WO2020013620A1 - 마찰대전 발전기 및 이의 제조방법 - Google Patents

마찰대전 발전기 및 이의 제조방법 Download PDF

Info

Publication number
WO2020013620A1
WO2020013620A1 PCT/KR2019/008520 KR2019008520W WO2020013620A1 WO 2020013620 A1 WO2020013620 A1 WO 2020013620A1 KR 2019008520 W KR2019008520 W KR 2019008520W WO 2020013620 A1 WO2020013620 A1 WO 2020013620A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode structure
triboelectric generator
triboelectric
conductive
metal wool
Prior art date
Application number
PCT/KR2019/008520
Other languages
English (en)
French (fr)
Inventor
박진형
조한철
한마음
정영
윤주섭
김형재
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180080014A external-priority patent/KR102144700B1/ko
Priority claimed from KR1020180081389A external-priority patent/KR102144709B1/ko
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2020013620A1 publication Critical patent/WO2020013620A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the present invention relates to a triboelectric generator, more specifically, to the electrode structure of the metal wool to improve the productivity, the porous layer between the electrode structure is provided with a triboelectric charge that can produce electricity without a contact gap between the electrode structure. It relates to a generator and a method of manufacturing the same.
  • Triboelectric charging techniques have been studied in such a way as to generate electrical energy using an output value that is changed by rubbing against materials that are positively or negatively charged by contact with each other.
  • the technical problem to be achieved by the present invention is to fill the internal space of the triboelectric generator with a metal wool of a fine thickness or to configure each electrode structure of metal wool to facilitate the manufacturing process, and to enable stable electricity production It is done.
  • Another technical problem to be achieved by the present invention is to provide a compressible porous layer between the first electrode structure and the second electrode structure, or the first electrode structure and the porous layer is made of the same material to produce electricity It is to provide a triboelectric generator with a conductive porous layer is inserted is not required for the contact interval.
  • the triboelectric generator according to the present invention is a plate-shaped first electrode structure consisting of a conductive material with a positive charge, disposed in a plate-like shape at the bottom of the first electrode structure, a conductive material with a negative charge
  • a second electrode structure configured to be in contact with the first electrode structure in a triboelectric charge manner to generate electricity, and the first electrode structure such that the first electrode structure and the second electrode structure are contacted or spaced at predetermined intervals; It provides a filler unit disposed between the second electrode structure.
  • the pillar portion is formed in a hollow plate shape so as to be disposed on the edge of the first electrode structure and the second electrode structure, the first electrode structure and the second electrode structure is hollow of the pillar portion It is also possible to contact or space through.
  • the first electrode structure and the second electrode structure may be connected to each other so that the leader line is connected to the outside to supply electricity.
  • the first electrode structure may be composed of a metal wool or a metal plate having a positive charge.
  • the first electrode structure may be provided with a material film composed of any one of nylon, quartz, silk, cotton, and aluminum having a positive charge to cover one surface or the entire surface.
  • the second electrode structure may be composed of metal wool to increase the surface area to improve the production of electricity.
  • the second electrode structure may be provided with a polymer layer composed of a polymer having a negative charge to surround a part or the entire surface.
  • the polymer layer is composed of any one of silicon rubber, polydimethylsiloxane, Ecoflex, Dragonskin, Teflon solution, polyurethane, the silicon rubber, polydimethylsiloxane in the metal wool It is also possible to combine by combining any one of the sane, Ecoflex, Dragonskin, Teflon solution, polyurethane.
  • the metal wool is formed of a single thin linear bundle by processing a metal block, the length of the line is adjusted according to the shape, the thickness of the line is controlled to control the surface area of the metal wool. It is also possible to control the amount of electricity generated.
  • Method for manufacturing a triboelectric generator a) preparing the first electrode structure and the filler portion, b) preparing a metal wool to manufacture the second electrode structure, c) the prepared metal wool Forming a predetermined shape, d) placing the metal wool formed in the predetermined shape in a container, e) injecting and curing a polymer into the metal wool contained in the container, and f) curing the metal wool and polymer.
  • Separating the second electrode structure consisting of a container comprising: g) combining the separated second electrode structure with the first electrode structure and the filler portion to complete the triboelectric generator.
  • the plate-shaped first electrode structure made of a conductive material with a positive charge, is arranged in a plate shape on the lower end of the first electrode structure, the negative charge is And a second electrode structure which is made of a prominent conductive material to be in contact with the first electrode structure in a triboelectric charge manner and generates electricity, and is arranged to fill a space between the first electrode structure and the second electrode structure. It provides a porous layer formed porous structure to be compressed by.
  • the first electrode structure includes a plate-shaped first conductive layer made of a metal material and a lower end of the first conductive layer, and includes a first charge layer made of a conductive material having a positive charge. It is also possible.
  • the positively-charged conductive material may be made of any one of nylon, quartz, silk, cotton, aluminum or coated on the first conductive layer.
  • the second electrode structure includes a plate-shaped second conductive layer made of a metallic material and a second charge layer provided on an upper end of the second conductive layer and made of a conductive material having a negative charge. It is also possible.
  • the negatively-charged conductive material may be composed of any one of Teflon, silicone rubber, polyester, polyethylene terephthalate, or may be coated on the second conductive layer.
  • the porous layer portion is a small amount of current flows through the porous structure between the first electrode structure and the second electrode structure, the porous structure is compressed by pressing to generate a higher current. Can be.
  • the porous layer portion may be manufactured in various shapes according to the characteristics of the material.
  • the porous layer portion may be formed of a sponge structure using at least one material of polyurethane, polydimethylsiloxane, silicone rubber, ecoflex, and teflon.
  • the porous layer portion may be mixed with the conductive powder or coated on the outside to have conductivity.
  • the conductive powder may be composed of at least one material of carbon nanotubes, silver nanowires, aluminum, copper, and gold.
  • the triboelectric generator may be a sensor applied to a sensor for sensing an external force.
  • the triboelectric generator may be a triboelectric generator for wearable device for driving the device mounted on the body through the electricity generated by the external force.
  • the first electrode structure and the second electrode structure may be made of metal wool, thereby reducing time and cost through a simple and short manufacturing process, and applying a metal wool to a higher average voltage value and By having an average current value, it is possible to produce stable electricity, and even at a low external force, there is an effect of producing a higher average voltage value and average current value than the conventional triboelectric generator.
  • a compressible porous layer portion is provided between the first electrode structure and the second electrode structure, or the first electrode structure and the porous layer portion are made of the same material to produce electricity.
  • the gap is unnecessary.
  • FIG. 1 is a cross-sectional view of a triboelectric generator according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a triboelectric generator according to another embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing a material film and a polymer layer surrounding a part or the front surface of the triboelectric generator according to another embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a triboelectric generator according to another embodiment of the present invention.
  • FIG. 5 is a block diagram illustrating a method of manufacturing a triboelectric generator according to an embodiment of the present invention.
  • Figure 6 is an image showing a manufacturing method of a triboelectric charge generator according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the voltage and the current generated according to the external force of the triboelectric generator according to an embodiment of the present invention.
  • FIG. 8 is a graph showing a voltage and a current generated according to an external force of a conventional triboelectric generator.
  • FIG. 9 is a cross-sectional view of a triboelectric generator according to another embodiment of the present invention.
  • FIG. 10 is a cross-sectional view of a triboelectric generator according to another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view and a partially enlarged view of a triboelectric generator according to another embodiment of the present invention.
  • FIG. 12 is a perspective view and side view photograph of the triboelectric generator of FIG.
  • FIG. 13 is a cross-sectional view of a triboelectric generator according to another embodiment of the present invention.
  • FIG. 14 is a photograph showing the manufacturing steps of the porous layer portion according to the embodiment of the present invention.
  • the triboelectric generator according to the present invention is a plate-shaped first electrode structure composed of a conductive material with a positive charge, disposed in a plate shape at the lower end of the first electrode structure, composed of a conductive material with a negative charge said first electrode structure And a second electrode structure contacting with each other in a triboelectric charging manner to generate electricity and between the first electrode structure and the second electrode structure such that the first electrode structure and the second electrode structure are contacted or spaced at a predetermined interval. It is desirable to provide arranged filler portions.
  • FIG. 1 is a cross-sectional view of a triboelectric generator with a metal wool according to an embodiment of the present invention.
  • the triboelectric generator 100 equipped with the metal wool according to the present invention has a plate-shaped first electrode structure 110 and a lower surface of the first electrode structure 110 formed of a conductive material having a positive charge.
  • the second electrode structure 120 and the first electrode structure and the second electrode structure disposed in a plate shape and made of a conductive material with a negative charge to contact with the first electrode structure 110 in a tribostatic manner to generate electricity
  • a filler part disposed between the first electrode structure and the second electrode structure is provided to contact or space the electrode structures at predetermined intervals.
  • the triboelectric generator 100 provided with the metal wool includes a first electrode structure 110 having a plate shape made of a conductive material having a positive charge.
  • the first electrode structure 110 is formed in a plate shape and is made of a conductive material having a positive charge to provide electricity.
  • a second electrode structure disposed in the shape of a plate at the lower end of the first electrode structure 110, and made of a conductive material with a negative charge and in contact with the first electrode structure 110 in a triboelectric charging manner to generate electricity ( 120 is provided.
  • the second electrode structure 120 is formed in a plate shape and is disposed at a lower end of the first electrode structure 110 to produce electricity by friction with the first electrode structure 110. .
  • the first electrode structure 110 bears a positron and the second electrode structure 120 is made of a conductive material that bears a negative charge, thereby producing electricity by friction or contact with an external force P.
  • the first electrode structure 110 and the second electrode structure 120 are frictional due to contact by external force, such as vibration energy from the outside, and the energy is collected in a simple structure by the frictional charging effect.
  • the first electrode structure 110 and the second electrode structure 120 may be coupled to each other with the lead wires connected to the outside, and thus may transmit or store electricity generated through the lead wires to the outside.
  • a filler part disposed between the first electrode structure and the second electrode structure is provided such that the first electrode structure and the second electrode structure are contacted or spaced at a predetermined interval.
  • the filler part is disposed between the first electrode structure and the second electrode structure, and the first electrode structure and the second electrode structure are provided to be contacted by an external force or spaced apart by an external force release. .
  • the filler part is provided between the first electrode structure and the second electrode structure such that the first electrode structure and the second electrode structure maintain contact or separation.
  • the filler part may be formed in a hollow plate shape so as to be disposed at edges of the first electrode structure and the second electrode structure.
  • the pillar portion is formed in a hollow plate shape so that the pillar portion is disposed at edges of the first electrode structure and the second electrode structure.
  • the pillar part supports the edges of the first electrode structure and the second electrode structure, and the first electrode structure and the second electrode structure are contacted or separated from each other through a hollow formed at a central portion thereof.
  • the first electrode structure 110 has a positive charge at the top and the second electrode structure 120 has a negative charge at the bottom.
  • this is a representation for convenience of explanation and understanding.
  • the structure 110 may have a negative charge at the bottom or the second electrode structure 120 may have a positive charge at the four ends.
  • FIG. 2 is a cross-sectional view of a triboelectric generator with a metal wool according to another embodiment of the present invention.
  • the first electrode structures 110 and 210 may be formed of metal wool or metal plates having positive charges.
  • the first electrode structures 110 and 210 are frictionally charged with the second electrode structures 120 and 220, and the metal wool (210 of FIG. 2) or the metal plate (FIG. 2) may be positively charged to generate electricity. 1, 110), and preferably, the metal wool may be configured to increase the surface area to improve the production of electricity and simplify the manufacturing process.
  • the first electrode structures 110 and 210 formed of the metal wool having positive charges are frictionally charged with the second electrode structures 120 and 220 having negative charges to generate electricity.
  • FIG 3 is a cross-sectional view showing a material film and a polymer layer surrounding a part or the front surface of a triboelectric generator equipped with metal wool according to another embodiment of the present invention.
  • the first electrode structure 310 has a material film 312 composed of any one of nylon, quartz, silk, cotton, and aluminum having a positive charge, and the surface A or front B of the metal wool or the metal plate. It may be provided to surround.
  • the first electrode structure 310 is composed of a first conductive layer 311 and the material film 312, the first conductive layer 311 is composed of a metal wool or metal plate and the material
  • the film 312 may be made of any one of positively charged nylon, quartz, silk, cotton, and aluminum, or may be coated on the first conductive layer 311.
  • the first electrode structure 310 is bonded or coated by a positively charged metal wool or metal plate or a positively charged material such as nylon, quartz, silk, cotton, aluminum, or the like provided in the metal wool or metal plate. Can be configured.
  • the material layer 312 may be provided to surround one surface or the entire surface of the first conductive layer 311.
  • the second electrode structure 320 may be composed of metal wool to increase the surface area to improve the production of electricity, the metal wool is combined with the negatively charged polymer layer 322 second electrode structure 320 ) Can be achieved.
  • the second electrode structure 320 is provided with a second conductive layer 321 made of metal wool, and the second conductive layer 321 is made of metal wool having a thin line shape, thereby reducing the surface area. Increasing the amount of power can be increased.
  • the metal wool is combined with the polymer layer 322 made of a polymer, which is a conductive material having a negative charge, and thus has a negative charge.
  • the second electrode structure 320 is composed of a second conductive layer 321 and a polymer layer 322, the second conductive layer 321 is composed of a metal and the polymer layer 322 Silver may be formed of a polymer material to surround a portion or the entire surface of the second conductive layer 321.
  • the polymer layer 322 is composed of any one of silicon rubber, polydimethylsiloxane, Ecoflex, Dragonskin, Teflon solution, polyurethane, the silicon rubber, polydimethylsiloxane, Ecoflex Dragonskin, Teflon solution, polyurethane may be combined by curing any one of the input.
  • the polymer layer 322 is composed of any one of silicon rubber, silicon rubber, polydimethylsiloxane, Ecoflex, Dragonskin, Teflon solution, polyurethane, a part or the entire surface of the metal wool Into the metal wool formed in a certain shape so as to surround the silicon rubber, polydimethyl siloxane, Ecoflex, Dragon Skin, Teflon solution, the solution of any one of the polyurethane and the room temperature is cured after a certain time Through this, the second electrode structure 320 is completed.
  • the metal wool is formed into a single thin linear bundle by processing a metal block, the length of the line is adjusted according to the shape, the thickness of the line is controlled by controlling the surface area of the metal wool to produce the amount of electricity generated Can be controlled.
  • the metal wool is to rotate the metal block to form a single thin wire in a bundle of a predetermined shape, and can adjust the size and shape of the shape by adjusting the length of the line according to the required shape, By controlling the thickness of the line it is possible to control the surface area of the metal wool, it is possible to control the amount of electricity generated through this.
  • the metal wool having a large surface area has a large contact area during triboelectric charging, thereby increasing the production of electricity, and the metal wool having a small surface area having a small contact area during triboelectric charging, thereby reducing the production of electricity. Therefore, it is possible to control the amount of electricity produced by controlling the thickness of the metal wool.
  • the metal wool may be processed into one thin line, and the metal wool may be completed by agglomerating the lines. Therefore, the length of the line is controlled according to the size and shape of the shape, and thereby the amount of electricity can be controlled.
  • Figure 4 is a cross-sectional view of the triboelectric generator with a metal wool is inserted into the porous layer portion according to another embodiment of the present invention.
  • a porous layer portion 430 disposed to fill a space between the first electrode structure 410 and the second electrode structure 420, and having a porous structure formed to be compressed by pressure may have a filler portion (FIG. 130 in FIG. 1, 230 in FIG. 2, and 330 in FIG. 3.
  • the porous layer part 430 is disposed between the first electrode structure 410 and the second electrode structure 420, and is porous when compressed or restored to its original shape when pressed. It is formed into a structure.
  • the porous layer part 430 is disposed so that there is no empty space between the first electrode structure 410 and the second electrode structure 420, so that it is compressed when pressed or restored to its original shape when released. Composed of elastic material, when external force is applied, it is compressed to produce electricity, and when external force is released, it is restored to its original shape.
  • the porous layer portion 430 is a small amount of current flows in the porous structure between the first electrode structure 410 and the second electrode structure 420, the porous structure is compressed by the pressurized higher current Can be generated.
  • the porous layer part 430 is disposed to fill a space between the first electrode structure 410 and the second electrode structure 420, and due to the porous structure of the first electrode structure ( 410 and the second electrode structure 420 and a small amount of current flows due to the small contact area, and when the porous layer portion 430 is compressed by an external force, the first electrode structure 410 and the The contact area with the second electrode structure 420 is increased to generate a higher current due to frictional charging.
  • the porous layer 430 increases the frictional force by the pressure at the time of pressurization and increases the contact surface, a higher current is generated, and the frictional force is reduced when the pressure is released, so that the first electrode structure 410 and the first electrode are reduced.
  • the current flowing between the two electrode structures 420 is lowered.
  • the porous layer part 430 fills the space between the first electrode structure 410 and the second electrode structure 420, and thus, the first electrode structure 410 is subjected to repetitive external force by a buffering action. And it is possible to prevent the second electrode structure 420 is damaged, it is possible to continuously produce electricity.
  • the porous layer part 430 may be formed of a non-conductive material.
  • the porous layer part 430 may be provided between the first electrode structure 410 and the second electrode structure 420 as a non-conductive material. Due to the contact between the first electrode structure 410 and the second electrode structure 420 may be generated electricity.
  • the porous layer part 430 separates the first electrode structure 410 and the second electrode structure 420 when non-conductiveally pressed, and is compressed when pressed by an external force, and is compressed by the external structure.
  • the electrode structure 410 and the second electrode structure 420 may be in contact with each other, thereby generating electricity.
  • porous layer part 430 may be configured of any one of polyurethane, polydimethylsiloxane, silicon rubber, ecoflex, and Teflon to be compressed upon pressurization and to restore shape upon release of pressurization.
  • the porous layer part 430 is disposed between the first electrode structure 410 and the second electrode structure 420, and is restored to its original shape when compressed by an external force or released of the external force.
  • it may be composed of polyurethane, polydimethylsiloxane, silicone rubber, Ecoflex, Teflon.
  • the porous layer part 430 may repeatedly produce compression or shape restoration to generate electricity by continuous external force.
  • porous layer part 430 may be mixed with the conductive powder or coated on the outside to have conductivity.
  • the porous layer part 430 is manufactured by mixing with the conductive powder so as to contact the first electrode structure 410 and the second electrode structure 420 to produce electricity, or the conductive powder to the outside. Can be coated.
  • the conductive powder may be composed of at least one material of carbon nanotubes, silver nanowires, aluminum, copper, and gold, and carbon nanotubes as polyurethane, polydimethylsiloxane, silicon rubber, ecoflex, Teflon material and conductive powder. At least one material of silver nanowires, aluminum, copper, and gold may be added to manufacture the porous layer part 430.
  • FIG. 5 is a block diagram illustrating a method of manufacturing a triboelectric generator equipped with metal wool according to an embodiment of the present invention.
  • a method of manufacturing a triboelectric generator with a metal wool according to the present invention, a) preparing the first electrode structure and the filler unit (S510), b) the first Preparing a metal wool to manufacture an electrode structure (S520), c) forming the prepared metal wool in a predetermined shape (S530), and d) putting the metal wool formed in the predetermined shape in a container.
  • the operator 1) prepare a metal wool consisting of a thin thread, 2) form the prepared metal into a desired shape and put it in a container, 3) by putting the silicon rubber dissolved in the metal wool contained in the container by a desired amount 4) to separate the second electrode structure 320 made of a hardened metal wool and a silicon rubber.
  • a triboelectric generator 300 provided with metal wool may be manufactured.
  • the first electrode structure 310 and the second electrode structure 320 may be made of metal wool to provide an electrode structure without a complicated process, and the polymer layer is formed of a silicone rubber that is cured at room temperature.
  • the second electrode structure 320 may be manufactured without additional processes to reduce time and cost.
  • the triboelectric generator in which the conductive porous layer is inserted according to the present invention may be a sensor to which the triboelectric generator is applied to a sensor for sensing an external force.
  • the senor to which the triboelectric generator is applied may be utilized as a sensor by applying a triboelectric generator to generate electricity according to an external force to convert and generate electricity generated by the action of the external force into a signal.
  • the triboelectric generator inserted into the conductive porous layer according to the present invention may be a triboelectric generator for wearable device for driving the device mounted on the body through the electricity generated by the external force.
  • the triboelectric generator in which the conductive porous layer part is inserted generates electricity according to an external force, thereby supplying power to the wearable device mounted on the body.
  • FIG. 7 is a graph showing the voltage and current generated according to the external force of the triboelectric generator with metal wool according to an embodiment of the present invention
  • Figure 8 is a voltage and current generated according to the external force of the conventional triboelectric generator Is a graph.
  • the triboelectric generator with metal wool includes a first electrode structure made of aluminum and a second electrode structure surrounded by a polymer layer of metal wool made of aluminum.
  • the graph shows an OSC (oscilloscope) measurement of the current and voltage generated by the external force.
  • the triboelectric generator with metal wool according to the present invention is preferably manufactured to have at least an average voltage value of 800V and an average current value of 0.4 mA or more when an external force of 5 kgf is applied.
  • the conventional triboelectric generator shown in Figure 8 is a current generated by the first electrode structure made of aluminum and the second electrode structure surrounded by a polymer layer of CNT (carbon nanotube) is pressed by the external force (5kgf) And a graph of an OSC (oscilloscope) measurement of voltage.
  • the average voltage value is 80V
  • the average current value is 15 mA.
  • the average voltage value and the average current value are at least 10 times higher.
  • a metal wool-applied triboelectric generator is used to simplify the work process, saving time and money, and having a higher average voltage value and average current value, thereby producing stable electricity, and at low external force. It is possible to produce higher average voltage values and average current values higher than conventional triboelectric generators.
  • FIG. 9 is a cross-sectional view of a triboelectric generator inserted with a conductive porous layer portion according to an embodiment of the present invention.
  • the triboelectric generator 500 in which the conductive porous layer part is inserted according to the present invention includes a plate-shaped first electrode structure 510 and a lower end of the first electrode structure 510 made of a conductive material having a positive charge.
  • the second electrode structure 520, the first electrode structure 510 is disposed in a plate-like shape, made of a conductive material that is negatively charged to contact with the first electrode structure 510 in a triboelectric charge manner to generate electricity.
  • a porous layer part 530 disposed to fill a space between the second electrode structures 520 and having a porous structure formed to be compressed by pressure.
  • the triboelectric generator 500 into which the conductive porous layer part is inserted includes a plate-shaped first electrode structure 510 made of a conductive material having a positive charge.
  • the first electrode structure 510 is formed in a plate shape and is made of a conductive material having a positive charge to provide electricity.
  • the second electrode structure 520 is formed in a plate shape and is disposed at the lower end of the first electrode structure 510 to produce electricity by friction with the first electrode structure 510. .
  • the first electrode structure 510 has a positron and the second electrode structure 520 is made of a conductive material having a negative charge, so as to be rubbed by an external force P, thereby producing electricity.
  • the first electrode structure 510 and the second electrode structure 520 are frictional due to contact by external force, such as vibration energy from the outside, and the energy is collected in a simple structure by the frictional charging effect.
  • the first electrode structure 510 and the second electrode structure 520 may be coupled to the lead wires connected to the outside, respectively, and may transmit or store electricity generated through the lead wires to the outside.
  • a porous layer part 530 is disposed to fill a space between the first electrode structure 510 and the second electrode structure 520 and has a porous structure formed to be compressed by pressure.
  • the porous layer part 530 is disposed between the first electrode structure 510 and the second electrode structure 520, and is porous when compressed or restored to its original shape when pressed. It is formed into a structure.
  • the porous layer part 530 is disposed such that there is no empty space between the first electrode structure 510 and the second electrode structure 520, and is compressed or restored to its original shape when pressed. Composed of elastic material, when external force is applied, it is compressed to produce electricity, and when external force is released, it is restored to its original shape.
  • the first electrode structure 510 has a positive charge at the top and the second electrode structure 520 has a negative charge at the bottom, but it is described for convenience of explanation and understanding.
  • the structure 510 is disposed at the bottom to have a negative charge or the second electrode structure 520 is disposed at the top to have a positive charge.
  • the first electrode structure 510 may be formed of or coated with any one of nylon, quartz, silk, cotton, and aluminum having a positive charge.
  • the first electrode structure 510 is composed of a first conductive layer 511 and a first charge layer 512
  • the first conductive layer 511 is composed of a metal
  • the first charge The layer 512 may be made of any one of positively charged nylon, quartz, silk, cotton, and aluminum, or may be coated on the first conductive layer 511.
  • the negatively conductive conductive material may be formed of or coated with any one of Teflon, silicon rubber, polyester, and polyethylene terephthalate on the second electrode structure 520.
  • the second electrode structure 520 is composed of a second conductive layer 521 and a first charge layer 522
  • the second conductive layer 521 is composed of a metal
  • the second charge The layer 522 may be composed of any one of negatively charged Teflon, silicone rubber, polyester, polyethylene terephthalate, or may be coated on the second conductive layer 521.
  • the porous layer part 530 is disposed to fill a space between the first electrode structure 510 and the second electrode structure 520, and due to the porous structure, the first electrode structure ( A small amount of current flows due to a small contact area disposed in the 510 and the second electrode structure 520, and when the porous layer part 530 is compressed by an external force, the first electrode structure 510 and the second electrode structure 520 are compressed. The contact area with the second electrode structure 520 is increased to generate a higher current due to frictional charging.
  • the porous layer 530 increases the frictional force by the pressure at the time of pressurization and increases the contact surface, a higher current is generated and the frictional force is reduced when the pressure is released, so that the first electrode structure 510 and the first The current flowing between the two electrode structures 520 is lowered.
  • the porous layer part 530 fills the space between the first electrode structure 510 and the second electrode structure 520, and thus, the first electrode structure 510 is subjected to repetitive external force by a buffering action. And it is possible to prevent the second electrode structure 520 is damaged, it is possible to continuously produce electricity.
  • the porous layer part 530 may be made of a non-conductive material.
  • the porous layer part 530 may be provided between the first electrode structure 510 and the second electrode structure 520 of a non-conductive material, and may be provided in a porous structure when compressed by pressure. Due to this, the first electrode structure 510 and the second electrode structure 520 may be in contact with each other to generate electricity.
  • the porous layer part 530 separates the first electrode structure 510 and the second electrode structure 520 when non-conductiveally pressed, and is compressed when pressed by an external force, and the first layer due to the porous structure.
  • the electrode structure 510 and the second electrode structure 520 may be in contact with each other, thereby generating electricity.
  • porous layer portion 530 may be composed of any one of polyurethane, polydimethylsiloxane, silicon rubber, ecoflex, Teflon to be compressed when pressed, and to restore the shape when the pressure is released.
  • the porous layer part 530 is disposed between the first electrode structure 510 and the second electrode structure 520 and is restored to its original shape when compressed by an external force or released of the external force.
  • it may be composed of polyurethane, polydimethylsiloxane, silicone rubber, Ecoflex, Teflon.
  • the porous layer unit 530 may produce electricity by the continuous external force by repeated compression or shape restoration.
  • porous layer part 530 may be mixed with the conductive powder or coated on the outside to have conductivity.
  • the porous layer part 530 is manufactured by mixing with the conductive powder to produce electricity by contacting the first electrode structure 510 and the second electrode structure 520 or the conductive powder to the outside. Can be coated.
  • the conductive powder may be composed of at least one of carbon nanotubes, silver nanowires, aluminum, copper, and gold, and may include polyurethane, polydimethylsiloxane, silicon rubber, ecoflex, Teflon material, and carbon nanotubes as conductive powders. At least one material of silver nanowires, aluminum, copper, and gold may be added to manufacture the porous layer part 530.
  • FIG. 10 is a cross-sectional view of a triboelectric generator inserted with a conductive porous layer according to another embodiment of the present invention.
  • the first electrode structure 610 and the porous layer part 630 may be formed of a porous structure of the same material having a positive charge.
  • first electrode structure 610 and the porous layer portion 630 may be made of the same material to be in contact with the second electrode structure 620 to produce electricity, polyurethane, polydimethyl It is also possible to produce electricity by making one layer from at least one of carbon nanotubes, silver nanowires, aluminum, copper, and gold using siloxane, silicon rubber, ecoflex, Teflon material and conductive powder.
  • the first electrode structure 610 is a positively conductive material is mixed with or coated with any one of nylon, quartz, silk, cotton, aluminum, the porous layer portion 630 is the positively conductive The materials can be mixed together and can be constructed nonconductively.
  • the second electrode structure 620 is composed of a second conductive layer 621 and a second charge layer 622
  • the second conductive layer 621 is the first electrode structure 610 and the porous. It may be made of the same material as the layer portion 630, at least one of carbon nanotubes, silver nanowires, aluminum, copper, gold as a polyurethane, polydimethylsiloxane, silicon rubber, ecoflex, Teflon material and conductive powder
  • the charge layer 622 may include one of Teflon, silicon rubber, ecoflex, polyurethane, polyester, and polyethylene terephthalate, which is a conductive material having a negative charge, and thus the second conductive layer 621. This negative charge is arranged.
  • FIG. 11 is a cross-sectional view and a partially enlarged view of a triboelectric generator in which a conductive porous layer is inserted
  • FIG. 12 is a perspective view and a side view of the triboelectric generator of FIG. 11.
  • the first electrode structure 610 and the porous layer part 630 are composed of a mixed electrode structure 710, which is a compressible electrode structure, and the second electrode structure 720. ) To produce electricity.
  • the first electrode structure 610 and the porous layer part 630 are composed of the mixed electrode structure 710 without the additional configuration, and the second electrode structure 720 is configured to face each other, thereby achieving a simple structure. Cost reduction and production efficiency can be achieved.
  • the mixed electrode structure 710 is made of polyurethane, polydimethylsiloxane, silicon rubber, ecoflex, Teflon material to form a porous structure, at least of carbon nanotubes, silver nanowires, aluminum, copper, gold as a conductive powder
  • One or more materials are mixed or coated, and the second electrode structure 720 and the conductive material that are positively charged to generate electricity by being pressed by an external force may be mixed with any one of nylon, quartz, silk, cotton, and aluminum. It may be coated.
  • the second electrode structure 720 includes a second conductive layer 721 and a second charge layer 722, and the second conductive layer 721 includes the mixed electrode structure 710 and the porous layer part. It may be made of the same material as 730, and composed of at least one material of carbon nanotubes, silver nanowires, aluminum, copper, gold as a polyurethane, polydimethylsiloxane, silicon rubber, ecoflex, Teflon material and conductive powder
  • the charge layer 722 may be formed of any one of negatively conductive conductive materials such as teflon, silicon rubber, ecoflex, polyurethane, polyester, and polyethylene terephthalate, and the second conductive layer 721 may be negatively charged. It is arranged to stand.
  • the bottom surface of the mixed electrode structure 710 may be curved in a curved shape, and the second conductive layer 721 and the second charge layer 722 facing the same may be curved in a curved shape.
  • the mixed electrode structure 710 faces the mixed electrode structure 710 and the second charge layer 722 so as to increase the productivity of electricity by increasing the contact area with the second electrode structure 720.
  • the concave and convex is formed in a curved shape, and correspondingly, the upper surface of the second conductive layer 721 is also formed in the concave and convex shape, thereby increasing the contact area and occurring due to the increased frictional force due to the concave and convex.
  • the amount of electricity produced can also be increased.
  • the triboelectric generator inserted into the conductive porous layer according to the present invention may be a sensor to which the triboelectric generator is applied to the sensor for sensing the external force.
  • the senor to which the triboelectric generator is applied may be utilized as a sensor by applying a triboelectric generator to generate electricity according to an external force to convert and generate electricity generated by the action of the external force into a signal.
  • the triboelectric generator inserted into the conductive porous layer according to the present invention may be a triboelectric generator for wearable device for driving the device mounted on the body through electricity generated by the external force.
  • the triboelectric generator in which the conductive porous layer part is inserted generates electricity according to an external force, thereby supplying power to the wearable device mounted on the body.
  • FIG. 13 is a cross-sectional view of a triboelectric generator with an integrated electrode structure according to another embodiment of the present invention.
  • the triboelectric generator 800 having the integrated electrode structure according to the present invention may include a first electrode structure 810 and a negative charge layer 821 provided at a lower end of the first electrode structure 810. It is composed of a second electrode structure 820 wrapped by.
  • the first electrode structure 810 is made of a conductive material with a positive charge, and is formed of a porous plate-like shape so as to be electrically connected to the outside, so that the first electrode structure 810 is compressed to be compressed or compressed when released by an external force. It may be composed of a porous structure using at least one or more of the material that is a material, such as polyurethane, polydimethylsiloxane, silicon rubber, Ecoflex, Teflon.
  • the first electrode structure 810 is composed of at least one material of carbon nanotubes, silver nanowires, aluminum, copper, gold, which are conductive powders, or coated on the outside thereof to have conductivity, and is a conductive material having a positive charge.
  • Nylon, quartz, silk, cotton, aluminum can be mixed with or coated on the outside.
  • the lower electrode of the first electrode structure is provided with a second electrode structure 820 wrapped by the negative charge layer 821, the second electrode structure 820 is a negative charge layer 821 and simple to manufacture,
  • the metal wool 822 is easily bent.
  • the metal wool 822 is made of a negatively charged polymer, preferably made of silicon louver.
  • the second electrode structure 820 contains a metal wool 822 formed in a desired shape in a container and injects the dissolved silicon louver to cure at room temperature. Accordingly, the second electrode structure 820 is made of a silicon louver formed of a metal wool 822 therein and surrounding the metal wool 822.
  • a first electrode structure 810 with positive charges is provided at the top, and a second electrode structure 820 with negative charges is provided at the bottom to compress the first electrode structure 810 having pores formed by external force.
  • the surface area is increased and electricity is generated by the triboelectric charging method.
  • the metal wool 822 is processed by agglomerated with a thin linear metal
  • the metal wool 822 is processed by a single line to be agglomerated to be manufactured by adjusting the length of the line according to the volume and shape.
  • the bulky one can be produced by lengthening the length of the line and the small volume can be manufactured by shortening the length of the line, and can control the surface area of the metal wool 822 by controlling the thickness of the line, and according to the surface area, You can change the yield.
  • the amount of electricity produced is controlled by controlling the length and thickness of the metal wool 822.
  • FIG. 14 is a view illustrating a manufacturing step of a porous layer part according to another embodiment of the present invention.
  • the porous layer part 530 is formed of a porous layer structure material using polyurethane, polydimethylsiloxane, silicon rubber, ecoflex, Teflon, etc., and the structure material of the porous layer is At least one material of carbon nanotubes, silver nanowires, aluminum, copper, and gold, which are conductive powders, is mixed or coated to have conductivity.
  • step a) the conductive powder and sugar are mixed, and in step b), the mixed powder is put in a mold to maintain a constant shape, and in step c) , The structural material of the porous layer is mixed to fix the shape of the mixed powder having a constant shape, and in step d), it is dissolved in water to complete the preparation of the porous layer part.
  • the porous layer part 530 may be arranged to be compressible between the first electrode structure 510 and the second electrode structure 520 through the manufacturing process as described above, or the first electrode structure 510 may be compressed with the first electrode structure 510. It is made of one electrode structure can be in contact with the second electrode structure 520 to produce electricity by frictional charging.
  • first electrode structure 110, 210, 310, and 410: first electrode structure
  • Triboelectric generator with conductive porous layer 500, 600, 700, 800: Triboelectric generator with conductive porous layer
  • first electrode structure 510, 610, and 810: first electrode structure

Abstract

본 발명은 마찰대전 발전기 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 양전하를 띄는 도전성 재료로 구성된 판상 형상의 제 1 전극구조체, 상기 제 1 전극구조체의 하단에 판상 형상으로 배치되고, 음전하를 띄는 도전성 재료로 구성되어 상기 제 1 전극구조체와 마찰대전 방식으로 접촉되어 전기를 발생시키는 제 2 전극구조체 및 상기 제 1 전극구조체 및 상기 제 2 전극구조체가 소정의 간격으로 접촉 또는 이격되도록 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이에 배치된 필러부를 포함한다.

Description

마찰대전 발전기 및 이의 제조방법
본 발명은 마찰대전 발전기에 관한 것으로, 더욱 상세하게는, 전극구조체를 메탈울로 구성하여 생산성을 향상시키고, 전극구조체 사이에 다공레이어부가 구비되어 전극구조체 간의 접촉간격 없이도 전기를 생산할 수 있는 마찰대전 발전기 및 이의 제조방법에 관한 것이다.
석탄 및 석유 등 화석 에너지를 이용할 수 있게 된 이후, 기술의 개발에 의해 에너지 수요가 급증하게 되면서, 화석 에너지의 고갈에 대한 염려가 증가하고 있다. 더군다나 에너지 자립도가 낮은 나라들은 대부분의 화석 에너지를 수입에 의존하고 있어, 국가의 경제 발전에 저해요소로 작용하고 있다.
이에 따라서, 빛, 열, 진동 등의 주변 환경에서 버려지는 에너지를 수확하여 전기 에너지로 생산 및 이용하는 에너지 하베스팅(Energy Harvesting) 기술에 관한 연구가 활발하게 진행되고 있다. 에너지 하베스팅 기술은 온도, 빛, 전자기장, 마찰 등 다양한 형태로 소모되고 있는 에너지를 전기 에너지로 변환하는 방식으로 연구되고 있다.
이 중, 기계적인 운동에서 버려지는 에너지를 마찰 대전 기반의 에너지 수확 원리를 이용하여 전기 에너지로 수확하는 기술 역시 연구가 활발하게 이루어지고 있다.
마찰 대전 기술은 접촉에 의해 양전하 또는 음전하로 대전되는 물질들을 서로 마찰시킴으로써 변화되는 출력 값을 이용하여 전기 에너지를 생성하는 방식으로 연구되어 왔다.
하지만, 이러한 마찰 대전 기술은 전기를 생성하기 위해 양전하 또는 음전하로 대전되는 물질을 제조하기 위한 복잡한 공정이 필요하였고 이에 따라 많은 시간 및 비용 등이 소모되는 문제가 발생되었다.
<선행특허문헌>
대한민국 공개특허 10-2017-0126522
대한민국 특허출원 10-2018-0080014
대한민국 특허출원 10-2018-0081389
대한민국 특허출원 10-2018-0139056
대한민국 특허출원 10-2018-0081390
대한민국 특허출원 10-2018-0123304
대한민국 특허출원 10-2018-0146582
본 발명이 이루고자 하는 기술적 과제는 마찰대전 발전기의 내부 공간을 미세한 두께의 메탈울로 채우거나 또는 각각의 전극구조체를 메탈울로 구성하여 제조 공정을 쉽게 하고, 안정적인 전기 생산을 할 수 있도록 함을 목적으로 한다.
또한, 본 발명이 이루고자 하는 또다른 기술적 과제는 제 1 전극구조체 및 제 2 전극구조체 사이에 압축가능한 다공레이어부가 구비되거나, 상기 제 1 전극구조체 및 상기 다공레이어부가 동일한 소재로 구성되어 전기를 생산하기 위한 접촉간격이 필요하지 않은 도전성 다공레이어부가 삽입된 마찰대전 발전기를 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명에 따른 마찰대전 발전기는 양전하를 띄는 도전성 재료로 구성된 판상 형상의 제 1 전극구조체, 상기 제 1 전극구조체의 하단에 판상 형상으로 배치되고, 음전하를 띄는 도전성 재료로 구성되어 상기 제 1 전극구조체와 마찰대전 방식으로 접촉되어 전기를 발생시키는 제 2 전극구조체 및 상기 제 1 전극구조체 및 상기 제 2 전극구조체가 소정의 간격으로 접촉 또는 이격되도록 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이에 배치된 필러부를 제공한다.
본 발명의 실시예에 있어서, 상기 필러부는 제 1 전극구조체 및 상기 제 2 전극구조체의 가장자리에 배치되도록 중공의 판상형상으로 형성되고, 상기 제 1 전극구조체 및 상기 제 2 전극구조체가 상기 필러부의 중공을 통해 접촉 또는 이격되는 것도 가능하다.
본 발명의 실시예에 있어서, 상기 제 1 전극구조체 및 상기 제 2 전극구조체는 외부로 연결되어 전기를 공급하도록 각각 인출선이 연결된 것도 가능하다.
본 발명의 실시예에 있어서, 상기 제 1 전극구조체는 양전하를 띄는 메탈울 또는 메탈플레이트로 구성된 것도 가능하다.
본 발명의 실시예에 있어서, 상기 제 1 전극구조체에는 양전하를 띄는 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나로 구성된 재료막이 일면 또는 전면을 감싸도록 구비된 것도 가능하다.
본 발명의 실시예에 있어서, 상기 제 2 전극구조체는 표면적을 증가시켜 전기의 생산량을 향상시키도록 메탈울로 구성된 것일 수 있다.
본 발명의 실시예에 있어서, 상기 제 2 전극구조체에는 음전하를 띄는 폴리머로 구성된 폴리머층이 일부 또는 전면을 감싸도록 구비된 것일 수 있다.
본 발명의 실시예에 있어서, 상기 폴리머층은 실리콘러버, 폴리다이메틸실록세인, 에코플렉스, 드래곤스킨, 테프론 용액, 폴리우레탄 중 어느 하나로 구성되고, 상기 메탈울에 상기 실리콘러버, 폴리다이메틸실록세인, 에코플렉스, 드래곤스킨, 테프론 용액, 폴리우레탄 중 어느하나를 투입하여 함께 경화시켜 결합되는 것도 가능하다.
본 발명의 실시예에 있어서, 상기 메탈울은 금속블럭을 가공하여 하나의 가는 선 형상의 뭉치로 형성되고 형상에 따라 상기 선의 길이를 조절하고, 상기 선의 굵기를 조절하여 상기 메탈울의 표면적을 제어하여 발생되는 전기의 생산량을 제어하는 것도 가능하다.
본 발명에 따른 마찰대전 발전기의 제조방법은, a) 상기 제 1 전극구조체 및 필러부를 준비하는 단계, b) 상기 제 2 전극구조체를 제조하기 위해 메탈울을 준비하는 단계, c) 상기 준비된 메탈울을 소정의 형상으로 형성하는 단계, d) 상기 소정의 형상으로 형성된 메탈울을 용기에 담는 단계, e) 용기에 담긴 메탈울에 폴리머를 주입하여 경화시키는 단계 및 f) 상기 경화된 메탈울 및 폴리머로 구성된 제 2 전극구조체를 용기에서 분리시키는 단계, g) 상기 분리된 제 2 전극구조체를 제 1 전극구조체 및 필러부와 결합하여 마찰대전 발전기를 완성하는 단계를 제공한다.
또한, 상기 기술적 과제를 달성하기 위하여, 본 발명에 따른 마찰대전 발전기는, 양전하를 띄는 도전성 재료로 구성된 판상 형상의 제 1 전극구조체, 상기 제 1 전극구조체의 하단에 판상 형상으로 배치되고, 음전하를 띄는 도전성 재료로 구성되어 상기 제 1 전극구조체와 마찰대전 방식으로 접촉되어 전기를 발생시키는 제 2 전극구조체 및 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이의 공간을 채우도록 배치되고, 가압에 의해 압축되도록 다공성구조 형성된 다공레이어부를 제공한다.
본 발명의 실시예에 있어서, 상기 제 1 전극구조체는 금속 소재로 구성된 판상형상의 제 1 도전층 및 상기 제 1 도전층의 하단에 구비되고, 양전하를 띄는 도전성 재료로 구성된 제 1 전하층을 포함하는 것도 가능하다.
본 발명의 실시예에 있어서, 상기 양전하를 띄는 도전성 재료는 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나로 구성되거나 상기 제 1 도전층에 코팅된 것도 가능하다.
본 발명의 실시예에 있어서, 상기 제 2 전극구조체는 금속 소재로 구성된 판상형상의 제 2 도전층 및 상기 제 2 도전층의 상단에 구비되고, 음전하를 띄는 도전성 재료로 구성된 제 2 전하층을 포함하는 것도 가능하다.
본 발명의 실시예에 있어서, 상기 음전하를 띄는 도전성 재료는 테프론, 실리콘러버, 폴리에스테르, 폴리에틸렌 테레프타레이트 중 어느 하나로 구성되거나 상기 제 2 도전층에 코팅된 것도 가능하다.
본 발명의 실시예에 있어서, 상기 다공레이어부는 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이에서 다공성구조로 소량의 전류가 흐르고, 가압에 의해 다공성구조가 압축되어 보다 높은 전류가 발생되는 것일 수 있다.
본 발명의 실시예에 있어서, 상기 다공레이어부는 소재의 특성에 따라 다양한 형상으로 제조가능한 것일 수 있다.
본 발명의 실시예에 있어서, 상기 다공레이어부는 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 중 적어도 하나 이상의 소재를 이용하여 스펀지 구조로 구성된 것도 가능하다.
본 발명의 실시예에 있어서, 상기 다공레이어부는 도전성을 갖도록 도전성 파우더와 혼합되거나 외부에 코팅된 것도 가능하다.
본 발명의 실시예에 있어서, 상기 도전성 파우더는 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재로 구성된 것도 가능하다.
본 발명의 실시예에 있어서, 상기 마찰대전 발전기가 외력을 감지하는 센서에 적용되는 센서일 수 있다.
본 발명의 실시예에 있어서, 마찰대전 발전기는 외력에 의해 발생된 전기를 통해 신체에 장착된 장치를 구동하는 웨어러블 장치용 마찰대전 발전기일 수 있다.
본 발명의 실시예에 따르면, 제 1 전극구조체 및 제 2 전극구조체를 메탈울로 구성하여 단순하고 짧은 제조 공정을 통해 시간 및 비용을 절감할 수 있으며, 메탈울을 적용하여 보다 높은 평균전압값 및 평균전류값을 가짐으로써, 안정적인 전기를 생산할 수 있으며, 낮은 외력에도 종래의 마찰대전 발전기 보다 높은 높은 평균전압값 및 평균전류값을 생산할 수 있는 효과가 있다.
본 발명의 또다른 실시예에 따르면, 제 1 전극구조체 및 제 2 전극구조체 사이에 압축가능한 다공레이어부가 구비되거나, 상기 제 1 전극구조체 및 상기 다공레이어부가 동일한 소재로 구성되어 전기를 생산하기 위한 접촉간격이 불필요한 효과가 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일실시예에 따른 마찰대전 발전기의 단면도이다.
도 2는 본 발명의 또다른 실시예에 따른 마찰대전 발전기의 단면도이다.
도 3은 본 발명의 또다른 실시예에 따른 마찰대전 발전기에서 일부 또는 전면을 감싸는 재료막 및 폴리머층을 도시한 단면도이다.
도 4는 본 발명의 또다른 실시예에 따른 마찰대전 발전기의 단면도이다.
도 5는 본 발명의 일실시예에 따른 마찰대전 발전기의 제조방법을 도시한 블럭도이다.
도 6은 본 발명의 일실시예에 따른 마찰대전 발전기의 제조방법을 나타낸 촬상도이다.
도 7은 본 발명의 일실시예에 따른 마찰대전 발전기의 외력에 따라 발생되는 전압 및 전류를 나타낸 그래프이다.
도 8은 종래의 마찰대전 발전기의 외력에 따라 발생되는 전압 및 전류를 나타낸 그래프이다.
도 9는 본 발명의 또다른 실시예에 따른 마찰대전 발전기의 단면도이다.
도 10은 본 발명의 또다른 실시예에 따른 마찰대전 발전기의 단면도이다.
도 11은 본 발명의 또다른 실시예에 따른 마찰대전 발전기의 단면도 및 부분확대도이다.
도 12는 도 11의 마찰대전 발전기의 사시도 및 측면도 사진이다.
도 13은 본 발명의 또다른 실시예에 따른 마찰대전 발전기의 단면도이다.
도 14는 본 발명의 실시예에 따른 다공레이어부의 제조단계를 도시한 사진이다.
본 발명에 따른 마찰대전 발전기는 양전하를 띄는 도전성 재료로 구성된 판상 형상의 제 1 전극구조체, 상기 제 1 전극구조체의 하단에 판상 형상으로 배치되고, 음전하를 띄는 도전성 재료로 구성되어 상기 제 1 전극구조체와 마찰대전 방식으로 접촉되어 전기를 발생시키는 제 2 전극구조체 및 상기 제 1 전극구조체 및 상기 제 2 전극구조체가 소정의 간격으로 접촉 또는 이격되도록 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이에 배치된 필러부를 제공하는 것이 바람직하다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 메탈울이 구비된 마찰대전 발전기의 단면도이다.
도 1을 참조하면, 본 발명에 따른 메탈울이 구비된 마찰대전 발전기(100)는 양전하를 띄는 도전성 재료로 구성된 판상 형상의 제 1 전극구조체(110), 제 1 전극구조체(110)의 하단에 판상 형상으로 배치되고, 음전하를 띄는 도전성 재료로 구성되어 상기 제 1 전극구조체(110)와 마찰대전 방식으로 접촉되어 전기를 발생시키는 제 2 전극구조체(120) 및 상기 제 1 전극구조체 및 상기 제 2 전극구조체가 소정의 간격으로 접촉 또는 이격되도록 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이에 배치된 필러부를 제공한다.
본 발명의 실시예에 있어서, 메탈울이 구비된 마찰대전 발전기(100)는 양전하를 띄는 도전성 재료로 구성된 판상 형상의 제 1 전극구조체(110)를 포함한다.
보다 상세하게는, 상기 제 1 전극구조체(110)는 판상형상으로 형성되고, 양전하를 띄는 도전성 재료로 구성되어 전기를 생산하도록 구비된다.
또한, 제 1 전극구조체(110)의 하단에 판상 형상으로 배치되고, 음전하를 띄는 도전성 재료로 구성되어 상기 제 1 전극구조체(110)와 마찰대전 방식으로 접촉되어 전기를 발생시키는 제 2 전극구조체(120)가 구비된다.
보다 상세하게는, 상기 제 2 전극구조체(120)는 판상형상으로 형성되어 상기 제 1 전극구조체(110)의 하단에 배치되고, 상기 제 1 전극구조체(110)와 마찰에 의해서 전기를 생산하게 된다.
즉, 상기 제 1 전극구조체(110)는 양전자를 띄고 상기 제 2 전극구조체(120)는 음전하를 띄는 도전성 재료로 구성되어 외력(P)에 의해 마찰 또는 접촉됨으로써, 전기를 생산할 수 있다.
따라서, 상기 제 1 전극구조체(110) 및 상기 제 2 전극구조체(120)는 외부로부터의 진동에너지와 같은 외력에 의해서 접촉됨으로 인해 마찰이 발생되고 이러한 마찰대전 효과에 의해서 단순한 구조로 에너지를 수집할 수 있으며, 상기 제 1 전극구조체(110) 및 상기 제 2 전극구조체(120)는 각각 외부로 연결된 인출선이 결합되어 있으므로, 상기 인출선을 통해 발생된 전기를 외부로 전달하거나 저장할 수 있다.
또한, 제 1 전극구조체 및 제 2 전극구조체가 소정의 간격으로 접촉 또는 이격되도록 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이에 배치된 필러부가 구비된다.
보다 상세하게는, 상기 필러부는 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이에 배치되고, 상기 제 1 전극구조체 및 상기 제 2 전극구조체가 외력에 의해 접촉되거나 외력해제에 의해 이격되도록 구비된다.
따라서, 상기 필러부는 상기 제 1 전극구조체 및 상기 제 2 전극구조체가 접촉 또는 이격을 유지하도록 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이에 구비된다.
또한, 필러부는 제 1 전극구조체 및 상기 제 2 전극구조체의 가장자리에 배치되도록 중공의 판상형상으로 형성될 수 있다.
보다 상세하게는, 상기 필러부는 중공의 판상형상으로 형성되어 상기 필러부는 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 가장자리에 배치된다.
따라서, 상기 필러부는 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 가장자리를 지지하고, 중심부에 형성된 중공을 통해 상기 제 1 전극구조체 및 상기 제 2 전극구조체가 접촉 또는 이탈된다.
한편, 상기 제 1 전극구조체(110)는 상단에 양전하를 띄고, 상기 제 2 전극구조체(120)는 하단에 음전하를 띄는 구성으로 기재되어 있으나, 이는 설명 및 이해의 편의를 위한 표현으로 제 1 전극구조체(110)가 하단에 음전하를 띄거나 제 2 전극구조체(120)가 사단에 양전하를 띄는 구성도 가능함은 물론이다.
도 2는 본 발명의 또 하나의 실시예에 따른 메탈울이 구비된 마찰대전 발전기의 단면도이다.
도 1 및 도 2를 참조하면, 제 1 전극구조체(110, 210)는 양전하를 띄는 메탈울 또는 메탈플레이트로 구성될 수 있다.
보다 상세하게는, 상기 제 1 전극구조체(110, 210)는 상기 제 2 전극구조체(120, 220)와 마찰대전되어 전기가 발생되도록 양전하를 띄는 메탈울(도 2의 210) 또는 메탈플레이트(도 1의 110)로 구성될 수 있고, 바람직하게는 표면적을 증가시켜 전기의 생산량을 향상시키고, 제작공정을 단순화하도록 메탈울이 구성될 수 있다.
따라서, 양전하를 띄는 상기 메탈울로 구성된 상기 제 1 전극구조체(110, 210)는 음전하를 띄는 상기 제 2 전극구조체(120, 220)와 마찰대전되어 전기가 발생된다.
도 3은 본 발명의 또 하나의 실시예에 따른 메탈울이 구비된 마찰대전 발전기에서 일부 또는 전면을 감싸는 재료막 및 폴리머층을 도시한 단면도이다.
도 3을 참조하면, 제 1 전극구조체(310)는 양전하를 띄는 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나로 구성된 재료막(312)이 메탈울 또는 메탈플레이트의 일면(A) 또는 전면(B)을 감싸도록 구비된 것일 수 있다.
보다 상세하게는, 상기 제 1 전극구조체(310)는 제 1 도전층(311) 및 재료막(312)으로 구성되고, 상기 제 1 도전층(311)은 메탈울 또는 메탈플레이트로 구성되며 상기 재료막(312)은 양전하를 띄는 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나로 구성되거나 상기 제 1 도전층(311)에 코팅될 수 있다.
따라서, 상기 제 1 전극구조체(310)는 양전하를 띄는 금속울 또는 메탈플레이트 또는 상기 금속울이나 메탈플레이트에 구비된 나일론, 쿼츠, 실크, 코튼, 알루미늄 등의 양전하를 띄는 소재에 의해 결합 또는 코팅되어 구성될 수 있다.
이때, 상기 재료막(312)는 상기 제 1 도전층(311)의 일면 또는 전면을 감싸도록 구비될 수 있다.
또한, 제 2 전극구조체(320)는 표면적을 증가시켜 전기의 생산량을 향상시키도록 메탈울로 구성될 수 있고, 상기 메탈울은 음전하를 띄는 폴리머층(322)과 결합되어 제 2 전극구조체(320)를 이룰 수 있다.
보다 상세하게는, 상기 제 2 전극구조체(320)은 메탈울로 구성된 제 2 도전층(321)이 구비되고, 상기 제 2 도전층(321)은 가는 선 모양으로 이루어진 메탈울로 구성되므로 표면적을 증가시켜 발전량을 증가시킬 수 있다.
또한, 상기 메탈울은 음전하를 띄는 도전성 재료인 폴리머로 구성된 폴리머층(322)과 결합되어 음전하를 띄게 된다.
보다 상세하게는, 상기 제 2전극구조체(320)는 제 2 도전층(321) 및 폴리머층(322)으로 구성되고, 상기 제 2 도전층(321)은 금속으로 구성되며 상기 폴리머층(322)은 폴리머 소재로 구성되어 상기 제 2 도전층(321)의 일부 또는 전면을 감싸도록 구비될 수 있다.
또한, 폴리머층(322)은 실리콘러버, 폴리다이메틸실록세인, 에코플렉스, 드래곤스킨, 테프론 용액, 폴리우레탄 중 어느 하나로 구성되고, 상기 메탈울에 상기 실리콘러버, 폴리다이메틸실록세인, 에코플렉스, 드래곤스킨, 테프론 용액, 폴리우레탄 중 어느하나를 투입하여 함께 경화시켜 결합될 수 있다.
보다 상세하게는, 상기 폴리머층(322)은 실리콘러버, 실리콘러버, 폴리다이메틸실록세인, 에코플렉스, 드래곤스킨, 테프론 용액, 폴리우레탄 중 어느 하나로 구성로 구성되고, 상기 메탈울의 일부 또는 전면을 감싸도록 일정 형상으로 형성시킨 메탈울에 상기 실리콘러버, 폴리다이메틸실록세인, 에코플렉스, 드래곤스킨, 테프론 용액, 폴리우레탄 중 어느 하나의 용해액을 투입하여 상온이 비치시키면 일정시간 후 경화되고, 이를 통해 상기 제 2 전극구조체(320)를 완성시킨다.
또한, 메탈울은 금속블럭을 가공하여 하나의 가는 선 형상의 뭉치로 형성되고 형상에 따라 상기 선의 길이를 조절하고, 상기 선의 굵기를 조절하여 상기 메탈울의 표면적을 제어하여 발생되는 전기의 생산량을 제어할 수 있다.
보다 상세하게는, 상기 메탈울은 금속블럭을 회전시켜 하나의 가는 선을 일정 형상의 뭉치로 형성시키고, 요구되는 형상에 따라 상기 선의 길이를 조절하여 형상의 크기 및 모양을 조절 할 수 있고, 상기 선의 굵기를 조절하여 상기 메탈울의 표면적을 제어할 수 있으며, 이를 통해 발생되는 전기의 생산량을 제어할 수 있다.
즉, 표면적이 넓은 메탈울은 마찰대전시 넓은 접촉면적을 가짐으로써, 전기의 생산량이 증가되고, 표면적이 작은 메탈울은 마찰대전시 작은 접촉면적은 가짐으로써, 전기의 생산량이 줄어들게 된다. 따라서, 상기 메탈울의 굵기를 제어하여 생산되는 전기의 양을 조절할 수 있다.
또한, 상기 메탈울은 하나의 가는 선으로 가공되고, 상기 선을 뭉침으로써 하나의 메탈울을 완성할 수 있다. 따라서, 형상의 크기와 모양에 따라 상기 선의 길이를 제어하고, 이를 통해 전기의 생산량을 조절할 수 있다.
도 4는 본 발명의 또 하나의 실시예에 따른 다공 레이어부가 삽입된 메탈울이 구비된 마찰대전 발전기의 단면도이다.
도 4를 참조하면, 제 1 전극구조체(410) 및 제 2 전극구조체(420)의 사이에 공간을 채우도록 배치되고, 가압에 의해 압축되도록 다공성구조 형성된 다공 레이어부(430)가 필러부(도 1의 130, 도 2의 230 및 도 3의 330) 대신 구비될 수 있다.
보다 상세하게는, 상기 다공 레이어부(430)는 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)의 사이에 배치되고, 가압 시 압축되거나 가압해제시 본래의 형상으로 복원되는 다공성구조로 형성된다.
즉, 상기 다공 레이어부(430)는 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)의 사이에 빈 공간이 없도록 배치되고, 가압 시 압축되거나 가압해제시 본래의 형상으로 복원되도록 탄성이 있는 소재로 구성되어 외력이 작용되면 압축되어 전기를 생산하고 외력이 해제되면 본래의 형상으로 복원된다.
또한, 다공 레이어부(430)는 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)의 사이에서 다공성구조로 소량의 전류가 흐르고, 가압에 의해 다공성구조가 압축되어 보다 높은 전류가 발생될 수 있다.
보다 상세하게는, 상기 다공 레이어부(430)는 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)의 사이에 공간을 채우도록 배치되고, 다공성구조로 인해 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)에 배치되어 적은 접촉면적으로 인해 소량의 전류가 흐르며, 외력에 의한 가압으로 상기 다공 레이어부(430)가 압축되면 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)와의 접촉면적이 증가되어 마찰대전으로 인해 보다 높은 전류가 발생된다.
즉, 상기 다공레이어부(430)는 가압 시 압력에 의해 마찰력이 증가되고, 접촉면이 증가되므로, 보다 높은 전류가 발생되고, 가압이 해제되면 마찰력이 감소되므로 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)의 사이에서 흐르는 전류가 낮아진다.
따라서, 상기 다공 레이어부(430)는 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420) 간의 공간을 채우므로, 완충작용에 의해 반복적인 외력에 의해 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)가 파손되는 것을 방지할 수 있고, 지속적으로 전기를 생산할 수 있다.
이때, 상기 다공 레이어부(430)는 비전도성 소재로 구성될 수 있다.
보다 상세하게는, 상기 다공 레이어부(430)는 비전도성 소재로 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)의 사이에 구비될 수 있고, 가압에 의해 압축되면 다공성 구조로 인해 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)가 접촉되면서 전기가 발생될 수 있다.
즉, 상기 다공 레이어부(430)는 비전도성으로 비가압시 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)를 분리시키고, 외력에 의해 가압되면 압축되며 다공성구조로 인해 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)가 접촉가능하게 되고 이를 통해 전기가 발생하게 된다.
또한, 다공 레이어부(430)는 가압 시 압축되고, 가압해제 시 형상복원되도록 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 중 어느 하나로 구성된 것일 수 있다.
보다 상세하게는, 상기 다공 레이어부(430)는 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)의 사이에 배치되고, 외력에 의해 압축되거나 외력의 해제시 본래의 형상으로 복원되도록 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론으로 구성될 수 있다.
따라서, 상기 다공 레이어부(430)는 압축 또는 형상복원을 반복하여 지속적인 외력에 의해 전기를 생산할 수 있다.
또한, 다공 레이어부(430)는 도전성을 갖도록 도전성 파우더와 혼합되거나 외부에 코팅된 것일 수 있다.
보다 상세하게는, 상기 다공 레이어부(430)는 상기 제 1 전극구조체(410) 및 상기 제 2 전극구조체(420)가 접촉되어 전기를 생산할 수 있도록 도전성 파우더와 혼합되어 제조되거나 외부에 상기 도전성 파우더가 코팅될 수 있다.
상기 도전성 파우더는 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재로 구성될 수 있고, 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 소재와 도전성 파우더로 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재가 추가되어 상기 다공 레이어부(430)를 제조할 수 있다.
도 5는 본 발명의 일실시예에 따른 메탈울이 구비된 마찰대전 발전기의 제조방법을 도시한 블럭도이다.
도 3 및 도 5 내지 도 6을 참조하면, 본 발명에 따른 메탈울이 구비된 마찰대전 발전기의 제조방법은, a) 상기 제 1 전극구조체 및 필러부를 준비하는 단계(S510), b) 상기 제 2 전극구조체를 제조하기 위해 메탈울을 준비하는 단계(S520), c) 상기 준비된 메탈울을 소정의 형상으로 형성하는 단계(S530), d) 상기 소정의 형상으로 형성된 메탈울을 용기에 담는 단계(S540), e) 용기에 담긴 메탈울에 폴리머를 주입하여 경화시키는 단계(S550), f) 상기 경화된 메탈울 및 폴리머로 구성된 제 2 전극구조체를 용기에서 분리시키는 단계(S560) 및 g) 상기 분리된 제 2 전극구조체를 제 1 전극구조체 및 필러부와 결합하여 마찰대전 발전기를 완성하는 단계(S570)를 포함할 수 있다.
따라서, 작업자는 1) 얇은 실로 구성된 메탈울을 준비하고, 2) 준비된 메탈을 원하는 형상으로 형성시킨 후 용기에 담으며, 3) 용기에 담겨진 상기 메탈울에 용해된 실리콘러버를 원하는 양만큼 투입시켜 경화시키고, 4) 경화된 메탈울 및 실리콘러버로 이루어진 제 2 전극구조체(320)를 분리시킨다.
상기 분리된 제 2 전극구조체(320)를 통해 메탈울이 구비된 마찰대전 발전기(300)를 제조할 수 있다.
결과적으로, 상기 제 1 전극구조체(310) 및 상기 제 2 전극구조체(320)을 메탈울로 구성하여 복잡한 공정없이 전극구조체를 구비할 수 있고, 폴리머층을 상온에서 경화되는 실리콘러버로 구성함에 따라 추가공정없이 제 2 전극구조체(320)를 제조하여 시간 및 비용을 절감할 수 있다.
또한, 본 발명에 따른 도전성 다공 레이어부가 삽입된 마찰대전 발전기는 외력을 감지하는 센서에 적용되는 마찰대전 발전기가 적용된 센서일 수 있다.
보다 상세하게는, 상기 마찰대전 발전기가 적용된 센서는 외력에 따라 전기를 발생시키는 마찰대전 발전기를 적용하여 외력의 작용시 발생되는 전기를 신호로 변환하여 전달함으로써 센서로 활용될 수 있다.
또한, 본 발명에 따른 도전성 다공 레이어부가 삽입된 마찰대전 발전기는 외력에 의해 발생된 전기를 통해 신체에 장착된 장치를 구동하는 웨어러블 장치용 마찰대전 발전기일 수 있다.
보다 상세하게는, 상기 도전성 다공 레이어부가 삽입된 마찰대전 발전기는 외력에 따라 전기를 발생시키고, 이를 통해 신체에 장착된 웨어러블 장치에 전력을 공급할 수 있다.
따라서, 간단한 구조만으로 웨어러블 장치를 구동시키는 웨어러블 장치용 마찰대전 발전기로 활용가능하다.
도 7은 본 발명의 일실시예에 따른 메탈울이 구비된 마찰대전 발전기의 외력에 따라 발생되는 전압 및 전류를 나타낸 그래프이고, 도 8은 종래의 마찰대전 발전기의 외력에 따라 발생되는 전압 및 전류를 나타낸 그래프이다.
도 7 내지 도 8을 참조하면, 우선, 도 7에서 본 발명에 따른 메탈울이 구비된 마찰대전 발전기는 알루미늄으로 구성된 제 1 전극구조체 및 알루미늄으로 구성된 메탈울이 폴리머층에 의해 둘러싸인 제 2 전극구조체가 외력에 의해서 가압되어 발생되는 전류 및 전압을 OSC(오실로스코프: oscilloscope)측정한 그래프를 도시하였다.
그 중 5kgf의 외력으로 메탈울이 구비된 마찰대전 발전기를 가압하는 경우 평균전압값은 800V, 평균전류값은 0.4 ㎃이다. 따라서, 본 발명에 따른 메탈울이 구비된 마찰대전 발전기는 5kgf의 외력이 작용할 때, 적어도 평균전압값이 800V, 평균전류값이 0.4 ㎃ 이상의 값을 갖도록 제조되는 것이 바람직하다.
반면에, 도 8에 도시된 종래의 마찰대전 발전기는 알루미늄으로 구성된 제 1 전극구조체 및 CNT(탄소나노튜브)가 폴리머층에 의해 둘러싸인 제 2 전극구조체가 외력(5kgf)에 의해서 가압되어 발생되는 전류 및 전압을 OSC(오실로스코프: oscilloscope)측정한 그래프를 도시하였다.
종래의 마찰대전 발전기는 상기에서 언급된 외력과 동일한 5kgf의 힘으로 가압하는 경우 평균전압값은 80V, 평균전류값은 15㎂이다.
따라서, 본 발명에 따른 메탈울이 구비된 마찰대전 발전기의 경우 평균전압값 및 평균전류값은 최소 10배 이상 높은 수치를 나타낸다.
결과적으로, 메탈울이 적용된 마찰대전 발전기를 사용하여 작업공정을 단순화하여 시간 및 비용을 절감할 수 있고, 보다 높은 평균전압값 및 평균전류값을 가짐으로써, 안정적인 전기를 생산할 수 있으며, 낮은 외력에도 종래의 마찰대전 발전기 보다 높은 높은 평균전압값 및 평균전류값을 생산할 수 있다.
도 9는 본 발명의 일실시예에 따른 도전성 다공레이어부가 삽입된 마찰대전 발전기의 단면도이다.
도 9를 참조하면, 본 발명에 따른 도전성 다공레이어부가 삽입된 마찰대전 발전기(500)는 양전하를 띄는 도전성 재료로 구성된 판상 형상의 제 1 전극구조체(510), 제 1 전극구조체(510)의 하단에 판상 형상으로 배치되고, 음전하를 띄는 도전성 재료로 구성되어 상기 제 1 전극구조체(510)와 마찰대전 방식으로 접촉되어 전기를 발생시키는 제 2 전극구조체(520), 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)의 사이에 공간을 채우도록 배치되고, 가압에 의해 압축되도록 다공성구조 형성된 다공레이어부(530)를 제공한다.
본 발명의 실시예에 있어서, 도전성 다공레이어부가 삽입된 마찰대전 발전기(500)는 양전하를 띄는 도전성 재료로 구성된 판상 형상의 제 1 전극구조체(510)를 포함한다.
보다 상세하게는, 상기 제 1 전극구조체(510)는 판상형상으로 형성되고, 양전하를 띄는 도전성 재료로 구성되어 전기를 생산하도록 구비된다.
또한, 제 1 전극구조체(510)의 하단에 판상 형상으로 배치되고, 음전하를 띄는 도전성 재료로 구성되어 상기 제 1 전극구조체(510)와 마찰대전 방식으로 접촉되어 전기를 발생시키는 제 2 전극구조체(520)가 구비된다.
보다 상세하게는, 상기 제 2 전극구조체(520)는 판상형상으로 형성되어 상기 제 1 전극구조체(510)의 하단에 배치되고, 상기 제 1 전극구조체(510)와 마찰에 의해서 전기를 생산하게 된다.
즉, 상기 제 1 전극구조체(510)는 양전자를 띄고 상기 제 2 전극구조체(520)는 음하를 띄는 도전성 재료로 구성되어 외력(P)에 의해 마찰됨으로써, 전기를 생산할 수 있다.
따라서, 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)는 외부로부터의 진동에너지와 같이 외력에 의해서 접촉됨으로 인해 마찰이 발생되고 이러한 마찰대전 효과에 의해서 단순한 구조로 에너지를 수집할 수 있으며, 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)는 각각 외부로 연결된 인출선이 결합되어 있으므로, 상기 인출선을 통해 발생된 전기를 외부로 전달하거나 저장할 수 있다.
또한, 제 1 전극구조체(510) 및 제 2 전극구조체(520)의 사이에 공간을 채우도록 배치되고, 가압에 의해 압축되도록 다공성구조 형성된 다공레이어부(530)가 구비된다.
보다 상세하게는, 상기 다공레이어부(530)는 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)의 사이에 배치되고, 가압 시 압축되거나 가압해제시 본래의 형상으로 복원되는 다공성구조로 형성된다.
즉, 상기 다공레이어부(530)는 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)의 사이에 빈 공간이 없도록 배치되고, 가압 시 압축되거나 가압해제시 본래의 형상으로 복원되도록 탄성이 있는 소재로 구성되어 외력이 작용되면 압축되어 전기를 생산하고 외력이 해제되면 본래의 형상으로 복원된다.
한편, 상기 제 1 전극구조체(510)는 상단에 양전하를 띄고, 상기 제 2 전극구조체(520)는 하단에 음전하를 띄는 구성으로 기재되어 있으나, 이는 설명 및 이해의 편의를 위한 표현으로 제 1 전극구조체(510)가 하단에 배치되어 음전하를 띄거나 제 2 전극구조체(520)가 상단에 배치되어 양전하를 띄는 구성도 가능함은 물론이다.
또한, 제 1 전극구조체(510)는 양전하를 띄는 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나로 구성되거나 코팅된 것일 수 있다.
보다 상세하게는, 상기 제 1 전극구조체(510)는 제 1 도전층(511) 및 제 1 전하층(512)으로 구성되고, 상기 제 1 도전층(511)은 금속으로 구성되며 상기 제 1 전하층(512)은 양전하를 띄는 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나로 구성되거나 상기 제 1 도전층(511)에 코팅될 수 있다.
또한, 음전하를 띄는 도전성 재료는 제 2 전극구조체(520)에 테프론, 실리콘러버, 폴리에스테르, 폴리에틸렌 테레프타레이트 중 어느 하나로 구성되거나 코팅된 것일 수 있다.
보다 상세하게는, 상기 제 2전극구조체(520)는 제 2 도전층(521) 및 제 1 전하층(522)으로 구성되고, 상기 제 2 도전층(521)은 금속으로 구성되며 상기 제 2 전하층(522)은 음전하를 띄는 테프론, 실리콘러버, 폴리에스테르, 폴리에틸렌 테레프타레이트 중 어느 하나로 구성되거나 상기 제 2 도전층(521)에 코팅될 수 있다.
또한, 다공레이어부(530)는 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)의 사이에서 다공성구조로 소량의 전류가 흐르고, 가압에 의해 다공성구조가 압축되어 보다 높은 전류가 발생될 수 있다.
보다 상세하게는, 상기 다공레이어부(530)는 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)의 사이에 공간을 채우도록 배치되고, 다공성구조로 인해 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)에 배치되어 적은 접촉면적으로 인해 소량의 전류가 흐르며, 외력에 의한 가압으로 상기 다공레이어부(530)가 압축되면 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)와의 접촉면적이 증가되어 마찰대전으로 인해 보다 높은 전류가 발생된다.
즉, 상기 다공레이어부(530)는 가압 시 압력에 의해 마찰력이 증가되고, 접촉면이 증가되므로, 보다 높은 전류가 발생되고, 가압이 해제되면 마찰력이 감소되므로 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)의 사이에서 흐르는 전류가 낮아진다.
따라서, 상기 다공레이어부(530)는 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520) 간의 공간을 채우므로, 완충작용에 의해 반복적인 외력에 의해 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)가 파손되는 것을 방지할 수 있고, 지속적으로 전기를 생산할 수 있다.
이때, 상기 다공레이어부(530)는 비전도성 소재로 구성될 수 있다.
보다 상세하게는, 상기 다공레이어부(530)는 비전도성 소재로 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)의 사이에 구비될 수 있고, 가압에 의해 압축되면 다공성 구조로 인해 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)가 접촉되면서 전기가 발생될 수 있다.
즉, 상기 다공레이어부(530)는 비전도성으로 비가압시 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)를 분리시키고, 외력에 의해 가압되면 압축되며 다공성구조로 인해 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)가 접촉가능하게 되고 이를 통해 전기가 발생하게 된다.
또한, 다공레이어부(530)는 가압 시 압축되고, 가압해제 시 형상복원되도록 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 중 어느 하나로 구성된 것일 수 있다.
보다 상세하게는, 상기 다공레이어부(530)는 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)의 사이에 배치되고, 외력에 의해 압축되거나 외력의 해제시 본래의 형상으로 복원되도록 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론으로 구성될 수 있다.
따라서, 상기 다공레이어부(530)는 압축 또는 형상복원을 반복하여 지속적인 외력에 의해 전기를 생산할 수 있다.
또한, 다공레이어부(530)는 도전성을 갖도록 도전성 파우더와 혼합되거나 외부에 코팅된 것일 수 있다.
보다 상세하게는, 상기 다공레이어부(530)는 상기 제 1 전극구조체(510) 및 상기 제 2 전극구조체(520)가 접촉되어 전기를 생산할 수 있도록 도전성 파우더와 혼합되어 제조되거나 외부에 상기 도전성 파우더가 코팅될 수 있다.
상기 도전성 파우더는 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재로 구성될 수 있고, 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 소재와 도전성 파우더로 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재가 추가되어 상기 다공레이어부(530)를 제조할 수 있다.
도 10은 본 발명의 또 하나의 실시예에 따른 도전성 다공레이어부가 삽입된 마찰대전 발전기의 단면도이다.
도 10을 참조하면, 제 1 전극구조체(610)와 다공레이어부(630)는 양전하를 띄는 동일한 소재의 다공성 구조로 구성될 수 있다.
보다 상세하게는, 상기 제 1 전극구조체(610)와 상기 다공레이어부(630)는 상기 제 2 전극구조체(620)와 접촉되어 전기를 생산하도록 동일한 소재로 구성될 수 있고, 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 소재와 도전성 파우더로 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재를 통해 하나의 레이어로 제작하여 전기를 생산하는 것도 가능하다.
또한, 상기 제 1 전극구조체(610)는 양전하를 띄는 도전성 재료는 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나와 혼합되거나 코팅되어 구성되고, 상기 다공레이어부(630)는 상기 양전하를 띄는 도전성 재료가 함께 혼합될 수 있고, 비전도성으로 구성될 수 있다.
이때, 상기 제 2 전극구조체(620)는 제 2 도전층(621) 및 제 2 전하층(622)으로 구성되고, 상기 제 2 도전층(621)은 상기 제 1 전극구조체(610) 및 상기 다공레이어부(630)와 동일한 소재로 구성될 수 있고, 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 소재와 도전성 파우더로 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재로 구성될 수 있고, 상기 전하층(622)는 음전하를 띄는 도전성 재료인 테프론, 실리콘러버, 에코플렉스, 폴리우레탄, 폴리에스테르, 폴리에틸렌 테레프타레이트 중 어느 하나로 구성되어 상기 제 2 도전층(621)이 음전하를 띄도록 배치된다.
도 11은 본 발명의 또 하나의 실시예에 따른 도전성 다공레이어부가 삽입된 마찰대전 발전기의 단면도 및 부분확대도이고, 도 12는 도 11의 마찰대전 발전기의 사시도 및 측면도이다.
도 10 내지 도 12를 참조하면, 상기 제 1 전극구조체(610)와 상기 다공레이어부(630)는 압축성있는 하나의 전극구조체인 혼합전극구조체(710)로 구성되고, 상기 제 2 전극구조체(720)와 접촉에 의해서 전기를 생산할 수 있다.
따라서, 추가적인 구성없이 상기 제 1 전극구조체(610)와 상기 다공레이어부(630)를 혼합전극구조체(710)로 구성하고, 이와 대면되도록 제 2 전극구조체(720)를 구성함으로써, 단순한 구조를 달성하고, 원가절감 및 제작의 효율성을 달성할 수 있다.
즉, 상기 혼합전극구조체(710)는 다공성 구조를 이루도록 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 소재로 구성되고, 도전성 파우더로 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재가 혼합되거나 코팅되어 구성되며, 상기 제 2 전극구조체(720)와 외력에 의해 가압되어 전기가 발생되도록 양전하를 띄는 도전성 재료는 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나가 혼합되거나 코팅되어 구성될 수 있다.
또한, 제 2 전극구조체(720)는 제 2 도전층(721) 및 제 2 전하층(722)으로 구성되고, 상기 제 2 도전층(721)은 상기 혼합전극구조체(710) 및 상기 다공레이어부(730)와 동일한 소재로 구성될 수 있고, 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 소재와 도전성 파우더로 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재로 구성될 수 있으며, 상기 전하층(722)는 음전하를 띄는 도전성 재료인 테프론, 실리콘러버, 에코플렉스, 폴리우레탄, 폴리에스테르, 폴리에틸렌 테레프타레이트 중 어느 하나로 구성되어 상기 제 2 도전층(721)이 음전하를 띄도록 배치된다.
또한, 혼합전극구조체(710)의 하면은 굴곡진 형상으로 요철이 형성되고, 이와 대면되는 상기 제 2 도전층(721) 및 제 2 전하층(722)도 굴곡진 형상으로 요철이 형성될 수 있다.
보다 상세하게는, 상기 혼합전극구조체(710)는 상기 제 2 전극구조체(720)와의 접촉면적을 늘려 전기의 생산성을 높이도록 상기 혼합전극구조체(710)와 상기 제 2 전하층(722)가 대면되는 면은 굴곡진 형상으로 요철이 형성되고, 이와 대응되어 상기 제 2 도전층(721)의 상면도 굴곡진 형상으로 요철이 형성되므로, 접촉면적을 증가시키고, 요철로 인해 증가된 마찰력으로 인해 발생되는 전기의 생산량도 증가시킬 수 있다.
또한, 본 발명에 따른 도전성 다공레이어부가 삽입된 마찰대전 발전기는 외력을 감지하는 센서에 적용되는 마찰대전 발전기가 적용된 센서일 수 있다.
보다 상세하게는, 상기 마찰대전 발전기가 적용된 센서는 외력에 따라 전기를 발생시키는 마찰대전 발전기를 적용하여 외력의 작용시 발생되는 전기를 신호로 변환하여 전달함으로써 센서로 활용될 수 있다.
또한, 본 발명에 따른 도전성 다공레이어부가 삽입된 마찰대전 발전기는 외력에 의해 발생된 전기를 통해 신체에 장착된 장치를 구동하는 웨어러블 장치용 마찰대전 발전기일 수 있다.
보다 상세하게는, 상기 도전성 다공레이어부가 삽입된 마찰대전 발전기는 외력에 따라 전기를 발생시키고, 이를 통해 신체에 장착된 웨어러블 장치에 전력을 공급할 수 있다.
따라서, 간단한 구조만으로 웨어러블 장치를 구동시키는 웨어러블 장치용 마찰대전 발전기로 활용가능하다.
도 13은 본 발명의 또 하나의 실시예에 따른 일체형 전극구조체가 구비된 마찰대전 발전기의 단면도이다.
도 13을 참조하면, 본 발명에 따른 일체형 전극구조체가 구비된 마찰대전 발전기(800)는 제 1 전극구조체(810) 및 상기 제 1 전극구조체(810)의 하단에 구비된 음전하레이어(821)에 의해 감싸진 제 2 전극구조체(820)로 구성된다.
보다 상세하게는, 상기 제 1 전극구조체(810)는 양전하를 띄는 도전성 재료로 구성되고, 외부와 전기적으로 연결되도록 다공의 판상 형상으로 구성되어 외력에 의한 가압시 압축되거나 가압해제시 형상복원되도록 탄성이 있는 소재인 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 중 적어도 하나 이상의 소재를 이용하여 다공성 구조로 구성될 수 있다.
또한, 상기 제 1 전극구조체(810)는 도전성을 갖도록 도전성 파우더인 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재로 혼합되거나 외부에 코팅되어 구성되고, 양전하를 띄는 도전성 재료인 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나와 혼합되거나 외부에 코팅되어 구성될 수 있다.
이때, 상기 제 1 전극구체의 하단에는 음전하레이어(821)에 의해 감싸진 제 2 전극구조체(820)가 구비되고, 상기 제 2 전극구조체(820)는 음전하레이어(821) 및 제조가 단순하고, 쉽게 휘어질 수 있도록 메탈울(822)로 구성된다. 또한, 상기 메탈울(822)은 음전하를 띄는 폴리머로 구성되고, 바람직하게는 실리콘 루버에 의해 제조되는 것이다.
즉, 상기 제 2 전극구조체(820)는 요구되는 형상으로 형성된 메탈울(822)을 용기에 담고 용해된 실리콘 루버를 주입하여 상온에서 경화시킨다. 따라서, 상기 제 2 전극구조체(820)는 내부에는 메탈울(822)로 구성되고 상기 메탈울(822)을 감싸는 실리콘 루버로 제조된다.
결과적으로, 상단에는 양전하를 띄는 제 1 전극구조체(810)가 구비되고, 하단에는 음전하를 띄는 제 2 전극구조체(820)가 구비되어 외력에 의해 다공이 형성된 제 1 전극구조체(810)가 압축되어 표면적이 증가되며 마찰대전 방식에 의해서 전기가 발생된다.
또한, 상기 메탈울(822)은 가는 선형상의 금속을 뭉쳐서 가공한 것으로, 상기 메탈울(822)은 하나의 선으로 가공되어 뭉쳐지는 것으로 형상으로 부피 및 형상에 따라서 선의 길이를 조절하여 제조하는 것으로 부피가 큰 것은 선의 길이를 길게하고 부피가 작은 것은 선의 길이를 짧게하여 제조할 수 있으며, 상기 선의 굵기를 제어하여 상기 메탈울(822)의 표면적으로 조절할 수 있고, 표면적에 따라서, 발생되는 전기의 생산량을 변화시킬 수 있다.
즉, 표면적이 많은 경우 많은 전기를 생산할 수 있고, 표면적이 적은 경우 적은 전기가 생산된다. 따라서, 상기 메탈울(822)의 길이 및 굵기를 제어하여 생산되는 전기의 양을 조절하게 된다.
도 14는 본 발명의 또 하나의 실시예에 따른 다공레이어부의 제조단계를 도시한 도면이다.
도 9 및 도 14를 참조하면, 상기 다공레이어부(530)는 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 등을 사용하여 다공성 레이어의 구조물질을 이루고, 상기 다공성 레이어의 구조물질이 도전성을 갖도록 도전성 파우더인 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재를 혼합 또는 코팅한다.
따라서, 이러한 상기 다공레이어부(530)를 제조하기 위해서 a) 단계에서, 도전성파우더와 설탕을 혼합하고, b)단계에서, 상기 혼합된 분말을 몰드에 넣어 일정한 형상을 유지시키고, c) 단계에서, 일정한 형상을 갖는 혼합된 분말의 형상을 고정하도록 다공성 레이어의 구조물질을 혼합하고, d)단계에서, 물에 용해시켜 다공레이어부의 제조를 끝내게 된다.
결과적으로, 상기와 같은 제조공정을 통해 상기 다공레이어부(530)는 제 1 전극구조체(510) 및 제 2 전극구조체(520) 사이에 압축가능하도록 배치되거나, 상기 제 1 전극구조체(510)와 하나의 전극구조체로 제조되어 상기 제 2 전극구조체(520)와 접촉되어 마찰대전에 의해 전기를 생산할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<부호의 설명>
100, 200, 300, 400: 메탈울이 구비된 마찰대전 발전기
110, 210, 310, 410: 제 1 전극구조체
120, 220, 320, 420: 제 2 전극구조체
311, 411: 제 1 도전층
312, 412: 재료막
121, 221, 321, 421: 제 2 도전층
122, 222, 322, 422: 폴리머층
430: 다공 레이어부
500, 600, 700, 800: 도전성 다공레이어부가 삽입된 마찰대전 발전기
510, 610, 810: 제 1 전극구조체
511: 제 1 도전층
512: 제 1 전하층
520, 620, 720: 제 2 전극구조체
521, 621, 721: 제 2 도전층
522, 622, 722: 제 2 전하층
530, 630: 다공레이어부
710: 혼합전극구조체
821: 음전하레이어
822: 메탈울

Claims (20)

  1. 양전하를 띄는 도전성 재료로 구성된 판상 형상의 제 1 전극구조체;
    상기 제 1 전극구조체의 하단에 판상 형상으로 배치되고, 음전하를 띄는 도전성 재료로 구성되어 상기 제 1 전극구조체와 마찰대전 방식으로 접촉되어 전기를 발생시키는 제 2 전극구조체; 및
    상기 제 1 전극구조체 및 상기 제 2 전극구조체가 소정의 간격으로 접촉 또는 이격되도록 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이에 배치된 필러부; 를 포함하는 것을 특징으로 하는 마찰대전 발전기.
  2. 제 1 항에 있어서,
    상기 필러부는 제 1 전극구조체 및 상기 제 2 전극구조체의 가장자리에 배치되도록 중공의 판상형상으로 형성되고, 상기 제 1 전극구조체 및 상기 제 2 전극구조체가 상기 필러부의 중공을 통해 접촉 또는 이격되는 것을 특징으로 하는 마찰대전 발전기.
  3. 제 2 항에 있어서,
    상기 제 1 전극구조체 및 상기 제 2 전극구조체는 외부로 연결되어 전기를 공급하도록 각각 인출선이 연결된 것을 특징으로 하는 마찰대전 발전기.
  4. 제 3 항에 있어서,
    상기 제 1 전극구조체는 양전하를 띄는 메탈울 또는 메탈플레이트로 구성된 것을 특징으로 하는 마찰대전 발전기.
  5. 제 4 항에 있어서,
    상기 제 1 전극구조체에는 양전하를 띄는 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나로 구성된 재료막이 일면 또는 전면을 감싸도록 구비된 것을 특징으로 하는 마찰대전 발전기.
  6. 제 3 항에 있어서,
    상기 제 2 전극구조체는 표면적을 증가시켜 전기의 생산량을 향상시키도록 메탈울로 구성된 것을 특징으로 하는 마찰대전 발전기.
  7. 제 6 항에 있어서,
    상기 제 2 전극구조체에는 음전하를 띄는 폴리머로 구성된 폴리머층이 일부 또는 전면을 감싸도록 구비된 것을 특징으로 하는 마찰대전 발전기.
  8. 제 7 항에 있어서,
    상기 폴리머층은 실리콘러버, 폴리다이메틸실록세인, 에코플렉스, 드래곤스킨, 테프론 용액, 폴리우레탄 중 어느 하나로 구성되고, 상기 메탈울에 상기 실리콘러버, 폴리다이메틸실록세인, 에코플렉스, 드래곤스킨, 테프론 용액, 폴리우레탄 중 어느 하나를 투입하여 함께 경화시켜 결합되는 것을 특징으로 하는 마찰대전 발전기.
  9. 제 1 항에 따른 마찰대전 발전기의 제조방법에 있어서,
    a) 상기 제 1 전극구조체 및 필러부를 준비하는 단계;
    b) 상기 제 2 전극구조체를 제조하기 위해 메탈울을 준비하는 단계;
    c) 상기 준비된 메탈울을 소정의 형상으로 형성하는 단계;
    d) 상기 소정의 형상으로 형성된 메탈울을 용기에 담는 단계;
    e) 용기에 담긴 메탈울에 폴리머를 주입하여 경화시키는 단계; 및
    f) 상기 경화된 메탈울 및 폴리머로 구성된 제 2 전극구조체를 용기에서 분리시키는 단계;
    g) 상기 분리된 제 2 전극구조체를 제 1 전극구조체 및 필러부와 결합하여 마찰대전 발전기를 완성하는 단계; 를 포함하는 것을 특징으로 하는 마찰대전 발전기의 제조방법.
  10. 양전하를 띄는 도전성 재료로 구성된 판상 형상의 제 1 전극구조체;
    상기 제 1 전극구조체의 하단에 판상 형상으로 배치되고, 음전하를 띄는 도전성 재료로 구성되어 상기 제 1 전극구조체와 마찰대전 방식으로 접촉되어 전기를 발생시키는 제 2 전극구조체; 및
    상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이의 공간을 채우도록 배치되고, 가압에 의해 압축되도록 다공성구조로 형성된 다공레이어부; 를 포함하는 것을 특징으로 하는 마찰대전 발전기.
  11. 제 10 항에 있어서, 상기 제 1 전극구조체는,
    금속 소재로 구성된 판상형상의 제 1 도전층; 및
    상기 제 1 도전층의 하단에 구비되고, 양전하를 띄는 도전성 재료로 구성된 제 1 전하층; 을 포함하는 것을 특징으로 하는 마찰대전 발전기.
  12. 제 11 항에 있어서,
    상기 양전하를 띄는 도전성 재료는 나일론, 쿼츠, 실크, 코튼, 알루미늄 중 어느 하나로 구성되거나 상기 제 1 도전층에 코팅된 것을 특징으로 하는 마찰대전 발전기.
  13. 제 10 항에 있어서, 상기 제 2 전극구조체는,
    금속 소재로 구성된 판상형상의 제 2 도전층; 및
    상기 제 2 도전층의 상단에 구비되고, 음전하를 띄는 도전성 재료로 구성된 제 2 전하층; 을 포함하는 것을 특징으로 하는 마찰대전 발전기.
  14. 제 13 항에 있어서, 상기 음전하를 띄는 도전성 재료는 테프론, 실리콘러버, 폴리에스테르, 폴리에틸렌 테레프타레이트 중 어느 하나로 구성되거나 상기 제 2 도전층에 코팅된 것을 특징으로 하는 마찰대전 발전기.
  15. 제 11 항 또는 제 13 항에 있어서, 상기 다공레이어부는 상기 제 1 전극구조체 및 상기 제 2 전극구조체의 사이에서 다공성구조로 소량의 전류가 흐르고, 가압에 의해 다공성구조가 압축되어 보다 높은 전류가 발생되는 것을 특징으로 하는 마찰대전 발전기.
  16. 제 15 항에 있어서, 상기 다공레이어부는 폴리우레탄, 폴리디메틸실록산, 실리콘러버, 에코플렉스, 테프론 중 적어도 하나 이상의 소재를 이용하여 스펀지 구조로 구성된 것을 특징으로 하는 마찰대전 발전기.
  17. 제 16 항에 있어서, 상기 다공레이어부는 도전성을 갖도록 도전성 파우더와 혼합되거나 외부에 코팅된 것을 특징으로 하는 마찰대전 발전기.
  18. 제 17 항에 있어서, 상기 도전성 파우더는 탄소나노튜브, 은나노와이어, 알루미늄, 구리, 금 중 적어도 하나 이상의 소재로 구성된 것을 특징으로 하는 마찰대전 발전기.
  19. 제 1 항 또는 제 10 항에 따른 마찰대전 발전기는 외력을 감지하는 센서에 적용되는 것을 특징으로 하는 마찰대전 발전기가 적용된 센서.
  20. 제 1 항 또는 제 10 항에 따른 마찰대전 발전기는 외력에 의해 발생된 전기를 통해 신체에 장착된 장치를 구동하는 것을 특징으로 하는 웨어러블 장치용 마찰대전 발전기.
PCT/KR2019/008520 2018-07-10 2019-07-10 마찰대전 발전기 및 이의 제조방법 WO2020013620A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180080014A KR102144700B1 (ko) 2018-07-10 2018-07-10 도전성 다공레이어부가 삽입된 마찰대전 발전기
KR10-2018-0080014 2018-07-10
KR1020180081389A KR102144709B1 (ko) 2018-07-13 2018-07-13 메탈울이 구비된 마찰대전 발전기 및 이의 제조방법
KR10-2018-0081389 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020013620A1 true WO2020013620A1 (ko) 2020-01-16

Family

ID=69142392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008520 WO2020013620A1 (ko) 2018-07-10 2019-07-10 마찰대전 발전기 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2020013620A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150357078A1 (en) * 2014-06-06 2015-12-10 President And Fellows Of Harvard College Stretchable conductive composites for use in soft devices
KR20160066606A (ko) * 2014-12-02 2016-06-13 한국과학기술원 접촉 대전 발전기 및 그 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150357078A1 (en) * 2014-06-06 2015-12-10 President And Fellows Of Harvard College Stretchable conductive composites for use in soft devices
KR20160066606A (ko) * 2014-12-02 2016-06-13 한국과학기술원 접촉 대전 발전기 및 그 제조 방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHUN, JINSUNG ET AL.: "Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments", ENERGY & ENVIRONMENTAL SCIENCE, vol. 8, 11 August 2015 (2015-08-11), pages 3006 - 3012, XP055675247, ISSN: 1754-5692, DOI: 10.1039/C5EE01705J *
HAQUE, RUBAIYET IFTEKHARUL ET AL.: "Soft triboelectric generators by use of cost-effective elastomers and simple casting process", SENSORS AND ACTUATORS A: PHYSICAL., 10 January 2018 (2018-01-10), pages 88 - 95, XP085349619, ISSN: 0924-4247, DOI: 10.1016/j.sna.2017.12.018 *
WU, SHUYING ET AL.: "POROUS PDMS/CNFS COMPOSITES FOR STRETCHABLE STRAIN SENSORS", 21ST INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS, 25 August 2017 (2017-08-25), pages 1 - 8, XP055675250 *
ZHANG, XIAO-SHENG ET AL.: "All-in-one self-powered flexible microsystems based on triboelectric nanogenerators", NANO ENERGY, vol. 47, 2 March 2018 (2018-03-02), pages 410 - 426, XP055675237, ISSN: 2211-2855, DOI: 10.1016/j.nanoen.2018.02.046 *

Similar Documents

Publication Publication Date Title
WO2016060372A1 (ko) 생체모방 다중감각 피부센서
EP2636132A1 (en) Voice coil motor and driving method thereof
WO2018190605A2 (ko) 에어로졸 생성 장치
WO2017179819A1 (ko) 휴대용 플라즈마 미용장치
WO2021177754A1 (ko) 무바늘 주사기
WO2010104289A2 (en) Probe unit for testing panel
WO2021112485A1 (ko) 무바늘 주사기
WO2013051806A2 (ko) 압전소자가 장착된 바이브레이터
WO2018190603A1 (ko) 이동식 히터를 구비한 에어로졸 생성 장치
WO2017142108A1 (ko) 헤드 마운트 디스플레이
WO2016013849A1 (ko) Rewod 발전장치 및 역 전기습윤 발전 모듈
WO2020013620A1 (ko) 마찰대전 발전기 및 이의 제조방법
WO2020149634A2 (ko) 에어로졸 생성 시스템 및 그 동작 방법
WO2020184898A1 (ko) 마스크 및 이를 포함하는 피부 관리 기기
WO2019045410A1 (ko) 프리캐스트 겔, 전기 전달 모듈, 전기영동 및 웨스턴 블롯용 장치 및 이의 제어 방법
WO2021137458A2 (ko) 듀얼 진동 장치
WO2023146220A1 (en) Aerosol generating device
WO2015083896A1 (ko) 이동 단말기
WO2017057846A1 (ko) 착용 감지 센서 및 이를 포함하는 웨어러블 디바이스
WO2012087021A2 (ko) 세라믹히터 방열플레이트 제조방법
WO2022173101A1 (ko) 표시 장치
WO2016111601A1 (ko) 전기 에너지 발생 장치
WO2020085601A1 (ko) 인바디 발열기기
WO2024076073A1 (ko) 마이크로폰 및 이를 포함하는 인체 임플란트 장치
WO2016182396A1 (ko) 압전 소자를 이용한 전력 소자의 온도 계측 장치, 열응력 저감 장치 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834592

Country of ref document: EP

Kind code of ref document: A1