JP2018015935A - Laminate, method for producing laminate and fluororubber composition - Google Patents

Laminate, method for producing laminate and fluororubber composition Download PDF

Info

Publication number
JP2018015935A
JP2018015935A JP2016146331A JP2016146331A JP2018015935A JP 2018015935 A JP2018015935 A JP 2018015935A JP 2016146331 A JP2016146331 A JP 2016146331A JP 2016146331 A JP2016146331 A JP 2016146331A JP 2018015935 A JP2018015935 A JP 2018015935A
Authority
JP
Japan
Prior art keywords
layer
fluororubber
fluororesin
group
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016146331A
Other languages
Japanese (ja)
Inventor
祐己 桑嶋
Hiroki Kuwajima
祐己 桑嶋
梢 駒澤
Kozue Komazawa
梢 駒澤
利昭 増井
Toshiaki Masui
利昭 増井
剛志 稲葉
Tsuyoshi Inaba
剛志 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2016146331A priority Critical patent/JP2018015935A/en
Publication of JP2018015935A publication Critical patent/JP2018015935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminate which uses a fluororesin excellent in low fuel permeability, and can strongly bond a fluororesin layer and a fluororubber layer even when using a VdF/HFP/TFE copolymer having a coefficient of absorptivity at 1720 cmof more than 0.35 which was measured after having contacted triethylamine as a fluororubber.SOLUTION: A laminate has a fluororubber layer (A) and a fluororesin layer (B) laminated on the fluororubber layer (A), where the fluororubber layer (A) is a layer formed from a fluororubber composition, the fluororubber composition contains a fluororubber (a1), hydrotalcite and a basic polyfunctional compound which contains at least two nitrogen atoms in the molecule and has a distance between nitrogen atoms and nitrogen atoms in the molecule of 5.70 Å or more, the fluororubber (a1) is a vinylidene fluoride/hexafluoropropylene/tetrafluoroethylene copolymer, and the fluororesin layer (B) is composed of a fluororesin (b1) having a coefficient of fuel permeability of 2.0 g mm/m/day or less.SELECTED DRAWING: None

Description

本発明は、積層体、積層体の製造方法及びフッ素ゴム組成物に関する。 The present invention relates to a laminate, a method for producing the laminate, and a fluororubber composition.

従来、昨今の環境意識の高まりから、燃料揮発を防止するための法整備が進み、特に自動車業界では米国を中心に燃料揮発抑制の傾向が著しく、燃料バリア性に優れた材料へのニーズが大きくなりつつある。
特に、燃料輸送ゴムホースにおいて、低燃料透過性を良好にするためにフッ素樹脂をバリア層とした積層ホース(バリア層以外はゴム)が使用されているが、昨今の環境負荷低減の強い要求により、一層の低燃料透過性が必要とされる。
Conventionally, due to the recent increase in environmental awareness, the development of laws to prevent fuel volatilization has progressed. Especially in the automobile industry, there is a significant tendency to suppress fuel volatilization, especially in the United States, and there is a great need for materials with excellent fuel barrier properties. It is becoming.
In particular, in fuel transportation rubber hoses, laminated hoses with a fluororesin as a barrier layer (rubber other than the barrier layer) are used in order to improve low fuel permeability, but due to the recent strong demand for reducing environmental impact, A further low fuel permeability is required.

また、フッ素ゴムは、耐熱性、耐油性、耐老化性等の諸特性に優れることから、上記のバリア層以外のゴムとして使用することが提案されている。 Moreover, since fluororubber is excellent in various properties such as heat resistance, oil resistance, and aging resistance, it has been proposed to use it as a rubber other than the above-described barrier layer.

しかしながら、フッ素樹脂、特に低燃料透過性に優れるフッ素樹脂をバリア層として使用する場合、相手材である外内層のフッ素ゴムとの接着が困難である。そこで、特許文献1には、低燃料透過性に優れるフッ素樹脂を用いた場合であっても、フッ素樹脂層とフッ素ゴム層とを強固に接着させることができる積層体を提供することを目的として、フッ素ゴム層(A)と、フッ素ゴム層(A)上に積層されたフッ素樹脂層(B)と、を備える積層体であって、前記フッ素ゴム層(A)は、フッ素ゴム組成物から形成される層であり、前記フッ素ゴム組成物は、フッ素ゴム(a1)、及び、分子中に少なくとも2個の窒素原子を含有し、分子中の窒素原子−窒素原子間の距離が5.70Å以上である塩基性の多官能化合物を含み、前記フッ素ゴム(a1)は、トリエチルアミンと接触させた後に測定した1720cm−1の吸光係数が0.35以下であり、前記フッ素樹脂層(B)は、燃料透過係数が2.0g・mm/m/day以下であるフッ素樹脂(b1)から構成されることを特徴とする積層体が記載されている。 However, when a fluororesin, particularly a fluororesin excellent in low fuel permeability, is used as the barrier layer, it is difficult to bond the fluororubber of the outer and inner layers as the counterpart material. Therefore, Patent Document 1 aims to provide a laminate capable of firmly bonding a fluororesin layer and a fluororubber layer even when a fluororesin excellent in low fuel permeability is used. , A laminate comprising a fluororubber layer (A) and a fluororesin layer (B) laminated on the fluororubber layer (A), wherein the fluororubber layer (A) is made of a fluororubber composition. The fluororubber composition is a layer to be formed, the fluororubber composition contains at least two nitrogen atoms in the molecule, and the distance between the nitrogen atom and the nitrogen atom in the molecule is 5.70Å. The fluororubber (a1) contains a basic polyfunctional compound as described above, and the extinction coefficient at 1720 cm −1 measured after contacting with triethylamine is 0.35 or less, and the fluororesin layer (B) is The fuel permeability coefficient The laminate is characterized by being composed of a fluororesin (b1) that is 2.0 g · mm / m 2 / day or less.

国際公開第2015/072491号International Publication No. 2015/072491

しかし、特許文献1に記載された方法では、使用できるフッ素ゴムがトリエチルアミンと接触させた後に測定した1720cm−1の吸光係数が0.35以下であるものに限られるため、フッ素ゴムとして、吸光係数が0.35を超え、燃料バリア性及び耐燃料性に優れるフッ化ビニリデン(VdF)/ヘキサフルオロプロピレン(HFP)/テトラフルオロエチレン(TFE)共重合体を用いた場合であってもフッ素ゴム層とフッ素樹脂層とが強固に接着した積層体が望まれる。 However, in the method described in Patent Document 1, the fluororubber that can be used is limited to those having an extinction coefficient of 1720 cm −1 measured after contacting with triethylamine of 0.35 or less. Fluorine rubber layer even when a vinylidene fluoride (VdF) / hexafluoropropylene (HFP) / tetrafluoroethylene (TFE) copolymer having a fuel barrier property and fuel resistance of more than 0.35 is used A laminate in which the fluororesin layer and the fluororesin layer are firmly bonded is desired.

本発明は、このような現状に鑑み、低燃料透過性に優れるフッ素樹脂を用い、かつ、フッ素ゴムとしてトリエチルアミンと接触させた後に測定した1720cm−1の吸光係数が0.35を超えるVdF/HFP/TFE共重合体を用いた場合であっても、フッ素樹脂層とフッ素ゴム層とを強固に接着させることができる積層体を提供することを目的とする。 In view of such a current situation, the present invention uses a fluororesin excellent in low fuel permeability and has a VdF / HFP with an extinction coefficient of 1720 cm −1 measured after contacting with triethylamine as a fluororubber of more than 0.35. It is an object to provide a laminate capable of firmly bonding a fluororesin layer and a fluororubber layer even when a / TFE copolymer is used.

本発明者等は、低燃料透過性に優れたフッ素樹脂と、VdF/HFP/TFE共重合体とが強固に接着した積層体について鋭意検討し、フッ素ゴム層を形成するためのフッ素ゴム組成物に着目した。そして、VdF/HFP/TFE共重合体をフッ素ゴムとして用いた場合、フッ素ゴム組成物にハイドロタルサイトと特定の塩基性の多官能化合物を含有させることによって、フッ素樹脂層とフッ素ゴム層とを強固に接着させることが可能となることを見出し、本発明は完成したものである。 The present inventors have intensively studied a laminate in which a fluororesin excellent in low fuel permeability and a VdF / HFP / TFE copolymer are firmly bonded, and a fluororubber composition for forming a fluororubber layer. Focused on. When the VdF / HFP / TFE copolymer is used as a fluororubber, the fluororubber composition contains a hydrotalcite and a specific basic polyfunctional compound to thereby form a fluororesin layer and a fluororubber layer. The present invention has been completed by finding that it is possible to bond firmly.

すなわち、本発明は、フッ素ゴム層(A)と、フッ素ゴム層(A)上に積層されたフッ素樹脂層(B)と、を備える積層体であって、上記フッ素ゴム層(A)は、フッ素ゴム組成物から形成される層であり、上記フッ素ゴム組成物は、フッ素ゴム(a1)、ハイドロタルサイト、及び、分子中に少なくとも2個の窒素原子を含有し、分子中の窒素原子−窒素原子間の距離が5.70Å以上である塩基性の多官能化合物を含み、フッ素ゴム(a1)は、VdF/HFP/TFE共重合体であり、上記フッ素樹脂層(B)は、燃料透過係数が2.0g・mm/m/day以下であるフッ素樹脂(b1)から構成されることを特徴とする積層体である。 That is, the present invention is a laminate comprising a fluororubber layer (A) and a fluororesin layer (B) laminated on the fluororubber layer (A), wherein the fluororubber layer (A) A layer formed from a fluororubber composition, wherein the fluororubber composition contains at least two nitrogen atoms in the fluororubber (a1), hydrotalcite, and molecules; It contains a basic polyfunctional compound having a distance between nitrogen atoms of 5.70 mm or more, the fluororubber (a1) is a VdF / HFP / TFE copolymer, and the fluororesin layer (B) is fuel permeable. A laminate comprising a fluororesin (b1) having a coefficient of 2.0 g · mm / m 2 / day or less.

上記フッ素樹脂(b1)は、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン系共重合体、及び、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体からなる群より選択される少なくとも1種であり、上記テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体は、テトラフルオロエチレン、ヘキサフルオロプロピレン及びフッ化ビニリデンの共重合割合(モル%比)が、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン=75〜95/0.1〜10/0.1〜19であることが好ましい。 The fluororesin (b1) is at least one selected from the group consisting of polychlorotrifluoroethylene, chlorotrifluoroethylene-based copolymers, and tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymers. In the tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, the copolymerization ratio (mole% ratio) of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride is tetrafluoroethylene / hexafluoropropylene / fluoride. It is preferable that it is vinylidene chloride = 75-95 / 0.1-10 / 0.1-19.

上記フッ素ゴム組成物は、パーオキサイド加硫系加硫剤を含有することが好ましい。 The fluororubber composition preferably contains a peroxide vulcanizing agent.

上記塩基性の多官能化合物は、−NH、−NH 、−NHCOOH、−NHCOO、−N=CR(式中、R及びRは、独立して、炭素数0〜12の有機基である)、−NR(式中、R及びRは、独立して、炭素数0〜12の有機基である)、及び、−NR(式中、R、R及びRは、独立して、炭素数0〜12の有機基である)である官能基を2個以上有することが好ましい。 The basic polyfunctional compounds, -NH 2, -NH 3 +, -NHCOOH, -NHCOO -, in -N = CR 1 R 2 (wherein, R 1 and R 2 are independently a carbon number 0 -NR 3 R 4 (wherein R 3 and R 4 are each independently an organic group having 0 to 12 carbon atoms), and -NR 3 R 4 R 5. It is preferable to have two or more functional groups (wherein R 3 , R 4 and R 5 are independently an organic group having 0 to 12 carbon atoms).

上記塩基性の多官能化合物は、−NH、−NH 、−N=CR(式中、R及びRは、独立して、炭素数0〜12の有機基である)、及び、−NR(式中、R、R及びRは、独立して、炭素数0〜12の有機基である)である官能基を2個以上有することが好ましい。 The basic polyfunctional compound is —NH 2 , —NH 3 + , —N═CR 1 R 2 (wherein R 1 and R 2 are independently an organic group having 0 to 12 carbon atoms). ) And -NR 3 R 4 R 5 (wherein R 3 , R 4 and R 5 are each independently an organic group having 0 to 12 carbon atoms). Is preferred.

上記塩基性の多官能化合物は、N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミン及びNH−(CH−NH(式中、nは5〜12)からなる群より選択される少なくとも1種であることが好ましい。 The basic polyfunctional compound is selected from the group consisting of N, N′-dicinnamylidene-1,6-hexamethylenediamine and NH 2 — (CH 2 ) n —NH 2 (where n is 5 to 12). It is preferable that it is at least one kind.

上記塩基性の多官能化合物は、N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミン及びヘキサメチレンジアミンからなる群より選択される少なくとも1種であることが好ましい。 The basic polyfunctional compound is preferably at least one selected from the group consisting of N, N′-dicinnamylidene-1,6-hexamethylenediamine and hexamethylenediamine.

本発明の積層体は、フッ素ゴム層(A)とフッ素樹脂層(B)との接着強度が12N/cm以上であることが好ましい。 In the laminate of the present invention, the adhesive strength between the fluororubber layer (A) and the fluororesin layer (B) is preferably 12 N / cm or more.

本発明の積層体は、フッ素樹脂層(B)の両側にフッ素ゴム層(A)が積層されていることが好ましい。
本発明の積層体は、フッ素ゴム層(A)の両側にフッ素樹脂層(B)が積層されていることも好ましい。
本発明の積層体は、更に、非フッ素ゴム層(C1a)を含み、フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(C1a)の順に積層されているものであることも好ましい。
本発明の積層体は、更に、非フッ素ゴム層(D1a)を含み、非フッ素ゴム層(D1a)−フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(C1a)の順、フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(D1a)−非フッ素ゴム層(C1a)の順、又は、フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(C1a)−非フッ素ゴム層(D1a)の順、に積層されていることが好ましい。
In the laminate of the present invention, the fluororubber layer (A) is preferably laminated on both sides of the fluororesin layer (B).
In the laminate of the present invention, it is also preferred that the fluororesin layer (B) is laminated on both sides of the fluororubber layer (A).
The laminate of the present invention further includes a non-fluorinated rubber layer (C1a), and is laminated in the order of a fluororubber layer (A) -a fluororesin layer (B) -a non-fluorinated rubber layer (C1a). Is also preferable.
The laminate of the present invention further includes a non-fluorine rubber layer (D1a), in the order of non-fluorine rubber layer (D1a) -fluorine rubber layer (A) -fluorine resin layer (B) -non-fluorine rubber layer (C1a). , Fluorine rubber layer (A) -fluorine resin layer (B) -non-fluorine rubber layer (D1a) -non-fluorine rubber layer (C1a), or fluorine rubber layer (A) -fluorine resin layer (B) -non The layers are preferably laminated in the order of fluororubber layer (C1a) -non-fluorine rubber layer (D1a).

本発明の積層体は、フッ素ゴム層(A)とフッ素樹脂層(B)とが加硫接着されていることが好ましい。 In the laminate of the present invention, the fluororubber layer (A) and the fluororesin layer (B) are preferably vulcanized and bonded.

本発明はまた、フッ素ゴム(a1)と、ハイドロタルサイトと、分子中に少なくとも2個の窒素原子を含有し、分子中の窒素原子−窒素原子間の距離が5.70Å以上である塩基性の多官能化合物とを混合してフッ素ゴム組成物を得る工程、フッ素ゴム組成物を成形して得られる未加硫フッ素ゴム層と、フッ素樹脂層とを積層する工程、及び、積層された未加硫フッ素ゴム層とフッ素樹脂層に加硫処理する工程、を含み、上記フッ素ゴム(a1)は、フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体であり、前記フッ素樹脂層は、燃料透過係数が2.0g・mm/m/day以下であるフッ素樹脂(b1)から構成されることを特徴とする積層体の製造方法でもある。 The present invention also includes a fluororubber (a1), a hydrotalcite, and a basic compound containing at least two nitrogen atoms in the molecule and having a distance between nitrogen atoms and nitrogen atoms in the molecule of 5.70 cm or more. A step of obtaining a fluororubber composition by mixing with a polyfunctional compound, a step of laminating an unvulcanized fluororubber layer obtained by molding the fluororubber composition, and a fluororesin layer, A step of vulcanizing the vulcanized fluororubber layer and the fluororesin layer, wherein the fluororubber (a1) is a vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene copolymer, and the fluororesin layer is It is also a method for producing a laminate, which is composed of a fluororesin (b1) having a fuel permeability coefficient of 2.0 g · mm / m 2 / day or less.

本発明は更に、フッ素ゴム(a1)と、ハイドロタルサイトと、分子中に少なくとも2個の窒素原子を含有し、分子中の窒素原子−窒素原子間の距離が5.70Å以上である塩基性の多官能化合物とを含み、上記フッ素ゴム(a1)は、フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体であるフッ素ゴム組成物でもある。 The present invention further includes a fluororubber (a1), a hydrotalcite, a basic compound containing at least two nitrogen atoms in the molecule, and the distance between the nitrogen atoms and the nitrogen atoms in the molecule is 5.70 cm or more. The fluororubber (a1) is also a fluororubber composition which is a vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene copolymer.

本発明の積層体は、上記構成を有することから、低燃料透過性に優れるフッ素樹脂を用い、かつ、フッ素ゴムとしてトリエチルアミンと接触させた後に測定した1720cm−1の吸光係数が0.35を超えるVdF/HFP/TFE共重合体を用いた場合であっても、フッ素樹脂層とフッ素ゴム層とを強固に接着させることができる。 Since the laminate of the present invention has the above-described configuration, the extinction coefficient of 1720 cm −1 measured after using a fluororesin excellent in low fuel permeability and contacting with triethylamine as fluororubber exceeds 0.35. Even when the VdF / HFP / TFE copolymer is used, the fluororesin layer and the fluororubber layer can be firmly bonded.

本発明の積層体は、フッ素ゴム層(A)と、フッ素ゴム層(A)上に積層されたフッ素樹脂層(B)とを備える。
以下、各構成要素について説明する。
The laminate of the present invention comprises a fluororubber layer (A) and a fluororesin layer (B) laminated on the fluororubber layer (A).
Hereinafter, each component will be described.

(A)フッ素ゴム層
上記フッ素ゴム層(A)は、フッ素ゴム組成物から形成される層である。
上記フッ素ゴム層(A)は、通常、フッ素ゴム組成物を成形して未加硫フッ素ゴム層を得た後、加硫処理して得られるものである。
上記フッ素ゴム組成物は、フッ素ゴム(a1)と、ハイドロタルサイトと、分子中に少なくとも2個の窒素原子を含有し、分子中の窒素原子−窒素原子間の距離が5.70Å以上である塩基性の多官能化合物を含み、フッ素ゴム(a1)は、VdF/HFP/TFE共重合体である。上記フッ素ゴム組成物も本発明の一つである。
上記特定のフッ素ゴムとハイドロタルサイトと上記塩基性の多官能化合物とを併用することによって、低燃料透過性に優れるフッ素樹脂(b1)を使用した場合であっても、フッ素ゴム層(A)とフッ素樹脂層(B)とを強固に接着させることができる。
例えば、フッ素ゴムとして、VdF/TFE/パーフルオロ(メチルビニルエーテル)共重合体を用いた場合、後述する比較例3で示されるように、ハイドロタルサイトと上記多官能化合物を含む場合であってもフッ素ゴム層とフッ素樹脂層とが強固に接着しない。本発明者等は、ハイドロタルサイトと上記多官能化合物との併用が、VdF/HFP/TFE共重合体に特異的に作用し、フッ素ゴム層(A)とフッ素樹脂層(B)とを強固に接着できることを見出し、本発明は完成に至ったのである。
(A) Fluoro rubber layer The fluoro rubber layer (A) is a layer formed from a fluoro rubber composition.
The fluororubber layer (A) is usually obtained by molding a fluororubber composition to obtain an unvulcanized fluororubber layer and then vulcanizing it.
The fluororubber composition contains fluororubber (a1), hydrotalcite, and at least two nitrogen atoms in the molecule, and the distance between the nitrogen atom and the nitrogen atom in the molecule is 5.70 cm or more. It contains a basic polyfunctional compound, and the fluororubber (a1) is a VdF / HFP / TFE copolymer. The fluororubber composition is also one aspect of the present invention.
Even when the fluororesin (b1) excellent in low fuel permeability is used by using the specific fluororubber, hydrotalcite and the basic polyfunctional compound in combination, the fluororubber layer (A) And the fluororesin layer (B) can be firmly bonded.
For example, when a VdF / TFE / perfluoro (methyl vinyl ether) copolymer is used as the fluororubber, even when hydrotalcite and the above polyfunctional compound are included, as shown in Comparative Example 3 described later. The fluororubber layer and the fluororesin layer do not adhere firmly. The present inventors have found that the combined use of hydrotalcite and the above polyfunctional compound acts specifically on the VdF / HFP / TFE copolymer, and strengthens the fluororubber layer (A) and the fluororesin layer (B). As a result, the present invention has been completed.

フッ素ゴム(a1)は、VdF/HFP/TFE共重合体である。上記フッ素ゴム(a1)は、未加硫のフッ素ゴムであり、通常、主鎖を構成する炭素原子に結合しているフッ素原子を有し、且つゴム弾性を有する非晶質の重合体からなる。フッ素ゴム(a1)は、通常、明確な融点を有しないものである。 The fluororubber (a1) is a VdF / HFP / TFE copolymer. The fluororubber (a1) is an unvulcanized fluororubber, and usually comprises an amorphous polymer having a fluorine atom bonded to a carbon atom constituting the main chain and having rubber elasticity. . The fluororubber (a1) usually does not have a clear melting point.

上記VdF/HFP/TFE共重合体は、VdFに基づく重合単位(VdF単位)と、HFPに基づく重合単位(HFP単位)と、TFEに基づく重合単位(TFE単位)とを含むものである。
フッ素ゴム層(A)とフッ素樹脂層(B)との接着性、燃料バリア性、及び、耐燃料性が優れることから、VdF/HFP/TFEが30〜85/5〜50/5〜40(モル比)であることが好ましく、VdF/HFP/TFEが35〜80/8〜45/8〜35(モル比)であることがより好ましく、VdF/HFP/TFEが40〜80/10〜40/10〜30(モル比)であることが更に好ましく、VdF/HFP/TFEが45〜75/10〜35/10〜25(モル比)であることが最も好ましい。
The VdF / HFP / TFE copolymer includes polymerized units based on VdF (VdF units), polymerized units based on HFP (HFP units), and polymerized units based on TFE (TFE units).
Since the adhesion between the fluororubber layer (A) and the fluororesin layer (B), fuel barrier properties, and fuel resistance are excellent, VdF / HFP / TFE is 30 to 85/5 to 50/5 to 40 ( Molar ratio), VdF / HFP / TFE is preferably 35-80 / 8-45 / 8-35 (molar ratio), and VdF / HFP / TFE is 40-80 / 10-40. It is more preferable that the molar ratio is / 10 to 30 (molar ratio), and VdF / HFP / TFE is most preferably 45 to 75/10 to 35/10 to 25 (molar ratio).

上記VdF/HFP/TFE共重合体は、他のモノマーに基づく重合単位を含有するものであってもよく、他のモノマーとしては、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、クロロトリフルオロエチレン、トリフルオロエチレン、ヘキサフルオロイソブテン、フッ化ビニル、エチレン、プロピレン、アルキルビニルエーテル、および、加硫部位を与える単量体からなる群より選択される少なくとも1種のモノマー等が挙げられる。加硫部位を与える単量体については後述する。
また、他のモノマーに基づく重合単位の含有量は、10モル%以下であることが好ましく、5モル%以下であることがより好ましく、3モル%以下であることが更に好ましく、2モル%以下であることが最も好ましい。フッ素ゴム(a1)は、VdF単位とHFP単位とTFE単位のみからなる共重合体であることも好ましい。
The VdF / HFP / TFE copolymer may contain a polymer unit based on another monomer. Examples of the other monomer include perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (Propyl vinyl ether), chlorotrifluoroethylene, trifluoroethylene, hexafluoroisobutene, vinyl fluoride, ethylene, propylene, alkyl vinyl ether, and at least one selected from the group consisting of monomers that give vulcanization sites And monomers. The monomer that gives the vulcanization site will be described later.
The content of polymerized units based on other monomers is preferably 10 mol% or less, more preferably 5 mol% or less, still more preferably 3 mol% or less, and further preferably 2 mol% or less. Most preferably. The fluororubber (a1) is also preferably a copolymer composed of only VdF units, HFP units, and TFE units.

フッ素ゴム(a1)は、トリエチルアミンと接触させた後に測定した1720cm−1の吸光係数が0.35超のVdF/HFP/TFE共重合体であることが好ましい。吸光係数が0.35を超えるVdF/HFP/TFE共重合体は、燃料バリア性及び耐燃料性に優れる。一方、フッ素ゴムの吸光係数が0.35を超える場合、フッ素ゴム層(A)とフッ素樹脂層(B)とが接着しにくい。しかし、ハイドロタルサイトと特定の塩基性の多官能化合物とを併用することによって、VdF/HFP/TFE共重合体であるフッ素ゴム(a1)の吸光係数が0.35を超える場合であっても、フッ素樹脂層とフッ素ゴム層とを強固に接着させることができる。上記吸光係数は、0.36以上であることがより好ましく、0.37以上であることが更に好ましく、0.38以上であることが最も好ましい。吸光係数の上限は、例えば、0.43であり、好ましくは0.41であり、更に好ましくは0.40である。
上記トリエチルアミンと接触させた後に測定した1720cm−1の吸光係数は、下記方法で測定したものである。
まず、アセトン、テトラヒドロフラン(THF)又はメチルエチルケトン(MEK)10cc中にポリマー(フッ素ゴム)0.56gを完全に溶解させた後、トリエチルアミン4.9gを入れ、シャーレに溶液を移し、アセトン又はTHF又はMEKを気化させた後、シャーレごと70℃の恒温槽で3時間加熱し、加熱後のポリマーの膜を空気雰囲気で赤外分光法(IR)により分析する。
そして、IRの分析結果において、3000〜3030cm−1の吸光係数を1.0とした時の1720cm−1のピーク強度を1720cm−1の吸光係数とする。
The fluororubber (a1) is preferably a VdF / HFP / TFE copolymer having an extinction coefficient of 1720 cm −1 measured after contact with triethylamine of more than 0.35. A VdF / HFP / TFE copolymer having an extinction coefficient exceeding 0.35 is excellent in fuel barrier properties and fuel resistance. On the other hand, when the extinction coefficient of fluororubber exceeds 0.35, the fluororubber layer (A) and the fluororesin layer (B) are difficult to adhere. However, even when the hydrotalcite and a specific basic polyfunctional compound are used in combination, even when the extinction coefficient of the fluororubber (a1) which is a VdF / HFP / TFE copolymer exceeds 0.35. The fluororesin layer and the fluororubber layer can be firmly bonded. The extinction coefficient is more preferably 0.36 or more, still more preferably 0.37 or more, and most preferably 0.38 or more. The upper limit of the extinction coefficient is, for example, 0.43, preferably 0.41, and more preferably 0.40.
The extinction coefficient of 1720 cm −1 measured after contacting with the triethylamine is measured by the following method.
First, 0.56 g of polymer (fluororubber) was completely dissolved in 10 cc of acetone, tetrahydrofuran (THF) or methyl ethyl ketone (MEK), then 4.9 g of triethylamine was added, the solution was transferred to a petri dish, and acetone, THF or MEK Then, the petri dish is heated for 3 hours in a constant temperature bath at 70 ° C., and the heated polymer film is analyzed by infrared spectroscopy (IR) in an air atmosphere.
Then, in the analysis result of the IR, the peak intensity of 1720 cm -1 when a 1.0 an extinction coefficient of 3000~3030Cm -1 and extinction coefficient of 1720 cm -1.

上記フッ素ゴム(a1)は、フッ素含有率が、60質量%以上であることが好ましく、62質量%以上であることがより好ましく、64質量%以上であることが更に好ましい。フッ素含有率の上限は特に限定されないが、74質量%以下であることが好ましく、73質量%以下であることがより好ましく、72質量%以下であることが更に好ましい。フッ素含有率は、フッ素ゴム(a1)の組成から計算によって求めることができる。 The fluorine rubber (a1) preferably has a fluorine content of 60% by mass or more, more preferably 62% by mass or more, and still more preferably 64% by mass or more. The upper limit of the fluorine content is not particularly limited, but is preferably 74% by mass or less, more preferably 73% by mass or less, and further preferably 72% by mass or less. The fluorine content can be determined by calculation from the composition of the fluororubber (a1).

上記フッ素ゴム(a1)は、ムーニー粘度(ML(1+10)(121℃))が2〜200であることが好ましく、5〜100であることがより好ましい。
上記ムーニー粘度は、ASTM−D1646およびJISK6300に準拠して測定した値である。
The fluororubber (a1) preferably has a Mooney viscosity (ML (1 + 10) (121 ° C.)) of 2 to 200, more preferably 5 to 100.
The Mooney viscosity is a value measured according to ASTM-D1646 and JISK6300.

上記フッ素ゴム(a1)は、数平均分子量(Mn)が5000〜500000であることが好ましく、10000〜500000であることがより好ましい。
上記数平均分子量はGPC法により測定した値である。
The fluororubber (a1) preferably has a number average molecular weight (Mn) of 5,000 to 500,000, more preferably 10,000 to 500,000.
The number average molecular weight is a value measured by the GPC method.

上記フッ素ゴム(a1)は、フッ素ゴム層(A)とフッ素樹脂層(B)とがより強固に接着することから、パーオキサイド加硫可能なフッ素ゴムが好ましい。上記パーオキサイド加硫可能なフッ素ゴムとしては特に限定されず、パーオキサイド加硫可能な部位(加硫部位)を有するフッ素ゴムであればよい。
上記加硫部位を導入する方法としては、フッ素ゴムの重合時に加硫部位を与える単量体を共重合する方法、重合開始剤又は連鎖移動剤として臭素化合物又はヨウ素化合物のような加硫部位を与える化合物を使用する方法等が挙げられる。
The fluororubber (a1) is preferably a fluororubber capable of peroxide vulcanization because the fluororubber layer (A) and the fluororesin layer (B) adhere more firmly. The peroxide vulcanizable fluoro rubber is not particularly limited as long as it is a fluoro rubber having a peroxide vulcanizable site (vulcanized site).
As a method for introducing the vulcanization site, a method of copolymerizing a monomer that gives a vulcanization site during the polymerization of fluororubber, a vulcanization site such as a bromine compound or an iodine compound as a polymerization initiator or a chain transfer agent is used. The method of using the compound to give is mentioned.

上記加硫部位を与える単量体としては、たとえば、一般式:
CX =CX−RfCHR
(式中、Xは、水素原子、フッ素原子または−CH、Rfは、フルオロアルキレン基、パーフルオロアルキレン基、フルオロ(ポリ)オキシアルキレン基またはパーフルオロ(ポリ)オキシアルキレン基、Rは、水素原子または−CH、Xは、ヨウ素原子または臭素原子である。)で表されるヨウ素または臭素含有単量体、一般式:
CX =CX−Rf
(式中、Xは、水素原子、フッ素原子または−CH、Rfは、フルオロアルキレン基、パーフルオロアルキレン基、フルオロ(ポリ)オキシアルキレン基またはパーフルオロ(ポリ)オキシアルキレン基、Xは、ヨウ素原子または臭素原子である。)で表されるヨウ素または臭素含有単量体(好ましくは、一般式:CH=CH(CFI(nは2〜8の整数である。)で表されるヨウ素含有単量体)、一般式:
CF=CFO(CFCF(CF)O)(CF−X
(式中、mは0〜5の整数、nは1〜3の整数、Xは、シアノ基、カルボキシル基、アルコキシカルボニル基、ヨウ素原子、又は臭素原子である。)で表される単量体、一般式:
CH=CFCFO(CF(CF)CFO)(CF(CF))−X
(式中、mは0〜5の整数、nは1〜3の整数、Xは、シアノ基、カルボキシル基、アルコキシカルボニル基、ヨウ素原子、臭素原子又は−CHOHである。)で表される単量体、一般式:
CR=CR−Z−CR=CR
(式中、R、R、R、R、R及びR、は、同一又は異なって、水素原子又は炭素数1〜5のアルキル基である。Zは、直鎖又は分岐状で酸素原子を有していてもよい、炭素数1〜18のアルキレン基、炭素数3〜18のシクロアルキレン基、少なくとも部分的にフッ素化している炭素数1〜10のアルキレン若しくはオキシアルキレン基、又は、
−(Q)−CFO−(CFCFO)(CFO)−CF−(Q)
(式中、Qはアルキレンまたはオキシアルキレン基である。pは0または1である。m/nが0.2〜5である。)で表され、分子量が500〜10000である(パー)フルオロポリオキシアルキレン基である。)で表される単量体等が挙げられる。
Examples of the monomer that gives the vulcanization site include a general formula:
CX 1 2 = CX 1 -Rf 3 CHR 1 X 2
(Wherein X 1 is a hydrogen atom, a fluorine atom or —CH 3 , and Rf 3 is a fluoroalkylene group, a perfluoroalkylene group, a fluoro (poly) oxyalkylene group or a perfluoro (poly) oxyalkylene group, R 1 Is a hydrogen atom or —CH 3 , X 2 is an iodine atom or a bromine atom.) An iodine or bromine-containing monomer represented by the general formula:
CX 1 2 = CX 1 -Rf 3 X 2
(In the formula, X 1 is a hydrogen atom, a fluorine atom or —CH 3 , and Rf 3 is a fluoroalkylene group, a perfluoroalkylene group, a fluoro (poly) oxyalkylene group or a perfluoro (poly) oxyalkylene group, X 2 Is an iodine or bromine-containing monomer represented by the general formula: CH 2 ═CH (CF 2 ) n I (n is an integer of 2 to 8). ) Iodine-containing monomer represented by the general formula:
CF 2 = CFO (CF 2 CF (CF 3) O) m (CF 2) n -X 3
(Wherein, m is an integer of 0 to 5, n is an integer of 1 to 3, and X 3 is a cyano group, a carboxyl group, an alkoxycarbonyl group, an iodine atom, or a bromine atom). Body, general formula:
CH 2 = CFCF 2 O (CF (CF 3) CF 2 O) m (CF (CF 3)) n -X 4
(Wherein, m is an integer of 0 to 5, n is an integer of 1 to 3, and X 4 is a cyano group, a carboxyl group, an alkoxycarbonyl group, an iodine atom, a bromine atom, or —CH 2 OH). Monomer, general formula:
CR 2 R 3 = CR 4 -Z -CR 5 = CR 6 R 7
(Wherein R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are the same or different and are a hydrogen atom or an alkyl group having 1 to 5 carbon atoms. Z is linear or branched. An alkylene group having 1 to 18 carbon atoms, a cycloalkylene group having 3 to 18 carbon atoms, an alkylene or oxyalkylene group having 1 to 10 carbon atoms that is at least partially fluorinated Or
- (Q) p -CF 2 O- (CF 2 CF 2 O) m (CF 2 O) n -CF 2 - (Q) p -
(Wherein Q is an alkylene or oxyalkylene group, p is 0 or 1, m / n is 0.2 to 5), and the molecular weight is 500 to 10,000 (per) fluoro. It is a polyoxyalkylene group. ) And the like.

上記一般式:
CR=CR−Z−CR=CR
で表される化合物としては、例えば、CH=CH−(CF−CH=CH、CH=CH−(CF−CH=CH、CH=CH−(CF−CH=CH、下記式:
CH=CH−Z−CH=CH
(式中、Zは、−CHOCH−CFO−(CFCFO)m1(CFO)n1−CF−CHOCH−で表されるフルオロポリオキシアルキレン基であり、m1/n1は0.5であり、分子量は2000である。)で表される単量体等が挙げられる。
General formula above:
CR 2 R 3 = CR 4 -Z -CR 5 = CR 6 R 7
In The compound represented by, for example, CH 2 = CH- (CF 2 ) 2 -CH = CH 2, CH 2 = CH- (CF 2) 4 -CH = CH 2, CH 2 = CH- (CF 2 6 -CH = CH 2 , the following formula:
CH 2 = CH-Z 1 -CH = CH 2
(In the formula, Z 1 is a fluoropolyoxyalkylene group represented by —CH 2 OCH 2 —CF 2 O— (CF 2 CF 2 O) m1 (CF 2 O) n1 —CF 2 —CH 2 OCH 2 —). And m1 / n1 is 0.5 and the molecular weight is 2000.).

加硫部位を与える単量体としては、CF=CFOCFCF(CF)OCFCFCN、CF=CFOCFCF(CF)OCFCFCOOH、CF=CFOCFCF(CF)OCFCFCHI、CF=CFOCFCFCHI、CH=CFCFOCF(CF)CFOCF(CF)CN、CH=CFCFOCF(CF)CFOCF(CF)COOH、CH=CFCFOCF(CF)CFOCF(CF)CHOH、及び、CH=CHCFCFI、CH=CH(CFCH=CHからなる群より選択される少なくとも1種であることが好ましい形態の一つである。
上記加硫部位を与える単量体としては、CF=CFOCFCFCHIが、パーオキサイドを用いた加硫において、加硫密度を向上させて、圧縮永久歪を良好にすることができるので、特に好ましい。
Monomers that give vulcanization sites include CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CN, CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF 2 COOH, CF 2 = CFOCF 2 CF ( CF 3) OCF 2 CF 2 CH 2 I, CF 2 = CFOCF 2 CF 2 CH 2 I, CH 2 = CFCF 2 OCF (CF 3) CF 2 OCF (CF 3) CN, CH 2 = CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COOH, CH 2 ═CFCF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) CH 2 OH, and CH 2 ═CHCF 2 CF 2 I, CH 2 ═CH (CF 2 ) it is one of the preferred embodiments is at least one selected from the group consisting of 2 CH = CH 2.
CF 2 = CFOCF 2 CF 2 CH 2 I is a monomer that gives the vulcanization site, and it can improve the vulcanization density and improve compression set in vulcanization using peroxide. This is particularly preferable because it can be performed.

加硫部位を与える単量体としてはまた、たとえば、一般式:
CX =CX−RfCHR
(式中、Xは、水素原子、フッ素原子または−CH、Rfは、フルオロアルキレン基、パーフルオロアルキレン基、フルオロポリオキシアルキレン基またはパーフルオロポリオキシアルキレン基、Rは、水素原子または−CH、Xは、ヨウ素原子または臭素原子である)
で表されるヨウ素または臭素含有単量体、一般式:
CX =CX−Rf
(式中、Xは、水素原子、フッ素原子または−CH、Rfは、フルオロアルキレン基、パーフルオロアルキレン基、フルオロポリオキシアルキレン基またはパーフルオロポリオキシアルキレン基、Xは、ヨウ素原子または臭素原子である)
で表されるヨウ素または臭素含有単量体(好ましくはCH=CH(CFI(nは2〜8の整数である)で表されるヨウ素含有単量体)、一般式:
CF=CFO(CFCF(CF)O)(CF−X
(式中、mは0〜5の整数、nは1〜3の整数、Xはヨウ素原子または臭素原子である)
で表される単量体、及び、一般式:
CH=CFCFO(CF(CF)CFO)(CF(CF))−X
(式中、mは0〜5の整数、nは1〜3の整数、Xはヨウ素原子または臭素原子である)
で表される単量体、からなる群より選択される少なくとも1種の単量体であることも好ましい形態の一つである。このようなヨウ素または臭素含有単量体を上記他の単量体として使用することによって、VdF/HFP/TFE共重合体を製造することもできる。
Monomers that provide vulcanization sites may also include, for example, the general formula:
CX 1 2 = CX 1 -Rf 3 CHR 1 X 2
(In the formula, X 1 is a hydrogen atom, fluorine atom or —CH 3 , Rf 3 is a fluoroalkylene group, perfluoroalkylene group, fluoropolyoxyalkylene group or perfluoropolyoxyalkylene group, and R 1 is a hydrogen atom. Or —CH 3 and X 2 are an iodine atom or a bromine atom)
Iodine or bromine-containing monomer represented by the general formula:
CX 1 2 = CX 1 -Rf 3 X 2
(Wherein X 1 is a hydrogen atom, a fluorine atom or —CH 3 , Rf 3 is a fluoroalkylene group, a perfluoroalkylene group, a fluoropolyoxyalkylene group or a perfluoropolyoxyalkylene group, and X 2 is an iodine atom. Or a bromine atom)
An iodine- or bromine-containing monomer represented by (preferably an iodine-containing monomer represented by CH 2 ═CH (CF 2 ) n I (n is an integer of 2 to 8)), a general formula:
CF 2 = CFO (CF 2 CF (CF 3) O) m (CF 2) n -X 5
(In the formula, m is an integer of 0 to 5, n is an integer of 1 to 3, and X 5 is an iodine atom or a bromine atom)
And a monomer represented by the general formula:
CH 2 = CFCF 2 O (CF (CF 3) CF 2 O) m (CF (CF 3)) n -X 5
(In the formula, m is an integer of 0 to 5, n is an integer of 1 to 3, and X 5 is an iodine atom or a bromine atom)
It is also a preferred embodiment that the monomer is at least one monomer selected from the group consisting of: By using such an iodine or bromine-containing monomer as the other monomer, a VdF / HFP / TFE copolymer can be produced.

フッ素ゴム(a1)において、加硫部位を与える単量体は、全単量体単位の0モル%以上であってよく、0.01〜10モル%であることが好ましく、0.01〜2モル%であることがより好ましい。フッ素ゴム(a1)は、VdFに基づく重合単位、HFPに基づく重合単位、TFEに基づく重合単位、及び、加硫部位を与える単量体に基づく重合単位のみからなる共重合体であってもよい。 In the fluororubber (a1), the monomer giving the vulcanization site may be 0 mol% or more of the total monomer units, preferably 0.01 to 10 mol%, 0.01 to 2 More preferably, it is mol%. The fluororubber (a1) may be a copolymer composed only of polymerized units based on VdF, polymerized units based on HFP, polymerized units based on TFE, and polymerized units based on a monomer that provides a vulcanization site. .

加硫部位は、連鎖移動剤として臭素化合物又はヨウ素化合物を使用することによっても導入することができる。
上記VdF/HFP/TFE共重合体は、連鎖移動剤として臭素化合物又はヨウ素化合物を使用することが好ましい。臭素化合物又はヨウ素化合物を使用して行う重合方法としては、たとえば、実質的に無酸素状態で、臭素化合物又はヨウ素化合物の存在下に、加圧しながら水媒体中で乳化重合を行う方法があげられる(ヨウ素移動重合法)。使用する臭素化合物又はヨウ素化合物の代表例としては、たとえば、一般式:
Br
(式中、xおよびyはそれぞれ0〜2の整数であり、かつ1≦x+y≦2を満たすものであり、Rは炭素数1〜16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基、または炭素数1〜3の炭化水素基であり、酸素原子を含んでいてもよい)で表される化合物があげられる。臭素化合物又はヨウ素化合物を使用することによって、ヨウ素または臭素が重合体に導入され、加硫点として機能する。
Vulcanization sites can also be introduced by using bromine compounds or iodine compounds as chain transfer agents.
The VdF / HFP / TFE copolymer preferably uses a bromine compound or an iodine compound as a chain transfer agent. Examples of the polymerization method using a bromine compound or iodine compound include a method in which emulsion polymerization is carried out in an aqueous medium under pressure in the presence of a bromine compound or iodine compound in a substantially oxygen-free state. (Iodine transfer polymerization method). Representative examples of bromine compounds or iodine compounds to be used include, for example, the general formula:
R 2 I x Br y
(Wherein x and y are each an integer of 0 to 2 and satisfy 1 ≦ x + y ≦ 2, and R 2 is a saturated or unsaturated fluorohydrocarbon group having 1 to 16 carbon atoms or chlorofluoro A hydrocarbon group or a hydrocarbon group having 1 to 3 carbon atoms which may contain an oxygen atom). By using a bromine compound or iodine compound, iodine or bromine is introduced into the polymer and functions as a vulcanization point.

ヨウ素化合物としては、たとえば1,3−ジヨードパーフルオロプロパン、2−ヨードパーフルオロプロパン、1,3−ジヨード−2−クロロパーフルオロプロパン、1,4−ジヨードパーフルオロブタン、1,5−ジヨード−2,4−ジクロロパーフルオロペンタン、1,6−ジヨードパーフルオロヘキサン、1,8−ジヨードパーフルオロオクタン、1,12−ジヨードパーフルオロドデカン、1,16−ジヨードパーフルオロヘキサデカン、ジヨードメタン、1,2−ジヨードエタン、1,3−ジヨード−n−プロパン、CFBr、BrCFCFBr、CFCFBrCFBr、CFClBr、BrCFCFClBr、CFBrClCFClBr、BrCFCFCFBr、BrCFCFBrOCF、1−ブロモ−2−ヨードパーフルオロエタン、1−ブロモ−3−ヨードパーフルオロプロパン、1−ブロモ−4−ヨードパーフルオロブタン、2−ブロモ−3−ヨードパーフルオロブタン、3−ブロモ−4−ヨードパーフルオロブテン−1、2−ブロモ−4−ヨードパーフルオロブテン−1、ベンゼンのモノヨードモノブロモ置換体、ジヨードモノブロモ置換体、ならびに(2−ヨードエチル)および(2−ブロモエチル)置換体などがあげられ、これらの化合物は、単独で使用してもよく、相互に組み合わせて使用することもできる。
これらのなかでも、重合反応性、加硫反応性、入手容易性などの点から、1,4−ジヨードパーフルオロブタン、1,6−ジヨードパーフルオロヘキサン、2−ヨードパーフルオロプロパンを用いるのが好ましい。
Examples of the iodine compound include 1,3-diiodoperfluoropropane, 2-iodoperfluoropropane, 1,3-diiodo-2-chloroperfluoropropane, 1,4-diiodoperfluorobutane, 1,5- Diiodo-2,4-dichloroperfluoropentane, 1,6-diiodoperfluorohexane, 1,8-diiodoperfluorooctane, 1,12-diiodoperfluorododecane, 1,16-diiodoperfluorohexadecane , diiodomethane, 1,2-diiodoethane, 1,3-diiodo -n- propane, CF 2 Br 2, BrCF 2 CF 2 Br, CF 3 CFBrCF 2 Br, CFClBr 2, BrCF 2 CFClBr, CFBrClCFClBr, BrCF 2 CF 2 CF 2 Br, BrCF 2 CFBrO F 3, 1-bromo-2-iodoperfluoroethane, 1-bromo-3-iodoperfluoropropane, 1-bromo-4-iodoperfluorobutane, 2-bromo-3-iodoperfluorobutane, 3-bromo -4-iodoperfluorobutene-1, 2-bromo-4-iodoperfluorobutene-1, monoiodomonobromo and diiodomonobromo substituents of benzene, and (2-iodoethyl) and (2-bromoethyl) ) Substituents, etc., and these compounds may be used alone or in combination with each other.
Among these, 1,4-diiodoperfluorobutane, 1,6-diiodoperfluorohexane, and 2-iodoperfluoropropane are used from the viewpoint of polymerization reactivity, vulcanization reactivity, and availability. Is preferred.

上記フッ素ゴム(a1)は、ヨウ素原子及び臭素原子の少なくとも一方を有していてもよく、その含有量の合計は0.001〜10重量%であることが好ましい。ヨウ素原子及び臭素原子の含有量の合計は、0.01〜5重量%であることがより好ましく、0.1〜5重量%であることが更に好ましい。
ヨウ素含有量の測定は、試料(フッ素ゴム)12mgにNaSOを5mg混ぜ、純水20mlにNaCOとKCOとを1対1(重量比)で混合したものを30mg溶解した吸収液を用い、石英製の燃焼フラスコ中、酸素中で燃焼させ、30分放置後、島津20Aイオンクロマトグラフを用い測定することができる。検量線はKI標準溶液、ヨウ素イオン0.5ppmを含むもの又は1.0ppmを含むものを用いることができる。
The fluororubber (a1) may have at least one of an iodine atom and a bromine atom, and the total content thereof is preferably 0.001 to 10% by weight. The total content of iodine atoms and bromine atoms is more preferably 0.01 to 5% by weight, still more preferably 0.1 to 5% by weight.
The iodine content was measured by mixing 5 mg of Na 2 SO 3 with 12 mg of sample (fluororubber), and mixing 30 mg of Na 2 CO 3 and K 2 CO 3 in a 1: 1 ratio (weight ratio) with 20 ml of pure water. Using the dissolved absorbent, it is burned in oxygen in a quartz combustion flask and allowed to stand for 30 minutes, and then measured using a Shimadzu 20A ion chromatograph. As the calibration curve, a KI standard solution, one containing 0.5 ppm of iodine ions or one containing 1.0 ppm can be used.

上記ヨウ素原子及び臭素原子の結合位置は、フッ素ゴム(a1)の主鎖の末端でも側鎖の末端でもよく、もちろん両者であってもよい。このようなフッ素ゴム(a1)においては、当該ヨウ素末端又は臭素末端が加硫点(加硫部位)となり、加硫密度が高い、加硫したフッ素ゴムが得られる他、パーオキサイド加硫をより容易に行うことが可能になる。 The bonding position of the iodine atom and bromine atom may be the end of the main chain or the side chain of the fluororubber (a1), and may be both. In such a fluororubber (a1), the iodine end or bromine end is a vulcanization point (vulcanization site), and a vulcanized fluororubber having a high vulcanization density can be obtained. It becomes possible to carry out easily.

上記フッ素ゴム組成物は、ゴム成分として他のゴムを含んでもよいが、ゴム成分の90質量%以上がフッ素ゴム(a1)であることが好ましく、ゴム成分の95質量%以上がフッ素ゴム(a1)であることが好ましく、ゴム成分がフッ素ゴム(a1)のみからなるものであることが好ましい。 The fluororubber composition may contain other rubber as a rubber component, but 90% by mass or more of the rubber component is preferably fluororubber (a1), and 95% by mass or more of the rubber component is fluororubber (a1). It is preferable that the rubber component is composed only of the fluororubber (a1).

上記ハイドロタルサイトとしては、特に限定されるものではないが、一般式(1):
[(M 2+1−x3+ (OH)x+[An− x/n・mHO]x− (1)
(式中、M 2+は2価の金属イオンであり、M3+は3価の金属イオンであり、An−はn価のアニオンであり、xは0<x<0.5を満たす数であり、mは0≦mを満たす数である。)
で示される化合物、若しくは、
一般式(1)で示される化合物を焼成して成る下記一般式(2):
(M 2+1−x3+ (2)
(式中、M 2+は2価の金属イオンであり、M3+は3価の金属イオンであり、xは0<x<0.5を満たす数であり、pは0<pを満たす数である。)
で示される化合物(ハイドロタルサイト焼成物)
であることが接着性及び入手容易の点からより好ましい。本明細書において、また、ハイドロタルサイトとしては、天然品であっても合成品であってもよい。
Although it does not specifically limit as said hydrotalcite, General formula (1):
[(M 1 2+ ) 1-x M 3+ x (OH) 2 ] x + [A n− x / n · mH 2 O] x− (1)
(Wherein, M 1 2+ is a divalent metal ion, M 3+ is a trivalent metal ion, A n-is an n-valent anion, x is a number satisfying 0 <x <0.5 And m is a number satisfying 0 ≦ m.)
Or a compound represented by
The following general formula (2) obtained by firing the compound represented by the general formula (1):
(M 1 2+ ) 1-x M 3+ x O p (2)
(In the formula, M 1 2+ is a divalent metal ion, M 3+ is a trivalent metal ion, x is a number satisfying 0 <x <0.5, and p is a number satisfying 0 <p. .)
(Hydrotalcite fired product)
It is more preferable from the viewpoint of adhesiveness and availability. In the present specification, the hydrotalcite may be a natural product or a synthetic product.

2+は、2価の金属イオンを示し、たとえば、Mg2+、Mn2+、Fe2+、Co2+、Ni2+、Cu2+またはZn2+をあげることができる。これらの中でも、容易に入手可能である点から、Mg2+および/またはZn2+が好ましい。 M 1 2+ represents a divalent metal ion, and examples thereof include Mg 2+ , Mn 2+ , Fe 2+ , Co 2+ , Ni 2+ , Cu 2+ or Zn 2+ . Among these, Mg 2+ and / or Zn 2+ are preferable because they are easily available.

3+は、3価の金属イオンを示し、例えば、Al3+、Fe3+、Cr3+、Co3+またはIn3+をあげることができる。これらの中でも、容易に入手可能の点から、Al3+が好ましい。 M 3+ represents a trivalent metal ion, and examples thereof include Al 3+ , Fe 3+ , Cr 3+ , Co 3+, and In 3+ . Among these, Al 3+ is preferable because it is easily available.

n−は、n価のアニオンを示し、たとえば、OH、F、Cl、Br、NO 、CO 2−、SO 2−、Fe(CN) 3−、CHCOO、シュウ酸イオンまたはサリチン酸イオンをあげることができる。これらの中でも、容易に入手可能の点から、CO 2−が好ましい。 A n- represents a n-valent anion, for example, OH -, F -, Cl -, Br -, NO 3 -, CO 3 2-, SO 4 2-, Fe (CN) 6 3-, CH 3 COO , oxalate ion or salicinate ion can be mentioned. Among these, CO 3 2− is preferable because it is easily available.

xは0<x<0.5を満たす数であり、0.2≦x≦0.4を満たす数であることが好ましく、0.2≦x≦0.33を満たす数であることがより好ましい。xがこの範囲であることにより、ハイドロタルサイトの生成が安定であるため好ましい。 x is a number satisfying 0 <x <0.5, preferably a number satisfying 0.2 ≦ x ≦ 0.4, and more preferably a number satisfying 0.2 ≦ x ≦ 0.33. preferable. It is preferable that x is in this range since hydrotalcite generation is stable.

mは0≦mを満たす数であり、0≦m≦1を満たす数であることが好ましい。 m is a number that satisfies 0 ≦ m, and preferably a number that satisfies 0 ≦ m ≦ 1.

ハイドロタルサイトは、一般式(1)又は一般式(2)で示される不定比化合物であるが、これらの中でも、接着性及び入手容易の点から、MgAl(OH)16CO・4HO、Mg4.5Al(OH)13CO・mHO(0≦m)、Mg4.3Al(OH)12.6CO・mHO(0<m)、MgAl(OH)12CO・3.5HO、MgAl(OH)14CO・4HO、MgAl(OH)10CO・1.7HO、MgZnAl(OH)12CO・mHO(0≦m)、Mg0.7Al0.3(0<p)等が好ましい。 Hydrotalcite is a non-stoichiometric compound represented by the general formula (1) or the general formula (2). Among these, Mg 6 Al 2 (OH) 16 CO 3. 4H 2 O, Mg 4.5 Al 2 (OH) 13 CO 3 .mH 2 O (0 ≦ m), Mg 4.3 Al 2 (OH) 12.6 CO 3 .mH 2 O (0 <m), Mg 4 Al 2 (OH) 12 CO 3 .3.5H 2 O, Mg 5 Al 2 (OH) 14 CO 3 .4H 2 O, Mg 3 Al 2 (OH) 10 CO 3 .1.7H 2 O, Mg 3 ZnAl 2 (OH) 12 CO 3 .mH 2 O (0 ≦ m), Mg 0.7 Al 0.3 O p (0 <p) and the like are preferable.

ハイドロタルサイトとして具体的には、例えば、協和化学工業(株)のDHT−4A、DHT−4A−2、DHT−4C、KW−2200等が挙げられる。 Specific examples of the hydrotalcite include DHT-4A, DHT-4A-2, DHT-4C, and KW-2200 manufactured by Kyowa Chemical Industry Co., Ltd.

上記フッ素ゴム組成物において、ハイドロタルサイトの含有量は、フッ素ゴム(a1)100重量部に対して、0.3〜6.0重量部であることが好ましく、0.4〜5.0重量部であることがより好ましく、0.5〜4.0重量部であることがさらに好ましい。ハイドロタルサイトの添加量が、0.3重量部未満であると接着性が不十分になるおそれがあり、6.0重量部をこえると接着性が不十分になるおそれがある。 In the fluororubber composition, the content of hydrotalcite is preferably 0.3 to 6.0 parts by weight, and 0.4 to 5.0 parts by weight with respect to 100 parts by weight of the fluororubber (a1). More preferably, it is 0.5 to 4.0 parts by weight. If the amount of hydrotalcite added is less than 0.3 parts by weight, the adhesion may be insufficient, and if it exceeds 6.0 parts by weight, the adhesion may be insufficient.

上記塩基性の多官能化合物は、分子中に少なくとも2個の窒素原子を含有し、分子中の窒素原子−窒素原子間の距離が5.70Å以上である。上記塩基性の多官能化合物とハイドロタルサイトを併用することによって、フッ素樹脂層(B)を構成するフッ素樹脂(b1)が低燃料透過性に優れ、かつフッ素ゴム(a)が燃料バリア性及び耐燃料性に優れるVdF/HFP/TFE共重合体であっても、フッ素ゴム層(A)とフッ素樹脂層(B)とを強固に接着させることができる。 The basic polyfunctional compound contains at least two nitrogen atoms in the molecule, and the distance between the nitrogen atom and the nitrogen atom in the molecule is 5.70 cm or more. By using the basic polyfunctional compound and hydrotalcite in combination, the fluororesin (b1) constituting the fluororesin layer (B) is excellent in low fuel permeability, and the fluororubber (a) is fuel barrier property and Even if it is a VdF / HFP / TFE copolymer excellent in fuel resistance, the fluororubber layer (A) and the fluororesin layer (B) can be firmly bonded.

上記塩基性の多官能化合物は、1つの分子中に同一又は異なる構造の2つ以上の官能基を有し、塩基性を示す化合物である。 The basic polyfunctional compound is a compound having two or more functional groups having the same or different structures in one molecule and showing basicity.

上記塩基性の多官能化合物が有する官能基としては、塩基性を示すものであることが好ましく、例えば、−NH、−NH 、−NHCOOH、−NHCOO、−N=CR(式中、R及びRは、独立して、炭素数0〜12の有機基である)、−NR(式中、R及びRは、独立して、炭素数0〜12の有機基である)、−NR(式中、R、R及びRは、独立して、炭素数0〜12の有機基である)、及び、加熱によって上記官能基に変化する官能基からなる群より選択される少なくとも1種が好ましく、−NH、−NH 、−N=CR(式中、R及びRは、上記と同じ)、及び、NR(式中、R、R及びRは、上記と同じ)からなる群より選択される少なくとも1種がより好ましく、−NH、−NH 及び−N=CR(式中、R及びRは、上記と同じ)からなる群より選択される少なくとも1種が更に好ましい。
上記R、R、R、R及びRは、独立して、−H、又は、炭素数1〜12の有機基であることが好ましく、−H、又は、炭素数1〜12の炭化水素基であることが好ましい。上記炭化水素基は、1又は2以上の炭素−炭素二重結合を有するものであってもよい。上記炭化水素基の炭素数は、1〜8であることが好ましい。
上記Rは−H、又は、−CHであり、Rは、−CH=CHR(Rは、フェニル基(−C)、ベンジル基(−CH−C)、又は、−Hである)であることが好ましく、上記Rは−Hであり、Rは、−CH=CH−Cであることがより好ましい。
The functional groups of the polyfunctional compound of the basic, preferably shows a basic, for example, -NH 2, -NH 3 +, -NHCOOH, -NHCOO -, -N = CR 1 R 2 (Wherein R 1 and R 2 are each independently an organic group having 0 to 12 carbon atoms), —NR 3 R 4 (wherein R 3 and R 4 are independently 0 carbon atoms) -NR 3 R 4 R 5 (wherein R 3 , R 4 and R 5 are each independently an organic group having 0 to 12 carbon atoms), and by heating At least one selected from the group consisting of functional groups that change to the above functional groups is preferred, and —NH 2 , —NH 3 + , —N═CR 1 R 2 (wherein R 1 and R 2 are the above and same), and, in NR 3 R 4 R 5 (wherein, R 3, R 4 and R 5 are the same) and the That more preferably at least one selected from the group, -NH 2, -NH 3 + and -N = CR 1 R 2 (wherein, R 1 and R 2 are as defined above) is selected from the group consisting of At least one of the above is more preferred.
R 1 , R 2 , R 3 , R 4, and R 5 are each independently preferably —H or an organic group having 1 to 12 carbon atoms, and —H or 1 to 12 carbon atoms. The hydrocarbon group is preferably. The hydrocarbon group may have one or more carbon-carbon double bonds. The hydrocarbon group preferably has 1 to 8 carbon atoms.
R 1 is —H or —CH 3 , and R 2 is —CH═CHR 6 (R 6 is a phenyl group (—C 6 H 5 ), a benzyl group (—CH 2 —C 6 H 5). ), or is preferably a -H), said R 1 is -H, R 2 is more preferably a -CH = CH-C 6 H 5 .

上記塩基性の多官能化合物としては、エチレンジアミン、プロパンジアミン、プトレシン、カダベリン、ヘキサメチレンジアミン、ヘプタンジアミン、オクタンジアミン、ノナンジアミン、デカンジアミン、ウンデカンジアミン、ドデカンジアミン、フェニレンジアミン、N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミン、N,N,N’,N’−テトラメチル−1,6−ヘキサメチレンジアミン、N,N’−ジメチル−1,6−ヘキサメチレンジアミン、6−アミノヘキシルカルバミド酸等が挙げられる。 Examples of the basic polyfunctional compound include ethylene diamine, propane diamine, putrescine, cadaverine, hexamethylene diamine, heptane diamine, octane diamine, nonane diamine, decane diamine, undecane diamine, dodecane diamine, phenylene diamine, N, N′-dicine namilidene 1,6-hexamethylenediamine, N, N, N ′, N′-tetramethyl-1,6-hexamethylenediamine, N, N′-dimethyl-1,6-hexamethylenediamine, 6-aminohexylcarbamic acid Etc.

上記塩基性の多官能化合物は、分子中に少なくとも2個の窒素原子を含有し、窒素−窒素間の原子間距離が5.70Å以上である。上記窒素−窒素間の原子間距離は、6.30Å以上であることがより好ましく、7.60Å以上であることが更に好ましく、8.60Å以上であることが特に好ましい。窒素−窒素間の原子間距離が広い事によって塩基性の多官能化合物の柔軟性が増し、加硫が容易となる。
ここで、窒素−窒素間の原子間距離は下記の方法に従って計算する。すなわち、各塩基の構造最適化は密度汎関数法(プログラムはGaussian03、密度汎関数はB3LYP、基底関数は6−31G*)を用いて算出する。
The basic polyfunctional compound contains at least two nitrogen atoms in the molecule, and the interatomic distance between nitrogen and nitrogen is 5.70 cm or more. The interatomic distance between nitrogen and nitrogen is more preferably 6.30 mm or more, further preferably 7.60 mm or more, and particularly preferably 8.60 mm or more. The wide interatomic distance between nitrogen and nitrogen increases the flexibility of the basic polyfunctional compound and facilitates vulcanization.
Here, the interatomic distance between nitrogen and nitrogen is calculated according to the following method. That is, the structure optimization of each base is calculated using a density functional method (program: Gaussian 03, density functional: B3LYP, basis function: 6-31G *).

上記塩基性の多官能化合物は、フッ素ゴム層(A)とフッ素樹脂層(B)との接着性の点で、N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミン及びNH−(CH−NH(式中、nは5〜12)からなる群より選択される少なくとも1種であることが好ましく、ヘキサメチレンジアミン、及び、N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミンからなる群より選択される少なくとも1種の化合物であることがより好ましい。 The basic polyfunctional compound is N, N′-dicinnamylidene-1,6-hexamethylenediamine and NH 2 — (CH 2 ) in terms of adhesion between the fluororubber layer (A) and the fluororesin layer (B). 2) n -NH 2 (wherein, n is preferably at least one selected from the group consisting of 5 to 12), hexamethylene diamine, and, n, N'-dicinnamylidene-1,6-hexa More preferably, it is at least one compound selected from the group consisting of methylenediamine.

フッ素ゴム層(A)とフッ素樹脂層(B)とがより強固に接着することから、上記フッ素ゴム組成物において、塩基性の多官能化合物の含有量は、フッ素ゴム(a1)100質量部に対して、0.5質量部以上であることが好ましく、0.6質量部以上であることがより好ましく、0.8質量部以上であることが更に好ましく、1.0質量部以上であることが特に好ましく、1.5質量部以上であることが最もこのましい。
塩基性の多官能化合物の含有量は、加硫阻害、コストの観点から、10質量部以下であることが好ましく、6.0質量部以下である事が特に好ましく、5.0質量部以下であることが更に好ましく、4.0質量部以下であることが最も好ましい。
Since the fluororubber layer (A) and the fluororesin layer (B) are more firmly bonded, in the fluororubber composition, the content of the basic polyfunctional compound is 100 parts by mass of the fluororubber (a1). On the other hand, it is preferably 0.5 parts by mass or more, more preferably 0.6 parts by mass or more, still more preferably 0.8 parts by mass or more, and 1.0 parts by mass or more. Is particularly preferable, and is most preferably 1.5 parts by mass or more.
The content of the basic polyfunctional compound is preferably 10 parts by mass or less, particularly preferably 6.0 parts by mass or less, and 5.0 parts by mass or less from the viewpoint of vulcanization inhibition and cost. More preferably, it is most preferably 4.0 parts by mass or less.

上記フッ素ゴム組成物は、更に、1,8−ジアザビシクロ(5.4.0)ウンデセン−7塩(DBU塩)、1,5−ジアザビシクロ(4.3.0)−ノネン−5塩(DBN塩)、1,8−ジアザビシクロ(5.4.0)ウンデセン−7(DBU)、1,5−ジアザビシクロ(4.3.0)−ノネン−5(DBN)、及び、メラミンからなる群より選択される少なくとも1種の化合物(a2)を含むものであってもよい。
上記化合物(a2)を用いることによって、塩基性の多官能化合物の含有量が少ない場合であっても、フッ素ゴム層(A)とフッ素樹脂層(B)とを強固に接着させることができる。
The fluororubber composition further comprises 1,8-diazabicyclo (5.4.0) undecene-7 salt (DBU salt), 1,5-diazabicyclo (4.3.0) -nonene-5 salt (DBN salt). ), 1,8-diazabicyclo (5.4.0) undecene-7 (DBU), 1,5-diazabicyclo (4.3.0) -nonene-5 (DBN), and melamine. Or at least one compound (a2).
By using the compound (a2), the fluororubber layer (A) and the fluororesin layer (B) can be firmly bonded even when the content of the basic polyfunctional compound is small.

DBU塩及びDBN塩としては、DBU又はDBNの炭酸塩、長鎖脂肪族カルボン酸塩、芳香族カルボン酸塩、オルトフタル酸塩、p−トルエンスルホン酸塩、フェノール塩、フェノール樹脂塩、ナフトエ酸塩、オクチル酸塩、オレイン酸塩、ギ酸塩、フェノールノボラック樹脂塩、塩酸塩等があげられ、DBU又はDBNのナフトエ酸塩、オルトフタル酸塩、フェノール塩、及び、ギ酸塩、並びに、8−ベンジル−1,8−ジアザビシクロ(5.4.0)−7−ウンデセニウムクロライド(DBU−B)からなる群より選択される少なくとも1種の化合物が好ましく、1,8−ジアザビシクロ(5.4.0)ウンデセン−7、1,5−ジアザビシクロ(4.3.0)ノネン−5、8−ベンジル−1,8−ジアザビシクロ(5.4.0)−7−ウンデセニウムクロライド、1,8−ジアザビシクロ(5.4.0)ウンデセン−7のナフトエ酸塩、1,8−ジアザビシクロ(5.4.0)ウンデセン−7のフェノール塩、1,8−ジアザビシクロ(5.4.0)ウンデセン−7のオルトフタル酸塩、及び、1,8−ジアザビシクロ(5.4.0)ウンデセン−7のギ酸塩からなる群より選択される少なくとも1種の化合物であることがより好ましい。
特に好ましくは、8−ベンジル−1,8−ジアザビシクロ(5.4.0)−7−ウンデセニウムクロライド、及び、1,8−ジアザビシクロ(5.4.0)ウンデセン−7のギ酸塩からなる群より選択される少なくとも1種である。
化合物(a2)としては、上記化合物を2種以上併用してよい。
DBU salt and DBN salt include DBU or DBN carbonate, long chain aliphatic carboxylate, aromatic carboxylate, orthophthalate, p-toluenesulfonate, phenol salt, phenol resin salt, naphthoate Octylate, oleate, formate, phenol novolac resin salt, hydrochloride, etc., and naphthoate, orthophthalate, phenol and formate of DBU or DBN, and 8-benzyl- Preferred is at least one compound selected from the group consisting of 1,8-diazabicyclo (5.4.0) -7-undecenium chloride (DBU-B), and 1,8-diazabicyclo (5.4.0). ) Undecene-7, 1,5-diazabicyclo (4.3.0) nonene-5, 8-benzyl-1,8-diazabicyclo (5.4.0) -7 Undecenium chloride, 1,8-diazabicyclo (5.4.0) undecene-7 naphthoate, 1,8-diazabicyclo (5.4.0) undecene-7 phenol salt, 1,8-diazabicyclo ( 5.4.0) at least one compound selected from the group consisting of undecene-7 orthophthalate and 1,8-diazabicyclo (5.4.0) undecene-7 formate. More preferred.
Particularly preferably, it consists of formate of 8-benzyl-1,8-diazabicyclo (5.4.0) -7-undecenium chloride and 1,8-diazabicyclo (5.4.0) undecene-7. It is at least one selected from the group.
As the compound (a2), two or more of the above compounds may be used in combination.

化合物(a2)は、フッ素ゴム(a1)100質量部に対して0.5質量部以上であることが好ましい。より好ましくは、1.0質量部以上である。化合物(a2)が少なすぎると化合物(a2)を添加することにより得られる効果が充分発揮されないおそれがある。
化合物(a2)は、フッ素ゴム(a1)100質量部に対して、5質量部以下であることが好ましく、4質量部以下であることがより好ましく、3.5質量部以下であることが更に好ましい。
It is preferable that a compound (a2) is 0.5 mass part or more with respect to 100 mass parts of fluororubbers (a1). More preferably, it is 1.0 part by mass or more. If the amount of the compound (a2) is too small, the effect obtained by adding the compound (a2) may not be sufficiently exhibited.
The compound (a2) is preferably 5 parts by mass or less, more preferably 4 parts by mass or less, and further preferably 3.5 parts by mass or less with respect to 100 parts by mass of the fluororubber (a1). preferable.

上記フッ素ゴム組成物は、更に加硫剤を含むものであることが好ましい。上記加硫剤としては、パーオキサイド加硫系加硫剤等を目的に応じて選択することができる。 The fluororubber composition preferably further contains a vulcanizing agent. As the vulcanizing agent, a peroxide vulcanizing agent or the like can be selected according to the purpose.

上記パーオキサイド加硫系加硫剤としては特に限定されず、例えば、有機過酸化物を挙げることができる。上記有機過酸化物としては、熱や酸化還元系の存在下で容易にパーオキシラジカルを発生するものが好ましく、例えば1,1−ビス(t−ブチルパーオキシ)−3,5,5−トリメチルシクロヘキサン、2,5−ジメチルヘキサン−2,5−ジヒドロキシパーオキシド、ジ−t−ブチルパーオキシド、t−ブチルクミルパーオキシド、ジクミルパーオキシド、α,α’−ビス(t−ブチルパーオキシ)−p−ジイソプロピルベンゼン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、ベンゾイルパーオキシド、t−ブチルパーオキシベンゼン、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシイソプロピルカーボネート等を例示することができる。なかでも、ジアルキル化合物がより好ましい。
一般に、使用量は、活性−O−O−の量、分解温度等から適宜選択される。使用量は通常、フッ素ゴム(a1)100質量部に対して0.1〜15質量部であり、好ましくは0.3〜5質量部である。
The peroxide vulcanizing agent is not particularly limited, and examples thereof include organic peroxides. The organic peroxide is preferably one that easily generates a peroxy radical in the presence of heat or a redox system. For example, 1,1-bis (t-butylperoxy) -3,5,5-trimethyl Cyclohexane, 2,5-dimethylhexane-2,5-dihydroxy peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, α, α'-bis (t-butylperoxy) -P-diisopropylbenzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, benzoylper Oxide, t-butylperoxybenzene, 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, t-butylperoxymaleic acid, t It can be exemplified butylperoxy isopropyl carbonate. Of these, dialkyl compounds are more preferred.
In general, the amount used is appropriately selected from the amount of active —O—O—, the decomposition temperature, and the like. The amount used is usually 0.1 to 15 parts by mass, preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the fluororubber (a1).

有機過酸化物を加硫剤として使用する場合は、加硫助剤や共加硫剤を併用してもよい。上記加硫助剤又は共加硫剤としては特に限定されず、例えば、上述の加硫助剤及び共加硫剤を挙げることができる。これらの中でも、加硫性、加硫物の物性の点から、トリアリルイソシアヌレート(TAIC)が好ましい。 When using an organic peroxide as a vulcanizing agent, a vulcanization aid or a co-vulcanizing agent may be used in combination. The vulcanization aid or co-vulcanization agent is not particularly limited, and examples thereof include the above-described vulcanization aid and co-vulcanization agent. Among these, triallyl isocyanurate (TAIC) is preferable from the viewpoint of vulcanizability and physical properties of the vulcanizate.

上記加硫助剤や共加硫剤の配合量としては、フッ素ゴム100質量部に対して、0.2〜10質量部が好ましく、0.3〜6質量部がより好ましく、0.5〜5質量部が更に好ましい。加硫剤や共加硫剤が、0.2質量部未満であると、加硫密度が低くなり圧縮永久歪みが大きくなる傾向があり、10質量部をこえると、加硫密度が高くなりすぎるため、圧縮時に割れやすくなる傾向がある。 As a compounding quantity of the said vulcanization | cure adjuvant and a co-curing agent, 0.2-10 mass parts is preferable with respect to 100 mass parts of fluororubber, 0.3-6 mass parts is more preferable, 0.5- 5 parts by mass is more preferable. If the vulcanizing agent or co-curing agent is less than 0.2 parts by mass, the vulcanization density tends to be low and the compression set tends to be large, and if it exceeds 10 parts by mass, the vulcanization density becomes too high. For this reason, it tends to break easily during compression.

上記フッ素ゴム組成物は、受酸剤として、またはフッ素ゴム層(A)とフッ素樹脂層(B)との接着性を向上させるための配合剤として、金属酸化物、金属水酸化物、アルカリ金属の弱酸塩、及び、アルカリ土類金属の弱酸塩からなる群より選択される少なくとも1種の化合物を含有してもよい。
上記金属酸化物、金属水酸化物、アルカリ金属の弱酸塩及びアルカリ土類金属の弱酸塩としては、周期表第(II)族金属の酸化物、水酸化物、炭酸塩、カルボン酸塩、ケイ酸塩、ホウ酸塩、亜リン酸塩、周期表第(IV)族金属の酸化物、塩基性炭酸塩、塩基性カルボン酸塩、塩基性亜リン酸塩、塩基性亜硫酸塩等が挙げられる。
金属酸化物、金属水酸化物、アルカリ金属の弱酸塩及びアルカリ土類金属の弱酸塩の具体的な例としては、酸化マグネシウム、酸化亜鉛、水酸化マグネシウム、水酸化バリウム、炭酸マグネシウム、炭酸バリウム、酸化カルシウム(生石灰)、水酸化カルシウム(消石灰)、炭酸カルシウム、ケイ酸カルシウム、ステアリン酸カルシウム、ステアリン酸亜鉛、フタル酸カルシウム、亜リン酸カルシウム、酸化錫、塩基性亜リン酸錫等をあげることができる。
The fluororubber composition is a metal oxide, metal hydroxide, alkali metal as an acid acceptor or as a compounding agent for improving the adhesion between the fluororubber layer (A) and the fluororesin layer (B). And at least one compound selected from the group consisting of weak acid salts of alkaline earth metals.
Examples of the metal oxides, metal hydroxides, alkali metal weak acid salts, and alkaline earth metal weak acid salts include oxides, hydroxides, carbonates, carboxylates, silicas of group (II) metals of the periodic table. Acid salts, borates, phosphites, periodic table group (IV) metal oxides, basic carbonates, basic carboxylates, basic phosphites, basic sulfites and the like. .
Specific examples of metal oxides, metal hydroxides, alkali metal weak acid salts and alkaline earth metal weak acid salts include magnesium oxide, zinc oxide, magnesium hydroxide, barium hydroxide, magnesium carbonate, barium carbonate, Calcium oxide (quick lime), calcium hydroxide (slaked lime), calcium carbonate, calcium silicate, calcium stearate, zinc stearate, calcium phthalate, calcium phosphite, tin oxide, basic tin phosphite and the like can be mentioned.

有機過酸化物を加硫剤として使用する場合には、上記金属酸化物、金属水酸化物、アルカリ金属の弱酸塩、アルカリ土類金属の弱酸塩の含有量は、5質量部以下が好ましく、より好ましくは3質量部以下、耐酸性の観点からは、含まないことが更に好ましい。 When using an organic peroxide as a vulcanizing agent, the content of the metal oxide, metal hydroxide, alkali metal weak acid salt, alkaline earth metal weak acid salt is preferably 5 parts by mass or less, More preferably, it is 3 parts by mass or less, and from the viewpoint of acid resistance, it is even more preferable not to include it.

上記フッ素ゴム組成物は、必要に応じてフッ素ゴム組成物中に配合される通常の添加物、例えば、充填剤、加工助剤、可塑剤、着色剤、安定剤、接着助剤、受酸剤、離型剤、導電性付与剤、熱伝導性付与剤、表面非粘着剤、柔軟性付与剤、耐熱性改善剤、難燃剤等の各種添加剤を配合することができ、上述のものとは異なる常用の加硫剤や加硫促進剤を1種又はそれ以上含有してもよい。 The above-mentioned fluororubber composition is an ordinary additive blended in the fluororubber composition as necessary, for example, filler, processing aid, plasticizer, colorant, stabilizer, adhesion aid, acid acceptor. Various additives such as mold release agents, conductivity imparting agents, thermal conductivity imparting agents, surface non-adhesives, flexibility imparting agents, heat resistance improvers, flame retardants, etc. You may contain 1 or more types of a different usual vulcanizing agent and a vulcanization accelerator.

上記充填剤としては、カーボンブラックが挙げられる。カーボンブラックの含有量は、フッ素ゴム(a1)100質量部に対して5〜40質量部であることが好ましく、10〜30質量部であることがより好ましい。カーボンブラックを使用することで、機械物性、耐熱性等の向上という利点がある。 Examples of the filler include carbon black. The content of carbon black is preferably 5 to 40 parts by mass and more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the fluororubber (a1). The use of carbon black has the advantage of improving mechanical properties, heat resistance, and the like.

上記フッ素ゴム組成物は、フッ素ゴム(a1)、ハイドロタルサイト、及び、塩基性の多官能化合物、並びに、必要に応じて、上記化合物(a2)、加硫剤、加硫助剤、共加硫剤、加硫促進剤、充填材等のその他添加剤を、一般に使用されているゴム混練り装置を用いて混練りすることにより得ることができる。上記ゴム混練り装置としては、ロール、ニーダー、バンバリーミキサー、インターナルミキサー、二軸押し出し機等を用いることができる。 The fluororubber composition comprises a fluororubber (a1), a hydrotalcite, a basic polyfunctional compound, and, if necessary, the compound (a2), a vulcanizing agent, a vulcanizing aid, and a co-addition. Other additives such as a vulcanizing agent, a vulcanization accelerator, and a filler can be obtained by kneading using a commonly used rubber kneading apparatus. As the rubber kneading apparatus, a roll, a kneader, a Banbury mixer, an internal mixer, a twin screw extruder, or the like can be used.

(B)フッ素樹脂層
フッ素樹脂層(B)は、フッ素樹脂(b1)から構成されるものであり、該フッ素樹脂(b1)は、燃料透過係数が2.0g・mm/m/day以下である。
燃料透過係数が2.0g・mm/m/day以下であることによって、優れた燃料低透過性が発揮される。従って、例えば、本発明の積層体は、燃料用ホース等として好適に使用可能である。
上記燃料透過係数は、1.5g・mm/m/day以下であることが好ましく、0.8g・mm/m/day以下であることがより好ましく、0.55g・mm/m/day以下であることが更に好ましく、0.5g・mm/m/day以下であることが特に好ましい。
上記燃料透過係数は、イソオクタン、トルエン及びエタノールを45:45:10の容積比で混合したイソオクタン/トルエン/エタノール混合溶媒18mLを投入した内径40mmφ、高さ20mmのSUS316製の燃料透過係数測定用カップに測定対象樹脂から下記方法により作製したフッ素樹脂シート(直径45mm、厚み120μm)を組み入れ、60℃において測定した質量変化から算出される値である。
(フッ素樹脂シートの作製方法)
樹脂ペレットを、それぞれ、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.12mmのフッ素樹脂シートを得、そのシートを直径45mm、厚み120μmに加工した。
(B) Fluororesin layer The fluororesin layer (B) is composed of a fluororesin (b1), and the fluororesin (b1) has a fuel permeability coefficient of 2.0 g · mm / m 2 / day or less. It is.
When the fuel permeability coefficient is 2.0 g · mm / m 2 / day or less, excellent low fuel permeability is exhibited. Therefore, for example, the laminate of the present invention can be suitably used as a fuel hose or the like.
The fuel permeability coefficient is preferably 1.5 g · mm / m 2 / day or less, more preferably 0.8 g · mm / m 2 / day or less, and 0.55 g · mm / m 2 / day. It is more preferably not more than day, and particularly preferably not more than 0.5 g · mm / m 2 / day.
The fuel permeability coefficient is a SUS316 fuel permeability coefficient measuring cup made of SUS316 with an inner diameter of 40 mmφ and a height of 20 mm charged with 18 mL of an isooctane / toluene / ethanol mixed solvent in which isooctane, toluene and ethanol are mixed at a volume ratio of 45:45:10. Is a value calculated from a mass change measured at 60 ° C. by incorporating a fluororesin sheet (diameter: 45 mm, thickness: 120 μm) prepared from the measurement target resin by the following method.
(Production method of fluororesin sheet)
Each resin pellet was put into a 120 mm diameter mold, set in a press machine heated to 300 ° C., and melt-pressed at a pressure of about 2.9 MPa to obtain a fluororesin sheet having a thickness of 0.12 mm. The sheet was processed to a diameter of 45 mm and a thickness of 120 μm.

上記フッ素樹脂(b1)は、優れた燃料低透過性を有する積層体が得られることから、ポリクロロトリフルオロエチレン(PCTFE)、CTFE系共重合体、及び、TFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることが好ましい。柔軟性の観点からは、CTFE系共重合体及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることがより好ましく、燃料低透過性の観点から、CTFE系共重合体が更に好ましい。 The fluororesin (b1) is obtained from a polychlorotrifluoroethylene (PCTFE), a CTFE copolymer, and a TFE / HFP / VdF copolymer because a laminate having excellent low fuel permeability can be obtained. It is preferably at least one selected from the group consisting of From the viewpoint of flexibility, it is more preferably at least one selected from the group consisting of a CTFE copolymer and a TFE / HFP / VdF copolymer. From the viewpoint of low fuel permeability, the CTFE copolymer More preferred is coalescence.

TFE/HFP/VdF共重合体は、VdF含有率が少ないと燃料低透過性が優れることから、TFE、HFP及びVdFの共重合割合(モル%比)がTFE/HFP/VdF=75〜95/0.1〜10/0.1〜19である事が好ましく、77〜95/1〜8/1〜17(モル比)であることがより好ましく、77〜95/2〜8/2〜15.5(モル比)であることが更に好ましく、79〜90/5〜8/5〜15(モル比)である事が最も好ましい。また、TFE/HFP/VdF共重合体はその他のモノマーを0〜20モル%含んでいてもよい。他のモノマーとしては、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)、クロロトリフルオロエチレン、2−クロロペンタフルオロプロペン、過フッ素化されたビニルエーテル(例えばCFOCFCFCFOCF=CFなどのペルフルオロアルコキシビニルエーテル)などのフッ素含有モノマー、ペルフルオロアルキルビニルエーテル、ペルフルオロ−1,3、−ブタジエン、トリフルオロエチレン、ヘキサフルオロイソブテン、フッ化ビニル、エチレン、プロピレン、および、アルキルビニルエーテルからなる群より選択される少なくとも一種のモノマー等が挙げられ、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)である事が好ましい。 Since the TFE / HFP / VdF copolymer has excellent fuel low permeability when the VdF content is low, the copolymerization ratio (mole% ratio) of TFE, HFP and VdF is TFE / HFP / VdF = 75 to 95 / It is preferably 0.1 to 10 / 0.1 to 19, more preferably 77 to 95/1 to 8/1 to 17 (molar ratio), and 77 to 95/2 to 8/2 to 15 5 (molar ratio) is more preferable, and 79 to 90/5 to 5/5 to 15 (molar ratio) is most preferable. Further, the TFE / HFP / VdF copolymer may contain 0 to 20 mol% of other monomers. Other monomers include perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), chlorotrifluoroethylene, 2-chloropentafluoropropene, perfluorinated vinyl ethers (eg CF 3 OCF 2 CF 2 CF 2 perfluoroalkoxy vinyl ethers such as OCF = CF 2) fluorine-containing monomers such as, perfluoroalkyl vinyl ether, perfluoro-1,3, - butadiene, trifluoroethylene, hexafluoroisobutene, vinyl fluoride, ethylene, propylene, And at least one monomer selected from the group consisting of alkyl vinyl ethers, and examples thereof include perfluoro (methyl vinyl ether) and perfluoro (ethyl vinyl). Ether), it is preferred perfluoro (propyl vinyl ether).

上記PCTFEは、クロロトリフルオロエチレンの単独重合体である。 The PCTFE is a chlorotrifluoroethylene homopolymer.

上記CTFE系共重合体としては、CTFEに由来する共重合単位(CTFE単位)と、TFE、HFP、PAVE、VdF、フッ化ビニル、へキサフルオロイソブテン、式:
CH=CX(CF
(式中、XはH又はF、XはH、F又はCl、nは1〜10の整数である)で示される単量体、エチレン、プロピレン、1−ブテン、2−ブテン、塩化ビニル、及び、塩化ビニリデンからなる群より選択される少なくとも1種の単量体に由来する共重合単位と、を含むことが好ましい。
また、CTFE系共重合体は、パーハロポリマーであることがより好ましい。
Examples of the CTFE copolymer include copolymer units derived from CTFE (CTFE units), TFE, HFP, PAVE, VdF, vinyl fluoride, hexafluoroisobutene,
CH 2 = CX 1 (CF 2 ) n X 2
(Wherein, X 1 is H or F, X 2 is H, F or Cl, and n is an integer of 1 to 10), ethylene, propylene, 1-butene, 2-butene, chloride It is preferable that it contains a copolymer unit derived from at least one monomer selected from the group consisting of vinyl and vinylidene chloride.
The CTFE copolymer is more preferably a perhalopolymer.

CTFE系共重合体としては、CTFE単位と、TFE、HFP及びPAVEからなる群より選択される少なくとも1種の単量体に由来する共重合単位と、を含むことがより好ましく、実質的にこれらの共重合単位のみからなることが更に好ましい。また、燃料低透過性の観点から、エチレン、フッ化ビニリデン、フッ化ビニル等のCH結合を有するモノマーを含まないことが好ましい。
CH結合を有するモノマーを含まないパーハロポリマーはフッ素ゴムとの接着が通常困難であるが、本発明の構成によれば、フッ素樹脂層(B)がパーハロポリマーからなる層であっても、フッ素樹脂層(B)とフッ素ゴム層(A)との層間の接着は強固である。
It is more preferable that the CTFE-based copolymer includes a CTFE unit and a copolymer unit derived from at least one monomer selected from the group consisting of TFE, HFP, and PAVE. More preferably, it consists only of copolymerized units of Further, from the viewpoint of low fuel permeability, it is preferable not to include a monomer having a CH bond such as ethylene, vinylidene fluoride, and vinyl fluoride.
Perhalopolymers that do not contain a monomer having a CH bond are usually difficult to adhere to fluororubber, but according to the configuration of the present invention, even if the fluororesin layer (B) is a layer made of perhalopolymer, The adhesion between the fluororesin layer (B) and the fluororubber layer (A) is strong.

CTFE系共重合体は、全単量体単位の10〜90モル%のCTFE単位を有することが好ましい。 The CTFE copolymer preferably has 10 to 90 mol% of CTFE units based on the total monomer units.

CTFE系共重合体としては、CTFE単位、TFE単位及びこれらと共重合可能な単量体(α)に由来する単量体(α)単位を含むものが特に好ましい。 As the CTFE copolymer, those containing a monomer (α) unit derived from a CTFE unit, a TFE unit and a monomer (α) copolymerizable therewith are particularly preferred.

「CTFE単位」及び「TFE単位」は、CTFE系共重合体の分子構造上、それぞれ、CTFEに由来する部分(−CFCl−CF−)、TFEに由来する部分(−CF−CF−)であり、前記「単量体(α)単位」は、同様に、CTFE系共重合体の分子構造上、単量体(α)が付加してなる部分である。 The “CTFE unit” and the “TFE unit” are a part derived from CTFE (—CFCl—CF 2 —) and a part derived from TFE (—CF 2 —CF 2 —, respectively) due to the molecular structure of the CTFE copolymer. Similarly, the “monomer (α) unit” is a portion formed by adding the monomer (α) to the molecular structure of the CTFE copolymer.

単量体(α)としては、CTFE及びTFEと共重合可能な単量体であれば特に限定されず、エチレン(Et)、ビニリデンフルオライド(VdF)、CF=CF−ORf(式中、Rfは、炭素数1〜8のパーフルオロアルキル基)で表されるPAVE、CX=CX(CF(式中、X、X及びXは同一もしくは異なって、水素原子又はフッ素原子;Xは、水素原子、フッ素原子又は塩素原子;nは、1〜10の整数)で表されるビニル単量体、CF=CF−O−Rf(式中、Rfは、炭素数1〜5のパーフルオロアルキル基)で表されるアルキルパーフルオロビニルエーテル誘導体等があげられる。
上記アルキルパーフルオロビニルエーテル誘導体としては、Rfが炭素数1〜3のパーフルオロアルキル基であるものが好ましく、CF=CF−OCF−CFCFがより好ましい。
The monomer (α) is not particularly limited as long as it is a monomer copolymerizable with CTFE and TFE, and ethylene (Et), vinylidene fluoride (VdF), CF 2 = CF-ORf 1 (in the formula, , Rf 1 is a PAVE represented by C1-C8 perfluoroalkyl group), CX 3 X 4 = CX 5 (CF 2 ) n X 6 (wherein X 3 , X 4 and X 5 are the same) Alternatively, a vinyl monomer represented by a hydrogen atom or a fluorine atom; X 6 is a hydrogen atom, a fluorine atom or a chlorine atom; n is an integer of 1 to 10), CF 2 = CF—O—Rf 2 An alkyl perfluorovinyl ether derivative represented by the formula (wherein Rf 2 is a C 1-5 perfluoroalkyl group) is exemplified.
As the alkyl perfluorovinyl ether derivative, those in which Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms are preferable, and CF 2 = CF—OCF 2 —CF 2 CF 3 is more preferable.

単量体(α)としては、なかでも、PAVE、上記ビニル単量体、及び、アルキルパーフルオロビニルエーテル誘導体からなる群より選択される少なくとも1種であることが好ましく、PAVE及びHFPからなる群より選択される少なくとも1種であることがより好ましく、PAVEが特に好ましい。 The monomer (α) is preferably at least one selected from the group consisting of PAVE, the above vinyl monomer, and alkyl perfluorovinyl ether derivatives, and more preferably from the group consisting of PAVE and HFP. More preferably, it is at least one selected, and PAVE is particularly preferable.

CTFE系共重合体における、CTFE単位とTFE単位との比率は、CTFE単位が15〜90モル%に対し、TFE単位が85〜10モル%であり、より好ましくは、CTFE単位が20〜90モル%であり、TFE単位が80〜10モル%である。また、CTFE単位15〜25モル%と、TFE単位85〜75モル%とから構成されるものも好ましい。 The ratio of CTFE units to TFE units in the CTFE copolymer is 85 to 10 mol% of TFE units with respect to 15 to 90 mol% of CTFE units, and more preferably 20 to 90 mol of CTFE units. %, And TFE units are 80 to 10 mol%. Moreover, what is comprised from 15-25 mol% of CTFE units and 85-75 mol% of TFE units is also preferable.

CTFE系共重合体は、CTFE単位とTFE単位との合計が90〜99.9モル%であり、単量体(α)単位が0.1〜10モル%であるものが好ましい。単量体(α)単位が0.1モル%未満であると、成形性、耐環境応力割れ性及び耐燃料クラック性に劣りやすく、10モル%を超えると、燃料低透過性、耐熱性、機械特性に劣る傾向にある。 The CTFE copolymer preferably has a CTFE unit and a TFE unit of 90 to 99.9 mol%, and a monomer (α) unit of 0.1 to 10 mol%. If the monomer (α) unit is less than 0.1 mol%, it tends to be inferior in moldability, environmental stress crack resistance and fuel crack resistance, and if it exceeds 10 mol%, low fuel permeability, heat resistance, It tends to be inferior in mechanical properties.

フッ素樹脂(b1)は、燃料低透過性、接着性の観点から、PCTFE、CTFE/TFE/PAVE共重合体及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることがより好ましく、CTFE/TFE/PAVE共重合体及びTFE/HFP/VdF共重合体からなる群より選択される少なくとも1種であることが更に好ましく、CTFE/TFE/PAVE共重合体が特に好ましい。
上記CTFE/TFE/PAVE共重合体とは、実質的にCTFE、TFE及びPAVEのみからなる共重合体である。
The fluororesin (b1) is at least one selected from the group consisting of PCTFE, CTFE / TFE / PAVE copolymer and TFE / HFP / VdF copolymer from the viewpoint of low fuel permeability and adhesiveness. Is more preferable, at least one selected from the group consisting of a CTFE / TFE / PAVE copolymer and a TFE / HFP / VdF copolymer is more preferable, and a CTFE / TFE / PAVE copolymer is particularly preferable.
The CTFE / TFE / PAVE copolymer is a copolymer consisting essentially of CTFE, TFE and PAVE.

CTFE/TFE/PAVE共重合体において、上記PAVEとしては、パーフルオロ(メチルビニルエーテル)(PMVE)、パーフルオロ(エチルビニルエーテル)(PEVE)、パーフルオロ(プロピルビニルエーテル)(PPVE)、パーフルオロ(ブチルビニルエーテル)等があげられ、なかでもPMVE、PEVE及びPPVEからなる群より選択される少なくとも1種であることが好ましい。
CTFE/TFE/PAVE共重合体において、PAVE単位は、全単量体単位の0.5モル%以上であることが好ましく、5モル%以下であることが好ましい。
In the CTFE / TFE / PAVE copolymer, the PAVE includes perfluoro (methyl vinyl ether) (PMVE), perfluoro (ethyl vinyl ether) (PEVE), perfluoro (propyl vinyl ether) (PPVE), perfluoro (butyl vinyl ether). Among these, at least one selected from the group consisting of PMVE, PEVE and PPVE is preferable.
In the CTFE / TFE / PAVE copolymer, the PAVE unit is preferably 0.5 mol% or more, and preferably 5 mol% or less of the total monomer units.

CTFE単位等の構成単位は、19F−NMR分析を行うことにより得られる値である。 A structural unit such as a CTFE unit is a value obtained by performing 19 F-NMR analysis.

フッ素樹脂(b1)は、ポリマーの主鎖末端及び/又は側鎖に、カルボニル基、ヒドロキシル基、ヘテロ環基、及びアミノ基からなる群より選択される少なくとも1種の反応性官能基を導入したものであってもよい。 In the fluororesin (b1), at least one reactive functional group selected from the group consisting of a carbonyl group, a hydroxyl group, a heterocyclic group, and an amino group is introduced into the main chain terminal and / or side chain of the polymer. It may be a thing.

本明細書において、「カルボニル基」は、炭素−酸素二重結合から構成される炭素2価の基であり、−C(=O)−で表されるものに代表される。前記カルボニル基を含む反応性官能基としては特に限定されず、たとえばカーボネート基、カルボン酸ハライド基(ハロゲノホルミル基)、ホルミル基、カルボキシル基、エステル結合(−C(=O)O−)、酸無水物結合(−C(=O)O−C(=O)−)、イソシアネート基、アミド基、イミド基(−C(=O)−NH−C(=O)−)、ウレタン結合(−NH−C(=O)O−)、カルバモイル基(NH−C(=O)−)、カルバモイルオキシ基(NH−C(=O)O−)、ウレイド基(NH−C(=O)−NH−)、オキサモイル基(NH−C(=O)−C(=O)−)等、化学構造上の一部としてカルボニル基を含むものがあげられる。 In the present specification, the “carbonyl group” is a carbon divalent group composed of a carbon-oxygen double bond, and is represented by —C (═O) —. The reactive functional group containing the carbonyl group is not particularly limited. For example, a carbonate group, a carboxylic acid halide group (halogenoformyl group), a formyl group, a carboxyl group, an ester bond (—C (═O) O—), an acid. Anhydride bond (—C (═O) O—C (═O) —), isocyanate group, amide group, imide group (—C (═O) —NH—C (═O) —), urethane bond (— NH-C (= O) O- ), a carbamoyl group (NH 2 -C (= O) -), a carbamoyloxy group (NH 2 -C (= O) O-), a ureido group (NH 2 -C (= O) -NH-), oxamoyl group (NH 2 -C (= O) -C (= O) -) and the like, include those containing a carbonyl group as part of the chemical structure.

アミド基、イミド基、ウレタン結合、カルバモイル基、カルバモイルオキシ基、ウレイド基、オキサモイル基等においては、その窒素原子に結合する水素原子は、たとえばアルキル基等の炭化水素基で置換されていてもよい。 In the amide group, imide group, urethane bond, carbamoyl group, carbamoyloxy group, ureido group, oxamoyl group, etc., the hydrogen atom bonded to the nitrogen atom may be substituted with a hydrocarbon group such as an alkyl group, for example. .

反応性官能基は、導入が容易である点、フッ素樹脂(b1)が適度な耐熱性と比較的低温での良好な接着性とを有する点から、アミド基、カルバモイル基、ヒドロキシル基、カルボキシル基、カーボネート基、カルボン酸ハライド基、酸無水物結合が好ましく、さらにはアミド基、カルバモイル基、ヒドロキシル基、カーボネート基、カルボン酸ハライド基、酸無水物結合が好ましい。 The reactive functional group is easy to introduce, and since the fluororesin (b1) has moderate heat resistance and good adhesion at a relatively low temperature, an amide group, a carbamoyl group, a hydroxyl group, a carboxyl group , A carbonate group, a carboxylic acid halide group, and an acid anhydride bond are preferable, and an amide group, a carbamoyl group, a hydroxyl group, a carbonate group, a carboxylic acid halide group, and an acid anhydride bond are more preferable.

フッ素樹脂(b1)は、懸濁重合、溶液重合、乳化重合、塊状重合等、従来公知の重合方法により得ることができる。前記重合において、温度、圧力等の各条件、重合開始剤やその他の添加剤は、フッ素樹脂(b1)の組成や量に応じて適宜設定することができる。 The fluororesin (b1) can be obtained by a conventionally known polymerization method such as suspension polymerization, solution polymerization, emulsion polymerization or bulk polymerization. In the polymerization, each condition such as temperature and pressure, the polymerization initiator and other additives can be appropriately set according to the composition and amount of the fluororesin (b1).

フッ素樹脂(b1)の融点は特に限定されないが、160〜270℃であることが好ましい。フッ素樹脂(b1)の融点は、DSC装置(セイコー社製)を用い、10℃/分の速度で昇温したときの融解熱曲線における極大値に対応する温度として求める。 Although melting | fusing point of a fluororesin (b1) is not specifically limited, It is preferable that it is 160-270 degreeC. The melting point of the fluororesin (b1) is determined as a temperature corresponding to the maximum value in the heat of fusion curve when the temperature is raised at a rate of 10 ° C./min using a DSC device (Seiko).

またフッ素樹脂(b1)の分子量は、得られる積層体が良好な機械特性や燃料低透過性等を発現できるような範囲であることが好ましい。たとえば、メルトフローレート(MFR)を分子量の指標とする場合、フッ素樹脂一般の成形温度範囲である約230〜350℃の範囲の任意の温度におけるMFRは、0.5〜100g/10分であることが好ましい。より好ましくは、1〜50g/10分であり、更に好ましくは、2〜35g/10分である。例えば、フッ素樹脂(b1)が、PCTFE、CTFE系共重合体又はTFE/HFP/VdF共重合体である場合には、297℃でMFRを測定する。
上記MFRは、メルトインデクサー(東洋精機製作所(株)製)を用い、例えば、297℃、5kg荷重下で直径2mm、長さ8mmのノズルから単位時間(10分間)に流出するポリマーの重量(g)を測定することができる。
Further, the molecular weight of the fluororesin (b1) is preferably in a range where the obtained laminate can exhibit good mechanical properties, low fuel permeability, and the like. For example, when melt flow rate (MFR) is used as an index of molecular weight, MFR at an arbitrary temperature in the range of about 230 to 350 ° C., which is a general molding temperature range of fluororesin, is 0.5 to 100 g / 10 min. It is preferable. More preferably, it is 1-50 g / 10min, More preferably, it is 2-35g / 10min. For example, when the fluororesin (b1) is a PCTFE, CTFE copolymer or TFE / HFP / VdF copolymer, MFR is measured at 297 ° C.
The above MFR uses a melt indexer (manufactured by Toyo Seiki Seisakusho Co., Ltd.). For example, the weight of the polymer flowing out per unit time (10 minutes) from a nozzle of 2 mm in diameter and 8 mm in length under a load of 297 ° C. and 5 kg ( g) can be measured.

本発明においてフッ素樹脂層(B)は、これらのフッ素樹脂(b1)を1種含有するものであってもよいし、2種以上含有するものであってもよい。 In the present invention, the fluororesin layer (B) may contain one of these fluororesins (b1), or may contain two or more.

なお、フッ素樹脂(b1)がパーハロポリマーである場合、耐薬品性及び燃料低透過性がより優れたものとなる。パーハロポリマーとは、重合体の主鎖を構成する炭素原子の全部にハロゲン原子が結合している重合体である。 In addition, when the fluororesin (b1) is a perhalopolymer, chemical resistance and low fuel permeability are more excellent. A perhalopolymer is a polymer in which halogen atoms are bonded to all the carbon atoms constituting the main chain of the polymer.

フッ素樹脂層(B)は、さらに、目的や用途に応じてその性能を損なわない範囲で、無機質粉末、ガラス繊維、炭素粉末、炭素繊維、金属酸化物等の種々の充填剤を配合したものであってもよい。 The fluororesin layer (B) is a blend of various fillers such as inorganic powder, glass fiber, carbon powder, carbon fiber, and metal oxide, as long as the performance is not impaired depending on the purpose and application. There may be.

たとえば、燃料透過性をさらに低減させるために、モンモリロナイト、バイデライト、サポナイト、ノントロナイト、ヘクトライト、ソーコナイト、スチブンサイト等のスメクタイト系の層状粘度鉱物や、雲母等の高アスペクト比を有する微小層状鉱物を添加してもよい。 For example, in order to further reduce fuel permeability, smectite-based lamellar minerals such as montmorillonite, beidellite, saponite, nontronite, hectorite, soconite, and stevensite, and fine layered minerals with high aspect ratio such as mica are used. It may be added.

また、導電性を付与するために、導電性フィラーを添加してもよい。導電性フィラーとしては特に限定されず、たとえば金属、炭素等の導電性単体粉末又は導電性単体繊維;酸化亜鉛等の導電性化合物の粉末;表面導電化処理粉末等があげられる。導電性フィラーを配合する場合、溶融混練して予めペレットを作製することが好ましい。 In order to impart conductivity, a conductive filler may be added. The conductive filler is not particularly limited, and examples thereof include conductive simple powder such as metal and carbon or conductive single fiber; powder of conductive compound such as zinc oxide; surface conductive powder. When blending the conductive filler, it is preferable to prepare a pellet in advance by melt-kneading.

導電性単体粉末又は導電性単体繊維としては特に限定されず、たとえば銅、ニッケル等の金属粉末;鉄、ステンレススチール等の金属繊維;カーボンブラック、炭素繊維、特開平3−174018号公報等に記載の炭素フィブリル等があげられる。 The conductive single powder or conductive single fiber is not particularly limited, and is described in, for example, metal powder such as copper and nickel; metal fiber such as iron and stainless steel; carbon black, carbon fiber, and Japanese Patent Laid-Open No. 3-174018 Carbon fibrils and the like.

表面導電化処理粉末は、ガラスビーズ、酸化チタン等の非導電性粉末の表面に導電化処理を施して得られる粉末である。 The surface conductive treatment powder is a powder obtained by conducting a conductive treatment on the surface of a nonconductive powder such as glass beads or titanium oxide.

表面導電化処理の方法としては特に限定されず、たとえば金属スパッタリング、無電解メッキ等があげられる。 The method for the surface conductive treatment is not particularly limited, and examples thereof include metal sputtering and electroless plating.

導電性フィラーのなかでもカーボンブラックは、経済性や静電荷蓄積防止の観点で有利であるので好適に用いられる。 Among the conductive fillers, carbon black is preferably used because it is advantageous in terms of economy and prevention of electrostatic charge accumulation.

導電性フィラーを配合してなるフッ素樹脂組成物の体積抵抗率は、1×10〜1×10Ω・cmであることが好ましい。より好ましい下限は、1×10Ω・cmであり、より好ましい上限は、1×10Ω・cmである。 The volume resistivity of the fluororesin composition formed by blending a conductive filler is preferably 1 × 10 0 to 1 × 10 9 Ω · cm. A more preferred lower limit is 1 × 10 2 Ω · cm, and a more preferred upper limit is 1 × 10 8 Ω · cm.

また、充填剤以外に、熱安定化剤、補強剤、紫外線吸収剤、顔料、その他任意の添加剤を配合してもよい。 Moreover, you may mix | blend a heat stabilizer, a reinforcing agent, a ultraviolet absorber, a pigment, and other arbitrary additives other than a filler.

本発明の積層体の好適な実施形態の一つは、上記ハイドロタルサイトが、Mg4.3Al(OH)12.6CO・mHO(0<m)であり、上記塩基性の多官能化合物が、N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミン及びヘキサメチレンジアミンからなる群より選択される少なくとも1種であり、上記フッ素ゴム(a1)が、VdF/HFP/TFE共重合体であり、上記フッ素樹脂層(B)は、CTFE/TFE/PAVE共重合体であるフッ素樹脂(b1)から構成されるものである。 In one preferred embodiment of the laminate of the present invention, the hydrotalcite is Mg 4.3 Al 2 (OH) 12.6 CO 3 · mH 2 O (0 <m), and the basic Is at least one selected from the group consisting of N, N′-dicinnamylidene-1,6-hexamethylenediamine and hexamethylenediamine, and the fluororubber (a1) is VdF / HFP / TFE. It is a copolymer and the said fluororesin layer (B) is comprised from the fluororesin (b1) which is a CTFE / TFE / PAVE copolymer.

(積層体)
本発明の積層体において、上記フッ素ゴム層(A)の厚みは限定されないが、例えば、100μm以上であることが好ましい。フッ素ゴム層(A)の厚みの上限としては、例えば、5000μmである。
(Laminate)
In the laminate of the present invention, the thickness of the fluororubber layer (A) is not limited, but is preferably 100 μm or more, for example. The upper limit of the thickness of the fluororubber layer (A) is, for example, 5000 μm.

上記フッ素樹脂層(B)の厚みは限定されないが、例えば、10μm以上であることが好ましい。フッ素樹脂層(B)の厚みの上限としては、例えば、1000μmである。 Although the thickness of the said fluororesin layer (B) is not limited, For example, it is preferable that it is 10 micrometers or more. The upper limit of the thickness of the fluororesin layer (B) is, for example, 1000 μm.

本発明の積層体は、フッ素ゴム層(A)とフッ素樹脂層(B)との接着強度が12N/cm以上であることが好ましい。接着強度が12N/cm以上であることによって、ホースを特定の形状で加硫する際にズレが起こりにくい、衝撃が加わった際に剥がれが起こらないという利点がある。
本発明の積層体は、上記構成を有することによって、接着強度を上記範囲にすることができる。接着強度は14N/cm以上であることがより好ましく、15N/cm以上であることが更に好ましい。
上記接着強度は、積層体を幅10mm×長さ40mm×3セットの短冊状に切断し、試料片を作成し、この試験片について、オートグラフ((株)島津製作所製 AGS−J 5kN)を使用して、JIS−K−6256(加硫ゴムの接着試験方法)に記載の方法に準拠し、25℃において50mm/分の引張速度で剥離試験を行い、剥離モードを観測して測定した値である。
In the laminate of the present invention, the adhesive strength between the fluororubber layer (A) and the fluororesin layer (B) is preferably 12 N / cm or more. When the adhesive strength is 12 N / cm or more, there is an advantage that displacement does not easily occur when the hose is vulcanized in a specific shape, and peeling does not occur when an impact is applied.
The laminated body of this invention can make adhesive strength into the said range by having the said structure. The adhesive strength is more preferably 14 N / cm or more, and further preferably 15 N / cm or more.
The above adhesive strength is obtained by cutting the laminate into strips of 10 mm width × 40 mm length × 3 sets, creating a sample piece, and using this autograph (AGS-J 5kN, manufactured by Shimadzu Corporation) for this test piece. A value obtained by performing a peel test at a tensile speed of 50 mm / min at 25 ° C. and observing the peel mode in accordance with the method described in JIS-K-6256 (Adhesion test method for vulcanized rubber). It is.

本発明の積層体は、フッ素ゴム層(A)とフッ素樹脂層(B)が加硫接着されていることが好ましい。このような積層体は、未加硫のフッ素ゴム層(A)とフッ素樹脂層(B)とを積層した後、加硫処理することにより得られる。 In the laminate of the present invention, the fluororubber layer (A) and the fluororesin layer (B) are preferably vulcanized and bonded. Such a laminate can be obtained by laminating an unvulcanized fluororubber layer (A) and a fluororesin layer (B) and then vulcanizing.

上記加硫処理は、従来公知のフッ素ゴム組成物の加硫方法と条件が採用できる。たとえば、未加硫の積層体を長時間加硫する方法、未加硫の積層体を比較的単時間で前処理としての熱処理を行い(加硫も生じている)、ついで長時間かけて加硫を行う方法がある。これらのうち、未加硫の積層体を比較的単時間で前処理としての熱処理を行い、ついで長時間かけて加硫を行う方法が、前処理でフッ素ゴム層(A)とフッ素樹脂層(B)との密着性が容易に得られ、また、前処理で既にフッ素ゴム層(A)が加硫しており形状が安定化しているので、その後の加硫における積層体の保持方法をさまざまに選択することができるので好適である。 For the vulcanization treatment, conventionally known vulcanization methods and conditions for fluororubber compositions can be employed. For example, a method of vulcanizing an unvulcanized laminate for a long time, a heat treatment as a pretreatment is performed on the unvulcanized laminate in a relatively short time (vulcanization is also occurring), and then vulcanization is performed over a long time. There is a method of performing sulfuration. Among these, a method in which the unvulcanized laminate is subjected to heat treatment as a pretreatment in a relatively short time, and then vulcanized over a long period of time is a method in which the fluororubber layer (A) and the fluororesin layer ( Adhesion with B) can be easily obtained, and since the fluororubber layer (A) has already been vulcanized in the pretreatment and the shape is stabilized, there are various methods for holding the laminate in subsequent vulcanization. It is preferable that it can be selected.

加硫処理の条件は特に制限されるものではなく、通常の条件で行うことができるが、140〜180℃で、2分〜80分、スチーム、プレス、オーブン、エアーバス、赤外線、マイクロウェーブ、被鉛加硫等を用いて処理を行うことが好ましい。より好ましくは、150〜170℃で、5〜60分かけて行う。加硫処理を1次加硫と2次加硫に分けて行ってもよい。 The conditions for the vulcanization treatment are not particularly limited and can be performed under normal conditions, but at 140 to 180 ° C. for 2 to 80 minutes, steam, press, oven, air bath, infrared, microwave, The treatment is preferably performed using lead vulcanization or the like. More preferably, it is performed at 150 to 170 ° C. for 5 to 60 minutes. The vulcanization treatment may be performed separately for primary vulcanization and secondary vulcanization.

本発明はまた、フッ素ゴム(a1)と、ハイドロタルサイトと、分子中に少なくとも2個の窒素原子を含有し、分子中の窒素原子−窒素原子間の距離が5.70Å以上である塩基性の多官能化合物とを混合してフッ素ゴム組成物を得る工程、フッ素ゴム組成物を成形して得られる未加硫フッ素ゴム層と、フッ素樹脂層とを積層する工程、積層された未加硫フッ素ゴム層とフッ素樹脂層に加硫処理する工程、を含み、上記フッ素ゴム(a1)は、VdF/HFP/TFE共重合体であり、上記フッ素樹脂層は、燃料透過係数が2.0g・mm/m/day以下であるフッ素樹脂(b1)から構成されることを特徴とする積層体の製造方法でもある。
本発明の製造方法により、上述した本発明の積層体を製造することができる。
本発明の製造方法において、加硫処理の条件は上述したものと同じである。
The present invention also includes a fluororubber (a1), a hydrotalcite, and a basic compound containing at least two nitrogen atoms in the molecule and having a distance between nitrogen atoms and nitrogen atoms in the molecule of 5.70 cm or more. A process for obtaining a fluororubber composition by mixing with a polyfunctional compound, a process for laminating an unvulcanized fluororubber layer obtained by molding a fluororubber composition, and a fluororesin layer, a laminated unvulcanized A step of vulcanizing the fluororubber layer and the fluororesin layer, wherein the fluororubber (a1) is a VdF / HFP / TFE copolymer, and the fluororesin layer has a fuel permeability coefficient of 2.0 g · It is also the manufacturing method of the laminated body characterized by being comprised from the fluororesin (b1) which is below mm / m < 2 > / day.
By the production method of the present invention, the above-described laminate of the present invention can be produced.
In the production method of the present invention, the conditions for the vulcanization treatment are the same as those described above.

上記フッ素ゴム(a1)とハイドロタルサイトと上記塩基性の多官能化合物とを混合してフッ素ゴム組成物を得る工程は、例えば、フッ素ゴム(a1)とハイドロタルサイトと塩基性の多官能化合物とを、一般に使用されているゴム混練り装置を用いて混練りするものである。
上記ゴム混練り装置としては、ロール、ニーダー、バンバリーミキサー、インターナルミキサー、二軸押し出し機等を用いることができる。
上記混合は、フッ素ゴム(a1)、ハイドロタルサイト及び上記塩基性の多官能化合物に加え、必要に応じて、上記化合物(a2)、加硫剤、加硫助剤、共加硫剤、加硫促進剤、充填材等のその他添加剤とともに混合するものであってよい。
上記混合の温度は、例えば、20〜200℃である。また、上記混合の時間は、例えば、2〜80分である。
The step of obtaining the fluororubber composition by mixing the fluororubber (a1), hydrotalcite and the basic polyfunctional compound includes, for example, fluororubber (a1), hydrotalcite and basic polyfunctional compound. Are kneaded using a generally used rubber kneading apparatus.
As the rubber kneading apparatus, a roll, a kneader, a Banbury mixer, an internal mixer, a twin screw extruder, or the like can be used.
In addition to the fluororubber (a1), the hydrotalcite and the basic polyfunctional compound, the above-mentioned mixing is carried out as necessary in addition to the compound (a2), a vulcanizing agent, a vulcanizing aid, a co-vulcanizing agent, It may be mixed with other additives such as a sulfur accelerator and a filler.
The temperature of the said mixing is 20-200 degreeC, for example. The mixing time is, for example, 2 to 80 minutes.

上記未加硫フッ素ゴム層とフッ素樹脂層の積層は、未加硫フッ素ゴム層とフッ素樹脂層を別々に成形した後に圧着等の手段で積層する方法、未加硫フッ素ゴム層とフッ素樹脂層とを同時に成形して積層する方法、未加硫フッ素ゴム層にフッ素樹脂を塗布してフッ素樹脂層を形成する方法のいずれでもよい。 The unvulcanized fluororubber layer and the fluororesin layer are laminated by separately molding the unvulcanized fluororubber layer and the fluororesin layer by means such as pressure bonding. And a method in which a fluororesin layer is formed by applying a fluororesin to an unvulcanized fluororubber layer.

未加硫フッ素ゴム層とフッ素樹脂層を別々に成形した後に圧着等の手段で積層する方法では、フッ素樹脂の成形方法とフッ素ゴム組成物のそれぞれ単独での成形方法が採用できる。 In the method in which the unvulcanized fluororubber layer and the fluororesin layer are separately molded and then laminated by means such as pressure bonding, a fluororesin molding method and a fluororubber composition molding method can be employed.

未加硫フッ素ゴム層の成形は、フッ素ゴム組成物を加熱圧縮成形法、トランスファー成形法、押出成形法、射出成形法、カレンダー成形法、塗装法等により、シート状、チューブ状等の各種形状の成形体とすることができる。 Molding of the unvulcanized fluororubber layer can be done in various shapes such as sheet, tube, etc. by heat compression molding method, transfer molding method, extrusion molding method, injection molding method, calendar molding method, coating method, etc. It can be set as this molded object.

フッ素樹脂層は、加熱圧縮成形、溶融押出成形、射出成形、塗装(粉体塗装を含む)等の方法により成形できる。成形には通常用いられるフッ素樹脂の成形機、たとえば射出成形機、ブロー成形機、押出成形機、各種塗装装置等が使用でき、シート状、チューブ状等、各種形状の積層体を製造することが可能である。これらのうち、生産性が優れている点から、溶融押出成形法が好ましい。 The fluororesin layer can be formed by a method such as heat compression molding, melt extrusion molding, injection molding, or coating (including powder coating). For molding, commonly used fluororesin molding machines such as injection molding machines, blow molding machines, extrusion molding machines, and various coating devices can be used to produce laminates of various shapes such as sheets and tubes. Is possible. Of these, the melt extrusion molding method is preferred because of its excellent productivity.

未加硫フッ素ゴム層とフッ素樹脂層を同時に成形して積層する方法としては、未加硫フッ素ゴム層を形成するフッ素ゴム組成物、及び、フッ素樹脂層を形成するフッ素樹脂(b1)を用いて、多層圧縮成形法、多層トランスファー成形法、多層押出成形法、多層射出成形法、ダブリング法等の方法により成形と同時に積層する方法があげられる。この方法では、未加硫成形体である未加硫フッ素ゴム層とフッ素樹脂層とを同時に積層できるため、未加硫フッ素ゴム層とフッ素樹脂層とを密着させる工程が特に必要ではなく、また、後の加硫工程において強固な接着を得るのに好適である。密着が不足している場合はラッピング等の密着工程を行ってもよい。 As a method of simultaneously molding and laminating an unvulcanized fluororubber layer and a fluororesin layer, a fluororubber composition that forms an unvulcanized fluororubber layer and a fluororesin (b1) that forms a fluororesin layer are used. Examples thereof include a method of laminating simultaneously with molding by a method such as a multilayer compression molding method, a multilayer transfer molding method, a multilayer extrusion molding method, a multilayer injection molding method, and a doubling method. In this method, since an unvulcanized fluororubber layer and a fluororesin layer, which are unvulcanized molded bodies, can be laminated at the same time, a step of closely adhering the unvulcanized fluororubber layer and the fluororesin layer is not particularly necessary. It is suitable for obtaining strong adhesion in the subsequent vulcanization step. When the adhesion is insufficient, an adhesion process such as lapping may be performed.

(積層体の積層構造)
本発明の積層体は、フッ素ゴム層(A)とフッ素樹脂層(B)の2層構造でもよいし、フッ素樹脂層(B)の両側にフッ素ゴム層(A)が積層されたものであってもよいし、フッ素ゴム層(A)の両側にフッ素樹脂層(B)が積層されたものであってもよい。
例えば、フッ素ゴム層(A)−フッ素樹脂層(B)−フッ素ゴム層(A)又はフッ素樹脂層(B)−フッ素ゴム層(A)−フッ素樹脂層(B)といった3層構造でもよい。
さらに、フッ素ゴム層(A)及びフッ素樹脂層(B)以外のポリマー層(C)が接着された3層以上の多層構造であってもよいし、フッ素ゴム層(A)及びフッ素樹脂層(B)以外のポリマー層(C)が接着された3層の多層構造の片側もしくは両側にポリマー層(D)を有していてもよい。ポリマー層(C)とポリマー層(D)は同じであってもよいし、異なっていてもよい。
(Laminated structure of laminated body)
The laminate of the present invention may have a two-layer structure of a fluororubber layer (A) and a fluororesin layer (B), or a fluororubber layer (A) laminated on both sides of the fluororesin layer (B). Alternatively, the fluororesin layer (B) may be laminated on both sides of the fluororubber layer (A).
For example, a three-layer structure of fluororubber layer (A) -fluororesin layer (B) -fluororubber layer (A) or fluororesin layer (B) -fluororubber layer (A) -fluororesin layer (B) may be used.
Furthermore, it may be a multilayer structure of three or more layers in which polymer layers (C) other than the fluororubber layer (A) and the fluororesin layer (B) are bonded, or the fluororubber layer (A) and the fluororesin layer ( The polymer layer (D) may be provided on one side or both sides of a three-layer multilayer structure to which a polymer layer (C) other than B) is bonded. The polymer layer (C) and the polymer layer (D) may be the same or different.

本発明の積層体は、フッ素ゴム層(A)−フッ素樹脂層(B)−フッ素ゴム層(A)の3層構造の片側もしくは両側にポリマー層(C)を有してもよい。 The laminate of the present invention may have a polymer layer (C) on one side or both sides of a three-layer structure of a fluororubber layer (A) -a fluororesin layer (B) -a fluororubber layer (A).

ポリマー層(C)、(D)としては、フッ素ゴム層(A)以外のゴム層(C1)又は(D1)でもよい。ゴム層(C1)又は(D1)としては、非フッ素ゴムから形成される非フッ素ゴム層(C1a)又は(D1a)があげられる。非フッ素ゴムは、耐寒性が良好な点や、コスト面で優れていることから好ましい。非フッ素ゴム層(C1a)と非フッ素ゴム層(D1a)は同じ非フッ素ゴムから形成されたものでもよいし、異なる非フッ素ゴムから形成されたものでもよい。
本発明の積層体は、フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(C1a)の順に積層されているものであってもよい。
また、更に、非フッ素ゴム層(D1a)を含み、非フッ素ゴム層(D1a)−フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(C1a)の順、フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(D1a)−非フッ素ゴム層(C1a)の順、又は、フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(C1a)−非フッ素ゴム層(D1a)の順、に積層されているものであってもよい。
The polymer layers (C) and (D) may be rubber layers (C1) or (D1) other than the fluororubber layer (A). Examples of the rubber layer (C1) or (D1) include a non-fluorinated rubber layer (C1a) or (D1a) formed from a non-fluorinated rubber. Non-fluorinated rubber is preferred because of its good cold resistance and excellent cost. The non-fluorine rubber layer (C1a) and the non-fluorine rubber layer (D1a) may be formed from the same non-fluorine rubber, or may be formed from different non-fluorine rubbers.
The laminate of the present invention may be laminated in the order of fluororubber layer (A) -fluororesin layer (B) -non-fluororubber layer (C1a).
Further, it includes a non-fluorine rubber layer (D1a), in the order of non-fluorine rubber layer (D1a) -fluorine rubber layer (A) -fluorine resin layer (B) -non-fluorine rubber layer (C1a), fluorine rubber layer ( A) -fluorine resin layer (B) -non-fluorine rubber layer (D1a) -non-fluorine rubber layer (C1a), or fluorine rubber layer (A) -fluorine resin layer (B) -non-fluorine rubber layer (C1a) ) -Non-fluorinated rubber layer (D1a) in this order.

非フッ素ゴムの具体例としては、たとえばアクリロニトリル−ブタジエンゴム(NBR)又はその水素化物(HNBR)、スチレン−ブタジエンゴム(SBR)、クロロプレンゴム(CR)、ブタジエンゴム(BR)、天然ゴム(NR)、イソプレンゴム(IR)等のジエン系ゴム、エチレン−プロピレン−ターモノマー共重合体ゴム、シリコーンゴム、ブチルゴム、エピクロルヒドリンゴム、アクリル系ゴム、塩素化ポリエチレン(CPE)、アクリロニトリル−ブタジエンゴムと塩化ビニルのポリブレンド(PVC−NBR)、エチレンプロピレンジエンゴム(EPDM)等があげられる。また、これらの非フッ素ゴムおよびフッ素ゴムを任意の割合で混合したゴムもあげられる。
非フッ素ゴムとしては、耐熱性、耐油性、耐候性、押出成形性が良好な点から、ジエン系のゴム、またはエピクロルヒドリンゴムであることが好ましい。より好ましくは、NBR、HNBR又はエピクロルヒドリンゴムである。ゴム層(C1)は、NBR、HNBR又はエピクロルヒドリンゴムからなることが好ましい。
また、ゴム層(D1)は耐候性、コストの点から、アクリロニトリル−ブタジエンゴム、エピクロルヒドリンゴム、塩素化ポリエチレン(CPE)、アクリロニトリル−ブタジエンゴムと塩化ビニルのポリブレンド(PVC−NBR)、エチレンプロピレンジエンゴム(EPDM)、アクリル系ゴム、またはこれらの混合物からなる事が好ましい。なお、ゴム層(C1)、(D1)を形成する未加硫ゴム組成物中にも、加硫剤や、その他の配合剤を配合してもよい。
Specific examples of the non-fluorine rubber include, for example, acrylonitrile-butadiene rubber (NBR) or a hydride thereof (HNBR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), butadiene rubber (BR), and natural rubber (NR). Diene rubber such as isoprene rubber (IR), ethylene-propylene-termonomer copolymer rubber, silicone rubber, butyl rubber, epichlorohydrin rubber, acrylic rubber, chlorinated polyethylene (CPE), acrylonitrile-butadiene rubber and vinyl chloride Examples thereof include polyblend (PVC-NBR) and ethylene propylene diene rubber (EPDM). Moreover, the rubber which mixed these non-fluororubbers and fluororubbers in arbitrary ratios is mention | raise | lifted.
The non-fluorine rubber is preferably a diene rubber or epichlorohydrin rubber from the viewpoint of good heat resistance, oil resistance, weather resistance and extrusion moldability. More preferred is NBR, HNBR or epichlorohydrin rubber. The rubber layer (C1) is preferably made of NBR, HNBR or epichlorohydrin rubber.
The rubber layer (D1) is composed of acrylonitrile-butadiene rubber, epichlorohydrin rubber, chlorinated polyethylene (CPE), acrylonitrile-butadiene rubber and vinyl chloride polyblend (PVC-NBR), ethylene propylene diene, in terms of weather resistance and cost. It is preferably made of rubber (EPDM), acrylic rubber, or a mixture thereof. In addition, you may mix | blend a vulcanizing agent and another compounding agent also in the unvulcanized rubber composition which forms rubber layer (C1), (D1).

つぎに本発明の積層体の層構造について更に詳細に説明する。 Next, the layer structure of the laminate of the present invention will be described in more detail.

(1)フッ素ゴム層(A)−フッ素樹脂層(B)の2層構造
基本構造であり、従来、フッ素樹脂層(B)とフッ素ゴム層(A)を積層させるには、層間(フッ素ゴム層−フッ素樹脂層)の接着が不充分なため、樹脂側において表面処理を施したり、別途接着剤を層間に塗布したり、テープ状のフィルムを巻き付けて固定したり等と工程が複雑になりがちであったが、そのような複雑な工程を組まずに、加硫することにより加硫接着が起こり化学的に強固な接着が得られる。
(1) A two-layer structure basic structure of a fluororubber layer (A) -a fluororesin layer (B). Conventionally, in order to laminate the fluororesin layer (B) and the fluororubber layer (A), an interlayer (fluororubber) Layer-fluorine resin layer) is insufficiently bonded, which makes the process complicated, such as surface treatment on the resin side, separate application of adhesive between layers, and winding and fixing a tape-like film. However, vulcanization adhesion occurs by vulcanization without assembling such complicated processes, and chemically strong adhesion is obtained.

(2)ゴム層−フッ素樹脂層(B)−ゴム層の3層構造
フッ素ゴム層(A)−フッ素樹脂層(B)−フッ素ゴム層(A)の3層構造、及び、フッ素ゴム層(A)−フッ素樹脂層(B)−ゴム層(C1)の3層構造がある。
シール性が要求される場合、たとえば燃料配管等の接合部は、シール性保持のためにゴム層を両側に配置することが望ましい。内外層のゴム層は同じ種類であっても、違う種類であっても良い。
フッ素ゴム層(A)−フッ素樹脂層(B)−ゴム層(C1)の3層構造の場合、ゴム層(C1)は、アクリロニトリルブタジエンゴム、水素化アクリロニトリルブタジエンゴム、エピクロルヒドリンゴム、又は、アクリロニトリルブタジエンゴムとアクリル系ゴムの混合物からなる層であることが好ましい。
また、燃料配管をフッ素ゴム層(A)−フッ素樹脂層(B)−ゴム層(C1)の3層構造とし、ゴム層(C1)としてフッ素ゴム層を設け、ゴム層(C1)を配管の内層にすることにより、耐薬品性、燃料低透過性が向上する。
(2) Three-layer structure of rubber layer-fluororesin layer (B) -rubber layer Three-layer structure of fluororubber layer (A) -fluorine resin layer (B) -fluororubber layer (A), and fluororubber layer ( There is a three-layer structure of A) -fluorine resin layer (B) -rubber layer (C1).
When sealing performance is required, it is desirable to arrange rubber layers on both sides in order to maintain the sealing performance, for example, in joints such as fuel pipes. The inner and outer rubber layers may be the same type or different types.
In the case of a three-layer structure of fluororubber layer (A) -fluororesin layer (B) -rubber layer (C1), the rubber layer (C1) is composed of acrylonitrile butadiene rubber, hydrogenated acrylonitrile butadiene rubber, epichlorohydrin rubber, or acrylonitrile butadiene. A layer made of a mixture of rubber and acrylic rubber is preferred.
The fuel pipe has a three-layer structure of a fluororubber layer (A) -a fluororesin layer (B) -a rubber layer (C1), a fluororubber layer is provided as the rubber layer (C1), and the rubber layer (C1) is provided as a pipe. By using the inner layer, chemical resistance and low fuel permeability are improved.

(3)樹脂層−フッ素ゴム層(A)−樹脂層の3層構造
フッ素樹脂層(B)−フッ素ゴム層(A)−フッ素樹脂層(B)の3層構造が挙げられる。内外層の樹脂層は同じ種類であっても、違う種類であっても良い。
(3) Three-layer structure of resin layer-fluororubber layer (A) -resin layer A three-layer structure of fluororesin layer (B) -fluororubber layer (A) -fluorine resin layer (B) is mentioned. The inner and outer resin layers may be of the same type or different types.

(4)フッ素樹脂層(B)−フッ素ゴム層(A)−ゴム層(C1)の3層構造 (4) Three-layer structure of fluororesin layer (B) -fluororubber layer (A) -rubber layer (C1)

(5)4層構造以上
(2)〜(4)の3層構造に加えて、さらに任意のフッ素ゴム層(A)又はゴム層(C1)、フッ素樹脂層(B)を目的に応じて積層してもよい。また、金属箔等の層を設けてもよいし、フッ素ゴム層(A)とフッ素樹脂層(B)との層間以外には接着剤層を介在させてもよい。
(5) Four-layer structure or more In addition to the three-layer structure of (2) to (4), an optional fluororubber layer (A) or rubber layer (C1) and fluororesin layer (B) are laminated depending on the purpose. May be. Moreover, a layer such as a metal foil may be provided, or an adhesive layer may be interposed other than the interlayer between the fluororubber layer (A) and the fluororesin layer (B).

またさらに、ポリマー層(C)と積層してライニング体とすることもできる。 Furthermore, it can be laminated with the polymer layer (C) to form a lining body.

なお、各層の厚さ、形状等は、使用目的、使用形態等によって適宜選定すればよい。
また、耐圧向上の目的で、補強糸等の補強層を適宜設けてもよい。
In addition, what is necessary is just to select the thickness of each layer, a shape, etc. suitably according to a use purpose, a use form, etc.
In addition, for the purpose of improving pressure resistance, a reinforcing layer such as a reinforcing yarn may be provided as appropriate.

本発明の積層体は、燃料低透過性に優れるほか、耐熱性・耐油性・耐燃料油性・耐LLC性・耐スチーム性、耐侯性、耐オゾン性に優れており、また、苛酷な条件下での使用に充分耐えうるものであり、各種の用途に使用可能である。 The laminate of the present invention is excellent in low fuel permeability, heat resistance, oil resistance, fuel oil resistance, LLC resistance, steam resistance, weather resistance, ozone resistance, and under severe conditions. Can be used for various purposes.

たとえば、自動車用エンジンのエンジン本体、主運動系、動弁系、潤滑・冷却系、燃料系、吸気・排気系等、駆動系のトランスミッション系等、シャーシのステアリング系、ブレーキ系等、電装品の基本電装部品、制御系電装部品、装備電装部品等の、耐熱性・耐油性・耐燃料油性・耐LLC性・耐スチーム性が要求されるガスケットや非接触型及び接触型のパッキン類(セルフシールパッキン、ピストンリング、割リング形パッキン、メカニカルシール、オイルシール等)等のシール、ベローズ、ダイヤフラム、ホース、チューブ、電線等として好適な特性を備えている。 For example, automotive engine main body, main motion system, valve system, lubrication / cooling system, fuel system, intake / exhaust system, drive system transmission system, chassis steering system, brake system, etc. Gaskets that require heat resistance, oil resistance, fuel oil resistance, LLC resistance, steam resistance, non-contact type and contact type packings (self-sealing) such as basic electric parts, control system electric parts, equipment electric parts, etc. (Packing, piston ring, split ring type packing, mechanical seal, oil seal, etc.), etc., and suitable characteristics as bellows, diaphragm, hose, tube, electric wire, etc.

具体的には、以下に列記する用途に使用可能である。 Specifically, it can be used for the applications listed below.

エンジン本体の、シリンダーヘッドガスケット、シリンダーヘッドカバーガスケット、オイルパンパッキン、一般ガスケット等のガスケット、O−リング、パッキン、タイミングベルトカバーガスケット等のシール、コントロールホース等のホース、エンジンマウントの防振ゴム、水素貯蔵システム内の高圧弁用シール材等。 Engine body cylinder head gasket, cylinder head cover gasket, oil pan packing, gaskets such as general gaskets, seals such as O-rings, packing, timing belt cover gaskets, hoses such as control hoses, anti-vibration rubber for engine mounts, hydrogen Sealing material for high pressure valves in storage systems.

主運動系の、クランクシャフトシール、カムシャフトシール等のシャフトシール等。 Shaft seals such as crankshaft seals and camshaft seals for the main motion system.

動弁系の、エンジンバルブのバルブステムシール等。 Valve stem seals for valve valves and engine valves.

潤滑・冷却系の、エンジンオイルクーラーのエンジンオイルクーラーホース、オイルリターンホース、シールガスケット等や、ラジエータ周辺のウォーターホース、バキュームポンプのバキュームポンプオイルホース等。 Lubricating / cooling engine oil cooler hose, oil return hose, seal gasket, water hose around radiator, vacuum pump oil hose for vacuum pump, etc.

燃料系の、燃料ポンプのオイルシール、ダイヤフラム、バルブ等、フィラー(ネック)ホース、燃料供給ホース、燃料リターンホース、ベーパー(エバポ)ホース等の燃料ホース、燃料タンクのインタンクホース、フィラーシール、タンクパッキン、インタンクフューエルポンプマウント等、燃料配管チューブのチューブ本体やコネクターO−リング等、燃料噴射装置のインジェクタークッションリング、インジェクターシールリング、インジェクターO−リング、プレッシャーレギュレーターダイヤフラム、チェックバルブ類等、キャブレターのニードルバルブ花弁、加速ポンプピストン、フランジガスケット、コントロールホース等、複合空気制御装置(CAC)のバルブシート、ダイヤフラム等。中でも、燃料ホース及び燃料タンクのインタンクホースとして好適である。 Fuel seals, fuel pump oil seals, diaphragms, valves, etc. Filler (neck) hoses, fuel supply hoses, fuel return hoses, vapor (evaporation) hose fuel hoses, fuel tank in-tank hoses, filler seals, tanks Packing, in-tank fuel pump mount, fuel pipe tube body, connector O-ring, etc. Fuel injector injector cushion ring, injector seal ring, injector O-ring, pressure regulator diaphragm, check valves, etc. Needle valve petals, acceleration pump pistons, flange gaskets, control hoses, etc., composite air control (CAC) valve seats, diaphragms, etc. Especially, it is suitable as an in-tank hose of a fuel hose and a fuel tank.

吸気・排気系の、マニホールドの吸気マニホールドパッキン、排気マニホールドパッキン等、EGR(排気際循環)のダイヤフラム、コントロールホース、エミッションコントロールホース等、BPTのダイヤフラム等、ABバルブのアフターバーン防止バルブシート等、スロットルのスロットルボディパッキン、ターボチャージャーのターボオイルホース(供給)、ターボオイルホース(リターン)、ターボエアホース、インタークーラーホース、タービンシャフトシール等。 Intake / exhaust manifold manifold manifold packing, exhaust manifold packing, EGR diaphragm, control hose, emission control hose, BPT diaphragm, AB valve after-burn prevention valve seat, throttle, etc. Throttle body packing, turbocharger turbo oil hose (supply), turbo oil hose (return), turbo air hose, intercooler hose, turbine shaft seal, etc.

トランスミッション系の、トランスミッション関連のベアリングシール、オイルシール、O−リング、パッキン、トルコンホース等、ATのミッションオイルホース、ATFホース、O−リング、パッキン類等。 Transmission related bearing seals, oil seals, O-rings, packings, torque converter hoses, etc. AT transmission oil hoses, ATF hoses, O-rings, packings, etc.

ステアリング系の、パワーステアリングオイルホース等。 Steering power steering oil hose, etc.

ブレーキ系の、オイルシール、O−リング、パッキン、ブレーキオイルホース等、マスターバックの大気弁、真空弁、ダイヤフラム等、マスターシリンダーのピストンカップ(ゴムカップ)等、キャリパーシール、ブーツ類等。 Brake system oil seal, O-ring, packing, brake oil hose, etc., master back atmospheric valve, vacuum valve, diaphragm, etc., master cylinder piston cup (rubber cup), caliper seal, boots, etc.

基本電装部品の、電線(ハーネス)の絶縁体やシース等、ハーネス外装部品のチューブ等。 Tubes of harness exterior parts, such as insulators and sheaths of electric wires (harnesses) of basic electrical components.

制御系電装部品の、各種センサー線の被覆材料等。 Coating materials for various sensor wires for control system electrical components.

装備電装部品の、カーエアコンのO−リング、パッキン、クーラーホース、外装品のワイパーブレード等。 Car air conditioner O-rings, packings, cooler hoses, exterior wiper blades, etc.

また自動車用以外では、たとえば、船舶、航空機等の輸送機関における耐油、耐薬品、耐熱、耐スチーム、あるいは耐候用のパッキン、O−リング、ホース、その他のシール材、ダイヤフラム、バルブに、また化学プラントにおける同様のパッキン、O−リング、シール材、ダイヤフラム、バルブ、ホース、ロール、チューブ、耐薬品用コーティング、ライニングに、化学処理分野におけるホースまたはガスケットに、食品プラント機器及び食品機器(家庭用品を含む)における同様のパッキン、O−リング、ホース、シール材、ベルト、ダイヤフラム、バルブ、ロール、チューブに、原子力プラント機器における同様のパッキン、O−リング、ホース、シール材、ダイヤフラム、バルブ、チューブに、OA機器、一般工業部品における同様のパッキン、O−リング、ホース、シール材、ダイヤフラム、バルブ、ロール、チューブ、ライニング、マンドレル、電線、フレキシブルジョイント、ベルト、ゴム板、ウエザーストリップ、PPC複写機のロールブレード等への用途に好適である。たとえば、PTFEダイヤフラムのバックアップゴム材は滑り性が悪いため、使用している間にすり減ったり、破れたりする問題があったが、本発明の積層体を用いることにより、この問題を改善でき、好適に使用できる。 In addition to automobiles, for example, in oil, chemical, heat, steam, or weather resistant packings, O-rings, hoses, other sealing materials, diaphragms, valves, chemicals, etc. For similar packing, O-rings, sealing materials, diaphragms, valves, hoses, rolls, tubes, chemical coatings, linings in plants, hoses or gaskets in chemical processing, food plant equipment and food equipment (household products) In the same packing, O-rings, hoses, seals, belts, diaphragms, valves, rolls, tubes in nuclear power plant equipment, and similar packings, O-rings, hoses, seals, diaphragms, valves, tubes in nuclear power plant equipment The same in OA equipment and general industrial parts Suitable for packing, O-ring, hose, sealing material, diaphragm, valve, roll, tube, lining, mandrel, electric wire, flexible joint, belt, rubber plate, weather strip, roll blade of PPC copying machine, etc. . For example, the backup rubber material of PTFE diaphragm has a problem that it is worn out or torn during use because of its poor sliding property, but by using the laminate of the present invention, this problem can be improved and suitable. Can be used for

また、食品ゴムシール材用途においては、従来ゴムシール材において着香性やゴムの欠片等が食品中に混入するトラブルがあるが、本発明の積層体を用いることにより、この問題を改善でき、好適に使用できる。医薬・ケミカル用途のゴムシール材溶剤を使用する配管のシール材としてゴム材料は溶剤に膨潤する問題があるが、本発明の積層体を用いることにより、樹脂を被覆する事で改善される。一般工業分野では、ゴム材料の強度、すべり性、耐薬品性、透過性を改善する目的において、たとえば、ゴムロール、O−リング、パッキン、シール材等に好適に用いることができる。特に、リチウムイオン電池のパッキン用途には耐薬品性とシールの両方を同時に維持できることから好適に使用できる。その他、低摩擦による摺動性が要求される用途においては、好適に使用できる。 In addition, in food rubber seal material applications, there is a problem that flavor and rubber fragments are mixed into food in conventional rubber seal materials, but by using the laminate of the present invention, this problem can be improved and preferably Can be used. Rubber seal materials for pipes that use solvents for pharmaceutical and chemical applications have a problem that rubber materials swell in the solvent. However, the use of the laminate of the present invention improves the rubber materials. In the general industrial field, for the purpose of improving the strength, slipperiness, chemical resistance, and permeability of rubber materials, it can be suitably used for rubber rolls, O-rings, packings, sealing materials, and the like. In particular, it can be preferably used for packing of lithium ion batteries because both chemical resistance and sealing can be maintained at the same time. In addition, it can be suitably used in applications where slidability with low friction is required.

これらの中でも、特に上記積層体は、チューブ又はホースとして好適に用いられる。すなわち、上記積層体は、チューブ又はホースでもあることが好ましい。チューブの中でも、耐熱性、燃料低透過性の点で自動車用の燃料配管チューブ又はホースとして好適に利用できる。 Among these, the laminate is particularly preferably used as a tube or a hose. That is, the laminate is preferably a tube or a hose. Among tubes, it can be suitably used as a fuel piping tube or hose for automobiles in terms of heat resistance and low fuel permeability.

本発明における前記積層体からなる燃料配管は通常の方法によって製造することができ、特に制限されることはない。 The fuel pipe made of the laminate in the present invention can be produced by a usual method and is not particularly limited.

以下に、実施例によって本発明を更に詳細に説明するが、本発明はこれに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

実施例及び比較例では、下記方法により各物性値等を測定した。 In Examples and Comparative Examples, each physical property value was measured by the following method.

(1)ポリマーの組成
19F−NMR分析により測定した。
(1) Polymer composition
It was measured by 19 F-NMR analysis.

(2)融点
セイコー型DSC装置を用い、10℃/分の速度で昇温したときの融解ピークを記録し、極大値に対応する温度を融点とした。
(2) Melting point Using a Seiko DSC apparatus, the melting peak when the temperature was raised at a rate of 10 ° C / min was recorded, and the temperature corresponding to the maximum value was taken as the melting point.

(3)MFR(Melt Flow Rate)
メルトインデクサー(東洋精機製作所(株)製)を用い、297℃、5kg加重下で直径2mm、長さ8mmのノズルから単位時間(10分間)に流出するポリマーの重量(g)を測定した。
(3) MFR (Melt Flow Rate)
Using a melt indexer (manufactured by Toyo Seiki Seisakusho Co., Ltd.), the weight (g) of the polymer flowing out from a nozzle having a diameter of 2 mm and a length of 8 mm under a load of 297 ° C. and 5 kg per unit time (10 minutes) was measured.

(4)フッ素樹脂の燃料透過係数の測定
フッ素樹脂ペレットを、それぞれ、直径120mmの金型に入れ、300℃に加熱したプレス機にセットし、約2.9MPaの圧力で溶融プレスして、厚さ0.15mmのシートを得た。CE10(イソオクタンとトルエンとの容量比50:50の混合物にエタノール10容量%を混合した燃料)を18mL投入した内径40mmφ、高さ20mmのSUS316製の透過係数測定用カップに得られたシートを入れ、60℃における質量変化を1000時間まで測定した。時間あたりの質量変化(測定初期における質量変化が一定の部分)、接液部のシートの表面積およびシートの厚さから燃料透過係数(g・mm/m/day)を算出した。
(4) Measurement of fuel permeability coefficient of fluororesin Each fluororesin pellet was placed in a mold with a diameter of 120 mm, set in a press machine heated to 300 ° C., melt-pressed at a pressure of about 2.9 MPa, A sheet having a thickness of 0.15 mm was obtained. Put the obtained sheet into a SUS316 transmission coefficient measuring cup made of SUS316 with an inner diameter of 40 mmφ and a height of 20 mm containing 18 mL of CE10 (fuel obtained by mixing 10% by volume of ethanol in a 50:50 volume ratio of isooctane and toluene) The mass change at 60 ° C. was measured up to 1000 hours. The fuel permeation coefficient (g · mm / m 2 / day) was calculated from the change in mass per unit time (part where the mass change at the beginning of measurement was constant), the surface area of the sheet in the wetted part, and the thickness of the sheet.

(5)ムーニー粘度
ASTM−D1646およびJISK6300に準拠して測定した。
(5) Mooney viscosity Measured according to ASTM-D1646 and JISK6300.

(6)トリエチルアミンと接触させた後に測定した1720cm−1の吸光係数
まず、アセトン、テトラヒドロフラン(THF)又はメチルエチルケトン(MEK)10cc中にポリマー(フッ素ゴム)0.56gを完全に溶解させた後、トリエチルアミン4.9gを入れ、シャーレに溶液を移し、アセトン、THF又はMEKを気化させた後、シャーレごと70℃の恒温槽で3時間加熱し、加熱後のポリマーのIRを分析した。
そして、IRの分析結果において、3000〜3030cm−1の吸光係数を1.0とした時の1720cm−1のピーク強度を1720cm−1の吸光係数とした。
(6) Absorption coefficient of 1720 cm −1 measured after contact with triethylamine First, 0.56 g of polymer (fluororubber) was completely dissolved in 10 cc of acetone, tetrahydrofuran (THF) or methyl ethyl ketone (MEK), and then triethylamine. 4.9 g was added, the solution was transferred to a petri dish, acetone, THF or MEK was vaporized, and then the whole petri dish was heated in a thermostat at 70 ° C. for 3 hours, and the IR of the polymer after heating was analyzed.
Then, in the analysis result of the IR, the peak intensity of 1720 cm -1 when a 1.0 an extinction coefficient of 3000~3030Cm -1 was extinction coefficient of 1720 cm -1.

下記に実施例及び比較例で使用した材料を示す。
・フッ素樹脂(1)
CTFE/PPVE/TFE共重合体、CTFE/PPVE/TFE=21.3/2.4/76.3(モル%)、融点:245℃、MFR:30g/10分(297℃、5kg)、燃料透過係数:0.4g・mm/m/day
・フッ素ゴム(1)
VdF/HFP/TFE共重合体、VdF/HFP/TFE=70/18/12(モル%)、フッ素含有率:67% ムーニー粘度(ML(1+10)(121℃)=26、トリエチルアミンと接触させた後に測定した1720cm−1の吸光係数:0.39
・フッ素ゴム(2)
VdF/TFE/PMVE共重合体、VdF/TFE/PMVE=72/8/20、フッ素含有率:66%、ムーニー粘度(ML(1+10)(100℃)=67、トリエチルアミンと接触させた後に測定した1720cm−1の吸光係数:0.38
The materials used in Examples and Comparative Examples are shown below.
・ Fluorine resin (1)
CTFE / PPVE / TFE copolymer, CTFE / PPVE / TFE = 21.3 / 2.4 / 76.3 (mol%), melting point: 245 ° C., MFR: 30 g / 10 min (297 ° C., 5 kg), fuel Transmission coefficient: 0.4 g · mm / m 2 / day
・ Fluoro rubber (1)
VdF / HFP / TFE copolymer, VdF / HFP / TFE = 70/18/12 (mol%), fluorine content: 67% Mooney viscosity (ML (1 + 10) (121 ° C.) = 26, contacted with triethylamine Later measured extinction coefficient of 1720 cm −1 : 0.39
・ Fluoro rubber (2)
VdF / TFE / PMVE copolymer, VdF / TFE / PMVE = 72/8/20, fluorine content: 66%, Mooney viscosity (ML (1 + 10) (100 ° C.) = 67, measured after contact with triethylamine Absorption coefficient of 1720 cm −1 : 0.38

塩基性多官能化合物:N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミン、分子中のN同士の距離:8.80Å、
カーボンブラック:MTカーボン、N990
加硫剤:パーヘキサ25B、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン
加硫助剤:トリアリルイソシアヌレート(TAIC)
ハイドロタルサイト:協和化学工業(株)のDHT−4A、DHT−4A−2、DHT−4C、KW−2200
Basic polyfunctional compound: N, N′-dicinnamylidene-1,6-hexamethylenediamine, distance between N in molecule: 8.80 mm,
Carbon black: MT carbon, N990
Vulcanizing agent: Perhexa 25B, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane vulcanizing aid: triallyl isocyanurate (TAIC)
Hydrotalcite: DHT-4A, DHT-4A-2, DHT-4C, KW-2200 from Kyowa Chemical Industry Co., Ltd.

比較例1〜3及び実施例1〜9
(フッ素ゴム組成物の製造)
下記表1に示す材料を、8インチオープンロールを用いて混練することにより、約2mmの厚みのシート状の加硫用ゴム組成物を得た。なお、表1の各数値は「質量部」を表す。また、加硫用ゴム組成物に対して、キュラストメーターII型(型番:JSRキュラストメーター。JSR社製)を用いて、160℃にて最大トルク値(MH)と最少トルク値(ML)を測定し、誘導時間(T10)及び最適加硫時間(T90)を求めた。測定結果を表に示す。なお、T10は、{(MH)−(ML)}×0.1+MLとなる時間であり、T90は、{(MH)−(ML)}×0.9+MLとなる時間であり、MH及びMLは、JIS K 6300−2に準じて測定した値である。
(積層体の製造)
厚さ約2mmの加硫用ゴム組成物のシートと、フッ素樹脂シートを重ね合わせ、得られるシートが厚み2mmになる金型に挿入し、160℃で45分間プレスする事により、シート状の積層体を得た。
Comparative Examples 1-3 and Examples 1-9
(Manufacture of fluororubber composition)
The materials shown in Table 1 below were kneaded using an 8-inch open roll to obtain a sheet-like rubber composition for vulcanization having a thickness of about 2 mm. Each numerical value in Table 1 represents “part by mass”. In addition, with respect to the rubber composition for vulcanization, a maximum torque value (MH) and a minimum torque value (ML) at 160 ° C. using a curast meter type II (model number: JSR curast meter, manufactured by JSR). Was measured, and an induction time (T10) and an optimum vulcanization time (T90) were determined. The measurement results are shown in the table. T10 is the time when {(MH) − (ML)} × 0.1 + ML, T90 is the time when {(MH) − (ML)} × 0.9 + ML, and MH and ML are , Measured according to JIS K 6300-2.
(Manufacture of laminates)
A sheet of vulcanized rubber composition having a thickness of about 2 mm and a fluororesin sheet are overlaid, inserted into a mold in which the resulting sheet has a thickness of 2 mm, and pressed at 160 ° C. for 45 minutes to laminate the sheet. Got the body.

(接着性評価)
得られた積層体を幅10mm×長さ40mm×3セットの短冊状に切断し、試料片を作成した。この試験片について、オートグラフ((株)島津製作所製 AGS−J 5kN)を使用して、JIS−K−6256(加硫ゴムの接着試験方法)に記載の方法に準拠し、25℃において50mm/分の引張速度で剥離試験を行い、剥離モードを観測し、以下の基準で評価した。
○・・・加硫用ゴム組成物のシート又はフッ素樹脂シートから形成された層が、積層体の界面で材料破壊し、界面で剥離するのが不可能であった。
なお、表1中で接着性評価が○である場合の接着強度は、樹脂層又はゴム層のうち強度が弱い方の材料が破壊する強度である。
×・・・積層体が界面で剥離可能で、界面での剥離強度が10N/cm以下であった。
(Adhesion evaluation)
The obtained laminate was cut into strips of 10 mm width × 40 mm length × 3 sets to prepare sample pieces. About this test piece, according to the method as described in JIS-K-6256 (adhesion test method of vulcanized rubber) using an autograph (AGS-J 5kN manufactured by Shimadzu Corporation), 50 mm at 25 ° C. A peeling test was conducted at a tensile rate of / min, and the peeling mode was observed and evaluated according to the following criteria.
A layer formed from a sheet of a rubber composition for vulcanization or a fluororesin sheet was destroyed at the interface of the laminate and could not be peeled off at the interface.
In Table 1, the adhesive strength when the adhesion evaluation is “◯” is the strength at which the material having the lower strength of the resin layer or the rubber layer is broken.
X: The laminate was peelable at the interface, and the peel strength at the interface was 10 N / cm or less.

Figure 2018015935
Figure 2018015935

本発明の積層体は、燃料バリア性及び耐燃料性に優れたVdF/HFP/TFE共重合体を用いたフッ素ゴム層(A)と燃料透過係数が低いフッ素樹脂層(B)とを強固に接着できることから、燃料用ホース、燃料チューブ、オイルシール、O−リング、パッキン等として特に好適に利用できる。 The laminate of the present invention has a strong structure of a fluororubber layer (A) using a VdF / HFP / TFE copolymer excellent in fuel barrier properties and fuel resistance and a fluororesin layer (B) having a low fuel permeability coefficient. Since it can adhere | attach, it can utilize especially suitably as a fuel hose, a fuel tube, an oil seal, an O-ring, packing, etc.

Claims (15)

フッ素ゴム層(A)と、フッ素ゴム層(A)上に積層されたフッ素樹脂層(B)と、を備える積層体であって、
前記フッ素ゴム層(A)は、フッ素ゴム組成物から形成される層であり、
前記フッ素ゴム組成物は、フッ素ゴム(a1)、ハイドロタルサイト、及び、分子中に少なくとも2個の窒素原子を含有し、分子中の窒素原子−窒素原子間の距離が5.70Å以上である塩基性の多官能化合物を含み、
フッ素ゴム(a1)は、フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体であり、
前記フッ素樹脂層(B)は、燃料透過係数が2.0g・mm/m/day以下であるフッ素樹脂(b1)から構成される
ことを特徴とする積層体。
A laminate comprising a fluororubber layer (A) and a fluororesin layer (B) laminated on the fluororubber layer (A),
The fluororubber layer (A) is a layer formed from a fluororubber composition,
The fluororubber composition contains at least two nitrogen atoms in the fluororubber (a1), hydrotalcite, and the molecule, and the distance between the nitrogen atom and the nitrogen atom in the molecule is 5.70 or more. Containing basic polyfunctional compounds,
The fluororubber (a1) is a vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene copolymer,
The said fluororesin layer (B) is comprised from the fluororesin (b1) whose fuel permeability coefficient is 2.0 g * mm / m < 2 > / day or less, The laminated body characterized by the above-mentioned.
フッ素樹脂(b1)は、ポリクロロトリフルオロエチレン、クロロトリフルオロエチレン系共重合体、及び、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体からなる群より選択される少なくとも1種であり、
前記テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体は、テトラフルオロエチレン、ヘキサフルオロプロピレン及びフッ化ビニリデンの共重合割合(モル%比)が、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン=75〜95/0.1〜10/0.1〜19である
請求項1記載の積層体。
The fluororesin (b1) is at least one selected from the group consisting of polychlorotrifluoroethylene, chlorotrifluoroethylene copolymers, and tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymers. ,
The tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer has a tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymerization ratio (mole% ratio) of tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride. The laminate according to claim 1, wherein = 75 to 95 / 0.1 to 10 / 0.1 to 19.
フッ素ゴム組成物は、パーオキサイド加硫系加硫剤を含有する請求項1又は2記載の積層体。 The laminate according to claim 1 or 2, wherein the fluororubber composition contains a peroxide vulcanizing agent. 塩基性の多官能化合物は、−NH、−NH 、−NHCOOH、−NHCOO、−N=CR(式中、R及びRは、独立して、炭素数0〜12の有機基である)、−NR(式中、R及びRは、独立して、炭素数0〜12の有機基である)、及び、−NR(式中、R、R及びRは、独立して、炭素数0〜12の有機基である)である官能基を2個以上有する請求項1、2又は3記載の積層体。 Basic polyfunctional compounds, -NH 2, -NH 3 +, -NHCOOH, -NHCOO -, -N = CR 1 R 2 ( wherein, R 1 and R 2 are independently 0 carbon atoms -NR 3 R 4 (wherein R 3 and R 4 are each independently an organic group having 0 to 12 carbon atoms), and -NR 3 R 4 R 5 ( 4. The laminate according to claim 1, 2 or 3, wherein R 3 , R 4 and R 5 are each independently two or more functional groups which are organic groups having 0 to 12 carbon atoms. 塩基性の多官能化合物は、−NH、−NH 、−N=CR(式中、R及びRは、独立して、炭素数0〜12の有機基である)、及び、−NR(式中、R、R及びRは、独立して、炭素数0〜12の有機基である)である官能基を2個以上有する請求項1、2、3又は4記載の積層体。 The basic polyfunctional compound is —NH 2 , —NH 3 + , —N═CR 1 R 2 (wherein R 1 and R 2 are independently an organic group having 0 to 12 carbon atoms) And -NR 3 R 4 R 5 (wherein R 3 , R 4 and R 5 are each independently an organic group having 0 to 12 carbon atoms). The laminate according to 1, 2, 3 or 4. 塩基性の多官能化合物は、N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミン及びNH−(CH−NH(式中、nは5〜12)からなる群より選択される少なくとも1種である請求項1、2、3、4又は5記載の積層体。 The basic polyfunctional compound is selected from the group consisting of N, N′-dicinnamylidene-1,6-hexamethylenediamine and NH 2 — (CH 2 ) n —NH 2 (where n is 5 to 12). The laminated body according to claim 1, 2, 3, 4 or 5, which is at least one kind. 塩基性の多官能化合物は、N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミン及びヘキサメチレンジアミンからなる群より選択される少なくとも1種である請求項1、2、3、4、5又は6記載の積層体。 The basic polyfunctional compound is at least one selected from the group consisting of N, N'-dicinnamylidene-1,6-hexamethylenediamine and hexamethylenediamine. 6. The laminate according to 6. フッ素ゴム層(A)とフッ素樹脂層(B)との接着強度が12N/cm以上である請求項1、2、3、4、5、6又は7記載の積層体。 The laminate according to claim 1, 2, 3, 4, 5, 6 or 7, wherein the adhesive strength between the fluororubber layer (A) and the fluororesin layer (B) is 12 N / cm or more. フッ素樹脂層(B)の両側にフッ素ゴム層(A)が積層されている請求項1、2、3、4、5、6、7又は8記載の積層体。 The laminate according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein the fluororubber layer (A) is laminated on both sides of the fluororesin layer (B). フッ素ゴム層(A)の両側にフッ素樹脂層(B)が積層されている請求項1、2、3、4、5、6、7又は8記載の積層体。 The laminate according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein the fluororesin layer (B) is laminated on both sides of the fluororubber layer (A). 更に、非フッ素ゴム層(C1a)を含み、
フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(C1a)の順に積層されている請求項1、2、3、4、5、6、7又は8記載の積層体。
Furthermore, a non-fluorine rubber layer (C1a) is included,
The laminate according to claim 1, 2, 3, 4, 5, 6, 7 or 8, wherein the fluororubber layer (A), the fluororesin layer (B) and the non-fluororubber layer (C1a) are laminated in this order.
更に、非フッ素ゴム層(D1a)を含み、
非フッ素ゴム層(D1a)−フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(C1a)の順、フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(D1a)−非フッ素ゴム層(C1a)の順、又は、フッ素ゴム層(A)−フッ素樹脂層(B)−非フッ素ゴム層(C1a)−非フッ素ゴム層(D1a)の順、に積層されている請求項11記載の積層体。
Furthermore, a non-fluorine rubber layer (D1a) is included,
Non-fluorine rubber layer (D1a) -Fluorine rubber layer (A) -Fluorine resin layer (B) -Non-fluorine rubber layer (C1a) in this order, Fluorine rubber layer (A) -Fluorine resin layer (B) -Non-fluorine rubber layer Laminated in the order of (D1a) -non-fluorine rubber layer (C1a) or in the order of fluororubber layer (A) -fluorine resin layer (B) -non-fluorine rubber layer (C1a) -non-fluorine rubber layer (D1a) The laminated body according to claim 11.
フッ素ゴム層(A)とフッ素樹脂層(B)とが加硫接着されていることを特徴とする請求項1、2、3、4、5、6、7、8、9、10、11又は12記載の積層体。 The fluororubber layer (A) and the fluororesin layer (B) are vulcanized and bonded to each other, wherein the fluororubber layer (A) and the fluororesin layer (B) are vulcanized and bonded. 12. The laminate according to 12. フッ素ゴム(a1)と、ハイドロタルサイトと、分子中に少なくとも2個の窒素原子を含有し、分子中の窒素原子−窒素原子間の距離が5.70Å以上である塩基性の多官能化合物とを混合してフッ素ゴム組成物を得る工程、
フッ素ゴム組成物を成形して得られる未加硫フッ素ゴム層と、フッ素樹脂層とを積層する工程、及び、
積層された未加硫フッ素ゴム層とフッ素樹脂層に加硫処理する工程、を含み、
前記フッ素ゴム(a1)は、フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体であり、
前記フッ素樹脂層は、燃料透過係数が2.0g・mm/m/day以下であるフッ素樹脂(b1)から構成される
ことを特徴とする積層体の製造方法。
A fluorine-containing rubber (a1), a hydrotalcite, a basic polyfunctional compound containing at least two nitrogen atoms in the molecule and having a distance between nitrogen atoms and nitrogen atoms in the molecule of 5.70 cm or more; A process of obtaining a fluororubber composition by mixing
A step of laminating an unvulcanized fluororubber layer obtained by molding a fluororubber composition and a fluororesin layer; and
Vulcanizing the laminated unvulcanized fluororubber layer and fluororesin layer,
The fluororubber (a1) is a vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene copolymer,
The said fluororesin layer is comprised from the fluororesin (b1) whose fuel permeability coefficient is 2.0 g * mm / m < 2 > / day or less, The manufacturing method of the laminated body characterized by the above-mentioned.
フッ素ゴム(a1)と、ハイドロタルサイトと、分子中に少なくとも2個の窒素原子を含有し、分子中の窒素原子−窒素原子間の距離が5.70Å以上である塩基性の多官能化合物とを含み、
前記フッ素ゴム(a1)は、フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体である
ことを特徴とするフッ素ゴム組成物。
A fluorine-containing rubber (a1), a hydrotalcite, a basic polyfunctional compound containing at least two nitrogen atoms in the molecule and having a distance between nitrogen atoms and nitrogen atoms in the molecule of 5.70 cm or more; Including
The fluororubber composition, wherein the fluororubber (a1) is a vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene copolymer.
JP2016146331A 2016-07-26 2016-07-26 Laminate, method for producing laminate and fluororubber composition Pending JP2018015935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016146331A JP2018015935A (en) 2016-07-26 2016-07-26 Laminate, method for producing laminate and fluororubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146331A JP2018015935A (en) 2016-07-26 2016-07-26 Laminate, method for producing laminate and fluororubber composition

Publications (1)

Publication Number Publication Date
JP2018015935A true JP2018015935A (en) 2018-02-01

Family

ID=61075716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146331A Pending JP2018015935A (en) 2016-07-26 2016-07-26 Laminate, method for producing laminate and fluororubber composition

Country Status (1)

Country Link
JP (1) JP2018015935A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439161B1 (en) * 2018-03-19 2018-12-19 国産部品工業株式会社 Metal gasket
CN116715927A (en) * 2023-06-28 2023-09-08 昆山力普电子橡胶有限公司 Antifouling watchband material and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439161B1 (en) * 2018-03-19 2018-12-19 国産部品工業株式会社 Metal gasket
JP2019163798A (en) * 2018-03-19 2019-09-26 国産部品工業株式会社 Metal gasket
DE102019203754B4 (en) 2018-03-19 2020-07-09 Kokusan Parts Industry Co., Ltd. Metal gasket
CN116715927A (en) * 2023-06-28 2023-09-08 昆山力普电子橡胶有限公司 Antifouling watchband material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6229732B2 (en) LAMINATE, PROCESS FOR PRODUCING LAMINATE, AND FLUORINE RUBBER COMPOSITION
JP5482790B2 (en) Laminated body
JP5880760B2 (en) Laminated body
JP5370564B2 (en) Laminated body
KR102389664B1 (en) laminate
WO2021090713A1 (en) Layered body and extrusion-molded article
JP2010280103A (en) Laminate, molding, fuel hose and method for manufacturing the laminate
JP2019151833A (en) Thermoplastic resin composition, and manufacturing method therefor
WO2012081413A1 (en) Laminate
JP2015231717A (en) Laminate
JP2013176961A (en) Laminate
WO2014123037A1 (en) Laminate body
JP2018015935A (en) Laminate, method for producing laminate and fluororubber composition
JP5989005B2 (en) Laminated body
JP2015178258A (en) Laminate and production method of the same
JP2020015908A (en) Thermoplastic resin composition and method for producing the same
JP7389398B1 (en) laminate
WO2020013314A1 (en) Thermoplastic resin composition and method for producing same