WO2020014724A1 - Druckdifferenzaufnehmer für ein durchflussmessgerät sowie durchflussmessgerät - Google Patents

Druckdifferenzaufnehmer für ein durchflussmessgerät sowie durchflussmessgerät Download PDF

Info

Publication number
WO2020014724A1
WO2020014724A1 PCT/AT2019/060239 AT2019060239W WO2020014724A1 WO 2020014724 A1 WO2020014724 A1 WO 2020014724A1 AT 2019060239 W AT2019060239 W AT 2019060239W WO 2020014724 A1 WO2020014724 A1 WO 2020014724A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
stationary permanent
sensor
piston
stationary
Prior art date
Application number
PCT/AT2019/060239
Other languages
English (en)
French (fr)
Inventor
Heribert Kammerstetter
Michael Buchner
Michael HÖRZER
Original Assignee
Avl List Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl List Gmbh filed Critical Avl List Gmbh
Priority to CH01448/20A priority Critical patent/CH716247B1/de
Priority to JP2021502422A priority patent/JP7339326B2/ja
Publication of WO2020014724A1 publication Critical patent/WO2020014724A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F3/00Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow
    • G01F3/02Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement
    • G01F3/04Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls
    • G01F3/06Measuring the volume flow of fluids or fluent solid material wherein the fluid passes through the meter in successive and more or less isolated quantities, the meter being driven by the flow with measuring chambers which expand or contract during measurement having rigid movable walls comprising members rotating in a fluid-tight or substantially fluid-tight manner in a housing
    • G01F3/10Geared or lobed impeller meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/02Compensating or correcting for variations in pressure, density or temperature
    • G01F15/026Compensating or correcting for variations in pressure, density or temperature using means to maintain zero differential pressure across the motor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L13/00Devices or apparatus for measuring differences of two or more fluid pressure values
    • G01L13/02Devices or apparatus for measuring differences of two or more fluid pressure values using elastically-deformable members or pistons as sensing elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0089Transmitting or indicating the displacement of pistons by electrical, electromechanical, magnetic or electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/14Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means involving the displacement of magnets, e.g. electromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • the invention relates to a pressure difference sensor for a flow meter with a housing, a measuring chamber which is formed in the housing, a piston which is arranged axially displaceably in the measuring chamber, a permanent magnet which is arranged in the piston and is movable with the piston and at least one magnetoresistive Sensor that measures a magnetic field change in the direction of movement of the movable permanent magnet, as well as a flow meter for measuring temporally resolved flow processes with an inlet, an outlet, a drivable displacement meter, a bypass line, via which the displacement meter can be bypassed, a pressure difference sensor, which is arranged in the bypass line and an evaluation and control unit, via which the drivable displacement counter can be regulated as a function of the pressure difference applied to the pressure difference sensor.
  • Differential pressure transducers have been used for many years in injection quantity measuring devices in which the differential pressure transducers are arranged in a bypass line to a positive displacement meter.
  • the pressure difference transducers consist of a piston that has a base area that is slightly smaller than the opening cross-section of the measuring chamber in which the piston is arranged, so that on the one hand there is free axial mobility of the piston in the measuring chamber, but on the other hand none within the measuring chamber Fluid can flow between the inner wall of the measuring chamber and the outer wall of the piston, which would lead to a change in the pressure difference applied to the piston.
  • the piston should have a density that corresponds to the density of the fluid to be displaced in the measuring chamber.
  • the displacement meter is controlled for measuring the injection quantity in such a way that the piston in the measuring chamber is always pushed back into its starting position by the displacement of the displacement meter despite the pressure changes caused by the injection processes, i.e. the pressure difference that is caused by the injections is always attempted using the displacement meter compensate.
  • Magnetic sensor systems have been used for position detection in recent years due to their easy handling and good accuracy. These are non-contact magnetoresistive sensors which, depending on the magnetic field of a permanent magnet acting on the sensor, generate a different output voltage, which can serve as a measure of the position of the permanent magnet. When measuring purely linear movements, sensors are mainly used which measure a changing magnetic field strength in the direction of movement of the permanent magnet.
  • AT 512 619 A2 for the first time discloses such a flow measuring device, in which the deflection of the piston in the measuring chamber due to the pressure difference present is measured by such a magnetoresistive sensor which reacts to the magnetic field of a permanent magnet attached to the piston. This deflection of the piston, measured by means of the sensor, is then used to adjust the speed of the displacement counter. Either a single sensor or several sensors can be used to measure the magnetic field.
  • a pressure difference transducer was proposed in DE 10 2016 117 340 A1, in which the permanent magnet communicating with the magnetoresistive sensor was fastened centrally in a hollow piston on the central axis of the piston. A rotation of the piston in the measuring chamber does not lead to any changes in the measurement results.
  • a cover is provided to shield the flowmeter from external magnetic fields, such as the earth's magnetic field or magnetic fields from electric motors or other electrical components.
  • at least one stationary permanent magnet is arranged in the housing, the magnetic field of which acts on the magnetoresistive sensor exclusively in the direction of movement of the piston, the magnetic field of the moving sensor is superimposed by the magnetic field of the stationary sensor.
  • the resulting magnetic field thus results in a homogeneous DC field in the area of the sensor, by means of which the usable linear area of the sensor signals is broadened, as a result of which the measurement results are more accurate.
  • This measure also surprisingly reduces the influence due to the changing permeability of the materials used for the housing and the piston, and the linearity of the displacement signal is improved, so that the measured values of the pressure difference transducer are more precise and a correspondingly accurate measurement of flow rates is possible with the flow measuring device according to the invention ,
  • two stationary permanent magnets are arranged in the housing, which are arranged on a common axis with the at least one magnetoresistive sensor, which runs parallel to the axis of movement of the movable permanent magnet, the first stationary permanent magnet being arranged on a first side of the at least one magnetoresistive sensor and the second stationary permanent magnet is arranged on the opposite side of the at least one magnetoresistive sensor.
  • This arrangement leads to a completely homogeneous magnetic field acting in the measuring direction of the sensor, which acts on the sensor and overlaps the changing magnetic field of the moving permanent magnet and reliably overlays the linear range of the sensor signal even when the movable permanent magnet is farther away and, as a result, smaller one that acts on the sensor Magnetic field expanded.
  • the two stationary permanent magnets are polarized opposite to the movable permanent magnet, since then the magnetic field lines acting on the sensor have the same orientation have and thus an increase in the magnetic field acting on the sensor is achieved. Accordingly, the voltage signals generated by the sensor are in the linear range over a wide measuring distance.
  • a plurality of magnetoresistive sensors are arranged on the axis between the two stationary permanent magnets.
  • the signals can be checked for plausibility on the one hand and the position of the piston can be determined very precisely over a larger travel path of the sensor by means of superposition.
  • the two stationary permanent magnets are at a distance from one another which corresponds at least to the maximum travel path of the movable permanent magnet. This ensures that the magnetic field of the moving permanent magnet is always within the generated linear field of the two stationary permanent magnets and thus the influence by magnetizable material remains small.
  • a third stationary permanent magnet and a fourth stationary permanent magnet are arranged on the side of the piston opposite the first stationary permanent magnet and second stationary permanent magnet, which generate a resulting magnetic field which corresponds to the resulting magnetic field of the first stationary permanent magnet and the second corresponds to stationary permanent magnets on the movement axis of the movable permanent magnet with respect to the size of the magnetic field and has an opposite orientation.
  • the magnetic field of these additional permanent magnets does not act on the sensors if possible. Instead, an influence of the first and the second stationary Permanent magnets on the permanent magnets movable with the piston are avoided, since this could change the forces acting on the piston and thus disturb the pressure balance to be set on the piston.
  • the first stationary permanent magnet and the second stationary permanent magnet are arranged within the travel path of the movable permanent magnet and generate a magnetic field which, at the level of the axis of movement of the permanent magnet, is less than 5% of the maximum field strength of the movable permanent magnet. This is sufficient, on the one hand, to exert no force influencing the position of the piston on the piston by magnetic attraction and, on the other hand, to provide a sufficiently strong, stationary superimposed magnetic field for the sensors due to the spatial proximity, both to provide a large linear measuring range and also to establish sufficient insensitivity to external magnetic fields.
  • a particularly simple assembly and manufacture results if the first stationary permanent magnet and the second stationary permanent magnet are arranged on a circuit board on which the magnetoresistive sensors are arranged. Additional steps for mounting the permanent magnets in the housing can be omitted.
  • first stationary permanent magnet and the second stationary permanent magnet are fastened to a housing block of the housing on which the circuit board is fastened. This simplifies an exchange of the permanent magnets, which can still be installed simultaneously with the housing block and the circuit board.
  • the housing block is preferably made of aluminum or an aluminum alloy. This material is not magnetizable, so that no additional magnetic field is created. Furthermore, this simplifies cooling of the measuring chamber, since aluminum is a good heat conductor.
  • the field strength of the first stationary permanent magnet and the second stationary permanent magnet preferably corresponds to 1% to 90% of the field strength of the movable permanent magnet.
  • the strength of the stationary permanent magnets is dependent on the distance of the stationary permanent magnets from the sensors in relation to the distance of the piston magnet from the sensors. Accordingly, the field strength should also increase with increasing distance between the stationary permanent magnets and the sensors.
  • the magnetoresistive sensor or sensors are advantageously unipolar sensors. These measure the magnetic field only in one direction, which means that they can be manufactured more cost-effectively, but deliver very precise results for linear displacement measurement.
  • a pressure difference transducer for a flow measuring device and a flow measuring device equipped with it is thus created, with which a high accuracy of the measurement results is achieved, since the position of the piston can be determined very precisely, since the sensors have a wide linear range due to the selected design and the Influence of external magnetic interference fields is largely eliminated without additional shields having to be provided. In this way, such a flow measuring device can be manufactured smaller and more cost-effectively.
  • FIG. 1 shows a schematic illustration of a flow measuring device in which a pressure difference sensor according to the invention can be used.
  • FIG. 2 shows a schematic view of a pressure difference transducer according to the invention for a flow meter according to FIG. 1.
  • FIG. 3 shows a graph in which the magnetic field is plotted against the piston displacement for a pressure difference transducer without a stationary magnetic field and with a stationary magnetic field.
  • the flow meter 10 shown in FIG. 1 has an inlet 12 and an outlet 14, which are connected to one another by a main line 16, in which a rotary displacement meter 18, which is designed as a gear pump, is arranged.
  • a fluid to be measured flows from a flow-generating device, in particular a high-pressure fuel pump, and at least one injection valve, into the main line 16 of the flow meter 10 and is conveyed via the displacement meter 18, which is via a clutch or a transmission can be driven by a drive motor 20.
  • a bypass line 22 branches off from the main line 16 between the inlet 12 and the rotary displacement meter 18, which bypasses downstream of the rotary displacement meter 18 between the latter and the outlet 14 into the main line 16 and, like the main line 16, fluidically connects to the inlet 12 and the Outlet 14 is connected.
  • a translational pressure difference transducer 24 Arranged in this bypass line 22 is a translational pressure difference transducer 24, which consists of a measuring chamber 26 and a piston 28, which can be freely displaced axially in the measuring chamber 26 and which has the same specific weight as the measuring fluid, i.e. the fuel, and is cylindrical in shape like the measuring chamber 26 is.
  • a housing 27 delimiting the measuring chamber 26 has an inner diameter which essentially corresponds to the outer diameter of the piston 28.
  • At least one magnetoresistive sensor 30 is arranged on the measuring chamber 26, which is in operative connection with a permanent magnet 32 centrally fastened in the piston 28 and in which one of the size of the deflection of the piston due to the deflection of the piston 28 28 dependent voltage is generated by the changing magnetic field on motion and acting on the sensor 30.
  • three magnetoresistive sensors 30 are arranged axially next to one another, so that the position of the permanent magnet 32 moved with the piston 28 can be determined with a high degree of accuracy by superposition via three different generated voltages.
  • the magnetoresistive sensors 30 are connected to an evaluation and control unit 34, which processes the values of these sensors 30 and transmits corresponding control signals to the drive motor 20, which is controlled, if possible, in such a way that the piston 28 is always in a defined starting position, the displacement counter 18
  • the pressure difference that arises due to the injected fluid on the piston 28 is constantly approximately compensated by delivery. This means that when the piston 28 is deflected to the right, the displacement speed is increased depending on the size of this deflection and vice versa.
  • the deflection of the piston 28 or the volume displaced by it in the measuring chamber 26 is converted into a desired delivery volume of the displacement counter 18 or a speed of the drive motor 20 by means of a transfer function and the drive motor 20 is energized accordingly.
  • a pressure sensor 36 and a temperature sensor 38 are arranged in the measuring chamber 26, which continuously measure the pressures and temperatures occurring in this area and in turn feed them to the evaluation and control unit 34 in order to be able to take changes in density into account in the calculation.
  • the flow at the piston 28 is determined, for example, by differentiating the deflection of the piston 28 in the evaluation and control unit 34, which is connected to the sensor 30, and then multiplying it by the base area of the piston 28, so that there is a volume flow in the bypass line 22 in this time interval.
  • the flow through the displacer counter 18 and thus in the main line 16 can either be determined from the determined control data for regulating the displacer counter 18 or can be calculated via the speed if this is measured directly via optical encoders or magnetoresistive sensors.
  • At least one stationary permanent magnet 40 is therefore arranged in the housing 27 according to the invention, the magnetic field of which acts on the magnetoresistive sensor (s) 30 only in the direction of movement of the piston 28 and thus in the direction in which the magnetoresistive sensor 30, which is designed as a unipolar sensor 30, measures.
  • the field lines of this stationary permanent magnet 40 acting on the sensor 30 are thus parallel to the field line portions of the movable permanent magnet 32 which are measured by the sensor 30 and have the same direction of action.
  • the magnetic field is generated by the first stationary permanent magnet 40 and a second stationary permanent magnet 42, which are arranged on both sides of the sensors 30. They are located on a common axis 44 with the sensors 30, which runs parallel to the axis along which the piston 28 and thus the movable permanent magnet 32 are displaced.
  • These two stationary permanent magnets 40, 42 are polarized in opposite directions to the movable permanent magnet 32, so that the magnetic field of the movable permanent magnet 32 acting on the sensor 30 is always amplified. This creates a broadening of the usable magnetic field and a shift of the second maximum of the magnetic field in the direction of 0. However, the usable linear measuring range is thus expanded, which leads to more precise measured values. This shift in the magnetic field strength due to the presence of the stationary permanent magnets 40, 42 when the piston is moving is shown in FIG.
  • These two stationary permanent magnets 40, 42 are attached as close as possible to the two sides of the sensors 30.
  • they can be arranged on the same circuit board 46 as the sensors 30 and are therefore within a travel path of the piston 28 or the movable permanent magnet.
  • a relatively small magnetic field generated by the stationary permanent magnets 40, 42 is sufficient, which for example corresponds to approximately 3% of the field strength of the movable permanent magnet 32.
  • Another advantage of this arrangement is that the stationary permanent magnets 40, 42 have no measurable influence on the movable permanent magnet 32, as a result of which the balance of forces on the piston 28 could be influenced.
  • the circuit board 46 is arranged on a housing block 52 made of aluminum, which is part of the housing 27 and which on the one hand has good heat conduction and can thus be used for cooling or heating and on the other hand is not magnetic, so that magnetization by the permanent magnets 40, 42 does not apply.
  • stationary permanent magnets 40, 42 it may be necessary to arrange the stationary permanent magnets 40, 42 at a distance from the circuit board 46 and thus the electronic components arranged on the circuit board 46.
  • stationary permanent magnets 40, 42 with a greater field strength must be used, since these are at a greater distance from the sensors and are, for example, outside the travel path of the movable magnet 32 .
  • the field strength of these magnets 40, 42 can be, for example, 70% of the field strength of the movable permanent magnet 32.
  • magnetic attraction and repulsion forces act on the movable permanent magnet 32, which result in piston displacement, which influences the regulation of the flow meter 10.
  • a third stationary permanent magnet 48 and a fourth stationary permanent magnet 50 are arranged on the housing 27 acting on the measuring chamber 26 on the side of the piston 28 opposite the sensors 30. These are arranged in such a way that the magnetic field of the first and second are on the movement axis 45 of the movable permanent magnet 32 stationary permanent magnets 40, 42 is exactly balanced, ie along this axis the magnetic force resulting from the four stationary permanent magnets 40, 42, 48, 50 is zero. This can be done, for example, by an axisymmetric arrangement with respect to the axis of movement 45 of the movable permanent magnet 32 with the same field strength and polarity. However, the magnetic field of the first and second stationary permanent magnets 40, 42 acting on the sensors 30 remains due to the smaller distance between them
  • This alternative arrangement of the permanent magnets is only shown in dashed lines in FIG. 2 and forms an alternative arrangement to the permanent magnets 40, 42 of the first exemplary embodiment described in bold.
  • Such a pressure differential transducer provides very exact measured values, which also improves the measurement of the flow measuring device, since the influence of disturbing external magnetic fields is surprisingly greatly reduced and, on the other hand, the linear range of sensors 30, or the changing magnetic field, available for an exact measurement is significantly reduced is increased, which increases the accuracy.
  • An additional magnetic shielding can be dispensed with in this way.
  • the magnetic fields can optionally be generated by a different number and arrangement of stationary permanent magnets.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Electromagnetism (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Es sind Druckdifferenzaufnehmer für ein Durchflussmessgerät mit einem Gehäuse (27), einer Messkammer (26), die im Gehäuse (27) ausgebildet ist, einem Kolben (28), der in der Messkammer (26) axial verschiebbar angeordnet ist, einem Permanentmagneten (32), der im Kolben (28) angeordnet und mit dem Kolben (28) bewegbar ist und zumindest einem magnetoresistiven Sensor (30), der eine magnetische Feldänderung in Bewegungsrichtung des bewegbaren Permanentmagneten (32) misst, bekannt, wobei zumindest ein stationärer Permanentmagnet (40; 42) im Gehäuse (27) angeordnet ist, dessen magnetisches Feld auf den magnetoresistiven Sensor (30) ausschließlich in Bewegungsrichtung des Kolbens (28) wirkt.

Description

Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie
Durchflussmessgerät
Die Erfindung betrifft einen Druckdifferenzaufnehmer für ein Durchflussmessgerät mit einem Gehäuse, einer Messkammer, die im Gehäuse ausgebildet ist, einem Kolben, der in der Messkammer axial verschiebbar angeordnet ist, einem Permanentmagneten, der im Kolben angeordnet und mit dem Kolben bewegbar ist und zumindest einem magnetoresistiven Sensor, der eine magnetische Feldänderung in Bewegungsrichtung des bewegbaren Permanentmagneten misst, sowie ein Durchflussmessgerät zur Messung zeitlich aufgelöster Durchflussvorgänge mit einem Einlass, einem Auslass, einem antreibbaren Verdrängerzähler, einer Umgehungsleitung, über die der Verdrängerzähler umgehbar ist, einem Druckdifferenzaufnehmer, der in der Umgehungsleitung angeordnet ist und einer Auswerte- und Steuereinheit, über die der antreibbare Verdrängerzähler in Abhängigkeit der am Druckdifferenzaufnehmer anliegenden Druckdifferenz regelbar ist.
Druckdifferenzaufnehmer werden seit vielen Jahren in Einspritzmengenmessvorrichtungen verwendet, bei denen die Druckdifferenzaufnehmer in einer Umgehungsleitung zu einem Verdrängerzähler angeordnet sind. Die Druckdifferenzaufnehmer bestehen aus einem Kolben, der eine Grundfläche aufweist, die geringfügig kleiner ist als der Öffnungsquerschnitt der Messkammer, in der der Kolben angeordnet ist, so dass einerseits eine freie axiale Beweglichkeit des Kolbens in der Messkammer gegeben ist, andererseits jedoch innerhalb der Messkammer kein Fluid zwischen der Innenwand der Messkammer und der Außenwand des Kolbens strömen kann, was zu einer Änderung der am Kolben anliegenden Druckdifferenz führen würde. Der Kolben sollte dabei eine Dichte aufweisen, die der Dichte des zu verdrängenden Fluids in der Messkammer entspricht. Der Verdrängerzähler wird zur Einspritzmengenmessung derart angesteuert, dass der Kolben in der Messkammer durch die Förderung des Verdrängerzählers trotz der Druckänderungen durch die Einspritzvorgänge immer in seine Ausgangsposition zurückgeschoben wird, also möglichst versucht wird, die Druckdifferenz, die durch die Einspritzungen entsteht, mittels des Verdrängerzählers immer auszugleichen.
Zur korrekten Regelung des Verdrängerzählers ist es daher notwendig, stetig die genaue Position des Kolbens zu kennen, um eine entsprechende Regelung des Verdrängerzählers durchführen zu können. Zur Positionserkennung werden in den letzten Jahren aufgrund der einfachen Handhabung und der guten Genauigkeit Magnet-Sensor-Systeme verwendet. Es handelt sich hierbei um berührungslos arbeitende magnetoresistive Sensoren, die in Abhängigkeit des auf den Sensor einwirkenden Magnetfeldes eines Permanentmagneten eine unterschiedliche Ausgangsspannung erzeugen, welche als Maß für die Stellung des Permanentmagneten dienen kann. Bei der Messung rein linearer Bewegungen werden vor allem Sensoren verwendet, die eine sich ändernde Magnetfeldstärke in Bewegungsrichtung des Permanentmagneten messen.
In der AT 512 619 A2 wird erstmalig ein solches Durchflussmessgerät offenbart, bei dem die durch die anliegende Druckdifferenz bedingte Auslenkung des Kolbens in der Messkammer durch einen derartigen magnetoresistiven Sensor gemessen wird, der auf das Magnetfeld eines am Kolben befestigten Permanentmagneten reagiert. Diese mittels des Sensors gemessene Auslenkung des Kolbens wird anschließend zur Anpassung der Drehzahl des Verdrängerzählers genutzt. Zur Messung des Magnetfeldes können entweder ein einzelner oder mehrere Sensoren genutzt werden.
Es hat sich jedoch gezeigt, dass bei Verwendung von magnetisierbaren Materialien die Messwerte durch die sich ändernde Permeabilität der Stoffe ebenso verfälscht werden wie durch äußere Magnetfelder, wie das Erdmagnetfeld oder durch Strom durchflossene Leiter entstehende Magnetfelder. Um dies zu vermeiden ist es bekannt, für die Konstruktion ausschließlich nicht magnetisierbare Materialien zu verwenden oder die Messekammer vollständig magnetisch abzuschirmen.
Um die Genauigkeit der Messungen zu verbessern, wurde entsprechend in der DE 10 2016 117 340 Al ein Druckdifferenzaufnehmer vorgeschlagen, bei dem in einem Hohlkolben zentral auf der Mittelachse des Kolbens der mit dem magnetoresistiven Sensor kommunizierende Permanentmagnet befestigt wurde. Eine Drehung des Kolbens in der Messkammer führt auf diese Weise zu keinen Messergebnisänderungen. Zusätzlich ist eine Abdeckhaube zur Abschirmung des Durchflussmessgerätes vor äußeren Magnetfeldern, wie das Erdmagnetfeld oder Magnetfelder durch Elektromotoren oder anderen elektrischen Bauteilen vorgesehen.
Dies bedingt jedoch einen erhöhten Konstruktions- und Fertigungsaufwand mit steigenden Herstellungskosten, da sowohl eine Einschränkung in der Materialwahl vorzusehen ist als auch zusätzliche Bauteile montiert und hergestellt werden müssen. Dennoch werden zum Teil nicht ausreichend genaue Messergebnisse erzielt.
Es stellt sich daher die Aufgabe, einen Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie ein Durchflussmessgerät mit einem derartigen Druckdifferenzaufnehmer zur Verfügung zu stellen, mit dem die Auslenkung des Kolbens exakt gemessen werden kann, ohne zusätzliche Abschirmmaßnahmen vornehmen zu müssen oder in der Materialauswahl eingeschränkt zu sein.
Diese Aufgabe wird durch einen Druckdifferenzaufnehmer für ein Durchflussmessgerät mit den Merkmalen des Anspruchs 1 sowie ein Durchflussmessgerät mit den Merkmalen des Anspruchs 13 gelöst. Dadurch, dass zumindest ein stationärer Permanentmagnet im Gehäuse angeordnet ist, dessen magnetisches Feld auf den magnetoresistiven Sensor ausschließlich in Bewegungsrichtung des Kolbens wirkt, entsteht eine Überlagerung des magnetischen Feldes des bewegten Sensors durch das magnetische Feld des stationären Sensors. Das resultierende Magnetfeld ergibt so im Bereich des Sensors ein homogenes Gleichfeld, durch welches der nutzbare lineare Bereich der Sensorsignale verbreitert wird, wodurch die Messergebnisse eine höhere Genauigkeit aufweisen. Durch diese Maßnahme sinkt zusätzlich überraschenderweise der Einfluss durch die sich ändernde Permeabilität der verwendeten Materialien des Gehäuses und des Kolbens und die Linearität des Wegsignals wird verbessert, so dass die Messwerte des Druckdifferenzaufnehmers genauer sind und eine entsprechend genaue Messung von Durchflussmengen mit dem erfindungsgemäßen Durchflussmessgerät möglich sind.
Vorzugsweise sind zwei stationäre Permanentmagnete im Gehäuse angeordnet, die auf einer gemeinsamen Achse mit dem zumindest einen magnetoresistiven Sensor angeordnet sind, die parallel zur Bewegungsachse des bewegbaren Permanentmagneten verläuft, wobei der erste stationäre Permanentmagnet an einer ersten Seite des zumindest einen magnetoresistiven Sensors angeordnet ist und der zweite stationäre Permanentmagnet an der gegenüberliegenden Seite des zumindest einen magnetoresistiven Sensors angeordnet ist. Diese Anordnung führt zu einem vollständig homogenen in Messrichtung des Sensors wirkenden Magnetfeld, welches auf den Sensor wirkt und das sich ändernde Magnetfeld des sich bewegenden Permanentmagneten überlagert und zuverlässig den linearen Bereich des Sensorsignals auch bei weiter entferntem bewegbaren Permanentmagneten und daraus resultierend kleinerem auf den Sensor wirkenden Magnetfeld erweitert.
Es ist bevorzugt, wenn die beiden stationären Permanentmagnete zum bewegbaren Permanentmagnet entgegengesetzt gepolt sind, da dann die auf den Sensor wirkenden Magnetfeldlinien die gleiche Orientierung aufweisen und somit eine Verstärkung des auf den Sensor wirkenden magnetischen Feldes erreicht wird. Entsprechend sind die erzeugten Spannungssignale des Sensors über eine weite Messstrecke im linearen Bereich.
In einer bevorzugten Ausführungsform sind mehrere magnetoresistive Sensoren auf der Achse zwischen den beiden stationären Permanentmagneten angeordnet. Durch die Verwendung mehrerer nebeneinander angeordneter Sensoren, insbesondere von drei nebeneinander angeordneten Sensoren, können die Signale einerseits auf Plausibilität überprüft werden und andererseits über einen größeren Verfahrweg des Sensors durch Superposition sehr genau die Position des Kolbens ermittelt werden.
In einer vorteilhaften Ausbildung der Erfindung weisen die beiden stationären Permanentmagnete einen Abstand zueinander auf, der zumindest dem maximalen Verfahrweg des bewegbaren Permanentmagneten entspricht. Hierdurch wird sichergestellt, dass das magnetische Feld des bewegten Permanentmagneten immer innerhalb des erzeugten linearen Feldes der beiden stationären Permanentmagnete ist und somit der Einfluss durch magnetisierbares Material gering bleibt.
In einer hierzu weiterführenden Ausführung sind ein dritter stationärer Permanentmagnet und ein vierter stationärer Permanentmagnet an der zum ersten stationären Permanentmagneten und zweiten stationären Permanentmagneten gegenüberliegenden Seite des Kolbens angeordnet, welche ein resultierendes magnetisches Feld erzeugen, welches dem resultierenden magnetischen Feld des ersten stationären Permanentmagneten und des zweiten stationären Permanentmagneten auf der Bewegungsachse des bewegbaren Permanentmagneten bezüglich der Größe des Magnetfeldes entspricht und eine entgegengesetzte Orientierung aufweist. Das Magnetfeld dieser zusätzlichen Permanentmagneten wirkt dabei möglichst nicht auf die Sensoren. Stattdessen wird ein Einfluss des ersten und des zweiten stationären Permanentmagneten auf den mit dem Kolben bewegbaren Permanentmagneten vermieden, da dies die auf den Kolben wirkenden Kräfte ändern könnte und so das am Kolben einzustellende Druckgleichgewicht stören würde.
In einer alternativen Ausführungsform sind der erste stationäre Permanentmagnet und der zweite stationäre Permanentmagnet innerhalb des Verfahrweges des bewegbaren Permanentmagneten angeordnet und erzeugen ein magnetisches Feld, welches auf Höhe der Bewegungsachse des Permanentmagneten kleiner ist als 5% der maximalen Feldstärke des bewegbaren Permanentmagneten. Dies reicht aus, um einerseits keine die Stellung des Kolbens beeinflussende Kraft auf den Kolben durch magnetische Anziehung auszuüben und andererseits aufgrund der räumlichen Nähe dennoch ein ausreichend starkes stationäres überlagertes Magnetfeld für die Sensoren bereitzustellen, um sowohl einen großen linearen Messbereich zur Verfügung zu stellen als auch eine ausreichende Unempfindlichkeit gegen äußere Magnetfelder herzustellen.
Eine besonders einfache Montage und Herstellung ergibt sich, wenn der erste stationäre Permanentmagnet und der zweite stationäre Permanentmagnet auf einer Platine angeordnet sind, auf der die magnetoresistiven Sensoren angeordnet sind. So können zusätzliche Schritte zur Montage der Permanentmagnete im Gehäuse entfallen.
Alternativ sind der erste stationäre Permanentmagnet und der zweite stationäre Permanentmagnet an einem Gehäuseblock des Gehäuses befestigt, auf dem die Platine befestigt ist. Dies vereinfacht einen Austausch der Permanentmagnete, die dennoch gleichzeitig mit dem Gehäuseblock und der Platine montiert werden können.
Dabei ist der Gehäuseblock vorzugsweise aus Aluminium oder einer Aluminiumlegierung. Dieses Material ist nicht magnetisierbar, so dass kein zusätzliches magnetisches Feld entsteht. Des Weiteren vereinfacht dies eine Kühlung der Messkammer, da Aluminium gut wärmeleitend ist. Vorzugsweise entspricht die Feldstärke des ersten stationären Permanentmagneten und des zweiten stationären Permanentmagneten 1% bis 90% der Feldstärke des bewegbaren Permanentmagneten. Die Stärke der stationären Permanentmagneten ist dabei abhängig vom Abstand der stationären Permanentmagnete zu den Sensoren im Verhältnis zum Abstand des Kolbenmagneten von den Sensoren. Entsprechend sollte mit steigendem Abstand der stationären Permanentmagnete zu den Sensoren auch deren Feldstärke steigen.
Vorteilhafterweise sind der oder die magnetoresistiven Sensoren unipolare Sensoren. Diese messen das Magnetfeld lediglich in einer Richtung, wodurch sie kostengünstiger herstellbar sind, jedoch für die lineare Wegmessung sehr genaue Ergebnisse liefern.
Es wird somit ein Druckdifferenzaufnehmer für ein Durchflussmessgerät und ein damit ausgestattetes Durchflussmessgerät geschaffen, mit dem eine hohe Genauigkeit der Messergebnisse erreicht wird, da die Position des Kolbens sehr genau bestimmt werden kann, da die Sensoren durch den gewählten Aufbau einen breiten linearen Bereich aufweisen und der Einfluss äußerer magnetischer Störfelder zu großen Teilen eliminiert wird, ohne dass zusätzliche Abschirmungen vorgesehen werden müssen. So kann ein derartiges Durchflussmessgerät kleiner und kostengünstiger hergestellt werden.
Der erfindungsgemäße Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie dessen Funktion im System wird im Folgenden anhand eines in den Figuren dargestellten, nicht einschränkenden Ausführungsbeispiels beschrieben.
Figur 1 zeigt eine schematische Darstellung eines Durchflussmessgerätes, in welcher ein erfindungsgemäßer Druckdifferenzaufnehmer nutzbar ist.
Figur 2 zeigt eine schematische Ansicht eines erfindungsgemäßen Druckdifferenzaufnehmers für ein Durchflussmessgerät gemäß Figur 1. Figur 3 zeigt einen Graphen, bei dem das magnetische Feld über der Kolbenverschiebung für einen Druckdifferenzaufnehmer ohne stationäres Magnetfeld und mit stationärem Magnetfeld aufgetragen ist.
Das in Figur 1 dargestellte Durchflussmessgerät 10 weist einen Einlass 12 und einen Auslass 14 auf, die durch eine Flauptleitung 16 miteinander verbunden sind, in der ein rotatorischer Verdrängerzähler 18, der als Zahnradpumpe ausgebildet ist, angeordnet ist.
Über den Einlass 12 strömt ein zu messendes Fluid, insbesondere ein Kraftstoff, aus einer einen Durchfluss erzeugenden Vorrichtung, insbesondere einer Kraftstoffhochdruckpumpe, und zumindest einem Einspritzventil, in die Flauptleitung 16 des Durchflussmessgerätes 10 und wird über den Verdrängerzähler 18 gefördert, der über eine Kupplung oder ein Getriebe von einem Antriebsmotor 20 angetrieben werden kann.
Von der Flauptleitung 16 zweigt zwischen dem Einlass 12 und dem rotatorischen Verdrängerzähler 18 eine Umgehungsleitung 22 ab, die stromabwärts des rotatorischen Verdrängerzählers 18 zwischen diesem und dem Auslass 14 wieder in die Flauptleitung 16 mündet und entsprechend wie die Flauptleitung 16 fluidisch mit dem Einlass 12 und dem Auslass 14 verbunden ist. In dieser Umgehungsleitung 22 ist ein translatorischer Druckdifferenzaufnehmer 24 angeordnet, der aus einer Messkammer 26 und einem in der Messkammer 26 axial frei verschiebbar angeordneten Kolben 28 besteht, der das gleiche spezifische Gewicht wie das Messfluid, also der Kraftstoff aufweist und wie die Messkammer 26 zylindrisch geformt ist. Ein die Messkammer 26 begrenzendes Gehäuse 27 weist einen Innendurchmesser auf, der im Wesentlichen dem Außendurchmesser des Kolbens 28 entspricht. Bei Anliegen einer Druckdifferenz zwischen der Vorderseite und der Rückseite des Kolbens 28 erfolgt eine Auslenkung des Kolbens 28 aus seiner Ruhestellung. Entsprechend ist die Auslenkung des Kolbens 28 ein Maß für die anliegende Druckdifferenz.
Um diese Auslenkung korrekt ermitteln zu können, ist an der Messkammer 26 zumindest ein magnetoresistiver Sensor 30 angeordnet, der in Wirkverbindung mit einem zentral im Kolben 28 befestigten Permanentmagneten 32 steht und in dem durch die Auslenkung des Kolbens 28 eine von der Größe der Auslenkung des Kolbens 28 abhängige Spannung durch das sich bei Bewegung ändernde und auf den Sensor 30 wirkende magnetische Feld erzeugt wird.
Im vorliegenden Ausführungsbeispiel sind, wie in Figur 3 zu erkennen ist, drei magnetoresistive Sensoren 30 axial nebeneinander angeordnet, so dass die Position des mit dem Kolben 28 bewegten Permanentmagneten 32 über drei verschiedene erzeugte Spannungen durch Superposition mit einer hohen Genauigkeit bestimmt werden kann.
Die magnetoresitiven Sensoren 30 sind mit einer Auswerte- und Steuereinheit 34 verbunden, welche die Werte dieser Sensoren 30 verarbeitet und entsprechende Steuersignale dem Antriebsmotor 20 übermittelt, der möglichst derart angesteuert wird, dass sich der Kolben 28 immer in einer definierten Ausgangsstellung befindet, der Verdrängerzähler 18 also die aufgrund des eingespritzten Fluides am Kolben 28 entstehende Druckdifferenz durch Förderung ständig etwa ausgleicht. Dies bedeutet, dass bei Auslenkung des Kolbens 28 nach rechts in Abhängigkeit der Größe dieser Auslenkung die Verdrängerdrehzahl erhöht wird und umgekehrt. Flierzu wird die Auslenkung des Kolbens 28 beziehungsweise das durch ihn verdrängte Volumen in der Messkammer 26 mittels einer Übertragungsfunktion in ein gewünschtes Fördervolumen des Verdrängerzählers 18 beziehungsweise eine Drehzahl des Antriebsmotors 20 umgerechnet und der Antriebsmotor 20 entsprechend bestromt. In der Messkammer 26 sind ein Drucksensor 36 sowie ein Temperatursensor 38 angeordnet, die kontinuierlich, die in diesem Bereich auftretenden Drücke und Temperaturen messen und wiederum der Auswerte- und Steuereinheit 34 zuführen, um Änderungen der Dichte bei der Berechnung berücksichtigen zu können.
Der Ablauf der Messungen erfolgt derart, dass bei der Berechnung eines zu ermittelnden Gesamtdurchflusses in der Auswerte- und Steuereinheit 34 sowohl ein durch die Bewegung beziehungsweise Stellung des Kolbens 28 und das damit verdrängte Volumen in der Messkammer 26 entstehender Durchfluss in der Umgehungsleitung 22 als auch ein tatsächlicher Durchfluss des Verdrängerzählers 18 in einem festgelegten Zeitintervall berücksichtigt werden und beide Durchflüsse zur Ermittlung des Gesamtdurchflusses miteinander addiert werden.
Die Ermittlung des Durchflusses am Kolben 28 erfolgt beispielsweise, indem in der Auswerte- und Steuereinheit 34, die mit dem Sensor 30 verbunden ist, die Auslenkung des Kolbens 28 differenziert wird und anschließend mit der Grundfläche des Kolbens 28 multipliziert wird, so dass sich ein Volumenstrom in der Umgehungsleitung 22 in diesem Zeitintervall ergibt.
Der Durchfluss durch den Verdrängerzähler 18 und somit in der Hauptleitung 16 kann entweder aus den ermittelten Steuerdaten zur Regelung des Verdrängerzählers 18 bestimmt werden oder über die Drehzahl berechnet werden, wenn diese direkt über optische Kodierer oder magnetoresistive Sensoren gemessen wird.
Entscheidend für hochgenaue und hochaufgelöste Messergebnisse ist eine fehlerfreie und schnelle Messung der Auslenkung des Kolbens 28. Es hat sich jedoch gezeigt, dass äußere Magnetfelder, durch elektromagnetisch arbeitende Bauteile, wie Elektromotoren oder andere stromdurchflossene Leiter als Störmagnetfelder wirken, durch die die Messergebnisse der Sensoren negativ beeinflusst werden. Um verfälschte Messwerte durch diese Störmagnetfelder zu verhindern, wird daher erfindungsgemäß zumindest ein stationärer Permanentmagnet 40 im Gehäuse 27 angeordnet, dessen magnetisches Feld auf den oder die magnetoresistiven Sensoren 30 ausschließlich in Bewegungsrichtung des Kolbens 28 wirkt und damit in der Richtung, in der der magnetoresistive Sensor 30, der als unipolarer Sensor 30 ausgeführt ist, misst. Die auf den Sensor 30 wirkenden Feldlinien dieses stationären Permanentmagneten 40 sind somit parallel zu den Feldlinienanteilen des bewegbaren Permanentmagneten 32, die durch den Sensor 30 gemessen werden und weisen die gleiche Wirkrichtung auf.
Im dargestellten Ausführungsbeispiel wird das magnetische Feld durch den ersten stationären Permanentmagneten 40 und einen zweiten stationären Permanentmagneten 42 erzeugt, die beidseits der Sensoren 30 angeordnet sind. Sie befinden sich auf einer gemeinsamen Achse 44 mit den Sensoren 30, welche parallel zu der Achse verläuft, entlang derer der Kolben 28 und damit der bewegbare Permanentmagnet 32 verschoben wird. Diese beiden stationären Permanentmagneten 40, 42 sind zum bewegbaren Permanentmagneten 32 entgegengesetzt polarisiert, so dass das auf den Sensor 30 wirkende magnetische Feld des bewegbaren Permanentmagneten 32 immer verstärkt wird. Flierdurch entsteht eine Verbreiterung des nutzbaren magnetischen Feldes und eine Verschiebung des zweiten Maximums des magnetischen Feldes in Richtung 0. Somit wird der nutzbare lineare Messbereich jedoch erweitert, was zu genaueren Messwerten führt. Diese Verschiebung der magnetischen Feldstärke durch das Vorhandensein der stationären Permanentmagnete 40, 42 bei Bewegung des Kolbens ist in der Figur 3 dargestellt.
Diese beiden stationären Permanentmagnete 40, 42 sind an den beiden Seiten der Sensoren 30 möglichst nah angebracht. Insbesondere können Sie auf einer gleichen Platine 46 wie die Sensoren 30 angeordnet werden und sich somit innerhalb eines Verfahrweges des Kolbens 28 beziehungsweise des bewegbaren Permanentmagneten befinden. In diesem Fall reicht ein relativ kleines durch die stationären Permanentmagnete 40, 42 entstehendes Magnetfeld aus, welches beispielsweise etwa 3% der Feldstärke des bewegbaren Permanentmagneten 32 entspricht. Ein Vorteil dieser Anordnung ist auch, dass die stationären Permanentmagnete 40, 42 keinen messbaren Einfluss auf den bewegbaren Permanentmagneten 32 ausüben, wodurch das Kräftegleichgewicht am Kolben 28 beeinflusst werden könnte. Die Platine 46 ist dabei auf einen Gehäuseblock 52 aus Aluminium angeordnet, der Teil des Gehäuses 27 ist und welcher einerseits eine gute Wärmeleitung aufweist und so zur Kühlung oder Erwärmung genutzt werden kann und andererseits nicht magnetisch ist, so dass eine Magnetisierung durch die Permanentmagnete 40, 42 entfällt.
Es kann jedoch notwendig sein, die stationären Permanentmagnete 40, 42 mit einem Abstand zur Platine 46 und damit den auf der Platine 46 angeordneten elektronischen Bauteilen anzuordnen. Dies hat zur Folge, dass, um dennoch eine Verschiebung des magnetischen Feldes zu erreichen, stationäre Permanentmagnete 40, 42 mit einer größeren Feldstärke verwendet werden müssen, da diese einen größeren Abstand zu den Sensoren aufweisen und sich beispielsweise außerhalb des Verfahrweges des bewegbaren Magneten 32 befinden. Die Feldstärke dieser Magneten 40, 42 kann beispielswiese 70% der Feldstärke des bewegbaren Permanentmagneten 32 betragen. Dies hat zur Folge, dass magnetische Anziehungs- und Abstoßungskräfte auf den bewegbaren Permanentmagneten 32 wirken, die eine Kolbenverschiebung zur Folge haben, wodurch die Regelung des Durchflussmessers 10 beeinflusst wird.
Um dies zu vermeiden, werden an der zu den Sensoren 30 entgegengesetzten Seite des Kolbens 28 ein dritter stationärer Permanentmagnet 48 und ein vierter stationärer Permanentmagnet 50 am Gehäuse 27 auf die Messkammer 26 wirkend angeordnet. Diese werden derart angeordnet, dass auf der Bewegungsachse 45 des bewegbaren Permanentmagneten 32 das magnetische Feld des ersten und zweiten stationären Permanentmagneten 40, 42 exakt ausgeglichen wird, also entlang dieser Achse die durch die vier stationären Permanentmagneten 40, 42, 48, 50 resultierende magnetische Kraft null ist. Dies kann beispielsweise durch eine achssymmetrische Anordnung zur Bewegungsachse 45 des bewegbaren Permanentmagneten 32 bei gleicher Feldstärke und Polung erfolgen. Das auf die Sensoren 30 wirkende magnetische Feld des ersten und zweiten stationären Permanentmagneten 40, 42 bleibt jedoch aufgrund des geringeren Abstandes dieser
Permanentmagnete im Vergleich zum dritten und vierten Permanentmagnet 48, 50 zu den Sensoren 30 weitestgehend erhalten. Diese alternative Anordnung der Permanentmagnete ist in der Figur 2 lediglich gestrichelt dargestellt und bildet eine alternative Anordnung zu den fett dargestellten Permanentmagneten 40, 42 des ersten beschriebenen Ausführungsbeispiels.
Ein derartig ausgebildeter Druckdifferenzaufnehmer liefert sehr exakte Messwerte, wodurch auch die Messung des Durchflussmessgerätes verbessert wird, da der Einfluss störender äußerer Magnetfelder überraschenderweise stark reduziert wird und andererseits der für eine exakte Messung zur Verfügung stehende lineare Bereich der Sensoren 30 beziehungsweise des sich ändernden magnetischen Feldes deutlich vergrößert wird, wodurch die Genauigkeit erhöht wird. Auf eine zusätzliche magnetische Abschirmung kann auf diese Weise verzichtet werden.
Es sollte deutlich sein, dass die Erfindung nicht auf das beschriebene Ausführungsbeispiel begrenzt ist, sondern verschiedene Modifikationen innerhalb des Schutzbereichs des Flauptanspruchs möglich sind. Insbesondere können die Magnetfelder gegebenenfalls durch eine unterschiedliche Anzahl und Anordnung stationärer Permanentmagnete erzeugt werden.

Claims

P A T E N T A N S P R Ü C H E
1. Druckdifferenzaufnehmer für ein Durchflussmessgerät mit
einem Gehäuse (27),
einer Messkammer (26), die im Gehäuse (27) ausgebildet ist, einem Kolben (28), der in der Messkammer (26) axial verschiebbar angeordnet ist,
einem Permanentmagneten (32), der im Kolben (28) angeordnet und mit dem Kolben (28) bewegbar ist und
zumindest einem magnetoresistiven Sensor (30), der eine magnetische Feldänderung in Bewegungsrichtung des bewegbaren Permanentmagneten (32) misst,
dadurch gekennzeichnet, dass
zumindest ein stationärer Permanentmagnet (40; 42) im Gehäuse (27) angeordnet ist, dessen magnetisches Feld auf den magnetoresistiven Sensor (30) ausschließlich in Bewegungsrichtung des Kolbens (28) wirkt.
2. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach Anspruch 1,
dadurch gekennzeichnet, dass
zwei stationäre Permanentmagnete (40, 42) im Gehäuse (27) angeordnet sind, die auf einer gemeinsamen Achse (44) mit dem zumindest einen magnetoresistiven Sensor (30) angeordnet sind, die parallel zur Bewegungsachse (45) des bewegbaren Permanentmagneten (32) verläuft, wobei der erste stationäre Permanentmagnet (40) an einer ersten Seite des zumindest einen magnetoresistiven Sensors (30) angeordnet ist und der zweite stationäre Permanentmagnet (42) an der gegenüberliegenden Seite des zumindest einen magnetoresistiven Sensors (30) angeordnet ist.
3. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach Anspruch 2,
dadurch gekennzeichnet, dass
die beiden stationären Permanentmagnete (40, 42) zum bewegbaren Permanentmagnet (32) entgegengesetzt gepolt sind.
4. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach einem der Ansprüche 2 oder 3,
dadurch gekennzeichnet, dass
mehrere magnetoresistive Sensoren (30) auf der Achse zwischen den beiden stationären Permanentmagneten (40, 42) angeordnet sind.
5. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach einem der Ansprüche 2 bis 4,
dadurch gekennzeichnet, dass
die beiden stationären Permanentmagnete (40, 42) einen Abstand zueinander aufweisen, der zumindest dem maximalen Verfahrweg des bewegbaren Permanentmagneten (32) entspricht.
6. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach einem der Anspruch 5,
dadurch gekennzeichnet, dass
ein dritter stationärer Permanentmagnet (48) und ein vierter stationärer Permanentmagnet (50) an der zum ersten stationären Permanentmagneten (40) und zweiten stationären Permanentmagneten (42) gegenüberliegenden Seite des Kolbens (28) angeordnet sind, und welche ein resultierendes magnetisches Feld erzeugen, welches dem resultierenden magnetischen Feld des ersten stationären Permanentmagneten (40) und des zweiten stationären Permanentmagneten (42) auf der Bewegungsachse (45) des bewegbaren Permanentmagneten (32) bezüglich der Größe des Magnetfeldes entspricht und eine entgegengesetzte Orientierung aufweist.
7. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach einem der Ansprüche 2 bis 4,
dadurch gekennzeichnet, dass
der erste stationäre Permanentmagnet (40) und der zweite stationäre Permanentmagnet (42) innerhalb des Verfahrweges des bewegbaren Permanentmagneten (32) angeordnet sind und ein magnetisches Feld erzeugen, welches auf Höhe der Bewegungsachse (45) des bewegbaren Permanentmagneten (32) kleiner ist als 5% der maximalen Feldstärke des bewegbaren Permanentmagneten (32).
8. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der erste stationäre Permanentmagnet (40) und der zweite stationäre Permanentmagnet (42) auf einer Platine (46) angeordnet sind, auf der die magnetoresisitiven Sensoren (30) angeordnet sind.
9. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
der erste stationäre Permanentmagnet (40) und der zweite stationäre Permanentmagnet (42) an einem Gehäuseblock (52) des Gehäuses (27) befestigt sind, auf dem die Platine (46) befestigt ist.
10. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass der Gehäuseblock (52) aus Aluminium oder einer Aluminiumlegierung ist.
11. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Feldstärke des ersten stationären Permanentmagneten (40) und des zweiten stationären Permanentmagneten (42) 1% bis 90% der Feldstärke des bewegbaren Permanentmagneten (32) entspricht.
12. Druckdifferenzaufnehmer für ein Durchflussmessgerät nach einem der vorhergehenden Ansprüchen,
dadurch gekennzeichnet, dass
der oder die magnetoresistiven Sensoren (30) unipolare Sensoren sind.
13. Durchflussmessgerät zur Messung zeitlich aufgelöster Durchflussvorgänge mit
einem Einlass (12),
einem Auslass (14),
einem antreibbaren Verdrängerzähler (18),
einer Umgehungsleitung (22), über die der Verdrängerzähler (18) umgehbar ist
einem Druckdifferenzaufnehmer (24), der in der Umgehungsleitung (22) angeordnet ist
und einer Auswerte- und Steuereinheit (34), über die der antreibbare Verdrängerzähler (18) in Abhängigkeit der am Druckdifferenzaufnehmer (24) anliegenden Druckdifferenz regelbar ist,
dadurch gekennzeichnet, dass
der Druckdifferenzaufnehmer (24) ein Druckdifferenzaufnehmer nach einem der vorhergehenden Ansprüche ist.
PCT/AT2019/060239 2018-07-18 2019-07-18 Druckdifferenzaufnehmer für ein durchflussmessgerät sowie durchflussmessgerät WO2020014724A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CH01448/20A CH716247B1 (de) 2018-07-18 2019-07-18 Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie Durchflussmessgerät.
JP2021502422A JP7339326B2 (ja) 2018-07-18 2019-07-18 流量測定機器用の圧力差検出器および流量測定機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATA50623/2018 2018-07-18
ATA50623/2018A AT521356B1 (de) 2018-07-18 2018-07-18 Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie Durchflussmessgerät

Publications (1)

Publication Number Publication Date
WO2020014724A1 true WO2020014724A1 (de) 2020-01-23

Family

ID=67543965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2019/060239 WO2020014724A1 (de) 2018-07-18 2019-07-18 Druckdifferenzaufnehmer für ein durchflussmessgerät sowie durchflussmessgerät

Country Status (4)

Country Link
JP (1) JP7339326B2 (de)
AT (1) AT521356B1 (de)
CH (1) CH716247B1 (de)
WO (1) WO2020014724A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116692410A (zh) * 2023-07-31 2023-09-05 山西广生胶囊有限公司 一种胶囊检测机的胶囊传送装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116734934B (zh) * 2023-08-11 2023-11-14 德阳市新泰自动化仪表有限公司 一种紧凑型电磁流量计、安装方法及测流量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574365A (en) * 1994-10-14 1996-11-12 Sumitomo Electric Industries, Ltd. Travel sensor having a magnetic sensor attached to a truncated pyramid and a movable magnet
US20050000772A1 (en) * 2003-06-11 2005-01-06 Steffen Wohner Device for sensing the axial position, in relation to the other component, of one of two components mobile relative to each other
EP2299244A1 (de) * 2009-09-18 2011-03-23 Delphi Technologies, Inc. Kupplungswegsensor für Fahrzeuggetriebe
AT512619A2 (de) 2013-06-26 2013-09-15 Avl List Gmbh Durchflussmessgerät
WO2015197575A1 (de) * 2014-06-23 2015-12-30 Avl List Gmbh Verfahren zur messung von zeitlich aufgelösten durchflussvorgängen
EP3073228A1 (de) * 2015-03-24 2016-09-28 AVL List GmbH System zur messung von zeitlich aufgelösten durchflussvorgängen von fluiden
DE102016117340A1 (de) 2015-09-15 2017-03-16 Avl List Gmbh Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie Durchflussmessgerät
WO2017046199A1 (de) * 2015-09-15 2017-03-23 Avl List Gmbh Vorrichtung mit spalttopfmotor zur messung von durchflussvorgängen von messfluiden

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115302A1 (de) * 2011-09-29 2013-04-04 Tyco Electronics Amp Gmbh Verfahren zum berührungslosen Messen einer relativen Position mittels eines Hallsensors
DE102014205566A1 (de) * 2014-03-26 2015-10-01 Robert Bosch Gmbh Sensoranordnung zur Wegerfassung an einem bewegten Bauteil
US20170122777A1 (en) * 2014-08-26 2017-05-04 Tdk Corporation Magnetic position detection device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5574365A (en) * 1994-10-14 1996-11-12 Sumitomo Electric Industries, Ltd. Travel sensor having a magnetic sensor attached to a truncated pyramid and a movable magnet
US20050000772A1 (en) * 2003-06-11 2005-01-06 Steffen Wohner Device for sensing the axial position, in relation to the other component, of one of two components mobile relative to each other
EP2299244A1 (de) * 2009-09-18 2011-03-23 Delphi Technologies, Inc. Kupplungswegsensor für Fahrzeuggetriebe
AT512619A2 (de) 2013-06-26 2013-09-15 Avl List Gmbh Durchflussmessgerät
WO2015197575A1 (de) * 2014-06-23 2015-12-30 Avl List Gmbh Verfahren zur messung von zeitlich aufgelösten durchflussvorgängen
EP3073228A1 (de) * 2015-03-24 2016-09-28 AVL List GmbH System zur messung von zeitlich aufgelösten durchflussvorgängen von fluiden
DE102016117340A1 (de) 2015-09-15 2017-03-16 Avl List Gmbh Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie Durchflussmessgerät
WO2017046199A1 (de) * 2015-09-15 2017-03-23 Avl List Gmbh Vorrichtung mit spalttopfmotor zur messung von durchflussvorgängen von messfluiden

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116692410A (zh) * 2023-07-31 2023-09-05 山西广生胶囊有限公司 一种胶囊检测机的胶囊传送装置
CN116692410B (zh) * 2023-07-31 2023-10-27 山西广生胶囊有限公司 一种胶囊检测机的胶囊传送装置

Also Published As

Publication number Publication date
JP7339326B2 (ja) 2023-09-05
JP2021529972A (ja) 2021-11-04
AT521356A4 (de) 2020-01-15
AT521356B1 (de) 2020-01-15
CH716247B1 (de) 2021-10-15

Similar Documents

Publication Publication Date Title
EP2564164B1 (de) Magnetisches längenmesssystem, längenmessverfahren sowie herstellungsverfahren eines magnetischen längenmesssystems
EP2916052B1 (de) Ventilscheibe
EP0997706B1 (de) Anordnung zur Messung einer relativen linearen Position
DE68921630T2 (de) Vorrichtung zur Messung von kleinen Verschiebungen.
DE10007968C1 (de) Mechanische Welle mit integrierter Magnetanordnung
EP2159546A2 (de) Messverfahren zur berührungslosen Erfassung linearer Relativbewegungen zwischen einer Sensorenanordnung und einem Permanentmagneten
EP1662232A1 (de) Linearer Positionssensor
DE102017222676A1 (de) Wegsensor
EP1751505A1 (de) Durchflussmengenfühler
AT521356B1 (de) Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie Durchflussmessgerät
EP2916051B1 (de) Ventilscheibe
EP1556665B1 (de) Tastkopf mit magnet und hallelement für den einsatz in einem koordinatenmessgerät
WO2016041723A1 (de) Magnetisch-induktives durchflussmessgerät mit einem vierspulen-magnetsystem
EP2017627A2 (de) Induktive drehzahlerkennung
DE19612422C2 (de) Potentiometereinrichtung mit einem linear verschiebbaren Stellelement und signalerzeugenden Mitteln
EP2492641B1 (de) Induktive Wegmesseinrichtung
EP3583388B1 (de) Sensoreinrichtung
EP2492642B1 (de) Induktive Wegmesseinrichtung
DE102009008756A1 (de) Ventileinheit
DE102016117340A1 (de) Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie Durchflussmessgerät
DE19813569A1 (de) Drehwinkelsensor
DE102012109598A1 (de) Induktive Wegmesseinrichtung
DE102006042580A1 (de) Baugruppe zur Erfassung einer Ventilstellung
DE3435910A1 (de) Magnetisch-induktiver durchflussmesser mit auswechselbaren durchflusssensoren
AT517711A4 (de) Druckdifferenzaufnehmer für ein Durchflussmessgerät sowie Durchflussmessgerät

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19749571

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10202000001448

Country of ref document: CH

ENP Entry into the national phase

Ref document number: 2021502422

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19749571

Country of ref document: EP

Kind code of ref document: A1