WO2020013314A1 - Thermoplastic resin composition and method for producing same - Google Patents

Thermoplastic resin composition and method for producing same Download PDF

Info

Publication number
WO2020013314A1
WO2020013314A1 PCT/JP2019/027696 JP2019027696W WO2020013314A1 WO 2020013314 A1 WO2020013314 A1 WO 2020013314A1 JP 2019027696 W JP2019027696 W JP 2019027696W WO 2020013314 A1 WO2020013314 A1 WO 2020013314A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
fluororesin
rubber
resin composition
fluororubber
Prior art date
Application number
PCT/JP2019/027696
Other languages
French (fr)
Japanese (ja)
Inventor
明紀 上田
小野 剛
徳平 勝貞
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201980044150.3A priority Critical patent/CN112368330B/en
Priority to US17/259,248 priority patent/US11787927B2/en
Priority to EP19834304.8A priority patent/EP3822315A4/en
Priority claimed from JP2019129933A external-priority patent/JP6863414B2/en
Publication of WO2020013314A1 publication Critical patent/WO2020013314A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene

Definitions

  • the present disclosure relates to a thermoplastic resin composition and a method for producing the same, a molded product, a laminate, a fuel hose, a fuel tube, and a fuel sealing material.
  • Patent Document 1 discloses a thermoplastic resin composition containing a fluororesin (A) and a cross-linked fluororubber (B), wherein the fluororesin (A) has a carbonyl group or an olefin at a main chain terminal or a side chain terminal of the polymer.
  • a thermoplastic resin composition which is dynamically cross-linked together with c) has been proposed.
  • An object of the present disclosure is to provide a thermoplastic resin composition having a reduced tensile modulus without significantly impairing fuel barrier properties.
  • thermoplastic resin composition containing a fluororesin (A) and a crosslinked fluororubber (B), wherein the fluororesin (A) contains a chlorotrifluoroethylene unit and a tetrafluoroethylene unit, and A copolymer having at least one functional group selected from the group consisting of a carbonyl group, an olefin group and an amino group at a main chain terminal or a side chain terminal of the polymer, wherein the crosslinked fluororubber (B) is a fluororesin
  • the fluororubber (b) is mixed with a polyamine compound (c) having a thermal decomposition temperature of 210 ° C.
  • thermoplastic resin composition is provided at least.
  • the fluororubber (b) is preferably a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene-based fluororubber.
  • thermoplastic resin composition containing a fluororesin (A) and a crosslinked fluororubber (B), wherein the fluororesin (A) contains a chlorotrifluoroethylene unit and a tetrafluoroethylene unit.
  • the absorption peak at 3451 cm -1 is higher than the height of the absorption peak at 2360 cm -1.
  • the ratio of height [K1] is, is 0.001 or more, and, with respect to the height of the absorption peak appearing in 3035Cm -1, the ratio of the height of the absorption peaks appearing in 1722 cm -1 [K2] is 0.3
  • a thermoplastic resin composition having a tensile modulus of 250 MPa or less is provided.
  • thermoplastic resin composition wherein the fluororubber (b) is melted under the melting conditions of the fluororesin (A) in the presence of the fluororesin (A).
  • a method for producing a thermoplastic resin composition comprising a step of dynamically crosslinking with a polyamine compound (c) having a thermal decomposition temperature of 210 ° C. or higher and a crosslinking accelerator (d).
  • thermoplastic resin composition a molded article formed from the above thermoplastic resin composition.
  • thermoplastic resin layer (W) formed from the above thermoplastic resin composition
  • elastomer layer (X) formed from the elastomer composition
  • the elastomer composition may be acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, blend rubber of acrylonitrile-butadiene rubber and acrylic rubber, chlorinated polyethylene, fluorine rubber, It is preferable to contain at least one elastomer selected from the group consisting of epichlorohydrin rubber, ethylene-propylene rubber, chlorosulfonated polyethylene rubber, silicone rubber and acrylic rubber.
  • the elastomer composition contains at least one compound selected from the group consisting of an onium salt, an amine compound and an epoxy resin.
  • a fuel hose or a fuel tube made of the above-mentioned molded article or the above-mentioned laminate.
  • a fuel sealing material comprising the above-mentioned molded product or the above-mentioned laminate.
  • thermoplastic resin composition having a reduced tensile modulus without significantly impairing fuel barrier properties.
  • thermoplastic resin composition of the present disclosure includes a fluororesin (A) and a crosslinked fluororubber (B).
  • thermoplastic resin composition is characterized in that the crosslinked fluororubber (B) is a fluororesin (b) in the presence of the fluororesin (A) under the melting conditions of the fluororesin (A). It is dynamically crosslinked with a polyamine compound (c) having a thermal decomposition temperature of 210 ° C. or higher and a crosslinking accelerator (d).
  • a specific polyamine compound in the dynamic crosslinking treatment it is possible to obtain a thermoplastic resin composition having a reduced tensile modulus without greatly impairing the fuel barrier property. Further, the obtained thermoplastic resin composition has a relatively small compression set.
  • thermoplastic resin composition according to an embodiment of the present disclosure has a height of an absorption peak appearing at 2360 cm ⁇ 1 when a molded article formed from the thermoplastic resin composition is subjected to infrared absorption spectrum analysis.
  • the ratio of the height of the absorption peaks appearing in 3451cm -1 [K1] is, it is 0.001 or more, and, with respect to the height of the absorption peak appearing in 3035Cm -1, the height of the absorption peak appearing in 1722 cm -1 Is not less than 0.3 and the tensile modulus is not more than 250 MPa.
  • thermoplastic resin composition of the present disclosure exhibits a characteristic absorption peak, thereby obtaining a thermoplastic resin composition having a reduced tensile modulus without significantly impairing the fuel barrier property.
  • the obtained thermoplastic resin composition has a relatively small compression set.
  • the ratio [K1] is preferably 0.003 or more, more preferably 0.005 or more, and the upper limit is not limited, but is usually 1.500 or less, and the ratio [K2] is preferably 0.4 or more, more preferably 0.5 or more, particularly preferably 1.0 or more, and most preferably 1.5 or more.
  • the upper limit is not limited, but is usually 5.0 or less. is there.
  • the ratio [K1] and the ratio [K2] can be calculated by the following method.
  • the thermoplastic resin composition is placed in a mold having a diameter of 120 mm, set in a press machine heated to 300 ° C., and melt-pressed at a pressure of about 2.9 MPa to produce a thermoplastic resin sheet.
  • the infrared absorption spectrum of this thermoplastic resin sheet is measured by a transmission method using a Fourier transform infrared spectrophotometer [FT-IR], and the ratios [K1] and [K2] are calculated by the following equations.
  • Ratio [K1] H1a / H1b
  • Ratio [K2] H2a / H2b H1a: 3475cm -1 and 3415cm absorbance 3451Cm -1 when the straight line connecting the respective absorbance was to baseline -1 height H1b:
  • H2a / H2b H1a 3475cm -1 and 3415cm absorbance 3451Cm -1 when the straight line connecting the respective absorbance was to baseline -1 height H1b:
  • thermoplastic resin composition exhibiting a characteristic absorption peak is preferably prepared by subjecting a fluororubber (b) to a thermal decomposition temperature under the melting conditions of the fluororesin (A) in the presence of the fluororesin (A). Is dynamically crosslinked with a polyamine compound (c) having a temperature of 210 ° C. or higher and a crosslinking accelerator (d) to obtain a crosslinked fluororubber (B). Based on the type of bond belonging to each absorption peak, the larger the ratio [K1], the more the crosslinked structure formed by the reaction between the functional group of the fluororesin (A) and the polyamine compound (c) was formed.
  • thermoplastic resin composition may have a fuel barrier property and a tensile modulus of elasticity when the ratio [K1] and the ratio [K2] are within the above ranges. Excellent balance and low compression set.
  • the tensile modulus is preferably 230 MPa or less, more preferably 200 MPa or less.
  • the lower limit of the tensile modulus is not particularly limited, but may be 30 MPa or more.
  • the tensile modulus can be measured by the following method.
  • the thermoplastic resin composition is placed in a mold having a diameter of 120 mm, set in a press heated to 300 ° C., and melt-pressed at a pressure of about 2.9 MPa to produce a thermoplastic resin sheet having a thickness of 0.5 mm. I do.
  • a dumbbell-shaped test piece having a distance between marked lines of 3.18 mm is punched out using an ASTM ⁇ D638 ⁇ Type V dumbbell.
  • a tensile test was performed at 25 ° C. at a tensile speed of 50 mm / min at 25 ° C. using an autograph (AGS-J 5 kN manufactured by Shimadzu Corporation) according to ASTM D638. Find the modulus of elasticity.
  • the dispersion structure in which the crosslinked fluororubber (B) is dispersed in the fluororesin (A) is also considered from the viewpoint of the balance between the fuel barrier properties and the tensile elastic modulus and the compression set.
  • the average dispersed particle size of the crosslinked fluororubber (B) is preferably 5 ⁇ m or less.
  • the average dispersed particle diameter is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and the lower limit is not particularly limited, but may be 0.01 ⁇ m or more.
  • the average dispersed particle diameter refers to an image obtained by using any of an atomic force microscope (AFM), a scanning electron microscope (SEM), a transmission electron microscope (TEM), or a combination thereof. It is the average value of the equivalent circle diameters which were analyzed by image analysis software “ImageJ”, and 20 arbitrary particles of the dispersed phase were selected and calculated. For example, when the AFM is used, the difference obtained from the surface information of the continuous phase fluororesin (A) and the dispersed phase crosslinked fluororubber (B) is obtained as a bright and dark image.
  • AFM atomic force microscope
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the contrast is enhanced so that the cross-linked fluororubber (B) of the dispersed phase is clarified with respect to the image obtained as the reflected electron image or the secondary electron image, or the contrast is adjusted.
  • the crosslinked rubber particle diameter of the dispersed phase can be read as in the case of the AFM.
  • the diameter of the crosslinked rubber particles of the dispersed phase can be read in the same manner as in the AFM or the SEM by adjusting the contrast of the obtained image and / or adjusting the brightness or both of the image as in the SEM. These may be selected for each thermoplastic polymer composition so as to be more easily confirmed.
  • the mass ratio of the fluororesin (A) to the fluororubber (b) is less than 70/30, and 20/80. That is all.
  • the mass ratio is preferably 66/34 or less, preferably 30/70 or more, and more preferably 45/55 or more, from the viewpoint of the balance between the fuel barrier property and the tensile elastic modulus and compression set. is there. If the amount of the fluororesin (A) is too small, the fuel barrier property may be insufficient, and if it is too large, the tensile modulus and the compression set may be too large.
  • the mass ratio (fluororesin (A) / crosslinked fluororubber (B)) between the fluororesin (A) and the crosslinked fluororubber (B) is less than 70/30, / 80 or more.
  • the mass ratio is preferably 65/35 or less, preferably 30/70 or more, and more preferably 45/55 or more, from the viewpoint of the balance between the fuel barrier property and the tensile modulus and compression set. is there. If the amount of the fluororesin (A) is too small, the fuel barrier property may be insufficient, and if it is too large, the tensile modulus and the compression set may be too large.
  • the mass ratio of the fluororesin (A) to the crosslinked fluororubber (B) in the thermoplastic resin composition may be, for example, the mass of the fluororesin (A) used to prepare the thermoplastic resin composition. And the sum of the respective masses of the fluororubber (b), the polyamine compound (c) and the crosslinking accelerator (d).
  • the volume ratio of the fluororesin (A) to the fluororubber (b) is determined by the fuel barrier property, the tensile modulus, and the compression. From the viewpoint of the balance with the permanent set, the ratio is preferably 69/31 or less, more preferably 63/37 or less, preferably 18/82 or more, more preferably 28/72 or more, and further preferably 42/58 or more. If the amount of the fluororesin (A) is too small, the fuel barrier property may be insufficient, and if it is too large, the tensile modulus and the compression set may be too large.
  • the volume ratio between the fluororesin (A) and the crosslinked fluororubber (B) is determined by the fuel barrier property and the tensile modulus. From the viewpoint of balance with compression set, it is preferably 68/32 or less, more preferably 63/37 or less, preferably 18/82 or more, and more preferably 27/73 or more. It is preferably at least 42/58. If the amount of the fluororesin (A) is too small, the fuel barrier property may be insufficient, and if it is too large, the tensile modulus and the compression set may be too large.
  • the volume ratio between the fluororesin (A) and the crosslinked fluorororubber (B) in the thermoplastic resin composition is, for example, the mass of the fluororesin (A) used for preparing the thermoplastic resin composition.
  • the value obtained by dividing the mass of the fluororubber (b) by its specific gravity, the value obtained by dividing the mass of the polyamine compound (c) by its specific gravity, and the mass of the crosslinking accelerator (d) by its specific gravity It can be calculated from the ratio to the sum of the values divided by.
  • the fluororesin (A) and the crosslinked fluororubber (B ) can be determined from an image obtained by using any of an atomic force microscope (AFM), a scanning electron microscope (SEM), a transmission electron microscope (TEM), or a combination thereof, It can also be calculated by calculating the area ratio between the fluororesin (A) in the phase and the crosslinked fluororubber (B) in the dispersed phase, and raising it to the 1.5th power.
  • AFM atomic force microscope
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • the fuel permeability coefficient of the thermoplastic resin composition of the present disclosure is preferably 30 (g ⁇ mm) / (m 2 ⁇ day) or less, and more preferably 25 (g ⁇ mm) / (m 2 ⁇ day) or less. It is.
  • the lower limit of the fuel permeability coefficient is not particularly limited, but is 4 (g ⁇ mm) / (m 2 ⁇ day) or more in consideration of the balance between the fuel barrier property, the tensile modulus, and the compression set. Good.
  • the fuel permeability coefficient can be measured by the following method.
  • the thermoplastic resin composition is placed in a mold having a diameter of 120 mm, set in a press machine heated to 300 ° C., and melt-pressed at a pressure of about 2.9 MPa to produce a thermoplastic resin sheet.
  • a resin sheet is set on the container opening and sealed to prepare a test specimen.
  • the specimen is placed in a thermostat (60 ° C.), the mass of the specimen is measured, and when the mass loss per unit time becomes constant, the fuel permeability coefficient is determined by the following equation.
  • the fluororesin (A) is a copolymer containing chlorotrifluoroethylene (CTFE) units and tetrafluoroethylene (TFE) units.
  • the content of CTFE units in the fluororesin (A) is further improved by the balance between fuel barrier properties, tensile elastic modulus and compression set, and a thermoplastic resin composition having excellent heat resistance is obtained. It is preferably from 10 to 90 mol%, more preferably from 15 to 60 mol%, even more preferably from 18 to 40 mol%, based on the unit. If the CTFE unit is too small, the fuel barrier properties may be insufficient, and if too large, the heat resistance may be insufficient. On the other hand, the content of the TFE unit in the fluororesin (A) is further improved by the balance between the fuel barrier property, the tensile elastic modulus and the compression set, and a thermoplastic resin composition excellent in heat resistance is obtained.
  • the content ratio of the CTFE unit and the TFE unit is more excellent due to the balance between the fuel barrier property, the tensile modulus and the compression set, and a thermoplastic resin composition having excellent heat resistance can be obtained.
  • the molar ratio is preferably 10/90 to 90/10, more preferably 15/85 to 60/40, and still more preferably 18/82 to 40/60.
  • the fluororesin (A) is more excellent in the balance of fuel barrier properties, tensile modulus and compression set, and a thermoplastic resin composition having excellent heat resistance and crack resistance can be obtained. Therefore, the CTFE unit, the TFE unit, Further, those containing a monomer ( ⁇ ) unit derived from a monomer ( ⁇ ) copolymerizable with CTFE and TFE are preferable.
  • the PAVE is preferably a perfluoro (alkyl vinyl ether) represented by CF 2 CFCF—ORf 3 (where Rf 3 represents a perfluoroalkyl group having 1 to 5 carbon atoms).
  • Rf 3 represents a perfluoroalkyl group having 1 to 5 carbon atoms.
  • alkyl perfluorovinyl ether derivative those in which Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 CF—OCH 2 —CF 2 CF 3 is more preferable.
  • thermoplastic resin composition which is more excellent in balance between fuel barrier properties, tensile elastic modulus and compression set, and is also excellent in heat resistance and crack resistance can be obtained.
  • the total content of CTFE units and TFE units is preferably 90 to 99.9 mol%, more preferably 95 to 99.5 mol%, and the monomer ( ⁇ ) unit is Preferably it is 0.1 to 10 mol%, more preferably 0.5 to 5 mol%. If the amount of the monomer ( ⁇ ) is too small, the moldability and crack resistance may be insufficient. If the amount is too large, the fuel barrier property and the heat resistance may be insufficient.
  • each monomer unit of the above-mentioned fluororesin (A) can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis according to the type of monomer.
  • the melting point of the fluororesin (A) is preferably from 150 to 340 ° C., since a thermoplastic resin composition having more excellent balance between fuel barrier properties, tensile elastic modulus and compression set and excellent heat resistance can be obtained.
  • the temperature is more preferably 215 to 290 ° C, further preferably 225 to 280 ° C, and particularly preferably 235 to 260 ° C.
  • the melting point is a temperature corresponding to a melting peak when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC]. If the melting point is too low, the heat resistance may be insufficient, and if it is too high, the molding temperature may be high, and a part of the polyamine compound (c) may be decomposed to cause molding failure.
  • the melt flow rate (MFR) of the fluororesin (A) is preferably 0.01 to 100 g / 10 minutes.
  • the MFR was measured using a melt indexer (manufactured by Toyo Seiki Seisaku-Sho, Ltd.) at 297 ° C. under a load of 5 kg under a load of 5 mm, from a nozzle having a diameter of 2 mm and a length of 8 mm per unit time (10 minutes). Obtained by measuring.
  • the fluororesin (A) is a copolymer having at least one functional group selected from the group consisting of a carbonyl group, an olefin group and an amino group at the main chain terminal or the side chain terminal of the polymer.
  • R 3 examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • R 4 examples include a methylene group, a —CF 2 — group, and a —C 6 H 4 — group.
  • R 5 examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, Butyl group and the like.
  • R 7 include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group.
  • R 8 and R 9 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a phenyl group and the like.
  • An olefin group is a functional group having a carbon-carbon double bond.
  • An amino group is a monovalent functional group obtained by removing hydrogen from ammonia, a primary or secondary amine.
  • the amino group the following formula: -NR 13 R 14 (In the formula, R 13 and R 14 may be the same or different and each is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.) , -NH 2 , -NH (CH 3 ), -N (CH 3 ) 2 , -NH (CH 2 CH 3 ), -N (C 2 H 5 ) 2 and -NH (C 6 H 5 ) At least one selected from the above is preferable.
  • the number of functional groups of the fluororesin (A) can be measured by infrared absorption spectrum analysis, for example, by the method described in JP-B-37-3127 and WO 99/45044. it can.
  • infrared absorption spectrum analysis of the film sheet of the fluororesin (A) is performed using an infrared spectrophotometer and the number of the functional groups is measured from the absorption band of the frequency specific to the functional group, for example, the -COF terminal is 1884 cm.
  • the method for introducing the functional group into the fluororesin is not particularly limited, for example, a method of copolymerizing a monomer having the functional group during the polymerization of the fluororesin, the functional group or a functional group that can be converted to the functional group.
  • Method of polymerizing using a polymerization initiator having, a method of introducing the above functional group into a fluororesin by a polymer reaction, a method of thermally decomposing a polymer main chain in the presence of oxygen, a strong shear force such as a twin screw extruder And a method of converting the terminal of the fluororesin using a device capable of adding the compound.
  • Examples of the monomer having the functional group include (meth) acrylic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, and mesaconic anhydride.
  • unsaturated aliphatic carboxylic acids such as aconitic acid and aconitic anhydride.
  • the number of the functional groups of the fluororesin (A) is determined by the following: a thermoplastic resin composition having a better balance between fuel barrier properties, tensile modulus and compression set can be obtained, and foaming during molding can be avoided. It is preferably 20 to 5,000, more preferably 30 to 4,000, and even more preferably 40 to 3,000 per million carbon atoms constituting A).
  • the fluororesin (A) having the above functional group used in the present disclosure is not limited to one composed of only a molecule having the above functional group at one end, both ends or side chains of a main chain in one polymer.
  • a mixture of a molecule having the above functional group at one end, both ends or side chains of the main chain of the polymer and a molecule not containing the above functional group may be used.
  • Crosslinked fluoro rubber (B)
  • the crosslinked fluorororubber (B) is a polyamine compound (c) having a thermal decomposition temperature of 210 ° C. or higher under the melting conditions of the fluororesin (A) in the presence of the fluororesin (A). It is preferable that the resin is dynamically crosslinked with the crosslinking accelerator (d).
  • Dynamic crosslinking treatment refers to dynamically crosslinking non-crosslinked fluororubber (b) simultaneously with melt kneading using a Banbury mixer, a pressure kneader, an extruder, or the like.
  • an extruder such as a twin-screw extruder is preferable because a high shearing force can be applied.
  • the phase structure of the fluororesin (A) and the crosslinked fluororubber (B) can be controlled.
  • Cross-linking treatment under melting conditions means cross-linking treatment at a temperature not lower than the melting point of the fluororesin (A).
  • the temperature of the crosslinking treatment is preferably equal to or higher than the melting point of the fluororesin (A), more preferably equal to or lower than 330 ° C, and still more preferably equal to or lower than 320 ° C.
  • the temperature may be 150 ° C or higher, but is preferably 220 ° C or higher, more preferably 260 ° C or higher.
  • the fluororesin (A) and the crosslinked fluororubber (B) can be sufficiently kneaded, and at the same time, the thermal degradation of the uncrosslinked fluororubber (b) can be suppressed.
  • the uncrosslinked fluororubber (b) forms a matrix at the initial stage of dispersion
  • the crosslinked fluororubber (B) becomes Has a higher melt viscosity than the uncrosslinked fluororubber (b)
  • the crosslinked fluororubber (B) forms a dispersed phase
  • the fluororesin (A) and the crosslinked fluororubber (B) form a co-continuous phase structure Will do.
  • the crosslinked fluororubber (B) is obtained by crosslinking an uncrosslinked fluororubber (b).
  • the fluorororubber (b) is preferably at least one selected from the group consisting of a perfluororubber, a partially fluorinated rubber, and a fluorinated thermoplastic elastomer, and more preferably a partially fluorinated rubber.
  • VdF fluorine rubber As the fluorine rubber (b), VdF fluorine rubber, TFE / propylene fluorine rubber, TFE / propylene / VdF fluorine rubber, ethylene / HFP fluorine rubber, ethylene / HFP / VdF fluorine rubber, ethylene / HFP / TFE And fluorocarbon rubber.
  • it is preferably at least one selected from the group consisting of VdF-based fluororubber and TFE / propylene-based fluororubber, and more preferably VdF / TFE / HFP-based fluororubber.
  • the VdF-based fluororubber is preferably a copolymer comprising 20 to 85 mol% of VdF and 80 to 15 mol% of at least one other monomer copolymerizable with VdF. More preferably, it is a copolymer comprising 25 to 80 mol% of VdF and 75 to 20 mol% of at least one other monomer copolymerizable with VdF.
  • Vinyl fluoride a general formula (1): a fluoromonomer represented by CH 2 CFCFRf 11 (wherein Rf 11 is a linear or branched fluoroalkyl group having 1 to 12 carbon atoms), a general formula (2) : A fluoromonomer represented by CH 2 CHCH— (CF 2 ) n —X 21 (where X 21 is H or F, and n is an integer of 3 to 10), and a monomer that provides a crosslinking site
  • Non-fluorinated monomers such as ethylene, propylene and alkyl vinyl ether And the like.
  • a polyoxyalkylene group, R 31 is a hydrogen atom or —CH 3
  • X 31 is an iodine atom or a bromine atom
  • m is an integer of 0 to 5
  • n is an integer of 1 to 3
  • X 41 is a cyano group, a carboxyl group, an alkoxycarbonyl group, or a bromine atom.
  • VdF / general formula (1) As the fluoromonomer rubber represented by VdF / general formula (1), at least one selected from the group consisting of VdF / CH 2 CFCFCF 3 rubber and VdF / CH 2 CFCFCF 3 / HFP rubber is used. VdF / TFE / CH 2 CFCFCF 3 rubber is preferably used as the VdF / fluoromonomer / TFE rubber represented by the general formula (1).
  • the VdF / HFP fluorororubber preferably has a VdF unit / HFP unit molar ratio of 80/20 to 65/35.
  • the VdF / TFE / HFP fluorororubber preferably has a molar ratio of VdF unit / TFE unit / HFP unit of (25 to 65) / (15 to 45) / (20 to 40).
  • each monomer unit of the above-mentioned fluororubber (b) can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis according to the type of monomer.
  • the above-mentioned thermal decomposition temperature is the temperature at which the weight loss reaches 1% of the initial weight in thermogravimetric analysis [TG] of the polyamine compound (heating rate 10 ° C / min, under dry air).
  • the compounding amount of the polyamine compound (c) is preferably 0.1 to 10 parts by mass based on 100 parts by mass of the fluororubber (b). If the compounding amount is too small, the crosslinking reaction of the fluororubber (b) and the reaction with the functional group of the fluororesin (A) do not sufficiently proceed, and the thermal barrier property, the tensile elastic modulus, and the balance of compression set are excellent. There is a possibility that a plastic resin composition cannot be obtained. On the other hand, if the compounding amount is too large, the dispersion of the polyamine compound (c) becomes insufficient, and there is a possibility that molding defects such as foaming may occur and fuel barrier properties may decrease.
  • the blending amount of the polyamine compound (c) is more preferably 0.5 to 5 parts by mass, and still more preferably 1 to 5 parts by mass.
  • the quaternary phosphonium salt is not particularly limited, and examples thereof include tetrabutylphosphonium chloride, benzyltriphenylphosphonium chloride (hereinafter, referred to as BTPPC), benzyltrimethylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl -2-methoxypropylphosphonium chloride, benzylphenyl (dimethylamino) phosphonium chloride, methyltriphenylphosphonium bromide, allyltriphenylphosphonium bromide, (bromomethyl) triphenylbromide, tetraphenylphosphonium bromide and the like.
  • BTPPC is preferred from the viewpoint of crosslinkability and physical properties of the crosslinked product.
  • the compounding amount of the crosslinking accelerator (d) is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 3 parts by mass, based on 100 parts by mass of the fluororubber (b). Preferably it is 0.1 to 1.0 part by mass. If the amount of the crosslinking accelerator (d) is too small, the crosslinking reaction of the fluororubber (b) by the polyamine compound (c) and the reaction with the functional group of the fluororesin (A) do not sufficiently proceed, and the fuel barrier property and the tensile elasticity There is a possibility that a thermoplastic resin composition having an excellent balance between the modulus and the compression set may not be obtained. On the other hand, if the amount is too large, poor dispersion occurs, and there is a possibility that a thermoplastic resin composition which is still more excellent in balance with the fuel barrier property, tensile modulus and compression set may not be obtained.
  • the compounding amount of the acid acceptor is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 8 parts by mass, and further preferably 0 to 10 parts by mass with respect to 100 parts by mass of the fluororubber (b). 0.5 to 6 parts by mass.
  • the thermoplastic resin composition of the present disclosure also preferably has conductivity in order to prevent accumulation of static charge and ignition.
  • the thermoplastic resin composition of the present disclosure preferably contains a conductive material such as carbon black and acetylene black.
  • the conductive material is preferably 0.01 to 20% by mass, more preferably 1 to 18% by mass, and still more preferably 5 to 15% by mass, based on the thermoplastic resin composition of the present disclosure. .
  • thermoplastic resin composition of the present disclosure includes other polymers such as polyethylene, polypropylene, polyamide, polyester, and polyurethane; inorganic fillers such as talc, celite, clay, titanium oxide, carbon black, and barium sulfate; and pigments. , Flame retardants, lubricants, light stabilizers, weathering stabilizers, antistatic agents, UV absorbers, antioxidants, mold release agents, foaming agents, fragrances, oils, softeners, etc. It can be added in a range that does not affect.
  • the present disclosure relates to a method for producing the above-mentioned thermoplastic resin composition, wherein a fluororubber (b) is thermally decomposed at a melting temperature of the fluororesin (A) in the presence of the fluororesin (A).
  • the present invention also relates to a method for producing a thermoplastic resin composition including a step of dynamically cross-linking together with a polyamine compound (c) having a temperature of 210 ° C. or higher and a cross-linking accelerator (d).
  • the above-mentioned step is also a step of kneading the fluororubber (b), the polyamine compound (c) and the crosslinking accelerator (d) to obtain a fluororubber composition, and a temperature higher than the melting point of the fluororesin (A). And a step of kneading the fluororubber composition and the fluororesin (A). At this time, if necessary, a solid solution in which the polyamine compound (c) and the crosslinking accelerator (d) are once melted to lower the melting point may be used.
  • the molded article of the present disclosure is formed from the above-described thermoplastic resin composition.
  • the shape of the molded article is not particularly limited, and examples include a tube, a hose, a sheet, and a film.
  • the above-mentioned molded product can be manufactured by using a general molding method or molding apparatus.
  • a molding method for example, any method such as injection molding, extrusion molding, compression molding, blow molding, calender molding, and vacuum molding can be adopted.
  • the obtained molded article can be heated to remove volatile components in the molded article.
  • Laminate The laminate of the present disclosure includes a thermoplastic resin layer (W) formed from the above thermoplastic resin composition and an elastomer layer (X) formed from the elastomer composition.
  • the above elastomer composition includes acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, blend rubber of acrylonitrile-butadiene rubber and acrylic rubber, chlorinated polyethylene, fluorine rubber, It is preferable to contain at least one elastomer selected from the group consisting of epichlorohydrin rubber, ethylene-propylene rubber, chlorosulfonated polyethylene rubber, silicone rubber and acrylic rubber.
  • the VdF / TFE / HFP fluorororubber preferably has a molar ratio of VdF unit / TFE unit / HFP unit of (25 to 65) / (15 to 45) / (20 to 40).
  • the elastomer composition contains at least one compound selected from the group consisting of an onium salt, an amine compound, and an epoxy resin from the viewpoint of improving the adhesive strength between the thermoplastic resin layer (W) and the elastomer layer (X). Is preferred.
  • the onium salt is not particularly limited, and includes, for example, quaternary ammonium salts, quaternary phosphonium salts, oxonium salts, sulfonium salts, cyclic amines, and monofunctional amine compounds. And quaternary phosphonium salts.
  • the quaternary ammonium salt is not particularly limited, and may be, for example, a compound represented by the formula (5):
  • R in the formula (5) is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • the monovalent organic group having 1 to 30 carbon atoms include, but are not particularly limited to, an aliphatic hydrocarbon group, a benzyl group, a phenethyl group, and a 3-phenylpropyl group.
  • X ⁇ represents a halogen ion (F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ ), OH ⁇ , RO ⁇ , HCOO ⁇ , RCOO ⁇ , C 6 H 5 O ⁇ , ROSO 3 ⁇ , RSO 3 - (R is a monovalent organic group).
  • R in the formula (6) is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • the monovalent organic group having 1 to 30 carbon atoms include, but are not particularly limited to, an aliphatic hydrocarbon group and a benzyl group.
  • X ⁇ represents a halogen ion (F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ ), HCO 3 ⁇ , OH ⁇ , RO ⁇ , HCOO ⁇ , RCOO ⁇ , C 6 H 5 O ⁇ , ROSO 3 ⁇ , RSO 3 ⁇ (R is a monovalent organic group) and the like.
  • the compound of the formula (6) include 1,8-diazabicyclo [4.3.0] -5-nonenium phthalate and 1,8-diazabicyclo [4.3.0] -5-none.
  • three Rs are the same or different and are each a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms.
  • the monovalent organic group having 1 to 30 carbon atoms include, but are not particularly limited to, an aliphatic hydrocarbon group, an aryl group such as a phenyl group, and a benzyl group.
  • an alkyl group having 1 to 30 carbon atoms such as —CH 3 , —C 2 H 5 , and —C 3 H 7 ; —CX 71 3 , —C 2 X 71 5 , and —CH 2 X 71 , -CH 2 CX 71 3, -CH 2 C 2 X 71 5 halogen atom-containing alkyl group having 1 to 30 carbon atoms, such as (X 71 is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom); a phenyl group; Benzyl group; phenyl group or benzyl group in which 1 to 5 hydrogen atoms have been substituted with fluorine atoms such as —C 6 F 5 and —CH 2 C 6 F 5 ; —C 6 H 5-n (CF 3 ) n And a phenyl group or a benzyl group in which 1 to 5 hydrogen atoms
  • X ⁇ represents a halogen ion (F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ ), HCO 3 ⁇ , OH ⁇ , RO ⁇ , HCOO ⁇ , RCOO ⁇ , C 6 H 5 O ⁇ , ROSO 3 ⁇ , RSO 3 ⁇ (R is a monovalent organic group) and the like.
  • n is more preferably an integer of 0 to 10, more preferably an integer of 1 to 5, from the viewpoint of dispersibility at the time of kneading with rubber. preferable.
  • DBU-B is particularly preferred.
  • the quaternary phosphonium salt is not particularly restricted but includes, for example, tetrabutylphosphonium chloride, BTPPC, benzyltrimethylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl-2-methoxypropylphosphonium chloride, benzylphenyl (dimethylamino) ) Phosphonium chloride and the like, and among these, BTPPC is preferred from the viewpoint of good adhesion between the thermoplastic resin layer (W) and the elastomer layer (X).
  • quaternary ammonium salts solid solutions of quaternary phosphonium salts and bisphenol AF, and the compounds disclosed in JP-A-11-147891 can be used.
  • the amount of the onium salt is preferably 0.1 to 10.0 with respect to 100 parts by mass of the elastomer, since sufficient adhesiveness can be obtained and good dispersion of the onium salt in the elastomer composition can be obtained. Parts by mass, more preferably 0.2 to 8.0 parts by mass, even more preferably 0.3 to 7.0 parts by mass.
  • V3, 4,4'-DPE, BAPP, 6FBAPP, BAPS, DDS, 3,3'-DAS from the viewpoint of good adhesion between the thermoplastic resin layer (W) and the elastomer layer (X).
  • P-TPE-Q, bisaniline-M, bisaniline-P, TMBAB, and TPE-R are preferred, and V3, 4,4'-DPE, BAPP, 6FBAPP, P-TPE-Q, bisaniline-M, bisaniline-P, TMBAB and TPE-R are more preferred.
  • epoxy resin examples include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and a polyfunctional epoxy resin.
  • bisphenol A type epoxy resin has the formula (12):
  • n in the formula (12) is preferably 0.1 to 3, and more preferably 0.1 to 3, since sufficient adhesiveness is obtained and good dispersibility of the epoxy resin in the elastomer composition is obtained. Is 0.1 to 0.5, more preferably 0.1 to 0.3.
  • the amount of the epoxy resin is preferably from 0.1 to 20.0 parts by mass, more preferably from 0.3 to 2 parts by mass, per 100 parts by mass of the elastomer, since sufficient adhesiveness and flexibility of the elastomer layer (X) can be obtained. 15.0 parts by mass is more preferable, and 0.5 to 10.0 parts by mass is more preferable.
  • Elastomer layer (X) can be either unvulcanized rubber or vulcanized.
  • any vulcanizing agent used for ordinary elastomers can be used.
  • polyol vulcanizing agents are more preferable from the viewpoint of improving the adhesive strength between the thermoplastic resin layer (W) and the elastomer layer (X).
  • the amount of the vulcanizing agent to be compounded in the elastomer composition is preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the elastomer, since an appropriate vulcanization density and an appropriate compression set can be obtained. Parts, more preferably 0.5 to 8 parts by mass.
  • the elastomer composition generally comprises an elastomer, an onium salt, an amine compound and / or an epoxy resin, and other compounding agents such as a vulcanizing agent, a vulcanization aid, a co-vulcanizing agent, a vulcanization accelerator, and a filler. It can be obtained by kneading using a used rubber kneading apparatus. As a rubber kneading device, a roll, a kneader, a Banbury mixer, an internal mixer, a twin screw extruder, or the like can be used.
  • Vulcanization conditions may be appropriately determined depending on the type of the vulcanizing agent to be used, but usually calcination is performed at a temperature of 150 to 300 ° C. for 1 minute to 24 hours.
  • the vulcanization method includes steam vulcanization, which is a commonly used method, as well as vulcanization under normal pressure, increased pressure, reduced pressure, in air, and under any conditions.
  • the reaction can be performed.
  • it may have a multilayer structure of three or more layers in which a polymer layer (Y) other than the elastomer layer (X) and the thermoplastic resin layer (W) is adhered, or the elastomer layer (X) and the thermoplastic resin layer (A polymer layer (Z) may be provided on one side or both sides of a three-layer structure in which a polymer layer (Y) other than W) is adhered.
  • the polymer layer (Y) and the polymer layer (Z) may be the same or different.
  • the polymer layers (Y) and (Z) may be rubber layers (Y1) or (Z1) other than the elastomer layer (X).
  • a non-fluorinated rubber layer (Y1a) or (Z1a) formed from a non-fluorinated rubber can be used as the rubber layer (Y1) or (Z1).
  • Non-fluorinated rubber is preferred because of its good cold resistance and its excellent cost.
  • the non-fluorine rubber layer (Y1a) and the non-fluorine rubber layer (Z1a) may be formed from the same non-fluorine rubber, or may be formed from different non-fluorine rubbers.
  • the laminate of the present disclosure may be laminated in the order of the elastomer layer (X), the thermoplastic resin layer (W), and the non-fluororubber layer (Y1a). Further, it further includes a non-fluorinated rubber layer (Z1a), the non-fluorinated rubber layer (Z1a), the elastomer layer (X), the thermoplastic resin layer (W), and the non-fluorinated rubber layer (Y1a) in this order.
  • non-fluorine rubber examples include, for example, acrylonitrile-butadiene rubber (NBR) or its hydride (HNBR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), butadiene rubber (BR), and natural rubber (NR) , Diene rubbers such as isoprene rubber (IR), ethylene-propylene-termonomer copolymer rubber, silicone rubber, butyl rubber, epichlorohydrin rubber, acrylic rubber, chlorinated polyethylene (CPE), acrylonitrile-butadiene rubber and vinyl chloride Polyethylene blend (PVC-NBR), ethylene propylene diene rubber (EPDM) and the like.
  • NBR acrylonitrile-butadiene rubber
  • HNBR hydride
  • SBR styrene-butadiene rubber
  • CR chloroprene rubber
  • BR butadiene rubber
  • NR natural rubber
  • Diene rubbers such as
  • the thermoplastic resin layer (W) may be subjected to a surface treatment as needed.
  • the type of the surface treatment is not particularly limited as long as it is a treatment method capable of bonding, and for example, a discharge treatment such as a plasma discharge treatment or a corona discharge treatment, and a metal sodium / naphthalene liquid treatment by a wet method. And so on.
  • a primer treatment is also suitable as the surface treatment.
  • the primer treatment can be performed according to a conventional method. When the primer treatment is performed, the surface of the thermoplastic resin layer (W) that has not been subjected to the surface treatment can be treated.
  • thermoplastic resin layer (W) is treated with a plasma discharge treatment, a corona discharge treatment, a metal sodium / naphthalene liquid treatment, or the like. It is more effective if the surface of the resin layer (W) is further treated with a primer.
  • thermoplastic resin composition, molded article and laminate of the present disclosure are excellent in balance between fuel barrier properties and tensile elasticity, have small compression set, and are excellent in heat resistance and crack resistance. It can be used for any purpose.
  • the main components of automobile engines main motion system, valve train, lubrication / cooling system, fuel system, intake / exhaust system, etc., drive system transmission system, chassis steering system, brake system, etc.
  • Gaskets and non-contact and contact type packings self-sealing
  • Seals such as packings, piston rings, split-ring type packings, mechanical seals, oil seals, etc.), bellows, diaphragms, hoses, tubes, electric wires, etc. are provided.
  • Gaskets such as cylinder head gaskets, cylinder head cover gaskets, oil pan packing, general gaskets, seals such as O-rings, packings, timing belt cover gaskets, hoses such as control hoses, anti-vibration rubber for engine mounts, and hydrogen on the engine body Sealing materials for high-pressure valves in storage systems.
  • Valve stem seals for engine valves and other valve systems.
  • Fuel hoses, fuel tubes, fuel seal materials, and other fuel-related materials for fuel systems include filler (neck) hoses, fuel supply hoses, fuel return hoses, fuel hoses such as vapor (evaporation) hoses, fuel tank in-tank hoses, fuel piping tubes, carburetor control hoses, etc. .
  • fuel sealing materials include fuel pump oil seals, fuel tank fuel sender seals, filler seals, tank packing, etc., fuel piping tube connector O-rings, etc., fuel injector injector cushion rings, injector seal rings, etc. Injector O-rings, carburetor flange gaskets, etc.
  • Fuel-related components include fuel pump diaphragms, valves, etc., fuel tank in-tank fuel pump mounts, fuel injection device pressure regulator diaphragms, check valves, etc., carburetor needle valve petals, acceleration pump pistons, etc.
  • Valve seats and diaphragms for air control equipment are suitable as fuel hoses or fuel tubes, and particularly suitable as filler neck hoses or fuel supply hoses. Further, it is also suitable as a fuel sealing material, and particularly suitable as a fuel sender seal.
  • Brake oil seals O-rings, packing, brake oil hoses, master back air valves, vacuum valves, diaphragms, etc., master cylinder piston cups (rubber cups), caliper seals, boots, etc.
  • Tubes of harness exterior parts such as insulators and sheaths of electric wires (harness) of basic electrical parts.
  • O-rings For vehicles other than automobiles, for example, oil, chemical, heat, steam or weather-resistant packing, O-rings, hoses, other sealing materials, diaphragms, valves, etc. in transportation such as ships and aircraft. Similar packing in plant, O-rings, seals, diaphragms, valves, hoses, rolls, tubes, chemical resistant coatings, linings, similar packing in food plant equipment and food equipment (including household products), O- Rings, hoses, seals, belts, diaphragms, valves, rolls, tubes, similar packings in nuclear plant equipment, O-rings, hoses, seals, diaphragms, valves, tubes, similar packings in general industrial parts, O-rings, hoses, sealing materials, diaphragms Arm is suitable valves, rolls, tubes, linings, mandrels, electric wires, flexible joints, belts, rubber plates, weather strips, the application to a roll blade PPC copying machine.
  • thermoplastic resin composition, molded article, and laminate of the present disclosure are suitably used as a fuel hose or a fuel tube to be mounted on an automobile.
  • the melting peak when the temperature was raised at a rate of 10 ° C./min was recorded, and the temperature corresponding to the maximum value was defined as the melting point.
  • Melt flow rate (MFR) Using a melt indexer (manufactured by Toyo Seiki Seisaku-sho, Ltd.), the mass (g) of the polymer flowing out per unit time (10 minutes) from a nozzle having a diameter of 2 mm and a length of 8 mm under a load of 5 kg at 297 ° C. was measured.
  • Mooney viscosity The Mooney viscosity was measured using a Mooney Viscometer Model MV2000E manufactured by ALPHA TECHNOLOGIES, in accordance with ASTM D-1646.
  • Tensile Modulus A dumbbell-shaped test piece having a distance between mark lines of 3.18 mm is punched out from a thermoplastic resin sheet having a thickness of 0.5 mm produced by the above method using an ASTM D638 Type V dumbbell. Using the obtained dumbbell-shaped test piece, a tensile test was performed at 25 ° C. at a tensile speed of 50 mm / min at 25 ° C. using an autograph (AGS-J 5 kN manufactured by Shimadzu Corporation) according to ASTM D638. The elastic modulus was measured.
  • thermoplastic resin sheets produced by the above method were laminated to produce test specimens having a thickness of 3.8 ⁇ 0.1 mm, and at the temperature and time shown in Table 1, A 25% compression was performed and the compression set was measured.
  • Fluororesin: -OC ( O) OCH CTFE / TFE copolymer having 2 CH 2 CH 3 groups.
  • the tensile modulus is 610 MPa.
  • the fuel permeability coefficient is 0.4 (g ⁇ mm) / (m 2 ⁇ day).
  • Polyamine compound BAPP (pyrolysis temperature: 315 ° C)
  • Crosslinking accelerator DBU-B Acid acceptor: magnesium oxide
  • thermoplastic resin composition was obtained in the same manner as in Comparative Example 1, except that the blending amounts of the respective materials were changed as described in Table 1.
  • Table 1 shows the blending amounts of the respective materials and the results of various measurements.
  • Comparative Example 2 In step 1, except that the fluororubber (b-2) was used in place of the fluororubber (b-1), DBU-B was not added, and 0.60 parts by mass of BAPP was further added in step 2. In the same manner as in Comparative Example 1, a thermoplastic resin composition was obtained. Table 1 shows the blending amounts of the respective materials and the results of various measurements.
  • Comparative Example 3 In step 1, a thermoplastic resin composition was prepared in the same manner as in Comparative Example 1 except that the fluororubber (b-2) was used in place of the fluororubber (b-1) and DBU-B was not added. Got. Table 1 shows the blending amounts of the respective materials and the results of various measurements.

Abstract

Provided is a thermoplastic resin composition comprising a fluororesin (A) and a crosslinked fluororubber (B). The fluororesin (A) is a copolymer that contains chlorotrifluoroethylene units and tetrafluoroethylene units and that has at least one functional group selected from the group consisting of carbonyl groups, olefin groups, and amino groups at a terminus or termini of a polymer main chain or of a polymer side chain. The crosslinked fluororubber (B) is provided by dynamically crosslinking a fluororubber (b) with a polyamine compound (c) having a thermal decomposition temperature of 210°C or higher and a crosslinking promoter (d) in the presence of the fluororesin (A) and under a melting condition for the fluororesin (A). The mass ratio between the fluororesin (A) and the fluororubber (b) (fluororesin (A)/fluororubber (b)) for the thermoplastic resin composition is less than 70/30 and at least 20/80.

Description

熱可塑性樹脂組成物およびその製造方法Thermoplastic resin composition and method for producing the same
 本開示は、熱可塑性樹脂組成物およびその製造方法、成形品、積層体、燃料用ホース、燃料用チューブならびに燃料用シール材に関する。 The present disclosure relates to a thermoplastic resin composition and a method for producing the same, a molded product, a laminate, a fuel hose, a fuel tube, and a fuel sealing material.
 燃料バリア性と柔軟性を両立した熱可塑性樹脂組成物の開発が進められてきた。たとえば、特許文献1では、フッ素樹脂(A)および架橋フッ素ゴム(B)を含む熱可塑性樹脂組成物であって、フッ素樹脂(A)がポリマーの主鎖末端または側鎖末端にカルボニル基、オレフィン基またはアミノ基を有する共重合体であり、架橋フッ素ゴム(B)が、フッ素樹脂(A)の存在下、フッ素樹脂(A)の溶融条件下にて、フッ素ゴム(b)を架橋剤(c)と共に、動的に架橋処理したものである、熱可塑性樹脂組成物が提案されている。 開 発 The development of thermoplastic resin compositions that achieve both fuel barrier properties and flexibility has been promoted. For example, Patent Document 1 discloses a thermoplastic resin composition containing a fluororesin (A) and a cross-linked fluororubber (B), wherein the fluororesin (A) has a carbonyl group or an olefin at a main chain terminal or a side chain terminal of the polymer. A cross-linking fluororubber (B) in the presence of a fluororesin (A) under the melting conditions of the fluororesin (A). A thermoplastic resin composition which is dynamically cross-linked together with c) has been proposed.
国際公開第2009/020182号International Publication No. 2009/020182
 本開示では、燃料バリア性を大きく損なうことなく、引張弾性率を低減させた熱可塑性樹脂組成物を提供することを目的とする。 開 示 An object of the present disclosure is to provide a thermoplastic resin composition having a reduced tensile modulus without significantly impairing fuel barrier properties.
 本開示によれば、フッ素樹脂(A)および架橋フッ素ゴム(B)を含む熱可塑性樹脂組成物であって、フッ素樹脂(A)が、クロロトリフルオロエチレン単位およびテトラフルオロエチレン単位を含み、かつ、ポリマーの主鎖末端または側鎖末端にカルボニル基、オレフィン基およびアミノ基からなる群より選択される少なくとも1種の官能基を有する共重合体であり、架橋フッ素ゴム(B)が、フッ素樹脂(A)の存在下、フッ素樹脂(A)の溶融条件下にて、フッ素ゴム(b)を、熱分解温度が210℃以上であるポリアミン化合物(c)および架橋促進剤(d)と共に、動的に架橋処理したものであり、フッ素樹脂(A)とフッ素ゴム(b)との質量比(フッ素樹脂(A)/フッ素ゴム(b))が、70/30未満であり、20/80以上である熱可塑性樹脂組成物が提供される。 According to the present disclosure, it is a thermoplastic resin composition containing a fluororesin (A) and a crosslinked fluororubber (B), wherein the fluororesin (A) contains a chlorotrifluoroethylene unit and a tetrafluoroethylene unit, and A copolymer having at least one functional group selected from the group consisting of a carbonyl group, an olefin group and an amino group at a main chain terminal or a side chain terminal of the polymer, wherein the crosslinked fluororubber (B) is a fluororesin In the presence of (A), the fluororubber (b) is mixed with a polyamine compound (c) having a thermal decomposition temperature of 210 ° C. or higher and a crosslinking accelerator (d) under the melting conditions of the fluororesin (A). Wherein the mass ratio (fluororesin (A) / fluororubber (b)) of the fluororesin (A) to the fluororubber (b) is less than 70/30, The thermoplastic resin composition is provided at least.
 フッ素ゴム(b)が、ビニリデンフルオライド/テトラフルオロエチレン/ヘキサフルオロプロピレン系フッ素ゴムであることが好ましい。 (4) The fluororubber (b) is preferably a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene-based fluororubber.
 また、本開示によれば、フッ素樹脂(A)および架橋フッ素ゴム(B)を含む熱可塑性樹脂組成物であって、フッ素樹脂(A)が、クロロトリフルオロエチレン単位およびテトラフルオロエチレン単位を含む共重合体であり、前記熱可塑性樹脂組成物から形成される成形品について、赤外吸収スペクトル分析をした場合に、2360cm-1に現れる吸収ピークの高さに対する、3451cm-1に現れる吸収ピークの高さの比[K1]が、0.001以上であり、かつ、3035cm-1に現れる吸収ピークの高さに対する、1722cm-1に現れる吸収ピークの高さの比[K2]が、0.3以上であり、引張弾性率が、250MPa以下である熱可塑性樹脂組成物が提供される。 Further, according to the present disclosure, a thermoplastic resin composition containing a fluororesin (A) and a crosslinked fluororubber (B), wherein the fluororesin (A) contains a chlorotrifluoroethylene unit and a tetrafluoroethylene unit. When an infrared absorption spectrum analysis is performed on a molded article which is a copolymer and is formed from the thermoplastic resin composition, the absorption peak at 3451 cm -1 is higher than the height of the absorption peak at 2360 cm -1. the ratio of height [K1] is, is 0.001 or more, and, with respect to the height of the absorption peak appearing in 3035Cm -1, the ratio of the height of the absorption peaks appearing in 1722 cm -1 [K2] is 0.3 As described above, a thermoplastic resin composition having a tensile modulus of 250 MPa or less is provided.
 また、本開示によれば、上記の熱可塑性樹脂組成物の製造方法であって、フッ素樹脂(A)の存在下、フッ素樹脂(A)の溶融条件下にて、フッ素ゴム(b)を、熱分解温度が210℃以上であるポリアミン化合物(c)および架橋促進剤(d)と共に、動的に架橋処理する工程を含む熱可塑性樹脂組成物の製造方法が提供される。 Further, according to the present disclosure, there is provided the method for producing a thermoplastic resin composition, wherein the fluororubber (b) is melted under the melting conditions of the fluororesin (A) in the presence of the fluororesin (A). A method for producing a thermoplastic resin composition comprising a step of dynamically crosslinking with a polyamine compound (c) having a thermal decomposition temperature of 210 ° C. or higher and a crosslinking accelerator (d).
 また、本開示によれば、上記の熱可塑性樹脂組成物から形成される成形品が提供される。 According to the present disclosure, there is also provided a molded article formed from the above thermoplastic resin composition.
 また、本開示によれば、上記の熱可塑性樹脂組成物から形成される熱可塑性樹脂層(W)と、エラストマー組成物から形成されるエラストマー層(X)とを含む積層体が提供される。 According to the present disclosure, there is also provided a laminate including a thermoplastic resin layer (W) formed from the above thermoplastic resin composition and an elastomer layer (X) formed from the elastomer composition.
 前記エラストマー組成物が、アクリロニトリル-ブタジエンゴム、水素添加アクリロニトリル-ブタジエンゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、アクリロニトリル-ブタジエンゴムとアクリルゴムとのブレンドゴム、塩素化ポリエチレン、フッ素ゴム、エピクロロヒドリンゴム、エチレン-プロピレンゴム、クロロスルホン化ポリエチレンゴム、シリコーンゴムおよびアクリルゴムからなる群より選択される少なくとも1種のエラストマーを含有することが好ましい。 The elastomer composition may be acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, blend rubber of acrylonitrile-butadiene rubber and acrylic rubber, chlorinated polyethylene, fluorine rubber, It is preferable to contain at least one elastomer selected from the group consisting of epichlorohydrin rubber, ethylene-propylene rubber, chlorosulfonated polyethylene rubber, silicone rubber and acrylic rubber.
 前記エラストマー組成物が、オニウム塩、アミン化合物およびエポキシ樹脂からなる群より選択される少なくとも1種の化合物を含有することが好ましい。
 また、本開示によれば、上記の成形品、または、上記の積層体からなる燃料用ホースまたは燃料用チューブが提供される。
 また、本開示によれば、上記の成形品、または、上記の積層体からなる燃料用シール材が提供される。
It is preferable that the elastomer composition contains at least one compound selected from the group consisting of an onium salt, an amine compound and an epoxy resin.
Further, according to the present disclosure, there is provided a fuel hose or a fuel tube made of the above-mentioned molded article or the above-mentioned laminate.
Further, according to the present disclosure, there is provided a fuel sealing material comprising the above-mentioned molded product or the above-mentioned laminate.
 本開示によれば、燃料バリア性を大きく損なうことなく、引張弾性率を低減させた熱可塑性樹脂組成物を提供することができる。 According to the present disclosure, it is possible to provide a thermoplastic resin composition having a reduced tensile modulus without significantly impairing fuel barrier properties.
 以下、本開示の具体的な実施形態について詳細に説明するが、本開示は、以下の実施形態に限定されるものではない。 Hereinafter, specific embodiments of the present disclosure will be described in detail, but the present disclosure is not limited to the following embodiments.
 本開示の熱可塑性樹脂組成物は、フッ素樹脂(A)および架橋フッ素ゴム(B)を含む。 熱 The thermoplastic resin composition of the present disclosure includes a fluororesin (A) and a crosslinked fluororubber (B).
 本開示の一実施形態の熱可塑性樹脂組成物は、架橋フッ素ゴム(B)が、フッ素樹脂(A)の存在下、フッ素樹脂(A)の溶融条件下にて、フッ素ゴム(b)を、熱分解温度が210℃以上であるポリアミン化合物(c)および架橋促進剤(d)と共に、動的に架橋処理したものである。このように、動的な架橋処理において、特定のポリアミン化合物を用いることによって、燃料バリア性を大きく損なうことなく、引張弾性率を低減させた熱可塑性樹脂組成物が得られる。また、得られる熱可塑性樹脂組成物は、比較的小さい圧縮永久歪みを有する。 The thermoplastic resin composition according to one embodiment of the present disclosure is characterized in that the crosslinked fluororubber (B) is a fluororesin (b) in the presence of the fluororesin (A) under the melting conditions of the fluororesin (A). It is dynamically crosslinked with a polyamine compound (c) having a thermal decomposition temperature of 210 ° C. or higher and a crosslinking accelerator (d). Thus, by using a specific polyamine compound in the dynamic crosslinking treatment, it is possible to obtain a thermoplastic resin composition having a reduced tensile modulus without greatly impairing the fuel barrier property. Further, the obtained thermoplastic resin composition has a relatively small compression set.
 また、本開示の一実施形態の熱可塑性樹脂組成物は、上記熱可塑性樹脂組成物から形成される成形品について、赤外吸収スペクトル分析をした場合に、2360cm-1に現れる吸収ピークの高さに対する、3451cm-1に現れる吸収ピークの高さの比[K1]が、0.001以上であり、かつ、3035cm-1に現れる吸収ピークの高さに対する、1722cm-1に現れる吸収ピークの高さの比[K2]が、0.3以上であり、引張弾性率が、250MPa以下であることによっても、特徴づけることができる。このように、本開示の熱可塑性樹脂組成物が、特徴的な吸収ピークを示すものであることによって、燃料バリア性を大きく損なうことなく、引張弾性率を低減させた熱可塑性樹脂組成物が得られる。また、得られる熱可塑性樹脂組成物は、比較的小さい圧縮永久歪みを有する。 Further, the thermoplastic resin composition according to an embodiment of the present disclosure has a height of an absorption peak appearing at 2360 cm −1 when a molded article formed from the thermoplastic resin composition is subjected to infrared absorption spectrum analysis. for, the ratio of the height of the absorption peaks appearing in 3451cm -1 [K1] is, it is 0.001 or more, and, with respect to the height of the absorption peak appearing in 3035Cm -1, the height of the absorption peak appearing in 1722 cm -1 Is not less than 0.3 and the tensile modulus is not more than 250 MPa. As described above, the thermoplastic resin composition of the present disclosure exhibits a characteristic absorption peak, thereby obtaining a thermoplastic resin composition having a reduced tensile modulus without significantly impairing the fuel barrier property. Can be Further, the obtained thermoplastic resin composition has a relatively small compression set.
 比[K1]としては、好ましくは0.003以上であり、さらに好ましくは0.005以上であり、上限は限定されないが、通常は1.500以下であり、比[K2]としては、好ましくは0.4以上であり、さらに好ましくは0.5以上であり、特に好ましくは1.0以上であり、最も好ましくは1.5以上であり、上限は限定されないが、通常は5.0以下である。 The ratio [K1] is preferably 0.003 or more, more preferably 0.005 or more, and the upper limit is not limited, but is usually 1.500 or less, and the ratio [K2] is preferably 0.4 or more, more preferably 0.5 or more, particularly preferably 1.0 or more, and most preferably 1.5 or more. The upper limit is not limited, but is usually 5.0 or less. is there.
 比[K1]および比[K2]は、次の方法により算出できる。熱可塑性樹脂組成物を、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、熱可塑性樹脂シートを作製する。この熱可塑性樹脂シートについて、フーリエ変換赤外分光光度計[FT-IR]を用いて透過法で赤外吸収スペクトルを測定し、下記の式により比[K1]および比[K2]を算出する。
  比[K1]=H1a/H1b
  比[K2]=H2a/H2b
    H1a:3475cm-1と3415cm-1の各吸光度を結ぶ直線をベースラインとしたときの3451cm-1の吸光度高さ
    H1b:2680cm-1と2030cm-1の各吸光度を結ぶ直線をベースラインとしたときの2360cm-1の吸光度高さ
    H2a:1760cm-1と1660cm-1の各吸光度を結ぶ直線をベースラインとしたときの1722cm-1の吸光度高さ
    H2b:3170cm-1と2900cm-1の各吸光度を結ぶ直線をベースラインとしたときの3035cm-1の吸光度高さ
The ratio [K1] and the ratio [K2] can be calculated by the following method. The thermoplastic resin composition is placed in a mold having a diameter of 120 mm, set in a press machine heated to 300 ° C., and melt-pressed at a pressure of about 2.9 MPa to produce a thermoplastic resin sheet. The infrared absorption spectrum of this thermoplastic resin sheet is measured by a transmission method using a Fourier transform infrared spectrophotometer [FT-IR], and the ratios [K1] and [K2] are calculated by the following equations.
Ratio [K1] = H1a / H1b
Ratio [K2] = H2a / H2b
H1a: 3475cm -1 and 3415cm absorbance 3451Cm -1 when the straight line connecting the respective absorbance was to baseline -1 height H1b: When the straight line connecting the respective absorbance 2680Cm -1 and 2030Cm -1 and a baseline absorbance of the height of the 2360 cm -1 H2a: 1760 cm -1 and 1660cm absorbance 1722 cm -1 when a straight line connecting the respective absorbance was to baseline -1 height H2b: each absorbance 3170Cm -1 and 2900 cm -1 Absorbance height of 3035 cm -1 when the connecting straight line is used as the baseline
 特徴的な吸収ピークを示す上記の熱可塑性樹脂組成物は、好ましくは、フッ素樹脂(A)の存在下、フッ素樹脂(A)の溶融条件下にて、フッ素ゴム(b)を、熱分解温度が210℃以上であるポリアミン化合物(c)および架橋促進剤(d)と共に、動的に架橋処理して、架橋フッ素ゴム(B)を得ることにより、製造することができる。各吸収ピークに帰属する結合の種類に基づくと、比[K1]が大きいほど、フッ素樹脂(A)が有する官能基とポリアミン化合物(c)との反応により形成される架橋構造が多く形成されたことを意味し、比[K2]が大きいほど、フッ素ゴム(b)の主鎖に多くの二重結合が形成され、形成された二重結合とポリアミン化合物(c)とが反応することによって、架橋構造が多く形成されたことを意味するものと推測される。すなわち、比[K1]および比[K2]により、熱可塑性樹脂組成物中の架橋密度が推測できるものと考えられる。このような推測の妥当性にかかわらず、本開示の一実施態様の熱可塑性樹脂組成物は、比[K1]および比[K2]が上記範囲にあることによって、燃料バリア性および引張弾性率のバランスに優れ、圧縮永久歪も小さいものである。 The thermoplastic resin composition exhibiting a characteristic absorption peak is preferably prepared by subjecting a fluororubber (b) to a thermal decomposition temperature under the melting conditions of the fluororesin (A) in the presence of the fluororesin (A). Is dynamically crosslinked with a polyamine compound (c) having a temperature of 210 ° C. or higher and a crosslinking accelerator (d) to obtain a crosslinked fluororubber (B). Based on the type of bond belonging to each absorption peak, the larger the ratio [K1], the more the crosslinked structure formed by the reaction between the functional group of the fluororesin (A) and the polyamine compound (c) was formed. This means that the larger the ratio [K2], the more double bonds are formed in the main chain of the fluororubber (b), and the formed double bonds react with the polyamine compound (c). This is presumed to mean that many crosslinked structures were formed. That is, it is considered that the crosslink density in the thermoplastic resin composition can be estimated from the ratio [K1] and the ratio [K2]. Regardless of the validity of such a guess, the thermoplastic resin composition according to an embodiment of the present disclosure may have a fuel barrier property and a tensile modulus of elasticity when the ratio [K1] and the ratio [K2] are within the above ranges. Excellent balance and low compression set.
 上記引張弾性率は、好ましくは230MPa以下であり、より好ましくは200MPa以下である。上記引張弾性率の下限は、特に限定されないが、30MPa以上であってよい。 The tensile modulus is preferably 230 MPa or less, more preferably 200 MPa or less. The lower limit of the tensile modulus is not particularly limited, but may be 30 MPa or more.
 上記引張弾性率は、次の方法により測定することができる。熱可塑性樹脂組成物を、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.5mmの熱可塑性樹脂シートを作製する。得られた熱可塑性シートから、ASTM D638 TypeV型ダンベルを用いて標線間距離3.18mmのダンベル状試験片を打ち抜く。得られたダンベル状試験片を用いて、オートグラフ(島津製作所社製 AGS-J 5kN)を使用して、ASTM D638に準じて、25℃において50mm/minの引張速度で引張試験を行い、引張弾性率を求める。 The tensile modulus can be measured by the following method. The thermoplastic resin composition is placed in a mold having a diameter of 120 mm, set in a press heated to 300 ° C., and melt-pressed at a pressure of about 2.9 MPa to produce a thermoplastic resin sheet having a thickness of 0.5 mm. I do. From the obtained thermoplastic sheet, a dumbbell-shaped test piece having a distance between marked lines of 3.18 mm is punched out using an ASTM {D638} Type V dumbbell. Using the obtained dumbbell-shaped test piece, a tensile test was performed at 25 ° C. at a tensile speed of 50 mm / min at 25 ° C. using an autograph (AGS-J 5 kN manufactured by Shimadzu Corporation) according to ASTM D638. Find the modulus of elasticity.
 本開示の熱可塑性樹脂組成物においては、また、燃料バリア性と、引張弾性率および圧縮永久歪みとのバランスの観点から、架橋フッ素ゴム(B)がフッ素樹脂(A)に分散した分散構造を有し、架橋フッ素ゴム(B)の平均分散粒子径が、5μm以下であることが好ましい。 In the thermoplastic resin composition of the present disclosure, the dispersion structure in which the crosslinked fluororubber (B) is dispersed in the fluororesin (A) is also considered from the viewpoint of the balance between the fuel barrier properties and the tensile elastic modulus and the compression set. And the average dispersed particle size of the crosslinked fluororubber (B) is preferably 5 μm or less.
 上記平均分散粒子径としては、好ましくは2μm以下であり、より好ましくは1μm以下であり、下限は特に限定されないが、0.01μm以上であってよい。 The average dispersed particle diameter is preferably 2 μm or less, more preferably 1 μm or less, and the lower limit is not particularly limited, but may be 0.01 μm or more.
 上記平均分散粒子径とは、原子間力顕微鏡(AFM)、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)のいずれか、あるいはこれらを組み合わせて使用することにより得られた像を、画像解析ソフトウェア「ImageJ」で解析し、分散相の任意の粒子を20個選択してそれぞれ算出した円相当径の平均値である。たとえば、AFMを使用する場合、連続相のフッ素樹脂(A)と分散相の架橋フッ素ゴム(B)の表面情報から得られる差が明暗の像として得られる。また、SEMを使用する場合は、反射電子像または二次電子像で得られた像に対し分散相の架橋フッ素ゴム(B)が明確となるようにコントラストを強調、あるいは、明暗の調整または両方の調整を像に施すことによりAFM同様、分散相の架橋ゴム粒子径を読み取ることができる。TEMの場合もSEM同様、得られた像のコントラスト、あるいは明暗の調整または両方の調整を像に施すことによりAFMやSEM同様、分散相の架橋ゴム粒子径を読み取ることができる。これらは、各々の熱可塑性重合体組成物に対し、より確認しやすい方を選択すればよい。 The average dispersed particle diameter refers to an image obtained by using any of an atomic force microscope (AFM), a scanning electron microscope (SEM), a transmission electron microscope (TEM), or a combination thereof. It is the average value of the equivalent circle diameters which were analyzed by image analysis software “ImageJ”, and 20 arbitrary particles of the dispersed phase were selected and calculated. For example, when the AFM is used, the difference obtained from the surface information of the continuous phase fluororesin (A) and the dispersed phase crosslinked fluororubber (B) is obtained as a bright and dark image. When SEM is used, the contrast is enhanced so that the cross-linked fluororubber (B) of the dispersed phase is clarified with respect to the image obtained as the reflected electron image or the secondary electron image, or the contrast is adjusted. By performing the above adjustment on the image, the crosslinked rubber particle diameter of the dispersed phase can be read as in the case of the AFM. In the case of a TEM, the diameter of the crosslinked rubber particles of the dispersed phase can be read in the same manner as in the AFM or the SEM by adjusting the contrast of the obtained image and / or adjusting the brightness or both of the image as in the SEM. These may be selected for each thermoplastic polymer composition so as to be more easily confirmed.
 本開示の熱可塑性樹脂組成物において、フッ素樹脂(A)とフッ素ゴム(b)との質量比(フッ素樹脂(A)/フッ素ゴム(b))は、70/30未満であり、20/80以上である。上記質量比は、燃料バリア性と、引張弾性率および圧縮永久歪みとのバランスの観点から、好ましくは66/34以下であり、好ましくは30/70以上であり、より好ましくは45/55以上である。フッ素樹脂(A)が少なすぎると、燃料バリア性が不十分となるおそれがあり、多すぎると、引張弾性率および圧縮永久歪みが大きくなりすぎるおそれがある。 In the thermoplastic resin composition of the present disclosure, the mass ratio of the fluororesin (A) to the fluororubber (b) (fluororesin (A) / fluororubber (b)) is less than 70/30, and 20/80. That is all. The mass ratio is preferably 66/34 or less, preferably 30/70 or more, and more preferably 45/55 or more, from the viewpoint of the balance between the fuel barrier property and the tensile elastic modulus and compression set. is there. If the amount of the fluororesin (A) is too small, the fuel barrier property may be insufficient, and if it is too large, the tensile modulus and the compression set may be too large.
 本開示の熱可塑性樹脂組成物において、フッ素樹脂(A)と架橋フッ素ゴム(B)との質量比(フッ素樹脂(A)/架橋フッ素ゴム(B))は、70/30未満であり、20/80以上である。上記質量比は、燃料バリア性と、引張弾性率および圧縮永久歪みとのバランスの観点から、好ましくは65/35以下であり、好ましくは30/70以上であり、より好ましくは45/55以上である。フッ素樹脂(A)が少なすぎると、燃料バリア性が不十分となるおそれがあり、多すぎると、引張弾性率および圧縮永久歪みが大きくなりすぎるおそれがある。 In the thermoplastic resin composition of the present disclosure, the mass ratio (fluororesin (A) / crosslinked fluororubber (B)) between the fluororesin (A) and the crosslinked fluororubber (B) is less than 70/30, / 80 or more. The mass ratio is preferably 65/35 or less, preferably 30/70 or more, and more preferably 45/55 or more, from the viewpoint of the balance between the fuel barrier property and the tensile modulus and compression set. is there. If the amount of the fluororesin (A) is too small, the fuel barrier property may be insufficient, and if it is too large, the tensile modulus and the compression set may be too large.
 本開示において、熱可塑性樹脂組成物中のフッ素樹脂(A)と架橋フッ素ゴム(B)との質量比は、たとえば、熱可塑性樹脂組成物を調製するために用いたフッ素樹脂(A)の質量と、フッ素ゴム(b)、ポリアミン化合物(c)および架橋促進剤(d)の各質量の合計との比から算出することができる。 In the present disclosure, the mass ratio of the fluororesin (A) to the crosslinked fluororubber (B) in the thermoplastic resin composition may be, for example, the mass of the fluororesin (A) used to prepare the thermoplastic resin composition. And the sum of the respective masses of the fluororubber (b), the polyamine compound (c) and the crosslinking accelerator (d).
 本開示の熱可塑性樹脂組成物において、フッ素樹脂(A)とフッ素ゴム(b)との体積比(フッ素樹脂(A)/フッ素ゴム(b))は、燃料バリア性と、引張弾性率および圧縮永久歪みとのバランスの観点から、好ましくは69/31以下であり、より好ましくは63/37以下であり、好ましくは18/82以上であり、より好ましくは28/72以上であり、さらに好ましくは42/58以上である。フッ素樹脂(A)が少なすぎると、燃料バリア性が不十分となるおそれがあり、多すぎると、引張弾性率および圧縮永久歪みが大きくなりすぎるおそれがある。 In the thermoplastic resin composition of the present disclosure, the volume ratio of the fluororesin (A) to the fluororubber (b) (fluororesin (A) / fluororubber (b)) is determined by the fuel barrier property, the tensile modulus, and the compression. From the viewpoint of the balance with the permanent set, the ratio is preferably 69/31 or less, more preferably 63/37 or less, preferably 18/82 or more, more preferably 28/72 or more, and further preferably 42/58 or more. If the amount of the fluororesin (A) is too small, the fuel barrier property may be insufficient, and if it is too large, the tensile modulus and the compression set may be too large.
 本開示の熱可塑性樹脂組成物において、フッ素樹脂(A)と架橋フッ素ゴム(B)との体積比(フッ素樹脂(A)/架橋フッ素ゴム(B))は、燃料バリア性と、引張弾性率および圧縮永久歪みとのバランスの観点から、好ましくは68/32以下であり、より好ましくは63/37以下であり、好ましくは18/82以上であり、より好ましくは27/73以上であり、さらに好ましくは42/58以上である。フッ素樹脂(A)が少なすぎると、燃料バリア性が不十分となるおそれがあり、多すぎると、引張弾性率および圧縮永久歪みが大きくなりすぎるおそれがある。 In the thermoplastic resin composition of the present disclosure, the volume ratio between the fluororesin (A) and the crosslinked fluororubber (B) (fluororesin (A) / crosslinked fluororubber (B)) is determined by the fuel barrier property and the tensile modulus. From the viewpoint of balance with compression set, it is preferably 68/32 or less, more preferably 63/37 or less, preferably 18/82 or more, and more preferably 27/73 or more. It is preferably at least 42/58. If the amount of the fluororesin (A) is too small, the fuel barrier property may be insufficient, and if it is too large, the tensile modulus and the compression set may be too large.
 本開示において、熱可塑性樹脂組成物中のフッ素樹脂(A)と架橋フッ素ゴム(B)との体積比は、たとえば、熱可塑性樹脂組成物を調製するために用いたフッ素樹脂(A)の質量をその比重で除した値と、フッ素ゴム(b)の質量をその比重で除した値、ポリアミン化合物(c)の質量をその比重で除した値および架橋促進剤(d)の質量をその比重で除した値の合計との比から算出することができる。また、本開示の熱可塑性樹脂組成物において、架橋フッ素ゴム(B)がフッ素樹脂(A)に等方的かつ均質に分散している場合には、フッ素樹脂(A)と架橋フッ素ゴム(B)との体積比は、原子間力顕微鏡(AFM)、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)のいずれか、あるいはこれらを組み合わせて使用することにより得られた像から、連続相のフッ素樹脂(A)と分散相の架橋フッ素ゴム(B)との面積比を算出し、それを1.5乗することによっても算出することができる。 In the present disclosure, the volume ratio between the fluororesin (A) and the crosslinked fluororubber (B) in the thermoplastic resin composition is, for example, the mass of the fluororesin (A) used for preparing the thermoplastic resin composition. , The value obtained by dividing the mass of the fluororubber (b) by its specific gravity, the value obtained by dividing the mass of the polyamine compound (c) by its specific gravity, and the mass of the crosslinking accelerator (d) by its specific gravity. It can be calculated from the ratio to the sum of the values divided by. In the thermoplastic resin composition of the present disclosure, when the crosslinked fluororubber (B) is isotropically and uniformly dispersed in the fluororesin (A), the fluororesin (A) and the crosslinked fluororubber (B ) Can be determined from an image obtained by using any of an atomic force microscope (AFM), a scanning electron microscope (SEM), a transmission electron microscope (TEM), or a combination thereof, It can also be calculated by calculating the area ratio between the fluororesin (A) in the phase and the crosslinked fluororubber (B) in the dispersed phase, and raising it to the 1.5th power.
 本開示の熱可塑性樹脂組成物の燃料透過係数は、好ましくは30(g・mm)/(m・day)以下であり、より好ましくは25(g・mm)/(m・day)以下である。上記燃料透過係数の下限は、特に限定されないが、燃料バリア性と、引張弾性率および圧縮永久歪みとのバランスを考慮して、4(g・mm)/(m・day)以上であってよい。 The fuel permeability coefficient of the thermoplastic resin composition of the present disclosure is preferably 30 (g · mm) / (m 2 · day) or less, and more preferably 25 (g · mm) / (m 2 · day) or less. It is. The lower limit of the fuel permeability coefficient is not particularly limited, but is 4 (g · mm) / (m 2 · day) or more in consideration of the balance between the fuel barrier property, the tensile modulus, and the compression set. Good.
 上記燃料透過係数は、次の方法により測定することができる。熱可塑性樹脂組成物を、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、熱可塑性樹脂シートを作製する。20mLの容積を有するSUS製容器(開放部面積1.26×10-3)に模擬燃料であるCE10(トルエン/イソオクタン/エタノール=45/45/10容量%)を18mL入れて、熱可塑性樹脂シートを容器開放部にセットして密閉することで、試験体とする。該試験体を恒温装置(60℃)に入れ、試験体の質量を測定し、単位時間あたりの質量減少が一定となったところで下記の式により燃料透過係数を求める。
Figure JPOXMLDOC01-appb-M000001
The fuel permeability coefficient can be measured by the following method. The thermoplastic resin composition is placed in a mold having a diameter of 120 mm, set in a press machine heated to 300 ° C., and melt-pressed at a pressure of about 2.9 MPa to produce a thermoplastic resin sheet. 18 mL of CE10 (toluene / isooctane / ethanol = 45/45/10% by volume) as a simulated fuel was placed in a SUS container (open area: 1.26 × 10 −3 m 2 ) having a volume of 20 mL, and the mixture was thermoplastic. A resin sheet is set on the container opening and sealed to prepare a test specimen. The specimen is placed in a thermostat (60 ° C.), the mass of the specimen is measured, and when the mass loss per unit time becomes constant, the fuel permeability coefficient is determined by the following equation.
Figure JPOXMLDOC01-appb-M000001
 フッ素樹脂(A)
 フッ素樹脂(A)は、クロロトリフルオロエチレン(CTFE)単位およびテトラフルオロエチレン(TFE)単位を含む共重合体である。
Fluororesin (A)
The fluororesin (A) is a copolymer containing chlorotrifluoroethylene (CTFE) units and tetrafluoroethylene (TFE) units.
 フッ素樹脂(A)のCTFE単位の含有量は、燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れ、耐熱性にも優れる熱可塑性樹脂組成物が得られることから、全単量体単位に対して、好ましくは10~90モル%、より好ましくは15~60モル%、さらに好ましくは18~40モル%である。CTFE単位が少なすぎると、燃料バリア性が不十分となるおそれがあり、多すぎると、耐熱性が不十分となるおそれがある。一方、フッ素樹脂(A)のTFE単位の含有量は、燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れ、耐熱性にも優れる熱可塑性樹脂組成物が得られることから、全単量体単位に対して、好ましくは10~90モル%であり、より好ましくは40~85モル%であり、さらに好ましくは60~82モル%である。TFE単位が少なすぎると、耐熱性が不十分となるおそれがあり、多すぎると、燃料バリア性が不十分となるおそれがある。 The content of CTFE units in the fluororesin (A) is further improved by the balance between fuel barrier properties, tensile elastic modulus and compression set, and a thermoplastic resin composition having excellent heat resistance is obtained. It is preferably from 10 to 90 mol%, more preferably from 15 to 60 mol%, even more preferably from 18 to 40 mol%, based on the unit. If the CTFE unit is too small, the fuel barrier properties may be insufficient, and if too large, the heat resistance may be insufficient. On the other hand, the content of the TFE unit in the fluororesin (A) is further improved by the balance between the fuel barrier property, the tensile elastic modulus and the compression set, and a thermoplastic resin composition excellent in heat resistance is obtained. It is preferably from 10 to 90 mol%, more preferably from 40 to 85 mol%, even more preferably from 60 to 82 mol%, based on the monomer unit. If the TFE unit is too small, the heat resistance may be insufficient, and if it is too large, the fuel barrier property may be insufficient.
 フッ素樹脂(A)において、CTFE単位とTFE単位との含有割合は、燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れ、耐熱性にも優れる熱可塑性樹脂組成物が得られることから、モル比で、好ましくは10/90~90/10であり、より好ましくは15/85~60/40であり、さらに好ましくは18/82~40/60である。 In the fluororesin (A), the content ratio of the CTFE unit and the TFE unit is more excellent due to the balance between the fuel barrier property, the tensile modulus and the compression set, and a thermoplastic resin composition having excellent heat resistance can be obtained. The molar ratio is preferably 10/90 to 90/10, more preferably 15/85 to 60/40, and still more preferably 18/82 to 40/60.
 フッ素樹脂(A)は、燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れ、耐熱性および耐クラック性にも優れる熱可塑性樹脂組成物が得られることから、CTFE単位、TFE単位、ならびに、CTFEおよびTFEと共重合可能な単量体(α)に由来する単量体(α)単位を含むものが好ましい。 The fluororesin (A) is more excellent in the balance of fuel barrier properties, tensile modulus and compression set, and a thermoplastic resin composition having excellent heat resistance and crack resistance can be obtained. Therefore, the CTFE unit, the TFE unit, Further, those containing a monomer (α) unit derived from a monomer (α) copolymerizable with CTFE and TFE are preferable.
 単量体(α)としては、CTFEおよびTFEと共重合可能な単量体であれば特に限定されず、エチレン、ビニリデンフルオライド(VdF)、CF=CF-ORf(式中、Rfは、炭素数1~8のパーフルオロアルキル基)で表されるパーフルオロ(アルキルビニルエーテル)(PAVE)、CX=CX(CF(式中、X、XおよびXは同一もしくは異なって、水素原子またはフッ素原子;Xは、水素原子、フッ素原子または塩素原子;nは、1~10の整数)で表されるビニル単量体、CF=CF-OCH-Rf(式中、Rfは、炭素数1~5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体などがあげられ、なかでも、PAVE、上記ビニル単量体およびアルキルパーフルオロビニルエーテル誘導体からなる群より選択される少なくとも1種が好ましく、PAVEおよびヘキサフルオロプロピレン(HFP)からなる群より選択される少なくとも1種がより好ましい。 The monomer (α) is not particularly limited as long as it is a monomer copolymerizable with CTFE and TFE, and ethylene, vinylidene fluoride (VdF), CF 2 CFCF—ORf 1 (where Rf 1 Is a perfluoro (alkyl vinyl ether) (PAVE) represented by a perfluoroalkyl group having 1 to 8 carbon atoms, CX 1 X 2 = CX 3 (CF 2 ) n X 4 (wherein X 1 and X 2 And X 3 are the same or different and each is a hydrogen atom or a fluorine atom; X 4 is a hydrogen atom, a fluorine atom or a chlorine atom; n is an integer of 1 to 10); CF 2 CFCF And alkyl perfluorovinyl ether derivatives represented by —OCH 2 —Rf 2 (wherein Rf 2 is a perfluoroalkyl group having 1 to 5 carbon atoms). At least one selected from the group consisting of vinyl monomers and alkyl perfluorovinyl ether derivatives is preferred, and at least one selected from the group consisting of PAVE and hexafluoropropylene (HFP) is more preferred.
 上記PAVEとしては、CF=CF-ORf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)であることが好ましく、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)、パーフルオロ(ブチルビニルエーテル)などがあげられ、なかでもPMVE、PEVEおよびPPVEからなる群より選択される少なくとも1種が好ましい。 The PAVE is preferably a perfluoro (alkyl vinyl ether) represented by CF 2 CFCF—ORf 3 (where Rf 3 represents a perfluoroalkyl group having 1 to 5 carbon atoms). Fluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether) (PPVE), perfluoro (butyl vinyl ether), etc., among which the group consisting of PMVE, PEVE and PPVE At least one selected from the above is preferable.
 上記アルキルパーフルオロビニルエーテル誘導体としては、Rfが炭素数1~3のパーフルオロアルキル基であるものが好ましく、CF=CF-OCH-CFCFがより好ましい。 As the alkyl perfluorovinyl ether derivative, those in which Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 CF—OCH 2 —CF 2 CF 3 is more preferable.
 フッ素樹脂(A)においては、燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れ、耐熱性および耐クラック性にも優れる熱可塑性樹脂組成物が得られることから、全単量体単位に対して、CTFE単位およびTFE単位の合計の含有量が、好ましくは90~99.9モル%であり、より好ましくは95~99.5モル%であり、単量体(α)単位が、好ましくは0.1~10モル%であり、より好ましくは0.5~5モル%である。単量体(α)単位が少なすぎると、成形性および耐クラック性が不十分となるおそれがあり、多すぎると、燃料バリア性および耐熱性が不十分となるおそれがある。 In the fluororesin (A), a thermoplastic resin composition which is more excellent in balance between fuel barrier properties, tensile elastic modulus and compression set, and is also excellent in heat resistance and crack resistance can be obtained. The total content of CTFE units and TFE units is preferably 90 to 99.9 mol%, more preferably 95 to 99.5 mol%, and the monomer (α) unit is Preferably it is 0.1 to 10 mol%, more preferably 0.5 to 5 mol%. If the amount of the monomer (α) is too small, the moldability and crack resistance may be insufficient. If the amount is too large, the fuel barrier property and the heat resistance may be insufficient.
 上述したフッ素樹脂(A)の各単量体単位の含有量は、NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせることで算出できる。 含有 The content of each monomer unit of the above-mentioned fluororesin (A) can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis according to the type of monomer.
 フッ素樹脂(A)の融点は、燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れ、耐熱性にも優れる熱可塑性樹脂組成物が得られることから、好ましくは150~340℃であり、より好ましくは215~290℃であり、さらに好ましくは225~280℃であり、特に好ましくは235~260℃である。融点は、示差走査熱量計〔DSC〕を用いて10℃/分の速度で昇温したときの融解ピークに対応する温度である。融点が低すぎると、耐熱性が不十分となるおそれがあり、高すぎると、成形温度が高温となり、ポリアミン化合物(c)の一部が分解して成形不良を生じるおそれがある。 The melting point of the fluororesin (A) is preferably from 150 to 340 ° C., since a thermoplastic resin composition having more excellent balance between fuel barrier properties, tensile elastic modulus and compression set and excellent heat resistance can be obtained. The temperature is more preferably 215 to 290 ° C, further preferably 225 to 280 ° C, and particularly preferably 235 to 260 ° C. The melting point is a temperature corresponding to a melting peak when the temperature is raised at a rate of 10 ° C./min using a differential scanning calorimeter [DSC]. If the melting point is too low, the heat resistance may be insufficient, and if it is too high, the molding temperature may be high, and a part of the polyamine compound (c) may be decomposed to cause molding failure.
 フッ素樹脂(A)のメルトフローレート(MFR)は、0.01~100g/10分であることが好ましい。MFRは、メルトインデクサー(東洋精機製作所社製)を用い、297℃において、5kg荷重下で直径2mm、長さ8mmのノズルから単位時間(10分間)あたりに流出するポリマーの質量(g)を測定することで得られる。 The melt flow rate (MFR) of the fluororesin (A) is preferably 0.01 to 100 g / 10 minutes. The MFR was measured using a melt indexer (manufactured by Toyo Seiki Seisaku-Sho, Ltd.) at 297 ° C. under a load of 5 kg under a load of 5 mm, from a nozzle having a diameter of 2 mm and a length of 8 mm per unit time (10 minutes). Obtained by measuring.
 フッ素樹脂(A)は、また、ポリマーの主鎖末端または側鎖末端にカルボニル基、オレフィン基およびアミノ基からなる群より選択される少なくとも1種の官能基を有する共重合体である。 The fluororesin (A) is a copolymer having at least one functional group selected from the group consisting of a carbonyl group, an olefin group and an amino group at the main chain terminal or the side chain terminal of the polymer.
 上記カルボニル基とは、-C(=O)-を有する官能基である。 The carbonyl group is a functional group having —C (= O) —.
 具体的には、例えば、
 カーボネート基[-O-C(=O)-OR(式中、Rは炭素原子数1~20のアルキル基またはエーテル結合性酸素原子を含む炭素原子数2~20のアルキル基である)]、
 ハロホルミル基[-C(=O)X、Xはハロゲン原子]、
 ホルミル基[-C(=O)H]、
 式:-R-C(=O)-R(式中、Rは、炭素原子数1~20の2価の有機基であり、Rは、炭素原子数1~20の1価の有機基である)で示される基、
 式:-O-C(=O)-R(式中、Rは、炭素原子数1~20のアルキル基またはエーテル結合性酸素原子を含む炭素原子数2~20のアルキル基である)で示される基、
 カルボキシル基[-C(=O)OH]、
 アルコキシカルボニル基[-C(=O)OR(式中、Rは、炭素原子数1~20の1価の有機基である)]、
 カルバモイル基[-C(=O)NR(式中、RおよびRは、同じであっても異なっていてもよく、水素原子または炭素原子数1~20の1価の有機基である)]、
 酸無水物結合[-C(=O)-O-C(=O)-]、
 イソシアネート基[-N=C=O]、
などをあげることができる。
Specifically, for example,
Carbonate group [—OC (= O) —OR 3 (wherein, R 3 is an alkyl group having 1 to 20 carbon atoms or an alkyl group having 2 to 20 carbon atoms including an etheric oxygen atom) ],
A haloformyl group [—C (= O) X 5 , X 5 is a halogen atom],
Formyl group [—C (= O) H],
Formula: —R 4 —C (= O) —R 5 (wherein R 4 is a divalent organic group having 1 to 20 carbon atoms, and R 5 is a monovalent organic group having 1 to 20 carbon atoms. Which is an organic group of)
Formula: —OC (= O) —R 6 (wherein, R 6 is an alkyl group having 1 to 20 carbon atoms or an alkyl group having 2 to 20 carbon atoms including an etheric oxygen atom) A group represented by
Carboxyl group [—C (= O) OH],
An alkoxycarbonyl group [—C (= O) OR 7 (where R 7 is a monovalent organic group having 1 to 20 carbon atoms)],
A carbamoyl group [—C (= O) NR 8 R 9 (wherein R 8 and R 9 may be the same or different and are a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms) )],
Acid anhydride bond [-C (= O) -OC (= O)-],
Isocyanate group [-N = C = O],
And so on.
 Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などがあげられる。上記Rの具体例としては、メチレン基、-CF-基、-C-基などがあげられ、Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などがあげられる。Rの具体例としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などがあげられる。また、RおよびRの具体例としては、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、フェニル基などがあげられる。 Specific examples of R 3 include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. Specific examples of the above R 4 include a methylene group, a —CF 2 — group, and a —C 6 H 4 — group. Specific examples of R 5 include a methyl group, an ethyl group, a propyl group, an isopropyl group, Butyl group and the like. Specific examples of R 7 include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a butyl group. Further, specific examples of R 8 and R 9 include a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a phenyl group and the like.
 これらカルボニル基の中でも、燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れる熱可塑性樹脂組成物が得られ、フッ素樹脂への導入が容易であることから、カルボキシル基、ハロホルミル基、アルコキシカルボニル基およびカーボネート基からなる群より選択される少なくとも1種であることが好ましく、-COOH、-OC(=O)OCHCHCH、-COFおよび-OC(=O)OCH(CHからなる群より選択される少なくとも1種であることがより好ましい。 Among these carbonyl groups, a thermoplastic resin composition having a more excellent balance of fuel barrier properties, tensile elastic modulus and compression set can be obtained, and carboxyl group, haloformyl group, alkoxy group can be easily introduced into fluororesin. It is preferably at least one selected from the group consisting of a carbonyl group and a carbonate group, and includes —COOH, —OC (= O) OCH 2 CH 2 CH 3 , —COF and —OC ((O) OCH (CH 3 It is more preferable that at least one selected from the group consisting of 2 ) is used.
 オレフィン基(Olefinic group)とは、炭素-炭素二重結合を有する官能基である。オレフィン基としては、下記式:
 -CR10=CR1112
(式中、R10、R11およびR12は、同じであっても異なっていてもよく、水素原子、フッ素原子または炭素原子数1~20の1価の有機基である。)で表される官能基が挙げられ、-CF=CF、-CH=CF、-CF=CHF、-CF=CHおよび-CH=CHからなる群より選択される少なくとも1種が好ましい。
An olefin group (Olefinic group) is a functional group having a carbon-carbon double bond. As the olefin group, the following formula:
-CR 10 = CR 11 R 12
(Wherein R 10 , R 11 and R 12 may be the same or different and are a hydrogen atom, a fluorine atom or a monovalent organic group having 1 to 20 carbon atoms). And at least one selected from the group consisting of —CF = CF 2 , —CH = CF 2 , —CF = CHF, —CF = CH 2, and —CH = CH 2 .
 アミノ基とは、アンモニア、第一級または第二級アミンから水素を除去した1価の官能基である。アミノ基としては、下記式:
 -NR1314
(式中、R13およびR14は、同じであっても異なっていてもよく、水素原子または炭素原子数1~20の1価の有機基である。)で表される官能基が挙げられ、-NH、-NH(CH)、-N(CH、-NH(CHCH)、-N(Cおよび-NH(C)からなる群より選択される少なくとも1種が好ましい。
An amino group is a monovalent functional group obtained by removing hydrogen from ammonia, a primary or secondary amine. As the amino group, the following formula:
-NR 13 R 14
(In the formula, R 13 and R 14 may be the same or different and each is a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms.) , -NH 2 , -NH (CH 3 ), -N (CH 3 ) 2 , -NH (CH 2 CH 3 ), -N (C 2 H 5 ) 2 and -NH (C 6 H 5 ) At least one selected from the above is preferable.
 フッ素樹脂(A)の官能基の個数は、赤外吸収スペクトル分析により測定でき、たとえば、特公昭37-3127号公報および国際公開第99/45044号に記載されている方法にて測定することができる。赤外分光光度計を用いてフッ素樹脂(A)のフィルムシートの赤外吸収スペクトル分析し、官能基特有の周波数の吸収帯からその官能基の数を測定する場合、たとえば、-COF末端は1884cm-1の吸収帯、-COOH末端は1813cm-1と1775cm-1の吸収帯、-COOCH末端は1795cm-1の吸収帯、-CONH末端は3438cm-1の吸収帯、-CHOH末端は3648cm-1の吸収帯、-CF=CF末端は1790cm-1、カーボネート基〔-OC(=O)O-〕を含む末端は1810~1815cm-1の吸収帯から計算することができる。各吸収帯に現れるピークの吸光度は、たとえば、得られた赤外吸収スペクトルをPerkin-Elmer Spectrum for windows Ver.1.4Cを用いて自動でベースラインを判定させることにより測定できる。 The number of functional groups of the fluororesin (A) can be measured by infrared absorption spectrum analysis, for example, by the method described in JP-B-37-3127 and WO 99/45044. it can. When the infrared absorption spectrum analysis of the film sheet of the fluororesin (A) is performed using an infrared spectrophotometer and the number of the functional groups is measured from the absorption band of the frequency specific to the functional group, for example, the -COF terminal is 1884 cm. -1 absorption band, -COOH terminal is 1813 cm -1 and 1775 cm -1 absorption bands, -COOCH 3 terminal is 1795 cm -1 absorption band, -CONH 2 terminal is 3438 cm -1 absorption band, -CH 2 OH terminal Can be calculated from the absorption band at 3648 cm -1 , -CF = CF 2 end at 1790 cm -1 , and the end containing a carbonate group [—OC (= O) O—] from the absorption band at 1810 to 1815 cm −1 . The absorbance of the peak appearing in each absorption band can be determined, for example, by measuring the obtained infrared absorption spectrum in Perkin-Elmer Spectrum for windows Ver. It can be measured by automatically determining the baseline using 1.4C.
 フッ素樹脂に上記官能基を導入する方法としては、特に限定されないが、例えば、フッ素樹脂重合時に上記官能基を有する単量体を共重合する方法、上記官能基または上記官能基に変換できる官能基を有する重合開始剤を使用して重合を行う方法、フッ素樹脂に高分子反応で上記官能基を導入する方法、酸素共存下でポリマー主鎖を熱分解する方法、二軸押出機など強いせん断力を加えることのできる装置を用いてフッ素樹脂の末端を変換させる方法などをあげることができる。 The method for introducing the functional group into the fluororesin is not particularly limited, for example, a method of copolymerizing a monomer having the functional group during the polymerization of the fluororesin, the functional group or a functional group that can be converted to the functional group. Method of polymerizing using a polymerization initiator having, a method of introducing the above functional group into a fluororesin by a polymer reaction, a method of thermally decomposing a polymer main chain in the presence of oxygen, a strong shear force such as a twin screw extruder And a method of converting the terminal of the fluororesin using a device capable of adding the compound.
 上記官能基を有する単量体としては、(メタ)アクリル酸、クロトン酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、メサコン酸、無水メサコン酸、アコニット酸、無水アコニット酸などの脂肪族不飽和カルボン酸があげられる。 Examples of the monomer having the functional group include (meth) acrylic acid, crotonic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, mesaconic acid, and mesaconic anhydride. And unsaturated aliphatic carboxylic acids such as aconitic acid and aconitic anhydride.
 フッ素樹脂(A)の上記官能基の個数は、燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れる熱可塑性樹脂組成物が得られ、成形時の発泡が回避できることから、フッ素樹脂(A)を構成する炭素原子100万個当たり20~5000個であることが好ましく、30~4000個であることがより好ましく、40~3000個であることがさらに好ましい。 The number of the functional groups of the fluororesin (A) is determined by the following: a thermoplastic resin composition having a better balance between fuel barrier properties, tensile modulus and compression set can be obtained, and foaming during molding can be avoided. It is preferably 20 to 5,000, more preferably 30 to 4,000, and even more preferably 40 to 3,000 per million carbon atoms constituting A).
 なお、本開示で用いる上記官能基を有するフッ素樹脂(A)は、1つのポリマーにおける主鎖の片末端、両末端または側鎖に上記官能基を有する分子のみで構成されているものだけでなく、ポリマーの主鎖の片末端、両末端または側鎖に上記官能基を有する分子と、上記官能基を含まない分子との混合物であってもよい。 In addition, the fluororesin (A) having the above functional group used in the present disclosure is not limited to one composed of only a molecule having the above functional group at one end, both ends or side chains of a main chain in one polymer. A mixture of a molecule having the above functional group at one end, both ends or side chains of the main chain of the polymer and a molecule not containing the above functional group may be used.
 架橋フッ素ゴム(B)
 架橋フッ素ゴム(B)は、フッ素樹脂(A)の存在下、フッ素樹脂(A)の溶融条件下にて、フッ素ゴム(b)を、熱分解温度が210℃以上であるポリアミン化合物(c)および架橋促進剤(d)と共に、動的に架橋処理したものであることが好ましい。
Crosslinked fluoro rubber (B)
The crosslinked fluororubber (B) is a polyamine compound (c) having a thermal decomposition temperature of 210 ° C. or higher under the melting conditions of the fluororesin (A) in the presence of the fluororesin (A). It is preferable that the resin is dynamically crosslinked with the crosslinking accelerator (d).
 動的に架橋処理するとは、バンバリーミキサー、加圧ニーダー、押出機などを使用して、未架橋のフッ素ゴム(b)を溶融混練と同時に動的に架橋させることをいう。これらの中でも、高剪断力を加えることができる点で、二軸押出機などの押出機であることが好ましい。動的に架橋処理することで、フッ素樹脂(A)および架橋フッ素ゴム(B)の相構造を制御することができる。 Dynamic crosslinking treatment refers to dynamically crosslinking non-crosslinked fluororubber (b) simultaneously with melt kneading using a Banbury mixer, a pressure kneader, an extruder, or the like. Among these, an extruder such as a twin-screw extruder is preferable because a high shearing force can be applied. By dynamically performing the crosslinking treatment, the phase structure of the fluororesin (A) and the crosslinked fluororubber (B) can be controlled.
 溶融条件下に架橋処理するとは、フッ素樹脂(A)の融点以上の温度で架橋処理することを意味する。架橋処理の温度は、好ましくはフッ素樹脂(A)の融点以上であり、より好ましくは330℃以下であり、さらに好ましくは320℃以下である。フッ素樹脂(A)の融点以上の温度であれば、150℃以上であってもよいが、好ましくは220℃以上であり、より好ましくは260℃以上である。混練の温度を上記範囲とすることにより、フッ素樹脂(A)と架橋フッ素ゴム(B)とを十分に混練できると同時に、未架橋のフッ素ゴム(b)の熱劣化を抑制することができる。 架橋 Cross-linking treatment under melting conditions means cross-linking treatment at a temperature not lower than the melting point of the fluororesin (A). The temperature of the crosslinking treatment is preferably equal to or higher than the melting point of the fluororesin (A), more preferably equal to or lower than 330 ° C, and still more preferably equal to or lower than 320 ° C. As long as the temperature is equal to or higher than the melting point of the fluororesin (A), the temperature may be 150 ° C or higher, but is preferably 220 ° C or higher, more preferably 260 ° C or higher. By setting the kneading temperature in the above range, the fluororesin (A) and the crosslinked fluororubber (B) can be sufficiently kneaded, and at the same time, the thermal degradation of the uncrosslinked fluororubber (b) can be suppressed.
 本開示の熱可塑性樹脂組成物においては、特定のポリアミン化合物(c)と共に動的架橋を行うことにより架橋フッ素ゴム(B)を得るものであることから、上記のような比較的高温で動的架橋を行う場合であっても、未架橋のフッ素ゴム(b)の架橋が十分に進行し、なおかつ、フッ素樹脂(A)と架橋フッ素ゴム(B)とがお互いに十分に分散する。 In the thermoplastic resin composition of the present disclosure, a crosslinked fluororubber (B) is obtained by performing dynamic crosslinking with a specific polyamine compound (c). Even in the case of performing crosslinking, crosslinking of the uncrosslinked fluororubber (b) sufficiently proceeds, and the fluororesin (A) and the crosslinked fluororubber (B) are sufficiently dispersed in each other.
 本開示の熱可塑性樹脂組成物において、フッ素樹脂(A)が連続相を形成しかつ架橋フッ素ゴム(B)が分散相を形成していてもよいし、フッ素樹脂(A)および架橋フッ素ゴム(B)が共連続相構造を形成していてもよいが、フッ素樹脂(A)が連続相を形成しかつ架橋フッ素ゴム(B)が分散相を形成していることが好ましい。また、フッ素樹脂(A)が連続相を形成し、かつ架橋フッ素ゴム(B)が分散相を形成する構造の一部に、フッ素樹脂(A)と架橋フッ素ゴム(B)との共連続相構造を含んでいてもよい。 In the thermoplastic resin composition of the present disclosure, the fluororesin (A) may form a continuous phase and the crosslinked fluororubber (B) may form a dispersed phase, or the fluororesin (A) and the crosslinked fluororubber ( Although B) may form a co-continuous phase structure, it is preferred that the fluororesin (A) forms a continuous phase and the crosslinked fluororubber (B) forms a dispersed phase. A part of the structure in which the fluororesin (A) forms a continuous phase and the crosslinked fluororubber (B) forms a dispersed phase includes a co-continuous phase of the fluororesin (A) and the crosslinked fluororubber (B). A structure may be included.
 未架橋のフッ素ゴム(b)が分散当初マトリックスを形成していた場合でも、架橋反応により未架橋のフッ素ゴム(b)が架橋フッ素ゴム(B)に変化すると、架橋フッ素ゴム(B)の方が未架橋のフッ素ゴム(b)よりも溶融粘度が高いので、架橋フッ素ゴム(B)が分散相を形成するか、フッ素樹脂(A)および架橋フッ素ゴム(B)が共連続相構造を形成することになる。 Even when the uncrosslinked fluororubber (b) forms a matrix at the initial stage of dispersion, if the uncrosslinked fluororubber (b) is changed to the crosslinked fluororubber (B) by the crosslinking reaction, the crosslinked fluororubber (B) becomes Has a higher melt viscosity than the uncrosslinked fluororubber (b), the crosslinked fluororubber (B) forms a dispersed phase, or the fluororesin (A) and the crosslinked fluororubber (B) form a co-continuous phase structure Will do.
 架橋フッ素ゴム(B)は、未架橋のフッ素ゴム(b)を架橋することにより得られる。 The crosslinked fluororubber (B) is obtained by crosslinking an uncrosslinked fluororubber (b).
 フッ素ゴム(b)としては、パーフルオロゴム、部分フッ素化ゴムおよび含フッ素熱可塑性エラストマーからなる群より選択される少なくとも1種であることが好ましく、部分フッ素化ゴムであることがより好ましい。 The fluororubber (b) is preferably at least one selected from the group consisting of a perfluororubber, a partially fluorinated rubber, and a fluorinated thermoplastic elastomer, and more preferably a partially fluorinated rubber.
 フッ素ゴム(b)は、例えば、100℃で測定したムーニー粘度ML(1+10)が10~100であることが好ましい。上記ムーニー粘度ML(1+10)は、ALPHA TECHNOLOGIES社製 ムーニー粘度計MV2000E型を用いて、ASTM D-1646に準拠して測定することができる。 The fluororubber (b) preferably has, for example, a Mooney viscosity ML (1 + 10) of 10 to 100 measured at 100 ° C. The Mooney viscosity ML (1 + 10) can be measured using an ALPHA TECHNOLOGIES Co., Ltd. Mooney viscometer MV2000E in accordance with ASTM D-1646.
 フッ素ゴム(b)としては、VdF系フッ素ゴム、TFE/プロピレン系フッ素ゴム、TFE/プロピレン/VdF系フッ素ゴム、エチレン/HFP系フッ素ゴム、エチレン/HFP/VdF系フッ素ゴム、エチレン/HFP/TFE系フッ素ゴムなどがあげられる。なかでも、VdF系フッ素ゴムおよびTFE/プロピレン系フッ素ゴムからなる群より選択される少なくとも1種であることが好ましく、VdF/TFE/HFP系フッ素ゴムであることがより好ましい。 As the fluorine rubber (b), VdF fluorine rubber, TFE / propylene fluorine rubber, TFE / propylene / VdF fluorine rubber, ethylene / HFP fluorine rubber, ethylene / HFP / VdF fluorine rubber, ethylene / HFP / TFE And fluorocarbon rubber. Among them, it is preferably at least one selected from the group consisting of VdF-based fluororubber and TFE / propylene-based fluororubber, and more preferably VdF / TFE / HFP-based fluororubber.
 上記VdF系フッ素ゴムは、VdF20~85モル%と、VdFと共重合可能な少なくとも1種の他のモノマー80~15モル%とからなる共重合体であることが好ましい。より好ましくは、VdF25~80モル%と、VdFと共重合可能な少なくとも1種の他のモノマー75~20モル%とからなる共重合体である。 The VdF-based fluororubber is preferably a copolymer comprising 20 to 85 mol% of VdF and 80 to 15 mol% of at least one other monomer copolymerizable with VdF. More preferably, it is a copolymer comprising 25 to 80 mol% of VdF and 75 to 20 mol% of at least one other monomer copolymerizable with VdF.
 上記VdFと共重合可能な少なくとも1種の他のモノマーとしては、TFE、HFP、フルオロアルキルビニルエーテル、CTFE、トリフルオロエチレン、トリフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、ヘキサフルオロイソブテン、フッ化ビニル、一般式(1):CH=CFRf11(式中、Rf11は炭素数1~12の直鎖または分岐したフルオロアルキル基)で表されるフルオロモノマー、一般式(2):CH=CH-(CF-X21(式中、X21はHまたはFであり、nは3~10の整数である。)で表されるフルオロモノマー、架橋部位を与えるモノマーなどのモノマー;エチレン、プロピレン、アルキルビニルエーテルなどの非フッ素化モノマーがあげられる。これらをそれぞれ単独で、または、任意に組み合わせて用いることができる。これらのなかでも、TFE、HFP、フルオロアルキルビニルエーテルおよびCTFEからなる群より選択される少なくとも1種が好ましい。フルオロアルキルビニルエーテルとしては、CF=CF-ORf(式中、Rfは炭素数1~5のパーフルオロアルキル基を表す。)で表されるパーフルオロ(アルキルビニルエーテル)が好ましい。 Examples of the at least one other monomer copolymerizable with VdF include TFE, HFP, fluoroalkyl vinyl ether, CTFE, trifluoroethylene, trifluoropropylene, pentafluoropropylene, trifluorobutene, tetrafluoroisobutene, and hexafluoroisobutene. , Vinyl fluoride, a general formula (1): a fluoromonomer represented by CH 2 CFCFRf 11 (wherein Rf 11 is a linear or branched fluoroalkyl group having 1 to 12 carbon atoms), a general formula (2) : A fluoromonomer represented by CH 2 CHCH— (CF 2 ) n —X 21 (where X 21 is H or F, and n is an integer of 3 to 10), and a monomer that provides a crosslinking site Non-fluorinated monomers such as ethylene, propylene and alkyl vinyl ether And the like. These can be used alone or in any combination. Among these, at least one selected from the group consisting of TFE, HFP, fluoroalkyl vinyl ether and CTFE is preferred. As the fluoroalkyl vinyl ether, perfluoro (alkyl vinyl ether) represented by CF 2 CFCF—ORf 4 (where Rf 4 represents a perfluoroalkyl group having 1 to 5 carbon atoms) is preferable.
 架橋部位を与える単量体としては、たとえば、一般式(3):
 CX =CX-RfCHR3131 (3)
(式中、Xは、同じであっても異なっていてもよく、水素原子、フッ素原子または-CH、Rfは、フルオロアルキレン基、パーフルオロアルキレン基、フルオロポリオキシアルキレン基またはパーフルオロポリオキシアルキレン基、R31は、水素原子または-CH、X31は、ヨウ素原子または臭素原子である)で表されるヨウ素または臭素含有単量体、一般式(4):
 CF=CFO(CFCF(CF)O)(CF-X41  (4)
(式中、mは、0~5の整数、nは、1~3の整数、X41は、シアノ基、カルボキシル基、アルコキシカルボニル基、臭素原子である)で表される単量体などがあげられ、これらをそれぞれ単独で、または任意に組合わせて用いることができる。
Examples of the monomer that provides a crosslinking site include, for example, a compound represented by the following general formula (3):
CX 6 2 = CX 6 -Rf 5 CHR 31 X 31 (3)
(In the formula, X 6 may be the same or different, and a hydrogen atom, a fluorine atom or —CH 3 , Rf 5 represents a fluoroalkylene group, a perfluoroalkylene group, a fluoropolyoxyalkylene group or a perfluoroalkyl group. A polyoxyalkylene group, R 31 is a hydrogen atom or —CH 3 , and X 31 is an iodine atom or a bromine atom), iodine or bromine-containing monomer represented by general formula (4):
CF 2 CFCFO (CF 2 CF (CF 3 ) O) m (CF 2 ) n -X 41 (4)
(Wherein, m is an integer of 0 to 5, n is an integer of 1 to 3, and X 41 is a cyano group, a carboxyl group, an alkoxycarbonyl group, or a bromine atom). These can be used alone or in any combination.
 VdF系フッ素ゴムの具体例としては、VdF/HFP系ゴム、VdF/TFE/HFP系ゴム、VdF/CTFE系ゴム、VdF/CTFE/TFE系ゴム、VdF/一般式(1)で表されるフルオロモノマー系ゴム、VdF/一般式(1)で表されるフルオロモノマー/TFE系ゴム、VdF/PMVE系ゴム、VdF/PMVE/TFE系ゴム、VdF/PMVE/TFE/HFP系ゴムなどがあげられる。VdF/一般式(1)で表されるフルオロモノマー系ゴムとしては、VdF/CH=CFCF系ゴムおよびVdF/CH=CFCF/HFP系ゴムからなる群より選択される少なくとも1種が好ましく、VdF/一般式(1)で表されるフルオロモノマー/TFE系ゴムとしては、VdF/TFE/CH=CFCF系ゴムが好ましい。 Specific examples of the VdF-based fluororubber include VdF / HFP-based rubber, VdF / TFE / HFP-based rubber, VdF / CTFE-based rubber, VdF / CTFE / TFE-based rubber, and VdF / fluoro represented by the general formula (1). Examples include monomer-based rubber, VdF / fluoromonomer / TFE-based rubber represented by the general formula (1), VdF / PMVE-based rubber, VdF / PMVE / TFE-based rubber, and VdF / PMVE / TFE / HFP-based rubber. As the fluoromonomer rubber represented by VdF / general formula (1), at least one selected from the group consisting of VdF / CH 2 CFCFCF 3 rubber and VdF / CH 2 CFCFCF 3 / HFP rubber is used. VdF / TFE / CH 2 CFCFCF 3 rubber is preferably used as the VdF / fluoromonomer / TFE rubber represented by the general formula (1).
 VdF/CH=CFCF系ゴムは、VdF単位/CH=CFCF単位がモル比で、好ましくは40/60~99.5/0.5であり、より好ましくは50/50~85/15である。 The VdF / CH 2 CFCFCF 3 rubber has a VdF unit / CH 2 CFCFCF 3 unit molar ratio of preferably 40/60 to 99.5 / 0.5, more preferably 50/50 to 85 /. Fifteen.
 TFE/プロピレン系フッ素ゴムは、TFE単位/プロピレン単位がモル比で、好ましくは45/55~70/30である。 The TFE / propylene-based fluororubber has a molar ratio of TFE unit / propylene unit of preferably 45/55 to 70/30.
 VdF/HFP系フッ素ゴムは、VdF単位/HFP単位がモル比で80/20~65/35であることが好ましい。 The VdF / HFP fluororubber preferably has a VdF unit / HFP unit molar ratio of 80/20 to 65/35.
 VdF/TFE/HFP系フッ素ゴムは、VdF単位/TFE単位/HFP単位がモル比で(25~65)/(15~45)/(20~40)であることが好ましい。 The VdF / TFE / HFP fluororubber preferably has a molar ratio of VdF unit / TFE unit / HFP unit of (25 to 65) / (15 to 45) / (20 to 40).
 上述したフッ素ゴム(b)の各単量体単位の含有量は、NMR、FT-IR、元素分析、蛍光X線分析を単量体の種類によって適宜組み合わせることで算出できる。 含有 The content of each monomer unit of the above-mentioned fluororubber (b) can be calculated by appropriately combining NMR, FT-IR, elemental analysis, and fluorescent X-ray analysis according to the type of monomer.
ポリアミン化合物(c)
 本開示の熱可塑性樹脂組成物は、熱分解温度が210℃以上であるポリアミン化合物(c)を含む。ポリアミン化合物(c)とは、1つの分子中に2つ以上のアミノ基を有する化合物である。ポリアミン化合物(c)は、フッ素ゴム(b)の架橋剤として働くのみならず、フッ素樹脂(A)の官能基とも反応することで、燃料バリア性を大きく損なうことなく、引張弾性率を低減させた熱可塑性樹脂組成物が得られるものと推測される。
Polyamine compound (c)
The thermoplastic resin composition of the present disclosure includes a polyamine compound (c) having a thermal decomposition temperature of 210 ° C or higher. The polyamine compound (c) is a compound having two or more amino groups in one molecule. The polyamine compound (c) not only functions as a crosslinking agent for the fluororubber (b), but also reacts with the functional group of the fluororesin (A), thereby reducing the tensile elastic modulus without greatly impairing the fuel barrier property. It is estimated that the obtained thermoplastic resin composition is obtained.
 熱分解温度が低すぎるポリアミン化合物を用いると、熱可塑性樹脂組成物の製造工程において一部が分解するため、フッ素ゴム(b)の架橋が十分に進行しないばかりでなく、燃料バリア性を大きく損なうことなく、引張弾性率を低減させた熱可塑性樹脂組成物を得ることができない。ポリアミン化合物(c)の熱分解温度は、210℃以上であり、好ましくは250℃以上であり、より好ましくは275℃以上である。熱分解温度の上限は特に限定されないが、通常400℃以下である。 When a polyamine compound having a thermal decomposition temperature that is too low is used, a part of the polyamine compound is decomposed in the production process of the thermoplastic resin composition, so that not only does the crosslinking of the fluororubber (b) not sufficiently proceed, but also the fuel barrier property is greatly impaired. Thus, a thermoplastic resin composition having a reduced tensile modulus cannot be obtained. The thermal decomposition temperature of the polyamine compound (c) is 210 ° C. or higher, preferably 250 ° C. or higher, and more preferably 275 ° C. or higher. The upper limit of the thermal decomposition temperature is not particularly limited, but is usually 400 ° C. or lower.
 上記熱分解温度とは、ポリアミン化合物の熱重量分析[TG](昇温速度10℃/min、乾燥空気下)において、重量減少量が初期重量の1%に到達した時点の温度である。 The above-mentioned thermal decomposition temperature is the temperature at which the weight loss reaches 1% of the initial weight in thermogravimetric analysis [TG] of the polyamine compound (heating rate 10 ° C / min, under dry air).
 ポリアミン化合物(c)としては、具体的には、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(以下、BAPPとする)、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン(以下、6FBAPPとする)、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(以下、BAPSとする)、4,4’-ジアミノジフェニルスルホン(以下、DDSとする)、3,3’-ジアミノジフェニルスルホン(以下、3,3’-DASとする)、4,4’-[(1,3-フェニレン)ビス(ジメチルメチレン)]ビスアニリン(以下、ビスアニリン-Mとする)、4,4’-[(1,4-フェニレン)ビス(ジメチルメチレン)]ビスアニリン(以下、ビスアニリン-Pとする)、1,4-ビス(4-アミノフェノキシ)-2-フェニルベンゼン(以下、P-TPE-Qとする)、1,4-ビス(4’-アミノフェノキシ)-2,3,5-トリメチルベンゼン(以下、TMBABとする)、1,3-ビス(4-アミノフェノキシ)ベンゼン(以下、TPE-Rとする)、トリス(4-アミノフェニル)メタン、テトラキス(4-アミノフェニル)メタンなどが挙げられる。これらのポリアミン化合物(c)は単独で用いてもよく、また他の構造を有するポリアミン化合物(c)と任意に組み合わせて用いてもよい。その中でも、燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れる熱可塑性樹脂組成物が得られることから、BAPP、6FBAPP、BAPS、DDS、3,3’-DAS、P-TPE-Q、ビスアニリン-P、TMBAB、TPE-Rが好ましく、BAPP、6FBAPP、BAPS、DDS、3,3’-DAS、P-TPE-Qがより好ましく、BAPPがさらに好ましい。 Specific examples of the polyamine compound (c) include 2,2-bis [4- (4-aminophenoxy) phenyl] propane (hereinafter, referred to as BAPP) and 2,2-bis [4- (4-amino Phenoxy) phenyl] hexafluoropropane (hereinafter referred to as 6FBAPP), bis [4- (4-aminophenoxy) phenyl] sulfone (hereinafter referred to as BAPS), 4,4'-diaminodiphenylsulfone (hereinafter referred to as DDS) ), 3,3'-diaminodiphenylsulfone (hereinafter referred to as 3,3'-DAS), 4,4 '-[(1,3-phenylene) bis (dimethylmethylene)] bisaniline (hereinafter referred to as bisaniline-M) 4,4 ′-[(1,4-phenylene) bis (dimethylmethylene)] bisaniline (hereinafter referred to as bisaniline-P), 1,4-bi (4-aminophenoxy) -2-phenylbenzene (hereinafter, referred to as P-TPE-Q), 1,4-bis (4'-aminophenoxy) -2,3,5-trimethylbenzene (hereinafter, referred to as TMBAB) ), 1,3-bis (4-aminophenoxy) benzene (hereinafter referred to as TPE-R), tris (4-aminophenyl) methane, tetrakis (4-aminophenyl) methane and the like. These polyamine compounds (c) may be used alone or in any combination with the polyamine compound (c) having another structure. Among them, a thermoplastic resin composition having a more excellent balance of fuel barrier properties, tensile elastic modulus and compression set can be obtained, so that BAPP, 6FBAPP, BAPS, DDS, 3,3′-DAS, P-TPE-Q , Bisaniline-P, TMBAB, and TPE-R are preferred, BAPP, 6FBAPP, BAPS, DDS, 3,3'-DAS, and P-TPE-Q are more preferred, and BAPP is even more preferred.
 ポリアミン化合物(c)の配合量としては、フッ素ゴム(b)100質量部に対して、0.1~10質量部であることが好ましい。配合量が少なすぎると、フッ素ゴム(b)の架橋反応ならびにフッ素樹脂(A)の官能基との反応が十分に進行せず、燃料バリア性、引張弾性率および圧縮永久歪みのバランスに優れる熱可塑性樹脂組成物が得られないおそれがある。また、配合量が多すぎると、ポリアミン化合物(c)の分散が不十分となり、発泡などの成形不良発生や燃料バリア性低下のおそれがある。ポリアミン化合物(c)の配合量は、より好ましくは0.5~5質量部であり、さらに好ましくは1~5質量部である。 The compounding amount of the polyamine compound (c) is preferably 0.1 to 10 parts by mass based on 100 parts by mass of the fluororubber (b). If the compounding amount is too small, the crosslinking reaction of the fluororubber (b) and the reaction with the functional group of the fluororesin (A) do not sufficiently proceed, and the thermal barrier property, the tensile elastic modulus, and the balance of compression set are excellent. There is a possibility that a plastic resin composition cannot be obtained. On the other hand, if the compounding amount is too large, the dispersion of the polyamine compound (c) becomes insufficient, and there is a possibility that molding defects such as foaming may occur and fuel barrier properties may decrease. The blending amount of the polyamine compound (c) is more preferably 0.5 to 5 parts by mass, and still more preferably 1 to 5 parts by mass.
 また、本開示の熱可塑性樹脂組成物は、フッ素ゴム(b)100質量部に対してポリオール架橋剤やポリヒドロキシ化合物が1質量部以下であることが好ましい。ポリオール架橋剤やポリヒドロキシ化合物が多すぎると、ポリアミン化合物(c)によるフッ素ゴム(b)の架橋反応ならびにフッ素樹脂(A)の官能基との反応を阻害し、燃料バリア性、引張弾性率および圧縮永久歪みのバランスに優れる熱可塑性樹脂組成物が得られないおそれがある。ポリオール架橋剤やポリヒドロキシ化合物の含有量は、フッ素ゴム(b)100質量部に対して、0.1質量部以下がより好ましく、全く含有しないことがさらに好ましい。 は In addition, in the thermoplastic resin composition of the present disclosure, the polyol crosslinking agent or the polyhydroxy compound is preferably 1 part by mass or less based on 100 parts by mass of the fluororubber (b). If the amount of the polyol crosslinking agent or the polyhydroxy compound is too large, the crosslinking reaction of the fluororubber (b) by the polyamine compound (c) and the reaction with the functional group of the fluororesin (A) are inhibited, and the fuel barrier property, the tensile elastic modulus and There is a possibility that a thermoplastic resin composition having an excellent balance of compression set may not be obtained. The content of the polyol crosslinking agent or the polyhydroxy compound is more preferably 0.1 part by mass or less based on 100 parts by mass of the fluororubber (b), and further preferably it is not contained at all.
架橋促進剤(d)
 ポリアミン化合物(c)と共に用いられる架橋促進剤(d)としては、従来はポリオール架橋系の架橋を促進するために用いられてきた架橋促進剤を用いることができる。
Crosslinking accelerator (d)
As the crosslinking accelerator (d) used together with the polyamine compound (c), a crosslinking accelerator conventionally used for promoting crosslinking of a polyol crosslinking system can be used.
 具体的には、架橋促進剤(d)として、オニウム化合物を用いることができる。オニウム化合物としては特に限定されず、たとえば、第4級アンモニウム塩などのアンモニウム化合物、第4級ホスホニウム塩などのホスホニウム化合物、オキソニウム化合物、スルホニウム化合物、環状アミン、1官能性アミン化合物などがあげられ、これらの中でも第4級アンモニウム塩または第4級ホスホニウム塩が好ましく、第4級アンモニウム塩がより好ましい。 Specifically, an onium compound can be used as the crosslinking accelerator (d). The onium compound is not particularly limited, and examples thereof include ammonium compounds such as quaternary ammonium salts, phosphonium compounds such as quaternary phosphonium salts, oxonium compounds, sulfonium compounds, cyclic amines, and monofunctional amine compounds. Among these, a quaternary ammonium salt or a quaternary phosphonium salt is preferable, and a quaternary ammonium salt is more preferable.
 第4級アンモニウム塩としては特に限定されず、たとえば、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムアイオダイド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムメチルスルフェート、8-エチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド、8-プロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド、8-ドデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-ドデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-エイコシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-テトラコシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-ベンジル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド(以下、DBU-Bとする)、8-ベンジル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-フェネチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-(3-フェニルプロピル)-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリドなどがあげられる。これらの中でも、架橋性、架橋物の物性の点から、DBU-Bが好ましい。 The quaternary ammonium salt is not particularly limited. For example, 8-methyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8-methyl-1,8-diazabicyclo [5. 4.0] -7-undecenium iodide, 8-methyl-1,8-diazabicyclo [5.4.0] -7-undecenium hydroxide, 8-methyl-1,8-diazabicyclo [5 .4.0] -7-undecenium methyl sulfate, 8-ethyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide, 8-propyl-1,8-diazabicyclo [5 .4.0] -7-undecenium bromide, 8-dodecyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8-dodecyl-1,8-diazabicyclo [ .4.0] -7-undecenium hydroxide, 8-eicosyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8-tetracosyl-1,8-diazabicyclo [5 .4.0] -7-undecenium chloride, 8-benzyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride (hereinafter referred to as DBU-B), 8-benzyl- 1,8-diazabicyclo [5.4.0] -7-undecenium hydroxide, 8-phenethyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8- (3 -Phenylpropyl) -1,8-diazabicyclo [5.4.0] -7-undecenium chloride and the like. Among these, DBU-B is preferable from the viewpoint of crosslinkability and physical properties of the crosslinked product.
 また、第4級ホスホニウム塩としては特に限定されず、たとえば、テトラブチルホスホニウムクロリド、ベンジルトリフェニルホスホニウムクロリド(以下、BTPPCとする)、ベンジルトリメチルホスホニウムクロリド、ベンジルトリブチルホスホニウムクロリド、トリブチルアリルホスホニウムクロリド、トリブチル-2-メトキシプロピルホスホニウムクロリド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロリド、メチルトリフェニルホスホニウムブロミド、アリルトリフェニルホスホニウムブロミド、(ブロモメチル)トリフェニルブロミド、テトラフェニルホスホニウムブロミドなどをあげることができ、これらの中でも、架橋性、架橋物の物性の点からBTPPCが好ましい。 The quaternary phosphonium salt is not particularly limited, and examples thereof include tetrabutylphosphonium chloride, benzyltriphenylphosphonium chloride (hereinafter, referred to as BTPPC), benzyltrimethylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl -2-methoxypropylphosphonium chloride, benzylphenyl (dimethylamino) phosphonium chloride, methyltriphenylphosphonium bromide, allyltriphenylphosphonium bromide, (bromomethyl) triphenylbromide, tetraphenylphosphonium bromide and the like. BTPPC is preferred from the viewpoint of crosslinkability and physical properties of the crosslinked product.
 また、架橋促進剤として、特開平11-147891号公報に開示されている塩素フリー架橋促進剤を用いることもできる。 塩 素 Further, as a crosslinking accelerator, a chlorine-free crosslinking accelerator disclosed in JP-A-11-147891 can be used.
 架橋促進剤(d)の配合量としては、フッ素ゴム(b)100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.1~3質量部であり、さらに好ましくは0.1~1.0質量部である。架橋促進剤(d)が少なすぎると、ポリアミン化合物(c)によるフッ素ゴム(b)の架橋反応ならびにフッ素樹脂(A)の官能基との反応が十分に進行せず、燃料バリア性、引張弾性率および圧縮永久歪みのバランスに優れる熱可塑性樹脂組成物が得られないおそれがある。また、配合量が多すぎると、分散不良が生じ、やはり燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れる熱可塑性樹脂組成物が得られないおそれがある。 The compounding amount of the crosslinking accelerator (d) is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 3 parts by mass, based on 100 parts by mass of the fluororubber (b). Preferably it is 0.1 to 1.0 part by mass. If the amount of the crosslinking accelerator (d) is too small, the crosslinking reaction of the fluororubber (b) by the polyamine compound (c) and the reaction with the functional group of the fluororesin (A) do not sufficiently proceed, and the fuel barrier property and the tensile elasticity There is a possibility that a thermoplastic resin composition having an excellent balance between the modulus and the compression set may not be obtained. On the other hand, if the amount is too large, poor dispersion occurs, and there is a possibility that a thermoplastic resin composition which is still more excellent in balance with the fuel barrier property, tensile modulus and compression set may not be obtained.
 架橋フッ素ゴム(B)は、燃料バリア性、引張弾性率および圧縮永久歪みのバランスにより一層優れる熱可塑性樹脂組成物が得られることから、ポリアミン化合物(c)および架橋促進剤(d)に加えて、受酸剤と共に、動的に架橋処理したものであることも好ましい。 The crosslinked fluororubber (B) can be used in addition to the polyamine compound (c) and the crosslinking accelerator (d) because a thermoplastic resin composition having a better balance between fuel barrier properties, tensile elastic modulus and compression set can be obtained. It is also preferred that the resin is dynamically cross-linked with an acid acceptor.
 受酸剤としては、酸化マグネシウム、水酸化マグネシウム、水酸化バリウム、炭酸マグネシウム、炭酸バリウム、生石灰、消石灰、炭酸カルシウム、ケイ酸カルシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、フタル酸カルシウム、亜リン酸カルシウム、酸化錫、塩基性亜リン酸錫を挙げることができ、なかでも、酸化マグネシウムが好ましい。 As the acid acceptor, magnesium oxide, magnesium hydroxide, barium hydroxide, magnesium carbonate, barium carbonate, quicklime, slaked lime, calcium carbonate, calcium silicate, calcium stearate, zinc stearate, calcium phthalate, calcium phosphite, tin oxide And basic tin phosphite, and among them, magnesium oxide is preferable.
 受酸剤の配合量としては、フッ素ゴム(b)100質量部に対して、好ましくは0.01~10質量部であり、より好ましくは0.1~8質量部であり、さらに好ましくは0.5~6質量部である。 The compounding amount of the acid acceptor is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 8 parts by mass, and further preferably 0 to 10 parts by mass with respect to 100 parts by mass of the fluororubber (b). 0.5 to 6 parts by mass.
 本開示の熱可塑性樹脂組成物は、静電荷が蓄積して引火することを防止するために、導電性を有することも好ましい。この観点から、本開示の熱可塑性樹脂組成物は、カーボンブラック、アセチレンブラックなどの導電性材料を含むことが好ましい。導電性材料は、本開示の熱可塑性樹脂組成物に対して、好ましくは0.01~20質量%であり、より好ましくは1~18質量%であり、さらに好ましくは5~15質量%である。 熱 The thermoplastic resin composition of the present disclosure also preferably has conductivity in order to prevent accumulation of static charge and ignition. From this viewpoint, the thermoplastic resin composition of the present disclosure preferably contains a conductive material such as carbon black and acetylene black. The conductive material is preferably 0.01 to 20% by mass, more preferably 1 to 18% by mass, and still more preferably 5 to 15% by mass, based on the thermoplastic resin composition of the present disclosure. .
 また、本開示の熱可塑性樹脂組成物には、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、ポリウレタンなどの他の重合体、タルク、セライト、クレー、酸化チタン、カーボンブラック、硫酸バリウムなどの無機充填材、顔料、難燃剤、滑剤、光安定剤、耐候安定剤、帯電防止剤、紫外線吸収剤、酸化防止剤、離型剤、発泡剤、香料、オイル、柔軟化剤などを、所期の効果に影響を及ぼさない範囲で添加することができる。 Further, the thermoplastic resin composition of the present disclosure includes other polymers such as polyethylene, polypropylene, polyamide, polyester, and polyurethane; inorganic fillers such as talc, celite, clay, titanium oxide, carbon black, and barium sulfate; and pigments. , Flame retardants, lubricants, light stabilizers, weathering stabilizers, antistatic agents, UV absorbers, antioxidants, mold release agents, foaming agents, fragrances, oils, softeners, etc. It can be added in a range that does not affect.
 本開示は、上記の熱可塑性樹脂組成物の製造方法であって、フッ素樹脂(A)の存在下、フッ素樹脂(A)の溶融条件下にて、フッ素ゴム(b)を、熱分解温度が210℃以上であるポリアミン化合物(c)および架橋促進剤(d)と共に、動的に架橋処理する工程を含む熱可塑性樹脂組成物の製造方法にも関する。 The present disclosure relates to a method for producing the above-mentioned thermoplastic resin composition, wherein a fluororubber (b) is thermally decomposed at a melting temperature of the fluororesin (A) in the presence of the fluororesin (A). The present invention also relates to a method for producing a thermoplastic resin composition including a step of dynamically cross-linking together with a polyamine compound (c) having a temperature of 210 ° C. or higher and a cross-linking accelerator (d).
 上記の工程は、また、フッ素ゴム(b)および架橋促進剤(d)を混練して、フッ素ゴム組成物を得る工程、フッ素樹脂(A)の融点以上の温度で、フッ素樹脂(A)およびポリアミン化合物(c)を混練して、フッ素樹脂組成物を得る工程、ならびに、該フッ素樹脂組成物および前記フッ素ゴム組成物を、フッ素樹脂(A)の融点以上の温度で、混練する工程を含むことができる。 The above-mentioned step is also a step of kneading the fluororubber (b) and the crosslinking accelerator (d) to obtain a fluororubber composition, wherein the fluororesin (A) and the fluororesin (A) Kneading the polyamine compound (c) to obtain a fluororesin composition, and kneading the fluororesin composition and the fluororubber composition at a temperature equal to or higher than the melting point of the fluororesin (A). be able to.
 上記の工程は、また、フッ素ゴム(b)および架橋促進剤(d)を混練して、フッ素ゴム組成物を得る工程、フッ素樹脂(A)の融点以上の温度で、フッ素樹脂(A)および前記フッ素ゴム組成物を混練して、熱可塑性樹脂組成物中間体を得る工程、ならびに、該熱可塑性樹脂組成物中間体およびポリアミン化合物(c)を、フッ素樹脂(A)の融点以上の温度で、混練する工程を含むことができる。 The above-mentioned step is also a step of kneading the fluororubber (b) and the crosslinking accelerator (d) to obtain a fluororubber composition, wherein the fluororesin (A) and the fluororesin (A) A step of kneading the fluororubber composition to obtain a thermoplastic resin composition intermediate, and the step of mixing the thermoplastic resin composition intermediate and the polyamine compound (c) at a temperature not lower than the melting point of the fluororesin (A). And a step of kneading.
 上記の工程は、また、フッ素ゴム(b)、ポリアミン化合物(c)および架橋促進剤(d)を混練して、フッ素ゴム組成物を得る工程、ならびに、フッ素樹脂(A)の融点以上の温度で、該フッ素ゴム組成物およびフッ素樹脂(A)を混練する工程を含むことができる。このとき、必要に応じて、ポリアミン化合物(c)と架橋促進剤(d)を一旦溶融させ融点降下を起こさせた固溶体を用いてもよい。 The above-mentioned step is also a step of kneading the fluororubber (b), the polyamine compound (c) and the crosslinking accelerator (d) to obtain a fluororubber composition, and a temperature higher than the melting point of the fluororesin (A). And a step of kneading the fluororubber composition and the fluororesin (A). At this time, if necessary, a solid solution in which the polyamine compound (c) and the crosslinking accelerator (d) are once melted to lower the melting point may be used.
 いずれの工程においても、最後の混練工程において、フッ素ゴム(b)が動的に架橋され、フッ素樹脂(A)および架橋フッ素ゴム(B)を含む熱可塑性樹脂組成物を得ることができる。 In any of the steps, in the last kneading step, the fluororubber (b) is dynamically crosslinked, and a thermoplastic resin composition containing the fluororesin (A) and the crosslinked fluororubber (B) can be obtained.
 上記のいずれの混練にも、バンバリーミキサー、加圧ニーダー、押出機などを用いることができる。 に も For any of the above kneading, a Banbury mixer, a pressure kneader, an extruder, or the like can be used.
 成形品
 本開示の成形品は、上記の熱可塑性樹脂組成物から形成される。上記成形品の形状としては、特に限定されず、チューブ、ホース、シート、フィルムなどがあげられる。
Molded Article The molded article of the present disclosure is formed from the above-described thermoplastic resin composition. The shape of the molded article is not particularly limited, and examples include a tube, a hose, a sheet, and a film.
 上記成形品は、一般の成形加工方法や成形加工装置などを用いて、製造することができる。成形加工方法としては、例えば、射出成形、押出成形、圧縮成形、ブロー成形、カレンダー成形、真空成形などの任意の方法を採用することができる。 The above-mentioned molded product can be manufactured by using a general molding method or molding apparatus. As a molding method, for example, any method such as injection molding, extrusion molding, compression molding, blow molding, calender molding, and vacuum molding can be adopted.
 また、上記熱可塑性樹脂組成物の表面に付着している水分やオリゴマー等を飛ばし、外観不良なく安定した成形品を得るために、上記成形品を製造する方法は、上記熱可塑性樹脂組成物を成形する工程の前に、上記熱可塑性樹脂組成物を加熱乾燥する工程を含むことが好ましい。加熱乾燥の温度は、80℃以上であることが好ましく、110℃以上であることがより好ましく、130℃以上であることがさらに好ましく、150℃以上であることが特に好ましい。加熱乾燥の温度は、フッ素樹脂(A)の融点以下であることが好ましく、230℃以下であることがより好ましく、210℃以下であることがさらに好ましく、200℃以下であることが特に好ましい。 Further, the method of manufacturing the molded article, in order to fly out moisture and oligomers and the like adhering to the surface of the thermoplastic resin composition and obtain a stable molded article without poor appearance, the method of manufacturing the molded article includes the above-mentioned thermoplastic resin composition. It is preferable to include a step of heating and drying the thermoplastic resin composition before the step of molding. The heating and drying temperature is preferably 80 ° C. or higher, more preferably 110 ° C. or higher, even more preferably 130 ° C. or higher, and particularly preferably 150 ° C. or higher. The heating and drying temperature is preferably not more than the melting point of the fluororesin (A), more preferably not more than 230 ° C, further preferably not more than 210 ° C, and particularly preferably not more than 200 ° C.
 上記成形品を製造した後、得られた上記成形品を加熱することにより、上記成形品中の揮発成分を除去することもできる。 揮 発 After the molded article is manufactured, the obtained molded article can be heated to remove volatile components in the molded article.
 積層体
 本開示の積層体は、上記の熱可塑性樹脂組成物から形成される熱可塑性樹脂層(W)と、エラストマー組成物から形成されるエラストマー層(X)を含む。
Laminate The laminate of the present disclosure includes a thermoplastic resin layer (W) formed from the above thermoplastic resin composition and an elastomer layer (X) formed from the elastomer composition.
 上記エラストマー組成物は、エラストマーを含むものであり、エラストマーとしては、アクリロニトリル-ブタジエンゴム、水素添加アクリロニトリル-ブタジエンゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、アクリロニトリル-ブタジエンゴムとアクリルゴムとのブレンドゴム、塩素化ポリエチレン、フッ素ゴム、エピクロロヒドリンゴム、エチレン-プロピレンゴム、クロロスルホン化ポリエチレンゴム、アクリルゴム、シリコーンゴム、ブチルゴム、スチレン-ブタジエンゴム、エチレン-酢酸ビニル共重合体、α,β-不飽和ニトリル-共役ジエン共重合体ゴム、α,β-不飽和ニトリル-共役ジエン共重合体ゴムの水素化物などがあげられる。 The elastomer composition contains an elastomer. Examples of the elastomer include acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, acrylonitrile-butadiene rubber and acrylic rubber. Blended rubber, chlorinated polyethylene, fluorine rubber, epichlorohydrin rubber, ethylene-propylene rubber, chlorosulfonated polyethylene rubber, acrylic rubber, silicone rubber, butyl rubber, styrene-butadiene rubber, ethylene-vinyl acetate copolymer, α, Examples include β-unsaturated nitrile-conjugated diene copolymer rubber and hydrides of α, β-unsaturated nitrile-conjugated diene copolymer rubber.
 上記エラストマー組成物は、アクリロニトリル-ブタジエンゴム、水素添加アクリロニトリル-ブタジエンゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、アクリロニトリル-ブタジエンゴムとアクリルゴムとのブレンドゴム、塩素化ポリエチレン、フッ素ゴム、エピクロロヒドリンゴム、エチレン-プロピレンゴム、クロロスルホン化ポリエチレンゴム、シリコーンゴムおよびアクリルゴムからなる群より選択される少なくとも1種のエラストマーを含有することが好ましい。なかでも、上記エラストマー組成物は、耐熱性、耐油性、耐候性、押し出し成型性の点から、アクリロニトリル-ブタジエンゴム、水素添加アクリロニトリル-ブタジエンゴム、フッ素ゴムおよびエピクロロヒドリンゴムからなる群より選択される少なくとも1種のエラストマーを含有することがより好ましく、フッ素ゴムを含有することがさらに好ましい。 The above elastomer composition includes acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, blend rubber of acrylonitrile-butadiene rubber and acrylic rubber, chlorinated polyethylene, fluorine rubber, It is preferable to contain at least one elastomer selected from the group consisting of epichlorohydrin rubber, ethylene-propylene rubber, chlorosulfonated polyethylene rubber, silicone rubber and acrylic rubber. Above all, the elastomer composition is selected from the group consisting of acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, fluorine rubber and epichlorohydrin rubber in terms of heat resistance, oil resistance, weather resistance and extrusion moldability. More preferably, it contains at least one kind of elastomer, and more preferably, it contains fluorine rubber.
 上記エラストマー組成物に含有されるフッ素ゴムとしては、VdF系フッ素ゴム、TFE/プロピレン系フッ素ゴム、TFE/プロピレン/VdF系フッ素ゴム、エチレン/HFP系フッ素ゴム、エチレン/HFP/VdF系フッ素ゴム、エチレン/HFP/TFE系フッ素ゴムなどがあげられる。なかでも、VdF系フッ素ゴムおよびTFE/プロピレン系フッ素ゴムからなる群より選択される少なくとも1種であることが好ましく、VdF/HFP系フッ素ゴムおよびVdF/TFE/HFP系フッ素ゴムからなる群より選択される少なくとも1種であることがより好ましい。VdF/TFE/HFP系フッ素ゴムは、VdF単位/TFE単位/HFP単位がモル比で(25~65)/(15~45)/(20~40)であることが好ましい。 Examples of the fluorine rubber contained in the elastomer composition include VdF fluorine rubber, TFE / propylene fluorine rubber, TFE / propylene / VdF fluorine rubber, ethylene / HFP fluorine rubber, ethylene / HFP / VdF fluorine rubber, Ethylene / HFP / TFE-based fluororubber and the like can be mentioned. Among them, at least one selected from the group consisting of VdF-based fluororubber and TFE / propylene-based fluororubber is preferable, and selected from the group consisting of VdF / HFP-based fluororubber and VdF / TFE / HFP-based fluororubber. It is more preferable that at least one of them is used. The VdF / TFE / HFP fluororubber preferably has a molar ratio of VdF unit / TFE unit / HFP unit of (25 to 65) / (15 to 45) / (20 to 40).
 上記エラストマー組成物は、熱可塑性樹脂層(W)とエラストマー層(X)との接着力向上の点から、オニウム塩、アミン化合物およびエポキシ樹脂からなる群より選ばれる少なくとも1種の化合物を含むことが好ましい。 The elastomer composition contains at least one compound selected from the group consisting of an onium salt, an amine compound, and an epoxy resin from the viewpoint of improving the adhesive strength between the thermoplastic resin layer (W) and the elastomer layer (X). Is preferred.
 オニウム塩としては特に限定されず、例えば、第4級アンモニウム塩、第4級ホスホニウム塩、オキソニウム塩、スルホニウム塩、環状アミン、1官能性アミン化合物などがあげられ、これらの中でも第4級アンモニウム塩、第4級ホスホニウム塩が好ましい。 The onium salt is not particularly limited, and includes, for example, quaternary ammonium salts, quaternary phosphonium salts, oxonium salts, sulfonium salts, cyclic amines, and monofunctional amine compounds. And quaternary phosphonium salts.
 第4級アンモニウム塩としては特に限定されず、例えば、式(5): と し て The quaternary ammonium salt is not particularly limited, and may be, for example, a compound represented by the formula (5):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、Rは水素原子、または炭素数1~30の1価の有機基であり、Xは1価の陰イオンである)で示される化合物、式(6): (Wherein R is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms, and X is a monovalent anion), a compound represented by the formula (6):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Rは水素原子、または炭素数1~30の1価の有機基であり、Xは1価の陰イオンである)で示される化合物、式(7): (Wherein R is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms, and X is a monovalent anion), a compound represented by the formula (7):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、3つのRは、同じであっても異なっていてもよく、水素原子、または炭素数1~30の1価の有機基であり、Xは1価の陰イオンである)で示される化合物、式(8): (Wherein three Rs may be the same or different and are a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms, and X is a monovalent anion) A compound represented by the formula (8):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、nは、0~50の整数である)で示される化合物、および、式(9): (Wherein n is an integer of 0 to 50), and a compound represented by the formula (9):
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
で示される化合物などがあげられる。 And the like.
 式(5)中のRは、水素原子、または炭素数1~30の1価の有機基である。炭素数1~30の1価の有機基としては、特に限定されるものではないが、脂肪族炭化水素基、ベンジル基、フェネチル基、または3-フェニルプロピル基などが挙げられる。式(5)のXとしては、ハロゲンイオン(F、Cl、Br、I)、OH、RO、HCOO、RCOO、C、ROSO 、RSO (Rは1価の有機基)などが挙げられる。式(5)の化合物としては、具体的には、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムアイオダイド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-メチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムメチルスルフェート、8-エチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド、8-プロピル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムブロミド、8-ドデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-ドデシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-エイコシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-テトラコシル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、DBU-B、8-ベンジル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムハイドロキサイド、8-フェネチル-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、8-(3-フェニルプロピル)-1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロリド、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムフタラート、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムトシラート、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムフェノラート、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムナフトエート、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムオクタノエート、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムオレエート、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムホルメート、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムクロライドなどが挙げられる。 R in the formula (5) is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms. Examples of the monovalent organic group having 1 to 30 carbon atoms include, but are not particularly limited to, an aliphatic hydrocarbon group, a benzyl group, a phenethyl group, and a 3-phenylpropyl group. In the formula (5), X represents a halogen ion (F , Cl , Br , I ), OH , RO , HCOO , RCOO , C 6 H 5 O , ROSO 3 , RSO 3 - (R is a monovalent organic group). As the compound of the formula (5), specifically, 8-methyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8-methyl-1,8-diazabicyclo [5. 4.0] -7-undecenium iodide, 8-methyl-1,8-diazabicyclo [5.4.0] -7-undecenium hydroxide, 8-methyl-1,8-diazabicyclo [5 .4.0] -7-undecenium methyl sulfate, 8-ethyl-1,8-diazabicyclo [5.4.0] -7-undecenium bromide, 8-propyl-1,8-diazabicyclo [5 .4.0] -7-undecenium bromide, 8-dodecyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8-dodecyl-1,8-diazabicyclo [5.4] .0] -7- Ndecenium hydroxide, 8-eicosyl-1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 8-tetracosyl-1,8-diazabicyclo [5.4.0] -7 -Undecenium chloride, DBU-B, 8-benzyl-1,8-diazabicyclo [5.4.0] -7-undecenium hydroxide, 8-phenethyl-1,8-diazabicyclo [5.4. 0] -7-undecenium chloride, 8- (3-phenylpropyl) -1,8-diazabicyclo [5.4.0] -7-undecenium chloride, 1,8-diazabicyclo [5.4.0] ] -7-Undecenium phthalate, 1,8-diazabicyclo [5.4.0] -7-undecenium tosylate, 1,8-diazabicyclo [5.4.0] -7-undecenium Phenolate, 1,8-diazabicyclo [5.4.0] -7-undecenium naphthoate, 1,8-diazabicyclo [5.4.0] -7-undecenium octanoate, 1,8-diazabicyclo [5.4.0] -7-undecenium oleate, 1,8-diazabicyclo [5.4.0] -7-undecenium formate, 1,8-diazabicyclo [5.4.0]- 7-undecenium chloride and the like.
 式(6)中のRは、水素原子、または炭素数1~30の1価の有機基である。炭素数1~30の1価の有機基としては、特に限定されるものではないが、脂肪族炭化水素基、ベンジル基などが挙げられる。式(6)中のXとしては、ハロゲンイオン(F、Cl、Br、I)、HCO 、OH、RO、HCOO、RCOO、C、ROSO 、RSO (Rは1価の有機基)などが挙げられる。式(6)の化合物としては、具体的には、1,8-ジアザビシクロ[4.3.0]-5-ノネニウムフタラート、1,8-ジアザビシクロ[4.3.0]-5-ノネニウムトシラート、1,8-ジアザビシクロ[4.3.0]-5-ノネニウムフェノラート、1,8-ジアザビシクロ[4.3.0]-5-ノネニウムナフトエート、1,8-ジアザビシクロ[4.3.0]-5-ノネニウムオクタノエート、1,8-ジアザビシクロ[4.3.0]-5-ノネニウムオレエート、1,8-ジアザビシクロ[4.3.0]-5-ノネニウムホルメート、1,8-ジアザビシクロ[4.3.0]-5-ノネニウムクロライドなどが挙げられる。 R in the formula (6) is a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms. Examples of the monovalent organic group having 1 to 30 carbon atoms include, but are not particularly limited to, an aliphatic hydrocarbon group and a benzyl group. In the formula (6), X represents a halogen ion (F , Cl , Br , I ), HCO 3 , OH , RO , HCOO , RCOO , C 6 H 5 O , ROSO 3 , RSO 3 (R is a monovalent organic group) and the like. Specific examples of the compound of the formula (6) include 1,8-diazabicyclo [4.3.0] -5-nonenium phthalate and 1,8-diazabicyclo [4.3.0] -5-none. 1,8-diazabicyclo [4.3.0] -5-nonenium phenolate, 1,8-diazabicyclo [4.3.0] -5-nonenium naphthoate, 1,8-diazabicyclo [ 4.3.0] -5-nonenium octanoate, 1,8-diazabicyclo [4.3.0] -5-nonenium oleate, 1,8-diazabicyclo [4.3.0] -5- Nonenium formate, 1,8-diazabicyclo [4.3.0] -5-nonenium chloride and the like can be mentioned.
 式(7)中の、3つのRは、それぞれ同じかまたは異なり、水素原子、または炭素数1~30の1価の有機基である。炭素数1~30の1価の有機基としては、特に限定されるものではないが、脂肪族炭化水素基、フェニル基などのアリール基、またはベンジル基があげられる。具体的には、例えば、-CH、-C、-Cなどの炭素数1~30のアルキル基;-CX71 、-C71 、-CH71、-CHCX71 、-CH71 などの炭素数1~30のハロゲン原子含有アルキル基(X71は、フッ素原子、塩素原子、臭素原子またはヨウ素原子);フェニル基;ベンジル基;-C、-CHなどのフッ素原子で1~5個の水素原子が置換されたフェニル基またはベンジル基;-C5-n(CF、-CH5-n(CF(nは1~5の整数)などの-CFで1~5個の水素原子が置換されたフェニル基またはベンジル基などがあげられる。また、式(10): In the formula (7), three Rs are the same or different and are each a hydrogen atom or a monovalent organic group having 1 to 30 carbon atoms. Examples of the monovalent organic group having 1 to 30 carbon atoms include, but are not particularly limited to, an aliphatic hydrocarbon group, an aryl group such as a phenyl group, and a benzyl group. Specifically, for example, an alkyl group having 1 to 30 carbon atoms such as —CH 3 , —C 2 H 5 , and —C 3 H 7 ; —CX 71 3 , —C 2 X 71 5 , and —CH 2 X 71 , -CH 2 CX 71 3, -CH 2 C 2 X 71 5 halogen atom-containing alkyl group having 1 to 30 carbon atoms, such as (X 71 is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom); a phenyl group; Benzyl group; phenyl group or benzyl group in which 1 to 5 hydrogen atoms have been substituted with fluorine atoms such as —C 6 F 5 and —CH 2 C 6 F 5 ; —C 6 H 5-n (CF 3 ) n And a phenyl group or a benzyl group in which 1 to 5 hydrogen atoms have been substituted with -CF 3 , such as -CH 2 C 6 H 5-n (CF 3 ) n (n is an integer of 1 to 5). . Equation (10):
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
のように、窒素原子を含んでいてもよい。式(7)中のXとしては、ハロゲンイオン(F、Cl、Br、I)、HCO 、OH、RO、HCOO、RCOO、C、ROSO 、RSO (Rは1価の有機基)などが挙げられる。 May contain a nitrogen atom. In the formula (7), X represents a halogen ion (F , Cl , Br , I ), HCO 3 , OH , RO , HCOO , RCOO , C 6 H 5 O , ROSO 3 , RSO 3 (R is a monovalent organic group) and the like.
 これらのうち、熱可塑性樹脂層(W)とエラストマー層(X)との接着力が良好な点から、式(5)、式(6)、式(7)または式(8)で示される化合物が好ましい。式(5)で示される化合物としては、DBU-B、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムナフトエート、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムフェノラート、1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムフタラート、または1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムホルメートであることがより好ましく、DBU-Bまたは1,8-ジアザビシクロ[5.4.0]-7-ウンデセニウムホルメートであることがさらに好ましい。式(7)で示される化合物としては、式(7)中の3つのRが炭素数1~20のアルキル基またはベンジル基であり、XがClである化合物がより好ましく、式(11): Among them, the compounds represented by the formula (5), the formula (6), the formula (7) or the formula (8) from the viewpoint that the adhesive strength between the thermoplastic resin layer (W) and the elastomer layer (X) is good. Is preferred. Examples of the compound represented by the formula (5) include DBU-B, 1,8-diazabicyclo [5.4.0] -7-undecenium naphthoate, and 1,8-diazabicyclo [5.4.0] -7. -Undecenium phenolate, 1,8-diazabicyclo [5.4.0] -7-undecenium phthalate, or 1,8-diazabicyclo [5.4.0] -7-undecenium formate More preferably, it is DBU-B or 1,8-diazabicyclo [5.4.0] -7-undecenium formate. As the compound represented by the formula (7), a compound in which three Rs in the formula (7) are an alkyl group or a benzyl group having 1 to 20 carbon atoms and X is Cl is more preferable, and the compound represented by the formula (11) ):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
で示される化合物がさらに好ましい。また、式(8)で示される化合物としては、ゴムとの混練り時の分散性の点から、nは0~10の整数であることがより好ましく、1~5の整数であることがさらに好ましい。 The compound represented by is more preferred. In the compound represented by the formula (8), n is more preferably an integer of 0 to 10, more preferably an integer of 1 to 5, from the viewpoint of dispersibility at the time of kneading with rubber. preferable.
 これらの中でも、DBU-Bが特に好ましい。 DBOf these, DBU-B is particularly preferred.
 第4級ホスホニウム塩としては特に限定されず、例えば、テトラブチルホスホニウムクロリド、BTPPC、ベンジルトリメチルホスホニウムクロリド、ベンジルトリブチルホスホニウムクロリド、トリブチルアリルホスホニウムクロリド、トリブチル-2-メトキシプロピルホスホニウムクロリド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロリドなどをあげることができ、これらの中でも、熱可塑性樹脂層(W)とエラストマー層(X)との接着力が良好な点から、BTPPCが好ましい。 The quaternary phosphonium salt is not particularly restricted but includes, for example, tetrabutylphosphonium chloride, BTPPC, benzyltrimethylphosphonium chloride, benzyltributylphosphonium chloride, tributylallylphosphonium chloride, tributyl-2-methoxypropylphosphonium chloride, benzylphenyl (dimethylamino) ) Phosphonium chloride and the like, and among these, BTPPC is preferred from the viewpoint of good adhesion between the thermoplastic resin layer (W) and the elastomer layer (X).
 また、第4級アンモニウム塩、第4級ホスホニウム塩とビスフェノールAFの固溶体、特開平11-147891号公報に開示されている化合物を用いることもできる。 Also, quaternary ammonium salts, solid solutions of quaternary phosphonium salts and bisphenol AF, and the compounds disclosed in JP-A-11-147891 can be used.
 オニウム塩の配合量は、十分な接着性が得られ、オニウム塩のエラストマー組成物への良好な分散性が得られることから、エラストマー100質量部に対して、好ましくは0.1~10.0質量部であり、より好ましくは0.2~8.0質量部であり、さらに好ましくは0.3~7.0質量部である。 The amount of the onium salt is preferably 0.1 to 10.0 with respect to 100 parts by mass of the elastomer, since sufficient adhesiveness can be obtained and good dispersion of the onium salt in the elastomer composition can be obtained. Parts by mass, more preferably 0.2 to 8.0 parts by mass, even more preferably 0.3 to 7.0 parts by mass.
 アミン化合物としては特に限定されず、例えば、ヘキサメチレンジアミンカーバメート、N,N’-ジシンナミリデン-1,6-ヘキサメチレンジアミン(以下、V3とする)、4,4’-ビス(アミノシクロヘキシル)メタンカルバメートなどの脂肪族ポリアミン化合物誘導体や、4,4’-ジアミノジフェニルエーテル(以下、4,4’-DPEとする)、BAPP、6FBAPP、BAPS、DDS、3,3’-DAS、P-TPE-Q、ビスアニリン-M、ビスアニリン-P、TMBAB、TPE-R、p-フェニレンジアミン、m-フェニレンジアミン、2,5-ジメチル-1,4-フェニレンジアミン、N,N’-ジメチル-1,4-フェニレンジアミン、4,4’-メチレンジアニリン、ジアニリノエタン、4,4’-メチレン-ビス(3-ニトロアニリン)、4,4’-メチレン-ビス(2-クロロアニリン)、ジアミノピリジン、メラミンなどの芳香族ポリアミン化合物を使用することができる。これらの中でも、熱可塑性樹脂層(W)とエラストマー層(X)との接着力が良好な点から、V3、4,4’-DPE、BAPP、6FBAPP、BAPS、DDS、3,3’-DAS、P-TPE-Q、ビスアニリン-M、ビスアニリン-P、TMBAB、TPE-Rが好ましく、V3、4,4’-DPE、BAPP、6FBAPP、P-TPE-Q、ビスアニリン-M、ビスアニリン-P、TMBAB、TPE-Rがより好ましい。 The amine compound is not particularly restricted but includes, for example, hexamethylenediamine carbamate, N, N'-dicinnamylidene-1,6-hexamethylenediamine (hereinafter referred to as V3), 4,4'-bis (aminocyclohexyl) methane carbamate Such as aliphatic polyamine compound derivatives, 4,4′-diaminodiphenyl ether (hereinafter, referred to as 4,4′-DPE), BAPP, 6FBAPP, BAPS, DDS, 3,3′-DAS, P-TPE-Q, Bisaniline-M, bisaniline-P, TMBAB, TPE-R, p-phenylenediamine, m-phenylenediamine, 2,5-dimethyl-1,4-phenylenediamine, N, N'-dimethyl-1,4-phenylenediamine 4,4'-methylenedianiline, dianilinoethane, 4,4'-methyl Down - bis (3-nitroaniline), 4,4'-methylene - bis (2-chloroaniline), diaminopyridine, an aromatic polyamine compound such as melamine may be used. Among them, V3, 4,4'-DPE, BAPP, 6FBAPP, BAPS, DDS, 3,3'-DAS, from the viewpoint of good adhesion between the thermoplastic resin layer (W) and the elastomer layer (X). , P-TPE-Q, bisaniline-M, bisaniline-P, TMBAB, and TPE-R are preferred, and V3, 4,4'-DPE, BAPP, 6FBAPP, P-TPE-Q, bisaniline-M, bisaniline-P, TMBAB and TPE-R are more preferred.
 アミン化合物の配合量は、十分な接着性が得られ、アミン化合物のエラストマー組成物への良好な分散性が得られることから、エラストマー100質量部に対して、好ましくは0.1~10.0質量部であり、より好ましくは0.2~8.0質量部であり、さらに好ましくは0.3~7.0質量部である。 The compounding amount of the amine compound is preferably 0.1 to 10.0 with respect to 100 parts by mass of the elastomer since sufficient adhesiveness is obtained and good dispersibility of the amine compound in the elastomer composition is obtained. Parts by mass, more preferably 0.2 to 8.0 parts by mass, even more preferably 0.3 to 7.0 parts by mass.
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能エポキシ樹脂などがあげられる。これらのうちビスフェノールA型エポキシ樹脂としては、式(12): (4) Examples of the epoxy resin include a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, and a polyfunctional epoxy resin. Of these, bisphenol A type epoxy resin has the formula (12):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
で表わされる化合物などがあげられる。ここで、式(12)におけるnとしては、十分な接着性が得られ、エポキシ樹脂のエラストマー組成物への良好な分散性が得られることから、好ましくは0.1~3であり、より好ましくは0.1~0.5であり、さらに好ましくは0.1~0.3である。 And the like. Here, n in the formula (12) is preferably 0.1 to 3, and more preferably 0.1 to 3, since sufficient adhesiveness is obtained and good dispersibility of the epoxy resin in the elastomer composition is obtained. Is 0.1 to 0.5, more preferably 0.1 to 0.3.
 エポキシ樹脂の配合量は、十分な接着性およびエラストマー層(X)の柔軟性が得られることから、エラストマー100質量部に対して、0.1~20.0質量部が好ましく、0.3~15.0質量部がより好ましく、0.5~10.0質量部がさらに好ましい。 The amount of the epoxy resin is preferably from 0.1 to 20.0 parts by mass, more preferably from 0.3 to 2 parts by mass, per 100 parts by mass of the elastomer, since sufficient adhesiveness and flexibility of the elastomer layer (X) can be obtained. 15.0 parts by mass is more preferable, and 0.5 to 10.0 parts by mass is more preferable.
 エラストマー層(X)は、未加硫ゴムのもの、または加硫させたもののいずれでも用いることができる。 Elastomer layer (X) can be either unvulcanized rubber or vulcanized.
 加硫剤としては、通常のエラストマーに使用される加硫剤であれば全て使用できる。例えば、イオウ系加硫剤、パーオキサイド系加硫剤、ポリチオール系加硫剤、キノイド系加硫剤、樹脂系加硫剤、金属酸化物、ジアミン系加硫剤、ポリチオール類、2-メルカプトイミダゾリン、ポリオール系加硫剤、ポリアミン系加硫剤などの加硫剤があり、なかでもパーオキサイド系加硫剤、ポリオール系加硫剤、ポリアミン系加硫剤などが接着性および得られた加硫ゴムの機械物性の点から好ましく、熱可塑性樹脂層(W)とエラストマー層(X)との接着力向上の点から、ポリオール系加硫剤がより好ましい。 と し て As the vulcanizing agent, any vulcanizing agent used for ordinary elastomers can be used. For example, sulfur vulcanizing agents, peroxide vulcanizing agents, polythiol vulcanizing agents, quinoid vulcanizing agents, resin vulcanizing agents, metal oxides, diamine vulcanizing agents, polythiols, 2-mercaptoimidazoline , Vulcanizing agents such as polyol vulcanizing agents and polyamine vulcanizing agents. Among them, peroxide vulcanizing agents, polyol vulcanizing agents, polyamine vulcanizing agents, etc. From the viewpoint of the mechanical properties of rubber, polyol vulcanizing agents are more preferable from the viewpoint of improving the adhesive strength between the thermoplastic resin layer (W) and the elastomer layer (X).
 エラストマー組成物中に配合される加硫剤の配合量としては、適度な加硫密度および適度な圧縮永久歪みが得られることから、エラストマー100質量部に対して、好ましくは0.2~10質量部であり、より好ましくは0.5~8質量部である。 The amount of the vulcanizing agent to be compounded in the elastomer composition is preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the elastomer, since an appropriate vulcanization density and an appropriate compression set can be obtained. Parts, more preferably 0.5 to 8 parts by mass.
 また、エラストマー組成物には必要に応じてエラストマーに配合される通常の添加物、例えば充填材、加工助剤、可塑剤、着色剤、安定剤、加硫助剤、接着助剤、受酸剤、離型剤、導電性付与剤、熱伝導性付与剤、表面非粘着剤、柔軟性付与剤、耐熱性改善剤、難燃剤などの各種添加剤を配合することができ、前記のものとは異なる常用の加硫剤や加硫促進剤を1種またはそれ以上配合してもよい。 In addition, the elastomer composition may contain ordinary additives, if necessary, such as fillers, processing aids, plasticizers, coloring agents, stabilizers, vulcanization aids, adhesion aids, and acid acceptors. , A release agent, a conductivity-imparting agent, a thermal conductivity-imparting agent, a surface non-adhesive, a flexibility-imparting agent, a heat resistance improving agent, and various additives such as a flame retardant can be blended. One or more different conventional vulcanizing agents or vulcanization accelerators may be blended.
 エラストマー組成物は、エラストマーと、オニウム塩、アミン化合物および/またはエポキシ樹脂と、加硫剤、加硫助剤、共加硫剤、加硫促進剤、充填材などのその他配合剤とを、一般に使用されているゴム混練り装置を用いて混練りすることにより得ることができる。ゴム混練り装置としては、ロール、ニーダー、バンバリーミキサー、インターナルミキサー、二軸押出機などを用いることができる。 The elastomer composition generally comprises an elastomer, an onium salt, an amine compound and / or an epoxy resin, and other compounding agents such as a vulcanizing agent, a vulcanization aid, a co-vulcanizing agent, a vulcanization accelerator, and a filler. It can be obtained by kneading using a used rubber kneading apparatus. As a rubber kneading device, a roll, a kneader, a Banbury mixer, an internal mixer, a twin screw extruder, or the like can be used.
 特に、加硫剤としてポリオール系加硫剤を用いる場合には、加硫剤・加硫促進剤の融点が比較的高い場合が多く、ゴム中に均一に分散させるために、加硫剤・加硫促進剤をニーダーなどの密閉型の混練り装置を用いて120~200℃の高温で溶融させながら混練りした後に、充填材などのその他配合剤をこれ以下の比較的低温で混練りする方法が好ましい。また、加硫剤と加硫促進剤を一旦溶融させ融点降下を起こさせた固溶体を用いて均一分散させる方法もある。 In particular, when a polyol-based vulcanizing agent is used as the vulcanizing agent, the melting point of the vulcanizing agent / vulcanization accelerator is often relatively high, so that the vulcanizing agent / vulcanizing agent is dispersed uniformly in the rubber. A method in which a sulfur accelerator is kneaded while being melted at a high temperature of 120 to 200 ° C. using a closed kneader such as a kneader, and then other compounding agents such as a filler are kneaded at a relatively low temperature. Is preferred. There is also a method in which a vulcanizing agent and a vulcanization accelerator are once melted and uniformly dispersed using a solid solution having a lowered melting point.
 加硫条件としては、使用する加硫剤などの種類により適宜決めればよいが、通常、150~300℃の温度で、1分~24時間焼成を行う。 Vulcanization conditions may be appropriately determined depending on the type of the vulcanizing agent to be used, but usually calcination is performed at a temperature of 150 to 300 ° C. for 1 minute to 24 hours.
 また、加硫方法としては、スチーム加硫など通常用いられている方法はもちろんのこと、常圧、加圧、減圧下においても、また、空気中においても、どのような条件下においても加硫反応を行うことができる。 The vulcanization method includes steam vulcanization, which is a commonly used method, as well as vulcanization under normal pressure, increased pressure, reduced pressure, in air, and under any conditions. The reaction can be performed.
 本開示の積層体は、シート状の熱可塑性樹脂層(W)と加硫前のシート状のエラストマー層(X)とを積層させ金型にセットしてヒートプレスし加硫接着させることにより製造することができる。また、熱可塑性樹脂層(W)と、エラストマー層(X)とを、押出機により2層同時押出し、または2基の押出機により内側層上に外側層を押出しすることにより内側層と外側層からなる積層体を押出機により押出して一体化し、ついで加硫接着させることによっても製造することができる。 The laminate of the present disclosure is manufactured by laminating a sheet-like thermoplastic resin layer (W) and a sheet-like elastomer layer (X) before vulcanization, setting the mold in a mold, heat-pressing and vulcanizing and bonding. can do. Further, the thermoplastic resin layer (W) and the elastomer layer (X) are simultaneously extruded in two layers by an extruder, or the inner layer and the outer layer are extruded by extruding the outer layer on the inner layer by two extruders. Can also be manufactured by extruding a laminate made of an extruder into an integrated body, and then vulcanizing and bonding.
 本開示の積層体は、熱可塑性樹脂層(W)とエラストマー層(X)との2層構造でもよいし、熱可塑性樹脂層(W)の両側にエラストマー層(X)が積層されたものであってもよいし、エラストマー層(X)の両側に熱可塑性樹脂層(W)が積層されたものであってもよい。例えば、エラストマー層(X)-熱可塑性樹脂層(W)-エラストマー層(X)または熱可塑性樹脂層(W)-エラストマー層(X)-熱可塑性樹脂層(W)といった3層構造でもよい。さらに、エラストマー層(X)および熱可塑性樹脂層(W)以外のポリマー層(Y)が接着された3層以上の多層構造であってもよいし、エラストマー層(X)および熱可塑性樹脂層(W)以外のポリマー層(Y)が接着された3層の多層構造の片側もしくは両側にポリマー層(Z)を有していてもよい。ポリマー層(Y)とポリマー層(Z)は同じであってもよいし、異なっていてもよい。 The laminate of the present disclosure may have a two-layer structure of a thermoplastic resin layer (W) and an elastomer layer (X), or a laminate in which an elastomer layer (X) is laminated on both sides of a thermoplastic resin layer (W). It may be one in which a thermoplastic resin layer (W) is laminated on both sides of the elastomer layer (X). For example, a three-layer structure of elastomer layer (X) -thermoplastic resin layer (W) -elastomer layer (X) or thermoplastic resin layer (W) -elastomer layer (X) -thermoplastic resin layer (W) may be used. Further, it may have a multilayer structure of three or more layers in which a polymer layer (Y) other than the elastomer layer (X) and the thermoplastic resin layer (W) is adhered, or the elastomer layer (X) and the thermoplastic resin layer ( A polymer layer (Z) may be provided on one side or both sides of a three-layer structure in which a polymer layer (Y) other than W) is adhered. The polymer layer (Y) and the polymer layer (Z) may be the same or different.
 本開示の積層体は、エラストマー層(X)-熱可塑性樹脂層(W)-エラストマー層(X)の3層構造の片側もしくは両側にポリマー層(Y)を有してもよい。 積 層 The laminate of the present disclosure may have a polymer layer (Y) on one or both sides of a three-layer structure of an elastomer layer (X) -a thermoplastic resin layer (W) -an elastomer layer (X).
 ポリマー層(Y)、(Z)としては、エラストマー層(X)以外のゴム層(Y1)または(Z1)でもよい。ゴム層(Y1)または(Z1)としては、非フッ素ゴムから形成される非フッ素ゴム層(Y1a)または(Z1a)があげられる。非フッ素ゴムは、耐寒性が良好な点や、コスト面で優れていることから好ましい。非フッ素ゴム層(Y1a)と非フッ素ゴム層(Z1a)は同じ非フッ素ゴムから形成されたものでもよいし、異なる非フッ素ゴムから形成されたものでもよい。本開示の積層体は、エラストマー層(X)-熱可塑性樹脂層(W)-非フッ素ゴム層(Y1a)の順に積層されているものであってもよい。また、更に、非フッ素ゴム層(Z1a)を含み、非フッ素ゴム層(Z1a)-エラストマー層(X)-熱可塑性樹脂層(W)-非フッ素ゴム層(Y1a)の順、エラストマー層(X)-熱可塑性樹脂層(W)-非フッ素ゴム層(Z1a)-非フッ素ゴム層(Y1a)の順、または、エラストマー層(X)-熱可塑性樹脂層(W)-非フッ素ゴム層(Y1a)-非フッ素ゴム層(Z1a)の順、に積層されているものであってもよい。 ゴ ム The polymer layers (Y) and (Z) may be rubber layers (Y1) or (Z1) other than the elastomer layer (X). As the rubber layer (Y1) or (Z1), a non-fluorinated rubber layer (Y1a) or (Z1a) formed from a non-fluorinated rubber can be used. Non-fluorinated rubber is preferred because of its good cold resistance and its excellent cost. The non-fluorine rubber layer (Y1a) and the non-fluorine rubber layer (Z1a) may be formed from the same non-fluorine rubber, or may be formed from different non-fluorine rubbers. The laminate of the present disclosure may be laminated in the order of the elastomer layer (X), the thermoplastic resin layer (W), and the non-fluororubber layer (Y1a). Further, it further includes a non-fluorinated rubber layer (Z1a), the non-fluorinated rubber layer (Z1a), the elastomer layer (X), the thermoplastic resin layer (W), and the non-fluorinated rubber layer (Y1a) in this order. ) -Thermoplastic resin layer (W) -non-fluorine rubber layer (Z1a) -non-fluorine rubber layer (Y1a) or elastomer layer (X) -thermoplastic resin layer (W) -non-fluorine rubber layer (Y1a) ) -Non-fluorinated rubber layer (Z1a).
 非フッ素ゴムの具体例としては、たとえばアクリロニトリル-ブタジエンゴム(NBR)またはその水素化物(HNBR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、ブタジエンゴム(BR)、天然ゴム(NR)、イソプレンゴム(IR)等のジエン系ゴム、エチレン-プロピレン-ターモノマー共重合体ゴム、シリコーンゴム、ブチルゴム、エピクロロヒドリンゴム、アクリルゴム、塩素化ポリエチレン(CPE)、アクリロニトリル-ブタジエンゴムと塩化ビニルのポリブレンド(PVC-NBR)、エチレンプロピレンジエンゴム(EPDM)等があげられる。また、これらの非フッ素ゴムおよびフッ素ゴムを任意の割合で混合したゴムもあげられる。非フッ素ゴムとしては、耐熱性、耐油性、耐候性、押出成形性が良好な点から、ジエン系のゴム、またはエピクロロヒドリンゴムであることが好ましい。より好ましくは、NBR、HNBRまたはエピクロロヒドリンゴムである。ゴム層(Y1)は、NBR、HNBRまたはエピクロロヒドリンゴムからなることが好ましい。また、ゴム層(Z1)は耐候性、コストの点から、アクリロニトリル-ブタジエンゴム、エピクロロヒドリンゴム、塩素化ポリエチレン(CPE)、アクリロニトリル-ブタジエンゴムと塩化ビニルのポリブレンド(PVC-NBR)、エチレンプロピレンジエンゴム(EPDM)、アクリルゴム、またはこれらの混合物からなることが好ましい。なお、ゴム層(Y1)、(Z1)を形成する未加硫ゴム組成物中にも、加硫剤や、その他の配合剤を配合してもよい。 Specific examples of the non-fluorine rubber include, for example, acrylonitrile-butadiene rubber (NBR) or its hydride (HNBR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), butadiene rubber (BR), and natural rubber (NR) , Diene rubbers such as isoprene rubber (IR), ethylene-propylene-termonomer copolymer rubber, silicone rubber, butyl rubber, epichlorohydrin rubber, acrylic rubber, chlorinated polyethylene (CPE), acrylonitrile-butadiene rubber and vinyl chloride Polyethylene blend (PVC-NBR), ethylene propylene diene rubber (EPDM) and the like. Further, a rubber obtained by mixing these non-fluorine rubbers and fluorine rubbers at an arbitrary ratio can also be used. As the non-fluorinated rubber, a diene rubber or an epichlorohydrin rubber is preferable from the viewpoint of good heat resistance, oil resistance, weather resistance, and extrusion moldability. More preferably, it is NBR, HNBR or epichlorohydrin rubber. The rubber layer (Y1) is preferably made of NBR, HNBR or epichlorohydrin rubber. The rubber layer (Z1) is made of acrylonitrile-butadiene rubber, epichlorohydrin rubber, chlorinated polyethylene (CPE), polyblend of acrylonitrile-butadiene rubber and vinyl chloride (PVC-NBR), It is preferable that it is made of propylene diene rubber (EPDM), acrylic rubber, or a mixture thereof. In addition, you may mix | blend a vulcanizing agent and other compounding agents also in the unvulcanized rubber composition which forms the rubber layers (Y1) and (Z1).
 また、熱可塑性樹脂層(W)と、エラストマー層(X)の接着性をさらに向上させるために、必要に応じて熱可塑性樹脂層(W)に表面処理を行ってもよい。この表面処理としては、接着を可能とする処理方法であれば、その種類は特に制限されるものではなく、例えばプラズマ放電処理やコロナ放電処理などの放電処理、湿式法の金属ナトリウム/ナフタレン液処理などがあげられる。また、表面処理としてプライマー処理も好適である。プライマー処理は常法に準じて行うことができる。プライマー処理を施す場合、表面処理を行っていない熱可塑性樹脂層(W)の表面を処理することもできるが、プラズマ放電処理、コロナ放電処理、金属ナトリウム/ナフタレン液処理などを予め施した熱可塑性樹脂層(W)の表面を更にプライマー処理すると、より効果的である。 (4) In order to further improve the adhesiveness between the thermoplastic resin layer (W) and the elastomer layer (X), the thermoplastic resin layer (W) may be subjected to a surface treatment as needed. The type of the surface treatment is not particularly limited as long as it is a treatment method capable of bonding, and for example, a discharge treatment such as a plasma discharge treatment or a corona discharge treatment, and a metal sodium / naphthalene liquid treatment by a wet method. And so on. Further, a primer treatment is also suitable as the surface treatment. The primer treatment can be performed according to a conventional method. When the primer treatment is performed, the surface of the thermoplastic resin layer (W) that has not been subjected to the surface treatment can be treated. However, the thermoplastic resin layer (W) is treated with a plasma discharge treatment, a corona discharge treatment, a metal sodium / naphthalene liquid treatment, or the like. It is more effective if the surface of the resin layer (W) is further treated with a primer.
 本開示の熱可塑性樹脂組成物、成形品および積層体は、燃料バリア性および引張弾性率のバランスに優れており、圧縮永久歪みが小さく、耐熱性および耐クラック性にも優れることから、各種の用途に使用可能である。 The thermoplastic resin composition, molded article and laminate of the present disclosure are excellent in balance between fuel barrier properties and tensile elasticity, have small compression set, and are excellent in heat resistance and crack resistance. It can be used for any purpose.
 たとえば、自動車用エンジンのエンジン本体、主運動系、動弁系、潤滑・冷却系、燃料系、吸気・排気系など、駆動系のトランスミッション系など、シャーシのステアリング系、ブレーキ系など、電装品の基本電装部品、制御系電装部品、装備電装部品などの、耐熱性・耐油性・耐燃料油性・耐LLC性・耐スチーム性が要求されるガスケットや非接触型および接触型のパッキン類(セルフシールパッキン、ピストンリング、割リング形パッキン、メカニカルシール、オイルシールなど)などのシール、ベローズ、ダイヤフラム、ホース、チューブ、電線などとして好適な特性を備えている。 For example, the main components of automobile engines, main motion system, valve train, lubrication / cooling system, fuel system, intake / exhaust system, etc., drive system transmission system, chassis steering system, brake system, etc. Gaskets and non-contact and contact type packings (self-sealing) such as basic electrical components, control electrical components, and equipment electrical components that require heat resistance, oil resistance, fuel oil resistance, LLC resistance, and steam resistance. Seals such as packings, piston rings, split-ring type packings, mechanical seals, oil seals, etc.), bellows, diaphragms, hoses, tubes, electric wires, etc. are provided.
 具体的には、以下に列記する用途に使用可能である。 Specifically, it can be used for the applications listed below.
 エンジン本体の、シリンダーヘッドガスケット、シリンダーヘッドカバーガスケット、オイルパンパッキン、一般ガスケットなどのガスケット、O-リング、パッキン、タイミングベルトカバーガスケットなどのシール、コントロールホースなどのホース、エンジンマウントの防振ゴム、水素貯蔵システム内の高圧弁用シール材など。 Gaskets such as cylinder head gaskets, cylinder head cover gaskets, oil pan packing, general gaskets, seals such as O-rings, packings, timing belt cover gaskets, hoses such as control hoses, anti-vibration rubber for engine mounts, and hydrogen on the engine body Sealing materials for high-pressure valves in storage systems.
 主運動系の、クランクシャフトシール、カムシャフトシールなどのシャフトシールなど。 Shaft seals such as crankshaft seals and camshaft seals of the main motion system.
 動弁系の、エンジンバルブのバルブステムシールなど。 。 Valve stem seals for engine valves and other valve systems.
 潤滑・冷却系の、エンジンオイルクーラーのエンジンオイルクーラーホース、オイルリターンホース、シールガスケットなどや、ラジエータ周辺のウォーターホース、バキュームポンプのバキュームポンプオイルホースなど。 Engine oil cooler hose, oil return hose, seal gasket, etc. for lubrication and cooling systems, water hose around radiator, vacuum pump oil hose for vacuum pump, etc.
 燃料系の、燃料用ホース、燃料用チューブ、燃料用シール材、その他燃料系部材など。燃料用ホースまたは燃料用チューブとしては、フィラー(ネック)ホース、燃料供給ホース、燃料リターンホース、ベーパー(エバポ)ホースなどの燃料ホース、燃料タンクのインタンクホース、燃料配管チューブ、キャブレターのコントロールホースなど。燃料用シール材としては、燃料ポンプのオイルシールなど、燃料タンクのフューエルセンダーシール、フィラーシール、タンクパッキンなど、燃料配管チューブのコネクターO-リングなど、燃料噴射装置のインジェクタークッションリング、インジェクターシールリング、インジェクターO-リングなど、キャブレターのフランジガスケットなど。その他燃料系部材としては、燃料ポンプのダイヤフラム、バルブなど、燃料タンクのインタンクフューエルポンプマウントなど、燃料噴射装置のプレッシャーレギュレーターダイヤフラム、チェックバルブ類など、キャブレターのニードルバルブ花弁、加速ポンプピストンなど、複合空気制御装置(CAC)のバルブシート、ダイヤフラムなど。これらの中でも、燃料用ホースまたは燃料用チューブとして好適であり、特にフィラーネックホースまたは燃料供給ホースとして好適である。また、燃料用シール材としても好適であり、特にフューエルセンダーシールとして好適である。 Fuel hoses, fuel tubes, fuel seal materials, and other fuel-related materials for fuel systems. Fuel hoses or fuel tubes include filler (neck) hoses, fuel supply hoses, fuel return hoses, fuel hoses such as vapor (evaporation) hoses, fuel tank in-tank hoses, fuel piping tubes, carburetor control hoses, etc. . Examples of fuel sealing materials include fuel pump oil seals, fuel tank fuel sender seals, filler seals, tank packing, etc., fuel piping tube connector O-rings, etc., fuel injector injector cushion rings, injector seal rings, etc. Injector O-rings, carburetor flange gaskets, etc. Other fuel-related components include fuel pump diaphragms, valves, etc., fuel tank in-tank fuel pump mounts, fuel injection device pressure regulator diaphragms, check valves, etc., carburetor needle valve petals, acceleration pump pistons, etc. Valve seats and diaphragms for air control equipment (CAC). Among them, they are suitable as fuel hoses or fuel tubes, and particularly suitable as filler neck hoses or fuel supply hoses. Further, it is also suitable as a fuel sealing material, and particularly suitable as a fuel sender seal.
 吸気・排気系の、マニホールドの吸気マニホールドパッキン、排気マニホールドパッキンなど、EGR(排気際循環)のダイヤフラム、コントロールホース、エミッションコントロールホースなど、BPTのダイヤフラムなど、ABバルブのアフターバーン防止バルブシートなど、スロットルのスロットルボディパッキン、ターボチャージャーのターボオイルホース(供給)、ターボオイルホース(リターン)、ターボエアホース、インタークーラーホース、タービンシャフトシールなど。 Throttle such as intake manifold packing of exhaust manifold, exhaust manifold packing, diaphragm of EGR (circulation during exhaust), control hose, emission control hose, diaphragm of BPT, afterburn prevention valve seat of AB valve, etc. Throttle body packing, turbocharger turbo oil hose (supply), turbo oil hose (return), turbo air hose, intercooler hose, turbine shaft seal, etc.
 トランスミッション系の、トランスミッション関連のベアリングシール、オイルシール、O-リング、パッキン、トルコンホースなど、ATのミッションオイルホース、ATFホース、O-リング、パッキン類など。 ATTransmission related transmission seals, oil seals, O-rings, packings, torque converter hoses, etc. AT transmission oil hoses, ATF hoses, O-rings, packings, etc.
 ステアリング系の、パワーステアリングオイルホースなど。 Power steering oil hoses for steering systems.
 ブレーキ系の、オイルシール、O-リング、パッキン、ブレーキオイルホースなど、マスターバックの大気弁、真空弁、ダイヤフラムなど、マスターシリンダーのピストンカップ(ゴムカップ)など、キャリパーシール、ブーツ類など。 Brake oil seals, O-rings, packing, brake oil hoses, master back air valves, vacuum valves, diaphragms, etc., master cylinder piston cups (rubber cups), caliper seals, boots, etc.
 基本電装部品の、電線(ハーネス)の絶縁体やシースなど、ハーネス外装部品のチューブなど。 チ ュ ー ブ Tubes of harness exterior parts, such as insulators and sheaths of electric wires (harness) of basic electrical parts.
 制御系電装部品の、各種センサー線の被覆材料など。 被覆 Coating materials for various sensor wires for control system electrical components.
 装備電装部品の、カーエアコンのO-リング、パッキン、クーラーホース、外装品のワイパーブレードなど。 Electrical components such as O-rings, packings, cooler hoses, and exterior wiper blades for car air conditioners.
 また自動車用以外では、たとえば、船舶、航空機などの輸送機関における耐油、耐薬品、耐熱、耐スチーム、あるいは耐候用のパッキン、O-リング、ホース、その他のシール材、ダイヤフラム、バルブに、また化学プラントにおける同様のパッキン、O-リング、シール材、ダイヤフラム、バルブ、ホース、ロール、チューブ、耐薬品用コーティング、ライニングに、食品プラント機器および食品機器(家庭用品を含む)における同様のパッキン、O-リング、ホース、シール材、ベルト、ダイヤフラム、バルブ、ロール、チューブに、原子力プラント機器における同様のパッキン、O-リング、ホース、シール材、ダイヤフラム、バルブ、チューブに、一般工業部品における同様のパッキン、O-リング、ホース、シール材、ダイヤフラム、バルブ、ロール、チューブ、ライニング、マンドレル、電線、フレキシブルジョイント、ベルト、ゴム板、ウエザーストリップ、PPC複写機のロールブレードなどへの用途に好適である。 For vehicles other than automobiles, for example, oil, chemical, heat, steam or weather-resistant packing, O-rings, hoses, other sealing materials, diaphragms, valves, etc. in transportation such as ships and aircraft. Similar packing in plant, O-rings, seals, diaphragms, valves, hoses, rolls, tubes, chemical resistant coatings, linings, similar packing in food plant equipment and food equipment (including household products), O- Rings, hoses, seals, belts, diaphragms, valves, rolls, tubes, similar packings in nuclear plant equipment, O-rings, hoses, seals, diaphragms, valves, tubes, similar packings in general industrial parts, O-rings, hoses, sealing materials, diaphragms Arm is suitable valves, rolls, tubes, linings, mandrels, electric wires, flexible joints, belts, rubber plates, weather strips, the application to a roll blade PPC copying machine.
 また、食品ゴムシール材用途においては、従来ゴムシール材において着香性やゴムの欠片などが食品中に混入するトラブルがあるが、本開示の成形品を用いることにより、この問題を改善でき、好適に使用できる。耐薬品性、低溶出性および低着香性を有するため、医療・ケミカル分野においては、耐油、耐薬品、耐熱、耐スチームあるいは耐候用のシール材、蓋材、ベルト、ロール、ホース、チューブ、フィルム、コーティング、ライニング、ジョイント、容器等に適用できる。一般工業分野では、ゴム材料の強度、すべり性、耐薬品性、透過性を改善する目的において、たとえば、ゴムロール、O-リング、パッキン、シール材等に好適に用いることができる。特に、リチウムイオン電池のパッキン用途には耐薬品性とシールの両方を同時に維持できることから好適に使用できる。その他、低摩擦による摺動性が要求される用途においては、好適に使用できる。 Further, in the application of food rubber sealing material, there is a problem that flavor and rubber fragments are mixed into food in the conventional rubber sealing material, but by using the molded product of the present disclosure, this problem can be improved and preferably Can be used. Because it has chemical resistance, low elution, and low fragrance, in the medical and chemical fields, oil-, chemical-, heat-, steam- or weather-resistant sealing materials, lids, belts, rolls, hoses, tubes, Applicable to films, coatings, linings, joints, containers and the like. In the general industrial field, it can be suitably used for rubber rolls, O-rings, packings, sealing materials, and the like, for the purpose of improving the strength, slipperiness, chemical resistance, and permeability of rubber materials. In particular, it is suitable for use in packing lithium ion batteries because both chemical resistance and sealing can be maintained simultaneously. In addition, it can be suitably used in applications requiring slidability due to low friction.
 これらの中でも、本開示の熱可塑性樹脂組成物、成形品および積層体は、燃料バリア性および引張弾性率のバランスに優れていることから、燃料用ホースまたは燃料用チューブとして好適に用いられ、フィラーネックホースまたは燃料供給ホースとして特に好適に用いられる。すなわち、上記成形品および積層体は、燃料用ホースまたは燃料用チューブであることが好ましく、フィラーネックホースまたは燃料供給ホースであることが特に好ましい。特に、本開示の熱可塑性樹脂組成物、成形品および積層体は、燃料バリア性と引張弾性率とが、高いレベルで両立されていることから、燃料の蒸散を抑制しながら、振動を吸収し、騒音を発生させにくく、また、燃料の圧力の変動(脈動)を減衰させることができる。したがって、本開示の熱可塑性樹脂組成物、成形品および積層体は、自動車に搭載するための燃料用ホースまたは燃料用チューブとして好適に用いられる。 Among these, the thermoplastic resin composition of the present disclosure, molded articles and laminates are preferably used as a fuel hose or fuel tube because of their excellent balance between fuel barrier properties and tensile modulus, and fillers. It is particularly suitably used as a neck hose or a fuel supply hose. That is, the molded article and the laminate are preferably a fuel hose or a fuel tube, and particularly preferably a filler neck hose or a fuel supply hose. In particular, the thermoplastic resin composition of the present disclosure, molded articles and laminates, since the fuel barrier properties and tensile elasticity are compatible at a high level, while absorbing the vibration while suppressing the evaporation of fuel. In addition, noise is hardly generated, and fluctuation (pulsation) of fuel pressure can be attenuated. Therefore, the thermoplastic resin composition, molded article, and laminate of the present disclosure are suitably used as a fuel hose or a fuel tube to be mounted on an automobile.
 また、これらの中でも、本開示の熱可塑性樹脂組成物、成形品および積層体は、燃料バリア性、引張弾性率および圧縮永久歪みのバランスに優れていることから、自動車に搭載するための燃料用シール材としても好適に用いられ、フューエルセンダーシールとして特に好適に用いられる。 Among them, the thermoplastic resin compositions, molded articles and laminates of the present disclosure are excellent in the balance between fuel barrier properties, tensile modulus and compression set, and are therefore used for fuels for mounting on automobiles. It is suitably used as a sealing material, and is particularly preferably used as a fuel sender seal.
 以上、実施形態を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims.
 つぎに本開示の実施形態について実施例をあげて説明するが、本開示はかかる実施例のみに限定されるものではない。 Next, embodiments of the present disclosure will be described with reference to examples, but the present disclosure is not limited to the examples.
 実施例の各数値は以下の方法により測定した。 各 Each numerical value in the examples was measured by the following method.
 モノマー組成
 19F-NMR分析により測定した。
Monomer composition 19 Measured by F-NMR analysis.
 融点
 示差走査熱量計[DSC]を用い、10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度を融点とした。
Using a melting point differential scanning calorimeter [DSC], the melting peak when the temperature was raised at a rate of 10 ° C./min was recorded, and the temperature corresponding to the maximum value was defined as the melting point.
 メルトフローレート(MFR)
 メルトインデクサー(東洋精機製作所社製)を用い、297℃において、5kg荷重下で直径2mm、長さ8mmのノズルから単位時間(10分間)あたりに流出するポリマーの質量(g)を測定した。
Melt flow rate (MFR)
Using a melt indexer (manufactured by Toyo Seiki Seisaku-sho, Ltd.), the mass (g) of the polymer flowing out per unit time (10 minutes) from a nozzle having a diameter of 2 mm and a length of 8 mm under a load of 5 kg at 297 ° C. was measured.
 ムーニー粘度
 ALPHA TECHNOLOGIES社製 ムーニー粘度計MV2000E型を用いて、ASTM D-1646に準拠して測定した。
Mooney viscosity The Mooney viscosity was measured using a Mooney Viscometer Model MV2000E manufactured by ALPHA TECHNOLOGIES, in accordance with ASTM D-1646.
 赤外吸収スペクトル分析
 (熱可塑性樹脂シートの作製)
 熱可塑性樹脂組成物を、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.25mm、厚さ0.5mmまたは厚さ2.0mmの熱可塑性樹脂シートを得た。
Infrared absorption spectrum analysis (production of thermoplastic resin sheet)
The thermoplastic resin composition is placed in a mold having a diameter of 120 mm, set in a press machine heated to 300 ° C., melt-pressed at a pressure of about 2.9 MPa, and has a thickness of 0.25 mm, 0.5 mm or A thermoplastic resin sheet having a thickness of 2.0 mm was obtained.
 (吸収ピークの高さの比の算出)
 厚さ0.25mmの熱可塑性樹脂シートについて、フーリエ変換赤外分光光度計[FT-IR]を用いて透過法で赤外吸収スペクトルを測定し、下記の式により比[K1]および比[K2]を算出した。
   比[K1]=H1a/H1b
   比[K2]=H2a/H2b
    H1a:3475cm-1と3415cm-1の各吸光度を結ぶ直線をベースラインとしたときの3451cm-1の吸光度高さ
    H1b:2680cm-1と2030cm-1の各吸光度を結ぶ直線をベースラインとしたときの2360cm-1の吸光度高さ
    H2a:1760cm-1と1660cm-1の各吸光度を結ぶ直線をベースラインとしたときの1722cm-1の吸光度高さ
    H2b:3170cm-1と2900cm-1の各吸光度を結ぶ直線をベースラインとしたときの3035cm-1の吸光度高さ
(Calculation of ratio of height of absorption peak)
For a thermoplastic resin sheet having a thickness of 0.25 mm, an infrared absorption spectrum was measured by a transmission method using a Fourier transform infrared spectrophotometer [FT-IR], and a ratio [K1] and a ratio [K2] were obtained by the following equations. ] Was calculated.
Ratio [K1] = H1a / H1b
Ratio [K2] = H2a / H2b
H1a: 3475cm -1 and 3415cm absorbance 3451Cm -1 when the straight line connecting the respective absorbance was to baseline -1 height H1b: When the straight line connecting the respective absorbance 2680Cm -1 and 2030Cm -1 and a baseline absorbance of the height of the 2360 cm -1 H2a: 1760 cm -1 and 1660cm absorbance 1722 cm -1 when a straight line connecting the respective absorbance was to baseline -1 height H2b: each absorbance 3170Cm -1 and 2900 cm -1 Absorbance height of 3035 cm -1 when the connecting straight line is used as the baseline
 燃料バリア性評価
 (燃料透過係数)
 20mLの容積を有するSUS製容器(開放部面積1.26×10-3)に模擬燃料であるCE10(トルエン/イソオクタン/エタノール=45/45/10容量%)を18mL入れて、前記方法にて作製した厚さ0.25mmの熱可塑性樹脂シートを容器開放部にセットして密閉することで、試験体とする。該試験体を恒温装置(60℃)に入れ、試験体の重量を測定し、単位時間あたりの重量減少が一定となったところで下記の式により燃料透過係数を求めた。 
Figure JPOXMLDOC01-appb-M000010
Evaluation of fuel barrier properties (fuel permeability coefficient)
18 mL of simulated fuel CE10 (toluene / isooctane / ethanol = 45/45/10% by volume) was placed in a SUS container (open area: 1.26 × 10 −3 m 2 ) having a volume of 20 mL, and the above method was performed. The thermoplastic resin sheet having a thickness of 0.25 mm prepared in the above was set in a container open part and sealed to obtain a test specimen. The specimen was placed in a thermostat (60 ° C.), the weight of the specimen was measured, and when the weight loss per unit time became constant, the fuel permeability coefficient was determined by the following equation.
Figure JPOXMLDOC01-appb-M000010
 引張弾性率
 前記方法にて作製した厚さ0.5mmの熱可塑性樹脂シートより、ASTM D638 TypeV型ダンベルを用いて標線間距離3.18mmのダンベル状試験片を打ち抜く。得られたダンベル状試験片を用いて、オートグラフ(島津製作所社製 AGS-J 5kN)を使用して、ASTM D638に準じて、25℃において50mm/minの引張速度で引張試験を行い、引張弾性率を測定した。
Tensile Modulus A dumbbell-shaped test piece having a distance between mark lines of 3.18 mm is punched out from a thermoplastic resin sheet having a thickness of 0.5 mm produced by the above method using an ASTM D638 Type V dumbbell. Using the obtained dumbbell-shaped test piece, a tensile test was performed at 25 ° C. at a tensile speed of 50 mm / min at 25 ° C. using an autograph (AGS-J 5 kN manufactured by Shimadzu Corporation) according to ASTM D638. The elastic modulus was measured.
 フッ素樹脂の官能基の個数
 フッ素樹脂のシートについて、フーリエ変換赤外分光光度計[FT-IR]を用いて赤外吸収スペクトルを分析した。得られた赤外吸収スペクトルをPerkin-Elmer Spectrum for windows Ver.1.4Cを用いて自動でベースラインを判定させ、所定のピークの吸光度を測定した。なお、カーボネート基〔-OC(=O)O-〕のカルボニル基由来のピークは、1810~1815cm-1の吸収帯に現れる。
Number of functional groups of fluororesin The infrared absorption spectrum of the fluororesin sheet was analyzed using a Fourier transform infrared spectrophotometer [FT-IR]. The obtained infrared absorption spectrum was analyzed using Perkin-Elmer Spectrum for windows Ver. The baseline was automatically determined using 1.4C, and the absorbance of a predetermined peak was measured. The peak derived from the carbonyl group of the carbonate group [—OC (= O) O—] appears in the absorption band at 1810 to 1815 cm −1 .
 圧縮永久歪み
 JIS K6262に準じて、前記方法にて作製した熱可塑性樹脂シートを積層して、厚さ3.8±0.1mmの試験片を作製し、表1に記載の温度および時間で、25%の圧縮を行い、圧縮永久歪みを測定した。
In accordance with JIS K6262, the thermoplastic resin sheets produced by the above method were laminated to produce test specimens having a thickness of 3.8 ± 0.1 mm, and at the temperature and time shown in Table 1, A 25% compression was performed and the compression set was measured.
 実施例および比較例では、下記の材料を用いた。 下 記 In Examples and Comparative Examples, the following materials were used.
 フッ素樹脂:
 ―OC(=O)OCHCHCH基を有するCTFE/TFE共重合体。モノマー組成はCTFE/TFE/パーフルオロ(プロピルビニルエーテル)=21.0/76.2/2.8(モル比)。融点245℃。297℃におけるMFRは19g/10min。―OC(=O)OCHCHCH基数は80個(炭素原子10個当たり)。引張弾性率は610MPa。燃料透過係数は0.4(g・mm)/(m・day)。
Fluororesin:
-OC (= O) OCH CTFE / TFE copolymer having 2 CH 2 CH 3 groups. The monomer composition was CTFE / TFE / perfluoro (propyl vinyl ether) = 21.0 / 76.2 / 2.8 (molar ratio). 245 ° C. MFR at 297 ° C. is 19 g / 10 min. —OC (= O) OCH 2 CH 2 CH 3 groups are 80 (per 10 6 carbon atoms). The tensile modulus is 610 MPa. The fuel permeability coefficient is 0.4 (g · mm) / (m 2 · day).
 フッ素ゴム(b-1):
 モノマー組成がVdF/TFE/HFP=58/22/20(モル比)であるVdF/TFE/HFP共重合体。100℃におけるムーニー粘度ML(1+10)は45。
 フッ素ゴム(b-2):
 モノマー組成がVdF/TFE/HFP=50/20/30(モル比)であるVdF/TFE/HFP共重合体。121℃におけるムーニー粘度ML(1+10)は50。
Fluorine rubber (b-1):
A VdF / TFE / HFP copolymer having a monomer composition of VdF / TFE / HFP = 58/22/20 (molar ratio). The Mooney viscosity ML (1 + 10) at 100 ° C. is 45.
Fluorine rubber (b-2):
A VdF / TFE / HFP copolymer having a monomer composition of VdF / TFE / HFP = 50/20/30 (molar ratio). The Mooney viscosity ML (1 + 10) at 121 ° C. is 50.
 ポリアミン化合物:BAPP(熱分解温度:315℃)
 架橋促進剤:DBU-B
 受酸剤:酸化マグネシウム
Polyamine compound: BAPP (pyrolysis temperature: 315 ° C)
Crosslinking accelerator: DBU-B
Acid acceptor: magnesium oxide
 比較例1
 (工程1)
 前記フッ素ゴム(b-1)に、BAPP、DBU-Bおよび酸化マグネシウムを添加して混練し、フッ素ゴム組成物(b-1(a))を得た。
 (工程2)
 ラボプラストミル(東洋精機製作所社製)に前記フッ素樹脂を投入し、フッ素ゴム組成物(b-1(a))を添加し、分散と反応が十分進行してトルクが安定した時点で撹拌を停止して、熱可塑性樹脂組成物を得た。このとき、熱可塑性樹脂組成物の温度は280℃であった。各材料の配合量および各種測定の結果を表1に示す。
Comparative Example 1
(Step 1)
BAPP, DBU-B and magnesium oxide were added to the fluororubber (b-1) and kneaded to obtain a fluororubber composition (b-1 (a)).
(Step 2)
The above-mentioned fluororesin is charged into Labo Plast Mill (manufactured by Toyo Seiki Seisaku-Sho, Ltd.), and the fluororubber composition (b-1 (a)) is added. The operation was stopped to obtain a thermoplastic resin composition. At this time, the temperature of the thermoplastic resin composition was 280 ° C. Table 1 shows the blending amounts of the respective materials and the results of various measurements.
 実施例1および2
 各材料の配合量を表1の記載のとおりに変更した以外は、比較例1と同様にして、熱可塑性樹脂組成物を得た。各材料の配合量および各種測定の結果を表1に示す。
Examples 1 and 2
A thermoplastic resin composition was obtained in the same manner as in Comparative Example 1, except that the blending amounts of the respective materials were changed as described in Table 1. Table 1 shows the blending amounts of the respective materials and the results of various measurements.
 比較例2
 工程1において、前記フッ素ゴム(b-1)に代えて前記フッ素ゴム(b-2)を用い、DBU-Bを添加せず、さらに0.60質量部のBAPPを工程2で添加した以外は、比較例1と同様にして、熱可塑性樹脂組成物を得た。各材料の配合量および各種測定の結果を表1に示す。
Comparative Example 2
In step 1, except that the fluororubber (b-2) was used in place of the fluororubber (b-1), DBU-B was not added, and 0.60 parts by mass of BAPP was further added in step 2. In the same manner as in Comparative Example 1, a thermoplastic resin composition was obtained. Table 1 shows the blending amounts of the respective materials and the results of various measurements.
 比較例3
 工程1において、前記フッ素ゴム(b-1)に代えて前記フッ素ゴム(b-2)を用い、DBU-Bを添加しなかった以外は、比較例1と同様にして、熱可塑性樹脂組成物を得た。各材料の配合量および各種測定の結果を表1に示す。
Comparative Example 3
In step 1, a thermoplastic resin composition was prepared in the same manner as in Comparative Example 1 except that the fluororubber (b-2) was used in place of the fluororubber (b-1) and DBU-B was not added. Got. Table 1 shows the blending amounts of the respective materials and the results of various measurements.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011

Claims (10)

  1.  フッ素樹脂(A)および架橋フッ素ゴム(B)を含む熱可塑性樹脂組成物であって、
     フッ素樹脂(A)が、クロロトリフルオロエチレン単位およびテトラフルオロエチレン単位を含み、かつ、ポリマーの主鎖末端または側鎖末端にカルボニル基、オレフィン基およびアミノ基からなる群より選択される少なくとも1種の官能基を有する共重合体であり、
     架橋フッ素ゴム(B)が、フッ素樹脂(A)の存在下、フッ素樹脂(A)の溶融条件下にて、フッ素ゴム(b)を、熱分解温度が210℃以上であるポリアミン化合物(c)および架橋促進剤(d)と共に、動的に架橋処理したものであり、
     フッ素樹脂(A)とフッ素ゴム(b)との質量比(フッ素樹脂(A)/フッ素ゴム(b))が、70/30未満であり、20/80以上である
     熱可塑性樹脂組成物。
    A thermoplastic resin composition containing a fluororesin (A) and a crosslinked fluororubber (B),
    The fluororesin (A) contains a chlorotrifluoroethylene unit and a tetrafluoroethylene unit, and at least one selected from the group consisting of a carbonyl group, an olefin group and an amino group at a main chain terminal or a side chain terminal of the polymer. Is a copolymer having a functional group of
    A crosslinked fluororubber (B) is a polyamine compound (c) having a thermal decomposition temperature of 210 ° C. or higher under the melting conditions of the fluororesin (A) in the presence of the fluororesin (A). And a crosslinking accelerator (d), which is dynamically cross-linked.
    A thermoplastic resin composition wherein the mass ratio of the fluororesin (A) to the fluororubber (b) (fluororesin (A) / fluororubber (b)) is less than 70/30 and 20/80 or more.
  2.  フッ素ゴム(b)が、ビニリデンフルオライド/テトラフルオロエチレン/ヘキサフルオロプロピレン系フッ素ゴムである請求項1に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1, wherein the fluororubber (b) is a vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene fluororubber.
  3.  フッ素樹脂(A)および架橋フッ素ゴム(B)を含む熱可塑性樹脂組成物であって、
     フッ素樹脂(A)が、クロロトリフルオロエチレン単位およびテトラフルオロエチレン単位を含む共重合体であり、
     前記熱可塑性樹脂組成物から形成される成形品について、赤外吸収スペクトル分析をした場合に、2360cm-1に現れる吸収ピークの高さに対する、3451cm-1に現れる吸収ピークの高さの比[K1]が、0.001以上であり、かつ、3035cm-1に現れる吸収ピークの高さに対する、1722cm-1に現れる吸収ピークの高さの比[K2]が、0.3以上であり、
     引張弾性率が、250MPa以下である
     熱可塑性樹脂組成物。
    A thermoplastic resin composition containing a fluororesin (A) and a crosslinked fluororubber (B),
    The fluororesin (A) is a copolymer containing a chlorotrifluoroethylene unit and a tetrafluoroethylene unit,
    For molded articles formed from the thermoplastic resin composition, when the infrared absorption spectrum analysis, to the height of the absorption peak appearing in 2360 cm -1, the ratio of the height of the absorption peaks appearing in 3451cm -1 [K1 ] it is, is 0.001 or more, and, with respect to the height of the absorption peak appearing in 3035Cm -1, the ratio of the height of the absorption peaks appearing in 1722 cm -1 [K2] is, is 0.3 or more,
    A thermoplastic resin composition having a tensile modulus of 250 MPa or less.
  4.  請求項1~3のいずれかに記載の熱可塑性樹脂組成物の製造方法であって、
     フッ素樹脂(A)の存在下、フッ素樹脂(A)の溶融条件下にて、フッ素ゴム(b)を、熱分解温度が210℃以上であるポリアミン化合物(c)および架橋促進剤(d)と共に、動的に架橋処理する工程を含む
     熱可塑性樹脂組成物の製造方法。
    A method for producing a thermoplastic resin composition according to any one of claims 1 to 3, wherein
    In the presence of the fluororesin (A), the fluororubber (b) is melted together with a polyamine compound (c) having a thermal decomposition temperature of 210 ° C. or higher and a crosslinking accelerator (d) under the melting conditions of the fluororesin (A). A method for producing a thermoplastic resin composition, comprising a step of dynamically crosslinking.
  5.  請求項1~3のいずれかに記載の熱可塑性樹脂組成物から形成される成形品。 (4) A molded article formed from the thermoplastic resin composition according to any one of (1) to (3).
  6.  請求項1~3のいずれかに記載の熱可塑性樹脂組成物から形成される熱可塑性樹脂層(W)と、エラストマー組成物から形成されるエラストマー層(X)とを含む積層体。 A laminate comprising a thermoplastic resin layer (W) formed from the thermoplastic resin composition according to any one of claims 1 to 3, and an elastomer layer (X) formed from the elastomer composition.
  7.  前記エラストマー組成物が、アクリロニトリル-ブタジエンゴム、水素添加アクリロニトリル-ブタジエンゴム、アクリロニトリル-ブタジエンゴムとポリ塩化ビニルとのブレンドゴム、アクリロニトリル-ブタジエンゴムとアクリルゴムとのブレンドゴム、塩素化ポリエチレン、フッ素ゴム、エピクロロヒドリンゴム、エチレン-プロピレンゴム、クロロスルホン化ポリエチレンゴム、シリコーンゴムおよびアクリルゴムからなる群より選択される少なくとも1種のエラストマーを含有する請求項6に記載の積層体。 The elastomer composition may be acrylonitrile-butadiene rubber, hydrogenated acrylonitrile-butadiene rubber, blend rubber of acrylonitrile-butadiene rubber and polyvinyl chloride, blend rubber of acrylonitrile-butadiene rubber and acrylic rubber, chlorinated polyethylene, fluorine rubber, 7. The laminate according to claim 6, comprising at least one elastomer selected from the group consisting of epichlorohydrin rubber, ethylene-propylene rubber, chlorosulfonated polyethylene rubber, silicone rubber and acrylic rubber.
  8.  前記エラストマー組成物が、オニウム塩、アミン化合物およびエポキシ樹脂からなる群より選択される少なくとも1種の化合物を含有する請求項6または7に記載の積層体。 The laminate according to claim 6 or 7, wherein the elastomer composition contains at least one compound selected from the group consisting of an onium salt, an amine compound, and an epoxy resin.
  9.  請求項5に記載の成形品、または、請求項6~8のいずれかに記載の積層体からなる燃料用ホースまたは燃料用チューブ。 [4] A fuel hose or fuel tube comprising the molded article according to claim 5, or the laminate according to any one of claims 6 to 8.
  10.  請求項5に記載の成形品、または、請求項6~8のいずれかに記載の積層体からなる燃料用シール材。 (4) A fuel sealing material comprising the molded product according to (5) or the laminate according to any one of (6) to (8).
PCT/JP2019/027696 2018-07-13 2019-07-12 Thermoplastic resin composition and method for producing same WO2020013314A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980044150.3A CN112368330B (en) 2018-07-13 2019-07-12 Thermoplastic resin composition and method for producing same
US17/259,248 US11787927B2 (en) 2018-07-13 2019-07-12 Thermoplastic resin composition and method for producing same
EP19834304.8A EP3822315A4 (en) 2018-07-13 2019-07-12 Thermoplastic resin composition and method for producing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-133090 2018-07-13
JP2018133090 2018-07-13
JP2019129933A JP6863414B2 (en) 2018-07-13 2019-07-12 Thermoplastic resin composition and its manufacturing method
JP2019-129933 2019-07-12

Publications (1)

Publication Number Publication Date
WO2020013314A1 true WO2020013314A1 (en) 2020-01-16

Family

ID=69143046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027696 WO2020013314A1 (en) 2018-07-13 2019-07-12 Thermoplastic resin composition and method for producing same

Country Status (1)

Country Link
WO (1) WO2020013314A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140401A (en) * 1991-11-20 1993-06-08 Asahi Glass Co Ltd Thermoplastic fluoroelastomer composition and its production
JPH10101880A (en) * 1996-09-27 1998-04-21 Nichias Corp Thermoplastic elastomer composition, production thereof and formed product therefrom
JPH11147891A (en) 1997-11-14 1999-06-02 Nippon Mektron Ltd Production of vulcanization accelerator for fluorine-containing elastomer
WO1999045044A1 (en) 1998-03-06 1999-09-10 Daikin Industries, Ltd. Fluorochemical adhesive material and laminate made with the same
JP2003055577A (en) * 2001-08-22 2003-02-26 Daikin Ind Ltd Modified inorganic filler
WO2006057331A1 (en) * 2004-11-26 2006-06-01 Daikin Industries, Ltd. Thermoplastic polymer composition
WO2006057332A1 (en) * 2004-11-26 2006-06-01 Daikin Industries, Ltd. Thermoplastic polymer composition
WO2006120882A1 (en) * 2005-05-02 2006-11-16 Daikin Industries, Ltd. Crosslinkable polytetrafluoroethylene composition, cross- linked polytetrafluoroethylene powder, polytetrafluoro- ethylene moldings, resin blend compositions, and resin blend moldings
JP2007246928A (en) * 1998-11-13 2007-09-27 Daikin Ind Ltd Composition for crosslinking fluororubber
WO2009020182A1 (en) 2007-08-08 2009-02-12 Daikin Industries, Ltd. Thermoplastic resin composition containing fluorine-containing resin and crosslinked fluororubber
WO2014073489A1 (en) * 2012-11-06 2014-05-15 ユニマテック株式会社 Rubber laminate
JP2016222752A (en) * 2015-05-27 2016-12-28 日本バルカー工業株式会社 Thermoplastic fluorine resin composition and manufacturing method of crosslinked body

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05140401A (en) * 1991-11-20 1993-06-08 Asahi Glass Co Ltd Thermoplastic fluoroelastomer composition and its production
JPH10101880A (en) * 1996-09-27 1998-04-21 Nichias Corp Thermoplastic elastomer composition, production thereof and formed product therefrom
JPH11147891A (en) 1997-11-14 1999-06-02 Nippon Mektron Ltd Production of vulcanization accelerator for fluorine-containing elastomer
WO1999045044A1 (en) 1998-03-06 1999-09-10 Daikin Industries, Ltd. Fluorochemical adhesive material and laminate made with the same
JP2007246928A (en) * 1998-11-13 2007-09-27 Daikin Ind Ltd Composition for crosslinking fluororubber
JP2003055577A (en) * 2001-08-22 2003-02-26 Daikin Ind Ltd Modified inorganic filler
WO2006057331A1 (en) * 2004-11-26 2006-06-01 Daikin Industries, Ltd. Thermoplastic polymer composition
WO2006057332A1 (en) * 2004-11-26 2006-06-01 Daikin Industries, Ltd. Thermoplastic polymer composition
WO2006120882A1 (en) * 2005-05-02 2006-11-16 Daikin Industries, Ltd. Crosslinkable polytetrafluoroethylene composition, cross- linked polytetrafluoroethylene powder, polytetrafluoro- ethylene moldings, resin blend compositions, and resin blend moldings
WO2009020182A1 (en) 2007-08-08 2009-02-12 Daikin Industries, Ltd. Thermoplastic resin composition containing fluorine-containing resin and crosslinked fluororubber
WO2014073489A1 (en) * 2012-11-06 2014-05-15 ユニマテック株式会社 Rubber laminate
JP2016222752A (en) * 2015-05-27 2016-12-28 日本バルカー工業株式会社 Thermoplastic fluorine resin composition and manufacturing method of crosslinked body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3822315A4 *

Similar Documents

Publication Publication Date Title
JP5482790B2 (en) Laminated body
JP5273048B2 (en) Thermoplastic resin composition containing fluorine-containing resin and crosslinked fluororubber
JP4968338B2 (en) Laminated body consisting of fluororesin layer and elastomer layer
CN105722680B (en) Laminate, method for producing laminate, and fluororubber composition
JP5955222B2 (en) Laminated body
JP5880760B2 (en) Laminated body
JP6998906B2 (en) Thermoplastic resin composition and its manufacturing method
EP4056366A1 (en) Layered body and extrusion-molded article
WO2012081413A1 (en) Laminate
JP2013043400A (en) Laminate and method for manufacturing the same
JP5939099B2 (en) Laminated body
JP6863414B2 (en) Thermoplastic resin composition and its manufacturing method
WO2014123037A1 (en) Laminate body
JP2010089479A (en) Laminate comprising rubber layer and fluororesin layer and rubber composition for vulcanization
JP2015178258A (en) Laminate and production method of the same
JP2018015935A (en) Laminate, method for producing laminate and fluororubber composition
WO2020013314A1 (en) Thermoplastic resin composition and method for producing same
JP2012081682A (en) Laminate
WO2024070155A1 (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834304

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019834304

Country of ref document: EP

Effective date: 20210215