first battery placing rack and the second battery placing rack.
  • any one of the following conditions is used as the first battery placement rack. Necessary conditions:
  • Condition (2) among the remaining battery placement racks, the number of battery placement racks that meet the first condition is less than the number of battery placement racks that meet the second condition;
  • Condition (3) Among the remaining battery racks, the number of battery racks that meet the first condition is less than the number of battery racks that meet the second condition, and the absolute value of the difference between the two is less than A first difference threshold;
  • Condition (4) Of the remaining battery racks, the number of battery racks that meet the first condition is less than the first number threshold.
  • Condition (2) among the remaining battery placement racks, the number of battery placement racks that meet the second condition is less than the number of battery placement racks that meet the first condition;
  • Condition (3) Among the remaining battery racks, the number of battery racks that meet the second condition is less than the number of battery racks that meet the first condition, and the absolute value of the difference between the two is less than A second difference threshold;
  • Condition (4) Of the remaining battery racks, the number of battery racks that meet the second condition is less than the second number threshold.
  • the power exchange control method of this embodiment is a further improvement on the basis of Embodiment 25, and is mainly reflected in the configuration of step 23 'for the battery replacement device and step 24' for the battery replacement device.
  • the power exchange equipment can be roughly divided into two types:
  • the single-function power exchange device has a relatively simple structure, which can have a first structure and can only be configured as a battery replacement device, or a second structure and can only be configured as a battery replacement device;
  • the multifunctional power exchange device has a relatively complicated structure, and has both the first structure and the second structure, and can be configured as any one of a battery replacement device and a battery replacement device.
  • the first structure includes a structure required to realize removal of the battery to be installed from the first battery rack and installation on the electric vehicle, for example, removing the battery to be installed from the first battery.
  • the second structure includes a structure required to achieve removal of the power-deficient battery from the electric vehicle and placement on the second battery rack, for example, unlocking the power-deficient battery from the electric vehicle.
  • the at least two power exchange devices may be single-function power exchange devices (but the single-function power exchange device having the first structure and the single-function power exchange device having the second structure All electrical equipment is required); or, they are all multifunctional power exchange equipment; or, some are single-function power exchange equipment, and some are multifunctional power exchange equipment.
  • the power-changing device configured as the battery-equipped power exchange device in step 23 ' is preferably closest to the first battery rack Power exchange equipment.
  • step 23 ' is performed after the first battery placing rack is selected in step 21', and may include: determining a position of the first battery placing rack, and screening single-function power exchange equipment and multi-function power exchange having the first structure. The device calculates the distance from each of the single-function power exchange device and the multi-function power exchange device with the first structure to the first battery rack, and selects the closest one to be configured as the battery-replaced device.
  • the power-changing device that is configured as the battery-discharging and power-changing device in step 24 ′ is preferably the nearest power-changing to the electric vehicle Equipment (if the electric vehicle has not been parked, it is preferred to be the closest power exchange equipment to the car platform for parking the electric vehicle).
  • step 24 ′ may include: screening the single-function power exchange device and the multi-function power exchange device having the second structure, and calculating each of the single-function power exchange device and the multi-function power exchange device having the second structure to the The distance of the electric vehicle (if the electric vehicle is not parked yet, the distance between the screened platform of the power exchange equipment and the vehicle carrying platform is calculated separately), and the nearest one is selected as the battery unloading and power exchange equipment.
  • each of the battery racks has a predetermined binding relationship with at least one of the power exchange apparatuses, that is, each battery rack can only be bound by Take out and discharge the battery of the power exchange equipment with a fixed relationship.
  • Step 23 ′ When configuring the battery replacement device, it is preferred that the battery replacement device has a binding relationship with the first battery rack, or has a binding relationship with the first battery rack and is away from the first battery. Place the nearest power replacement equipment.
  • step 23 ′ may include: after selecting the first battery placement rack, screening single-function power exchange equipment and multi-function electricity exchange equipment having a binding relationship with the first battery placement rack and having a first structure, One of them is randomly selected to be configured as a battery replacement device, or the position of the first battery rack is further determined, and the distances between the screened power exchange device and the first battery rack are calculated, and the nearest one is selected.
  • the electrical device is configured as a battery replacement device.
  • Step 24 When configuring a battery-removal power replacement device, it is preferred that the power replacement device has a binding relationship with the second battery rack, or has a binding relationship with the second battery rack, and is closest to the electric vehicle. (If the battery vehicle is not parked yet, it is preferably a power exchange device that has a binding relationship with the second battery placement rack and is closest to the vehicle platform for parking the electric vehicle).
  • step 24 ′ may include: after selecting the second battery rack, selecting single-function power exchange equipment and multi-function power exchange equipment having a binding relationship with the second battery rack and having a second structure, One of them is randomly selected to be configured as a battery-removing electrical replacement device, or the distance between the screened electrical replacement device and the electric vehicle is calculated separately (if the battery vehicle is not parked, the screened electrical replacement device is calculated to the vehicle) Distance of the vehicle platform), and select a nearest electric replacement device to be configured as a battery unloading electric replacement device.
  • the power exchange control method of this embodiment is a further improvement based on Embodiment 25, and is mainly reflected in the power exchange control process of the power exchange control method.
  • the power exchange control process in this embodiment is divided into a power exchange preparation process before the electric vehicle is parked on the car platform and a power exchange operation process after the electric vehicle is parked on the car platform.
  • the power replacement control method includes: selecting the second battery placement rack in advance, and then configuring a battery replacement power replacement device.
  • selecting the second battery placing rack refer to Embodiment 26-28
  • configuring a battery unloading and power replacement device refer to Embodiment 29.
  • the power replacement control method includes: instructing the battery-removal power replacement device to move and park at a preset power replacement position.
  • the battery-removing power exchange device After the electric vehicle is parked on the car-carrying platform and the battery-removing power exchange device is parked at the preset power-changing position, the battery-removing power exchange device is ordered to remove the power shortage from the electric vehicle. battery.
  • the preset power exchange position is a position suitable for taking a battery from an electric vehicle parked on the vehicle carrying platform. It can be understood that the battery discharge power replacement device is located at the preset power exchange position At this time, the battery-removing and power-changing device can remove the battery from the electric vehicle parked on the vehicle-carrying platform with minimal movement.
  • the preset power exchange position may specifically be determined according to the structure of the vehicle-carrying platform. The preset power exchange position is located below or above the vehicle-carrying platform. (For a detailed description of the preset power exchange position, see the embodiment. 25).
  • the preset power exchange position may further be set according to the structure of the vehicle-carrying platform, in combination with the second structure of the battery unloading power exchange equipment, and the conditions such as the movement path of the second structure when the battery is lacking.
  • the battery-removing and power-removing device After the battery-removing and power-removing device removes the power-loss battery from the electric vehicle, the battery-removing and power-removing device is commanded to move to the second battery placing rack and place the power-losing battery in the Empty battery compartment.
  • the power replacement control method further includes: selecting the first battery placement rack, and then configuring the battery replacement apparatus, and ordering the battery replacement apparatus to be taken from the first battery placement rack
  • the battery to be installed is described below.
  • selecting the first battery placing rack refer to Embodiment 26-28
  • configuring a battery-replacement device refer to Embodiment 29.
  • the battery-powered power-changing device After the battery-removing and power-changing device leaves the preset power-changing position or leaves the preset-power-changing position for more than a third distance threshold, the battery-powered power-changing device is commanded to move to the preset power-changing position.
  • the battery-equipped power exchange device After the battery-equipped power exchange device is moved to the preset power-changing position, the battery-equipped power exchange device is commanded to load the battery to be installed into the electric vehicle. So far, the electric vehicle has been replaced with electricity.
  • the battery-equipped power exchange device is instructed to drive away from the preset power exchange position.
  • the power exchange control method of this embodiment is a further improvement based on Embodiment 25, and is mainly reflected in the power exchange control process of the power exchange control method.
  • the power exchange control process in this embodiment is divided into a power exchange preparation process before the electric vehicle is parked on the car platform and an electric power exchange operation process after the electric vehicle is parked on the car platform. As shown in FIG. 12, in the power replacement preparation process and the power replacement operation flow, the steps included in the power replacement control method are different from those in Embodiment 30.
  • the power replacement control method includes: selecting the second battery placement rack in advance, configuring the battery removal power replacement device, and ordering the battery removal power replacement device to complete a part of the operation in order to save Battery removal time.
  • selecting the second battery placing rack refer to Embodiment 26-28
  • configuring a battery unloading and power replacement device refer to Embodiment 29.
  • ordering the battery-removing and power-changing device to complete a part of operations includes: determining whether the preset power-changing position is in a parkable state, thereby setting a second preset waiting position, and ordering the battery-removing and power-changing device in advance Parked at the second preset waiting position.
  • the second preset waiting position is related to the preset power exchange position, and may be the same position as the preset power exchange position or a position near the preset power exchange position (for the preset power exchange position). (Refer to Example 30 for specific description of the power exchange position).
  • the determining whether the preset power exchange position is a parkingable state may specifically include:
  • the preset power exchange position is a parking-capable state; otherwise, the preset power exchange position is a non-parking state:
  • Condition (2) There is a path for the battery unloading and power exchange device to move to the preset power exchange position
  • Condition (3) It is predicted that when the battery-removing and power-changing device is parked at the preset power-changing position, the battery-removing and power-changing device will not cause an obstacle to the electric vehicle entering the vehicle-carrying platform.
  • condition (3) can be satisfied is usually related to the structure of the car platform.
  • the second preset waiting position is the same position as the preset power exchange position.
  • the second preset waiting position is a position that does not exceed a second distance threshold from the preset power exchange position, that is, near the preset power exchange position. position.
  • the power exchange control method further includes: The first battery placing rack is selected in advance, the battery-recharging device is configured, and the battery-recharging device is instructed to complete a part of the operation to save battery installation time.
  • the battery model applicable to the electric vehicle can be predicted in the following manner: the vehicle-carrying platform is limited to parking of the electric vehicle to which the battery of the model is applicable.
  • a certain vehicle-carrying platform is limited to parking of electric vehicles of a specific type of battery. Then, whether or not the electric vehicle has been parked on the vehicle-carrying platform, it can be determined that the applicable battery type of the electric vehicle must be the specific model.
  • ordering the battery-replacement device to complete a part of the operation includes: ordering the battery-replacement device to remove the battery to be installed from the first battery placement rack.
  • the battery replacement device After the battery replacement device removes the battery to be installed from the first battery rack, the battery replacement device is commanded to be parked in a first preset waiting position in advance, the first preset waiting The position is near the vehicle-carrying platform, and is a position that is within a first distance threshold from the vehicle-carrying platform.
  • the power replacement control method includes: determining whether the second preset waiting position where the battery discharge power replacement device is located is the same as the preset power replacement position:
  • the battery-removing device executes the battery-removing instruction, the battery-removing device is instructed to move to the second battery placement rack and place the lacking battery in the empty battery storage compartment. .
  • the battery-powered power-changing device After the battery-removing and power-changing device leaves the preset power-changing position or leaves the preset-power-changing position for more than a third distance threshold, the battery-powered power-changing device is commanded to move to the preset power-changing position.
  • the battery-equipped power exchange device After the battery-equipped power exchange device is moved to the preset power exchange position, the battery-equipped power exchange device is commanded to load the battery to be installed into the electric vehicle. So far, the electric vehicle has been replaced with electricity.
  • the battery-equipped power exchange device is ordered to drive away from the preset power exchange position.
  • the power exchange control method of this embodiment completes part of the control during the power exchange preparation process, which greatly shortens the power exchange time after the electric vehicle enters the loading platform and improves the power exchange efficiency.
  • FIG. 13 illustrates a power exchange control method in this embodiment.
  • the power exchange control method includes:
  • Step 21 ' Determine the battery model suitable for the electric vehicle to be replaced.
  • Step 22 ' Select a battery placement rack that meets the first condition from at least one battery placement rack as the first battery placement rack.
  • the battery rack includes a plurality of battery storage bins for storing batteries.
  • the first condition is set to store a battery of the battery type.
  • the battery suitable for an electric vehicle generally refers to the same as the electric vehicle.
  • the batteries used are of the same type.
  • Step 23 ' Select a battery placement rack that meets the second condition from the at least one battery placement rack as the second battery placement rack.
  • the second condition is set to have an empty battery storage compartment.
  • Step 24 ' Configure at least one of the at least two power replacement devices as a battery-mounted power replacement device.
  • the battery-equipped power exchange device is used for transporting batteries to be installed, and the batteries to be installed are batteries of the battery type that are removed from the first battery rack and are to be installed in the electric vehicle.
  • Step 25 ' Configure at least one of the at least two power exchange devices as a battery discharge power replacement device.
  • the battery-removing and power-changing device is used for transporting a power-deficient battery
  • the power-deficient battery is a battery removed from the electric vehicle and to be placed in the empty battery storage compartment.
  • step 23 is only one possible ordering of the above steps.
  • the above steps may adopt other sequences, such as first performing step 23 ', then step 25', step 21 ', and step 23 in this order.
  • Step 24' or step 21 ', then step 22', step 24 ', step 23', and step 25 '.
  • confirming the applicable battery model of the electric vehicle is convenient for selecting the first battery rack and retrieving the battery to be installed; in the entire process of replacing the vehicle with electricity, two electricity exchange devices are used, one for battery installation
  • the power trajectory and battery-removal equipment, the movement trajectory of the battery-replacement equipment is between the first battery rack and the electric vehicle to achieve the transportation of the battery to be installed.
  • the movement trajectory of the battery-removal equipment is between the electric vehicle and the
  • the two batteries are placed between the racks to realize the transportation of power-deficient batteries.
  • the two power exchange devices have different responsibilities and jointly complete the power exchange task, so that the entire power exchange time is at least compared to using only one power exchange device to achieve power exchange. Cut the time in half, improve the speed and efficiency of power exchange.
  • the power exchange control method of this embodiment is a further improvement based on Embodiment 32.
  • the improvement of Embodiment 32 in this embodiment is basically the same as the improvement of Embodiment 26 over Embodiment 25, except that the difference
  • the first condition may be a fully charged battery in which the battery model is placed;
  • the first condition may be preferentially set as a battery with the battery model and fully charged, if the at least one battery rack does not have a battery that meets the first
  • the battery placing rack with conditions the first condition is modified and set to a battery with the highest battery type in which the battery model is placed.
  • step 22 ' specifically includes: the first condition is set by default as a fully charged battery in which the battery model is placed, and determining whether there is a battery placement rack in the at least one battery placement rack that meets the default first condition. , If yes, select one of them as the first battery rack, if not, then:
  • the first condition is modified to set the battery with the highest battery type and the battery with the highest capacity, and it is judged again whether there is a battery shelf in the at least one battery shelf that meets the current first condition, and if so, one of them is selected as First battery holder. If there is still no battery rack that meets the first condition, an alarm signal may be issued to indicate that the electric vehicle cannot be replaced with electricity.
  • the power exchange control method in this embodiment is a further improvement on the basis of Embodiment 32 or 33.
  • the improvement of Embodiment 32 or 33 in this embodiment is basically the same as the improvement of Embodiment 27 in Embodiment 25 or 26.
  • the difference is that in order to shorten the moving distance and moving time of the battery-equipped battery replacement device and speed up the electricity exchange efficiency, a battery placement closest to the electric vehicle is selected from the battery placement racks that meet the first condition.
  • the first battery placing rack is a battery placing rack or a battery placing rack closest to the vehicle platform for parking the electric vehicle.
  • a battery placing rack or a distance closest to the electric vehicle is selected from the battery placing racks that meet the second condition.
  • the second battery placement rack is the closest battery placement rack to the parking platform of the electric vehicle.
  • the vehicle-carrying platform may be a dedicated platform for vehicle power exchange or other common platforms for vehicle parking and convenient power exchange.
  • the power exchange control method in this embodiment is a further improvement on the basis of Embodiment 32 or 33.
  • Embodiment 32 or 33 in this embodiment refer to the improvement of Embodiment 27 in Embodiment 25 or 26.
  • the power exchange control method of this embodiment is a further improvement based on Embodiment 32.
  • the improvement of Embodiment 32 in this embodiment is basically the same as the improvement of Embodiment 29 in Embodiment 25, except that this embodiment
  • the power-changing device configured as the battery-removing power-removing device in step 25 ' is preferably closest to the electric vehicle. Or the closest power exchange device to the car platform used to park the electric vehicle.
  • step 25 ' may include: screening a single-function power exchange device and a multi-function power exchange device having a second structure, and calculating each of the single-function power switch and the multi-function power exchange device having a second structure to the The distance of the electric vehicle or the distance to the vehicle-carrying platform), the one closest to the power exchange device is selected as the battery unloading power replacement device.
  • Step 25 ' When configuring a battery-removing power replacement device, it is preferred that the power replacement device has a binding relationship with the second battery rack, or has a binding relationship with the second battery rack and is closest to the electric vehicle. Or the closest power exchange equipment to the vehicle platform used to park the electric vehicle.
  • step 25 ' may include: after selecting the second battery placing rack, screening single-function and multi-function electricity exchange devices having a binding relationship with the second battery placing rack and having a second structure, One of them is randomly selected and configured as a battery-removing power-replacement device, or the distance between the screened power-removing device to the electric vehicle or the vehicle-carrying platform is calculated separately, and the closest power-removing device is configured to be unloaded Battery replacement equipment.
  • the power exchange control method of this embodiment is a further improvement based on Embodiment 32.
  • the improvement of Embodiment 13 in this embodiment is basically the same as the improvement of Embodiment 30 over Embodiment 25. The difference is that As shown in FIG. 14, the power exchange control process in this embodiment is divided into a power exchange preparation process before the electric vehicle is parked on the vehicle platform and a power exchange operation process after the electric vehicle is parked on the vehicle platform.
  • the power replacement control method includes: selecting the second battery placement rack in advance, and then configuring a battery replacement power replacement device.
  • selecting the second battery placing rack refer to Embodiments 33-35
  • configuring a battery unloading and power replacement device refer to Embodiment 36.
  • Embodiment 30 for a specific description of the preset power exchange position, refer to Embodiment 30.
  • the power exchange control method further includes: after the electric vehicle is parked on a vehicle carrying platform or when the license plate of the electric vehicle can be observed, scanning the license plate of the electric vehicle and passing the electric vehicle The license plate determines the battery model applicable to the electric vehicle, and then selects the first battery rack, and then configures a battery-replacement device to order the battery-replacement device to remove the standby battery from the first battery rack. Install the battery.
  • a method of selecting the first battery placing rack refer to Embodiments 33 to 35
  • a method of configuring a battery replacement device refer to Embodiment 36.
  • the battery replacement device After the battery replacement device removes the battery to be installed from the first battery rack, the battery replacement device is commanded to be parked in a first preset waiting position in advance, the first preset waiting The position is a position that does not exceed a first distance threshold from the vehicle-carrying platform.
  • the battery-powered power-changing device After the battery-removing and power-changing device leaves the preset power-changing position or leaves the preset-power-changing position for more than a third distance threshold, the battery-powered power-changing device is commanded to move to the preset power-changing position.
  • the battery-equipped power exchange device After the battery-equipped power exchange device is moved to the preset power-changing position, the battery-equipped power exchange device is commanded to load the battery to be installed into the electric vehicle. So far, the electric vehicle has been replaced with electricity.
  • the battery-equipped power exchange device is instructed to drive away from the preset power exchange position.
  • the power exchange control method of this embodiment is a further improvement based on Embodiment 32, and is mainly reflected in the power exchange control process of the power exchange control method.
  • the power exchange control process in this embodiment is divided into a power exchange preparation process before the electric vehicle is parked on the car platform and an electric power exchange operation process after the electric vehicle is parked on the car platform. As shown in FIG. 15, in the power replacement preparation process and the power replacement operation flow, the steps included in the power replacement control method are different from those in Embodiment 37.
  • the power replacement control method includes: selecting the second battery placement rack in advance, configuring the battery removal power replacement device, and ordering the battery removal power replacement device to complete a part of the operation in order to save Battery removal time.
  • selecting the second battery placing rack refer to Embodiments 33-35
  • configuring a battery unloading and power replacement device refer to Embodiment 36.
  • ordering the battery-removing and power-changing device to complete a part of operations includes: determining whether the preset power-changing position is in a parkable state, thereby setting a second preset waiting position, and ordering the battery-removing and power-changing device in advance Parked at the second preset waiting position.
  • the second preset waiting position is related to the preset power exchange position, and may be the same position as the preset power exchange position or a position near the preset power exchange position (for the preset power exchange position). (Refer to Example 30 for specific description of the power exchange position).
  • the determining whether the preset power exchange position is a parkingable state may specifically include:
  • the preset power exchange position is a parking-capable state; otherwise, the preset power exchange position is a non-parking state:
  • Condition (2) There is a path for the battery unloading and power exchange device to move to the preset power exchange position
  • Condition (3) It is predicted that when the battery-removing and power-changing device is parked at the preset power-changing position, the battery-removing and power-changing device will not cause an obstacle to the electric vehicle driving into the vehicle carrying platform.
  • condition (3) can be satisfied is usually related to the structure of the car platform.
  • the second preset waiting position is the same position as the preset power exchange position.
  • the second preset waiting position is a position that does not exceed a second distance threshold from the preset power exchange position, that is, near the preset power exchange position. position.
  • the power replacement control method includes: determining whether the second preset waiting position where the battery discharge power replacement device is located is the same as the preset power replacement position:
  • the battery-removing device executes the battery-removing instruction, the battery-removing device is instructed to move to the second battery placement rack and place the lacking battery in the empty battery storage compartment. .
  • the power exchange control method further includes: after the electric vehicle is parked on a vehicle carrying platform or when the license plate of the electric vehicle can be observed, scanning the license plate of the electric vehicle and passing the electric vehicle The license plate determines the battery model suitable for the electric vehicle, and then selects the first rack, and then configures a battery-replacement device to order the battery-replacement device to remove the battery to be installed from the first battery rack. battery.
  • the battery replacement device After the battery replacement device removes the battery to be installed from the first battery rack, the battery replacement device is commanded to be parked in a first preset waiting position in advance, the first preset waiting The position is a position that does not exceed a first distance threshold from the vehicle-carrying platform.
  • the battery-powered power-changing device After the battery-removing and power-changing device leaves the preset power-changing position or leaves the preset-power-changing position for more than a third distance threshold, the battery-powered power-changing device is commanded to move to the preset power-changing position.
  • the battery-equipped power exchange device After the battery-equipped power exchange device is moved to the preset power exchange position, the battery-equipped power exchange device is commanded to load the battery to be installed into the electric vehicle. So far, the electric vehicle has been replaced with electricity.
  • the battery-equipped power exchange device is ordered to drive away from the preset power exchange position.
  • the power exchange control method of this embodiment completes part of the control during the power exchange preparation process, which greatly shortens the power exchange time after the electric vehicle enters the loading platform and improves the power exchange efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)

Abstract

一种换电控制系统(10)及方法,换电控制系统(10)包括:控制单元(11)和换电设备(12);控制单元(11)用于确定电动车辆(14)适用的电池型号;从至少一电池放置架(13)中选取第一电池放置架(13A)和第二电池放置架(13B);换电设备(12)用于移动至预设换电位置(P1,P2),从电动车辆(14)上取下缺电电池,将缺电电池运输到第二放置架(13B)并放置于空的电池放置仓,然后移动至第一电池放置架(13A)并取下该电池型号的电池,将该电池型号的电池运输到预设换电位置(P1,P2)并安装于电动车辆(14)。

Description

换电控制系统及方法
本申请要求申请日为2018/7/20的中国专利申请2018108053166、申请日为2018/7/20的中国专利申请2018108053096及申请日为2018/7/20的中国专利申请2018108053062的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于换电控制领域,尤其涉及一种换电控制系统及方法。
背景技术
现有的电动汽车主要有两种换电方式,一种是直充式,一种是可换电池的快换式。
所述快换式通常在换电站中进行,由换电站的换电设备将车辆上电量不足或没电的电池取下,放到统一的充电架上充电,然后换电设备在从充电架上取下新的或满电的电池,装入车辆。这种方式中,换电设备既要实现取下电池,又要实现装入电池,需要往返于车辆与充电架之间,换电耗时较长,效率较低。
发明内容
本发明要解决的技术问题是为了克服现有技术中采用同一换电设备实现取下电池和装入电池导致换电耗时较长、效率较低的缺陷,提供一种换电控制系统及方法。
本发明是通过以下技术方案解决上述技术问题的:
本发明提供一种换电控制系统,包括:控制单元和换电设备;
所述控制单元用于确定电动车辆适用的电池型号;
所述控制单元还用于从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池,所述第二条件设置为具有空的电池放置仓;
所述换电设备用于移动至预设换电位置,从所述电动车辆上取下缺电电池,将所述缺电电池运输到所述第二放置架并放置于所述空的电池放置仓,然后移动至所述第一电池放置架,从所述第一电池放置架取下所述电池型号的电池,将所述电池型号的电池运输到所述预设换电位置并安装于所述电动车辆,所述预设换电位置为适于从所述电动车辆取、装电池的位置。
较佳地,所述控制单元还用于监控所述电池放置架上放置的电池的电量;
所述第一条件设置为放置有所述电池型号且满电的电池;
或,所述第一条件优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。
较佳地,所述控制单元还用于在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架,或选取位于所述第二电池放置架与所述电池车辆之间的路径上的一个电池放置架作为所述第一电池放置架,或选取位于所述路径上且距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第一电池放置架;
和/或,所述控制单元还用于在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第二电池放置架。
较佳地,所述电池放置架沿所述电动车辆驶入所述载车平台方向排布于所述载车平台的两侧。
较佳地,若所述至少一电池放置架中存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架,则所述控制单元还用于:
将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架。
较佳地,所述空的电池放置仓还用于为所述缺电电池充电。
较佳地,所述空的电池放置仓具有电池充电电路;
所述电池充电电路具有固定的电力参数,所述电力参数与所述电池型号相匹配;
或,所述电池充电电路具有可调节的电力参数,所述控制单元还用于根据所述电池型号调节所述电力参数,以使得所述电力参数与所述电池型号相匹配。
较佳地,所述控制单元还用于扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号。
较佳地,所述换电设备受控于所述控制单元:
所述控制单元在所述电动车辆停泊于载车平台之前,向所述换电设备发送以下指令并由所述换电设备执行:
停泊指令,用于命令所述换电设备预先停泊于预设等待位置。
较佳地,当预设换电位置为可停泊状态时,所述预设等待位置与所述预设换电位置为同一位置。
较佳地,当预设换电位置为不可停泊状态时,所述预设等待位置为距离所述预设换电位置不超过第一距离阈值的位置;
所述控制单元还用于在所述电动车辆停泊于所述载车平台之后,向所述卸电池换电设备发送微调 指令,所述微调指令用于命令所述换电设备从所述预设等待位置移动至所述预设换电位置。
较佳地,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
所述预设换电位置为空位;
存在供所述换电设备移动至所述预设换电位置的通路;
预测所述换电设备停泊于所述预设换电位置时,所述换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
较佳地,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
较佳地,所述换电设备受控于所述控制单元:
所述控制单元还用于在所述电动车辆停泊于载车平台之后,向所述电动车辆发送以下指令并由所述换电设备执行:
卸电池指令,用于命令所述换电设备从所述电动车辆取下所述缺电电池;
第一移动指令,用于命令所述换电设备移动至所述第二电池放置架;
放电池指令,用于命令所述换电设备将所述缺电电池放置于所述空的电池放置仓;
第二移动指令,用于命令所述换电设备移动至所述第一电池放置架;
取电池指令,用于命令所述换电设备从所述第一电池放置架取下所述电池型号的电池;
第三移动指令,用于命令所述换电设备移动至所述预设换电位置;
装电池指令,用于命令所述换电设备将所述电池型号的电池安装于所述电动车辆。
本发明还提供了一种换电控制系统,包括:控制单元和至少两换电设备;
所述控制单元用于从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有适用于电动车辆的电池,所述第二条件设置为具有空的电池放置仓;
所述控制单元还用于将所述至少两换电设备中的至少一个换电设备配置为装电池换电设备,将所述至少两换电设备中的至少一个换电设备配置为卸电池换电设备;
所述装电池换电设备用于运输待装电池,所述待装电池为从所述第一电池放置架取下的、适用于所述电动车辆且将要安装于所述电动车辆的电池;
所述卸电池换电设备用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
较佳地,所述控制单元还用于监控所述电池放置架上放置的电池的电量;
所述第一条件设置为放置有适用于所述电动车辆且满电的电池;
或,所述第一条件优先设置为放置有适用于所述电动车辆且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有适用于所述电动车辆且电量最高的电池。
较佳地,所述控制单元还用于在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架;
和/或,所述控制单元还用于在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第二电池放置架。
较佳地,所述电池放置架沿所述电动车辆驶入所述载车平台方向排布于所述载车平台的两侧。
较佳地,若所述至少一电池放置架中存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架,则所述控制单元还用于:
将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架;
或,将所述多功能电池放置架作为所述第一电池放置架和所述第二电池放置架中的任意一个;
或,将以下任意一个条件作为将所述多功能电池放置架作为第一电池放置架的必要条件:
其余的电池放置架均不符合所述第一条件;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量,且两者的差值的绝对值少于第一差值阈值;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于第一数量阈值;
或,将任意一个条件作为将所述多功能电池放置架作为第二电池放置架的必要条件:
其余的电池放置架均不符合所述第二条件;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量,且两者的差值的绝对值少于第二差值阈值;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于第二数量阈值。
较佳地,所述电池放置仓还用于为电池充电。
较佳地,所述至少两换电设备均为单功能换电设备;
或,均为多功能换电设备;
或,部分为单功能换电设备,部分为多功能换电设备;
所述单功能换电设备具有第一结构且仅能被配置为装电池换电设备,或具有第二结构且仅能被配置为卸电池换电设备;
所述多功能换电设备兼具第一结构和第二结构且可被配置为卸电池换电设备和装电池换电设备中的任意一种。
较佳地,被配置为所述装电池换电设备的换电设备为距离所述第一电池放置架最近的换电设备;
或,被配置为所述卸电池换电设备的换电设备为距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备;
或,每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系;被配置为所述装电池换电设备的换电设备为与所述第一电池放置架具有绑定关系的换电设备,或与所述第一电池放置架具有绑定关系且距离所述第一电池放置架最近的换电设备;被配置为所述卸电池换电设备的换电设备为与所述第二电池放置架具有绑定关系的换电设备,或与所述第二电池放置架具有绑定关系且距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备。
较佳地,若在所述电动车辆停泊于载车平台之前,所述电动车辆适用的电池型号是可预知的:
所述控制单元还用于在所述电动车辆停泊于所述载车平台之前,从所述至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,以及向所述装电池换电设备发送取电池指令,所述取电池指令用于命令所述装电池换电设备从所述第一电池放置架取下所述待装电池;
所述装电池换电设备还用于执行所述取电池指令;
所述控制单元还用于在所述装电池换电设备执行完所述取电池指令后,向所述装电池换电设备发送第一移动指令,所述第一移动指令用于命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置;
所述装电池换电设备还用于执行所述第一移动指令。
较佳地,通过以下方式预知所述电动车辆适用的电池型号:所述载车平台仅限于供适用所述型号的电池的电动车辆停泊。
较佳地,所述控制单元还用于在所述电动车辆停泊于载车平台之前,向所述卸电池换电设备发送第二移动指令,所述第二移动指令用于命令所述卸电池换电设备预先停泊于第二预设等待位置;所述卸电池换电设备还用于执行所述第二移动指令。
较佳地,当预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
较佳地,当预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;
所述控制单元还用于在所述电动车辆停泊于所述载车平台之后,向所述卸电池换电设备发送微调指令,所述微调指令用于命令所述卸电池换电设备从所述第二预设等待位置移动至所述预设换电位置。
较佳地,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
所述预设换电位置为空位;
存在供所述卸电池换电设备移动至所述预设换电位置的通路;
预测所述卸电池换电设备停泊于所述预设换电位置时,所述卸电池换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
较佳地,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
较佳地,所述控制单元还用于在所述电动车辆停泊于载车平台之后,向所述卸电池换电设备发送第三移动指令,所述第三移动指令用于命令所述卸电池换电设备移动并停泊于预设换电位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;所述卸电池换电设备还用于执行所述第三移动指令。
较佳地,所述控制单元还用于在所述电动车辆停泊于所述载车平台且所述卸电池换电设备停泊于所述预设换电位置之后,向所述卸电池换电设备发送卸电池指令,所述卸电池指令用于命令所述卸电池换电设备从所述电动车辆取下所述缺电电池;
所述卸电池换电设备还用于执行所述卸电池指令;
所述控制单元还用于在所述卸电池换电设备执行完所述卸电池指令后,向所述卸电池换电设备发送第四移动指令,所述第四移动指令用于命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓;
所述卸电池换电设备还用于执行所述第四移动指令。
较佳地,所述控制单元还用于在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,向所述装电池换电设备发送第五移动指令,所述第五移动指令用于命令所述装电池换电设备移动至所述预设换电位置;
所述装电池换电设备还用于执行所述第五移动指令;
所述控制单元还用于在所述装电池换电设备执行所述第五移动指令后,向所述装电池换电设备发送装电池指令,所述装电池指令用于命令所述装电池换电设备将所述待装电池装入所述电动车辆;
所述装电池换电设备还用于执行所述装电池指令。
本发明还提供了一种换电控制系统,包括:控制单元和至少两换电设备;
所述控制单元用于确定待换电的电动车辆适用的电池型号;
所述控制单元还用于从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置 架,从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池,所述第二条件设置为具有空的电池放置仓;
所述控制单元还用于将所述至少两换电设备中的至少一个换电设备配置为装电池换电设备,将所述至少两换电设备中的至少一个换电设备配置为卸电池换电设备;
所述装电池换电设备用于运输待装电池,所述待装电池为从所述第一电池放置架取下的、所述电池型号且将要安装于所述电动车辆的电池;
所述卸电池换电设备用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
较佳地,所述控制单元还用于监控所述电池放置架上放置的电池的电量;
所述第一条件设置为放置有所述电池型号且满电的电池;
或,所述第一条件优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。
较佳地,所述控制单元还用于在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架;
和/或,所述控制单元还用于在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第二电池放置架。
较佳地,所述电池放置架沿所述电动车辆驶入所述载车平台方向排布于所述载车平台的两侧。
较佳地,若所述至少一电池放置架中存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架,则所述控制单元还用于:
将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架;
或,将所述多功能电池放置架作为所述第一电池放置架和所述第二电池放置架中的任意一个;
或,将以下任意一个条件作为将所述多功能电池放置架作为第一电池放置架的必要条件:
其余的电池放置架均不符合所述第一条件;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量,且两者的差值的绝对值少于第一差值阈值;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于第一数量阈值;
或,将任意一个条件作为将所述多功能电池放置架作为第二电池放置架的必要条件:
其余的电池放置架均不符合所述第二条件;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量,且两者的差值的绝对值少于第二差值阈值;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于第二数量阈值。
较佳地,所述电池放置仓还用于为电池充电。
较佳地,所述至少两换电设备均为单功能换电设备;
或,均为多功能换电设备;
或,部分为单功能换电设备,部分为多功能换电设备;
所述单功能换电设备具有第一结构且仅能被配置为装电池换电设备,或具有第二结构且仅能被配置为卸电池换电设备;
所述多功能换电设备兼具第一结构和第二结构且可被配置为卸电池换电设备和装电池换电设备中的任意一种。
较佳地,被配置为所述装电池换电设备的换电设备为距离所述第一电池放置架最近的换电设备;
或,被配置为所述卸电池换电设备的换电设备为距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备;
或,每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系;被配置为所述装电池换电设备的换电设备为与所述第一电池放置架具有绑定关系的换电设备,或与所述第一电池放置架具有绑定关系且距离所述第一电池放置架最近的换电设备;被配置为所述卸电池换电设备的换电设备为与所述第二电池放置架具有绑定关系的换电设备,或与所述第二电池放置架具有绑定关系且距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备。
较佳地,所述控制单元还用于在选取所述第一电池放置架后,向所述装电池换电设备发送取电池指令,所述取电池指令用于命令所述装电池换电设备从所述第一电池放置架取下所述待装电池;
所述装电池换电设备还用于执行所述取电池指令;
所述控制单元还用于在所述装电池换电设备执行完所述取电池指令后,向所述装电池换电设备发送第一移动指令,所述第一移动指令用于命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置;
所述装电池换电设备还用于执行所述第一移动指令。
较佳地,所述控制单元还用于扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号。
较佳地,所述控制单元还用于在所述电动车辆停泊于载车平台之前,向所述卸电池换电设备发送第二移动指令,所述第二移动指令用于命令所述卸电池换电设备预先停泊于第二预设等待位置;所述卸电池换电设备还用于执行所述第二移动指令。
较佳地,当预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
较佳地,当预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;
所述控制单元还用于在所述电动车辆停泊于所述载车平台之后,向所述卸电池换电设备发送微调指令,所述微调指令用于命令所述卸电池换电设备从所述第二预设等待位置移动至所述预设换电位置。
较佳地,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
所述预设换电位置为空位;
存在供所述卸电池换电设备移动至所述预设换电位置的通路;
预测所述卸电池换电设备停泊于所述预设换电位置时,所述卸电池换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
较佳地,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
较佳地,所述控制单元还用于在所述电动车辆停泊于载车平台之后,向所述卸电池换电设备发送第三移动指令,所述第三移动指令用于命令所述卸电池换电设备移动并停泊于预设换电位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;所述卸电池换电设备还用于执行所述第三移动指令。
较佳地,所述控制单元还用于在所述电动车辆停泊于所述载车平台且所述卸电池换电设备停泊于所述预设换电位置之后,向所述卸电池换电设备发送卸电池指令,所述卸电池指令用于命令所述卸电池换电设备从所述电动车辆取下所述缺电电池;
所述卸电池换电设备还用于执行所述卸电池指令;
所述控制单元还用于在所述卸电池换电设备执行完所述卸电池指令后,向所述卸电池换电设备发送第四移动指令,所述第四移动指令用于命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓;
所述卸电池换电设备还用于执行所述第四移动指令。
较佳地,所述控制单元还用于在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电 位置超过第三距离阈值之后,向所述装电池换电设备发送第五移动指令,所述第五移动指令用于命令所述装电池换电设备移动至所述预设换电位置;
所述装电池换电设备还用于执行所述第五移动指令;
所述控制单元还用于在所述装电池换电设备执行所述第五移动指令后,向所述装电池换电设备发送装电池指令,所述装电池指令用于命令所述装电池换电设备将所述待装电池装入所述电动车辆;
所述装电池换电设备还用于执行所述装电池指令。
本发明还提供一种换电控制方法,包括:
确定电动车辆适用的电池型号;
从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池;
从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述第二条设置为具有空的电池放置仓;
令换电设备移动至预设换电位置,从所述电动车辆上取下缺电电池,将所述缺电电池运输到所述第二放置架并放置于所述空的电池放置仓,所述预设换电位置为适于从所述电动车辆取、装电池的位置;
令所述换电设备移动至所述第一电池放置架,从所述第一电池放置架取下所述电池型号的电池,将所述电池型号的电池运输到所述预设换电位置并安装于所述电动车辆。
较佳地,所述换电控制方法还包括:监控所述电池放置架上放置的电池的电量;
所述第一条件设置为放置有所述电池型号且满电的电池;
或,所述第一条件优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。
较佳地,所述换电控制方法还包括:
在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架,或选取位于所述第二电池放置架与所述电池车辆之间的路径上的一个电池放置架作为所述第一电池放置架,或选取位于所述路径上且距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第一电池放置架;
和/或,在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第二电池放置架。
较佳地,所述换电控制方法还包括:
判断所述至少一电池放置架中是否存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架;
若存在,则:
将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架。
较佳地,所述空的电池放置仓还用于为所述缺电电池充电。
较佳地,所述空的电池放置仓具有电池充电电路;
所述电池充电电路具有固定的电力参数,所述电力参数与所述电池型号相匹配;
或,所述电池充电电路具有可调节的电力参数,所述换电控制方法还包括:根据所述电池型号调节所述电力参数,以使得所述电力参数与所述电池型号相匹配。
较佳地,所述确定待换电的电动车辆适用的电池型号,具体包括:
扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号。
较佳地,所述换电设控制方法还包括:
在所述电动车辆停泊于载车平台之前,令所述换电设备预先停泊于预设等待位置。
较佳地,当预设换电位置为可停泊状态时,所述预设等待位置与所述预设换电位置为同一位置。
较佳地,当预设换电位置为不可停泊状态时,所述预设等待位置为距离所述预设换电位置不超过第一距离阈值的位置;
所述换电控制方法还包括:
在所述电动车辆停泊于所述载车平台之后,令所述换电设备从所述预设等待位置移动至所述预设换电位置。
较佳地,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
所述预设换电位置为空位;
存在供所述换电设备移动至所述预设换电位置的通路;
预测所述换电设备停泊于所述预设换电位置时,所述换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
较佳地,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
本发明还提供一种换电控制方法,包括:
从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有适用于电动车辆的电池;
从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述第二条件 设置为具有空的电池放置仓;
将所述至少两换电设备中的至少一个换电设备配置为装电池换电设备,所述装电池换电设备用于运输待装电池,所述待装电池为从所述第一电池放置架取下的、适用于所述电动车辆且将要安装于所述电动车辆的电池;
将所述至少两换电设备中的至少一个换电设备配置为卸电池换电设备,所述卸电池换电设备用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
较佳地,所述换电控制方法还包括:监控所述电池放置架上放置的电池的电量;
所述第一条件设置为放置有适用于所述电动车辆且满电的电池;
或,所述第一条件优先设置为放置有适用于所述电动车辆且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有适用于所述电动车辆且电量最高的电池。
较佳地,所述换电控制方法还包括:
在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架;
和/或,在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第二电池放置架。
较佳地,所述换电控制方法还包括:
判断所述至少一电池放置架中是否存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架;
若存在,则:
将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架;
或,将所述多功能电池放置架作为所述第一电池放置架和所述第二电池放置架中的任意一个;
或,将以下任意一个条件作为将所述多功能电池放置架作为第一电池放置架的必要条件:
其余的电池放置架均不符合所述第一条件;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量,且两者的差值的绝对值少于第一差值阈值;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于第一数量阈值;
或,将任意一个条件作为将所述多功能电池放置架作为第二电池放置架的必要条件:
其余的电池放置架均不符合所述第二条件;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量,且两者的差值的绝对值少于第二差值阈值;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于第二数量阈值。
较佳地,所述至少两换电设备均为单功能换电设备;
或,均为多功能换电设备;
或,部分为单功能换电设备,部分为多功能换电设备;
所述单功能换电设备具有第一结构且仅能被配置为装电池换电设备,或具有第二结构且仅能被配置为卸电池换电设备;
所述多功能换电设备兼具第一结构和第二结构且可被配置为卸电池换电设备和装电池换电设备中的任意一种。
较佳地,被配置为所述装电池换电设备的换电设备为距离所述第一电池放置架最近的换电设备;
或,被配置为所述卸电池换电设备的换电设备为距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备;
或,每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系;被配置为所述装电池换电设备的换电设备为与所述第一电池放置架具有绑定关系的换电设备,或与所述第一电池放置架具有绑定关系且距离所述第一电池放置架最近的换电设备;被配置为所述卸电池换电设备的换电设备为与所述第二电池放置架具有绑定关系的换电设备,或与所述第二电池放置架具有绑定关系且距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备。
较佳地,若在所述电动车辆停泊于载车平台之前,所述电动车辆适用的电池型号是可预知的;
所述换电控制方法还包括:
在所述电动车辆停泊于所述载车平台之前,从所述至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,以及命令所述装电池换电设备从所述第一电池放置架取下所述待装电池;
在所述装电池换电设备从所述第一电池放置架取下所述待装电池后,命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置。
较佳地,通过以下方式预知所述电动车辆适用的电池型号:所述载车平台仅限于供适用所述型号的电池的电动车辆停泊。
较佳地,所述换电控制方法还包括:
在所述电动车辆停泊于载车平台之前,命令所述卸电池换电设备预先停泊于第二预设等待位置。
较佳地,当预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
较佳地,当预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;
所述换电控制方法还包括:在所述电动车辆停泊于所述载车平台之后,命令所述卸电池换电设备从所述第二预设等待位置移动至所述预设换电位置。
较佳地,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
所述预设换电位置为空位;
存在供所述卸电池换电设备移动至所述预设换电位置的通路;
预测所述卸电池换电设备停泊于所述预设换电位置时,所述卸电池换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
较佳地,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
较佳地,所述换电控制方法还包括:
在所述电动车辆停泊于载车平台之后,命令所述卸电池换电设备移动并停泊于预设换电位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
较佳地,所述换电控制方法还包括:
在所述电动车辆停泊于所述载车平台且所述卸电池换电设备停泊于所述预设换电位置之后,命令所述卸电池换电设备从所述电动车辆取下所述缺电电池;
在所述卸电池换电设备从所述电动车辆取下所述缺电电池后,命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓。
较佳地,所述换电控制方法还包括:
在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,命令所述装电池换电设备移动至所述预设换电位置;
在所述装电池换电设备移动至所述预设换电位置后,命令所述装电池换电设备将所述待装电池装入所述电动车辆。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明通过控制单元的控制,在为车辆换电的整个过程中使用了两个换电设备:
装电池换电设备,其移动轨迹在第一电池放置架与电动车辆之间,实现待装电池的运输;
卸电池换电设备,其移动轨迹在电动车辆与第二电池放置架之间,实现缺电电池的运输。
该两个换电设备分别具有不同的职责,共同完成换电任务,使得整个换电时间相比于只采用一个换电设备实现换电至少缩短了一半的时间,提高了换电速度和效率。
本发明还提供一种换电控制方法,包括:
确定待换电的电动车辆适用的电池型号;
从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池;
从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述第二条件设置为具有空的电池放置仓;
将所述至少两换电设备中的至少一个换电设备配置为装电池换电设备,所述装电池换电设备用于运输待装电池,所述待装电池为从所述第一电池放置架取下的、所述电池型号且将要安装于所述电动车辆的电池;
将所述至少两换电设备中的至少一个换电设备配置为卸电池换电设备,所述卸电池换电设备用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
较佳地,所述换电控制方法还包括:监控所述电池放置架上放置的电池的电量;
所述第一条件设置为放置有所述电池型号且满电的电池;
或,所述第一条件优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。
较佳地,所述换电控制方法还包括:
在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架;
和/或,在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第二电池放置架。
较佳地,所述换电控制方法还包括:
判断所述至少一电池放置架中是否存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架;
若存在,则:
将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架;
或,将所述多功能电池放置架作为所述第一电池放置架和所述第二电池放置架中的任意一个;
或,将以下任意一个条件作为将所述多功能电池放置架作为第一电池放置架的必要条件:
其余的电池放置架均不符合所述第一条件;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量,且两者的差值的绝对值少于第一差值阈值;
其余的电池放置架中,符合所述第一条件的电池放置架的数量少于第一数量阈值;
或,将任意一个条件作为将所述多功能电池放置架作为第二电池放置架的必要条件:
其余的电池放置架均不符合所述第二条件;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量,且两者的差值的绝对值少于第二差值阈值;
其余的电池放置架中,符合所述第二条件的电池放置架的数量少于第二数量阈值。
较佳地,所述至少两换电设备均为单功能换电设备;
或,均为多功能换电设备;
或,部分为单功能换电设备,部分为多功能换电设备;
所述单功能换电设备具有第一结构且仅能被配置为装电池换电设备,或具有第二结构且仅能被配置为卸电池换电设备;
所述多功能换电设备兼具第一结构和第二结构且可被配置为卸电池换电设备和装电池换电设备中的任意一种。
较佳地,被配置为所述装电池换电设备的换电设备为距离所述第一电池放置架最近的换电设备;
或,被配置为所述卸电池换电设备的换电设备为距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备;
或,每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系;被配置为所述装电池换电设备的换电设备为与所述第一电池放置架具有绑定关系的换电设备,或与所述第一电池放置架具有绑定关系且距离所述第一电池放置架最近的换电设备;被配置为所述卸电池换电设备的换电设备为与所述第二电池放置架具有绑定关系的换电设备,或与所述第二电池放置架具有绑定关系且距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备。
较佳地,所述换电控制方法还包括:
在选取所述第一电池放置架后,命令所述装电池换电设备从所述第一电池放置架取下所述待装电池;
在所述装电池换电设备从所述第一电池放置架取下所述待装电池后,命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置。
较佳地,所述确定待换电的电动车辆适用的电池型号,具体包括:
扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号。
较佳地,所述换电控制方法还包括:
在所述电动车辆停泊于载车平台之前,命令所述卸电池换电设备预先停泊于第二预设等待位置。
较佳地,当预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
较佳地,当预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;
所述换电控制方法还包括:在所述电动车辆停泊于所述载车平台之后,命令所述卸电池换电设备从所述第二预设等待位置移动至所述预设换电位置。
较佳地,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
所述预设换电位置为空位;
存在供所述卸电池换电设备移动至所述预设换电位置的通路;
预测所述卸电池换电设备停泊于所述预设换电位置时,所述卸电池换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
较佳地,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
较佳地,所述换电控制方法还包括:
在所述电动车辆停泊于载车平台之后,命令所述卸电池换电设备移动并停泊于预设换电位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
较佳地,所述换电控制方法还包括:
在所述电动车辆停泊于所述载车平台且所述卸电池换电设备停泊于所述预设换电位置之后,命令所述卸电池换电设备从所述电动车辆取下所述缺电电池;
在所述卸电池换电设备从所述电动车辆取下所述缺电电池后,命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓。
较佳地,所述换电控制方法还包括:
在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后, 命令所述装电池换电设备移动至所述预设换电位置;
在所述装电池换电设备移动至所述预设换电位置后,命令所述装电池换电设备将所述待装电池装入所述电动车辆。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明通过控制单元确认电动车辆适用的电池型号,方便选取第一电池放置架及调取待装电池,另外,还通过所述控制单元的控制,在为车辆换电的整个过程中使用了两个换电设备:
装电池换电设备,其移动轨迹在第一电池放置架与电动车辆之间,实现待装电池的运输;
卸电池换电设备,其移动轨迹在电动车辆与第二电池放置架之间,实现缺电电池的运输。
该两个换电设备分别具有不同的职责,共同完成换电任务,使得整个换电时间相比于只采用一个换电设备实现换电至少缩短了一半的时间,提高了换电速度和效率。
本发明的积极进步效果在于:本发明能够减少换电设备在换电过程中的移动次数、缩短换电耗时、提高换电效率。
附图说明
图1为本发明实施例1的一种换电控制系统的示意框图;
图2为本发明实施例1的第一种结构的载车平台的侧面示意图;
图3为本发明实施例1的第二种结构的载车平台的侧面示意图;
图4为本发明实施例2及实施例8的一种换电控制系统的示意框图;
图5为本发明实施例10及实施例12的一种换电控制系统配置装电池换电设备和卸电池换电设备的平面示意图;
图6为本发明实施例11及实施例13的第一种结构的载车平台的侧面示意图;
图7为本发明实施例11及实施例13的第二种结构的载车平台的侧面示意图;
图8为本发明实施例20的一种换电控制方法的流程图;
图9为本发明实施例24的一种换电控制方法的流程图。
图10为本发明实施例25的一种换电控制方法的流程图;
图11为本发明实施例30的一种换电控制方法的流程图;
图12为本发明实施例31的一种换电控制方法的流程图。
图13为本发明实施例32的一种换电控制方法的流程图;
图14为本发明实施例37的一种换电控制方法的流程图;
图15为本发明实施例38的一种换电控制方法的流程图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
图1示出了本实施例的一种换电控制系统。所述换电控制系统10包括:控制单元11和换电设备12。其中,所述控制单元11与所述换电设备12通信连接,所述通信连接优选为无线通信连接,具体可以通过2G、3G、4G、蓝牙等通讯手段实现,当然也不排除在某些特殊情况(如控制单元11与所述换电设备12距离很近、所述换电设备12的活动范围很小)下,所述通信连接也可为有线通信连接。
所述控制单元11用于确定电动车辆适用的电池型号。具体地,所述控制单元11可以扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号。
所述控制单元11还用于从至少一电池放置架13中选取符合第一条件的电池放置架作为第一电池放置架13A,从所述至少一电池放置架13中选取符合第二条件的电池放置架作为第二电池放置架13B,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池,所述第二条件设置为具有空的电池放置仓。
所述换电设备12用于移动至预设换电位置,从所述电动车辆上取下缺电电池,将所述缺电电池运输到所述第二放置架13B并放置于所述空的电池放置仓,然后移动至所述第一电池放置架13A,从所述第一电池放置架13A取下所述电池型号的电池,将所述电池型号的电池运输到所述预设换电位置并安装于所述电动车辆,所述预设换电位置为适于从所述电动车辆取、装电池的位置。
本实施例中,所述控制单元11确认电动车辆适用的电池型号,可以便于选取第一电池放置架;在为车辆换电的整个过程中,所述换电设备12移动流畅,提高了换电速度和效率。
本实施例中,所述预设换电位置可以理解为,所述换电设备12位于所述预设换电位置时,通过最少的动作即可从电动车辆取下电池或向电动车辆安装电池。所述预设换电位置具体可以根据停泊所述电动车辆的载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
以第一种结构的载车平台为例,如图2所示,载车平台15高于地平面且中间具有镂空区域,当电动车辆14换电时需要停泊于所述载车平台15上且电动车辆14的电池箱位于所述镂空区域的上方,针对该种结构的载车平台15,所述预设换电位置P1通常位于所述载车平台的下方,尤其是位于镂空区域的下方、对准所述电动车辆14的电池外箱。对于停泊于所述载车平台15上换电的电动车辆14,所述换电设备12在所述预设换电位置P1只需垂直升起用于将所述缺电电池从所述电动车辆上解锁的解锁机构、穿过所述镂空区域、将所述解锁机构插入所述电动车辆14的电池外箱与电池之间的间隙、触动锁电池箱的拨块,即可将所述缺电电池解锁,进而取下所述缺电电池。同样地,在所述预设换电位置P1,所述换电设备12只需将要装入所述电动车辆的电池垂直举起,即可安装完成。
再以第二种结构的载车平台为例,如图3所示,载车平台15的中间具有一升降平台151,在所述升降平台151中间设有镂空区域,当电动车辆14换电时需要驶入载车平台15并停泊于所述升降平台151上且电动车辆14的电池箱位于所述镂空区域的上方,针对该种结构的载车平台15,所述预设换电位置P2通常位于所述载车平台15的上方,尤其是在所述升降平台151升起后所述镂空区域的下方。对于停泊于所述升降平台151上换电的电动车辆14,所述换电设备12在所述预设换电位置P2只需垂直升起用于将所述缺电电池从所述电动车辆14上解锁的解锁机构、穿过所述镂空区域、将所述解锁结构插入所述电动车辆14的电池外箱与电池之间的间隙、触动锁电池箱的拨块,即可将所述缺电电池解锁,进而取下所述缺电电池。同样地,在所述预设换电位置P2,所述换电设备12只需将要装入所述电动车辆的电池垂直举起,即可安装完成。
当然,所述载车平台并不局限于上述结构,还可以是其他结构,所述预设换电位置可以根据所述载车平台的结构,进一步结合所述换电设备12取缺电电池或安装电池所需结构的移动路径等条件设定。
实施例2
本实施例的换电控制系统是在实施例1基础上的进一步改进,主要体现于对于第一条件的设置。第一条件作为选取所述第一电池放置架13A的依据,除了必要放置有所述电池型号的电池外,还可以进一步设置其他优选的配合条件。本实施例中,配合的条件主要与电池的电量相关,所述控制单元11还用于监控所述电池放置架上放置的电池的电量。
具体地,所述第一条件可以设置为放置有所述电池型号且满电的电池。相应地,所述控制单元11用于判断所述至少一电池放置架中是否存在符合所述第一条件的电池放置架,若是,则从中选取一个作为所述第一电池放置架13A。若不存在符合所述第一条件的电池放置架则所述控制单元11可以发出告警信号,提示无法为所述电动车辆换电。
或者,为了提高能够为电动车辆换电的概率,所述第一条件可以优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。相应地,所述第一条件默认设置为放置有所述电池型号且满电的电池,所述控制单元11用于判断所述至少一电池放置架中是否存在符合默认的第一条件的电池放置架,若是,则从中选取一个作为第一电池放置架13A,若否,则:
将所述第一条件修改设置为放置有所述电池型号且电量最高的电池,再次判断所述至少一电池放置架中是否存在符合当前的第一条件的电池放置架,若是则从中选取一个作为第一电池放置架13A。若仍然不存在符合所述第一条件的电池放置架则所述控制单元11可以发出告警信号,提示无法为所述电动车辆换电。
另外,本实施例中,所述空的电池放置仓还用于为所述缺电电池充电。具体地,所述空的电池放 置仓具有电池充电电路,所述电池充电电路可以具有固定的电力参数,所述电力参数与所述电池型号相匹配;或,所述电池充电电路具有可调节的电力参数,所述控制单元还用于根据所述电池型号调节所述电力参数,以使得所述电力参数与所述电池型号相匹配。所述电力参数包括电流、电压等。
当然在其他实施例中,第一条件还可以根据需求设置为其他条件。
实施例3
本实施例的换电控制系统是在实施例1或2基础上的进一步改进,主要体现于控制单元11对于第一电池放置架13A和第二电池放置架13B的选取。在电池放置架的数量为两个,甚至更多的时候,很可能同时有两个或两个以上电池放置架符合所述第一条件或第二条件。所述控制单元11可以根据需求进一步设定所述第一电池放置架13A和所述第二电池放置架13B的选取要求。
在本实施例中,为了应对同时有两个或两个以上电池放置架符合所述第一条件的情况,所述控制单元11可以用于判断符合所述第一条件的电池放置架是否超过一个,若是,则:
从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架13A;
或者,为了缩短所述换电设备12的移动路程和移动时间、加快换电效率,从符合所述第一条件的电池放置架中选取距离所述电动车辆最近的一个电池放置架或距离用于停泊所述电动车辆的载车平台架最近的一个电池放置架作为所述第一电池放置架13A;
或者,选取位于所述第二电池放置架与所述电池车辆之间的路径上的一个电池放置架作为所述第一电池放置架,或选取位于所述路径上且距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第一电池放置架。
当然,若符合所述第一条件的电池放置架仅有一个,那么,通常只能将其作为第一电池放置架13A。
同样地,为了应对同时有两个或两个以上电池放置架符合所述第二条件的情况,所述控制单元11可以用于判断符合所述第二条件的电池放置架超过一个,若是,则:
从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架13B;
或者,为了缩短所述换电设备12的移动路程和移动时间、加快换电效率,从符合所述第二条件的电池放置架中选取距离所述电动车辆最近的一个电池放置架或距离用于停泊所述电动车辆的载车平台架最近的一个电池放置架作为所述第二电池放置架13B。
当然,若符合所述第二条件的电池放置架仅有一个,那么,通常只能将其作为第二电池放置架13B。
为了进一步方便定位各电池放置架的位置、选取第一电池放置架13A/第二电池放置架13B、缩短换电设备12的移动路程,所述电池放置架可以沿所述电动车辆驶入所述载车平台方向排布于所述载车平台的两侧。其中,所述载车平台可以为车辆换电的专用平台或是其他可供车辆停泊且便于换电的普通平台。
本实施例中第一电池放置架13A和第二电池放置架13B的选取是相对独立的,也就是说,可以 按照不同需求分别设定所述第一电池放置架13A和所述第二电池放置架13B的选取要求。
实施例4
本实施例的换电控制系统是在实施例1或2基础上的进一步改进,主要体现于控制单元11对于第一电池放置架13A和第二电池放置架13B的选取。与实施例3有所不同,本实施例中在选取所述第一电池放置架13A和所述第二电池放置架13B时会在一定程度上考虑两者之间的关联。
具体地,所述控制单元11可以用于判断所述至少一电池放置架中是否存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架。
若不存在所述多功能电池放置架,则可以按照实施例3的方案分别从符合第一条件的电池放置架中选取第一电池放置架13A,以及从符合第二条件的电池放置架中选取第二电池放置架13B。
若存在所述多功能电池放置架,则所述控制单元11还可以将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架。以此减少所述换电设备12的移动路程。
实施例5
本实施例的换电控制系统是在实施例1基础上的进一步改进,主要体现于所述控制单元11对所述换电设备12的控制过程。整个换电过程可以分为电动车辆停泊于载车平台之前的换电准备过程以及电动车辆停泊于载车平台之后的换电操作过程。
所述换电设备12受控于所述控制单元11。
在换电准备过程中,所述控制单元11向所述换电设备12发送以下指令并由所述换电设备12执行:
停泊指令,用于命令所述换电设备12预先停泊于预设等待位置。所述预设等待位置与所述预设换电位置相关,可以为与所述预设换电位置相同的位置或是所述预设换电位置附近的位置。
具体地,所述控制单元11判断所述预设换电位置是否为可停泊状态,以此设定所述预设等待位置。当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
条件(1):所述预设换电位置为空位;
条件(2):存在供所述换电设备12移动至所述预设换电位置的通路;
条件(3):预测所述换电设备12停泊于所述预设换电位置时,所述换电设备12不会对驶入所述载车平台的电动车辆造成阻挡。
对于是否能够满足条件(3),通常与载车平台的结构有关。
以实施例1中第一种结构的载车平台为例,由于电动车辆换电时停泊于所述载车平台上,而所述预设换电位置通常位于所述载车平台的下方,所以,通常情况下,即使所述换电设备12在电动车辆驶入所述载车平台之前就停泊于所述预设换电位置,所述换电设备12也不会对驶入所述载车平台的 电动车辆造成阻挡,能够满足条件(3)。
再以实施例1中第二种结构的载车平台为例,由于电动车辆换电时停泊于所述升降平台上,而所述预设换电位置通常也位于所述载车平台的上方,所以,如果所述换电设备12在电动车辆驶入所述载车平台之前就停泊于所述预设换电位置,那么,在电动车辆驶入所述载车平台时,所述换电设备12很有可能会对驶入的电动车辆造成阻挡。所以,针对第二种结构的载车平台,预设换电位置通常无法符合条件(3),进而为不可停泊状态。
当所述预设换电位置为可停泊状态时,所述预设等待位置与所述预设换电位置为同一位置。当所述预设换电位置为不可停泊状态时,所述预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,即所述预设换电位置附近的位置。
至此,换电准备过程完成,所述换电控制系统等待所述电动车辆驶入并停泊于所述载车平台,以进入换电操作过程。
在换电操作过程中,所述控制单元11判断所述预设等待位置是否与所述预设换电位置为同一位置:
若是,则向所述换电设备12发送卸电池指令,所述卸电池指令用于命令所述换电设备12从所述电动车辆取下所述缺电电池,所述换电设备12执行所述卸电池指令;
若否,则向所述换电设备12发送微调指令,所述微调指令用于命令所述换电设备12从所述预设等待位置移动至所述预设换电位置,所述换电设备12执行所述微调指令;然后,所述控制单元11在所述换电设备12执行完所述微调指令后,向所述换电设备12发送所述卸电池指令,所述换电设备12执行所述卸电池指令。
然后,所述控制单元11向所述换电设备12发送第一移动指令,所述第一移动指令用于命令所述换电设备移动至所述第二电池放置架;所述换电设备12执行所述第一移动指令。
然后,所述控制单元11向所述换电设备12发送放电池指令,所述放电池指令用于命令所述换电设备将所述缺电电池放置于所述空的电池放置仓;所述换电设备12执行所述放电池指令。
然后,所述控制单元11向所述换电设备12发送第二移动指令,所述第二移动指令用于命令所述换电设备移动至所述第一电池放置架;所述换电设备12执行所述第二移动指令。
然后,所述控制单元11向所述换电设备12发送取电池指令,所述取电池指令用于命令所述换电设备从所述第一电池放置架取下所述电池型号的电池;所述换电设备12执行所述取电池指令。
然后,所述控制单元11向所述换电设备12发送第三移动指令,所述取电池指令用于命令所述换电设备移动至所述预设换电位置;所述换电设备12执行所述取电池指令。
然后,所述控制单元11向所述换电设备12发送装电池指令,所述装电池指令用于命令所述换电设备将所述电池型号的电池安装于所述电动车辆;所述换电设备12执行所述装电池指令。
至此,所述电动车辆换电完毕,所述控制单元11命令所述换电设备12驶离所述预设换电位置。
本实施例的换电控制系统在换电准备过程中完成了部分控制,大大缩短了电动车辆驶入载车平台后的换电时间,提升了换电效率。
实施例6
图4示出了本实施例的一种换电控制系统。该系统与实施例1的基本相同,不同之处在于,包括至少两换电设备12。
所述控制单元11还用于将所述至少两换电设备12中的至少一个换电设备配置为装电池换电设备12A。所述装电池换电设备12A用于运输待装电池,所述待装电池为从所述第一电池放置架13A取下的、所述电池型号的且将要安装于所述电动车辆的电池。
所述控制单元11还用于将所述至少两换电设备12中的至少一个换电设备配置为卸电池换电设备12B。所述卸电池换电设备12B用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
本实施例中,所述控制单元11确认电动车辆适用的电池型号,可以方便于选取第一电池放置架及调取待装电池;在为车辆换电的整个过程中,使用了两个换电设备12,分别为装电池换电设备12A和卸电池换电设备12B,装电池换电设备12A的移动轨迹在第一电池放置架13A与电动车辆之间,实现待装电池的运输,卸电池换电设备12B的移动轨迹在电动车辆与第二电池放置架13B之间,实现缺电电池的运输,该两个换电设备分别具有不同的职责,共同完成换电任务,使得整个换电时间相比于只采用一个换电设备实现换电至少缩短了一半的时间,提高了换电速度和效率。
实施例7
本实施例的换电控制系统是在实施例6基础上的进一步改进,本实施例对实施例6的改进与实施例2对实施例1的改进基本相同,不同之处在于,控制单元11还可以实时监控每个电池的电量,其有助于第一电池放置架13A的选取。
实施例8
本实施例的换电控制系统是在实施例6或7基础上的进一步改进,本实施例对实施例6或7的改进与实施例3对实施例1或2的改进基本相同,不同之处在于,本实施例中,为了进一步方便定位各电池放置架的位置、选取第一电池放置架13A/第二电池放置架13B、缩短装电池换电设备12A/卸电池换电设备12B的移动路程,所述电池放置架可以沿所述电动车辆驶入所述载车平台方向排布于所述载车平台的两侧。
实施例9
本实施例的换电控制系统是在实施例6或7基础上的进一步改进,主要体现于控制单元11对于第一电池放置架13A和第二电池放置架13B的选取。与实施例8有所不同,本实施例中在选取所述 第一电池放置架13A和所述第二电池放置架13B时会在一定程度上考虑两者之间的关联。
具体地,所述控制单元11可以用于判断所述至少一电池放置架中是否存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架。
若不存在所述多功能电池放置架,则可以按照实施例8的方案分别从符合第一条件的电池放置架中选取第一电池放置架13A,以及从符合第二条件的电池放置架中选取第二电池放置架13B。
若存在所述多功能电池放置架,则所述控制单元11还可以优先利用所述多功能电池放置架,从以下四种方式中任选一种来为其配置身份:
第一种、将所述多功能电池放置架同时作为所述第一电池放置架13A和所述第二电池放置架13B。
第二种、将所述多功能电池放置架作为所述第一电池放置架13A和所述第二电池放置架13B中的任意一个。
第三种、为了保持符合第一条件的电池放置架与符合第二条件的电池放置架在数量上的均衡,将以下任意一个条件作为将所述多功能电池放置架作为第一电池放置架13A的必要条件:
条件(1):其余的电池放置架均不符合所述第一条件;
条件(2):其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量;
条件(3):其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量,且两者的差值的绝对值少于第一差值阈值;
条件(4):其余的电池放置架中,符合所述第一条件的电池放置架的数量少于第一数量阈值。
对于第三种,例如:将条件(1)作为将所述多功能电池放置架作为第一电池放置架13A的必要条件,即,相应的,所述控制单元11需要判断所述至少一电池放置架中除了所述多功能电池放置架,其余的电池放置架是否均不符合所述第一条件,若是,则将所述多功能电池放置架作为第一电池放置架13A;
又如,将条件(2)作为将所述多功能电池放置架作为第一电池放置架13A的必要条件,即,相应的,所述控制单元11需要判断所述至少一电池放置架中除了所述多功能电池放置架,其余的电池放置架中符合所述第一条件的电池放置架的数量是否少于符合所述第二条件的电池放置架的数量,若是,则将所述多功能电池放置架作为第一电池放置架13A(比如符合第一条件的电池放置架为2个,而符合第二条件的电池放置架为3个,则将所述多功能电池放置架作为第一电池放置架13A);
又如,将条件(3)作为将所述多功能电池放置架作为第一电池放置架13A的必要条件,即,相应的,所述控制单元11需要判断所述至少一电池放置架中除了所述多功能电池放置架,其余的电池放置架中符合所述第一条件的电池放置架的数量是否少于符合所述第二条件的电池放置架的数量且两者的差值的绝对值少于第一差值阈值,若是,则将所述多功能电池放置架作为第一电池放置架13A (比如符合第一条件的电池放置架为2个,而符合第二条件的电池放置架为6个,第一差值阈值为3,则将所述多功能电池放置架作为第一电池放置架13A);
再如,将条件(4)作为将所述多功能电池放置架作为第一电池放置架13A的必要条件,即,相应的,所述控制单元11需要判断所述至少一电池放置架中除了所述多功能电池放置架,其余的电池放置架中符合所述第一条件的电池放置架的数量是否少于第一数量阈值,若是,则将所述多功能电池放置架作为第一电池放置架13A(比如符合第一条件的电池放置架为1个,第一数量阈值为2,则将所述多功能电池放置架作为第一电池放置架13A)。
第四种、为了保持符合第一条件的电池放置架与符合第二条件的电池放置架在数量上的均衡,将任意一个条件作为将所述多功能电池放置架作为第二电池放置架13B的必要条件:
条件(1):其余的电池放置架均不符合所述第二条件;
条件(2):其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量;
条件(3):其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量,且两者的差值的绝对值少于第二差值阈值;
条件(4):其余的电池放置架中,符合所述第二条件的电池放置架的数量少于第二数量阈值。
对于第四种,参考第三种,此文具体不再赘述。
实施例10
本实施例的换电控制系统是在实施例6基础上的进一步改进,主要体现于控制单元11对于装电池换电设备12A和卸电池换电设备12B的配置。所述换电设备12大体可以分为两种:
单功能换电设备,其结构较为单一,可以具有第一结构且仅能被配置为装电池换电设备12A,或具有第二结构且仅能被配置为卸电池换电设备12B;
多功能换电设备,其结构较为复杂,兼具所述第一结构和所述第二结构且可被配置为卸电池换电设备12B和装电池换电设备12A中的任意一种。
其中,所述第一结构包括实现将所述待装电池从所述第一电池放置架13A取下并安装于所述电动车辆所需的结构,例如,将所述待装电池从所述第一电池放置架13A中取下的抓取机构、将所述待装电池安装于所述电动车辆的举升机构等。
所述第二结构包括实现将所述缺电电池从所述电动车辆取下并放置于所述第二电池放置架13B所需的结构,例如,将所述缺电电池从所述电动车辆上解锁的解锁机构、将所述缺电电池放置于所述第二电池放置架13B的放置机构等。
本实施例的换电控制系统中,所述至少两换电设备12可以均为单功能换电设备(但是具有所述第一结构的单功能换电设备和具有所述第二结构的单功能换电设备需要均有);或,均为多功能换电 设备;或,部分为单功能换电设备,部分为多功能换电设备。
为了缩短所述装电池换电设备12A的移动路程和移动时间、加快换电效率,所述控制单元11在配置装电池换电设备12A时,优选距离所述第一电池放置架13A最近的换电设备。具体地,如图5所示,所述控制单元11可以在选取出第一电池放置架13A之后,确定所述第一电池放置架13A的位置,筛选具有第一结构的单功能换电设备及多功能换电设备(图中用○表示),分别计算每个具有第一结构的单功能换电设备及多功能换电设备到所述第一电池放置架13A的距离,选取距离最近的一个换电设备配置为装电池换电设备12A,图中12A处的箭头表示所述装电池换电设备12A的移动方向。
为了缩短所述卸电池换电设备12B的移动路程和移动时间、加快换电效率,所述控制单元11在配置卸电池换电设备12B时,优选距离所述电动车辆的换电设备或距离用于停泊所述电动车辆的载车平台最近的换电设备。具体地,所述控制单元11可以筛选具有第二结构的单功能换电设备及多功能换电设备(图中用□表示),分别计算每个具有第二结构的单功能换电设备及多功能换电设备到所述电动车辆14的距离或到所述载车平台15的距离,选取距离最近的一个换电设备配置为卸电池换电设备12B,图中12B处的箭头表示所述装电池换电设备12B的移动方向。
在其他实施例中,为了便于换电设备的管理与分配,每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系,即每个电池放置架仅可以由具有绑定关系的换电设备取、放电池。
所述控制单元11在配置装电池换电设备12A时,优选与所述第一电池放置架13A具有绑定关系的换电设备,或与所述第一电池放置架13A具有绑定关系且距离所述第一电池放置架13A最近的换电设备。具体地,所述控制单元11可以在选取出第一电池放置架13A之后,筛选与所述第一电池放置架13A具有绑定关系且具有第一结构的单功能换电设备及多功能换电设备,从中随机选取一个配置为装电池换电设备12A,或进一步确定所述第一电池放置架13A的位置,分别计算筛选出的换电设备到所述第一电池放置架13A的距离,选取距离最近的一个换电设备配置为装电池换电设备12A。
所述控制单元11在配置卸电池换电设备12B时,优选与所述第二电池放置架13B具有绑定关系的换电设备,或与所述第二电池放置架13B具有绑定关系且距离所述电动车辆最近的换电设备或距离用于停泊所述电动车辆的载车平台架最近的换电设备。具体地,所述控制单元11可以在选取出第二电池放置架13B之后,筛选与所述第二电池放置架13B具有绑定关系且具有第二结构的单功能换电设备及多功能换电设备,从中随机选取一个配置为卸电池换电设备12B,或进一步分别计算筛选出的换电设备到所述电动车辆的距离或到所述载车平台的距离,选取距离最近的一个换电设备配置为卸电池换电设备12B。
实施例11
本实施例的换电控制系统是在实施例6基础上的进一步改进,主要体现于所述换电控制系统的换电控制过程。本实施例中换电控制过程分为电动车辆停泊于载车平台之前的换电准备过程以及电动车 辆停泊于载车平台之后的换电操作过程。
在换电准备过程中,所述控制单元11用于在所述电动车辆停泊于载车平台之前,预先选取所述第二电池放置架13B,然后配置卸电池换电设备12B。其中,选取所述第二电池放置架13B的过程可以参见实施例7-9,配置卸电池换电设备12B的过程可以参见实施例10。
在换电操作过程中,所述控制单元11还用于在所述电动车辆停泊于载车平台之后,向所述卸电池换电设备12B发送第三移动指令,所述第三移动指令用于命令所述卸电池换电设备12B移动并停泊于预设换电位置。所述卸电池换电设备12B还用于执行所述第三移动指令。
所述控制单元11还用于在所述电动车辆停泊于所述载车平台且所述卸电池换电设备12B停泊于所述预设换电位置之后,向所述卸电池换电设备12B发送卸电池指令,所述卸电池指令用于命令所述卸电池换电设备12B从所述电动车辆取下所述缺电电池。所述卸电池换电设备12B还用于执行所述卸电池指令。
本实施例中,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置,可以理解为,所述卸电池换电设备12B位于所述预设换电位置时,所述卸电池换电设备12B通过最少的动作即可从停泊于所述载车平台的电动车辆取下电池。所述预设换电位置具体可以根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
以第一种结构的载车平台为例,所述载车平台与实施例6中的载车平台基本一致,不同之处在于,将实施例6中换电设备12替换为卸电池换电设备12B,的如图6所示,载车平台15高于地平面且中间具有镂空区域,当电动车辆14换电时需要停泊于所述载车平台15上且电动车辆14的电池箱位于所述镂空区域的上方,针对该种结构的载车平台15,所述预设换电位置P1通常位于所述载车平台的下方,尤其是位于镂空区域的下方、对准所述电动车辆14的电池外箱。对于停泊于所述载车平台15上换电的电动车辆14,所述卸电池换电设备12B在所述预设换电位置P1只需垂直升起用于将所述缺电电池从所述电动车辆上解锁的解锁机构、穿过所述镂空区域、将所述解锁机构插入所述电动车辆14的电池外箱与电池之间的间隙、触动锁电池箱的拨块,即可将所述缺电电池解锁,进而取下所述缺电电池。
再以第二种结构的载车平台为例,所述载车平台与实施例6中的载车平台基本一致,不同之处在于,将实施例6中换电设备12替换为卸电池换电设备12B,如图7所示,载车平台15的中间具有一升降平台151,在所述升降平台151中间设有镂空区域,当电动车辆14换电时需要驶入载车平台15并停泊于所述升降平台151上且电动车辆14的电池箱位于所述镂空区域的上方,针对该种结构的载车平台15,所述预设换电位置P2通常位于所述载车平台15的上方,尤其是在所述升降平台151升起后所述镂空区域的下方。对于停泊于所述升降平台151上换电的电动车辆14,所述卸电池换电设备12B在所述预设换电位置P2只需垂直升起用于将所述缺电电池从所述电动车辆14上解锁的解锁 机构、穿过所述镂空区域、将所述解锁结构插入所述电动车辆14的电池外箱与电池之间的间隙、触动锁电池箱的拨块,即可将所述缺电电池解锁,进而取下所述缺电电池。
当然,所述载车平台并不局限于上述结构,还可以是其他结构,所述预设换电位置可以根据所述载车平台的结构,进一步结合所述卸电池换电设备12B的第二结构,取缺电电池时第二结构的移动路径等条件设定。
所述控制单元11还用于在所述卸电池换电设备12B执行完所述卸电池指令后,向所述卸电池换电设备12B发送第四移动指令,所述第四移动指令用于命令所述卸电池换电设备12B移动至所述第二电池放置架13B并将所述缺电电池放置于所述空的电池放置仓。所述卸电池换电设备12B还用于执行所述第四移动指令。
在换电操作过程中,所述控制单元11还用于在所述电动车辆停泊于载车平台之后或能够观察到所述电动车辆的车牌时,扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号,进而选取所述第一电池放置架13A,然后配置装电池换电设备12A,向所述装电池换电设备12A发送取电池指令,所述取电池指令用于命令所述装电池换电设备12A从所述第一电池放置架13A取下所述待装电池。所述装电池换电设备12A还用于执行所述取电池指令。其中,选取所述第一电池放置架13A的过程可以参见实施例7-9,配置装电池换电设备12A的过程可以参见实施例10。
所述控制单元11还用于在所述装电池换电设备12A执行完所述取电池指令后,向所述装电池换电设备12A发送第一移动指令,所述第一移动指令用于命令所述装电池换电设备12A预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置。所述装电池换电设备还用于执行所述第一移动指令。
所述控制单元11还用于在所述卸电池换电设备12B离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,向所述装电池换电设备12A发送第五移动指令,所述第五移动指令用于命令所述装电池换电设备12A移动至所述预设换电位置。所述装电池换电设备12A还用于执行所述第五移动指令。
所述控制单元11还用于在所述装电池换电设备12A执行所述第五移动指令后,向所述装电池换电设备12A发送装电池指令,所述装电池指令用于命令所述装电池换电设备12A将所述待装电池装入所述电动车辆。所述装电池换电设备12A还用于执行所述装电池指令。至此,所述电动车辆换电完毕,所述装电池换电设备12A驶离所述预设换电位置。
实施例12
本实施例的换电控制系统是在实施例6基础上的进一步改进,主要体现于所述换电控制系统的换电控制过程。本实施例中换电控制过程分为电动车辆停泊于载车平台之前的换电准备过程以及电动车辆停泊于载车平台之后的换电操作过程。在换电准备过程和换电操作过程中,所述控制单元的控制指 令与实施例11有所不同。
在换电准备过程中,所述控制单元11可以预先选取出所述第二电池放置架13B、配置完所述卸电池换电设备12B以及控制所述卸电池换电设备12B完成一部分指令,以节省卸电池时间。其中,选取所述第二电池放置架13B的过程可以参见实施例7-9,配置卸电池换电设备12B的过程可以参见实施例10。
其中,所述控制单元11控制所述卸电池换电设备12B完成一部分指令,包括:所述控制单元11判断所述预设换电位置是否为可停泊状态,以此设定第二预设等待位置,向所述卸电池换电设备12B发送第二移动指令,所述第二移动指令用于命令所述卸电池换电设备12B预先停泊于所述第二预设等待位置。所述卸电池换电设备12B还用于执行所述第二移动指令。其中,所述第二预设等待位置与所述预设换电位置相关,可以为与所述预设换电位置相同的位置或是所述预设换电位置附近的位置(对于所述预设换电位置的说明参见实施例11)。
所述判断预设换电位置是否为可停泊状态,具体可以包括:
当以下条件是否同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
条件(1):所述预设换电位置为空位;
条件(2):存在供所述卸电池换电设备12B移动至所述预设换电位置的通路;
条件(3):预测所述卸电池换电设备12B停泊于所述预设换电位置时,所述卸电池换电设备12B不会对驶入所述载车平台的电动车辆造成阻挡。
对于是否能够满足条件(3),通常与载车平台的结构有关。
以实施例11中第一种结构的载车平台为例,由于电动车辆换电时停泊于所述载车平台上,而所述预设换电位置通常位于所述载车平台的下方,所以,通常情况下,即使所述卸电池换电设备12B在电动车辆驶入所述载车平台之前就停泊于所述预设换电位置,所述卸电池换电设备12B也不会对驶入所述载车平台的电动车辆造成阻挡,能够满足条件(3)。
再以实施例11中第二种结构的载车平台为例,由于电动车辆换电时停泊于所述升降平台上,而所述预设换电位置通常也位于所述载车平台的上方,所以,如果所述卸电池换电设备12B在电动车辆驶入所述载车平台之前就停泊于所述预设换电位置,那么,在电动车辆驶入所述载车平台时,所述卸电池换电设备12B很有可能会对驶入的电动车辆造成阻挡。所以,针对第二种结构的载车平台,预设换电位置通常无法符合条件(3),进而为不可停泊状态。
当所述预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置。当所述预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,即所述预设换电位置附近的位置。
至此,换电准备过程完成,所述换电控制系统等待所述电动车辆驶入并停泊于所述载车平台,以进入换电操作过程。
在换电操作过程中,所述控制单元11判断所述卸电池换电设备12B所在的第二预设等待位置是否与所述预设换电位置为同一位置:
若是,向所述卸电池换电设备12B发送卸电池指令,所述卸电池指令用于命令所述卸电池换电设备12B从所述电动车辆取下所述缺电电池;所述卸电池换电设备12B还用于执行所述卸电池指令;
若否,则向所述卸电池换电设备12B发送微调指令,所述微调指令用于命令所述卸电池换电设备12B从所述第二预设等待位置移动至所述预设换电位置;所述卸电池换电设备12B用于执行所述微调指令;然后,所述控制单元11向所述卸电池换电设备12B发送所述卸电池指令;所述卸电池换电设备12B还用于执行所述卸电池指令。
所述控制单元11还用于在所述卸电池换电设备12B执行完所述卸电池指令后,向所述卸电池换电设备12B发送第四移动指令,所述第四移动指令用于命令所述卸电池换电设备12B移动至所述第二电池放置架13B并将所述缺电电池放置于所述空的电池放置仓。所述卸电池换电设备12B还用于执行所述第四移动指令。
在换电操作过程中,所述控制单元11还用于在所述电动车辆停泊于载车平台之后或能够观察到所述电动车辆的车牌时,扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号,进而选取所述第一放置架13A,然后配置装电池换电设备12A,向所述装电池换电设备12A发送取电池指令,所述取电池指令用于命令所述装电池换电设备12A从所述第一电池放置架取下所述待装电池。所述装电池换电设备12A还用于执行所述取电池指令。
所述控制单元11还用于在所述装电池换电设备12A执行完所述取电池指令后,向所述装电池换电设备12A发送第一移动指令,所述第一移动指令用于命令所述装电池换电设备12A预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置。所述装电池换电设备12A还用于执行所述第一移动指令。
所述控制单元11还用于在所述卸电池换电设备12B离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,向所述装电池换电设备12A发送第五移动指令,所述第五移动指令用于命令所述装电池换电设备12A移动至所述预设换电位置。所述装电池换电设备12A还用于执行所述第五移动指令。
所述控制单元11还用于在所述装电池换电设备12A执行所述第五移动指令后,向所述装电池换电设备12A发送装电池指令,所述装电池指令用于命令所述装电池换电设备12A将所述待装电池装入所述电动车辆。所述装电池换电设备12A还用于执行所述装电池指令。至此,所述电动车辆换电完毕,所述控制单元11命令所述装电池换电设备12A驶离所述预设换电位置。
本实施例的换电控制系统在换电准备过程中完成了部分控制,大大缩短了电动车辆驶入载车平台后的换电时间,提升了换电效率。
实施例13
图4示出了本实施例的一种换电控制系统。本实施例与实施例6基本相同,不同在于,本实施例中所述适用于电动车辆的电池通常是指与所述电动车辆所用的电池型号相同。
实施例14
本实施例的换电控制系统是在实施例13基础上的进一步改进,本实施例对实施例13的改进与实施例7对实施例6的改进基本相同,不同之处在于,所述第一条件可以设置为放置有适用于所述电动车辆且满电的电池;
或者,为了提高能够为电动车辆换电的概率,所述第一条件可以优先设置为放置有适用于所述电动车辆且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有适用于所述电动车辆且电量最高的电池。相应地,所述第一条件默认设置为放置有适用于所述电动车辆且满电的电池,所述控制单元11用于判断所述至少一电池放置架中是否存在符合默认的第一条件的电池放置架,若是,则从中选取一个作为第一电池放置架13A,若否,则:
将所述第一条件修改设置为放置有适用于所述电动车辆且电量最高的电池,再次判断所述至少一电池放置架中是否存在符合当前的第一条件的电池放置架,若是则从中选取一个作为第一电池放置架13A。若仍然不存在符合所述第一条件的电池放置架则所述控制单元11可以发出告警信号,提示无法为所述电动车辆换电。
实施例15
本实施例的换电控制系统是在实施例13或14基础上的进一步改进,本实施例对实施例13或14的改进之处与实施例8对实施例6或7的改进之处基本相同,不同之处在于,本实施例中,若所述电池车辆还未停泊,则选取距离用于停泊所述电动车辆的载车平台架最近的一个电池放置架作为所述第一电池放置架13A。同样,若所述电池车辆还未停泊,则选取距离用于停泊所述电动车辆的载车平台架最近的一个电池放置架作为所述第二电池放置架13B。另外,本实施例中,所述载车平台可以为车辆换电的专用平台或是其他可供车辆停泊且便于换电的普通平台。
实施例16
本实施例的换电控制系统是在实施例13或14基础上的进一步改进,本实施例对实施例13或14的改进请参照实施例9对实施例6或7的改进。
实施例17
本实施例的换电控制系统是在实施例13基础上的进一步改进,本实施例对实施例13的改进与实施例10对实施例6的改进之处基本相同,不同之处在于,若所述电动车辆还未停泊,则优选距离用 于停泊所述电动车辆的载车平台最近的换电设备。同样地,若所述电动车辆14还未停泊,则分别计算筛选出的换电设备到所述载车平台15的距离。
在其他实施例中,当每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系时,
若所述电池车辆还未停泊,则优选与所述第二电池放置架13B具有绑定关系且距离用于停泊所述电动车辆的载车平台架最近的换电设备。同样地,若所述电池车辆还未停泊,则计算筛选出的换电设备到所述载车平台的距离。
实施例18
本实施例的换电控制系统是在实施例13基础上的进一步改进,本实施例对实施例13的改进与实施例11对实施例6的改进之处基本相同,不同之处在于,本实施例中选取所述第二电池放置架13B的过程可参见实施例14-16,配置卸电池换电设备12B的过程可参见实施例17。
另外,本实施例中,所述控制单元11还用于在所述电动车辆停泊于载车平台之后,选取所述第一电池放置架13A,然后配置装电池换电设备12A,向所述装电池换电设备12A发送取电池指令,所述取电池指令用于命令所述装电池换电设备12A从所述第一电池放置架13A取下所述待装电池。所述装电池换电设备12A还用于执行所述取电池指令。其中,选取所述第一电池放置架13A的过程可以参见实施例14-16,配置装电池换电设备12A的过程可以参见实施例17。
实施例19
本实施例的换电控制系统是在实施例13基础上的进一步改进,本实施例对实施例13的改进与实施例12对实施例6的改进之处基本相同,不同之处在于,在本实施例中,若在所述电动车辆停泊于载车平台之前,所述电动车辆适用的电池型号是可预知的,那么,在换电准备过程中,所述控制单元11还可以预先选取出所述第一电池放置架13A、配置完所述装电池换电设备12A以及控制所述装电池换电设备12A完成一部分指令,以节省装电池时间。其中,选取所述第二电池放置架13B的过程可以参见实施例14-16,配置卸电池换电设备12B的过程可以参见实施例17。另外,可以通过以下方式预知所述电动车辆适用的电池型号:所述载车平台仅限于供适用所述型号的电池的电动车辆停泊。例如,预设某个载车平台仅限于供某个特定型号的电池的电动车辆停泊,那么,无论电动车辆是否已经停泊于载车平台,都可以确定电动车辆适用的电池型号必定为所述特定型号。
其中,所述控制单元11控制所述装电池换电设备12A完成一部分指令,包括:所述控制单元11向所述装电池换电设备12A发送取电池指令,所述取电池指令用于命令所述装电池换电设备12A从所述第一电池放置架13A取下所述待装电池。所述装电池换电设备12A还用于执行所述取电池指令。
所述控制单元11还用于在所述装电池换电设备12A执行完所述取电池指令后,向所述装电池换电设备12A发送第一移动指令,所述第一移动指令用于命令所述装电池换电设备12A预先停泊于第一预设等待位置,所述第一预设等待位置为所述载车平台的附近,为距离所述载车平台不超过第一距 离阈值的位置。所述装电池换电设备12A还用于执行所述第一移动指令。
至此,换电准备过程完成,所述换电控制系统等待所述电动车辆驶入并停泊于所述载车平台,以进入换电操作过程。
在换电操作过程中,所述控制单元11判断所述卸电池换电设备12B所在的第二预设等待位置是否与所述预设换电位置为同一位置:
若是,向所述卸电池换电设备12B发送卸电池指令,所述卸电池指令用于命令所述卸电池换电设备12B从所述电动车辆取下所述缺电电池;所述卸电池换电设备12B还用于执行所述卸电池指令;
若否,则向所述卸电池换电设备12B发送微调指令,所述微调指令用于命令所述卸电池换电设备12B从所述第二预设等待位置移动至所述预设换电位置;所述卸电池换电设备12B用于执行所述微调指令;然后,所述控制单元11向所述卸电池换电设备12B发送所述卸电池指令;所述卸电池换电设备12B还用于执行所述卸电池指令。
所述控制单元11还用于在所述卸电池换电设备12B执行完所述卸电池指令后,向所述卸电池换电设备12B发送第四移动指令,所述第四移动指令用于命令所述卸电池换电设备12B移动至所述第二电池放置架13B并将所述缺电电池放置于所述空的电池放置仓。所述卸电池换电设备12B还用于执行所述第四移动指令。
所述控制单元11还用于在所述卸电池换电设备12B离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,向所述装电池换电设备发送第五移动指令,所述第五移动指令用于命令所述装电池换电设备12A移动至所述预设换电位置。所述装电池换电设备12A还用于执行所述第五移动指令。
所述控制单元11还用于在所述装电池换电设备12A执行所述第五移动指令后,向所述装电池换电设备12A发送装电池指令,所述装电池指令用于命令所述装电池换电设备12A将所述待装电池装入所述电动车辆。所述装电池换电设备12A还用于执行所述装电池指令。至此,所述电动车辆换电完毕,所述控制单元11命令所述装电池换电设备12A驶离所述预设换电位置。
本实施例的换电控制系统在换电准备过程中完成了部分控制,大大缩短了电动车辆驶入载车平台后的换电时间,提升了换电效率。
实施例20
图8示出了本实施例的一种换电控制方法。所述换电控制方法包括:
步骤21、确定电动车辆适用的电池型号。具体地,可以扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号。
步骤22、从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池。
步骤23、从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述第二条设置为具有空的电池放置仓。
步骤24、令换电设备移动至预设换电位置,从所述电动车辆上取下缺电电池,将所述缺电电池运输到所述第二放置架并放置于所述空的电池放置仓,所述预设换电位置为适于从所述电动车辆取、装电池的位置。
步骤25、令所述换电设备移动至所述第一电池放置架,从所述第一电池放置架取下所述电池型号的电池,将所述电池型号的电池运输到所述预设换电位置并安装于所述电动车辆。
本实施例中,确认电动车辆适用的电池型号,可以便于选取第一电池放置架;在为车辆换电的整个过程中,所述换电设备移动流畅,提高了换电速度和效率。
本实施例中,所述预设换电位置可以理解为,所述换电设备位于所述预设换电位置时,通过最少的动作即可从电动车辆取下电池或向电动车辆安装电池。所述预设换电位置具体可以根据停泊所述电动车辆的载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
实施例21
本实施例的换电控制方法是在实施例20基础上的进一步改进,主要体现于对于第一条件的设置。第一条件作为选取所述第一电池放置架的依据,除了必要放置有所述电池型号的电池外,还可以进一步设置其他优选的配合条件。本实施例中,配合的条件主要与电池的电量相关,所述换电控制方法还包括:监控所述电池放置架上放置的电池的电量。
具体地,所述第一条件设置为放置有所述电池型号且满电的电池。相应地,步骤22判断所述至少一电池放置架中是否存在符合所述第一条件的电池放置架,若是,则从中选取一个作为所述第一电池放置架。若不存在符合所述第一条件的电池放置架则发出告警信号,提示无法为所述电动车辆换电。
或,为了提高能够为电动车辆换电的概率,所述第一条件优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。相应地,所述第一条件默认设置为放置有所述电池型号且满电的电池,步骤22判断所述至少一电池放置架中是否存在符合默认的第一条件的电池放置架,若是,则从中选取一个作为第一电池放置架,若否,则:
将所述第一条件修改设置为放置有所述电池型号且电量最高的电池,再次判断所述至少一电池放置架中是否存在符合当前的第一条件的电池放置架,若是则从中选取一个作为第一电池放置架。若仍然不存在符合所述第一条件的电池放置架则可以发出告警信号,提示无法为所述电动车辆换电。
另外,本实施例中,所述空的电池放置仓还用于为所述缺电电池充电。具体地,所述空的电池放置仓具有电池充电电路,所述电池充电电路可以具有固定的电力参数,所述电力参数与所述电池型号相匹配;或,所述电池充电电路具有可调节的电力参数,所述控制单元还用于根据所述电池型号调节 所述电力参数,以使得所述电力参数与所述电池型号相匹配。所述电力参数包括电流、电压等。
当然在其他实施例中,第一条件还可以根据需求设置为其他条件。
实施例22
本实施例的换电控制方法是在实施例20或21基础上的进一步改进,主要体现于对于第一电池放置架和第二电池放置架的选取。在电池放置架的数量为两个,甚至更多的时候,很可能同时有两个或两个以上电池放置架符合所述第一条件或第二条件。所述方法可以根据需求进一步设定所述第一电池放置架和所述第二电池放置架的选取要求。
在本实施例中,为了应对同时有两个或两个以上电池放置架符合所述第一条件的情况,步骤22还包括判断符合所述第一条件的电池放置架是否超过一个,若是,则:
或者,为了缩短所述换电设备的移动路程和移动时间、加快换电效率,从符合所述第一条件的电池放置架中选取距离所述电动车辆最近的一个电池放置架或距离用于停泊所述电动车辆的载车平台架最近的一个电池放置架作为所述第一电池放置架;
或者,选取位于所述第二电池放置架与所述电池车辆之间的路径上的一个电池放置架作为所述第一电池放置架,或选取位于所述路径上且距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第一电池放置架。
当然,若符合所述第一条件的电池放置架仅有一个,那么,通常只能将其作为第一电池放置架。
同样地,为了应对同时有两个或两个以上电池放置架符合所述第二条件的情况,步骤23还包括判断符合所述第二条件的电池放置架超过一个,若是,则:
从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架;
或者,为了缩短所述换电设备的移动路程和移动时间、加快换电效率,从符合所述第二条件的电池放置架中选取距离所述电动车辆最近的一个电池放置架或距离用于停泊所述电动车辆的载车平台架最近的一个电池放置架作为所述第二电池放置架。
当然,若符合所述第二条件的电池放置架仅有一个,那么,通常只能将其作为第二电池放置架。
为了进一步方便定位各电池放置架的位置、选取第一电池放置架/第二电池放置架、缩短换电设备的移动路程,所述电池放置架可以沿所述电动车辆驶入所述载车平台方向排布于所述载车平台的两侧。其中,所述载车平台可以为车辆换电的专用平台或是其他可供车辆停泊且便于换电的普通平台。
本实施例中第一电池放置架和第二电池放置架的选取是相对独立的,也就是说,可以按照不同需求分别设定所述第一电池放置架和所述第二电池放置架的选取要求。
实施例23
本实施例的换电控制方法是在实施例20或21基础上的进一步改进,主要体现于对于第一电池放置架和第二电池放置架的选取。与实施例21有所不同,本实施例中在选取所述第一电池放置架和所 述第二电池放置架时会在一定程度上考虑两者之间的关联。
具体地,所述方法还包括判断所述至少一电池放置架中是否存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架。
若不存在所述多功能电池放置架,则可以按照实施例21的方案分别从符合第一条件的电池放置架中选取第一电池放置架,以及从符合第二条件的电池放置架中选取第二电池放置架。
若存在所述多功能电池放置架,则还可以将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架。以此减少换电设备的移动路程。
实施例24
本实施例的换电控制方法是在实施例20基础上的进一步改进,主要体现于对所述换电设备的控制流程。整个换电过程可以分为电动车辆停泊于载车平台之前的换电准备流程以及电动车辆停泊于载车平台之后的换电操作流程。
在换电准备流程中,所述换电控制方法包括:令所述换电设备预先停泊于预设等待位置。所述预设等待位置与所述预设换电位置相关,可以为与所述预设换电位置相同的位置或是所述预设换电位置附近的位置。
在本实施例中,当预设换电位置为可停泊状态时,所述预设等待位置与所述预设换电位置为同一位置。
当预设换电位置为不可停泊状态时,所述预设等待位置为距离所述预设换电位置不超过第一距离阈值的位置。
具体地,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
所述预设换电位置为空位;
存在供所述换电设备移动至所述预设换电位置的通路;
预测所述换电设备停泊于所述预设换电位置时,所述换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
至此,换电准备流程完成,等待所述电动车辆驶入并停泊于所述载车平台,以进入换电操作流程。
在换电操作流程中,所述换电控制方法包括:
判断所述预设等待位置是否与所述预设换电位置为同一位置:
若是,则令所述换电设备从所述电动车辆取下所述缺电电池;
若否,则令所述换电设备从所述预设等待位置移动至所述预设换电位置;然后,令所述换电设备从所述电动车辆取下所述缺电电池;
在所述换电设备从所述电动车辆取下所述缺电电池后,令所述换电设备移动至所述第二电池放置 架;
然后,令所述换电设备将所述缺电电池放置于所述空的电池放置仓;
然后,令所述换电设备移动至所述第一电池放置架;
然后,令所述换电设备从所述第一电池放置架取下所述电池型号的电池;
然后,令所述换电设备移动至所述预设换电位置;
然后,令所述换电设备将所述电池型号的电池安装于所述电动车辆;
至此,所述电动车辆换电完毕,最后令所述换电设备驶离所述预设换电位置。
本实施例的换电控制系统在换电准备流程中完成了部分控制,大大缩短了电动车辆驶入载车平台后的换电时间,提升了换电效率。
实施例25
图10示出了本实施例的一种换电控制方法。所述换电控制方法包括:
步骤21’、从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架。其中,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有适用于电动车辆的电池,所述适用于电动车辆的电池通常是指与所述电动车辆所用的电池型号相同。
步骤22’、从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架。其中,所述第二条件设置为具有空的电池放置仓。
步骤23’、将所述至少两换电设备中的至少一个换电设备配置为装电池换电设备。其中,所述装电池换电设备用于运输待装电池,所述待装电池为从所述第一电池放置架取下的、适用于所述电动车辆且将要安装于所述电动车辆的电池。
步骤24’、将所述至少两换电设备中的至少一个换电设备配置为卸电池换电设备。其中,所述卸电池换电设备用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
上述步骤顺序仅是上述各步骤的一种可能的排序,在其他实施例中,上述各步骤可以采用其他的顺序,如先执行步骤22’、然后依次执行步骤24’、步骤21’、步骤23’,或者,先执行步骤21’、然后依次执行步骤23’、步骤22’、步骤24’。
本实施例中,在为车辆换电的整个过程中,使用了两个换电设备,分别为装电池换电设备和卸电池换电设备,装电池换电设备的移动轨迹在第一电池放置架与电动车辆之间,实现待装电池的运输,卸电池换电设备的移动轨迹在电动车辆与第二电池放置架之间,实现缺电电池的运输,该两个换电设备分别具有不同的职责,共同完成换电任务,使得整个换电时间相比于只采用一个换电设备实现换电至少缩短了一半的时间,提高了换电速度和效率。
实施例26
本实施例的换电控制方法是在实施例25基础上的进一步改进,本实施例对实施例25的改进与实施例21对实施例20的改进基本相同,不同之处在于,所述换电控制方法还包括:监控所述电池放置架上放置的电池的电量,其有助于第一电池放置架的选取。
实施例27
本实施例的换电控制方法是在实施例25或26基础上的进一步改进,本实施例对实施例25或26的改进与实施例22对实施例20或21的改进基本相同,不同之处在于,本实施例中,为了进一步方便定位各电池放置架的位置、选取第一电池放置架/第二电池放置架、缩短装电池换电设备/卸电池换电设备的移动路程,所述电池放置架可以沿所述电动车辆驶入所述载车平台方向排布于所述载车平台的两侧。
实施例28
本实施例的换电控制方法是在实施例25或26基础上的进一步改进,主要体现于对于第一电池放置架和第二电池放置架的选取。与实施例27有所不同,本实施例中在选取所述第一电池放置架和所述第二电池放置架时会在一定程度上考虑两者之间的关联。
所述换电控制方法还包括:
判断所述至少一电池放置架中是否存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架;
若不存在,则可以按照实施例27的方案分别从符合第一条件的电池放置架中选取第一电池放置架,以及从符合第二条件的电池放置架中选取第二电池放置架;
若存在,则优先利用所述多功能电池放置架,从以下四种方式中任选一种来为其配置身份:
第一种、将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架。
第二种、将所述多功能电池放置架作为所述第一电池放置架和所述第二电池放置架中的任意一个。
第三种、为了保持符合第一条件的电池放置架与符合第二条件的电池放置架在数量上的均衡,将以下任意一个条件作为将所述多功能电池放置架作为第一电池放置架的必要条件:
条件(1):其余的电池放置架均不符合所述第一条件;
条件(2):其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量;
条件(3):其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量,且两者的差值的绝对值少于第一差值阈值;
条件(4):其余的电池放置架中,符合所述第一条件的电池放置架的数量少于第一数量阈值。
第四种、为了保持符合第一条件的电池放置架与符合第二条件的电池放置架在数量上的均衡,将任意一个条件作为将所述多功能电池放置架作为第二电池放置架的必要条件:
条件(1):其余的电池放置架均不符合所述第二条件;
条件(2):其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量;
条件(3):其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量,且两者的差值的绝对值少于第二差值阈值;
条件(4):其余的电池放置架中,符合所述第二条件的电池放置架的数量少于第二数量阈值。
实施例29
本实施例的换电控制方法是在实施例25基础上的进一步改进,主要体现于步骤23’对于装电池换电设备和步骤24’对于卸电池换电设备的配置。所述换电设备大体可以分为两种:
单功能换电设备,其结构较为单一,可以具有第一结构且仅能被配置为装电池换电设备,或具有第二结构且仅能被配置为卸电池换电设备;
多功能换电设备,其结构较为复杂,兼具所述第一结构和所述第二结构且可被配置为卸电池换电设备和装电池换电设备中的任意一种。
其中,所述第一结构包括实现将所述待装电池从所述第一电池放置架取下并安装于所述电动车辆所需的结构,例如,将所述待装电池从所述第一电池放置架中取下的抓取机构、将所述待装电池安装于所述电动车辆的举升机构等。
所述第二结构包括实现将所述缺电电池从所述电动车辆取下并放置于所述第二电池放置架所需的结构,例如,将所述缺电电池从所述电动车辆上解锁的解锁机构、将所述缺电电池放置于所述第二电池放置架的放置机构等。
本实施例的换电控制方法中,所述至少两换电设备可以均为单功能换电设备(但是具有所述第一结构的单功能换电设备和具有所述第二结构的单功能换电设备需要均有);或,均为多功能换电设备;或,部分为单功能换电设备,部分为多功能换电设备。
为了缩短所述装电池换电设备的移动路程和移动时间、加快换电效率,步骤23’中被配置为所述装电池换电设备的换电设备优选为距离所述第一电池放置架最近的换电设备。具体地,步骤23’在步骤21’选取出第一电池放置架之后执行,可以包括:确定所述第一电池放置架的位置,筛选具有第一结构的单功能换电设备及多功能换电设备,分别计算每个具有第一结构的单功能换电设备及多功能换电设备到所述第一电池放置架的距离,选取距离最近的一个换电设备配置为装电池换电设备。
为了缩短所述卸电池换电设备的移动路程和移动时间、加快换电效率,步骤24’中被配置为所述卸电池换电设备的换电设备优选为距离所述电动车辆最近的换电设备(若所述电动车辆还未停泊,则优选距离用于停泊所述电动车辆的载车平台最近的换电设备)。具体地,步骤24’可以包括:筛选具有第二结构的单功能换电设备及多功能换电设备,分别计算每个具有第二结构的单功能换电设备及多功 能换电设备到所述电动车辆的距离(若所述电动车辆还未停泊,则分别计算筛选出的换电设备所述载车平台的距离),选取距离最近的一个换电设备配置为卸电池换电设备。
在其他实施例中,为了便于换电设备的管理与分配,每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系,即每个电池放置架仅可以由具有绑定关系的换电设备取、放电池。
步骤23’在配置装电池换电设备时,优选与所述第一电池放置架具有绑定关系的换电设备,或与所述第一电池放置架具有绑定关系且距离所述第一电池放置架最近的换电设备。具体地,步骤23’可以包括:在选取出第一电池放置架之后,筛选与所述第一电池放置架具有绑定关系且具有第一结构的单功能换电设备及多功能换电设备,从中随机选取一个配置为装电池换电设备,或进一步确定所述第一电池放置架的位置,分别计算筛选出的换电设备到所述第一电池放置架的距离,选取距离最近的一个换电设备配置为装电池换电设备。
步骤24’在配置卸电池换电设备时,优选与所述第二电池放置架具有绑定关系的换电设备,或与所述第二电池放置架具有绑定关系且距离所述电动车辆最近的换电设备(若所述电池车辆还未停泊则优选与所述第二电池放置架具有绑定关系且距离用于停泊所述电动车辆的载车平台架最近的换电设备)。具体地,步骤24’可以包括:在选取出第二电池放置架之后,筛选与所述第二电池放置架具有绑定关系且具有第二结构的单功能换电设备及多功能换电设备,从中随机选取一个配置为卸电池换电设备,或进一步分别计算筛选出的换电设备到所述电动车辆的距离(若所述电池车辆还未停泊则计算筛选出的换电设备到所述载车平台的距离),选取距离最近的一个换电设备配置为卸电池换电设备。
实施例30
本实施例的换电控制方法是在实施例25基础上的进一步改进,主要体现于所述换电控制方法的换电控制流程。如图11所示,本实施例中换电控制流程分为电动车辆停泊于载车平台之前的换电准备流程以及电动车辆停泊于载车平台之后的换电操作流程。
在换电准备流程中,所述换电控制方法包括:预先选取所述第二电池放置架,然后配置卸电池换电设备。其中,选取所述第二电池放置架的方法可以参见实施例26-28,配置卸电池换电设备的方法可以参见实施例29。
在换电操作流程中,所述换电控制方法包括:命令所述卸电池换电设备移动并停泊于预设换电位置。
在所述电动车辆停泊于所述载车平台且所述卸电池换电设备停泊于所述预设换电位置之后,命令所述卸电池换电设备从所述电动车辆取下所述缺电电池。
本实施例中,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置,可以理解为,所述卸电池换电设备位于所述预设换电位置时,所述卸电池换电设备通过最少的动作即可从停泊于所述载车平台的电动车辆取下电池。所述预设换电位置具体可以根据所述载车平台的结构决定所 述预设换电位置位于所述载车平台的下方或上方(对于所述预设换电位置的具体说明参见实施例25)。
所述预设换电位置还可以根据所述载车平台的结构,进一步结合所述卸电池换电设备的第二结构,取缺电电池时第二结构的移动路径等条件设定。
在所述卸电池换电设备从所述电动车辆取下所述缺电电池之后,命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓。
在换电操作流程中,所述换电控制方法还包括:选取所述第一电池放置架,然后配置装电池换电设备,命令所述装电池换电设备从所述第一电池放置架取下所述待装电池。其中,选取所述第一电池放置架的方法可以参见实施例26-28,配置装电池换电设备的方法可以参见实施例29。
在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,命令所述装电池换电设备移动至所述预设换电位置。
在所述装电池换电设备移动至所述预设换电位置之后,命令所述装电池换电设备将所述待装电池装入所述电动车辆。至此,所述电动车辆换电完毕。
最后,命令所述装电池换电设备驶离所述预设换电位置。
实施例31
本实施例的换电控制方法是在实施例25基础上的进一步改进,主要体现于所述换电控制方法的换电控制流程。本实施例中换电控制流程分为电动车辆停泊于载车平台之前的换电准备流程以及电动车辆停泊于载车平台之后的换电操作流程。如图12所示,在换电准备流程和换电操作流程中,所述换电控制方法包括的步骤与实施例30有所不同。
在换电准备流程中,所述换电控制方法包括:预先选取出所述第二电池放置架、配置完所述卸电池换电设备以及命令所述卸电池换电设备完成一部分操作,以节省卸电池时间。其中,选取所述第二电池放置架的方法可以参见实施例26-28,配置卸电池换电设备的方法可以参见实施例29。
其中,命令所述卸电池换电设备完成一部分操作,包括:判断所述预设换电位置是否为可停泊状态,以此设定第二预设等待位置,命令所述卸电池换电设备预先停泊于所述第二预设等待位置。其中,所述第二预设等待位置与所述预设换电位置相关,可以为与所述预设换电位置相同的位置或是所述预设换电位置附近的位置(对于所述预设换电位置的具体说明参见实施例30)。
所述判断预设换电位置是否为可停泊状态,具体可以包括:
当以下条件是否同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
条件(1):所述预设换电位置为空位;
条件(2):存在供所述卸电池换电设备移动至所述预设换电位置的通路;
条件(3):预测所述卸电池换电设备停泊于所述预设换电位置时,所述卸电池换电设备不会对驶 入所述载车平台的电动车辆造成阻挡。
对于是否能够满足条件(3),通常与载车平台的结构有关。
当所述预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置。当所述预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,即所述预设换电位置附近的位置。
在本实施例中,若在所述电动车辆停泊于载车平台之前,所述电动车辆适用的电池型号是可预知的,那么,在换电准备流程中,所述换电控制方法还包括:预先选取出所述第一电池放置架、配置完所述装电池换电设备以及命令所述装电池换电设备完成一部分操作,以节省装电池时间。其中,选取所述第二电池放置架的方法可以参见实施例26-28,配置卸电池换电设备的方法可以参见实施例29。另外,可以通过以下方式预知所述电动车辆适用的电池型号:所述载车平台仅限于供适用所述型号的电池的电动车辆停泊。例如,预设某个载车平台仅限于供某个特定型号的电池的电动车辆停泊,那么,无论电动车辆是否已经停泊于载车平台,都可以确定电动车辆适用的电池型号必定为所述特定型号。
其中,命令所述装电池换电设备完成一部分操作,包括:命令所述装电池换电设备从所述第一电池放置架取下所述待装电池。
在所述装电池换电设备从所述第一电池放置架取下所述待装电池后,命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为所述载车平台的附近,为距离所述载车平台不超过第一距离阈值的位置。
至此,换电准备流程完成,等待所述电动车辆驶入并停泊于所述载车平台,以进入换电操作流程。
在换电操作流程中,所述换电控制方法包括:判断所述卸电池换电设备所在的第二预设等待位置是否与所述预设换电位置为同一位置:
若是,命令所述卸电池换电设备从所述电动车辆取下所述缺电电池;
若否,则命令所述卸电池换电设备从所述第二预设等待位置移动至所述预设换电位置;然后,命令所述卸电池换电设备从所述电动车辆取下所述缺电电池。
在所述卸电池换电设备执行完所述卸电池指令后,命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓。
在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,命令所述装电池换电设备移动至所述预设换电位置。
在所述装电池换电设备移动至所述预设换电位置后,命令所述装电池换电设备将所述待装电池装入所述电动车辆。至此,所述电动车辆换电完毕。
命令所述装电池换电设备驶离所述预设换电位置。
本实施例的换电控制方法在换电准备过程中完成了部分控制,大大缩短了电动车辆驶入载车平台 后的换电时间,提升了换电效率。
实施例32
图13示出了本实施例的一种换电控制方法。所述换电控制方法包括:
步骤21’、确定待换电的电动车辆适用的电池型号。
步骤22’、从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架。其中,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池,所述适用于电动车辆的电池通常是指与所述电动车辆所用的电池型号相同。
步骤23’、从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架。其中,所述第二条件设置为具有空的电池放置仓。
步骤24’、将所述至少两换电设备中的至少一个换电设备配置为装电池换电设备。其中,所述装电池换电设备用于运输待装电池,所述待装电池为从所述第一电池放置架取下的、所述电池型号且将要安装于所述电动车辆的电池。
步骤25’、将所述至少两换电设备中的至少一个换电设备配置为卸电池换电设备。其中,所述卸电池换电设备用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
上述步骤顺序仅是上述各步骤的一种可能的排序,在其他实施例中,上述各步骤可以采用其他的顺序,如先执行步骤23’、然后依次执行步骤25’、步骤21’、步骤23’、步骤24’,或者,先执行步骤21’、然后依次执行步骤22’、步骤24’、步骤23’、步骤25’。
本实施例中,确认电动车辆适用的电池型号,方便于选取第一电池放置架及调取待装电池;在为车辆换电的整个过程中,使用了两个换电设备,分别为装电池换电设备和卸电池换电设备,装电池换电设备的移动轨迹在第一电池放置架与电动车辆之间,实现待装电池的运输,卸电池换电设备的移动轨迹在电动车辆与第二电池放置架之间,实现缺电电池的运输,该两个换电设备分别具有不同的职责,共同完成换电任务,使得整个换电时间相比于只采用一个换电设备实现换电至少缩短了一半的时间,提高了换电速度和效率。
实施例33
本实施例的换电控制方法是在实施例32基础上的进一步改进,本实施例对实施例32的改进与实施例26对实施例25的改进之处基本相同,不同之处在于,所述第一条件可以设置为放置有所述电池型号且满电的电池;
或者,为了提高能够为电动车辆换电的概率,所述第一条件可以优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。相应地,步骤22’具体包括:所述第一条件默认 设置为放置有所述电池型号且满电的电池,判断所述至少一电池放置架中是否存在符合默认的第一条件的电池放置架,若是,则从中选取一个作为第一电池放置架,若否,则:
将所述第一条件修改设置为放置有所述电池型号且电量最高的电池,再次判断所述至少一电池放置架中是否存在符合当前的第一条件的电池放置架,若是则从中选取一个作为第一电池放置架。若仍然不存在符合所述第一条件的电池放置架则可以发出告警信号,提示无法为所述电动车辆换电。
实施例34
本实施例的换电控制方法是在实施例32或33基础上的进一步改进,本实施例对实施例32或33的改进之处与实施例27对实施例25或26的改进之处基本相同,不同之处在于,为了缩短所述装电池换电设备的移动路程和移动时间、加快换电效率,从符合所述第一条件的电池放置架中选取距离所述电动车辆最近的一个电池放置架或距离用于停泊所述电动车辆的载车平台架最近的一个电池放置架作为所述第一电池放置架。
同样为了缩短所述卸电池换电设备的移动路程和移动时间、加快换电效率,从符合所述第二条件的电池放置架中选取距离所述电动车辆最近的一个电池放置架或距离用于停泊所述电动车辆的载车平台架最近的一个电池放置架作为所述第二电池放置架。
另外,本实施例中,所述载车平台可以为车辆换电的专用平台或是其他可供车辆停泊且便于换电的普通平台。
实施例35
本实施例的换电控制方法是在实施例32或33基础上的进一步改进,本实施例对实施例32或33的改进之处参照实施例27对实施例25或26的改进之处。
实施例36
本实施例的换电控制方法是在实施例32基础上的进一步改进,本实施例对实施例32的改进与实施例29对实施例25的改进之处基本相同,不同之处在于,本实施例中,为了缩短所述卸电池换电设备的移动路程和移动时间、加快换电效率,步骤25’中被配置为所述卸电池换电设备的换电设备优选为距离所述电动车辆最近的换电设备或距离用于停泊所述电动车辆的载车平台最近的换电设备。具体地,步骤25’可以包括:筛选具有第二结构的单功能换电设备及多功能换电设备,分别计算每个具有第二结构的单功能换电设备及多功能换电设备到所述电动车辆的距离或到所述载车平台的距离),选取距离最近的一个换电设备配置为卸电池换电设备。
步骤25’在配置卸电池换电设备时,优选与所述第二电池放置架具有绑定关系的换电设备,或与所述第二电池放置架具有绑定关系且距离所述电动车辆最近的换电设备或距离用于停泊所述电动车辆的载车平台架最近的换电设备。具体地,步骤25’可以包括:在选取出第二电池放置架之后,筛选与所述第二电池放置架具有绑定关系且具有第二结构的单功能换电设备及多功能换电设备,从中随机 选取一个配置为卸电池换电设备,或进一步分别计算筛选出的换电设备到所述电动车辆的距离或到所述载车平台的距离,选取距离最近的一个换电设备配置为卸电池换电设备。
实施例37
本实施例的换电控制方法是在实施例32基础上的进一步改进,本实施例对实施例13的改进与实施例30对实施例25的改进之处基本相同,不同之处在于,如图14所示,本实施例中换电控制流程分为电动车辆停泊于载车平台之前的换电准备流程以及电动车辆停泊于载车平台之后的换电操作流程。
在换电准备流程中,所述换电控制方法包括:预先选取所述第二电池放置架,然后配置卸电池换电设备。其中,选取所述第二电池放置架的方法可以参见实施例33-35,配置卸电池换电设备的方法可以参见实施例36。
本实施例中,对于所述预设换电位置的具体说明参见实施例30。
在换电操作流程中,所述换电控制方法还包括:在所述电动车辆停泊于载车平台之后或能够观察到所述电动车辆的车牌时,扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号,进而选取所述第一电池放置架,然后配置装电池换电设备,命令所述装电池换电设备从所述第一电池放置架取下所述待装电池。其中,选取所述第一电池放置架的方法可以参见实施例33-35,配置装电池换电设备的方法可以参见实施例36。
在所述装电池换电设备从所述第一电池放置架取下所述待装电池后,命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置。
在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,命令所述装电池换电设备移动至所述预设换电位置。
在所述装电池换电设备移动至所述预设换电位置之后,命令所述装电池换电设备将所述待装电池装入所述电动车辆。至此,所述电动车辆换电完毕。
最后,命令所述装电池换电设备驶离所述预设换电位置。
实施例38
本实施例的换电控制方法是在实施例32基础上的进一步改进,主要体现于所述换电控制方法的换电控制流程。本实施例中换电控制流程分为电动车辆停泊于载车平台之前的换电准备流程以及电动车辆停泊于载车平台之后的换电操作流程。如图15所示,在换电准备流程和换电操作流程中,所述换电控制方法包括的步骤与实施例37有所不同。
在换电准备流程中,所述换电控制方法包括:预先选取出所述第二电池放置架、配置完所述卸电池换电设备以及命令所述卸电池换电设备完成一部分操作,以节省卸电池时间。其中,选取所述第二电池放置架的方法可以参见实施例33-35,配置卸电池换电设备的方法可以参见实施例36。
其中,命令所述卸电池换电设备完成一部分操作,包括:判断所述预设换电位置是否为可停泊状态,以此设定第二预设等待位置,命令所述卸电池换电设备预先停泊于所述第二预设等待位置。其中,所述第二预设等待位置与所述预设换电位置相关,可以为与所述预设换电位置相同的位置或是所述预设换电位置附近的位置(对于所述预设换电位置的具体说明参见实施例30)。
所述判断预设换电位置是否为可停泊状态,具体可以包括:
当以下条件是否同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
条件(1):所述预设换电位置为空位;
条件(2):存在供所述卸电池换电设备移动至所述预设换电位置的通路;
条件(3):预测所述卸电池换电设备停泊于所述预设换电位置时,所述卸电池换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
对于是否能够满足条件(3),通常与载车平台的结构有关。
当所述预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置。当所述预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,即所述预设换电位置附近的位置。
至此,换电准备流程完成,等待所述电动车辆驶入并停泊于所述载车平台,以进入换电操作流程。
在换电操作流程中,所述换电控制方法包括:判断所述卸电池换电设备所在的第二预设等待位置是否与所述预设换电位置为同一位置:
若是,命令所述卸电池换电设备从所述电动车辆取下所述缺电电池;
若否,则命令所述卸电池换电设备从所述第二预设等待位置移动至所述预设换电位置;然后,命令所述卸电池换电设备从所述电动车辆取下所述缺电电池。
在所述卸电池换电设备执行完所述卸电池指令后,命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓。
在换电操作流程中,所述换电控制方法还包括:在所述电动车辆停泊于载车平台之后或能够观察到所述电动车辆的车牌时,扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号,进而选取所述第一放置架,然后配置装电池换电设备,命令所述装电池换电设备从所述第一电池放置架取下所述待装电池。
在所述装电池换电设备从所述第一电池放置架取下所述待装电池后,命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置。
在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,命令所述装电池换电设备移动至所述预设换电位置。
在所述装电池换电设备移动至所述预设换电位置后,命令所述装电池换电设备将所述待装电池装入所述电动车辆。至此,所述电动车辆换电完毕。
命令所述装电池换电设备驶离所述预设换电位置。
本实施例的换电控制方法在换电准备过程中完成了部分控制,大大缩短了电动车辆驶入载车平台后的换电时间,提升了换电效率。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (94)

  1. 一种换电控制系统,其特征在于,包括:控制单元和换电设备;
    所述控制单元用于确定电动车辆适用的电池型号;
    所述控制单元还用于从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池,所述第二条件设置为具有空的电池放置仓;
    所述换电设备用于移动至预设换电位置,从所述电动车辆上取下缺电电池,将所述缺电电池运输到所述第二放置架并放置于所述空的电池放置仓,然后移动至所述第一电池放置架,从所述第一电池放置架取下所述电池型号的电池,将所述电池型号的电池运输到所述预设换电位置并安装于所述电动车辆,所述预设换电位置为适于从所述电动车辆取、装电池的位置。
  2. 如权利要求1所述的换电控制系统,其特征在于,所述控制单元还用于监控所述电池放置架上放置的电池的电量;
    所述第一条件设置为放置有所述电池型号且满电的电池;
    或,所述第一条件优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。
  3. 如权利要求1或2所述的换电控制系统,其特征在于,所述控制单元还用于在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架,或选取位于所述第二电池放置架与所述电池车辆之间的路径上的一个电池放置架作为所述第一电池放置架,或选取位于所述路径上且距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第一电池放置架;
    和/或,所述控制单元还用于在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第二电池放置架。
  4. 如权利要求3所述的换电控制系统,其特征在于,所述电池放置架沿所述电动车辆驶入所述载车平台方向排布于所述载车平台的两侧。
  5. 如权利要求1所述的换电控制系统,其特征在于,若所述至少一电池放置架中存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架,则所述控制单元还用于:
    将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架。
  6. 如权利要求1所述的换电控制系统,其特征在于,所述空的电池放置仓还用于为所述缺电电池充电。
  7. 如权利要求6所述的换电控制系统,其特征在于,所述空的电池放置仓具有电池充电电路;
    所述电池充电电路具有固定的电力参数,所述电力参数与所述电池型号相匹配;
    或,所述电池充电电路具有可调节的电力参数,所述控制单元还用于根据所述电池型号调节所述电力参数,以使得所述电力参数与所述电池型号相匹配。
  8. 如权利要求1所述的换电控制系统,其特征在于,所述控制单元还用于扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号。
  9. 如权利要求1所述的换电控制系统,其特征在于,所述换电设备受控于所述控制单元:
    所述控制单元在所述电动车辆停泊于载车平台之前,向所述换电设备发送以下指令并由所述换电设备执行:
    停泊指令,用于命令所述换电设备预先停泊于预设等待位置。
  10. 如权利要求9所述的换电控制系统,其特征在于,当预设换电位置为可停泊状态时,所述预设等待位置与所述预设换电位置为同一位置。
  11. 如权利要求9所述的换电控制系统,其特征在于,当预设换电位置为不可停泊状态时,所述预设等待位置为距离所述预设换电位置不超过第一距离阈值的位置;
    所述控制单元还用于在所述电动车辆停泊于所述载车平台之后,向所述卸电池换电设备发送微调指令,所述微调指令用于命令所述换电设备从所述预设等待位置移动至所述预设换电位置。
  12. 如权利要求10或11所述的换电控制系统,其特征在于,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
    所述预设换电位置为空位;
    存在供所述换电设备移动至所述预设换电位置的通路;
    预测所述换电设备停泊于所述预设换电位置时,所述换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
  13. 如权利要求10或11所述的换电控制系统,其特征在于,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
  14. 如权利要求1所述的换电控制系统,其特征在于,所述换电设备受控于所述控制单元:
    所述控制单元还用于在所述电动车辆停泊于载车平台之后,向所述电动车辆发送以下指令并由所述换电设备执行:
    卸电池指令,用于命令所述换电设备从所述电动车辆取下所述缺电电池;
    第一移动指令,用于命令所述换电设备移动至所述第二电池放置架;
    放电池指令,用于命令所述换电设备将所述缺电电池放置于所述空的电池放置仓;
    第二移动指令,用于命令所述换电设备移动至所述第一电池放置架;
    取电池指令,用于命令所述换电设备从所述第一电池放置架取下所述电池型号的电池;
    第三移动指令,用于命令所述换电设备移动至所述预设换电位置;
    装电池指令,用于命令所述换电设备将所述电池型号的电池安装于所述电动车辆。
  15. 一种换电控制系统,其特征在于,包括:控制单元和至少两换电设备;
    所述控制单元用于从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有适用于电动车辆的电池,所述第二条件设置为具有空的电池放置仓;
    所述控制单元还用于将所述至少两换电设备中的至少一个换电设备配置为装电池换电设备,将所述至少两换电设备中的至少一个换电设备配置为卸电池换电设备;
    所述装电池换电设备用于运输待装电池,所述待装电池为从所述第一电池放置架取下的、适用于所述电动车辆且将要安装于所述电动车辆的电池;
    所述卸电池换电设备用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
  16. 如权利要求15所述的换电控制系统,其特征在于,所述控制单元还用于监控所述电池放置架上放置的电池的电量;
    所述第一条件设置为放置有适用于所述电动车辆且满电的电池;
    或,所述第一条件优先设置为放置有适用于所述电动车辆且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有适用于所述电动车辆且电量最高的电池。
  17. 如权利要求15或16所述的换电控制系统,其特征在于,所述控制单元还用于在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架;
    和/或,所述控制单元还用于在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第二电池放置架。
  18. 如权利要求17所述的换电控制系统,其特征在于,所述电池放置架沿所述电动车辆驶入所 述载车平台方向排布于所述载车平台的两侧。
  19. 如权利要求15所述的换电控制系统,其特征在于,若所述至少一电池放置架中存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架,则所述控制单元还用于:
    将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架;
    或,将所述多功能电池放置架作为所述第一电池放置架和所述第二电池放置架中的任意一个;
    或,将以下任意一个条件作为将所述多功能电池放置架作为第一电池放置架的必要条件:
    其余的电池放置架均不符合所述第一条件;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量,且两者的差值的绝对值少于第一差值阈值;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于第一数量阈值;
    或,将任意一个条件作为将所述多功能电池放置架作为第二电池放置架的必要条件:
    其余的电池放置架均不符合所述第二条件;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量,且两者的差值的绝对值少于第二差值阈值;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于第二数量阈值。
  20. 如权利要求15所述的换电控制系统,其特征在于,所述电池放置仓还用于为电池充电。
  21. 如权利要求15所述的换电控制系统,其特征在于,所述至少两换电设备均为单功能换电设备;
    或,均为多功能换电设备;
    或,部分为单功能换电设备,部分为多功能换电设备;
    所述单功能换电设备具有第一结构且仅能被配置为装电池换电设备,或具有第二结构且仅能被配置为卸电池换电设备;
    所述多功能换电设备兼具第一结构和第二结构且可被配置为卸电池换电设备和装电池换电设备中的任意一种。
  22. 如权利要求15所述的换电控制系统,其特征在于,被配置为所述装电池换电设备的换电设备为距离所述第一电池放置架最近的换电设备;
    或,被配置为所述卸电池换电设备的换电设备为距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备;
    或,每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系;被配置为所述装电池换电设备的换电设备为与所述第一电池放置架具有绑定关系的换电设备,或与所述第一电池放置架具有绑定关系且距离所述第一电池放置架最近的换电设备;被配置为所述卸电池换电设备的换电设备为与所述第二电池放置架具有绑定关系的换电设备,或与所述第二电池放置架具有绑定关系且距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备。
  23. 如权利要求15所述的换电控制系统,其特征在于,若在所述电动车辆停泊于载车平台之前,所述电动车辆适用的电池型号是可预知的:
    所述控制单元还用于在所述电动车辆停泊于所述载车平台之前,从所述至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,以及向所述装电池换电设备发送取电池指令,所述取电池指令用于命令所述装电池换电设备从所述第一电池放置架取下所述待装电池;
    所述装电池换电设备还用于执行所述取电池指令;
    所述控制单元还用于在所述装电池换电设备执行完所述取电池指令后,向所述装电池换电设备发送第一移动指令,所述第一移动指令用于命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置;
    所述装电池换电设备还用于执行所述第一移动指令。
  24. 如权利要求23所述的换电控制系统,其特征在于,通过以下方式预知所述电动车辆适用的电池型号:所述载车平台仅限于供适用所述型号的电池的电动车辆停泊。
  25. 如权利要求15所述的换电控制系统,其特征在于,所述控制单元还用于在所述电动车辆停泊于载车平台之前,向所述卸电池换电设备发送第二移动指令,所述第二移动指令用于命令所述卸电池换电设备预先停泊于第二预设等待位置;所述卸电池换电设备还用于执行所述第二移动指令。
  26. 如权利要求25所述的换电控制系统,其特征在于,当预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
  27. 如权利要求25所述的换电控制系统,其特征在于,当预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;
    所述控制单元还用于在所述电动车辆停泊于所述载车平台之后,向所述卸电池换电设备发送微调指令,所述微调指令用于命令所述卸电池换电设备从所述第二预设等待位置移动至所述预设换电位置。
  28. 如权利要求26或27所述的换电控制系统,其特征在于,当以下条件同时满足时,所述预设 换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
    所述预设换电位置为空位;
    存在供所述卸电池换电设备移动至所述预设换电位置的通路;
    预测所述卸电池换电设备停泊于所述预设换电位置时,所述卸电池换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
  29. 如权利要求26或27所述的换电控制系统,其特征在于,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
  30. 如权利要求15所述的换电控制系统,其特征在于,所述控制单元还用于在所述电动车辆停泊于载车平台之后,向所述卸电池换电设备发送第三移动指令,所述第三移动指令用于命令所述卸电池换电设备移动并停泊于预设换电位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;所述卸电池换电设备还用于执行所述第三移动指令。
  31. 如权利要求26、27、30中任意一项所述的换电控制系统,其特征在于,所述控制单元还用于在所述电动车辆停泊于所述载车平台且所述卸电池换电设备停泊于所述预设换电位置之后,向所述卸电池换电设备发送卸电池指令,所述卸电池指令用于命令所述卸电池换电设备从所述电动车辆取下所述缺电电池;
    所述卸电池换电设备还用于执行所述卸电池指令;
    所述控制单元还用于在所述卸电池换电设备执行完所述卸电池指令后,向所述卸电池换电设备发送第四移动指令,所述第四移动指令用于命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓;
    所述卸电池换电设备还用于执行所述第四移动指令。
  32. 如权利要求26、27、30中任意一项所述的换电控制系统,其特征在于,所述控制单元还用于在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,向所述装电池换电设备发送第五移动指令,所述第五移动指令用于命令所述装电池换电设备移动至所述预设换电位置;
    所述装电池换电设备还用于执行所述第五移动指令;
    所述控制单元还用于在所述装电池换电设备执行所述第五移动指令后,向所述装电池换电设备发送装电池指令,所述装电池指令用于命令所述装电池换电设备将所述待装电池装入所述电动车辆;
    所述装电池换电设备还用于执行所述装电池指令。
  33. 一种换电控制系统,其特征在于,包括:控制单元和至少两换电设备;
    所述控制单元用于确定待换电的电动车辆适用的电池型号;
    所述控制单元还用于从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置 架,从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池,所述第二条件设置为具有空的电池放置仓;
    所述控制单元还用于将所述至少两换电设备中的至少一个换电设备配置为装电池换电设备,将所述至少两换电设备中的至少一个换电设备配置为卸电池换电设备;
    所述装电池换电设备用于运输待装电池,所述待装电池为从所述第一电池放置架取下的、所述电池型号的且将要安装于所述电动车辆的电池;
    所述卸电池换电设备用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
  34. 如权利要求33所述的换电控制系统,其特征在于,所述控制单元还用于监控所述电池放置架上放置的电池的电量;
    所述第一条件设置为放置有所述电池型号且满电的电池;
    或,所述第一条件优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。
  35. 如权利要求33或34所述的换电控制系统,其特征在于,所述控制单元还用于在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架;
    和/或,所述控制单元还用于在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第二电池放置架。
  36. 如权利要求35所述的换电控制系统,其特征在于,所述电池放置架沿所述电动车辆驶入所述载车平台方向排布于所述载车平台的两侧。
  37. 如权利要求33所述的换电控制系统,其特征在于,若所述至少一电池放置架中存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架,则所述控制单元还用于:
    将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架;
    或,将所述多功能电池放置架作为所述第一电池放置架和所述第二电池放置架中的任意一个;
    或,将以下任意一个条件作为将所述多功能电池放置架作为第一电池放置架的必要条件:
    其余的电池放置架均不符合所述第一条件;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量,且两者的差值的绝对值少于第一差值阈值;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于第一数量阈值;
    或,将任意一个条件作为将所述多功能电池放置架作为第二电池放置架的必要条件:
    其余的电池放置架均不符合所述第二条件;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量,且两者的差值的绝对值少于第二差值阈值;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于第二数量阈值。
  38. 如权利要求33所述的换电控制系统,其特征在于,所述电池放置仓还用于为电池充电。
  39. 如权利要求33所述的换电控制系统,其特征在于,所述至少两换电设备均为单功能换电设备;
    或,均为多功能换电设备;
    或,部分为单功能换电设备,部分为多功能换电设备;
    所述单功能换电设备具有第一结构且仅能被配置为装电池换电设备,或具有第二结构且仅能被配置为卸电池换电设备;
    所述多功能换电设备兼具第一结构和第二结构且可被配置为卸电池换电设备和装电池换电设备中的任意一种。
  40. 如权利要求33所述的换电控制系统,其特征在于,被配置为所述装电池换电设备的换电设备为距离所述第一电池放置架最近的换电设备;
    或,被配置为所述卸电池换电设备的换电设备为距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备;
    或,每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系;被配置为所述装电池换电设备的换电设备为与所述第一电池放置架具有绑定关系的换电设备,或与所述第一电池放置架具有绑定关系且距离所述第一电池放置架最近的换电设备;被配置为所述卸电池换电设备的换电设备为与所述第二电池放置架具有绑定关系的换电设备,或与所述第二电池放置架具有绑定关系且距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备。
  41. 如权利要求33所述的换电控制系统,其特征在于,所述控制单元还用于在选取所述第一电 池放置架后,向所述装电池换电设备发送取电池指令,所述取电池指令用于命令所述装电池换电设备从所述第一电池放置架取下所述待装电池;
    所述装电池换电设备还用于执行所述取电池指令;
    所述控制单元还用于在所述装电池换电设备执行完所述取电池指令后,向所述装电池换电设备发送第一移动指令,所述第一移动指令用于命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置;
    所述装电池换电设备还用于执行所述第一移动指令。
  42. 如权利要求33所述的换电控制系统,其特征在于,所述控制单元还用于扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号。
  43. 如权利要求33所述的换电控制系统,其特征在于,所述控制单元还用于在所述电动车辆停泊于载车平台之前,向所述卸电池换电设备发送第二移动指令,所述第二移动指令用于命令所述卸电池换电设备预先停泊于第二预设等待位置;所述卸电池换电设备还用于执行所述第二移动指令。
  44. 如权利要求43所述的换电控制系统,其特征在于,当预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
  45. 如权利要求43所述的换电控制系统,其特征在于,当预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;
    所述控制单元还用于在所述电动车辆停泊于所述载车平台之后,向所述卸电池换电设备发送微调指令,所述微调指令用于命令所述卸电池换电设备从所述第二预设等待位置移动至所述预设换电位置。
  46. 如权利要求44或45所述的换电控制系统,其特征在于,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
    所述预设换电位置为空位;
    存在供所述卸电池换电设备移动至所述预设换电位置的通路;
    预测所述卸电池换电设备停泊于所述预设换电位置时,所述卸电池换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
  47. 如权利要求44或45所述的换电控制系统,其特征在于,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
  48. 如权利要求33所述的换电控制系统,其特征在于,所述控制单元还用于在所述电动车辆停泊于载车平台之后,向所述卸电池换电设备发送第三移动指令,所述第三移动指令用于命令所述卸电池换电设备移动并停泊于预设换电位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆 取电池的位置;所述卸电池换电设备还用于执行所述第三移动指令。
  49. 如权利要求44、45、48中任意一项所述的换电控制系统,其特征在于,所述控制单元还用于在所述电动车辆停泊于所述载车平台且所述卸电池换电设备停泊于所述预设换电位置之后,向所述卸电池换电设备发送卸电池指令,所述卸电池指令用于命令所述卸电池换电设备从所述电动车辆取下所述缺电电池;
    所述卸电池换电设备还用于执行所述卸电池指令;
    所述控制单元还用于在所述卸电池换电设备执行完所述卸电池指令后,向所述卸电池换电设备发送第四移动指令,所述第四移动指令用于命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓;
    所述卸电池换电设备还用于执行所述第四移动指令。
  50. 如权利要求44、45、48中任意一项所述的换电控制系统,其特征在于,所述控制单元还用于在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,向所述装电池换电设备发送第五移动指令,所述第五移动指令用于命令所述装电池换电设备移动至所述预设换电位置;
    所述装电池换电设备还用于执行所述第五移动指令;
    所述控制单元还用于在所述装电池换电设备执行所述第五移动指令后,向所述装电池换电设备发送装电池指令,所述装电池指令用于命令所述装电池换电设备将所述待装电池装入所述电动车辆;
    所述装电池换电设备还用于执行所述装电池指令。
  51. 一种换电控制方法,其特征在于,包括:
    确定电动车辆适用的电池型号;
    从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池;
    从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述第二条设置为具有空的电池放置仓;
    令换电设备移动至预设换电位置,从所述电动车辆上取下缺电电池,将所述缺电电池运输到所述第二放置架并放置于所述空的电池放置仓,所述预设换电位置为适于从所述电动车辆取、装电池的位置;
    令所述换电设备移动至所述第一电池放置架,从所述第一电池放置架取下所述电池型号的电池,将所述电池型号的电池运输到所述预设换电位置并安装于所述电动车辆。
  52. 如权利要求51所述的换电控制方法,其特征在于,所述换电控制方法还包括:监控所述电池放置架上放置的电池的电量;
    所述第一条件设置为放置有所述电池型号且满电的电池;
    或,所述第一条件优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。
  53. 如权利要求51所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架,或选取位于所述第二电池放置架与所述电池车辆之间的路径上的一个电池放置架作为所述第一电池放置架,或选取位于所述路径上且距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第一电池放置架;
    和/或,在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第二电池放置架。
  54. 如权利要求51所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    判断所述至少一电池放置架中是否存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架;
    若存在,则:
    将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架。
  55. 如权利要求51所述的换电控制方法,其特征在于,所述空的电池放置仓还用于为所述缺电电池充电。
  56. 如权利要求55所述的换电控制方法,其特征在于,所述空的电池放置仓具有电池充电电路;
    所述电池充电电路具有固定的电力参数,所述电力参数与所述电池型号相匹配;
    或,所述电池充电电路具有可调节的电力参数,所述换电控制方法还包括:根据所述电池型号调节所述电力参数,以使得所述电力参数与所述电池型号相匹配。
  57. 如权利要求51所述的换电控制方法,其特征在于,所述确定待换电的电动车辆适用的电池型号,具体包括:
    扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号。
  58. 如权利要求51所述的换电控制方法,其特征在于,所述换电设控制方法还包括:
    在所述电动车辆停泊于载车平台之前,令所述换电设备预先停泊于预设等待位置。
  59. 如权利要求58所述的换电控制方法,其特征在于,当预设换电位置为可停泊状态时,所述预设等待位置与所述预设换电位置为同一位置。
  60. 如权利要求58所述的换电控制方法,其特征在于,当预设换电位置为不可停泊状态时,所述预设等待位置为距离所述预设换电位置不超过第一距离阈值的位置;
    所述换电控制方法还包括:
    在所述电动车辆停泊于所述载车平台之后,令所述换电设备从所述预设等待位置移动至所述预设换电位置。
  61. 如权利要求59或60所述的换电控制方法,其特征在于,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
    所述预设换电位置为空位;
    存在供所述换电设备移动至所述预设换电位置的通路;
    预测所述换电设备停泊于所述预设换电位置时,所述换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
  62. 如权利要求59或60所述的换电控制方法,其特征在于,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
  63. 一种换电控制方法,其特征在于,包括:
    从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有适用于电动车辆的电池;
    从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述第二条件设置为具有空的电池放置仓;
    将所述至少两换电设备中的至少一个换电设备配置为装电池换电设备,所述装电池换电设备用于运输待装电池,所述待装电池为从所述第一电池放置架取下的、适用于所述电动车辆且将要安装于所述电动车辆的电池;
    将所述至少两换电设备中的至少一个换电设备配置为卸电池换电设备,所述卸电池换电设备用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
  64. 如权利要求63所述的换电控制方法,其特征在于,所述换电控制方法还包括:监控所述电池放置架上放置的电池的电量;
    所述第一条件设置为放置有适用于所述电动车辆且满电的电池;
    或,所述第一条件优先设置为放置有适用于所述电动车辆且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有适用于所述电动车辆且电量最高的电池。
  65. 如权利要求63或64所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取 一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架;
    和/或,在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第二电池放置架。
  66. 如权利要求65所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    判断所述至少一电池放置架中是否存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架;
    若存在,则:
    将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架;
    或,将所述多功能电池放置架作为所述第一电池放置架和所述第二电池放置架中的任意一个;
    或,将以下任意一个条件作为将所述多功能电池放置架作为第一电池放置架的必要条件:
    其余的电池放置架均不符合所述第一条件;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量,且两者的差值的绝对值少于第一差值阈值;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于第一数量阈值;
    或,将任意一个条件作为将所述多功能电池放置架作为第二电池放置架的必要条件:
    其余的电池放置架均不符合所述第二条件;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量,且两者的差值的绝对值少于第二差值阈值;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于第二数量阈值。
  67. 如权利要求63所述的换电控制方法,其特征在于,所述至少两换电设备均为单功能换电设备;
    或,均为多功能换电设备;
    或,部分为单功能换电设备,部分为多功能换电设备;
    所述单功能换电设备具有第一结构且仅能被配置为装电池换电设备,或具有第二结构且仅能被配置为卸电池换电设备;
    所述多功能换电设备兼具第一结构和第二结构且可被配置为卸电池换电设备和装电池换电设备中的任意一种。
  68. 如权利要求63所述的换电控制方法,其特征在于,被配置为所述装电池换电设备的换电设备为距离所述第一电池放置架最近的换电设备;
    或,被配置为所述卸电池换电设备的换电设备为距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备;
    或,每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系;被配置为所述装电池换电设备的换电设备为与所述第一电池放置架具有绑定关系的换电设备,或与所述第一电池放置架具有绑定关系且距离所述第一电池放置架最近的换电设备;被配置为所述卸电池换电设备的换电设备为与所述第二电池放置架具有绑定关系的换电设备,或与所述第二电池放置架具有绑定关系且距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备。
  69. 如权利要求63所述的换电控制方法,其特征在于,若在所述电动车辆停泊于载车平台之前,所述电动车辆适用的电池型号是可预知的;
    所述换电控制方法还包括:
    在所述电动车辆停泊于所述载车平台之前,从所述至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,以及命令所述装电池换电设备从所述第一电池放置架取下所述待装电池;
    在所述装电池换电设备从所述第一电池放置架取下所述待装电池后,命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置。
  70. 如权利要求69所述的换电控制方法,其特征在于,通过以下方式预知所述电动车辆适用的电池型号:所述载车平台仅限于供适用所述型号的电池的电动车辆停泊。
  71. 如权利要求63所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在所述电动车辆停泊于载车平台之前,命令所述卸电池换电设备预先停泊于第二预设等待位置。
  72. 如权利要求71所述的换电控制方法,其特征在于,当预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
  73. 如权利要求72所述的换电控制方法,其特征在于,当预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;
    所述换电控制方法还包括:在所述电动车辆停泊于所述载车平台之后,命令所述卸电池换电设备从所述第二预设等待位置移动至所述预设换电位置。
  74. 如权利要求72或73所述的换电控制方法,其特征在于,当以下条件同时满足时,所述预设 换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
    所述预设换电位置为空位;
    存在供所述卸电池换电设备移动至所述预设换电位置的通路;
    预测所述卸电池换电设备停泊于所述预设换电位置时,所述卸电池换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
  75. 如权利要求72或73所述的换电控制方法,其特征在于,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
  76. 如权利要求63所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在所述电动车辆停泊于载车平台之后,命令所述卸电池换电设备移动并停泊于预设换电位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
  77. 如权利要求72、73、76中任意一项所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在所述电动车辆停泊于所述载车平台且所述卸电池换电设备停泊于所述预设换电位置之后,命令所述卸电池换电设备从所述电动车辆取下所述缺电电池;
    在所述卸电池换电设备从所述电动车辆取下所述缺电电池后,命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓。
  78. 如权利要求72、73、76中任意一项所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,命令所述装电池换电设备移动至所述预设换电位置;
    在所述装电池换电设备移动至所述预设换电位置后,命令所述装电池换电设备将所述待装电池装入所述电动车辆。
  79. 一种换电控制方法,其特征在于,包括:
    确定待换电的电动车辆适用的电池型号;
    从至少一电池放置架中选取符合第一条件的电池放置架作为第一电池放置架,所述电池放置架具有若干用于放置电池的电池放置仓,所述第一条件设置为放置有所述电池型号的电池;
    从所述至少一电池放置架中选取符合第二条件的电池放置架作为第二电池放置架,所述第二条件设置为具有空的电池放置仓;
    将所述至少两换电设备中的至少一个换电设备配置为装电池换电设备,所述装电池换电设备用于运输待装电池,所述待装电池为从所述第一电池放置架取下的、所述电池型号且将要安装于所述电动车辆的电池;
    将所述至少两换电设备中的至少一个换电设备配置为卸电池换电设备,所述卸电池换电设备用于运输缺电电池,所述缺电电池为从所述电动车辆取下的且将要放置于所述空的电池放置仓的电池。
  80. 如权利要求79所述的换电控制方法,其特征在于,所述换电控制方法还包括:监控所述电池放置架上放置的电池的电量;
    所述第一条件设置为放置有所述电池型号且满电的电池;
    或,所述第一条件优先设置为放置有所述电池型号且满电的电池,若所述至少一电池放置架中不具有符合所述第一条件的电池放置架,则所述第一条件修改设置为放置有所述电池型号且电量最高的电池。
  81. 如权利要求79或80所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在符合所述第一条件的电池放置架超过一个时,从符合所述第一条件的电池放置架中,随机选取一个电池放置架作为所述第一电池放置架,或选取距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的一个电池放置架作为所述第一电池放置架;
    和/或,在符合所述第二条件的电池放置架超过一个时,从符合所述第二条件的电池放置架中,随机选取一个电池放置架作为所述第二电池放置架,或选取距离所述电动车辆或所述载车平台最近的一个电池放置架作为所述第二电池放置架。
  82. 如权利要求81所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    判断所述至少一电池放置架中是否存在多功能电池放置架,所述多功能电池放置架为所述第一条件和所述第二条件均符合的电池放置架;
    若存在,则:
    将所述多功能电池放置架同时作为所述第一电池放置架和所述第二电池放置架;
    或,将所述多功能电池放置架作为所述第一电池放置架和所述第二电池放置架中的任意一个;
    或,将以下任意一个条件作为将所述多功能电池放置架作为第一电池放置架的必要条件:
    其余的电池放置架均不符合所述第一条件;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于符合所述第二条件的电池放置架的数量,且两者的差值的绝对值少于第一差值阈值;
    其余的电池放置架中,符合所述第一条件的电池放置架的数量少于第一数量阈值;
    或,将任意一个条件作为将所述多功能电池放置架作为第二电池放置架的必要条件:
    其余的电池放置架均不符合所述第二条件;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置 架的数量;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于符合所述第一条件的电池放置架的数量,且两者的差值的绝对值少于第二差值阈值;
    其余的电池放置架中,符合所述第二条件的电池放置架的数量少于第二数量阈值。
  83. 如权利要求79所述的换电控制方法,其特征在于,所述至少两换电设备均为单功能换电设备;
    或,均为多功能换电设备;
    或,部分为单功能换电设备,部分为多功能换电设备;
    所述单功能换电设备具有第一结构且仅能被配置为装电池换电设备,或具有第二结构且仅能被配置为卸电池换电设备;
    所述多功能换电设备兼具第一结构和第二结构且可被配置为卸电池换电设备和装电池换电设备中的任意一种。
  84. 如权利要求79所述的换电控制方法,其特征在于,被配置为所述装电池换电设备的换电设备为距离所述第一电池放置架最近的换电设备;
    或,被配置为所述卸电池换电设备的换电设备为距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备;
    或,每个所述电池放置架与至少一个所述换电设备具有预设的绑定关系;被配置为所述装电池换电设备的换电设备为与所述第一电池放置架具有绑定关系的换电设备,或与所述第一电池放置架具有绑定关系且距离所述第一电池放置架最近的换电设备;被配置为所述卸电池换电设备的换电设备为与所述第二电池放置架具有绑定关系的换电设备,或与所述第二电池放置架具有绑定关系且距离所述电动车辆或用于停泊所述电动车辆的载车平台最近的换电设备。
  85. 如权利要求79所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在选取所述第一电池放置架后,命令所述装电池换电设备从所述第一电池放置架取下所述待装电池;
    在所述装电池换电设备从所述第一电池放置架取下所述待装电池后,命令所述装电池换电设备预先停泊于第一预设等待位置,所述第一预设等待位置为距离所述载车平台不超过第一距离阈值的位置。
  86. 如权利要求79所述的换电控制方法,其特征在于,所述确定待换电的电动车辆适用的电池型号,具体包括:
    扫描所述电动车辆的车牌,通过所述车牌确定所述电动车辆适用的电池型号。
  87. 如权利要求79所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在所述电动车辆停泊于载车平台之前,命令所述卸电池换电设备预先停泊于第二预设等待位置。
  88. 如权利要求87所述的换电控制方法,其特征在于,当预设换电位置为可停泊状态时,所述第二预设等待位置与所述预设换电位置为同一位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
  89. 如权利要求87所述的换电控制方法,其特征在于,当预设换电位置为不可停泊状态时,所述第二预设等待位置为距离所述预设换电位置不超过第二距离阈值的位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置;
    所述换电控制方法还包括:在所述电动车辆停泊于所述载车平台之后,命令所述卸电池换电设备从所述第二预设等待位置移动至所述预设换电位置。
  90. 如权利要88或89所述的换电控制方法,其特征在于,当以下条件同时满足时,所述预设换电位置为可停泊状态,否则,所述预设换电位置为不可停泊状态:
    所述预设换电位置为空位;
    存在供所述卸电池换电设备移动至所述预设换电位置的通路;
    预测所述卸电池换电设备停泊于所述预设换电位置时,所述卸电池换电设备不会对驶入所述载车平台的电动车辆造成阻挡。
  91. 如权利要求88或89所述的换电控制方法,其特征在于,根据所述载车平台的结构决定所述预设换电位置位于所述载车平台的下方或上方。
  92. 如权利要求79所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在所述电动车辆停泊于载车平台之后,命令所述卸电池换电设备移动并停泊于预设换电位置,所述预设换电位置为适于从停泊于所述载车平台的电动车辆取电池的位置。
  93. 如权利要求88、89、92中任意一项所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在所述电动车辆停泊于所述载车平台且所述卸电池换电设备停泊于所述预设换电位置之后,命令所述卸电池换电设备从所述电动车辆取下所述缺电电池;
    在所述卸电池换电设备从所述电动车辆取下所述缺电电池后,命令所述卸电池换电设备移动至所述第二电池放置架并将所述缺电电池放置于所述空的电池放置仓。
  94. 如权利要求88、89、92中任意一项所述的换电控制方法,其特征在于,所述换电控制方法还包括:
    在所述卸电池换电设备离开所述预设换电位置或离开所述预设换电位置超过第三距离阈值之后,命令所述装电池换电设备移动至所述预设换电位置;
    在所述装电池换电设备移动至所述预设换电位置后,命令所述装电池换电设备将所述待装电池装入所述电动车辆。
PCT/CN2019/096897 2018-07-20 2019-07-19 换电控制系统及方法 WO2020015756A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/261,631 US20210268930A1 (en) 2018-07-20 2019-07-19 Battery Swapping Control System and Control Method Therefor
JP2021503103A JP7405824B2 (ja) 2018-07-20 2019-07-19 バッテリー交換制御システム及び方法
KR1020217005126A KR20210034644A (ko) 2018-07-20 2019-07-19 배터리 교체 제어 시스템 및 방법
JP2023211352A JP2024037901A (ja) 2018-07-20 2023-12-14 バッテリー交換制御システム及び方法
JP2023211355A JP2024037902A (ja) 2018-07-20 2023-12-14 バッテリー交換制御システム及び方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810805306.2 2018-07-20
CN201810805316.6A CN110745108B (zh) 2018-07-20 2018-07-20 换电控制系统及方法
CN201810805316.6 2018-07-20
CN201810805306.2A CN110803139B (zh) 2018-07-20 2018-07-20 换电控制系统及方法
CN201810805309.6 2018-07-20
CN201810805309.6A CN110733375B (zh) 2018-07-20 2018-07-20 换电控制系统及方法

Publications (1)

Publication Number Publication Date
WO2020015756A1 true WO2020015756A1 (zh) 2020-01-23

Family

ID=69164263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096897 WO2020015756A1 (zh) 2018-07-20 2019-07-19 换电控制系统及方法

Country Status (4)

Country Link
US (1) US20210268930A1 (zh)
JP (3) JP7405824B2 (zh)
KR (1) KR20210034644A (zh)
WO (1) WO2020015756A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230219438A1 (en) * 2021-05-24 2023-07-13 Mark Ogram Electric vehicle refueling
CN114590163B (zh) * 2022-03-22 2023-06-23 博众精工科技股份有限公司 一种换电站的电池周转方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102673536A (zh) * 2012-05-31 2012-09-19 亿源动力(北京)科技有限公司 电池换电设备
CN105150820A (zh) * 2015-10-19 2015-12-16 北京新能源汽车股份有限公司 电动汽车的电池包快换控制系统
US20160318487A1 (en) * 2015-04-29 2016-11-03 General Electric Company Apparatus and method for automated energy storage device exchange and rapid charging
CN206900339U (zh) * 2017-06-27 2018-01-19 北京新能源汽车股份有限公司 电池更换系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7999506B1 (en) * 2008-04-09 2011-08-16 SeventhDigit Corporation System to automatically recharge vehicles with batteries
ES2570854T3 (es) * 2012-04-10 2016-05-20 Go-Tech Energy Co Ltd Conjunto de carga de batería modular amovible
US10279488B2 (en) * 2014-01-17 2019-05-07 Knightscope, Inc. Autonomous data machines and systems
WO2017119212A1 (ja) 2016-01-07 2017-07-13 日産自動車株式会社 充電待ち時間算出システム及び方法
CN105955146A (zh) 2016-06-27 2016-09-21 中国科学技术大学 一种电动汽车动力电池组远程监控系统
CN107719142B (zh) 2016-08-13 2022-01-25 重庆无线绿洲通信技术有限公司 一种电池更换固定站对电动车自动更换电池的方法及装置
AU2017213598B2 (en) * 2016-08-16 2023-01-05 The Raymond Corporation Cold storage charging system and method
CN108173916B (zh) 2017-12-21 2021-05-04 宋白桦 一种基于互联网的电动汽车电量补充方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102673536A (zh) * 2012-05-31 2012-09-19 亿源动力(北京)科技有限公司 电池换电设备
US20160318487A1 (en) * 2015-04-29 2016-11-03 General Electric Company Apparatus and method for automated energy storage device exchange and rapid charging
CN105150820A (zh) * 2015-10-19 2015-12-16 北京新能源汽车股份有限公司 电动汽车的电池包快换控制系统
CN206900339U (zh) * 2017-06-27 2018-01-19 北京新能源汽车股份有限公司 电池更换系统

Also Published As

Publication number Publication date
JP2024037902A (ja) 2024-03-19
JP2024037901A (ja) 2024-03-19
KR20210034644A (ko) 2021-03-30
JP2021532012A (ja) 2021-11-25
JP7405824B2 (ja) 2023-12-26
US20210268930A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP7307120B2 (ja) 保管容器を搬送するためのロボット
TWI380941B (zh) Moving body
CN110803139B (zh) 换电控制系统及方法
WO2020015756A1 (zh) 换电控制系统及方法
CN111439147A (zh) 换电站及其控制方法
WO2021258942A1 (zh) 换电平台、换电站和换电方法
CN110733375A (zh) 换电控制系统及方法
JP5524444B2 (ja) 車両への動力供給装置
CN113561838A (zh) 换电控制方法及系统、电子设备、存储介质及换电站
CN110745108B (zh) 换电控制系统及方法
CN210760327U (zh) 模块化的换电站
JP2004091071A (ja) スタッカクレーンの運転制御装置
KR20160106098A (ko) 저장 상자 이송용 로봇
CA3154467A1 (en) Solar power distribution and control system for movable storage containers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838776

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217005126

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19838776

Country of ref document: EP

Kind code of ref document: A1