WO2020015425A1 - 深紫外发光装置 - Google Patents

深紫外发光装置 Download PDF

Info

Publication number
WO2020015425A1
WO2020015425A1 PCT/CN2019/084591 CN2019084591W WO2020015425A1 WO 2020015425 A1 WO2020015425 A1 WO 2020015425A1 CN 2019084591 W CN2019084591 W CN 2019084591W WO 2020015425 A1 WO2020015425 A1 WO 2020015425A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
lens
deep ultraviolet
ultraviolet light
metal mixture
Prior art date
Application number
PCT/CN2019/084591
Other languages
English (en)
French (fr)
Inventor
林金填
蔡济隆
Original Assignee
旭宇光电(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭宇光电(深圳)股份有限公司 filed Critical 旭宇光电(深圳)股份有限公司
Publication of WO2020015425A1 publication Critical patent/WO2020015425A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the invention belongs to the technical field of special lighting, and particularly relates to a deep ultraviolet light emitting device.
  • a light emitting diode (Light Emitting Diode, LED) is a type of semiconductor diode that can convert electrical energy into light energy.
  • Ultraviolet LEDs generally refer to LEDs with an emission center wavelength below 400nm (such as 10-400nm), but sometimes they are called near-UV LEDs when the emission wavelength is greater than 380nm, and deep-UV LEDs shorter than 300nm. Due to the high sterilization effect of short-wavelength light, UV LEDs are often used for sterilization and deodorization of refrigerators and home appliances.
  • deep ultraviolet LEDs are usually prepared by deep ultraviolet LED chip packaging, but there are the following problems: low extraction efficiency of ultraviolet light; high wavelength energy, high requirements for packaging air tightness and packaging materials; high ultraviolet energy, heat Large, high requirements on heat dissipation performance.
  • the current technology mostly uses organic packaging and inorganic packaging, because organic colloids are not UV resistant (Ultraviolet ray (ultraviolet rays) irradiation, easy to yellow, difficult to apply in the field of deep ultraviolet LED packaging; inorganic packaging technology mostly uses high temperature calcination matching packaging method, although the defects of organic glue are avoided, the calcination conditions are not easy to control, and LED packaging raw materials will cause a certain impact, resulting in low packaging extraction efficiency.
  • due to the short wavelength and high energy of deep ultraviolet LEDs long-term use will cause the gold wires to break and cause dead lights (ie, the LED screen lamp beads are not bright).
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and provide a deep ultraviolet light emitting device, which aims to solve the technical problem that the existing deep ultraviolet LED light extraction efficiency is not high.
  • the invention provides a deep-ultraviolet light emitting device, which includes a substrate, a deep-ultraviolet LED chip and a lens; a surface of the substrate is provided with a groove and a slot located around the top of the groove, and the deep-ultraviolet LED chip passes a first metal
  • the mixture is fixed in the groove, and the deep ultraviolet LED chip is electrically connected to the bottom surface of the groove through gold wires; the lens covers the groove, and the peripheral edges of the lens are fixed by a second metal mixture In the card slot.
  • the deep ultraviolet light-emitting device provided by the present invention may be a patch-type light emitting diode.
  • the deep ultraviolet LED chip is fixed in a groove by a first metal mixture, and the lens edge is fixed in a card slot by a second metal mixture.
  • the lens covers the top of the groove; in this way, the first metal mixture is located between the UV LED chip and the groove, and the second metal mixture is located between the lens and the card slot.
  • the two metal mixtures serve as intermediates, which can separate the UV LED chip and the
  • the lens is effectively welded and fixed to achieve seamless matching sealing between the lens and the substrate surface, thereby providing the hermeticity of the device and preventing the yellowing of the packaging material, thereby helping to improve the light extraction efficiency and stability of the device; at the same time, in the closed groove Inside, the deep ultraviolet LED chip is electrically connected to the bottom surface of the groove through a gold wire, which has good stability and can prolong the service life of the device.
  • Embodiment 1 is a schematic cross-sectional view of a deep ultraviolet light emitting device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic cross-sectional view of a deep ultraviolet light-emitting device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic view of a connection of a gold wire ball welding process according to the present invention.
  • FIG. 4 is a partially enlarged schematic diagram of a card slot structure of the present invention.
  • FIG. 5 is a partially enlarged schematic diagram of a lens structure of the present invention.
  • first”, “second”, and “third” are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first”, “second”, and “third” may explicitly or implicitly include one or more of the features. In the description of the present invention, the meaning of "plurality” is two or more, unless specifically defined otherwise.
  • An embodiment of the present invention provides a deep ultraviolet light-emitting device, which includes a substrate, a deep ultraviolet LED chip, and a lens; a surface of the substrate is provided with a groove and a card slot located around the top of the groove; A metal mixture is fixed in the groove, and the deep ultraviolet LED chip is electrically connected to the bottom surface of the groove through gold wires; the lens covers the groove, and the peripheral edges of the lens pass through a second metal The mixture is fixed in the card slot.
  • the deep ultraviolet light-emitting device provided by the embodiment of the present invention may be a patch-type light emitting diode.
  • the deep ultraviolet LED chip is fixed in a groove by a first metal mixture, and the lens edge is fixed in a card slot by a second metal mixture.
  • the lens covers the top of the groove; in this way, the first metal mixture is located between the UV LED chip and the groove, and the second metal mixture is located between the lens and the card slot.
  • the chip and the lens are effectively welded and fixed to achieve a seamless matching seal between the lens and the substrate surface, thereby providing the hermeticity of the device and preventing the yellowing of the packaging material, which is conducive to improving the light extraction efficiency and stability of the device.
  • the deep ultraviolet LED chip is electrically connected to the bottom surface of the groove through a gold wire, which has good stability and can prolong the service life of the device.
  • the substrate is a ceramic substrate, and preferably, the ceramic substrate is a boron nitride-doped aluminum nitride-coated gold substrate; in an embodiment of the present invention, the ceramic substrate
  • the doping content of middle boron nitride is between 0.5-3%, the doping content is too low, the thermal conductivity is not significantly improved, the doping content is too high, the thermal expansion coefficient mismatch is large, and the substrate stability is poor.
  • the lens is a quartz glass lens, and for a specific shape of the lens, the lens is a square lens or a hemispherical lens.
  • the wavelength of the deep ultraviolet LED chip is between 250-300 nm.
  • the deep ultraviolet LED chip is connected (113) to the bottom surface of the groove by the gold wire ball welding process of the gold wire, specifically, the bottom surface of the groove A first gold ball is provided, a second metal is provided at an end of the gold wire near the bottom surface of the groove, and another end of the gold wire is connected to a deep ultraviolet LED chip, and the first gold ball and the second gold The balls are connected to each other, so that the gold wire connects the deep ultraviolet LED chip with the bottom surface of the groove, and the first gold ball, the second gold ball, and the gold wire are made of gold.
  • FIG 3 it is a detailed connection diagram of the gold wire ball welding process connection (113) in Figure 1 or Figure 2, that is, the gold wire and the gold ball at the bottom of the groove are set in a hamburger-like structure.
  • a first gold ball 121 is arranged on the surface, and the gold wire 112 and the first gold ball 121 are connected.
  • a second gold ball 120 is provided on the upper part of the connection of the gold wire 112.
  • the first gold ball 121 and the second gold ball 120 are connected to each other to form Hamburg-type structure, this type of burger-type gold wire soldering process connection effectively enhances the UV-LED package reliability, makes the device longer life, and is not prone to dead lights.
  • the first metal mixture is a Se-doped Ag-Cu-Sn metal mixture.
  • the doping content of Se is 0.5% -1%
  • the content of Sn is 90% -95%
  • the content of Ag is 2% -4%.
  • the Cu content is 1% -2%.
  • Se has strong oxidation resistance. Doping with a small amount of Se can improve the oxidation resistance inside the device.
  • the Ag-Cu-Sn metal mixture is preferably a sub-micron metal mixture.
  • the second metal mixture is a Fe-Ni-Co metal mixture, wherein based on the total weight of the second metal mixture being 100%, the content of Fe is 40%, the content of Ni is 30%, and Co The content is 30%.
  • the thermal expansion coefficient of the second metal mixture is located between the quartz glass and the substrate. As an intermediate, the substrate metal and the quartz glass lens can be effectively welded to improve the sealing performance of the device.
  • the second metal mixture is welded by laser.
  • the process fixes the lens in the card slot, that is, matching sealing between the quartz glass lens and the substrate metal is achieved by using rapid laser heating and cooling, and the method of rapid heating and cooling by laser saves time and cost on the one hand
  • local welding of the slot can be realized without affecting the performance of other packaging materials, and further, sealed welding with high light extraction efficiency can be achieved.
  • Nd: YAG laser welding (wavelength 1.06um) is used for local heating.
  • the power of laser welding is 5000-6000W, the power density is 104-106W / cm 2 , and the heating time of welding is 10-20s.
  • inert argon gas protection is used. Due to the local heating of the laser welding process, the components are not prone to thermal damage, and the heat-affected zone is small. It is non-contact heating, melting bandwidth, does not require any auxiliary tools, repeatable operation, stable Sex is good.
  • the cavity of the groove is filled with helium gas. Due to the short wavelength of the deep ultraviolet LED, it is easy to react with oxygen in the air. Therefore, in the preferred embodiment of the present invention, the groove is filled with helium gas, on the one hand, to prevent oxidation reaction of ultraviolet rays, and on the other hand, the thermal conductivity of helium gas is high. , Can effectively improve the thermal conductivity of the device.
  • the lens 111 is placed in the card slot 110, and a second metal mixture 223 is filled between the lens 111 in the card slot and the gap between the card slot 110 on the substrate.
  • a second metal mixture 223 is filled between the lens 111 in the card slot and the gap between the card slot 110 on the substrate.
  • an epitaxial portion is provided around the bottom of the lens 111, and the thickness of the epitaxial portion is between 5/6 and 9/10 of the height in the card slot 110.
  • a second reflective layer 222 is provided on the bottom surface of the card slot 110, so that the light extraction efficiency of ultraviolet light can be further improved.
  • the bottom surface and the side wall of the groove are provided with a first reflection layer, so that the ultraviolet light can be directed toward the lens as much as possible.
  • the lens includes a first quartz glass layer, a second quartz glass layer, and a third quartz glass layer sequentially disposed along a light emitting direction, and the first quartz glass layer
  • the refractive indices of the second quartz glass layer and the third quartz glass layer increase in order.
  • the lens of the embodiment of the present invention includes three layers of quartz glass.
  • the inner and outer layers may be transparent layers, and the thickness of the inner and outer transparent layers may be 1-5 mm (that is, the first quartz glass layer). ) And 0.5-1mm (that is, the third quartz glass layer).
  • the structure diagram of the three-layer quartz glass is shown in FIG. 5.
  • the lens includes a first quartz glass layer 226, a second quartz glass layer 224, and a third quartz glass layer 225.
  • the refractive index of the three layers increases in order. All three layers are made of quartz glass. The thermal expansion coefficients are similar, but the material composition is different. Through the lens composed of the three quartz glass layers, the extraction efficiency of deep ultraviolet light is significantly improved.
  • a deep ultraviolet light emitting diode having a structure as shown in FIG. 1 includes a ceramic substrate (115), a first metal mixture and a second metal mixture, a deep ultraviolet LED chip (116), a gold wire (112), and a quartz glass lens (111). );
  • the surface of the ceramic substrate (115) is provided with a groove (114) and a slot (110) located around the top of the groove (114).
  • the ceramic substrate (115) is an aluminum nitride-coated gold substrate, and 2.5% of boron nitride is doped in the aluminum nitride.
  • the substrate is provided with a groove structure.
  • the deep ultraviolet LED chip (116) passes the first metal mixture Sn- Ag-Cu mixture (in which the Se content is 0.8%, Sn is 94% by weight, Ag is 3.5% by weight, Cu is 1.7% by weight) is fixed on the bottom of the groove (114) of the ceramic substrate And is electrically connected to the bottom of the groove through a gold wire (112), where a gold wire welding process connection (113) is provided at the connection between the gold wire and the groove bottom (as shown in FIG.
  • the quartz glass lens (111) is fixed by a second metal mixture Fe-Ni-Co metal mixture (wherein Fe, Ni, and Co weight percentages are 40%, 30%, and 30%, respectively) In the card slot (110); in addition, the inside of the groove is filled with helium gas; the quartz glass lens (111) is a square lens, and the lens is provided with three layers of quartz glass materials having different refractive indexes along the light emitting direction.
  • the performance parameters of the UV LED are shown in Table 1.
  • a deep ultraviolet light emitting diode having a structure as shown in FIG. 2 includes a ceramic substrate (115), a first metal mixture and a second metal mixture, a deep ultraviolet LED chip (116), a gold wire (112), and a quartz glass lens (111). );
  • the surface of the ceramic substrate (115) is provided with a groove (114) and a slot (110) located around the top of the groove (114).
  • the ceramic substrate (115) is an aluminum nitride-coated gold substrate, and 2.5% of boron nitride is doped in the aluminum nitride.
  • the substrate is provided with a groove structure.
  • the deep ultraviolet LED chip (116) passes the first metal mixture Sn- Ag-Cu mixture (in which the Se content is 0.8%, Sn is 94% by weight, Ag is 3.5% by weight, Cu is 1.7% by weight) is fixed on the bottom of the groove (114) of the ceramic substrate And is electrically connected to the bottom of the groove through a gold wire (112), where a gold wire welding process connection (113) is provided at the connection between the gold wire and the groove bottom (as shown in FIG.
  • the quartz glass lens (111) passes through a second metal mixture Fe-Ni-Co metal mixture (wherein Fe, Ni, and Co weight percentages are 40%, 30%, and 30%, respectively)
  • Fe, Ni, and Co weight percentages are 40%, 30%, and 30%, respectively
  • the method of fast heating and cooling of the laser is fixed in the card slot; in addition, the inside of the groove is filled with helium;
  • the quartz glass lens (111) is a spherical lens, and the lens is provided with three layers of quartz glass materials with different refractive indexes along the light emitting direction.
  • the performance parameters of the UV LED are shown in Table 1.
  • a deep ultraviolet light emitting diode having a structure as shown in FIG. 2 includes a ceramic substrate (115), a first metal mixture and a second metal mixture, a deep ultraviolet LED chip (116), a gold wire (112), and a quartz glass lens (111). );
  • the surface of the ceramic substrate (115) is provided with a groove (114) and a slot (110) located around the top of the groove (114).
  • the ceramic substrate (115) is an aluminum nitride-coated gold substrate, and 2.5% of boron nitride is doped in the aluminum nitride.
  • the substrate is provided with a groove structure.
  • the deep ultraviolet LED chip passes the first metal mixture Sn-Ag-Cu.
  • the mixture (Sn is 94% by weight, Ag is 3.5% by weight, Cu is 2.5% by weight, without Se doping) is fixed on the bottom surface of the ceramic substrate groove (114), and is electrically connected by gold wires.
  • a gold ball is arranged at the connection between the gold wire and the substrate; the quartz glass lens (111) passes a second metal mixture Fe-Ni-Co metal mixture (wherein the weight percentages of Fe, Ni, and Co are 40%, 30%, and 30%, respectively).
  • a deep ultraviolet light emitting diode having a structure as shown in FIG. 2 includes a ceramic substrate (115), a first metal mixture and a second metal mixture, a deep ultraviolet LED chip (116), a gold wire (112), and a quartz glass lens (111). );
  • the surface of the ceramic substrate (115) is provided with a groove (114) and a slot (110) located around the top of the groove (114).
  • the ceramic substrate (115) is an aluminum nitride-coated gold substrate, and 2.5% of boron nitride is doped in the aluminum nitride.
  • the substrate is provided with a groove structure.
  • the deep ultraviolet LED chip passes the first metal mixture Sn-Ag-Cu.
  • the mixture (in which the Se doping content is 0.8%, Sn is 94% by weight, Ag is 3.5% by weight, and Cu is 1.7% by weight) is fixed on the bottom surface of the groove (114) of the ceramic substrate and passed Gold wires are electrically connected, wherein a gold ball is provided at the connection between the gold wire and the substrate;
  • the quartz glass lens (111) passes through a second metal mixture Fe-Ni-Co metal mixture (wherein Fe, Ni, and Co weight percentages are respectively 40 %, 30%, and 30%) are filled in the card slot (110), and the quartz lens is fixed in the card slot by heating and cooling in a high-temperature furnace; in addition, the inside of the groove is filled with helium; the quartz lens is a spherical lens
  • the lens is provided with three layers of different refractive index materials.
  • the performance parameters of the UV LED are shown in Table 1.
  • a deep ultraviolet light emitting diode includes a ceramic substrate (115), a first metal mixture and an organic silicon gel, a deep ultraviolet LED chip (116), a gold wire (112), and a quartz glass lens (111); the ceramic substrate (115) The surface is provided with a groove (114) and a clamping groove (110) located around the top of the groove (114).
  • the ceramic substrate (115) is an aluminum nitride-coated gold substrate, and 2.5% of boron nitride is doped in the aluminum nitride.
  • the surface of the ceramic substrate (115) is provided with a groove structure; the deep ultraviolet LED chip (116) passes the first
  • the metal mixture Sn-Ag-Cu mixture (where Sn is 94% by weight, Ag is 3.5% by weight, and Cu is 2.5% by weight) is fixed on the bottom surface of the groove (114) of the ceramic substrate and passed through
  • the gold wires are electrically connected, wherein a gold ball is provided at the joint of the gold wire and the groove of the substrate;
  • the quartz glass lens (111) is fixed in the card slot (110) by filling with organic silicone; in addition, the inside of the groove (114) Filled with helium; the quartz glass lens is a spherical lens (111).
  • the performance parameters of the UV LED are shown in Table 1.
  • the reliability test mainly uses the appearance test and the photoelectric performance test after aging for 1000 hours under the conditions of temperature of 85 ° C and relative humidity of 85%. According to the comparison results, the reliability is divided into three grades: excellent, good and poor.
  • the deep ultraviolet light emitting diodes of the embodiments of the present invention are connected by a burger-type gold wire ball welding process, so that the reliability of the device is better.
  • inorganic Fe-Co-Ni Relative rapid light extraction efficiency and reliability of the metal mixture laser rapid heating cooling sealing method compared with the organic rubber sealing device the laser partial sealing technology compared with the traditional high temperature furnace heating and cooling method light extraction efficiency And reliability also has clear advantages.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

本申请属于特殊照明技术领域,具体涉及一种深紫外发光装置。一种深紫外发光装置,包括基板、深紫外LED芯片和透镜;所述基板表面设置有凹槽和位于所述凹槽顶端周围的卡槽,所述深紫外LED芯片通过第一金属混合物固定于所述凹槽内,且所述深紫外LED芯片通过金线电性连接所述凹槽底面;所述透镜覆盖所述凹槽,且所述透镜的四周边缘通过第二金属混合物固定于所述卡槽内。该深紫外发光装置可以有效提高器件的光提取效率,还可以延长器件的使用寿命。

Description

深紫外发光装置 技术领域
本发明属于特殊照明技术领域,具体涉及一种深紫外发光装置。
背景技术
发光二极管(Light Emitting Diode,LED)是半导体二极管的一种,可以把电能转化成光能。紫外LED一般指发光中心波长在400nm以下(如10-400nm)的LED,但有时将发光波长大于380nm时称为近紫外LED,而短于300nm时称为深紫外LED。因短波长光线的杀菌效果高,因此紫外LED常用于冰箱和家电等的杀菌及除臭等用途。
技术问题
目前深紫外LED制备通常采用深紫外LED芯片封装所得,但是主要存在以下问题:紫外光提取效率较低;波长段能量高,对封装气密性和封装材料要求较高;紫外能量较高,热量大,对散热性能要求高。
尤其是封装方面,目前技术多采用有机封装和无机封装,由于有机胶体不耐UV(Ultraviolet ray,紫外线)照射,容易发黄,很难应用在深紫外LED封装领域;采用无机封装技术多采用高温煅烧匹配封装方式,虽然避免了采用有机胶的缺陷,但煅烧条件不易控制,且高温对LED封装原物料会造成一定的影响,导致封装提取效率不高。此外,由于深紫外LED波长短,能量较高,长时间使用会造成金线断裂,造成死灯现象(即LED屏灯珠不亮的情况)。
因此,现有技术有待改进。
技术解决方案
本发明的目的在于克服现有技术的上述不足,提供一种深紫外发光装置,旨在解决现有深紫外LED光提取效率不高的技术问题。
为实现上述发明目的,本发明采用的技术方案如下:
本发明提供一种深紫外发光装置,包括基板、深紫外LED芯片和透镜;所述基板表面设置有凹槽和位于所述凹槽顶端周围的卡槽,所述深紫外LED芯片通过第一金属混合物固定于所述凹槽内,且所述深紫外LED芯片通过金线电性连接所述凹槽底面;所述透镜覆盖所述凹槽,且所述透镜的四周边缘通过第二金属混合物固定于所述卡槽内。
有益效果
本发明提供的深紫外发光装置可以是一种贴片式的发光二极管,通过第一金属混合物将深紫外LED芯片固定于凹槽内,通过第二金属混合物将透镜边缘固定于卡槽内,同时透镜覆盖于凹槽顶端;这样,第一金属混合物位于紫外LED芯片和凹槽之间,第二金属混合物位于透镜和卡槽之间,两种金属混合物作为中间体,能够分别将紫外LED芯片和透镜有效焊接固定,实现透镜和基板表面的无缝匹配封接,从而提供器件的密闭性,防止封装材料黄化,进而有利于提升器件的光提取效率和稳定性;同时,在密闭的凹槽内,深紫外LED芯片通过金线电性连接所述凹槽底面,稳定性好,可以延长器件的使用寿命。
附图说明
图1为本发明实施例1的深紫外发光装置剖面示意图;
图2为本发明实施例2的深紫外发光装置剖面示意图;
图3为本发明金丝球焊接工艺连接示意图;
图4为本发明卡槽结构局部放大示意图;
图5为本发明透镜结构局部放大示意图;
其中,图中各附图标记:
116-深紫外LED芯片;115-基板;114-凹槽;113-金丝球焊接工艺连接;112-金线;111-透镜;110-卡槽;121-第一金球;120-第二金球;
226第一石英玻璃层;225-第三石英玻璃层;224第二石英玻璃层;223-第二金属混合物;222-第二反光层。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例提供一种深紫外发光装置,包括基板、深紫外LED芯片和透镜;所述基板表面设置有凹槽和位于所述凹槽顶端周围的卡槽,所述深紫外LED芯片通过第一金属混合物固定于所述凹槽内,且所述深紫外LED芯片通过金线电性连接所述凹槽底面;所述透镜覆盖所述凹槽,且所述透镜的四周边缘通过第二金属混合物固定于所述卡槽内。
本发明实施例提供的深紫外发光装置可以是一种贴片式的发光二极管,通过第一金属混合物将深紫外LED芯片固定于凹槽内,通过第二金属混合物将透镜边缘固定于卡槽内,同时透镜覆盖于凹槽顶端;这样,第一金属混合物位于紫外LED芯片和凹槽之间,第二金属混合物位于透镜和卡槽之间,两种金属混合物作为中间体,能够分别将紫外LED芯片和透镜有效焊接固定,实现透镜和基板表面的无缝匹配封接,从而提供器件的密闭性,防止封装材料黄化,进而有利于提升器件的光提取效率和稳定性;同时,在密闭的凹槽内,深紫外LED芯片通过金线电性连接所述凹槽底面,稳定性好,可以延长器件的使用寿命。
进一步地,在本发明实施例的深紫外发光装置中,所述基板为陶瓷基板,优选地,陶瓷基板为氮化硼掺杂的氮化铝覆金基板;本发明一实施例中,陶瓷基板中氮化硼的掺杂含量位于0.5-3%之间,掺杂含量太低,导热性能提升不明显,掺杂含量太高,热膨胀系数失配较大,基板稳定性差。进一步地,所述透镜为石英玻璃透镜,对于透镜的具体形状,所述透镜为方形透镜或半球形透镜。
进一步地,在本发明实施例的深紫外发光装置中,所述深紫外LED芯片波长位于250-300nm之间。
进一步地,在本发明实施例的深紫外发光装置中,所述深紫外LED芯片通过所述金线的金丝球焊接工艺连接(113)所述凹槽底面,具体地,所述凹槽底面设置有第一金球,所述金线靠近所述凹槽底面的末端设置有第二金属,所述金线另一末端连接深紫外LED芯片,所述第一金球与所述第二金球相互连接,从而使金线将深紫外LED芯片与凹槽底面连接,第一金球、第二金球和金线的材质均为金。如图3所示,为图1或图2中金丝球焊接工艺连接(113)的详细连接示意图,即金线和凹槽底部金球设置为汉堡式结构,其操作流程为先在凹槽底部表面设置第一金球121,将金线112和第一金球121相连,然后再在金线112连接处上部设置第二金球120,第一金球121和第二金球120相互连接形成汉堡式结构,这种汉堡式的金丝球焊接工艺连接有效增强了UV-LED的封装可靠性,使器件寿命更长,不容易出现死灯现象。
进一步地,在本发明实施例的深紫外发光装置中,所述第一金属混合物为Se掺杂的Ag-Cu-Sn金属混合物。具体地,以所述第一金属混合物的总重量为100%计,Se的掺杂含量为0.5%-1%,Sn的含量为90%-95%,Ag的含量为2%-4%之间,Cu的含量为1%-2%。Se的抗氧化性较强,掺杂少量的Se,能够提升器件内部的抗氧化性,Ag-Cu-Sn金属混合物优选为次微米级的金属混合物,采用掺杂Se的次微米级(1-10微米)Ag-Cu-Sn金属混合物作为固晶材料,能够减少接触面空洞率,进而能够降低热阻,提升焊接强度。作为优选的所述第二金属混合物为Fe-Ni-Co金属混合物,其中,以所述第二金属混合物的总重量为100%计,Fe的含量为40%,Ni的含量为30%,Co的含量为30%。该第二金属混合物的热膨胀系数位于石英玻璃和基板之间,作为中间体能够有效焊接基板金属和石英玻璃透镜,提升器件的密封性;本发明实施例中,所述第二金属混合物通过激光焊接工艺将所述透镜固定于所述卡槽内,即通过采用激光快速加热和冷却的方式实现石英玻璃透镜和基板金属之间实现匹配封接,采用激光快速加热和冷却方式,一方面节省时间成本,另一方面能够实现卡槽的局部焊接,不影响其它封装材料的性能,进而能够实现高光提取效率的密封焊接。
优选地,所述激光焊接工艺中,局部加热采用Nd:YAG激光器焊接(波长1.06um),激光焊接的功率为5000-6000W,功率密度为104-106W/cm 2,焊接的加热时间10-20s,焊接过程中采用惰性氩气保护,激光焊接工艺由于是局部加热,元件不易产生热损伤,热影响区小,而且是用非接触加热,熔化带宽,不需要任何辅助工具,可重复操作,稳定性好。
进一步地,在本发明实施例的深紫外发光装置中,所述凹槽的腔内填充有氦气。由于深紫外LED波长较短很容易与空气中氧气反应,因此本发明优选实施例中,在凹槽内填充有氦气,一方面防止紫外线发生氧化反应,另一方面氦气的导热系数较高,能够有效提升器件的导热性能。
更进一步地,对于卡槽结构示意图如图4所示,将透镜111放置于卡槽110内,并将第二金属混合物223填充于卡槽内透镜111和基板上的卡槽110的缝隙之间。优选地,透镜111底部四周设置有外延部分,所述外延部分厚度为卡槽110内的高度的5/6至9/10之间。所述卡槽110的底面设置有第二反射层222,如此可以进一步提升紫外光的光提取效率。进一步地,在本发明实施例的深紫外发光装置中,所述凹槽的底面和侧壁设置有第一反射层,如此可以将紫外光尽可能射向透镜。
进一步地,在本发明实施例的深紫外发光装置中,所述透镜包括沿发光方向依次设置第一石英玻璃层、第二石英玻璃层和第三石英玻璃层,且所述第一石英玻璃层、第二石英玻璃层和第三石英玻璃层的折射率依次递增。为了进一步提升深紫外光的光提取效率,本发明实施例的透镜包括三层石英玻璃,内外两层可以是透明图层,内外透明图层厚度分别可以为1-5mm(即第一石英玻璃层)和0.5-1mm(即第三石英玻璃层),三层石英玻璃的结构示意图如图5所示,透镜包括第一石英玻璃层226、第二石英玻璃层224和第三石英玻璃层225,三层的折射率依次递增,该三层均采用石英玻璃,热膨胀系数相近,只是材料组成有所差别。通过该三层石英玻璃层组成的透镜,深紫外光的提取效率明显得到提高。
本发明先后进行过多次试验,现举一部分试验结果作为参考对发明进行进一步详细描述,下面结合具体实施例进行详细说明。
实施例1
一种深紫外发光二极管,结构如图1所示,包括陶瓷基板(115)、第一金属混合物和第二金属混合物、深紫外LED芯片(116)、金线(112)、石英玻璃透镜(111);所述陶瓷基板(115)表面设置有凹槽(114)和位于所述凹槽(114)顶端周围的卡槽(110)。
其中,陶瓷基板(115)为氮化铝覆金基板,氮化铝中掺杂2.5%的氮化硼,基板上设置有凹槽结构;深紫外LED芯片(116)通过第一金属混合物Sn-Ag-Cu混合物(其中Se掺杂含量在0.8%,Sn占重量百分比为94%,Ag占重量百分比为3.5%,Cu占重量百分比为1.7%)固定于陶瓷基板的凹槽(114)底部上,并通过金线(112)电气相连凹槽底部,其中金线和凹槽底部连接处设置金丝球焊接工艺连接(113)(如图3所示,第一金球121和第二金球120相互连接形成汉堡式结构);所述石英玻璃透镜(111)通过第二金属混合物Fe-Ni-Co金属混合物(其中Fe、Ni、Co重量百分比分别为40%、30%和30%)固定于卡槽(110)内;此外,凹槽内部填充氦气;所述石英玻璃透镜(111)为方形透镜,透镜沿发光方向设置三层折射率不同石英玻璃材料。该紫外发光二极管的性能参数如表1所示。
实施例2
一种深紫外发光二极管,结构如图2所示,包括陶瓷基板(115)、第一金属混合物和第二金属混合物、深紫外LED芯片(116)、金线(112)、石英玻璃透镜(111);所述陶瓷基板(115)表面设置有凹槽(114)和位于所述凹槽(114)顶端周围的卡槽(110)。
其中,陶瓷基板(115)为氮化铝覆金基板,氮化铝中掺杂2.5%的氮化硼,基板上设置有凹槽结构;深紫外LED芯片(116)通过第一金属混合物Sn-Ag-Cu混合物(其中Se掺杂含量在0.8%,Sn占重量百分比为94%,Ag占重量百分比为3.5%,Cu占重量百分比为1.7%)固定于陶瓷基板的凹槽(114)底部上,并通过金线(112)电气相连凹槽底部,其中金线和凹槽底部连接处设置金丝球焊接工艺连接(113)(如图3所示,第一金球121和第二金球120相互连接形成汉堡式结构);所述石英玻璃透镜(111)通过第二金属混合物Fe-Ni-Co金属混合物(其中Fe、Ni、Co重量百分比分别为40%、30%和30%)通过激光快速加热和冷却的方式固定于卡槽内;此外凹槽内部填充氦气;所述石英玻璃透镜(111)为球形透镜,透镜沿发光方向设置三层折射率不同石英玻璃材料。该紫外发光二极管的性能参数如表1所示。
实施例3
一种深紫外发光二极管,结构如图2所示,包括陶瓷基板(115)、第一金属混合物和第二金属混合物、深紫外LED芯片(116)、金线(112)、石英玻璃透镜(111);所述陶瓷基板(115)表面设置有凹槽(114)和位于所述凹槽(114)顶端周围的卡槽(110)。
其中,陶瓷基板(115)为氮化铝覆金基板,氮化铝中掺杂2.5%的氮化硼,基板上设置有凹槽结构;深紫外LED芯片通过第一金属混合物Sn-Ag-Cu混合物(Sn占重量百分比为94%,Ag占重量百分比为3.5%,Cu占重量百分比为2.5%,无Se掺杂)固定于陶瓷基板凹槽(114)底面上,并通过金线电气相连,其中金线和基板连接处设置一个金球;所述石英玻璃透镜(111)通过第二金属混合物Fe-Ni-Co金属混合物(其中Fe、Ni、Co重量百分比分别为40%、30%和30%)填充于卡槽(110),并通过激光快速加热和冷却的方式将石英透镜固定于卡槽内;此外凹槽内部填充氦气;所述石英透镜为球形透镜,透镜沿发光方向设置三层折射率不同材料。该紫外发光二极管的性能参数如表1所示。
实施例4
一种深紫外发光二极管,结构如图2所示,包括陶瓷基板(115)、第一金属混合物和第二金属混合物、深紫外LED芯片(116)、金线(112)、石英玻璃透镜(111);所述陶瓷基板(115)表面设置有凹槽(114)和位于所述凹槽(114)顶端周围的卡槽(110)。
其中,陶瓷基板(115)为氮化铝覆金基板,氮化铝中掺杂2.5%的氮化硼,基板上设置有凹槽结构;深紫外LED芯片通过第一金属混合物Sn-Ag-Cu混合物(其中Se掺杂含量在0.8%,Sn占重量百分比为94%,Ag占重量百分比为3.5%,Cu占重量百分比为1.7%)固定于陶瓷基板的凹槽(114)底面上,并通过金线电气相连,其中,金线和基板连接处设置一个金球;所述石英玻璃透镜(111)通过第二金属混合物Fe-Ni-Co金属混合物(其中Fe、Ni、Co重量百分比分别为40%、30%和30%)填充于卡槽(110),并通过高温炉加热和冷却的方式将石英透镜固定于卡槽内;此外,凹槽内部填充氦气;所述石英透镜为球形透镜,透镜设置三层折射率不同材料。该紫外发光二极管的性能参数如表1所示。
比较例
一种深紫外发光二极管,包括陶瓷基板(115)、第一金属混合物和有机硅胶、深紫外LED芯片(116)、金线(112)、石英玻璃透镜(111);所述陶瓷基板(115)表面设置有凹槽(114)和位于所述凹槽(114)顶端周围的卡槽(110)。
其中,陶瓷基板(115)为氮化铝覆金基板,氮化铝中掺杂2.5%的氮化硼,陶瓷基板(115)表面设置有凹槽结构;深紫外LED芯片(116)通过第一金属混合物Sn-Ag-Cu混合物(其中,Sn占重量百分比为94%,Ag占重量百分比为3.5%,Cu占重量百分比为2.5%)固定于陶瓷基板的凹槽(114)底面上,并通过金线电气相连,其中,金线和基板的凹槽连接处设置一个金球;所述石英玻璃透镜(111)通过有机硅胶填充固定于卡槽(110)内;此外,凹槽(114)内部填充氦气;所述石英玻璃透镜为球形透镜(111)。该紫外发光二极管的性能参数如表1所示。
性能参数分析
上述实施例和对比例的深紫外发光二极管的性能参数见下表。
表1
名称 相对光提取效率(%) 可靠性
实施例1 128
实施例2 130
实施例3 129
实施例4 100
对比例 95
注:可靠性测试主要是采用温度85℃,相对湿度85%的条件下老化1000h后的外观检测和光电性能检测进行对比,根据对比结果可靠性分优、良、差三个等级。
通过表1中实施例和比较例的数据可知,本发明实施例的深紫外发光二极管通过设置汉堡式的金丝球焊接工艺连接,使器件的可靠性能更优,通过采用无机Fe-Co-Ni金属混合物激光快速加热冷却封接方式相对于采用有机胶封接装置的相对光提取效率和可靠性均具有明显的优势;采用激光局部封接技术相对于传统采用高温炉加热冷却方式的光提取效率和可靠性也具有明显的优势。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种深紫外发光装置,其特征在于,包括基板、深紫外LED芯片和透镜;所述基板表面设置有凹槽和位于所述凹槽顶端周围的卡槽,所述深紫外LED芯片通过第一金属混合物固定于所述凹槽内,且所述深紫外LED芯片通过金线电性连接所述凹槽底面;所述透镜覆盖所述凹槽,且所述透镜的四周边缘通过第二金属混合物固定于所述卡槽内。
  2. 如权利要求1所述的深紫外发光装置,其特征在于,所述深紫外LED芯片波长位于250-300nm之间。
  3. 如权利要求1所述的深紫外发光装置,其特征在于,所述深紫外LED芯片通过所述金线的金丝球焊接工艺连接所述凹槽底面。
  4. 如权利要求1所述的深紫外发光装置,其特征在于,所述第一金属混合物为Se掺杂的Ag-Cu-Sn金属混合物;和/或
    所述第二金属混合物为Fe-Ni-Co金属混合物。
  5. 如权利要求4所述的深紫外发光装置,其特征在于,以所述第一金属混合物的总重量为100%计,Se的掺杂含量为0.5%-1%,Sn的含量为90%-95%,Ag的含量为2%-4%之间,Cu的含量为1%-2%;和/或
    以所述第二金属混合物的总重量为100%计,Fe的含量为40%,Ni的含量为30%,Co的含量为30%。
  6. 如权利要求1所述的深紫外发光装置,其特征在于,所述第二金属混合物通过激光焊接工艺将所述透镜固定于所述卡槽内。
  7. 如权利要求1所述的深紫外发光装置,其特征在于,所述基板为氮化硼掺杂的氮化铝覆金基板;和/或
    所述透镜为石英玻璃透镜;和/或
    所述透镜为方形透镜或半球形透镜。
  8. 根据权利要求1所述的深紫外发光装置,其特征在于,所述凹槽的腔内填充有氦气。
  9. 如权利要求1-8任一项所述的深紫外发光装置,其特征在于,所述透镜包括沿发光方向依次设置第一石英玻璃层、第二石英玻璃层和第三石英玻璃层,且所述第一石英玻璃层、第二石英玻璃层和第三石英玻璃层的折射率依次递增。
  10. 如权利要求1-8任一项所述的深紫外发光装置,其特征在于,所述凹槽的底面和侧壁设置有第一反射层;和/或
    所述卡槽的底面设置有第二反射层。
PCT/CN2019/084591 2018-12-17 2019-04-26 深紫外发光装置 WO2020015425A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811543827.1A CN109786535B (zh) 2018-12-17 2018-12-17 深紫外发光装置
CN201811543827.1 2018-12-17

Publications (1)

Publication Number Publication Date
WO2020015425A1 true WO2020015425A1 (zh) 2020-01-23

Family

ID=66497397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084591 WO2020015425A1 (zh) 2018-12-17 2019-04-26 深紫外发光装置

Country Status (2)

Country Link
CN (1) CN109786535B (zh)
WO (1) WO2020015425A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038463A (zh) * 2019-06-04 2020-12-04 佛山市国星光电股份有限公司 一种紫外led器件及其制备方法
CN110707199B (zh) * 2019-10-16 2024-03-26 五邑大学 一种深紫外led器件及其封装方法
CN111720797B (zh) * 2020-07-27 2023-11-17 桂林海威科技股份有限公司 一种用于二次配光的透镜及其贴片焊接方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339929A (zh) * 2010-07-29 2012-02-01 富士迈半导体精密工业(上海)有限公司 Led发光组件的制造方法
US20130015478A1 (en) * 2011-07-11 2013-01-17 Nam Seok Oh Light emitting module and head lamp including the same
CN103137833A (zh) * 2013-03-15 2013-06-05 深圳市瑞丰光电子股份有限公司 一种led封装方法及结构
CN105428472A (zh) * 2015-11-18 2016-03-23 佛山市南海区联合广东新光源产业创新中心 一种紫外led器件的制造方法
CN106784243A (zh) * 2016-12-27 2017-05-31 广东晶科电子股份有限公司 一种深紫外led封装器件及其制备方法
CN107833946A (zh) * 2017-11-28 2018-03-23 西安科锐盛创新科技有限公司 一种led封装方法
CN207781640U (zh) * 2018-01-26 2018-08-28 深圳市源磊科技有限公司 一种紫外led封装结构及紫外led灯

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204011471U (zh) * 2014-07-17 2014-12-10 陕西光电科技有限公司 一种深紫外led器件封装结构
CN108123023A (zh) * 2018-01-30 2018-06-05 易美芯光(北京)科技有限公司 一种深紫外led封装结构及其制备方法
CN108417702B (zh) * 2018-02-01 2020-02-04 浙江大明光电科技有限公司 一种具有散热功能的深紫外led封装结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102339929A (zh) * 2010-07-29 2012-02-01 富士迈半导体精密工业(上海)有限公司 Led发光组件的制造方法
US20130015478A1 (en) * 2011-07-11 2013-01-17 Nam Seok Oh Light emitting module and head lamp including the same
CN103137833A (zh) * 2013-03-15 2013-06-05 深圳市瑞丰光电子股份有限公司 一种led封装方法及结构
CN105428472A (zh) * 2015-11-18 2016-03-23 佛山市南海区联合广东新光源产业创新中心 一种紫外led器件的制造方法
CN106784243A (zh) * 2016-12-27 2017-05-31 广东晶科电子股份有限公司 一种深紫外led封装器件及其制备方法
CN107833946A (zh) * 2017-11-28 2018-03-23 西安科锐盛创新科技有限公司 一种led封装方法
CN207781640U (zh) * 2018-01-26 2018-08-28 深圳市源磊科技有限公司 一种紫外led封装结构及紫外led灯

Also Published As

Publication number Publication date
CN109786535B (zh) 2020-06-26
CN109786535A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2020015425A1 (zh) 深紫外发光装置
CN205406561U (zh) 一种紫外led器件封装装置
CN204130585U (zh) 一种紫外led器件
CN103560202B (zh) 一种白光led灯及其制备方法
CN107248547A (zh) 一种大功率led芯片集成封装结构及其封装方法
CN107068841A (zh) 一种五面发光的量子点夹层csp背光源及其制作方法
CN101615612A (zh) 多芯片led的封装结构
CN105390592A (zh) 一种紫外led光源三层封装方法
CN207500850U (zh) Led灯丝与led球泡灯
CN107731992A (zh) Led封装结构
CN203871360U (zh) 一种抛光铝基板cob封装结构
CN207009476U (zh) 一种大功率led芯片集成封装结构
CN106299042A (zh) 一种紫外led光源无机封装方法
CN203839375U (zh) 一种大功率led芯片集成封装结构
CN206353544U (zh) 一种cob光源
CN107731997A (zh) 一种发光二极管的封装支架及其制造方法
CN205752229U (zh) 一种高功率led的封装结构
CN107994113A (zh) 一种大功率蓝光led多层封装结构
CN208093583U (zh) 大功率led封装结构
CN208142220U (zh) 一种白光led封装结构
CN208284494U (zh) 紫外发光二极管芯片结构
CN107123713A (zh) 一种适合单色光led晶元级封装的器件结构
CN110211949A (zh) 一种高流明密度高显指白光led光源模组及封装方法
CN213026171U (zh) 一种高防护抗紫外线的封装管
CN204361095U (zh) 一种基于远程荧光粉激发的hv-cob led光源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19838565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19838565

Country of ref document: EP

Kind code of ref document: A1