WO2020013379A1 - 반도체 발광소자를 이용한 디스플레이 장치 - Google Patents

반도체 발광소자를 이용한 디스플레이 장치 Download PDF

Info

Publication number
WO2020013379A1
WO2020013379A1 PCT/KR2018/009957 KR2018009957W WO2020013379A1 WO 2020013379 A1 WO2020013379 A1 WO 2020013379A1 KR 2018009957 W KR2018009957 W KR 2018009957W WO 2020013379 A1 WO2020013379 A1 WO 2020013379A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
emitting device
insulating layer
electrode
Prior art date
Application number
PCT/KR2018/009957
Other languages
English (en)
French (fr)
Inventor
김정섭
문성현
장영학
전지나
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP18926241.3A priority Critical patent/EP3823029B1/en
Priority to US17/259,084 priority patent/US20210320146A1/en
Publication of WO2020013379A1 publication Critical patent/WO2020013379A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Definitions

  • the present invention relates to a display device and a method for manufacturing the same, and more particularly, to a flexible display device using a semiconductor light emitting device.
  • LCD Liguid Crystal Display
  • AMOLED Active Matrix Organic Light Emitting Diodes
  • LEDs Light Emitting Diodes
  • red LEDs using GaAsP compound semiconductors were commercialized, along with GaP: N series green LEDs. It has been used as a light source for display images of electronic devices including communication devices. Accordingly, a method of solving the above problems by implementing a display using the semiconductor light emitting device may be proposed.
  • LLO laser lift-off
  • CLO chemical lift-off method
  • a stamp method and an electrostatic chuck method may be performed by separating the semiconductor light emitting device from the growth substrate and assembling the semiconductor light emitting device on the substrate.
  • the electrostatic chuck When assembling the semiconductor light emitting device using the electrostatic chuck, the number of semiconductor light emitting devices that can be mounted on the electrostatic chuck at a time is limited, and there is a problem in that the maintenance cost of the electrostatic chuck is high.
  • the stamp method is a method of assembling the semiconductor light emitting device by stamping the substrate on the growth substrate having an anchor structure, the over-transfer failure may occur that the semiconductor light emitting device that does not want to be assembled is transferred onto the substrate.
  • process conditions such as temperature and pressure may be adjusted to prevent overtransmission of the semiconductor light emitting device.
  • untransfer problems occur in the process of lowering the temperature and pressure in order to prevent overtransmission, thereby degrading fairness.
  • the present invention provides a display device structure in which overtransfer defects are improved in the assembling process of the display device.
  • One object of the present invention is to provide a display device and a method of manufacturing the same, in which overtransfer defects are prevented in the process of assembling a semiconductor light emitting device from a growth substrate.
  • another object of the present invention is to provide a display device and a method of manufacturing the same that can improve the process speed.
  • a display apparatus includes a plurality of semiconductor light emitting devices on a substrate, the substrate comprising: a base substrate; An insulation layer provided on the base substrate; And a pad formed to protrude from the insulating layer and formed to assemble the semiconductor light emitting device, wherein the insulating layer includes inorganic particles, and at least a part of the inorganic particles is formed to protrude to the surface of the insulating layer. Characterized in that the.
  • the insulating layer is characterized in that it comprises at least one of siloxane resin, epoxy resin and acrylic resin.
  • the inorganic particles are at least one selected from the group consisting of SiOx, TiOx, AlOx and ZnOx.
  • the pad may include at least one of a siloxane resin, an epoxy resin, and an acrylic resin.
  • a wiring is formed on the base substrate, and the pad is selected from the group consisting of AuSn, InSn, and In.
  • the insulating layer has grooves recessed toward the base substrate, and the pad is disposed in the recessed grooves.
  • the method for manufacturing a display device comprising: forming an insulating layer including inorganic particles on a base substrate; Forming a pad protruding from the insulating layer; Forming a pad protective layer on the pad; Etching the insulating layer to form an insulating layer in which the inorganic particles protrude to the surface; And removing the pad protective layer and assembling a semiconductor light emitting device on the pad.
  • the insulating layer may include at least one of a siloxane resin, an epoxy resin, and an acrylic resin.
  • the inorganic particles in the forming of the insulating layer is characterized in that at least one selected from the group consisting of SiOx, TiOx, AlOx and ZnOx.
  • the method may further include removing at least a portion of the insulating layer between the forming of the insulating layer and the forming of the pad to form a recess recessed toward the base substrate. do.
  • the pad is formed in the recessed groove.
  • the insulating layer protrudes the inorganic particles to the surface of the insulating layer, even if the semiconductor light emitting device is in contact with the surface of the semiconductor light emitting device and the insulating layer during the assembly process, the transfer is prevented to improve the yield of selective transfer to improve the process speed
  • a display device can be provided.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1, and FIGS. 3A and 3B are cross-sectional views taken along the lines B-B and C-C of FIG. 2.
  • FIG. 4 is a conceptual diagram illustrating a flip chip type semiconductor light emitting device of FIG. 3.
  • 5A to 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • FIG. 7 is a perspective view showing another embodiment of a display device using the semiconductor light emitting device of the invention.
  • FIG. 8 is a cross-sectional view taken along the line D-D of FIG. 7.
  • FIG. 9 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 8.
  • FIG. 10 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention of a display device having a new structure.
  • FIG. 11 is a conceptual diagram illustrating a method of manufacturing a substrate including an insulating layer and a pad of the display device of the present invention.
  • FIG. 12 is a conceptual diagram illustrating a method of manufacturing another substrate including an insulating layer and a pad of the display device of the present invention.
  • FIG. 13 is a conceptual diagram illustrating a method of manufacturing a display apparatus according to the present invention by a stamp method.
  • FIG. 14 is a conceptual diagram illustrating a method of manufacturing a display device according to the present invention through a donor substrate.
  • FIG. 15 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention to which a display apparatus having a new structure is applied.
  • 16 is an image showing the results of the semiconductor light emitting device overtransfer test test of the Examples and Comparative Examples of the present invention.
  • the display device described herein includes a mobile phone, a smart phone, a laptop computer, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), navigation, and a slate PC. , Tablet PC, Ultra Book, digital TV, desktop computer.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • slate PC slate PC
  • Tablet PC Ultra Book
  • digital TV desktop computer
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a display device using the semiconductor light emitting device of the present invention.
  • the information processed by the controller of the display apparatus 100 may be displayed using a flexible display.
  • the flexible display includes a display that can be bent, bent, twisted, foldable, or rollable by external force.
  • a flexible display can be a display fabricated on a thin, flexible substrate that can be bent, bent, folded, or rolled like a paper while maintaining the display characteristics of a conventional flat panel display.
  • the display area of the flexible display becomes flat.
  • the display area may be a curved surface in a state in which the first state is bent by an external force (for example, a state having a finite radius of curvature, hereinafter referred to as a second state).
  • the information displayed in the second state may be visual information output on a curved surface.
  • Such visual information is implemented by independently controlling light emission of a sub-pixel disposed in a matrix form.
  • the unit pixel refers to a minimum unit for implementing one color.
  • the unit pixel of the flexible display may be implemented by a semiconductor light emitting device.
  • the present invention exemplifies a light emitting diode (LED) as one type of semiconductor light emitting device for converting current into light.
  • the light emitting diode is formed to have a small size, thereby enabling it to serve as a unit pixel even in the second state.
  • FIG. 2 is a partially enlarged view of a portion A of FIG. 1
  • FIGS. 3A and 3B are cross-sectional views taken along the lines BB and CC of FIG. 2
  • FIG. 4 is a conceptual diagram illustrating a flip chip type semiconductor light emitting device of FIG. 3A.
  • 5A to 5C are conceptual views illustrating various forms of implementing colors in connection with a flip chip type semiconductor light emitting device.
  • a display device 100 using a passive matrix (PM) type semiconductor light emitting device is illustrated as a display device 100 using a semiconductor light emitting device.
  • PM passive matrix
  • AM active matrix
  • the display apparatus 100 includes a substrate 110, a first electrode 120, a conductive adhesive layer 130, a second electrode 140, and a plurality of semiconductor light emitting devices 150.
  • the substrate 110 may be a flexible substrate.
  • the substrate 110 may include glass or polyimide (PI).
  • PI polyimide
  • any material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) may be used as long as it is an insulating and flexible material.
  • the substrate 110 may be either a transparent material or an opaque material.
  • the substrate 110 may be a wiring board on which the first electrode 120 is disposed, and thus the first electrode 120 may be positioned on the substrate 110.
  • the insulating layer 160 may be disposed on the substrate 110 on which the first electrode 120 is disposed, and the auxiliary electrode 170 may be positioned on the insulating layer 160.
  • a state in which the insulating layer 160 is stacked on the substrate 110 may be one wiring board.
  • the insulating layer 160 is made of an insulating and flexible material such as polyimide (PI, Polyimide), PET, and PEN, and can be formed integrally with the substrate 110 to form one substrate.
  • the auxiliary electrode 170 is an electrode that electrically connects the first electrode 120 and the semiconductor light emitting device 150.
  • the auxiliary electrode 170 is disposed on the insulating layer 160 and disposed to correspond to the position of the first electrode 120.
  • the auxiliary electrode 170 may have a dot shape and may be electrically connected to the first electrode 120 by an electrode hole 171 passing through the insulating layer 160.
  • the electrode hole 171 may be formed by filling a via material with a conductive material.
  • the conductive adhesive layer 130 is formed on one surface of the insulating layer 160, but the present invention is not necessarily limited thereto.
  • a layer is formed between the insulating layer 160 and the conductive adhesive layer 130 or a structure in which the conductive adhesive layer 130 is disposed on the substrate 110 without the insulating layer 160. It is also possible.
  • the conductive adhesive layer 130 may serve as an insulating layer.
  • the conductive adhesive layer 130 may be a layer having adhesiveness and conductivity.
  • the conductive adhesive layer 130 may be mixed with a conductive material and an adhesive material.
  • the conductive adhesive layer 130 is flexible, thereby enabling a flexible function in the display device.
  • the conductive adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
  • ACF anisotropic conductive film
  • the conductive adhesive layer 130 allows electrical interconnection in the Z direction through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the conductive adhesive layer 130 may be referred to as a Z-axis conductive layer (however, hereinafter referred to as a 'conductive adhesive layer').
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member. When the heat and pressure are applied, only the specific portion is conductive by the anisotropic conductive medium.
  • the heat and pressure is applied to the anisotropic conductive film, other methods are possible in order for the anisotropic conductive film to be partially conductive. Such a method can be, for example, only one of the heat and pressure applied or UV curing or the like.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film in this example is a film in which the conductive ball is mixed with the insulating base member, and only a specific portion of the conductive ball is conductive when heat and pressure are applied.
  • the anisotropic conductive film may be in a state in which a core of a conductive material contains a plurality of particles coated by an insulating film made of a polymer material, and in this case, a portion to which heat and pressure are applied becomes conductive by the core as the insulating film is destroyed. .
  • the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
  • heat and pressure are applied to the anisotropic conductive film as a whole, and the electrical connection in the Z-axis direction is partially formed by the height difference of the counterpart bonded by the anisotropic conductive film.
  • the anisotropic conductive film may be in a state containing a plurality of particles coated with a conductive material on the insulating core.
  • the portion to which the heat and pressure are applied is deformed (pressed) to have conductivity in the thickness direction of the film.
  • the conductive material may penetrate the insulating base member in the Z-axis direction and have conductivity in the thickness direction of the film. In this case, the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array anisotropic conductive film (fixed array ACF) consisting of a conductive ball inserted into one surface of the insulating base member.
  • the insulating base member is formed of an adhesive material, and the conductive ball is concentrated on the bottom portion of the insulating base member, and deforms with the conductive ball when heat and pressure are applied to the base member. Therefore, it has conductivity in the vertical direction.
  • the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member or a plurality of layers, in which a conductive ball is disposed in one layer (double- ACF) etc. are all possible.
  • the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
  • solutions containing conductive particles can be solutions in the form of conductive particles or nanoparticles.
  • the second electrode 140 is positioned on the insulating layer 160 spaced apart from the auxiliary electrode 170. That is, the conductive adhesive layer 130 is disposed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the semiconductor light emitting device 150 is connected in a flip chip form by applying heat and pressure. In this case, the semiconductor light emitting device 150 is electrically connected to the first electrode 120 and the second electrode 140.
  • the semiconductor light emitting device may be a flip chip type light emitting device.
  • the semiconductor light emitting device may include a p-type electrode 156, a p-type semiconductor layer 155 on which the p-type electrode 156 is formed, an active layer 154 formed on the p-type semiconductor layer 155, and an active layer ( The n-type semiconductor layer 153 formed on the 154 and the n-type electrode 152 disposed horizontally spaced apart from the p-type electrode 156 on the n-type semiconductor layer 153.
  • the p-type electrode 156 may be electrically connected to the auxiliary electrode 170 by the conductive adhesive layer 130, and the n-type electrode 152 may be electrically connected to the second electrode 140.
  • the auxiliary electrode 170 may be formed to be long in one direction, and one auxiliary electrode may be electrically connected to the plurality of semiconductor light emitting devices 150.
  • the p-type electrodes of the left and right semiconductor light emitting devices around the auxiliary electrode may be electrically connected to one auxiliary electrode.
  • the semiconductor light emitting device 150 is press-fitted into the conductive adhesive layer 130 by heat and pressure, through which the p-type electrode 156 and the auxiliary electrode 170 of the semiconductor light emitting device 150 are pressed. Only the portion and the portion between the n-type electrode 152 and the second electrode 140 of the semiconductor light emitting device 150 have conductivity, and the rest of the semiconductor light emitting device does not have a conductivity because there is no indentation. As such, the conductive adhesive layer 130 not only couples the semiconductor light emitting device 150 and the auxiliary electrode 170 and between the semiconductor light emitting device 150 and the second electrode 140 but also forms an electrical connection.
  • the plurality of semiconductor light emitting devices 150 constitute an array of light emitting devices, and a phosphor layer 180 is formed on the light emitting device array.
  • the light emitting device array may include a plurality of semiconductor light emitting devices having different luminance values.
  • Each semiconductor light emitting device 150 constitutes a unit pixel and is electrically connected to the first electrode 120.
  • a plurality of first electrodes 120 may be provided, the semiconductor light emitting devices may be arranged in a few rows, and the semiconductor light emitting devices may be electrically connected to any one of the plurality of first electrodes.
  • semiconductor light emitting devices are connected in a flip chip form, semiconductor light emitting devices grown on a transparent dielectric substrate may be used.
  • the semiconductor light emitting devices may be, for example, nitride semiconductor light emitting devices. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the partition wall 190 may be formed between the semiconductor light emitting devices 150.
  • the partition wall 190 may serve to separate the individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 130.
  • the base member of the anisotropic conductive film may form the partition wall.
  • the partition 190 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided as the partition 190.
  • the partition 190 may include a black or white insulator according to the purpose of the display device.
  • the partition wall of the white insulator is used, the reflectivity may be improved, and when the partition wall of the black insulator is used, the contrast may be increased at the same time.
  • the phosphor layer 180 may be located on the outer surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and the phosphor layer 180 performs a function of converting the blue (B) light into the color of a unit pixel.
  • the phosphor layer 180 may be a red phosphor 181 or a green phosphor 182 constituting individual pixels.
  • a red phosphor 181 capable of converting blue light into red (R) light may be stacked on the blue semiconductor light emitting device 151 at a position forming a red unit pixel, and a position forming a green unit pixel.
  • a green phosphor 182 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 151.
  • only the blue semiconductor light emitting device 151 may be used alone in a portion of the blue unit pixel.
  • the unit pixels of red (R), green (G), and blue (B) may form one pixel. More specifically, phosphors of one color may be stacked along each line of the first electrode 120. Therefore, one line in the first electrode 120 may be an electrode for controlling one color. That is, red (R), green (G), and blue (B) may be sequentially disposed along the second electrode 140, and thus, a unit pixel may be implemented.
  • the present invention is not limited thereto, and instead of the phosphor, the semiconductor light emitting device 150 and the quantum dot QD may be combined to implement unit pixels of red (R), green (G), and blue (B). have.
  • a black matrix 191 may be disposed between the respective phosphor layers in order to improve contrast. That is, the black matrix 191 may improve contrast of the contrast.
  • the present invention is not necessarily limited thereto, and other structures for implementing blue, red, and green may be applied.
  • each semiconductor light emitting device 150 is mainly made of gallium nitride (GaN), and indium (In) and / or aluminum (Al) is added together to emit high light including blue. It can be implemented as an element.
  • the semiconductor light emitting devices 150 may be red, green, and blue semiconductor light emitting devices, respectively, to form a sub-pixel.
  • red, green, and blue semiconductor light emitting devices R, G, and B are alternately disposed, and red, green, and blue unit pixels are formed by red, green, and blue semiconductor light emitting devices. These pixels constitute one pixel, and thus, a full color display may be implemented.
  • the semiconductor light emitting device may include a white light emitting device W having a yellow phosphor layer for each individual device.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the white light emitting device W.
  • a unit pixel may be formed on the white light emitting device W by using a color filter in which red, green, and blue are repeated.
  • a red phosphor layer 181, a green phosphor layer 182, and a blue phosphor layer 183 may be provided on the ultraviolet light emitting device UV.
  • the semiconductor light emitting device can be used not only for visible light but also for ultraviolet light (UV) in all areas, and can be extended in the form of a semiconductor light emitting device in which ultraviolet light (UV) can be used as an excitation source of the upper phosphor. .
  • the semiconductor light emitting device 150 is positioned on the conductive adhesive layer 130 to constitute a unit pixel in the display device. Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 150 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square device. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • a square semiconductor light emitting device 150 having a side length of 10 ⁇ m is used as a unit pixel, sufficient brightness for forming a display device appears. Therefore, for example, when the size of the unit pixel is a rectangular pixel in which one side is 600 ⁇ m and the other side is 300 ⁇ m, the distance of the semiconductor light emitting device is relatively large. Therefore, in this case, it is possible to implement a flexible display device having an HD image quality.
  • the display device using the semiconductor light emitting device described above may be manufactured by a new type of manufacturing method. Hereinafter, the manufacturing method will be described with reference to FIG. 6.
  • FIG. 6 is a cross-sectional view illustrating a method of manufacturing a display device using the semiconductor light emitting device of the present invention.
  • the conductive adhesive layer 130 is formed on the insulating layer 160 on which the auxiliary electrode 170 and the second electrode 140 are located.
  • the insulating layer 160 is stacked on the first substrate 110 to form a single substrate (or a wiring substrate), and the first electrode 120, the auxiliary electrode 170, and the second electrode 140 are formed on the wiring substrate. Is placed.
  • the first electrode 120 and the second electrode 140 may be disposed in a direction perpendicular to each other.
  • the first substrate 110 and the insulating layer 160 may each include glass or polyimide (PI).
  • the conductive adhesive layer 130 may be implemented by, for example, an anisotropic conductive film.
  • an anisotropic conductive film may be applied to a substrate on which the insulating layer 160 is located.
  • the semiconductor light emitting device 150 may include a second substrate 112 corresponding to the positions of the auxiliary electrodes 170 and the second electrodes 140 and on which the plurality of semiconductor light emitting devices 150 constituting individual pixels are located. ) Is disposed to face the auxiliary electrode 170 and the second electrode 140.
  • the second substrate 112 may be a growth substrate for growing the semiconductor light emitting device 150, and may be a sapphire substrate or a silicon substrate.
  • the semiconductor light emitting device When the semiconductor light emitting device is formed in a wafer unit, the semiconductor light emitting device may be effectively used in the display device by having a gap and a size capable of forming the display device.
  • the wiring board and the second board 112 are thermocompressed.
  • the wiring board and the second substrate 112 may be thermocompressed by applying an ACF press head.
  • the thermocompression bonding the wiring substrate and the second substrate 112 are bonded. Only the portion between the semiconductor light emitting device 150, the auxiliary electrode 170, and the second electrode 140 has conductivity due to the property of the conductive anisotropic conductive film by thermocompression bonding.
  • the device 150 may be electrically connected.
  • the semiconductor light emitting device 150 is inserted into the anisotropic conductive film, through which a partition wall may be formed between the semiconductor light emitting device 150.
  • the second substrate 112 is removed.
  • the second substrate 112 may be removed using a laser lift-off (LLO) or chemical lift-off (CLO).
  • LLO laser lift-off
  • CLO chemical lift-off
  • a transparent insulating layer (not shown) may be formed by coating silicon oxide (SiOx) on the wiring board to which the semiconductor light emitting device 150 is coupled.
  • the method may further include forming a phosphor layer on one surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 is a blue semiconductor light emitting device that emits blue (B) light, and a red phosphor or a green phosphor for converting the blue (B) light into the color of a unit pixel emits the blue semiconductor light.
  • a layer may be formed on one surface of the device.
  • the manufacturing method or structure of the display device using the semiconductor light emitting device described above may be modified in various forms.
  • a vertical semiconductor light emitting device may also be applied to the display device described above.
  • a vertical structure will be described with reference to FIGS. 5 and 6.
  • FIG. 7 is a perspective view illustrating another embodiment of a display device using the semiconductor light emitting device of the present invention
  • FIG. 8 is a cross-sectional view taken along the line DD of FIG. 7
  • FIG. 9 is a conceptual view illustrating the vertical semiconductor light emitting device of FIG. 8. to be.
  • the display device may be a display device using a passive semiconductor light emitting device of a passive matrix (PM) type.
  • PM passive matrix
  • the display device includes a substrate 210, a first electrode 220, a conductive adhesive layer 230, a second electrode 240, and a plurality of semiconductor light emitting devices 250.
  • the substrate 210 is a wiring substrate on which the first electrode 220 is disposed, and may include polyimide (PI) in order to implement a flexible display device.
  • PI polyimide
  • any material that is insulating and flexible may be used.
  • the first electrode 220 is positioned on the substrate 210 and may be formed as an electrode having a bar shape that is long in one direction.
  • the first electrode 220 may be formed to serve as a data electrode.
  • the conductive adhesive layer 230 is formed on the substrate 210 on which the first electrode 220 is located. Like the display device to which the flip chip type light emitting device is applied, the conductive adhesive layer 230 is a solution containing an anisotropic conductive film (ACF), anisotropic conductive paste, and conductive particles. ), Etc. However, this embodiment also illustrates a case where the conductive adhesive layer 230 is implemented by the anisotropic conductive film.
  • ACF anisotropic conductive film
  • Etc Etc
  • the semiconductor light emitting device 250 After placing the anisotropic conductive film in a state where the first electrode 220 is positioned on the substrate 210, the semiconductor light emitting device 250 is connected to the semiconductor light emitting device 250 by applying heat and pressure. It is electrically connected to the electrode 220. In this case, the semiconductor light emitting device 250 may be disposed on the first electrode 220.
  • the electrical connection is created because, as described above, in the anisotropic conductive film is partially conductive in the thickness direction when heat and pressure are applied. Therefore, in the anisotropic conductive film is divided into a portion 231 having conductivity and a portion 232 having no conductivity in the thickness direction.
  • the conductive adhesive layer 230 implements not only electrical connection but also mechanical coupling between the semiconductor light emitting device 250 and the first electrode 220.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 250 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square element. In the case of a rectangle, the size may be 20 ⁇ 80 ⁇ m or less.
  • the semiconductor light emitting device 250 may have a vertical structure.
  • a plurality of second electrodes 240 disposed in a direction crossing the length direction of the first electrode 220 and electrically connected to the vertical semiconductor light emitting device 250 are positioned.
  • the vertical semiconductor light emitting device includes a p-type electrode 256, a p-type semiconductor layer 255 formed on the p-type electrode 256, and an active layer 254 formed on the p-type semiconductor layer 255. ), An n-type semiconductor layer 253 formed on the active layer 254, and an n-type electrode 252 formed on the n-type semiconductor layer 253.
  • the lower p-type electrode 256 may be electrically connected by the first electrode 220 and the conductive adhesive layer 230, and the upper n-type electrode 252 may be the second electrode 240 described later.
  • a phosphor layer 280 may be formed on one surface of the semiconductor light emitting device 250.
  • the semiconductor light emitting device 250 is a blue semiconductor light emitting device 251 that emits blue (B) light
  • the phosphor layer 280 is provided to convert the blue (B) light into the color of a unit pixel.
  • the phosphor layer 280 may be a red phosphor 281 and a green phosphor 282 constituting individual pixels.
  • a red phosphor 281 capable of converting the blue light into the red (R) light may be stacked on the blue semiconductor light emitting element 251, and the position forming the green unit pixel.
  • a green phosphor 282 capable of converting blue light into green (G) light may be stacked on the blue semiconductor light emitting device 251.
  • only the blue semiconductor light emitting device 251 may be used alone in a portion of the blue unit pixel. In this case, the unit pixels of red (R), green (G), and blue (B) may form one pixel.
  • the present invention is not limited thereto, and as described above in the display device to which the flip chip type light emitting device is applied, other structures for implementing blue, red, and green may be applied.
  • the second electrode 240 is positioned between the semiconductor light emitting devices 250 and is electrically connected to the semiconductor light emitting devices 250.
  • the semiconductor light emitting devices 250 may be arranged in a plurality of rows, and the second electrode 240 may be positioned between the columns of the semiconductor light emitting devices 250.
  • the second electrode 240 may be positioned between the semiconductor light emitting devices 250.
  • the second electrode 240 may be formed as an electrode having a bar shape that is long in one direction, and may be disposed in a direction perpendicular to the first electrode.
  • the second electrode 240 and the semiconductor light emitting device 250 may be electrically connected by a connection electrode protruding from the second electrode 240.
  • the connection electrode may be an n-type electrode of the semiconductor light emitting device 250.
  • the n-type electrode is formed of an ohmic electrode for ohmic contact, and the second electrode covers at least a portion of the ohmic electrode by printing or deposition.
  • the second electrode 240 and the n-type electrode of the semiconductor light emitting device 250 may be electrically connected to each other.
  • the second electrode 240 may be positioned on the conductive adhesive layer 230.
  • a transparent insulating layer (not shown) including silicon oxide (SiOx) may be formed on the substrate 210 on which the semiconductor light emitting device 250 is formed.
  • SiOx silicon oxide
  • the second electrode 240 is positioned after the transparent insulating layer is formed, the second electrode 240 is positioned on the transparent insulating layer.
  • the second electrode 240 may be formed to be spaced apart from the conductive adhesive layer 230 or the transparent insulating layer.
  • the present invention has the advantage of not having to use a transparent electrode such as ITO by placing the second electrode 240 between the semiconductor light emitting devices 250. Therefore, the light extraction efficiency can be improved by using a conductive material having good adhesion with the n-type semiconductor layer as a horizontal electrode without being limited to the selection of a transparent material.
  • a transparent electrode such as indium tin oxide (ITO)
  • the partition wall 290 may be located between the semiconductor light emitting devices 250. That is, the partition wall 290 may be disposed between the vertical semiconductor light emitting devices 250 to isolate the semiconductor light emitting devices 250 forming individual pixels. In this case, the partition wall 290 may serve to separate individual unit pixels from each other, and may be integrally formed with the conductive adhesive layer 230. For example, as the semiconductor light emitting device 250 is inserted into the anisotropic conductive film, the base member of the anisotropic conductive film may form the partition wall.
  • the partition wall 290 may have reflective properties and contrast may be increased.
  • a reflective partition may be separately provided.
  • the partition 290 may include a black or white insulator according to the purpose of the display device.
  • the partition wall 290 is disposed between the vertical semiconductor light emitting device 250 and the second electrode 240. It can be located in between. Accordingly, the individual unit pixels may be configured even with a small size by using the semiconductor light emitting device 250, and the distance between the semiconductor light emitting devices 250 is relatively large enough so that the second electrode 240 is connected to the semiconductor light emitting device 250. ), And a flexible display device having HD image quality can be implemented.
  • a black matrix 291 may be disposed between the respective phosphors in order to improve contrast. That is, this black matrix 291 can improve contrast of the contrast.
  • the semiconductor light emitting device 250 is positioned on the conductive adhesive layer 230, thereby forming individual pixels in the display device. Since the semiconductor light emitting device 250 has excellent brightness, individual unit pixels may be configured with a small size. Accordingly, a full color display in which the unit pixels of red (R), green (G), and blue (B) form one pixel may be implemented by the semiconductor light emitting device.
  • LLO laser lift-off
  • CLO chemical lift-off method
  • a stamp method and an electrostatic chuck method may be performed by separating the semiconductor light emitting device from the growth substrate and assembling the semiconductor light emitting device on the substrate.
  • the display device according to the present invention can prevent overtransmission and improve process speed when the semiconductor light emitting device is separated from the growth substrate and assembled to the substrate.
  • FIG. 10 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention of a display device having a new structure.
  • the display apparatus 1000 includes a substrate 1001, a first electrode 1020, an insulating member 1030, a second electrode 1040, and a plurality of semiconductor light emitting devices 1050.
  • the display apparatus 1000 may be formed of a monochromatic surface light source by excluding a phosphor disposed on the semiconductor light emitting device 1050.
  • the substrate 1001 may include a base substrate 1010, an insulating layer 1011, and a pad 1012.
  • the base substrate 1010 may be made of various materials, and may be made flexible or inflexible.
  • the base substrate 1010 may include glass or polyimide (PI).
  • PI polyimide
  • any material such as polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) may be used as long as it is an insulating and flexible material.
  • the base substrate 1010 may be either a transparent material or an opaque material.
  • the base substrate 1010 may be formed of a plurality of layers.
  • the insulating layer 1011 may be disposed on the base substrate 1010.
  • the insulating layer 1011 may include an organic material 1011a and an inorganic particle 1011b.
  • the organic material 1011a may include at least one of a siloxane resin, an epoxy resin, and an acrylic resin.
  • At least one inorganic particle 1011b may be selected from the group consisting of SiOx, TiOx, AlOx, and ZnOx.
  • the inorganic particles 1011b may be formed of micro sized particles.
  • at least a portion of the inorganic particles 1011b may be exposed to the surface of the organic material 1011a.
  • the inorganic particles 1011b may be formed to protrude to the surface of the insulating layer 1011.
  • the pad 1012 may be formed to protrude from the insulating layer 1011.
  • the semiconductor light emitting device 1050 may be assembled on the pad 1012.
  • An adhesive layer may be disposed on the pad 1012 to fix the semiconductor light emitting device 1050 on one surface of the pad 1012.
  • the pad 1012 may have an adhesive force to fix the semiconductor light emitting device 1050 without an additional layer.
  • the pad 1012 may include at least one of an insulating siloxane resin, an epoxy resin, and an acrylic resin. Can be. Meanwhile, when the semiconductor light emitting device forming the display device is a vertical semiconductor light emitting device, the pad may be formed of a conductive material to serve as an electrode. This will be described in detail later with reference to FIG. 15.
  • the insulating layer 1011 and the pad 1012 may have different roughness surfaces.
  • the roughness of the surface of the insulating layer 1011 formed to protrude at least a portion of the inorganic particles 1011b may be formed to have a greater roughness than the surface of the pad 1012. Therefore, in the process of assembling the semiconductor light emitting device 1050, the assembly may be selectively formed on the surfaces of the insulating layer 1011 and the pad 1012.
  • the problem of overtransferring the semiconductor light emitting device 1050 on the insulating layer 1011 may be solved.
  • the pad 1012 is formed to protrude beyond the insulating layer 1011, even when the semiconductor light emitting element 1050 is bonded by physical contact, the pad 1012 and the semiconductor light emitting element 1050 are insulated from each other even if they are in contact with each other. A gap occurs between the layer 1011 and the semiconductor light emitting device 1050. Therefore, since the bonding between the insulating layer 1011 and the semiconductor light emitting device 1050 may be prevented, there is an effect that the semiconductor light emitting device 1050 may be overtransmitted on the insulating layer 1011.
  • the substrate 1001 may have a recess recessed in the insulating layer 1011, and the pad may be disposed in the recess recessed groove. This will be described in detail later with reference to FIG. 12.
  • the semiconductor light emitting device 1050 may include a first conductive semiconductor layer 1053, an active layer 1054, and a second conductive semiconductor layer 1055.
  • the semiconductor light emitting device 1050 may include a second conductive electrode 1052 formed on one surface of the first conductive semiconductor layer 1053 and a second conductive semiconductor layer 1055 formed on one surface of the second conductive semiconductor layer 1055. It may be formed to include a conductive electrode 1056.
  • the first conductive semiconductor layer 1053 and the first conductive electrode 1052 may be p-type electrodes and p-type semiconductor layers, respectively, and the second conductive semiconductor layer 1055 may be n-type, respectively. It can be an electrode and an n-type semiconductor layer.
  • the present invention is not necessarily limited thereto, and an example in which the first conductive type is n-type and the second conductive type is p-type is also possible.
  • the insulating member 1030 may be formed to surround the semiconductor light emitting device 1050.
  • the insulating member 1030 may include polydimethylsiloxane (PDMS) or polymethylphenylsiloxane (PMPS) as a polymer material, surrounds the semiconductor light emitting device 1050, and has a variety of insulating properties It may include a material.
  • PDMS polydimethylsiloxane
  • PMPS polymethylphenylsiloxane
  • first electrode 1020 and the second electrode 1040 may be disposed on the insulating member 1030.
  • first conductive electrode 1056 and the second conductive electrode 1052 of the semiconductor light emitting device 1050 may be electrically coupled to correspond to the first electrode 1020 and the second electrode 1040, respectively. have.
  • FIG. 11 is a conceptual diagram illustrating a method of manufacturing a substrate 1001 including an insulating layer 1011 and a pad 1012 of the display apparatus 1000 of the present invention.
  • an insulating layer 1011 ' including an organic material 1011a and an inorganic particle 1011b is formed on a base substrate 1010, and protrudes from the insulating layer 1011'.
  • Pad 1012 may be formed.
  • a pad protective layer 1013 ′ is formed on the pad 1012.
  • a process of etching the surfaces of the insulating layer 1011 'and the pad protective layer 1013' is performed, and the etching process is preferably performed by dry etching. Can be.
  • the insulating layer 1011 ' is etched, and an insulating layer 1011 is formed to protrude at least a portion of the inorganic particles 1011b to the surface.
  • the pad protection layer 1013 on which the etching is performed may be removed to form the substrate 1001.
  • FIG. 12 is a conceptual diagram illustrating a method of manufacturing another substrate 1001a including an insulating layer 1011 and a pad 1012 of the display apparatus 1000 of the present invention.
  • the same or similar reference numerals are assigned to the same or similar components as the foregoing embodiments, and the description is replaced with the first description.
  • an insulating layer 1011 ′ including an organic material 1011 a and an inorganic particle 1011 b is formed on a base substrate 1010, and at least a portion of the insulating layer 1011 ′ is formed. May be removed to form a recess recessed toward the base substrate 1010. Subsequently, a pad 1012a is formed in the recessed groove, and the pad 1012a is formed to protrude beyond the insulating layer 1011 '.
  • the pad protection layer 1013 ' is formed on the pad 1012a.
  • a process of etching the surfaces of the insulating layer 1011 ′ and the pad protection layer 1013 ′ is performed, and the etching process is preferably performed by dry etching. Can be.
  • the insulating layer 1011 ' is etched, and an insulating layer 1011 is formed to protrude at least a portion of the inorganic particles 1011b to the surface.
  • the substrate 1001a may be formed by removing the pad protection layer 1013 on which the etching is performed.
  • FIG. 13 is a conceptual diagram illustrating a method of manufacturing the display apparatus 1000 according to the present invention through a stamp method.
  • a semiconductor light emitting device 1050 ′ may be assembled to a substrate 1001 including a base substrate 1010, an insulating layer 1011, and a pad 1012.
  • the semiconductor light emitting device 1050 ′ may be stacked on the growth substrate W and formed through a process such as etching. Further, the semiconductor light emitting device 1050 ′ may include an anchor structure 1060 formed by an etching process.
  • the semiconductor light emitting device 1050 ′ may be stamped onto a substrate including the base substrate 1010, the insulating layer 1011, and the pad 1012, separated from the anchor structure 1060, and transferred or assembled.
  • the problem of overtransferring the semiconductor light emitting device 1050 ′ on the insulating layer 1011 may be solved.
  • the pad 1012 is formed to protrude beyond the insulating layer 1011, even when the semiconductor light emitting device 1050 'is bonded by physical contact, even if the pad 1012 and the semiconductor light emitting device 1050' contact each other. A gap is generated between the insulating layer 1011 and the semiconductor light emitting element 1050 '. Therefore, since the contact between the insulating layer 1011 and the semiconductor light emitting device 1050 ′ can be prevented, over-transferring of the semiconductor light emitting device 1050 ′ on the insulating layer 1011 can be prevented.
  • the semiconductor light emitting device 1050 ′ is separated from the growth base W and assembled on the pad 1012, and then the first conductive electrode 1052 and the second conductive electrode ( 1056, a semiconductor light emitting device 1050 including the first conductive electrode 1052 and the second conductive electrode 1056 may be formed.
  • the display device 1000 may be manufactured by forming the insulating layer 1030 surrounding the semiconductor light emitting device 1050 and forming the first electrode 1020 and the second electrode 1040. Can be.
  • FIG. 14 is a conceptual diagram illustrating a method of manufacturing the display apparatus 1000 according to the present invention through a donor substrate W '.
  • the display apparatus 1000 selectively transfers a portion of the semiconductor light emitting devices 1050 after transferring the semiconductor light emitting device 1050 manufactured on the growth substrate to the donor substrate W ′. It may be formed by assembling the substrate including the 1010, the insulating layer 1011, and the pad 1012.
  • the donor substrate W ' may be formed of a material that may be deformed by an external force having elasticity. That is, when the donor substrate W 'contacts the substrate by pressure and the semiconductor light emitting device 1050 is transferred, the donor substrate W' may be overtransmitted by an electrostatic force or a van der Waals force.
  • the semiconductor light emitting device 1050 is overtransmitted on the insulating layer 1011.
  • the pad 1012 is formed to protrude beyond the insulating layer 1011, even when the semiconductor light emitting device 1050 is bonded by physical contact, the pad 1012 and the semiconductor light emitting device 10500 are insulated from each other even if they are in contact with each other. A gap occurs between the layer 1011 and the semiconductor light emitting device 1050. Therefore, since the contact between the insulating layer 1011 and the semiconductor light emitting device 1050 can be prevented, it is possible to prevent the semiconductor light emitting device 1050 from being overtransmitted on the insulating layer 1011.
  • the process in which the semiconductor light emitting device 1050 is separated and disposed on the pad 1012 may be performed by a transfer method using a donor substrate W 'as described above, and the semiconductor light emitting device is directly separated from the growth substrate. Transfer may be performed using a Laser Lift-off (LLO) or Chemical Lift-off (CLO).
  • LLO Laser Lift-off
  • CLO Chemical Lift-off
  • the semiconductor light emitting device 1050 disposed on the pad 1012 may be formed by the various transfer methods described above.
  • the display device 1000 may be manufactured by forming the insulating layer 1030 surrounding the semiconductor light emitting device 1050 and forming the first electrode 1020 and the second electrode 1040. Can be.
  • the substrate used in FIGS. 13 and 14 may include a substrate 1001a having a groove recessed in the insulating layer described in FIG. 12 and having the pad formed thereon.
  • FIG. 15 is an enlarged view of portion A of FIG. 1 for explaining another embodiment of the present invention to which the display apparatus 2000 having a new structure is applied.
  • the same or similar reference numerals are assigned to the same or similar components as the foregoing embodiments, and the description is replaced with the first description.
  • the semiconductor light emitting device for forming the display apparatus 2000 may be formed as a vertical semiconductor light emitting device 2050.
  • the pad 2012 may be formed of a conductive material to serve as an electrode.
  • the display apparatus 2000 may further include a phosphor layer 2080 formed on one surface of the plurality of semiconductor light emitting devices 2050.
  • the semiconductor light emitting device 2050 is a blue semiconductor light emitting device that emits blue (B) light
  • the phosphor layer 2080 performs a function of converting the blue (B) light into the color of a unit pixel.
  • the phosphor layer 2080 may be a red phosphor 2081 or a green phosphor 2082 constituting individual pixels.
  • the display device may further include a black matrix 2091 disposed between the respective phosphors.
  • first conductive electrode 2056 and the second conductive electrode 2052 of the semiconductor light emitting devices 2050 correspond to the first electrode 2020 and the second electrode 2040, respectively, and are electrically coupled to each other. Can be.
  • a wiring (not shown) may be formed on the insulating layer 2011 to form a connection between the semiconductor light emitting devices 2050.
  • the pad 2012 corresponding to the second conductive electrode 2056 may be selected from the group consisting of AuSn, InSn, and In.
  • an electrical connection between the wiring and the semiconductor light emitting device 2050 may be formed.
  • the pad 2012 since the pad 2012 is disposed below the semiconductor light emitting device 2050, the pad 2012 selected from the group consisting of AuSn, InSn, and In having excellent thermal conductivity may improve the heat dissipation performance of the display device 2000. It may be. Since the pad 2012 selected from the group consisting of AuSn, InSn, and In may have self-adhesive force according to a process, the semiconductor light emitting device 2050 may be fixed on the pad 2012 without an additional layer.
  • 16 is an image showing the results of the semiconductor light emitting device overtransfer test test of the Examples and Comparative Examples of the present invention.
  • 16A is an example of the semiconductor light emitting device overtransfer test experiment of the embodiment.
  • no pad was formed, and an insulating layer having a portion of inorganic particles protruding was formed on the base substrate, and the semiconductor light emitting device was transferred to test whether or not overtransfer.
  • the semiconductor light emitting device was transferred to test whether or not overtransfer.
  • the image appeared dark due to the increase in the roughness of the surface of the insulating layer through dry etching, the semiconductor light emitting device overtransmitted on the insulating layer did not appear as a result of the over-transfer test.
  • 16B is an example of the semiconductor light emitting device overtransfer test experiment of the comparative example.
  • the pad is not formed, and an insulating layer including inorganic particles is formed on the base substrate, but dry etching is not performed. Looking at the experimental results, it can be seen that the semiconductor light emitting device is overtransmitted on the insulating layer.
  • the overtransfer defect can be improved during the assembly of the semiconductor light emitting device.
  • the display device using the semiconductor light emitting device described above is not limited to the configuration and method of the embodiments described above, but the embodiments may be configured by selectively combining all or part of the embodiments so that various modifications can be made. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명에 따른 디스플레이 장치는 기판상에 복수의 반도체 발광소자들을 구비하고, 상기 기판은, 베이스 기판; 상기 베이스 기판 상에 구비된 절연층; 및 상기 절연층보다 돌출되도록 형성되고 상기 반도체 발광소자가 조립되도록 형성되는 패드를 포함하고, 상기 절연층은 무기입자를 포함하고, 상기 무기입자의 적어도 일부는 상기 절연층의 표면으로 돌출되도록 형성되는 것을 특징으로 하는 것을 특징으로 한다.

Description

반도체 발광소자를 이용한 디스플레이 장치
본 발명은 디스플레이 장치 및 이의 제조방법에 관한 것으로 특히, 반도체 발광소자를 이용한 플렉서블 디스플레이에 장치에 관한 것이다.
최근에는 디스플레이 기술분야에서 박형, 플렉서블 등의 우수한 특성을 가지는 디스플레이 장치가 개발되고 있다. 이에 반해, 현재 상용화된 주요 디스플레이는 LCD(Liguid Crystal Display)와 AMOLED(Active Matrix Organic Light Emitting Diodes)로 대표되고 있다.
그러나, LCD의 경우에 빠르지 않은 반응 시간과, 플렉서블의 구현이 어렵다는 문제점이 존재하고, AMOLED의 경우에 수명이 짧고, 양산 수율이 좋지 않다는 취약점이 존재한다.
한편, 발광 다이오드(Light Emitting Diode: LED)는 전류를 빛으로 변환시키는 잘 알려진 반도체 발광소자로서, 1962년 GaAsP 화합물 반도체를 이용한 적색 LED가 상품화된 것을 시작으로 GaP:N 계열의 녹색 LED와 함께 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 이용되어 왔다. 따라서, 상기 반도체 발광소자를 이용하여 디스플레이를 구현하여, 상기의 문제점을 해결하는 방안이 제시될 수 있다.
상기에서 설명된 본 발명의 반도체 발광소자를 이용한 디스플레이 장치에는 성장기판에서 반도체 발광소자를 분리하기 위해서는 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 분리할 수 있다.
나아가, 성장기판에서 반도체 발광소자를 분리하고 기판 상에 반도체 발광소자를 조립하는 방법으로 스탬프(stamp) 방식, 정전 척(chunk) 방식이 수행될 수 있다. 정전 척을 이용하여 반도체 발광소자를 조립하는 경우에 정전 척에 한번에 장착될 수 있는 반도체 발광소자의 개수가 제한되며, 정전 척의 유지 보수 비용이 높다는 문제점이 있다.
한편, 스탬프 방식은 앵커구조를 형성한 성장기판에 기판을 스탬핑하여 반도체 발광소자를 조립하는 방식으로, 조립을 원하지 않는 반도체 발광소자가 기판상에 전사되는 과전사 불량이 발생할 수도 있다. 스탬프 방식에서 반도체 발광소자의 과전사를 방지하기 위하여 온도, 압력과 같은 공정 조건 조절할 수 있다. 하지만, 과전사를 방지하기 위해서 온도 및 압력을 낮추는 과정에서 미전사 문제가 발생하게 되어 공정성이 떨어지게 된다는 문제점이 있다.
이와 같이, 반도체 발광소자를 이용한 디스플레이의 경우에 반도체 발광소자를 조립하는 과정에서 과전사 불량이 발생하여 이를 개선할 필요가 있다. 이에 본 발명에서 디스플레이 장치의 조립 과정에서 과전사 불량이 개선된 디스플레이 장치 구조에 대하여 제시한다.
본 발명의 일 목적은 성장기판에서 반도체 발광소자를 조립하는 과정에서 과전사 불량이 방지된 디스플레이 장치 및 그 제조방법을 제공하기 위한 것이다.
또한 본 발명의 다른 일 목적은 공정 속도를 향상시킬 수 있는 디스플레이 장치 및 그 제조방법을 제공하기 위한 것이다.
본 발명에 따른 디스플레이 장치는 기판상에 복수의 반도체 발광소자들을 구비하고, 상기 기판은, 베이스 기판; 상기 베이스 기판 상에 구비된 절연층; 및 상기 절연층보다 돌출되도록 형성되고 상기 반도체 발광소자가 조립되도록 형성되는 패드를 포함하고, 상기 절연층은 무기입자를 포함하고, 상기 무기입자의 적어도 일부는 상기 절연층의 표면으로 돌출되도록 형성되는 것을 특징으로 하는 것을 특징으로 한다.
실시예에 있어서, 상기 절연층은 실록산 수지, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 포함하는 것을 특징으로 한다.
실시예에 있어서, 상기 무기입자는 SiOx, TiOx, AlOx 및 ZnOx 으로 이루어진 군으로부터 적어도 하나 이상 선택되는 것을 특징으로 한다.
실시예에 있어서, 상기 패드는 실록산 수지, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 포함하는 것을 특징으로 한다.
실시예에 있어서, 상기 베이스 기판 상에 배선이 형성되고, 상기 패드는 AuSn, InSn 및 In 으로 이루어진 군으로부터 선택되는 것을 특징으로 한다.
실시예에 있어서, 상기 절연층은 상기 베이스 기판을 향하여 리세스된 홈을 구비하고, 상기 패는 상기 리세스된 홈에 배치되는 것을 특징으로 한다.
또한, 본 발명에 따른 디스플레이 장치의 제조방법에 있어서, 베이스 기판 상에 무기입자를 포함하는 절연층을 형성하는 단계; 상기 절연층보다 돌출된 패드를 형성하는 단계; 상기 패드 상에 패드보호층을 형성하는 단계; 상기 절연층을 식각하여 상기 무기입자가 표면으로 돌출된 절연층을 형성하는 단계; 및 상기 패드보호층을 제거하고, 상기 패드 상에 반도체 발광소자를 조립하는 단계를 포함하는 것을 특징으로 한다.
실시예에 있어서, 상기 절연층을 형성하는 단계에서 상기 절연층은 실록산 수지, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 포함하는 것을 특징으로 한다.
실시예에 있어서, 상기 절연층을 형성하는 단계에서 상기 무기입자는 SiOx, TiOx, AlOx 및 ZnOx 으로 이루어진 군으로부터 적어도 하나 이상 선택되는 것을 특징으로 한다.
실시예에 있어서, 상기 절연층을 형성하는 단계와 상기 패드를 형성하는 단계 사이에 상기 절연층의 적어도 일부를 제거하여 상기 베이스 기판을 향하여 리세스된 홈을 형성하는 단계를 더 포함하는 것을 특징으로 한다.
실시예에 있어서, 상기 리세스된 홈에 상기 패드를 형성하는 것을 특징으로 한다.
본 발명에 따른 디스플레이 장치에서는, 베이스 기판 상에 무기입자를 포함하는 절연층 및 상기 절연층보다 돌출되도록 형성된 패드를 포함하고, 상기 패드에 반도체 발광소자를 배치하여 반도체 발광소자를 분리하여 반도체 발광소자의 조립과정에서 과전사 불량이 방지될 수 있다.
또한, 절연층의 적어도 일부에는 상기 절연층 표면으로 무기입자가 돌출되어 반도체 발광소자의 조립과정에서 반도체 발광소자와 절연층 표면에 접촉되어도 전사가 방지되어 선택적 전사의 수율이 향상되어 공정 속도를 향상시킬 수 있는 디스플레이 장치가 제공될 수 있다.
도 1은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이다.
도 4는 도 3의 플립 칩 타입 반도체 발광소자를 나타내는 개념도이다.
도 5a 내지 도 5c는 플립 칩 타입 반도체 발광소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 6은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
도 7은 발명의 반도체 발광소자를 이용한 디스플레이 장치의 다른 실시예를 나타내는 사시도이다.
도 8은 도 7의 라인 D-D를 따라 취한 단면도이다.
도 9는 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 10은 새로운 구조의 디스플레이 장치의 본 발명의 다른 실시예를 설명하기 위한, 도 1의 A부분 확대도이다.
도 11은 본 발명의 디스플레이 장치의 절연층 및 패드를 포함하는 기판의 제조방법을 나타내는 개념도들이다.
도 12는 본 발명의 디스플레이 장치의 절연층 및 패드를 포함하는 또 다른 기판의 제조방법을 나타내는 개념도들이다.
도 13는 스탬프 방식을 통한 본 발명에 따른 디스플레이 장치의 제조방법을 나타내는 개념도들이다.
도 14는 도너기판을 통한 본 발명에 따른 디스플레이 장치의 제조방법을 나타내는 개념도들이다.
도 15는 새로운 구조의 디스플레이 장치가 적용된 본 발명의 또 다른 실시 예를 설명하기 위한, 도 1의 A부분 확대도이다.
도 16은 본 발명의 실시예와 비교예의 반도체 발광소자 과전사 테스트 시험의 결과를 이미지로 나타내었다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 디스플레이 장치에는 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 피씨(Slate PC), Tablet PC, Ultra Book, 디지털 TV, 데스크탑 컴퓨터 등이 포함될 수 있다. 그러나, 본 명세서에 기재된 실시 예에 따른 구성은 추후 개발되는 새로운 제품형태이라도, 디스플레이가 가능한 장치에는 적용될 수도 있음을 본 기술분야의 당업자라면 쉽게 알 수 있을 것이다.
도 1은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 일 실시예를 나타내는 개념도이다.
도시에 의하면, 디스플레이 장치(100)의 제어부에서 처리되는 정보는 플렉서블 디스플레이(flexible display)를 이용하여 표시될 수 있다.
플렉서블 디스플레이는 외력에 의하여 휘어질 수 있는, 구부러질 수 있는, 비틀어질 수 있는, 접힐 수 있는, 말려질 수 있는 디스플레이를 포함한다. 예를 들어, 플렉서블 디스플레이는 기존의 평판 디스플레이의 디스플레이 특성을 유지하면서, 종이와 같이 휘어지거나, 구부리거나, 접을 수 있거나 말 수 있는 얇고 유연한 기판 위에 제작되는 디스플레이가 될 수 있다.
상기 플렉서블 디스플레이가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 플렉서블 디스플레이의 디스플레이 영역이 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 디스플레이 영역이 곡면이 될 수 있다. 도시와 같이, 상기 제2상태에서 표시되는 정보는 곡면상에 출력되는 시각 정보가 될 수 있다. 이러한 시각 정보는 매트릭스 형태로 배치되는 단위 화소(sub-pixel)의 발광이 독자적으로 제어됨에 의하여 구현된다. 상기 단위 화소는 하나의 색을 구현하기 위한 최소 단위를 의미한다.
상기 플렉서블 디스플레이의 단위 화소는 반도체 발광소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 단위 화소의 역할을 할 수 있게 된다.
이하, 상기 발광 다이오드를 이용하여 구현된 플렉서블 디스플레이에 대하여 도면을 참조하여 보다 상세히 설명한다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3a 및 도 3b는 도 2의 라인 B-B 및 C-C를 따라 취한 단면도들이며, 도 4는 도 3a의 플립 칩 타입 반도체 발광소자를 나타내는 개념도이고, 도 5a 내지 도 5c는 플립 칩 타입 반도체 발광소자와 관련하여 컬러를 구현하는 여러가지 형태를 나타내는 개념도들이다.
도 2, 도 3a 및 도 3b의 도시에 의하면, 반도체 발광소자를 이용한 디스플레이 장치(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광소자를 이용한 디스플레이 장치(100)를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광소자에도 적용 가능하다.
상기 디스플레이 장치(100)는 기판(110), 제1전극(120), 전도성 접착층(130), 제2전극(140) 및 복수의 반도체 발광소자(150)를 포함한다.
기판(110)은 플렉서블 기판일 수 있다. 예를 들어, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 기판(110)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
상기 기판(110)은 제1전극(120)이 배치되는 배선기판이 될 수 있으며, 따라서 상기 제1전극(120)은 기판(110) 상에 위치할 수 있다.
도시에 의하면, 절연층(160)은 제1전극(120)이 위치한 기판(110) 상에 배치될 수 있으며, 상기 절연층(160)에는 보조전극(170)이 위치할 수 있다. 이 경우에, 상기 기판(110)에 절연층(160)이 적층된 상태가 하나의 배선기판이 될 수 있다. 보다 구체적으로, 절연층(160)은 폴리이미드(PI, Polyimide), PET, PEN 등과 같이 절연성이 있고, 유연성 있는 재질로, 상기 기판(110)과 일체로 이루어져 하나의 기판을 형성할 수 있다.
보조전극(170)은 제1전극(120)과 반도체 발광소자(150)를 전기적으로 연결하는 전극으로서, 절연층(160) 상에 위치하고, 제1전극(120)의 위치에 대응하여 배치된다. 예를 들어, 보조전극(170)은 닷(dot) 형태이며, 절연층(160)을 관통하는 전극홀(171)에 의하여 제1전극(120)과 전기적으로 연결될 수 있다. 상기 전극홀(171)은 비아 홀에 도전물질이 채워짐에 의하여 형성될 수 있다.
본 도면들을 참조하면, 절연층(160)의 일면에는 전도성 접착층(130)이 형성되나, 본 발명은 반드시 이에 한정되는 것은 아니다. 예를 들어, 절연층(160)과 전도성 접착층(130)의 사이에 특정 기능을 수행하는 레이어가 형성되거나, 절연층(160)이 없이 전도성 접착층(130)이 기판(110)상에 배치되는 구조도 가능하다. 전도성 접착층(130)이 기판(110)상에 배치되는 구조에서는 전도성 접착층(130)이 절연층의 역할을 할 수 있다.
상기 전도성 접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 전도성 접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 또한 전도성 접착층(130)은 연성을 가지며, 이를 통하여 디스플레이 장치에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 전도성 접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 전도성 접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 전도성 접착층(130)은 Z축 전도층으로 명명될 수 있다(다만, 이하 '전도성 접착층'이라 한다).
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법도 가능하다. 이러한 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 도시에 의하면, 본 예시에서 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
도시에 의하면, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)가 될 수 있다. 보다 구체적으로, 절연성 베이스부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스부재의 바닥부분에 집중적으로 배치되며, 상기 베이스부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 particle 혹은 nano 입자를 함유한 형태의 솔루션이 될 수 있다.
다시 도면을 참조하면, 제2전극(140)은 보조전극(170)과 이격하여 절연층(160)에 위치한다. 즉, 상기 전도성 접착층(130)은 보조전극(170) 및 제2전극(140)이 위치하는 절연층(160) 상에 배치된다.
절연층(160)에 보조전극(170)과 제2전극(140)이 위치된 상태에서 전도성 접착층(130)을 형성한 후에, 반도체 발광소자(150)를 열 및 압력을 가하여 플립 칩 형태로 접속시키면, 상기 반도체 발광소자(150)는 제1전극(120) 및 제2전극(140)과 전기적으로 연결된다.
도 4를 참조하면, 상기 반도체 발광소자는 플립 칩 타입(flip chip type)의 발광소자가 될 수 있다.
예를 들어, 상기 반도체 발광소자는 p형 전극(156), p형 전극(156)이 형성되는 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154) 상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에서 p형 전극(156)과 수평방향으로 이격 배치되는 n형 전극(152)을 포함한다. 이 경우, p형 전극(156)은 보조전극(170)과 전도성 접착층(130)에 의하여 전기적으로 연결될 수 있고, n형 전극(152)은 제2전극(140)과 전기적으로 연결될 수 있다.
다시 도 2, 도 3a 및 도 3b를 참조하면, 보조전극(170)은 일방향으로 길게 형성되어, 하나의 보조전극이 복수의 반도체 발광소자(150)에 전기적으로 연결될 수 있다. 예를 들어, 보조전극을 중심으로 좌우의 반도체 발광소자들의 p형 전극들이 하나의 보조전극에 전기적으로 연결될 수 있다.
보다 구체적으로, 열 및 압력에 의하여 전도성 접착층(130)의 내부로 반도체 발광소자(150)가 압입되며, 이를 통하여 반도체 발광소자(150)의 p형 전극(156)과 보조전극(170) 사이의 부분과, 반도체 발광소자(150)의 n형 전극(152)과 제2전극(140) 사이의 부분에서만 전도성을 가지게 되고, 나머지 부분에서는 반도체 발광소자의 압입이 없어 전도성을 가지지 않게 된다. 이와 같이, 전도성 접착층(130)은 반도체 발광소자(150)와 보조전극(170) 사이 및 반도체 발광소자(150)와 제2전극(140) 사이를 상호 결합시켜줄 뿐만 아니라 전기적 연결까지 형성시킨다.
또한, 복수의 반도체 발광소자(150)는 발광소자 어레이(array)를 구성하며, 발광소자 어레이에는 형광체층(180)이 형성된다.
발광소자 어레이는 자체 휘도값이 상이한 복수의 반도체 발광소자들을 포함할 수 있다. 각각의 반도체 발광소자(150)는 단위 화소를 구성하며, 제1전극(120)에 전기적으로 연결된다. 예를 들어, 제1전극(120)은 복수 개일 수 있고, 반도체 발광소자들은 예컨대 수 열로 배치되며, 각 열의 반도체 발광소자들은 상기 복수 개의 제1전극 중 어느 하나에 전기적으로 연결될 수 있다.
또한, 반도체 발광소자들이 플립 칩 형태로 접속되므로, 투명 유전체 기판에 성장시킨 반도체 발광소자들을 이용할 수 있다. 또한, 상기 반도체 발광소자들은 예컨대 질화물 반도체 발광소자일 수 있다. 반도체 발광소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다.
도시에 의하면, 반도체 발광소자(150)의 사이에 격벽(190)이 형성될 수 있다. 이 경우, 격벽(190)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 전도성 접착층(130)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광소자(150)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(190)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로 반사성 격벽이 별도로 구비될 수 있다. 이 경우에, 상기 격벽(190)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다. 화이트 절연체의 격벽을 이용할 경우 반사성을 높이는 효과가 있을 수 있고, 블랙 절연체의 격벽을 이용할 경우, 반사 특성을 가지는 동시에 대비비(contrast)를 증가시킬 수 있다.
형광체층(180)은 반도체 발광소자(150)의 외면에 위치할 수 있다. 예를 들어, 반도체 발광소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광소자이고, 형광체층(180)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 상기 형광체층(180)은 개별 화소를 구성하는 적색 형광체(181) 또는 녹색 형광체(182)가 될 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광소자(151) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(181)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광소자(151) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(182)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광소자(151)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다. 보다 구체적으로, 제1전극(120)의 각 라인을 따라 하나의 색상의 형광체가 적층될 수 있다. 따라서, 제1전극(120)에서 하나의 라인은 하나의 색상을 제어하는 전극이 될 수 있다. 즉, 제2전극(140)을 따라서, 적색(R), 녹색(G) 및 청색(B)이 차례로 배치될 수 있으며, 이를 통하여 단위 화소가 구현될 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 형광체 대신에 반도체 발광소자(150)와 퀀텀닷(QD)이 조합되어 적색(R), 녹색(G) 및 청색(B)의 단위 화소들을 구현할 수 있다.
또한, 대비비(contrast) 향상을 위하여 각각의 형광체층들의 사이에는 블랙 매트릭스(191)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(191)는 명암의 대조를 향상시킬 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
도 5a를 참조하면, 각각의 반도체 발광소자(150)는 질화 갈륨(GaN)을 주로 하여, 인듐(In) 및/또는 알루미늄(Al)이 함께 첨가되어 청색을 비롯한 다양한 빛을 발광하는 고출력의 발광소자로 구현될 수 있다.
이 경우, 반도체 발광소자(150)는 각각 단위 화소(sub-pixel)를 이루기 위하여 적색, 녹색 및 청색 반도체 발광소자일 수 있다. 예컨대, 적색, 녹색 및 청색 반도체 발광소자(R, G, B)가 교대로 배치되고, 적색, 녹색 및 청색 반도체 발광소자에 의하여 적색(Red), 녹색(Green) 및 청색(Blue)의 단위 화소들이 하나의 화소(pixel)를 이루며, 이를 통하여 풀 칼라 디스플레이가 구현될 수 있다.
도 5b를 참조하면, 반도체 발광소자는 황색 형광체층이 개별 소자마다 구비된 백색 발광소자(W)를 구비할 수 있다. 이 경우에는, 단위 화소를 이루기 위하여, 백색 발광소자(W) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비될 수 있다. 또한, 이러한 백색 발광소자(W) 상에 적색, 녹색, 및 청색이 반복되는 컬러 필터를 이용하여 단위 화소를 이룰 수 있다.
도 5c를 참조하면, 자외선 발광소자(UV) 상에 적색 형광체층(181), 녹색 형광체층(182), 및 청색 형광체층(183)이 구비되는 구조도 가능하다. 이와 같이, 반도체 발광소자는 가시광선뿐만 아니라 자외선(UV)까지 전영역에 사용가능하며, 자외선(UV)이 상부 형광체의 여기원(excitation source)으로 사용가능한 반도체 발광소자의 형태로 확장될 수 있다.
본 예시를 다시 살펴보면, 반도체 발광소자(150)는 전도성 접착층(130) 상에 위치되어, 디스플레이 장치에서 단위 화소를 구성한다. 반도체 발광소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 화소를 구성할 수 있다. 이와 같은 개별 반도체 발광소자(150)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
또한, 한 변의 길이가 10㎛인 정사각형의 반도체 발광소자(150)를 단위 화소로 이용하여도 디스플레이 장치를 이루기 위한 충분한 밝기가 나타난다. 따라서, 단위 화소의 크기가 한 변이 600㎛, 나머지 한변이 300㎛인 직사각형 화소인 경우를 예로 들면, 반도체 발광소자의 거리가 상대적으로 충분히 크게 된다. 따라서, 이러한 경우, HD화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있게 된다.
상기에서 설명된 반도체 발광소자를 이용한 디스플레이 장치는 새로운 형태의 제조방법에 의하여 제조될 수 있다. 이하, 도 6을 참조하여 상기 제조방법에 대하여 설명한다.
도 6은 본 발명의 반도체 발광소자를 이용한 디스플레이 장치의 제조방법을 나타낸 단면도들이다.
본 도면을 참조하면, 먼저, 보조전극(170) 및 제2전극(140)이 위치된 절연층(160) 상에 전도성 접착층(130)을 형성한다. 제1기판(110)에 절연층(160)이 적층되어 하나의 기판(또는 배선기판)을 형성하며, 상기 배선기판에는 제1전극(120), 보조전극(170) 및 제2전극(140)이 배치된다. 이 경우에, 제1전극(120)과 제2전극(140)은 상호 직교 방향으로 배치될 수 있다. 또한, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 제1기판(110) 및 절연층(160)은 각각 유리 또는 폴리이미드(PI)를 포함할 수 있다.
상기 전도성 접착층(130)은 예를 들어, 이방성 전도성 필름에 의하여 구현될 수 있으며, 이를 위하여 절연층(160)이 위치된 기판에 이방성 전도성 필름이 도포될 수 있다.
다음에, 보조전극(170) 및 제2전극(140)들의 위치에 대응하고, 개별 화소를 구성하는 복수의 반도체 발광소자(150)가 위치된 제2기판(112)을 상기 반도체 발광소자(150)가 보조전극(170) 및 제2전극(140)와 대향하도록 배치한다.
이 경우에, 제2기판(112)은 반도체 발광소자(150)를 성장시키는 성장 기판으로서, 사파이어(spire) 기판 또는 실리콘(silicon) 기판이 될 수 있다.
상기 반도체 발광소자는 웨이퍼(wafer) 단위로 형성될 때, 디스플레이 장치를 이룰 수 있는 간격 및 크기를 가지도록 함으로써, 디스플레이 장치에 효과적으로 이용될 수 있다.
그 다음에, 배선기판과 제2기판(112)을 열압착한다. 예를 들어, 배선기판과 제2기판(112)은 ACF press head 를 적용하여 열압착될 수 있다. 상기 열압착에 의하여 배선기판과 제2기판(112)은 본딩(bonding)된다. 열압착에 의하여 전도성을 갖는 이방성 전도성 필름의 특성에 의해 반도체 발광소자(150)와 보조전극(170) 및 제2전극(140)의 사이의 부분만 전도성을 가지게 되며, 이를 통하여 전극들과 반도체 발광소자(150)는 전기적으로 연결될 수 있다. 이 때에, 반도체 발광소자(150)가 상기 이방성 전도성 필름의 내부로 삽입되며, 이를 통하여 반도체 발광소자(150) 사이에 격벽이 형성될 수 있다.
그 다음에, 상기 제2기판(112)을 제거한다. 예를 들어, 제2기판(112)은 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 제거할 수 있다.
마지막으로, 상기 제2기판(112)을 제거하여 반도체 발광소자들(150)을 외부로 노출시킨다. 필요에 따라, 반도체 발광소자(150)가 결합된 배선기판 상을 실리콘 옥사이드(SiOx) 등을 코팅하여 투명 절연층(미도시)을 형성할 수 있다.
또한, 상기 반도체 발광소자(150)의 일면에 형광체층을 형성하는 단계를 더 포함할 수 있다. 예를 들어, 반도체 발광소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광소자이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 적색 형광체 또는 녹색 형광체가 상기 청색 반도체 발광소자의 일면에 레이어를 형성할 수 있다.
이상에서 설명된 반도체 발광소자를 이용한 디스플레이 장치의 제조방법이나 구조는 여러가지 형태로 변형될 수 있다. 그 예로서, 상기에서 설명된 디스플레이 장치에는 수직형 반도체 발광소자도 적용될 수 있다. 이하, 도 5 및 도 6을 참조하여 수직형 구조에 대하여 설명한다.
또한, 이하 설명되는 변형예 또는 실시예에서는 앞선 예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 7은 발명의 반도체 발광소자를 이용한 디스플레이 장치의 다른 일 실시예를 나타내는 사시도이고, 도 8은 도 7의 라인 D-D를 따라 취한 단면도이며, 도 9은 도 8의 수직형 반도체 발광소자를 나타내는 개념도이다.
본 도면들을 참조하면, 디스플레이 장치는 패시브 매트릭스(Passive Matrix, PM) 방식의 수직형 반도체 발광소자를 이용한 디스플레이 장치가 될 수 있다.
상기 디스플레이 장치는 기판(210), 제1전극(220), 전도성 접착층(230), 제2전극(240) 및 복수의 반도체 발광소자(250)를 포함한다.
기판(210)은 제1전극(220)이 배치되는 배선기판으로서, 플렉서블(flexible) 디스플레이 장치를 구현하기 위하여 폴리이미드(PI)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 어느 것이라도 사용 가능할 것이다.
제1전극(220)은 기판(210) 상에 위치하며, 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있다. 상기 제1전극(220)은 데이터 전극의 역할을 하도록 이루어질 수 있다.
전도성 접착층(230)은 제1전극(220)이 위치하는 기판(210)상에 형성된다. 플립 칩 타입(flip chip type)의 발광소자가 적용된 디스플레이 장치와 같이, 전도성 접착층(230)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 다만, 본 실시예에서도 이방성 전도성 필름에 의하여 전도성 접착층(230)이 구현되는 경우를 예시한다.
기판(210) 상에 제1전극(220)이 위치하는 상태에서 이방성 전도성 필름을 위치시킨 후에, 반도체 발광소자(250)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광소자(250)가 제1전극(220)과 전기적으로 연결된다. 이 때, 상기 반도체 발광소자(250)는 제1전극(220) 상에 위치되도록 배치되는 것이 바람직하다.
상기 전기적 연결은 전술한 바와 같이, 이방성 전도성 필름에서 열 및 압력이 가해지면 부분적으로 두께방향으로 전도성을 가지기 때문에 생성된다. 따라서, 이방성 전도성 필름에서는 두께방향으로 전도성을 가지는 부분(231)과 전도성을 가지지 않는 부분(232)으로 구획된다.
또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 전도성 접착층(230)은 반도체 발광소자(250)와 제1전극(220) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
이와 같이, 반도체 발광소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광소자(250)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 직사각형인 경우에는 20X80㎛ 이하의 크기가 될 수 있다.
상기 반도체 발광소자(250)는 수직형 구조가 될 수 있다.
수직형 반도체 발광소자들의 사이에는, 제1전극(220)의 길이 방향과 교차하는 방향으로 배치되고, 수직형 반도체 발광소자(250)와 전기적으로 연결된 복수의 제2전극(240)이 위치한다.
도 9를 참조하면, 이러한 수직형 반도체 발광소자는 p형 전극(256), p형 전극(256) 상에 형성된 p형 반도체층(255), p형 반도체층(255) 상에 형성된 활성층(254), 활성층(254)상에 형성된 n형 반도체층(253) 및 n형 반도체층(253) 상에 형성된 n형 전극(252)을 포함한다. 이 경우, 하부에 위치한 p형 전극(256)은 제1전극(220)과 전도성 접착층(230)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(252)은 후술하는 제2전극(240)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광소자(250)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 8을 참조하면, 상기 반도체 발광소자(250)의 일면에는 형광체층(280)이 형성될 수 있다. 예를 들어, 반도체 발광소자(250)는 청색(B) 광을 발광하는 청색 반도체 발광소자(251)이고, 이러한 청색(B) 광을 단위 화소의 색상으로 변환시키기 위한 형광체층(280)이 구비될 수 있다. 이 경우에, 형광체층(280)은 개별 화소를 구성하는 적색 형광체(281) 및 녹색 형광체(282) 일 수 있다.
즉, 적색의 단위 화소를 이루는 위치에서, 청색 반도체 발광소자(251) 상에는 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체(281)가 적층될 수 있고, 녹색의 단위 화소를 이루는 위치에서는, 청색 반도체 발광소자(251) 상에 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체(282)가 적층될 수 있다. 또한, 청색의 단위 화소를 이루는 부분에는 청색 반도체 발광소자(251)만 단독으로 이용될 수 있다. 이 경우, 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이룰 수 있다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 플립 칩 타입(flip chip type)의 발광소자가 적용된 디스플레이 장치에서 전술한 바와 같이, 청색, 적색, 녹색을 구현하기 위한 다른 구조가 적용될 수 있다.
다시 본 실시예를 살펴보면, 제2전극(240)은 반도체 발광소자들(250) 사이에 위치하고, 반도체 발광소자들(250)과 전기적으로 연결된다. 예를 들어, 반도체 발광소자들(250)은 복수의 열로 배치되고, 제2전극(240)은 반도체 발광소자들(250)의 열들 사이에 위치할 수 있다.
개별 화소를 이루는 반도체 발광소자(250) 사이의 거리가 충분히 크기 때문에 제2전극(240)은 반도체 발광소자들(250) 사이에 위치될 수 있다.
제2전극(240)은 일 방향으로 긴 바(bar) 형태의 전극으로 형성될 수 있으며, 제1전극과 상호 수직한 방향으로 배치될 수 있다.
또한, 제2전극(240)과 반도체 발광소자(250)는 제2전극(240)에서 돌출된 연결 전극에 의해 전기적으로 연결될 수 있다. 보다 구체적으로, 상기 연결 전극이 반도체 발광소자(250)의 n형 전극이 될 수 있다. 예를 들어, n형 전극은 오믹(ohmic) 접촉을 위한 오믹 전극으로 형성되며, 상기 제2전극은 인쇄 또는 증착에 의하여 오믹 전극의 적어도 일부를 덮게 된다. 이를 통하여 제2전극(240)과 반도체 발광소자(250)의 n형 전극이 전기적으로 연결될 수 있다.
도시에 의하면, 상기 제2전극(240)은 전도성 접착층(230) 상에 위치될 수 있다. 경우에 따라, 반도체 발광소자(250)가 형성된 기판(210) 상에 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층(미도시)이 형성될 수 있다. 투명 절연층이 형성된 후에 제2전극(240)을 위치시킬 경우, 상기 제2전극(240)은 투명 절연층 상에 위치하게 된다. 또한, 제2전극(240)은 전도성 접착층(230) 또는 투명 절연층에 이격되어 형성될 수도 있다.
만약 반도체 발광소자(250) 상에 제2전극(240)을 위치시키기 위하여는 ITO(Indium Tin Oxide)와 같은 투명 전극을 사용한다면, ITO 물질은 n형 반도체층과는 접착성이 좋지 않은 문제가 있다. 따라서, 본 발명은 반도체 발광소자(250) 사이에 제2전극(240)을 위치시킴으로써, ITO와 같은 투명 전극을 사용하지 않아도 되는 이점이 있다. 따라서, 투명한 재료 선택에 구속되지 않고, n형 반도체층과 접착성이 좋은 전도성 물질을 수평 전극으로 사용하여 광추출 효율을 향상시킬 수 있다.
도시에 의하면, 반도체 발광소자(250) 사이에는 격벽(290)이 위치할 수 있다. 즉, 개별 화소를 이루는 반도체 발광소자(250)를 격리시키기 위하여 수직형 반도체 발광소자(250) 사이에는 격벽(290)이 배치될 수 있다. 이 경우, 격벽(290)은 개별 단위 화소를 서로 분리하는 역할을 할 수 있으며, 상기 전도성 접착층(230)과 일체로 형성될 수 있다. 예를 들어, 이방성 전도성 필름에 반도체 발광소자(250)가 삽입됨에 의하여 이방성 전도성 필름의 베이스부재가 상기 격벽을 형성할 수 있다.
또한, 상기 이방성 전도성 필름의 베이스 부재가 블랙이면, 별도의 블랙 절연체가 없어도 상기 격벽(290)이 반사 특성을 가지는 동시에 대비비(contrast)가 증가될 수 있다.
다른 예로서, 상기 격벽(190)으로서, 반사성 격벽이 별도로 구비될 수 있다. 격벽(290)은 디스플레이 장치의 목적에 따라 블랙(Black) 또는 화이트(White) 절연체를 포함할 수 있다.
만일 제2전극(240)이 반도체 발광소자(250) 사이의 전도성 접착층(230) 상에 바로 위치된 경우, 격벽(290)은 수직형 반도체 발광소자(250) 및 제2전극(240)의 사이사이에 위치될 수 있다. 따라서, 반도체 발광소자(250)를 이용하여 작은 크기로도 개별 단위 픽셀을 구성할 수 있고, 반도체 발광소자(250)의 거리가 상대적으로 충분히 크게 되어 제2전극(240)을 반도체 발광소자(250) 사이에 위치시킬 수 있고, HD 화질을 가지는 플렉서블 디스플레이 장치를 구현할 수 있는 효과가 있게 된다.
또한, 도시에 의하면, 대비비(contrast) 향상을 위하여 각각의 형광체 사이에는 블랙 매트릭스(291)가 배치될 수 있다. 즉, 이러한 블랙 매트릭스(291)는 명암의 대조를 향상시킬 수 있다.
상기 설명과 같이, 반도체 발광소자(250)는 전도성 접착층(230) 상에 위치되며, 이를 통하여 디스플레이 장치에서 개별 화소를 구성한다. 반도체 발광소자(250)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 따라서, 반도체 발광소자에 의하여 적색(R), 녹색(G) 및 청색(B)의 단위 화소들이 하나의 화소를 이루는 풀 칼라 디스플레이가 구현될 수 있다.
상기에서 설명된 본 발명의 반도체 발광소자를 이용한 디스플레이 장치에는 성장기판에서 반도체 발광소자를 분리하기 위해서는 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 분리할 수 있다.
나아가, 성장기판에서 반도체 발광소자를 분리하고 기판 상에 반도체 발광소자를 조립하는 방법으로 스탬프(stamp) 방식, 정전 척(chunk) 방식이 수행될 수 있다. 하지만, 반도체 발광소자를 기판에 조립하는 과정에서 과전사 문제가 발생하게 되어 공정성이 떨어지게 된다는 문제점이 있다. 이에, 본 발명에 의한 디스플레이 장치는 성장기판에서 반도체 발광소자를 분리하여 기판에 조립할 때, 과전사를 방지하고, 공정 속도를 향상시킬 수 있다.
도 10은 새로운 구조의 디스플레이 장치의 본 발명의 다른 실시예를 설명하기 위한, 도 1의 A부분 확대도이다.
도 10을 참조하면, 디스플레이 장치(1000)는 기판(1001), 제1전극(1020), 절연부재(1030), 제2전극(1040) 및 복수의 반도체 발광소자(1050)를 포함한다. 또한, 디스플레이 장치(1000)는 반도체 발광소자(1050) 상에 배치되는 형광체를 배제하여 단색의 면광원으로 형성될 수 있다.
기판(1001)은 베이스 기판(1010), 절연층(1011) 및 패드(1012) 를 포함할 수 있다. 상세하게, 베이스 기판(1010)은 다양한 재질로 이루어질 수 있으며, 플렉서블(flexible)하거나 또는 인플렉서블(inflexible)하게 이루어질 수 있다. 베이스 기판(1010)이 플렉서블하게 이루어지는 경우, 베이스 기판(1010)은 유리나 폴리이미드(PI, Polyimide)를 포함할 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면, 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 베이스 기판(1010)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다. 나아가, 베이스 기판(1010)은 복수의 레이어로 이루어질 수 있다.
일 실시예에서, 절연층(1011)은 베이스 기판(1010) 상에 배치될 수 있다. 상세하게, 절연층(1011)은 유기소재(1011a) 및 무기입자(1011b)를 포함할 수 있다. 유기소재(1011a)는 실록산 수지, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 포함할 수 있다.
나아가, 무기입자(1011b)는 SiOx, TiOx, AlOx 및 ZnOx 으로 이루어진 군으로부터 적어도 하나 이상 선택될 수 있다. 특히, 무기입자(1011b)는 마이크로 사이즈의 입자로 형성될 수 있다. 또한, 무기입자(1011b)의 적어도 일부는 유기소재(1011a)의 표면으로 드러날 수 있다. 이에, 무기입자(1011b)는 절연층(1011)의 표면으로 돌출되도록 형성될 수 있다.
한편, 패드(1012)는 절연층(1011)보다 돌출되도록 형성될 수 있다. 또한, 패드(1012) 상에 반도체 발광소자(1050)가 조립될 수 있다. 패드(1012) 상에는 접착력을 가지는 층을 배치하여, 패드(1012) 일면에 반도체 발광소자(1050)를 고정시킬 수 있다. 또한, 패드(1012)는 접착력을 가져 추가로 배치되는 층 없이도 반도체 발광소자(1050)를 고정시킬 수도 있다.
도시와 같이 디스플레이 장치(1000)을 형성하는 반도체 발광소자(1050)가 플립 칩 타입의 반도체 발광소자일 경우에는 패드(1012)는 절연성을 가지는 실록산 수지, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 포함할 수 있다. 한편, 상기 디스플레이 장치를 형성하는 반도체 발광소자가 수직형 반도체 발광소자일 경우에는 패드는 도전성 소재로 형성되어 전극의 역할을 수행할 수도 있다. 이는 후술되는 도 15에서 상세하게 설명한다.
다시 도면을 참조하면, 절연층(1011)과 패드(1012)는 서로 상이한 거칠기의 표면을 가질 수 있다. 일 실시예에서, 무기입자(1011b)의 적어도 일부가 돌출되도록 형성된 절연층(1011)의 표면의 거칠기가 패드(1012)의 표면보다 더 큰 거칠기를 가지도록 형성될 수 있다. 이에, 반도체 발광소자(1050)가 조립되는 과정에서 절연층(1011)과 패드(1012)의 표면에서 선택적으로 조립을 형성할 수 있다.
상세하게, 거칠기가 더 큰 절연층(1011)의 표면에서는 반도체 발광소자(1050)의 조립이 어려워진다. 따라서, 절연층(1011) 상에 반도체 발광소자(1050)가 과전사되는 문제점이 해결될 수 있다. 특히, 패드(1012)는 절연층(1011)보다 돌출되도록 형성되므로, 물리적인 접촉으로 반도체 발광소자(1050)가 접합할 때에도, 패드(1012)와 반도체 발광소자(1050)가 서로 접촉하더라도, 절연층(1011)과 반도체 발광소자(1050) 상에는 간극이 발생한다. 따라서, 절연층(1011)과 반도체 발광소자(1050)의 접합이 방지될 수 있으므로 절연층(1011) 상에 반도체 발광소자(1050)가 과전사되는 것을 방지할 수 있는 효과가 있다.
한편, 기판(1001)은 절연층(1011)에 리세스된 홈을 구비하고 상기 패드가 리세스된 홈에 배치되는 형태도 가능하다. 이는 후술되는 도 12에서 상세하게 설명한다.
한편, 반도체 발광소자(1050)는 제1도전형 반도체층(1053), 활성층(1054) 및 제2도전형 반도체층(1055)을 포함할 수 있다. 또한, 반도체 발광소자(1050)는 제1도전형 반도체층(1053)의 일면상에 형성되는 제1도전형 전극(1052) 및 제2도전형 반도체층(1055)의 일면상에 형성되는 제2도전형 전극(1056)을 포함하도록 형성될 수 있다.
보다 구체적으로, 제1도전형 반도체층(1053) 및 제1도전형 전극(1052)은 각각 p형 전극 및 p형 반도체층이 될 수 있으며, 제2도전형 반도체층(1055)은 각각 n형 전극 및 n형 반도체층이 될 수 있다. 다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 제1도전형이 n형이 되고 제2도전형이 p형이 되는 예시도 가능하다.
일 실시예에서, 절연부재(1030) 반도체 발광소자(1050)를 감싸도록 형성될 수 있다. 일 실시예에서, 절연부재(1030)는 고분자 소재로 폴리디메틸실록산(Polydimethylsiloxane, PDMS) 또는 폴리메틸페닐실록산(polymethylphenylsiloxane, PMPS)을 포함할 수 있으며, 반도체 발광소자(1050)를 감싸며, 절연성을 가지는 다양한 소재를 포함할 수 있다.
한편, 절연부재(1030) 상에는 제1전극(1020) 및 제2전극(1040)이 배치될 수 있다. 상세하게, 반도체 발광소자(1050)의 제1도전형 전극(1056) 및 제2도전형 전극(1052)은 각각 제1전극(1020) 및 제2전극(1040)에 대응되어 전기적으로 결합될 수 있다.
도 11은 본 발명의 디스플레이 장치(1000)의 절연층(1011) 및 패드(1012)를 포함하는 기판(1001)의 제조방법을 나타내는 개념도들이다.
도 11의 (a)를 참조하면, 베이스 기판(1010) 상에 유기소재(1011a) 및 무기입자(1011b)를 포함하는 절연층(1011')을 형성하고, 절연층(1011')에 돌출된 패드(1012)를 형성할 수 있다. 나아가, 패드(1012) 상에 패드보호층(1013')을 형성한다.
도 11의 (b)를 참조하면, 절연층(1011') 및 패드보호층(1013')의 표면을 식각하는 공정을 수행하고, 식각하는 공정은 바람직하게는 드라이에칭(dry etching)으로 수행될 수 있다. 이에, 절연층(1011')은 식각되며, 표면으로 무기입자(1011b)의 적어도 일부가 돌출되도록 형성되는 절연층(1011)이 형성된다.
도 11의 (c)를 참조하면, 식각이 수행된 패드보호층(1013)이 제거되어 기판(1001)이 형성될 수 있다.
도 12는 본 발명의 디스플레이 장치(1000)의 절연층(1011) 및 패드(1012)를 포함하는 또 다른 기판(1001a)의 제조방법을 나타내는 개념도들이다. 이하 설명되는 기판(1001a)의 제조방법에서는 앞선 실시예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 12의 (a)를 참조하면, 베이스 기판(1010) 상에 유기소재(1011a) 및 무기입자(1011b)를 포함하는 절연층(1011')을 형성하고, 절연층(1011')의 적어도 일부를 제거하여 베이스 기판(1010)을 향하여 리세스된 홈을 형성할 수 있다. 이어서, 리세스된 홈에 패드(1012a)를 형성하되, 패드(1012a)는 절연층(1011')보다 돌출되도록 형성한다. 패드(1012a) 상에 패드보호층(1013')을 형성한다.
도 12의 (b)를 참조하면, 절연층(1011') 및 패드보호층(1013')의 표면을 식각하는 공정을 수행하고, 식각하는 공정은 바람직하게는 드라이에칭(dry etching)으로 수행될 수 있다. 이에, 절연층(1011')은 식각되며, 표면으로 무기입자(1011b)의 적어도 일부가 돌출되도록 형성되는 절연층(1011)이 형성된다.
도 12의 (c)를 참조하면, 식각이 수행된 패드보호층(1013)이 제거되어 기판(1001a)이 형성될 수 있다.
도 13는 스탬프 방식을 통한 본 발명에 따른 디스플레이 장치(1000)의 제조방법을 나타내는 개념도들이다.
도 13을 참조하면, 베이스 기판(1010), 절연층(1011) 및 패드(1012)를 포함하는 기판(1001)에 반도체 발광소자(1050')가 조립될 수 있다.
도 13의 (a)를 참조하면, 반도체 발광소자(1050')는 성장기판(W) 상에 적층되고, 식각과 같은 공정을 통하여 형성될 수 있다. 나아가, 반도체 발광소자(1050')은 식각공정에 의하여 형성된 앵커구조(1060)를 포함할 수 있다.
반도체 발광소자(1050')는 베이스 기판(1010), 절연층(1011) 및 패드(1012)를 포함하는 기판에 스탬핑되어 앵커구조(1060)에서 분리되어 전사 또는 조립될 수 있다.
이때, 거칠기가 더 큰 절연층(1011)의 표면에서는 반도체 발광소자(1050')의 조립이 어려우므로 절연층(1011) 상에 반도체 발광소자(1050')가 과전사되는 문제점이 해결될 수 있다. 특히, 패드(1012)는 절연층(1011)보다 돌출되도록 형성되므로, 물리적인 접촉으로 반도체 발광소자(1050')가 접합할 때에도, 패드(1012)와 반도체 발광소자(1050')가 서로 접촉하더라도, 절연층(1011)과 반도체 발광소자(1050') 상에는 간극이 발생한다. 따라서, 절연층(1011)과 반도체 발광소자(1050')의 접촉이 방지될 수 있으므로 절연층(1011) 상에 반도체 발광소자(1050')가 과전사되는 것을 방지할 수 있다.
도 13의 (b)를 참조하면, 반도체 발광소자(1050')가 성장기반(W)으로부터 분리되고 패드(1012) 상에 조립된 다음 제1도전형 전극(1052) 및 제2도전형 전극(1056)을 형성하여, 제1도전형 전극(1052) 및 제2도전형 전극(1056)이 구비된 반도체 발광소자(1050)를 형성될 수 있다.
도 13의 (c)를 참조하면, 반도체 발광소자(1050)를 감싸는 절연층(1030)을 형성하고 제1전극(1020) 및 제2전극(1040)을 형성하여 디스플레이 장치(1000)를 제조할 수 있다.
도 14는 도너기판(W')을 통한 본 발명에 따른 디스플레이 장치(1000)의 제조방법을 나타내는 개념도들이다.
도 14를 참조하면, 디스플레이 장치(1000)는 전술된 성장기판 상에서 제조된 반도체 발광소자(1050)를 도너기판(W')으로 전사한 후에 반도체 발광소자(1050)들 중 일부를 선택적으로 베이스 기판(1010), 절연층(1011) 및 패드(1012)를 포함하는 기판에 조립시켜 형성할 수 있다.
도 14의 (a)를 참조하면, 도너기판(W')은 탄성을 가지는 외력에 의하여 변형될 수 있는 재질로 형성될 수 있다. 즉, 도너기판(W')이 상기 기판에 압력에 의하여 접촉하며 반도체 발광소자(1050)가 전사될 때, 정전기력, 반데르발스 힘(van der Waals force)에 의하여 과전사될 수 있다.
하지만, 도 14의 (a)에서는 거칠기가 더 큰 절연층(1011)의 표면에서는 반도체 발광소자(1050)의 조립이 어려우므로 절연층(1011) 상에 반도체 발광소자(1050)가 과전사되는 문제점이 해결될 수 있다. 특히, 패드(1012)는 절연층(1011)보다 돌출되도록 형성되므로, 물리적인 접촉으로 반도체 발광소자(1050)가 접합할 때에도, 패드(1012)와 반도체 발광소자(10500)가 서로 접촉하더라도, 절연층(1011)과 반도체 발광소자(1050) 상에는 간극이 발생한다. 따라서, 절연층(1011)과 반도체 발광소자(1050)의 접촉이 방지될 수 있으므로 절연층(1011) 상에 반도체 발광소자(1050)가 과전사되는 것을 방지할 수 있다.
한편, 반도체 발광소자(1050)이 분리되어 패드(1012)에 배치되는 공정은 전술된 것과 같이 도너기판(W')을 이용한 전사방법으로 수행될 수 있으며, 성장기판에서 반도체 발광소자가 바로 분리되는 레이저 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO)을 이용하여 전사될 수 있다.
도 14의 (b)를 참조하면, 전술한 다양한 전사방법으로 패드(1012)에 배치된 반도체 발광소자(1050)를 형성될 수 있다.
도 14의 (c)를 참조하면, 반도체 발광소자(1050)를 감싸는 절연층(1030)을 형성하고 제1전극(1020) 및 제2전극(1040)을 형성하여 디스플레이 장치(1000)를 제조할 수 있다.
전술된 도 13 및 도 14에서 사용되는 기판은 도 12에서 설명된 상기 절연층에 리세스된 홈을 구비하고 상기 패드가 형성된 기판(1001a)가 사용될 수도 있다.
도 15는 새로운 구조의 디스플레이 장치(2000)가 적용된 본 발명의 또 다른 실시 예를 설명하기 위한, 도 1의 A부분 확대도이다. 이하 설명되는 디스플레이 장치(2000)에서는 앞선 실시예와 동일 또는 유사한 구성에 대해서는 동일, 유사한 참조번호가 부여되고, 그 설명은 처음 설명으로 갈음된다.
도 15를 참조하면, 디스플레이 장치(2000)를 형성하는 반도체 발광소자는 수직형 반도체 발광소자(2050)으로 형성될 수 있다. 이에, 패드(2012)는 도전성 소재로 형성되어 전극의 역할을 수행할 수도 있다.
또한, 디스플레이 장치(2000)는, 복수의 반도체 발광소자(2050)의 일면에 형성되는 형광체층(2080)을 더 구비할 수 있다. 예를 들어, 반도체 발광소자(2050)는 청색(B) 광을 발광하는 청색 반도체 발광소자이고, 형광체층(2080)은 상기 청색(B) 광을 단위 화소의 색상으로 변환시키는 기능을 수행한다. 형광체층(2080)은 개별 화소를 구성하는 적색 형광체(2081) 또는 녹색 형광체(2082)가 될 수 있다. 또한, 형광체층(2080)의 대비비(Contrast) 향상을 위하여 디스플레이 장치는 각각의 형광체들의 사이에 배치되는 블랙 매트릭스(2091)를 더 포함할 수 있다.
일 실시예에서, 반도체 발광소자(2050)들의 제1도전형 전극(2056) 및 제2도전형 전극(2052)은 각각 제1전극(2020) 및 제2전극(2040)에 대응되어 전기적으로 결합될 수 있다.
상세하게, 절연층(2011) 상에 배선(미도시)이 형성되어 반도체 발광소자(2050)들 간의 연결을 형성할 수 있다. 이에, 제2도전형 전극(2056)에 대응되는 패드(2012)는 AuSn, InSn 및 In 으로 이루어진 군으로부터 선택될 수 있다. 이에, 상기 배선과 반도체 발광소자(2050)의 전기적 연결이 형성될 수 있다. 나아가, 반도체 발광소자(2050)의 하부에 패드(2012)가 배치되므로 열 전도도가 우수한 AuSn, InSn 및 In 으로 이루어진 군으로부터 선택되어 형성된 패드(2012)는 디스플레이 장치(2000)의 방열성능을 향상시킬 수도 있다. AuSn, InSn 및 In 으로 이루어진 군으로부터 선택되어 형성된 패드(2012)는 공정에 따라서 스스로 접착력을 가질 수 있으므로 추가로 배치되는 층 없이도 반도체 발광소자(2050)를 패드(2012) 상에 고정시킬 수도 있다.
도 16은 본 발명의 실시예와 비교예의 반도체 발광소자 과전사 테스트 시험의 결과를 이미지로 나타내었다.
도 16의 (a)는 실시예의 반도체 발광소자 과전사 테스트 실험의 예이다. 도 16의 (a)에서는 패드를 형성하지 않았고, 베이스 기판에 무기입자의 일부가 돌출된 절연층을 형성하고, 반도체 발광소자를 전사시켜 과전사 여부를 실험하였다. 이에, 드라이에칭을 통한 상기 절연층 표면의 거칠기 증가로 이미지상 어둡게 나타났으나, 과전사 테스트 결과 상기 절연층 상에 과전사된 상기 반도체 발광소자는 나타나지 않았다.
한편, 도 16의 (b)는 비교예의 반도체 발광소자 과전사 테스트 실험의 예이다. 도 16의 (b)에서는 패드는 형성하지 않고, 베이스 기판에 무기입자를 포함하는 절연층을 형성하였으나, 드라이에칭은 수행하지 않았다. 실험 결과를 살펴보면, 상기 반도체 발광소자가 절연층 상에 과전사 된 것이 나타난 것을 알 수 있다.
따라서, 본 발명의 기판이 적용된 실시예에서는 반도체 발광소자를 조립하는 과정에서 과전사 불량이 개선될 수 있다는 것을 알 수 있다.
이상에서 설명한 반도체 발광소자를 이용한 디스플레이 장치는 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (11)

  1. 기판상에 복수의 반도체 발광소자들을 구비하는 디스플레이 장치에 있어서,
    상기 기판은,
    베이스 기판;
    상기 베이스 기판 상에 구비된 절연층; 및
    상기 절연층보다 돌출되도록 형성되고 상기 반도체 발광소자가 조립되도록 형성되는 패드를 포함하고,
    상기 절연층은 무기입자를 포함하고, 상기 무기입자의 적어도 일부는 상기 절연층의 표면으로 돌출되도록 형성되는 것을 특징으로 하는 디스플레이 장치.
  2. 제1항에 있어서,
    상기 절연층은 실록산 수지, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 포함하는 것을 특징으로 하는 디스플레이 장치.
  3. 제1항에 있어서,
    상기 무기입자는 SiOx, TiOx, AlOx 및 ZnOx 으로 이루어진 군으로부터 적어도 하나 이상 선택되는 것을 특징으로 하는 디스플레이 장치.
  4. 제1항에 있어서,
    상기 패드는 실록산 수지, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 포함하는 것을 특징으로 하는 디스플레이 장치.
  5. 제1항에 있어서,
    상기 베이스 기판 상에 배선이 형성되고,
    상기 패드는 AuSn, InSn 및 In 으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 디스플레이 장치.
  6. 제1항에 있어서,
    상기 절연층은 상기 베이스 기판을 향하여 리세스된 홈을 구비하고,
    상기 패는 상기 리세스된 홈에 배치되는 것을 특징으로 하는 디스플레이 장치.
  7. 디스플레이 장치의 제조방법에 있어서,
    베이스 기판 상에 무기입자를 포함하는 절연층을 형성하는 단계;
    상기 절연층보다 돌출된 패드를 형성하는 단계;
    상기 패드 상에 패드보호층을 형성하는 단계;
    상기 절연층을 식각하여 상기 무기입자가 표면으로 돌출된 절연층을 형성하는 단계; 및
    상기 패드보호층을 제거하고, 상기 패드 상에 반도체 발광소자를 조립하는 단계를 포함하는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  8. 제7항에 있어서,
    상기 절연층을 형성하는 단계에서 상기 절연층은 실록산 수지, 에폭시 수지 및 아크릴계 수지 중 적어도 하나를 포함하는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  9. 제7항에 있어서,
    상기 절연층을 형성하는 단계에서 상기 무기입자는 SiOx, TiOx, AlOx 및 ZnOx 으로 이루어진 군으로부터 적어도 하나 이상 선택되는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  10. 제7항에 있어서,
    상기 절연층을 형성하는 단계와 상기 패드를 형성하는 단계 사이에 상기 절연층의 적어도 일부를 제거하여 상기 베이스 기판을 향하여 리세스된 홈을 형성하는 단계를 더 포함하는 것을 특징으로 하는 디스플레이 장치의 제조방법.
  11. 제10항에 있어서,
    상기 리세스된 홈에 상기 패드를 형성하는 것을 특징으로 하는 디스플레이 장치의 제조방법.
PCT/KR2018/009957 2018-07-11 2018-08-29 반도체 발광소자를 이용한 디스플레이 장치 WO2020013379A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18926241.3A EP3823029B1 (en) 2018-07-11 2018-08-29 Display device using semiconductor light-emitting elements
US17/259,084 US20210320146A1 (en) 2018-07-11 2018-08-29 Display device using semiconductor light-emitting elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0080713 2018-07-11
KR1020180080713A KR102193700B1 (ko) 2018-07-11 2018-07-11 반도체 발광소자를 이용한 디스플레이 장치

Publications (1)

Publication Number Publication Date
WO2020013379A1 true WO2020013379A1 (ko) 2020-01-16

Family

ID=69141777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009957 WO2020013379A1 (ko) 2018-07-11 2018-08-29 반도체 발광소자를 이용한 디스플레이 장치

Country Status (4)

Country Link
US (1) US20210320146A1 (ko)
EP (1) EP3823029B1 (ko)
KR (1) KR102193700B1 (ko)
WO (1) WO2020013379A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965305B (zh) * 2020-07-08 2023-11-17 友达光电股份有限公司 显示面板
WO2024005341A1 (ko) * 2022-06-29 2024-01-04 삼성전자주식회사 발광 다이오드와 기판 간 접속 구조 및 이를 포함하는 디스플레이 모듈

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772395B2 (ja) * 2005-06-24 2011-09-14 三菱電機株式会社 電気光学表示装置およびその製造方法
US20130235292A1 (en) * 2011-01-31 2013-09-12 Sharp Kabushiki Kaisha Liquid crystal display panel and method for fabricating same, and array substrate and method for fabricating same
KR20160043615A (ko) * 2014-10-13 2016-04-22 삼성디스플레이 주식회사 패드 전극 구조물, 이를 포함하는 평판 표시 장치 및 평판 표시 장치의 제조방법
KR20180033645A (ko) * 2016-09-26 2018-04-04 주성엔지니어링(주) 박막 트랜지스터 기판
KR20180078660A (ko) * 2016-12-30 2018-07-10 엘지디스플레이 주식회사 표시장치용 어레이 기판 및 이를 포함하는 표시장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8110839B2 (en) * 2009-07-13 2012-02-07 Luxingtek, Ltd. Lighting device, display, and method for manufacturing the same
JP5670250B2 (ja) * 2011-04-18 2015-02-18 イビデン株式会社 Led基板、発光モジュール、発光モジュールを有する機器、led基板の製造方法、発光モジュールの製造方法、及び発光モジュールを有する機器の製造方法
WO2013018783A1 (ja) * 2011-08-01 2013-02-07 株式会社Steq 半導体装置及びその製造方法
WO2014140796A1 (en) * 2013-03-15 2014-09-18 Cooledge Lighting, Inc. Wafer-level flip chip device packages and related methods
US8987765B2 (en) * 2013-06-17 2015-03-24 LuxVue Technology Corporation Reflective bank structure and method for integrating a light emitting device
KR102446768B1 (ko) * 2015-12-14 2022-09-23 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
JP6418200B2 (ja) * 2016-05-31 2018-11-07 日亜化学工業株式会社 発光装置及びその製造方法
KR101947643B1 (ko) * 2016-12-02 2019-02-13 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772395B2 (ja) * 2005-06-24 2011-09-14 三菱電機株式会社 電気光学表示装置およびその製造方法
US20130235292A1 (en) * 2011-01-31 2013-09-12 Sharp Kabushiki Kaisha Liquid crystal display panel and method for fabricating same, and array substrate and method for fabricating same
KR20160043615A (ko) * 2014-10-13 2016-04-22 삼성디스플레이 주식회사 패드 전극 구조물, 이를 포함하는 평판 표시 장치 및 평판 표시 장치의 제조방법
KR20180033645A (ko) * 2016-09-26 2018-04-04 주성엔지니어링(주) 박막 트랜지스터 기판
KR20180078660A (ko) * 2016-12-30 2018-07-10 엘지디스플레이 주식회사 표시장치용 어레이 기판 및 이를 포함하는 표시장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3823029A4 *

Also Published As

Publication number Publication date
KR20200006843A (ko) 2020-01-21
US20210320146A1 (en) 2021-10-14
EP3823029A1 (en) 2021-05-19
KR102193700B1 (ko) 2020-12-21
EP3823029C0 (en) 2023-06-28
EP3823029A4 (en) 2022-04-13
EP3823029B1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2017126762A1 (en) Display device using semiconductor light emitting device
WO2017142315A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2021117979A1 (ko) 마이크로 led와 관련된 디스플레이 장치 및 이의 제조 방법
WO2015060507A1 (en) Display device using semiconductor light emitting device
WO2014163325A1 (en) Display device using semiconductor light emitting device
WO2015060506A1 (en) Display device using semiconductor light emitting device
WO2021070977A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2017073865A1 (en) Display device using semiconductor light emitting device and method for manufacturing the same
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
WO2021060595A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2016122125A1 (en) Display device using semiconductor light emitting devices and method for manufacturing the same
WO2020179989A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2019142965A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2019146819A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법 및 디스플레이 장치
WO2019146816A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2016186376A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020175756A1 (ko) 반도체 발광 소자를 디스플레이 패널에 조립하는 조립 장치
WO2020096314A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2020256250A1 (ko) 마이크로 엘이디를 이용한 디스플레이 장치
WO2018182108A1 (en) Display device using semiconductor light emitting device
WO2021080030A1 (ko) 마이크로 led를 이용한 디스플레이 장치 및 이의 제조 방법
WO2020009262A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2019245098A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2020013379A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2021246537A1 (ko) 반도체 발광소자 및 반도체 발광소자를 이용한 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE