WO2020013274A1 - Cooling agent, cooling pack, freight, transportation equipment, transportation method, and cooling method - Google Patents

Cooling agent, cooling pack, freight, transportation equipment, transportation method, and cooling method Download PDF

Info

Publication number
WO2020013274A1
WO2020013274A1 PCT/JP2019/027492 JP2019027492W WO2020013274A1 WO 2020013274 A1 WO2020013274 A1 WO 2020013274A1 JP 2019027492 W JP2019027492 W JP 2019027492W WO 2020013274 A1 WO2020013274 A1 WO 2020013274A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
temperature
cacl
concentration
mgcl
Prior art date
Application number
PCT/JP2019/027492
Other languages
French (fr)
Japanese (ja)
Inventor
下田 一喜
裕人 下田
Original Assignee
下田 一喜
株式会社エイディーディー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 下田 一喜, 株式会社エイディーディー filed Critical 下田 一喜
Publication of WO2020013274A1 publication Critical patent/WO2020013274A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/04Stationary cabinets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D3/00Devices using other cold materials; Devices using cold-storage bodies
    • F25D3/02Devices using other cold materials; Devices using cold-storage bodies using ice, e.g. ice-boxes
    • F25D3/06Movable containers
    • F25D3/08Movable containers portable, i.e. adapted to be carried personally

Definitions

  • the present disclosure relates to a cooling agent, a cooling device, cargo and transportation equipment, a transportation method, and a cooling method.
  • cooling agent cooling agent, ice pack
  • refrigerant may refer to not only the refrigerant, but also the entirety including the container enclosing the refrigerant, but in the present disclosure, the refrigerant refers to the refrigerant itself.
  • the entirety of the cooling agent and the container enclosing the cooling agent is referred to as a cooling device.
  • the cooling agent is formed by adding various additives to water.
  • additives include preservatives, freezing point depressants, thickeners, antifreezes, and colorants.
  • the cooler is frozen in a freezer by a freezer, and is packaged together with a cold-holding object (for example, food).
  • the temperature of the freezer is generally set at -20 ° C to 10 ° C, and the temperature of the refrigerating agent is set at -20 ° C to -10 ° C at the start of use.
  • Patent Document 1 discloses a refrigerating agent for keeping cold in an extremely low temperature range of ⁇ 65 ° C. or less.
  • Patent Literature 1 states that “cooling agents in a low temperature range include aqueous magnesium chloride solution and aqueous calcium chloride solution, but they cannot be used as a cooling agent capable of maintaining the temperature of a material to be cooled at ⁇ 60 ° C. or lower” (paragraph). 0030).
  • the cold insulator preferably complies with laws and regulations related to hygiene or safety. Therefore, a new refrigerating agent is desired from such a viewpoint.
  • a refrigerant according to an aspect of the present disclosure includes water and a salt that is CaCl 2 or MgCl 2 , and the concentration of the salt is more than 15%.
  • the salt is CaCl 2 and the concentration of CaCl 2 is more than 15% and 30% or less.
  • the salt is MgCl 2 and the concentration of MgCl 2 is 35% or more.
  • the temperature is ⁇ 25 ° C. or less.
  • a cool device includes the above cool agent and a sealed container in which the cool agent is sealed.
  • a cargo according to an aspect of the present disclosure includes the above-described cooler, a cold-holding object, and a storage container that houses both the cooler and the cold-holding object.
  • a transport device includes the above-described cooler, an object to be cooled, and a storage container that stores the cooler and the object to be cooled.
  • a transportation method includes a step of storing the above-described cooler and the object to be cooled together in a storage container, and transferring the storage container that stores both the cooler and the object to be cooled.
  • the temperature of the cooler is ⁇ 100 ° C. or less in the housing step.
  • the cool keeping method has a step of accommodating both the cool keeping tool and the object to be kept cool in the containing container.
  • the time for keeping the object to be kept cool at a relatively low temperature (for example, -25 ° C. or lower) can be lengthened.
  • Drawing 1 is a mimetic diagram for explaining an outline of an operation of a cold storage agent concerning an embodiment of this indication.
  • 2 (a), 2 (b) and 2 (c) are diagrams showing experimental results regarding the effect of CaCl 2 concentration on cooling.
  • FIGS. 3 (a), 3 (b) and 3 (c) are other views showing experimental results on the effect of CaCl 2 concentration on cooling. Shows a -25 ° C. time following temperature is maintained for each concentration of CaCl 2.
  • 5 (a), 5 (b) and 5 (c) show the results of a cold-holding experiment using CaCl 2 .
  • 6 (a), 6 (b) and 6 (c) are diagrams showing experimental results on the effect of MgCl 2 concentration on cooling.
  • FIGS. 10 (a), 10 (b) and 10 (c) are schematic diagrams for explaining an application example of a cooling agent.
  • the cooling agent according to the embodiment of the present disclosure includes water and salt.
  • the salt mentioned here is a salt in chemistry, that is, a compound in which an anion derived from an acid (anion) and a cation derived from a base (cation) are ionically bonded.
  • the salt added to the cooling agent is calcium chloride (CaCl 2 ) or magnesium chloride (MgCl 2 ).
  • the quality (grade) of CaCl 2 and MgCl 2 does not matter.
  • these salts those for various uses such as general use, industrial use, and food addition may be used, and it does not matter whether they are primary or special grade.
  • Drawing 1 is a mimetic diagram for explaining an outline of an operation of a cold storage agent concerning an embodiment.
  • the horizontal axis indicates time t (h: hour).
  • the vertical axis indicates the temperature T (° C.).
  • Lines Ln0 to Ln2 show the relationship between the passage of time and the temperature of the cooling agent.
  • Line Ln0 corresponds to water as a comparative example.
  • the line Ln1 corresponds to a cooling agent containing CaCl 2 (hereinafter, sometimes referred to as “cooling agent (CaCl 2 )”).
  • the line Ln2 corresponds to a cooling agent containing MgCl 2 (hereinafter, sometimes referred to as “cooling agent (MgCl 2 )”).
  • the lines Ln0 to Ln2 show the relationship between the passage of time and the temperature of the refrigerant when the frozen refrigerant is placed at room temperature.
  • the portion rising to the right on the left side of the dotted frame Fm1 indicates that the temperature of the solid (ice-like) refrigerant is increasing over time.
  • the refrigerant changes from a solid state to a liquid state (liquid state), and as a result, the temperature change of the refrigerant over time stops. Is shown.
  • the portion that rises to the right on the right side of the frame Fm1 indicates that the temperature of the liquid refrigerant increases with time.
  • the temperature of the refrigerant is maintained at the freezing point.
  • the temperature of the object to be cooled is also maintained near the freezing point of the cooling agent.
  • the freezing point can be lowered (for example, to ⁇ 55 ° C. or more and ⁇ 25 ° C. or less) as indicated by the arrow.
  • the temperature at which latent heat is used for keeping cold can be reduced.
  • the time for maintaining the temperature of the object to be kept cool at a relatively low temperature for example, ⁇ 25 ° C. or less) can be extended.
  • the cooling agent of the embodiment has a larger amount of heat that can be absorbed during the cooling process at ⁇ 25 ° C. or lower than water.
  • An example of the calculation is shown below.
  • the specific heat in a solid state is 2.1 kJ / (kg ⁇ K)
  • the specific heat in a liquid state is 4.2 kJ / ( kg ⁇ K)
  • the latent heat per unit mass is assumed to be 334 kJ / kg.
  • the freezing point of water is 0 ° C.
  • the freezing point of the cooling agent (CaCl 2 ) is ⁇ 45 ° C.
  • the freezing point of the cooling agent (MgCl 2 ) is ⁇ 30 ° C.
  • the amount of heat per unit mass absorbed by the cooling agent from -120 ° C to -25 ° C is as follows.
  • the calorific value is the product of the specific heat and the temperature change in the solid, the latent heat, and the heat of the specific heat and the temperature change in the liquid.
  • the cooling agent may be obtained by adding only a salt (here, CaCl 2 or MgCl 2 ) to water.
  • a salt here, CaCl 2 or MgCl 2
  • other additives may be added as long as the effect described with reference to FIG. 1 is not significantly impaired.
  • other additives that are less than 10% by mass or less than 5% by mass based on the total mass of the cooling agent may be added.
  • the water may contain impurities such as tap water in addition to pure water (H 2 O). Impurities may be evaluated in the same manner as the other additives described above.
  • the cold insulator may be one obtained by adding both CaCl 2 and MgCl 2 to water.
  • the example of the salt concentration described below applies to only one of CaCl 2 and MgCl 2 , and the other may be evaluated in the same manner as the other additives described above.
  • the concentration of the salt described later may be applied to the concentration of CaCl 2 and MgCl 2 as a whole.
  • the cooling agent described in various experiments described below is obtained by adding CaCl 2 or MgCl 2 (only one of them) to tap water, and additives other than CaCl 2 or MgCl 2 are (intentionally added). Not added).
  • the concentration of CaCl 2 is the ratio of CaCl 2 mass relative to the total mass of the wet ice (mass%).
  • the concentration of CaCl 2 is CaCl 2 mass / (water mass + CaCl 2 mass) ⁇ 100 (%).
  • FIG. 2 (a) to 3 (c) are diagrams showing experimental results. These figures show the relationship between the passage of time (horizontal axis) and the temperature change (vertical axis), as in FIG. 2 (a) to 3 (c) correspond to experimental results in which the concentrations of CaCl 2 are different from each other.
  • the correspondence between each figure and the density is as follows. 2 (a): 5.0%, FIG. 2 (b): 10.0%, FIG. 2 (c): 15.0%, FIG. 3 (a): 20.0%, FIG. 3 (b): 25.0%, FIG. 3 (c): 30.0%.
  • an auxiliary line is drawn at a position of ⁇ 25 ° C., and a point at which the temperature exceeds ⁇ 25 ° C. is indicated by an arrow, and the elapsed time at that time is shown.
  • the concentration of CaCl 2 may be relatively low (for example, about 5%) if only the freezing point is lowered.
  • the time during which the temperature near the freezing point is maintained is lengthened.
  • the time during which the temperature is maintained at ⁇ 25 ° C. or lower is also long.
  • the concentration is 30.0%
  • the time for which the temperature is maintained at -25 ° C. or lower is shorter than when the concentration is 25.0%. That is, the effect of increasing the retention time at ⁇ 25 ° C. or less by increasing the concentration has leveled off.
  • FIG. 4 is a diagram showing the time during which the temperature of ⁇ 25 ° C. or less shown in FIGS. 2A to 3C is maintained for each CaCl 2 concentration.
  • the horizontal axis indicates the concentration C (%).
  • the vertical axis indicates the time t ⁇ 25 (h) when the temperature exceeds ⁇ 25 ° C. in FIGS. 2A to 3C.
  • the time t ⁇ 25 (h) becomes relatively long. Specifically, when the concentration is 5% or more and 15% or less, the time t- 25 is 4 hours or more and less than 5 hours, whereas when the concentration is 20% or more, the time t- 25 is 8 hours or more. Also, as described above, when the concentration becomes 30.0%, the effect of prolonging the time t- 25 is reduced.
  • examples of the lower limit of the CaCl 2 concentration include 15%, 18%, and 20%.
  • the concentration By increasing the concentration to more than 15% (eg, 15.1% or more, 15.5% or more or 16% or more), 18% or more or 20% or more, for example, the time t ⁇ 25 is prolonged by adding CaCl 2 . Can be sufficiently obtained.
  • An example of the upper limit of the concentration of CaCl 2 is 30%. By setting the concentration to 30% or less, for example, it is possible to avoid the disadvantage that the cost is increased by adding a large amount of CaCl 2 although the effect of prolonging the time t- 25 is not obtained. Can be.
  • examples of the range of the concentration of CaCl 2 include more than 15% and 30% or less, 18% or more and 30% or less, or 20% or more and 30% or less. Within this range, while suppressing the cost of CaCl 2, it is possible to obtain a sufficient effect of prolonged time t -25.
  • Examples of the range in which the concentration range is narrowed include 23% or more and 27% or less, 24% or more and 26% or less, or 24.5% or more and 25.5% or less.
  • the time t- 25 is the longest when the concentration is 25%. Therefore, by setting the concentration in the range around 25% as described above, for example, the time t- 25 can be made as long as possible.
  • examples of the concentration range include more than 15% to 25%, 18% to 22%, or 19% to 21%.
  • the concentration when the concentration is between 15% and 20%, the time t- 25 is significantly increased. Therefore, by setting the concentration to about 20% as described above, for example, the effect of prolonging the time t ⁇ 25 with respect to the increase in the cost of CaCl 2 can be efficiently obtained.
  • a cooling agent was prepared by enclosing a cooling agent (CaCl 2 ) in a 260 ml PET bottle.
  • the concentration of CaCl 2 was 34%.
  • the cooler was sufficiently cooled in an atmosphere of -120 ° C, and the four coolers were housed together with the object to be cooled in a container (a foam case commercially available for general household use).
  • the object to be kept cool was ice cream.
  • the container was placed in an environment where the temperature periodically changed between approximately -14 ° C and -23 ° C. This corresponds to, for example, a situation in which the container is loaded on a refrigerator car or a freezer car, and each time it arrives at a plurality of destinations, the door of the carrier is opened and the temperature inside the carrier rises. Then, the temperature of the cooling object side of the cooling object and the temperature of the cooling object opposite to the cooling device were measured.
  • FIGS. 5 (a) to 5 (c) are diagrams showing experimental results. These figures show the relationship between the passage of time (horizontal axis) and the temperature change (vertical axis), as in FIG.
  • FIG. 5A shows a change in the temperature of the environment in which the container is placed.
  • FIG. 5B shows a change in temperature on the side of the cooler among the objects to be kept cool.
  • FIG. 5C shows a change in the temperature of the object to be cooled, which is opposite to the side of the cooling device.
  • 5 (b) and 5 (c), as in FIGS. 2 (a) to 3 (c) the temperature at the elapsed time is indicated on the scale line of the elapsed time.
  • two before and one after the time when the temperature exceeds ⁇ 25 ° C. are circled.
  • the mode of the temperature change of the object to be kept cool is substantially the same as the mode of the temperature change shown in FIGS. 2A to 3C. It has become. That is, the temperature of the object to be kept cool first rises, then maintains a constant temperature near the freezing point of the coolant, and then rises again. However, the influence of the temperature of the environment in which the container is placed appears more significantly on the side opposite to the refrigerant than on the side of the refrigerant. For example, the temperature on the side opposite to the cold insulator changes in a waveform corresponding to the waveform of the environmental temperature change. In addition, the temperature on the opposite side of the refrigerant is maintained at a temperature slightly higher than the freezing point of the refrigerant while utilizing the latent heat of the refrigerant.
  • Example of MgCl 2 concentration In the following, an experimental result of a temperature change of the cooling agent having a different MgCl 2 concentration is shown, and an example of a range of the MgCl 2 concentration is presented. Experiments content, but substituting CaCl 2 to MgCl 2 is similar to the experiment described in CaCl 2.
  • FIGS. 6 (a) to 7 (c) are diagrams showing experimental results, and are the same as FIGS. 2 (a) to 3 (c).
  • the relationship between each figure and the concentration of MgCl 2 is as follows. 6 (a): 10.0%, FIG. 6 (b): 15.0%, FIG. 6 (c): 20.0%, FIG. 7 (a): 25.0%, FIG. 7 (b): 30.0%, FIG. 7 (c): 35.0%.
  • the temperature change described with reference to FIG. 1 can be confirmed. That is, after the temperature first rises, the temperature stagnates around the freezing point of the refrigerant ( ⁇ 33 ° C. to ⁇ 30 ° C.), and then rises again. Since the freezing point of the cooling agent (MgCl 2 ) is higher than the freezing point of the cooling agent (CaCl 2 ), the temperature when the latent heat is used for cooling is close to the ⁇ 25 ° C. line.
  • the concentration of MgCl 2 may be relatively low (for example, about 10%) if only the freezing point is lowered.
  • FIG. 8 is a diagram showing the time during which the temperature of ⁇ 25 ° C. or less is maintained for each MgCl 2 concentration shown in FIGS. 6A to 7C, and is similar to FIG. .
  • examples of the lower limit of the concentration of MgCl 2 include 15%, 20%, and 25%.
  • An example of the upper limit of the concentration of MgCl 2 is 40% or 35%. By setting the concentration to 40% or less or 35% or less, for example, an increase in cost due to addition of a large amount of MgCl 2 can be suppressed.
  • examples of the range of the CaCl 2 concentration include more than 15% and 40% or less, 25% or more and 40% or less, or 25% or more and 35% or less. Within this range, it is possible to sufficiently obtain the effect of prolonging the time t ⁇ 25 while suppressing the cost of MgCl 2 .
  • the concentration range 30% or 35%, which is larger than the above lower limit, can also be mentioned.
  • 30% or 35% which is larger than the above lower limit
  • FIGS. 9 (a) to 9 (c) are diagrams showing experimental results, and are the same as FIGS. 5 (a) to 5 (c).
  • FIG. 9A shows a change in the temperature of the environment in which the container is placed.
  • FIG. 9 (b) shows a change in temperature on the side of the cooler among the objects to be kept cool.
  • FIG. 9C shows a change in the temperature of the object to be cooled, which is opposite to the side of the cooling device.
  • the mode of the temperature change of the object to be kept cool is substantially the same as the mode of the temperature change shown in FIGS. 5A to 5C.
  • the freezing point of the cooling agent (MgCl 2 ) is higher than the freezing point of the cooling agent (CaCl 2 )
  • the temperature when the latent heat is used is close to the line of ⁇ 25 ° C.
  • the cooling agent (MgCl 2 ) becomes longer at ⁇ 25 ° C. or less.
  • the concentration is increased, the effect of prolonging the time of ⁇ 25 ° C. or less is flattened for the cooling agent (CaCl 2 ), but the time of ⁇ 25 ° C. or less is further lengthened for the cooling agent (MgCl 2 ). . Therefore, in the case where the first object is to maintain the temperature of ⁇ 25 ° C. or less for a long period of time, the concentration of MgCl 2 is relatively high (for example, 25% or more, 30% or more, or 35% or more). ) May be used.
  • a cold insulator (CaCl 2 ) may be used.
  • the reason is as follows.
  • the reason why the time for maintaining the temperature of ⁇ 25 ° C. or lower in the cold insulator (MgCl 2 ) is longer than that in the cold insulator (CaCl 2 ) is as follows, for example.
  • the temperature (freezing point) during which latent heat is used for keeping cool is lowered, the temperature difference between the inside and the outside of the container increases. As a result, external heat is easily transmitted to the inside through the container. As a result, the latent heat loss of the cooling agent increases.
  • the cold insulator (MgCl 2 ) has a higher freezing point than the cold insulator (CaCl 2 ), the loss is reduced, and the time for maintaining the temperature of ⁇ 25 ° C. or less becomes longer.
  • the amount of heat (theoretical value) per unit mass up to -25 ° C. is larger for the cold insulator (CaCl 2 ) than for the cold insulator (MgCl 2 ), as understood from the above-described trial calculation. Therefore, when the heat insulating property of the packing material is high, the time during which the temperature of ⁇ 25 ° C. or less is maintained can be extended by using the cold insulator (CaCl 2 ).
  • the freezing point of the cooling agent (CaCl 2 ) is about ⁇ 45 ° C.
  • the freezing point of the cooling agent (MgCl 2 ) is about ⁇ 30 ° C. Therefore, when it is desired to extend the cooling time at a lower temperature (eg, ⁇ 35 ° C. or lower or ⁇ 40 ° C. or lower), a cooling agent (CaCl 2 ) may be used.
  • FIG. 10A is a perspective view showing an example of the cold insulator 3 using the cold insulator 1. Note that a part of the cooler 3 is shown broken.
  • the cooling device 3 includes a cooling agent 1 and an enclosure 5 in which the cooling agent 1 is sealed.
  • the cooling agent 1 is the cooling agent (CaCl 2 ) or the cooling agent (MgCl 2 ) according to the present embodiment.
  • the cooler 3 may be of a type that is used repeatedly, or may be of a disposable type.
  • gas for example, air
  • the size, shape and material of the enclosing container 5 may be appropriately set.
  • an encapsulation container of various well-known cooling devices may be used.
  • the enclosing container 5 may be a bag-shaped material made of a flexible material (resin or the like) or made of a non-flexible material (resin or the like).
  • a hard type container (illustrated example) may be used.
  • the enclosing container 5 may not have an inlet (the cooling agent 1 cannot be taken out without breaking the enclosing container 5), or may be closed by a cap as shown in the illustrated example. It may have a filled inlet.
  • the shape of the enclosing container 5 may be a substantially rectangular parallelepiped shape (an example shown), or may have a unique shape according to the application.
  • the volume (maximum volume in the case of flexibility) of the enclosure 5 may be 10 ml or more and 1 liter or less.
  • FIG. 10B is a cross-sectional view showing an example of the cargo 11 using the cooling agent 1.
  • the cargo 11 has, for example, one or more objects to be cooled 13, one or more pieces of cooling equipment 3, and a box 15 accommodating them.
  • the box 15 is an example of a storage container.
  • Foods include, for example, frozen foods, frozen confectionery, fresh confectionery, dairy products and fresh foods.
  • Frozen food is food that has been frozen for the purpose of long-term storage, and includes non-heated food, heated food, food before cooking, food after cooking, and the like before freezing.
  • Examples of the frozen confectionery include ice cream.
  • Examples of the raw confectionery include cake.
  • Dairy products include, for example, yogurt.
  • Examples of fresh foods include fresh fish (fish and shellfish), meat (meat), and fruits and vegetables.
  • FIG. 10B exemplifies the ice cream in a cup as the object 13 to be kept cool.
  • organs for transplantation and vaccines containers in which organs for transplantation or vaccines are enclosed
  • cold storage target is not limited to food products.
  • the size, shape and material of the box 15 may be appropriately set, and for example, various known boxes may be applied.
  • a typical example is a relatively small box (for example, 1 m or less ⁇ 1 m or less ⁇ 1 m or less) made of styrene foam or cardboard, and a cooler box (ice box) in which a plastic case is combined with a heat insulating material.
  • the material of the box 15 may be a material having relatively high heat insulating properties or a material having low heat insulating properties.
  • the positions of the cold storage object 13 and the cold storage tool 3 in the box 15 may be appropriately set.
  • the cool insulator 3 may be located laterally with respect to the cold insulator 13 (the example shown), may be located above, or may be located below. , May be arranged in a combination of two or more of these. Note that, depending on the type of the cold storage object 13, its packaging, and / or the configuration of the box 15, the cold storage agent 3 is not stored in the box 15, but the cold storage agent 1 is directly (without being sealed in the sealing container 5). ) It is also possible to house it in a box 15.
  • FIG. 10C is a side view showing an example of the transport equipment 21 using the cooling agent 1.
  • the transport equipment 21 includes, for example, one or more cargoes 11 and one or more containers 23 that accommodate the cargos 11.
  • the container 23 is also an example of a storage container, like the box 15.
  • Examples of the transportation device 21 include an automobile (an example shown), an aircraft, a train, a ship, and a motorcycle.
  • FIG. 10 (c) illustrates a cooler car or a freezer car having the provided container 23.
  • the arrangement of the cargo 11 in the container 23 may be appropriately set. Further, instead of storing the cargo 11 in the container 23, the object 13 and the cooler 3 may be directly stored in the container 23 (not in the box 15). Note that, depending on the type of the cooling object 13, its packaging, and / or the configuration of the container 23, the cooling agent 1 can be directly stored in the container 23 (without being sealed in the sealing container 5).
  • the box 15 and its contents are described as the cargo 11.
  • a relatively small cargo that can be carried by one person or a small number of people (by human power) is exemplified as the cargo.
  • the cargo may be larger than such a size.
  • the container 23 is provided on a car.
  • the container 23 may be unloaded on a container ship, a truck, and / or a train. It may be caught.
  • FIGS. 10 (a) to 10 (c) also show a transportation method and a cooling method according to the embodiment.
  • the transportation method includes a step of cooling the cooler 3 (FIG. 10A), a step of storing both the cooler 3 and the object 13 in the box 15 (FIG. 10B), Transferring the box 15 accommodating the cold storage object 13 (FIG. 10C).
  • the method for keeping cool has a step of cooling the cooler 3 (FIG. 10A) and a step of housing both the cooler 3 and the object 13 to be kept cool in the box 15 (FIG. 10B). ing. In the cool keeping method, it is possible to simply keep cool without transporting.
  • the cooler 3 is, for example, when the cooling of the cooler 3 is completed, or when the cooler 3 is started to be used (for example, when the cooler 3 is packed together with the cooling object 13) or immediately before (for example, within 10 minutes after the start of use). -25 ° C or less. More specifically, for example, the temperature of the cooler 3 is ⁇ 35 ° C. or less (in other words, a temperature lower than the freezing point of the cooler (MgCl 2 )), or ⁇ 50 ° C. or less (in other words, the cooler (CaCl 2 )). , Below -60 ° C, below -100 ° C or below -120 ° C.
  • the cooler 3 When the cooler 3 is cooled to a very low temperature, such as -100 ° C or lower or -120 ° C or lower, for example, the sensible heat when the cooler 1 is solid can be increased. As a result, it is possible to prolong the cooling time at ⁇ 25 ° C. or less.
  • Ultra-Low Temperature Chiller—Cold Wave manufactured by ADD Corporation may be used.
  • This ultra-low temperature chiller can cool a supplied gas (for example, air, Freon gas, liquid nitrogen or argon gas) to a temperature of about ⁇ 130 ° C. by using a multi-stage evaporator and a mixed refrigerant. Then, for example, by supplying the gas cooled by the chiller around the cooler 3, the cooler 3 (coolant 1) can be cooled to ⁇ 100 ° C. or less.
  • a supplied gas for example, air, Freon gas, liquid nitrogen or argon gas
  • a chiller includes the concept of a freezer. Further, although not particularly shown, for example, the chiller includes, as basic components, a compressor that compresses a refrigerant, a condenser that cools the compressed refrigerant, an expansion valve that reduces the pressure of the cooled refrigerant, and a pressure that increases the pressure.
  • An evaporator for cooling a cooling object (coolant or a gas supplied around the coolant) with the lowered refrigerant is provided in a ring shape in this order of enumeration.
  • the chiller may be installed, for example, at a place where the object to be cooled is produced or wholesaled, or installed at each sales office of a company responsible for home delivery.
  • the cooling agent includes water and a salt that is CaCl 2 or MgCl 2 , and the concentration of the salt is more than 15%. Therefore, for example, as described with reference to FIG. 1 and the like, the time at ⁇ 25 ° C. or less can be lengthened. Furthermore, CaCl 2 or MgCl 2 is not regulated or hardly regulated in light of domestic and foreign standards and / or laws and regulations related to transportation. Therefore, the application range of the refrigerant according to the present embodiment is wide.
  • domestic laws relating to transportation include, for example, the Food Sanitation Law, the Poisonous and Deleterious Substances Control Law, the Occupational Safety and Health Law, and the Chemical Substance Management Promotion Law.

Abstract

This cooling agent contains water and a salt that is CaCl2 or MgCl2, the concentration of the salt exceeding 15%.

Description

保冷剤、保冷具、貨物、輸送機器、輸送方法及び保冷方法Cooling agent, cooler, cargo, transportation equipment, transportation method and cooling method
 本開示は、保冷剤、保冷具、貨物及び輸送機器、輸送方法及び保冷方法に関する。 (4) The present disclosure relates to a cooling agent, a cooling device, cargo and transportation equipment, a transportation method, and a cooling method.
 食品等を保冷した状態で輸送することに利用される保冷剤(蓄冷剤、アイスパック)が知られている(例えば特許文献1)。なお、慣用的に、保冷剤の語は、保冷剤だけでなく、保冷剤を封入している容器を含む全体を指す場合があるが、本開示においては、保冷剤は、保冷剤自体を指し、保冷剤及び当該保冷剤を封入している容器の全体については、保冷具と呼称するものとする。 冷 There is known a cooling agent (cooling agent, ice pack) used for transporting food and the like while keeping it cold (for example, Patent Document 1). It should be noted that, conventionally, the term refrigerant may refer to not only the refrigerant, but also the entirety including the container enclosing the refrigerant, but in the present disclosure, the refrigerant refers to the refrigerant itself. The entirety of the cooling agent and the container enclosing the cooling agent is referred to as a cooling device.
 一般に市販されている保冷具において、保冷剤は、水に種々の添加剤を添加して構成されている。添加剤としては、例えば、防腐剤、凝固点降下剤、増粘剤、不凍液、着色剤が挙げられる。保冷具は、例えば、冷凍庫によって保冷剤が凍らされ、保冷対象物(例えば食品)とともに梱包される。冷凍庫の温度は、一般には、-20℃~10℃とされており、ひいては、保冷剤は、使用開始時において-20℃~-10℃の温度とされる。 に お い て In a commercially available cooling device, the cooling agent is formed by adding various additives to water. Examples of additives include preservatives, freezing point depressants, thickeners, antifreezes, and colorants. For example, the cooler is frozen in a freezer by a freezer, and is packaged together with a cold-holding object (for example, food). The temperature of the freezer is generally set at -20 ° C to 10 ° C, and the temperature of the refrigerating agent is set at -20 ° C to -10 ° C at the start of use.
 特許文献1は、-65℃以下の極低温域での保冷のための保冷剤を開示している。特許文献1には「低温域の保冷剤として、塩化マグネシウム水溶液や塩化カルシウム水溶液などがあるが、-60℃以下で被保冷物の温度を保つことが可能な保冷剤にはならない。」(段落0030)との記載がある。 Patent Document 1 discloses a refrigerating agent for keeping cold in an extremely low temperature range of −65 ° C. or less. Patent Literature 1 states that “cooling agents in a low temperature range include aqueous magnesium chloride solution and aqueous calcium chloride solution, but they cannot be used as a cooling agent capable of maintaining the temperature of a material to be cooled at −60 ° C. or lower” (paragraph). 0030).
特開2017-128622号公報JP-A-2017-128622
 例えば、保冷対象物の種類によっては、保冷対象物の温度を上述した一般的な冷凍庫の温度よりも低く(例えば-25℃以下に)保つ時間を長くしたい場合がある。また、例えば、保冷剤は、衛生面又は安全面に係る法令又は規格に従っていることが好ましい。従って、このような観点から新たな保冷剤が望まれる。 For example, depending on the type of the object to be cooled, there is a case where it is desired to extend the time for keeping the temperature of the object to be cooled lower than the temperature of the above-mentioned general freezer (for example, -25 ° C or lower). In addition, for example, the cold insulator preferably complies with laws and regulations related to hygiene or safety. Therefore, a new refrigerating agent is desired from such a viewpoint.
 本開示の一態様に係る保冷剤は、水と、CaCl又はMgClである塩と、を含み、前記塩の濃度が15%超である。 A refrigerant according to an aspect of the present disclosure includes water and a salt that is CaCl 2 or MgCl 2 , and the concentration of the salt is more than 15%.
 一例において、前記塩がCaClであり、CaClの濃度が15%超30%以下である。 In one example, the salt is CaCl 2 and the concentration of CaCl 2 is more than 15% and 30% or less.
 一例において、前記塩がMgClであり、MgClの濃度が35%以上である。 In one example, the salt is MgCl 2 and the concentration of MgCl 2 is 35% or more.
 一例において、温度が-25℃以下である。 に お い て In one example, the temperature is −25 ° C. or less.
 本開示の一態様に係る保冷具は、上記の保冷剤と、前記保冷剤が封入されている封入容器と、を有している。 冷 A cool device according to an aspect of the present disclosure includes the above cool agent and a sealed container in which the cool agent is sealed.
 本開示の一態様に係る貨物は、上記の保冷具と、保冷対象物と、前記保冷具と前記保冷対象物とを共に収容している収容容器と、を有している。 貨物 A cargo according to an aspect of the present disclosure includes the above-described cooler, a cold-holding object, and a storage container that houses both the cooler and the cold-holding object.
 本開示の一態様に係る輸送機器は、上記の保冷具と、保冷対象物と、前記保冷具と前記保冷対象物とを共に収容している収容容器と、を有している。 輸送 A transport device according to an aspect of the present disclosure includes the above-described cooler, an object to be cooled, and a storage container that stores the cooler and the object to be cooled.
 本開示の一態様に係る輸送方法は、上記の保冷具と保冷対象物とを共に収容容器に収容するステップと、前記保冷具及び前記保冷対象物を共に収容している前記収容容器を移送するステップと、を有している。 A transportation method according to an aspect of the present disclosure includes a step of storing the above-described cooler and the object to be cooled together in a storage container, and transferring the storage container that stores both the cooler and the object to be cooled. And
 一例において、前記収容するステップにおいて前記保冷具の温度が-100℃以下である。 In one example, the temperature of the cooler is −100 ° C. or less in the housing step.
 本開示の一態様に係る保冷方法は、上記の保冷具と保冷対象物とを共に収容容器に収容するステップを有している。 冷 The cool keeping method according to an aspect of the present disclosure has a step of accommodating both the cool keeping tool and the object to be kept cool in the containing container.
 上記の構成又は手順によれば、例えば、保冷対象物を比較的低温(例えば-25℃以下)に保つ時間を長くすることができる。 According to the above configuration or procedure, for example, the time for keeping the object to be kept cool at a relatively low temperature (for example, -25 ° C. or lower) can be lengthened.
図1は本開示の実施形態に係る保冷剤の作用の概要を説明するための模式図。 Drawing 1 is a mimetic diagram for explaining an outline of an operation of a cold storage agent concerning an embodiment of this indication. 図2(a)、図2(b)及び図2(c)はCaClの濃度が保冷に及ぼす影響に関する実験結果を示す図。2 (a), 2 (b) and 2 (c) are diagrams showing experimental results regarding the effect of CaCl 2 concentration on cooling. 図3(a)、図3(b)及び図3(c)はCaClの濃度が保冷に及ぼす影響に関する実験結果を示す他の図。FIGS. 3 (a), 3 (b) and 3 (c) are other views showing experimental results on the effect of CaCl 2 concentration on cooling. -25℃以下の温度が維持される時間をCaClの濃度毎に示した図。Shows a -25 ° C. time following temperature is maintained for each concentration of CaCl 2. 図5(a)、図5(b)及び図5(c)はCaClを用いた保冷実験の結果を示す図。5 (a), 5 (b) and 5 (c) show the results of a cold-holding experiment using CaCl 2 . 図6(a)、図6(b)及び図6(c)はMgClの濃度が保冷に及ぼす影響に関する実験結果を示す図。6 (a), 6 (b) and 6 (c) are diagrams showing experimental results on the effect of MgCl 2 concentration on cooling. 図7(a)、図7(b)及び図7(c)はMgClの濃度が保冷に及ぼす影響に関する実験結果を示す他の図。7 (a), 7 (b) and 7 (c) are other views showing experimental results regarding the effect of the concentration of MgCl 2 on cool keeping. -25℃以下の温度が維持される時間をMgClの濃度毎に示した図。Shows a -25 ° C. time following temperature is maintained for each concentration of MgCl 2. 図9(a)、図9(b)及び図9(c)はMgClを用いた保冷実験の結果を示す図。9 (a), 9 (b) and 9 (c) show the results of a cold-holding experiment using MgCl 2 . 図10(a)、図10(b)及び図10(c)は保冷剤の応用例を説明する模式図。FIGS. 10 (a), 10 (b) and 10 (c) are schematic diagrams for explaining an application example of a cooling agent.
(保冷剤の概要)
 本開示の実施形態に係る保冷剤は、水と塩とを含んでいる。ここでいう塩は、化学でいう塩、すなわち、酸由来の陰イオン(アニオン)と塩基由来の陽イオン(カチオン)とがイオン結合した化合物である。本実施形態では、保冷剤に添加される塩は、塩化カルシウム(CaCl)又は塩化マグネシウム(MgCl)である。なお、CaCl及びMgClの品質(グレード)は問わない。これらの塩として、一般用、工業用、食品添加用等の種々の用途のものが利用されてよく、1級又は特級等であるか否かも問わない。
(Summary of refrigerant)
The cooling agent according to the embodiment of the present disclosure includes water and salt. The salt mentioned here is a salt in chemistry, that is, a compound in which an anion derived from an acid (anion) and a cation derived from a base (cation) are ionically bonded. In the present embodiment, the salt added to the cooling agent is calcium chloride (CaCl 2 ) or magnesium chloride (MgCl 2 ). The quality (grade) of CaCl 2 and MgCl 2 does not matter. As these salts, those for various uses such as general use, industrial use, and food addition may be used, and it does not matter whether they are primary or special grade.
 図1は、実施形態に係る保冷剤の作用の概要を説明するための模式図である。この図において、横軸は時間t(h:hour)を示している。縦軸は温度T(℃)を示している。線Ln0~Ln2は、時間経過と保冷剤の温度との関係を示している。線Ln0は比較例としての水に対応している。線Ln1はCaClを含む保冷剤(以下、「保冷剤(CaCl)」と表記することがある。)に対応している。線Ln2はMgClを含む保冷剤(以下、「保冷剤(MgCl)」と表記することがある。)に対応している。 Drawing 1 is a mimetic diagram for explaining an outline of an operation of a cold storage agent concerning an embodiment. In this figure, the horizontal axis indicates time t (h: hour). The vertical axis indicates the temperature T (° C.). Lines Ln0 to Ln2 show the relationship between the passage of time and the temperature of the cooling agent. Line Ln0 corresponds to water as a comparative example. The line Ln1 corresponds to a cooling agent containing CaCl 2 (hereinafter, sometimes referred to as “cooling agent (CaCl 2 )”). The line Ln2 corresponds to a cooling agent containing MgCl 2 (hereinafter, sometimes referred to as “cooling agent (MgCl 2 )”).
 線Ln0~Ln2は、より具体的には、凍結された保冷剤が室温に置かれた場合における時間経過と保冷剤の温度との関係を示している。線Ln0~Ln2のうち、点線の枠Fm1よりも左側における右肩上がりの部分は、固体状(氷状)の保冷剤の温度が時間経過に伴って上昇していることを示している。線Ln0~Ln2のうち、枠Fm1で囲まれた水平部分は、保冷剤が固体状から液体状(液状)へ遷移しており、その結果、時間経過に対する保冷剤の温度変化が止まっていることを示している。線Ln0~Ln2のうち、枠Fm1よりも右側における右肩上がりの部分は、液状の保冷剤の温度が時間経過に伴って上昇していることを示している。 More specifically, the lines Ln0 to Ln2 show the relationship between the passage of time and the temperature of the refrigerant when the frozen refrigerant is placed at room temperature. Of the lines Ln0 to Ln2, the portion rising to the right on the left side of the dotted frame Fm1 indicates that the temperature of the solid (ice-like) refrigerant is increasing over time. In the horizontal portion surrounded by the frame Fm1 of the lines Ln0 to Ln2, the refrigerant changes from a solid state to a liquid state (liquid state), and as a result, the temperature change of the refrigerant over time stops. Is shown. Of the lines Ln0 to Ln2, the portion that rises to the right on the right side of the frame Fm1 indicates that the temperature of the liquid refrigerant increases with time.
 保冷剤が固体から液体へ遷移している間においては、保冷剤の温度は、凝固点に維持される。ひいては、保冷対象物の温度も保冷剤の凝固点付近に維持される。そして、水にCaCl又はMgClを添加することによって、矢印で示すように凝固点を低く(例えば-55℃以上-25℃以下に)することができる。換言すれば、保冷に潜熱が利用される温度を低くすることができる。その結果、保冷対象物の温度を比較的低温(例えば-25℃以下)に維持する時間を長くすることができる。 During the transition of the refrigerant from solid to liquid, the temperature of the refrigerant is maintained at the freezing point. As a result, the temperature of the object to be cooled is also maintained near the freezing point of the cooling agent. Then, by adding CaCl 2 or MgCl 2 to water, the freezing point can be lowered (for example, to −55 ° C. or more and −25 ° C. or less) as indicated by the arrow. In other words, the temperature at which latent heat is used for keeping cold can be reduced. As a result, the time for maintaining the temperature of the object to be kept cool at a relatively low temperature (for example, −25 ° C. or less) can be extended.
 なお、実施形態の保冷剤は、水に比較して、-25℃以下の保冷を行っている間に吸収可能な熱量も多い。以下にその試算例を示す。 In addition, the cooling agent of the embodiment has a larger amount of heat that can be absorbed during the cooling process at −25 ° C. or lower than water. An example of the calculation is shown below.
 例えば、水、保冷剤(CaCl)及び保冷剤(MgCl)のいずれについても、固体状のときの比熱を2.1kJ/(kg・K)、液状のときの比熱を4.2kJ/(kg・K)、単位質量当たりの潜熱を334kJ/kgと仮定する。また、水の凝固点を0℃、保冷剤(CaCl)の凝固点を-45℃、保冷剤(MgCl)の凝固点を-30℃と仮定する。この場合、保冷剤が-120℃から-25℃に至るまでに吸収する単位質量当たりの熱量は、以下のようになる。 For example, for each of water, the cooling agent (CaCl 2 ), and the cooling agent (MgCl 2 ), the specific heat in a solid state is 2.1 kJ / (kg · K), and the specific heat in a liquid state is 4.2 kJ / ( kg · K) and the latent heat per unit mass is assumed to be 334 kJ / kg. It is also assumed that the freezing point of water is 0 ° C., the freezing point of the cooling agent (CaCl 2 ) is −45 ° C., and the freezing point of the cooling agent (MgCl 2 ) is −30 ° C. In this case, the amount of heat per unit mass absorbed by the cooling agent from -120 ° C to -25 ° C is as follows.
 水は、-25℃以下では、固体のままである。従って、熱量は、固体のときの比熱と温度変化との積であり、下記のとおりである。
 2.1×(-25-(-120))=199.5(kJ/kg)
Water remains solid below −25 ° C. Therefore, the calorific value is the product of the specific heat of a solid and the temperature change, and is as follows.
2.1 x (-25-(-120)) = 199.5 (kJ / kg)
 保冷剤(CaCl)は、途中で固体から液体へ遷移する。従って、熱量は、固体のときの比熱と温度変化との積、潜熱、及び液体のときの比熱と温度変化との積の3つの和であり、以下のとおりである。
 2.1×(-45-(-120))+334+4.2×(-25-(-45))
 =575.5(kJ/kg)
The cooling agent (CaCl 2 ) transitions from a solid to a liquid on the way. Therefore, the calorific value is the sum of three products of the product of the specific heat and the temperature change for a solid, the latent heat, and the product of the specific heat and the temperature change for a liquid, and is as follows.
2.1 × (−45 − (− 120)) + 334 + 4.2 × (−25 − (− 45))
= 575.5 (kJ / kg)
 保冷剤(MgCl)の場合も、保冷剤(CaCl)の場合と同様に、熱量は、固体のときの比熱と温度変化との積、潜熱、及び液体のときの比熱と温度変化との積の3つの和であり、以下のとおりである。
 2.1×(-30-(-120))+334+4.2×(-25-(-30))
 =544(kJ/kg)
In the case of the cold insulator (MgCl 2 ), as in the case of the cold insulator (CaCl 2 ), the calorific value is the product of the specific heat and the temperature change in the solid, the latent heat, and the heat of the specific heat and the temperature change in the liquid. The sum of the three products, as follows:
2.1 × (−30 − (− 120)) + 334 + 4.2 × (−25 − (− 30))
= 544 (kJ / kg)
 保冷剤は、水に塩(ここではCaCl又はMgCl)のみを添加したものとされてよい。ただし、図1を参照して説明した作用を大きく損なわない範囲で他の添加物が添加されても構わない。例えば、保冷剤全体の質量に対して10質量%未満又は5質量%未満の他の添加材が添加されても構わない。水は、純水(HO)の他、水道水などの不純物を含むものであってもよい。不純物は、上記の他の添加物と同様に評価されてもよい。 The cooling agent may be obtained by adding only a salt (here, CaCl 2 or MgCl 2 ) to water. However, other additives may be added as long as the effect described with reference to FIG. 1 is not significantly impaired. For example, other additives that are less than 10% by mass or less than 5% by mass based on the total mass of the cooling agent may be added. The water may contain impurities such as tap water in addition to pure water (H 2 O). Impurities may be evaluated in the same manner as the other additives described above.
 保冷剤は、水にCaCl及びMgClの双方を添加したものであってもよい。この場合において、後述する塩の濃度の例は、CaCl及びMgClの一方のみに適用され、他方は、上記の他の添加物と同様に評価されてよい。ただし、後述する塩の濃度は、CaCl及びMgCl全体の濃度に適用されても構わない。 The cold insulator may be one obtained by adding both CaCl 2 and MgCl 2 to water. In this case, the example of the salt concentration described below applies to only one of CaCl 2 and MgCl 2 , and the other may be evaluated in the same manner as the other additives described above. However, the concentration of the salt described later may be applied to the concentration of CaCl 2 and MgCl 2 as a whole.
 なお、後述する種々の実験において述べる保冷剤は、特に断りがない限り、水道水にCaCl又はMgCl(一方のみ)を添加したものであり、CaCl又はMgCl以外の添加物は(意図的には)添加されていない。 Unless otherwise specified, the cooling agent described in various experiments described below is obtained by adding CaCl 2 or MgCl 2 (only one of them) to tap water, and additives other than CaCl 2 or MgCl 2 are (intentionally added). Not added).
(CaClの濃度の例)
 以下では、CaClの濃度を異ならせた保冷剤の温度変化の実験結果を示し、CaClの濃度の範囲の例を提示する。
(Example of CaCl 2 concentration)
In the following, an experimental result of a temperature change of the refrigerant with different CaCl 2 concentrations is shown, and an example of a CaCl 2 concentration range is presented.
 なお、念のために記載すると、CaClの濃度は、保冷剤全体の質量に対するCaClの質量の割合(質量%)である。例えば、保冷剤が水及びCaClのみからなる場合は、CaClの濃度は、CaClの質量/(水の質量+CaClの質量)×100(%)である。後述するMgClの濃度についても同様である。 Incidentally, when included for completeness, the concentration of CaCl 2 is the ratio of CaCl 2 mass relative to the total mass of the wet ice (mass%). For example, if the cold agent consists only of water and CaCl 2, the concentration of CaCl 2 is CaCl 2 mass / (water mass + CaCl 2 mass) × 100 (%). The same applies to the concentration of MgCl 2 described later.
 実験では、-120℃の雰囲気によって1500gの保冷剤(CaCl)を十分に冷却し、この保冷剤を容器(一般家庭用に市販されている発泡ケース)に収容した。そして、当該容器を室温下に置き、容器内の温度変化を調べた。このような実験をCaClの濃度が互いに異なる複数ケースについて行った。 In the experiment, 1500 g of the cooling agent (CaCl 2 ) was sufficiently cooled in an atmosphere of −120 ° C., and the cooling agent was accommodated in a container (a foam case commercially available for general household use). Then, the container was placed at room temperature, and the temperature change in the container was examined. Such an experiment was performed for a plurality of cases in which the concentrations of CaCl 2 were different from each other.
 図2(a)~図3(c)は実験結果を示す図である。これらの図は、図1と同様に、時間経過(横軸)と温度変化(縦軸)との関係を示している。図2(a)~図3(c)は、CaClの濃度が互いに異なる実験結果に対応している。各図と濃度との対応関係は、以下のとおりである。図2(a):5.0%、図2(b):10.0%、図2(c):15.0%、図3(a):20.0%、図3(b):25.0%、図3(c):30.0%。 2 (a) to 3 (c) are diagrams showing experimental results. These figures show the relationship between the passage of time (horizontal axis) and the temperature change (vertical axis), as in FIG. 2 (a) to 3 (c) correspond to experimental results in which the concentrations of CaCl 2 are different from each other. The correspondence between each figure and the density is as follows. 2 (a): 5.0%, FIG. 2 (b): 10.0%, FIG. 2 (c): 15.0%, FIG. 3 (a): 20.0%, FIG. 3 (b): 25.0%, FIG. 3 (c): 30.0%.
 各図において、経過時間t(h)=2、4、6及び8それぞれの目盛線上に記された温度は、これらの経過時間それぞれにおける温度を示している。また、これらの図では、-25℃の位置に補助線を引くとともに、温度が-25℃を超えた時点を矢印で示しつつ、そのときの経過時間を記した。 温度 In each figure, the temperature marked on each graduation line of elapsed time t (h) = 2, 4, 6, and 8 indicates the temperature at each of these elapsed times. In these figures, an auxiliary line is drawn at a position of −25 ° C., and a point at which the temperature exceeds −25 ° C. is indicated by an arrow, and the elapsed time at that time is shown.
 いずれの図においても、図1を参照して説明した温度変化を確認することができる。すなわち、温度は、最初に上昇した後、保冷剤の凝固点付近(-49℃~-45℃)で停滞し、その後、再び上昇する。なお、計測開始(t=0)より前において、保冷剤は、-120℃の雰囲気で十分に冷却されており、略-120℃になっているはずである。ただし、計測開始直前の容器内の温度が室温であることから、t=0付近においては、最初に温度が低下しており、かつその極小値は-120℃よりも高くなっている。 に お い て In each figure, the temperature change described with reference to FIG. 1 can be confirmed. That is, the temperature first rises, then stagnates near the freezing point of the refrigerant (-49 ° C. to −45 ° C.), and then rises again. Before the start of the measurement (t = 0), the coolant is sufficiently cooled in an atmosphere of -120 ° C, and should be approximately -120 ° C. However, since the temperature in the container immediately before the start of measurement is room temperature, the temperature first drops near t = 0, and the minimum value is higher than -120 ° C.
 図2(a)~図3(c)の比較から理解されるように、CaClの濃度を高くしても、凝固点の温度に大きな差異は生じていない。従って、凝固点を下げるだけであれば、CaClの濃度は比較的低くてもよい(例えば5%程度でもよい)ことがわかる。 As can be understood from the comparison of FIG. 2A to FIG. 3C, even when the concentration of CaCl 2 is increased, there is no large difference in the temperature of the freezing point. Therefore, it can be seen that the CaCl 2 concentration may be relatively low (for example, about 5%) if only the freezing point is lowered.
 また、基本的には、CaClの濃度を高くすることによって、凝固点付近の温度が維持される時間が長くなっている。ひいては、-25℃以下が維持される時間も長くなっている。ただし、濃度が30.0%の場合は、逆に、濃度が25.0%の場合よりも-25℃以下が維持される時間が短くなっている。すなわち、濃度を高くすることによって-25℃以下の保持時間を長くする効果は頭打ちとなっている。 Also, basically, by increasing the concentration of CaCl 2 , the time during which the temperature near the freezing point is maintained is lengthened. As a result, the time during which the temperature is maintained at −25 ° C. or lower is also long. However, when the concentration is 30.0%, the time for which the temperature is maintained at -25 ° C. or lower is shorter than when the concentration is 25.0%. That is, the effect of increasing the retention time at −25 ° C. or less by increasing the concentration has leveled off.
 図4は、図2(a)~図3(c)に示した-25℃以下の温度が維持される時間をCaClの濃度毎に示した図である。横軸は、濃度C(%)を示している。縦軸は、図2(a)~図3(c)において温度が-25℃を超えたときの時間t-25(h)を示している。 FIG. 4 is a diagram showing the time during which the temperature of −25 ° C. or less shown in FIGS. 2A to 3C is maintained for each CaCl 2 concentration. The horizontal axis indicates the concentration C (%). The vertical axis indicates the time t −25 (h) when the temperature exceeds −25 ° C. in FIGS. 2A to 3C.
 この図に示されているように、濃度が15%から20%に変化すると、時間t-25(h)は比較的急激に長くなる。具体的には、濃度が5%以上15%以下の範囲においては、時間t-25は4時間以上5時間未満であるのに対して、濃度が20%以上の範囲では、時間t-25は8時間以上となっている。また、既述のように、濃度が30.0%になると、逆に、時間t-25の長期化の効果は低下する。 As shown in the figure, when the concentration changes from 15% to 20%, the time t −25 (h) becomes relatively long. Specifically, when the concentration is 5% or more and 15% or less, the time t- 25 is 4 hours or more and less than 5 hours, whereas when the concentration is 20% or more, the time t- 25 is 8 hours or more. Also, as described above, when the concentration becomes 30.0%, the effect of prolonging the time t- 25 is reduced.
 以上の実験結果から、CaClの濃度の下限の例として、15%、18%又は20%を挙げることができる。濃度を15%超(例えば15.1%以上、15.5%以上又は16%以上)、18%以上又は20%以上にすることによって、例えば、CaClの添加による時間t-25の長期化の効果を十分に得ることができる。 From the above experimental results, examples of the lower limit of the CaCl 2 concentration include 15%, 18%, and 20%. By increasing the concentration to more than 15% (eg, 15.1% or more, 15.5% or more or 16% or more), 18% or more or 20% or more, for example, the time t −25 is prolonged by adding CaCl 2 . Can be sufficiently obtained.
 また、CaClの濃度の上限の例として、30%を挙げることができる。濃度を30%以下にすることによって、例えば、時間t-25の長期化の効果が得られないにも関わらず、大量のCaClを添加して、コストが増大してしまうという不都合を避けることができる。 An example of the upper limit of the concentration of CaCl 2 is 30%. By setting the concentration to 30% or less, for example, it is possible to avoid the disadvantage that the cost is increased by adding a large amount of CaCl 2 although the effect of prolonging the time t- 25 is not obtained. Can be.
 また、上述の濃度の下限及び上限の組み合わせから、CaClの濃度の範囲の例として、15%超30%以下、18%以上30%以下又は20%以上30%以下を挙げることができる。この範囲であれば、CaClのコストを抑えつつ、時間t-25の長期化の効果を十分に得ることができる。 From the combination of the lower limit and the upper limit of the concentration described above, examples of the range of the concentration of CaCl 2 include more than 15% and 30% or less, 18% or more and 30% or less, or 20% or more and 30% or less. Within this range, while suppressing the cost of CaCl 2, it is possible to obtain a sufficient effect of prolonged time t -25.
 また、上記の濃度の範囲を狭くした範囲の例として、23%以上27%以下、24%以上26%以下、又は24.5%以上25.5%以下を挙げることができる。今回の実験で時間t-25が最長となっているのは濃度が25%の場合である。従って、上記のような25%付近の範囲で濃度を設定することによって、例えば、時間t-25を極力長くすることができる。 Examples of the range in which the concentration range is narrowed include 23% or more and 27% or less, 24% or more and 26% or less, or 24.5% or more and 25.5% or less. In this experiment, the time t- 25 is the longest when the concentration is 25%. Therefore, by setting the concentration in the range around 25% as described above, for example, the time t- 25 can be made as long as possible.
 また、上記とは異なる観点から、濃度の範囲の例として、15%超25%以下、18%以上22%以下、又は19%以上21%以下を挙げることもできる。上記のように濃度が15%と20%との間で時間t-25が飛躍的に長くなる。従って、上記のように濃度を20%付近に設定することによって、例えば、CaClのコストの増加に対する時間t-25の長期化の効果を効率的に得ることができる。 Further, from a viewpoint different from the above, examples of the concentration range include more than 15% to 25%, 18% to 22%, or 19% to 21%. As described above, when the concentration is between 15% and 20%, the time t- 25 is significantly increased. Therefore, by setting the concentration to about 20% as described above, for example, the effect of prolonging the time t −25 with respect to the increase in the cost of CaCl 2 can be efficiently obtained.
(保冷実験(CaCl))
 保冷剤(CaCl)によって保冷対象物が保冷される実際の状況を想定した実験を行い、保冷剤(CaCl)が-25℃以下の保冷に実用的であることを確認した。具体的には以下のとおりである。
(Cooling experiment (CaCl 2 ))
Conducted experiments to cold objects by wet ice (CaCl 2) is assumed actual situation that is cold, wet ice (CaCl 2) was confirmed to be practical for the following cold -25 ° C.. The details are as follows.
 260mlのペットボトルに保冷剤(CaCl)を封入して保冷具を作製した。CaClの濃度は34%とした。この保冷具を-120℃の雰囲気で十分に冷却し、4つの保冷具を保冷対象物と共に容器(一般家庭用に市販されている発泡ケース)に収容した。保冷対象物はアイスクリームとした。容器を概ね-14℃~-23℃の間で周期的に温度変化する環境下においた。これは、例えば、容器が保冷車又は冷凍車に積載され、複数の移送先に到着する度に荷台の扉が開かれて荷台の内部の温度が上昇する状況に相当する。そして、保冷対象物のうちの保冷具側の温度と、保冷対象物のうちの保冷具とは反対側の温度とを計測した。 A cooling agent was prepared by enclosing a cooling agent (CaCl 2 ) in a 260 ml PET bottle. The concentration of CaCl 2 was 34%. The cooler was sufficiently cooled in an atmosphere of -120 ° C, and the four coolers were housed together with the object to be cooled in a container (a foam case commercially available for general household use). The object to be kept cool was ice cream. The container was placed in an environment where the temperature periodically changed between approximately -14 ° C and -23 ° C. This corresponds to, for example, a situation in which the container is loaded on a refrigerator car or a freezer car, and each time it arrives at a plurality of destinations, the door of the carrier is opened and the temperature inside the carrier rises. Then, the temperature of the cooling object side of the cooling object and the temperature of the cooling object opposite to the cooling device were measured.
 図5(a)~図5(c)は、実験結果を示す図である。これらの図は、図1と同様に、時間経過(横軸)と温度変化(縦軸)との関係を示している。図5(a)は容器が置かれた環境の温度の変化を示している。図5(b)は保冷対象物のうちの保冷具側の温度の変化を示している。図5(c)は保冷対象物のうちの保冷具側とは反対側の温度の変化を示している。図5(b)及び図5(c)では、図2(a)~図3(c)と同様に、経過時間の目盛線上にその経過時間における温度を記している。また、その記された温度のうち、温度が-25℃を超える時点の前2つ及び後1つを丸で囲んでいる。 FIGS. 5 (a) to 5 (c) are diagrams showing experimental results. These figures show the relationship between the passage of time (horizontal axis) and the temperature change (vertical axis), as in FIG. FIG. 5A shows a change in the temperature of the environment in which the container is placed. FIG. 5B shows a change in temperature on the side of the cooler among the objects to be kept cool. FIG. 5C shows a change in the temperature of the object to be cooled, which is opposite to the side of the cooling device. 5 (b) and 5 (c), as in FIGS. 2 (a) to 3 (c), the temperature at the elapsed time is indicated on the scale line of the elapsed time. In addition, among the temperatures described, two before and one after the time when the temperature exceeds −25 ° C. are circled.
 図5(b)及び図5(c)に示されているように、保冷対象物の温度変化の態様は、図2(a)~図3(c)で示した温度変化の態様と概略同様となっている。すなわち、保冷対象物の温度は、最初に上昇し、次に保冷剤の凝固点付近で一定の温度を維持し、その後、再度上昇する。ただし、保冷剤とは反対側の温度は、保冷剤側の温度に比較して、容器が置かれた環境の温度の影響が大きく現れている。例えば、保冷剤とは反対側の温度は、環境の温度変化の波形に応じた波形で変化している。また、保冷剤とは反対側の温度は、保冷剤の潜熱が利用されている間、保冷剤の凝固点よりもやや高い温度に維持されている。 As shown in FIGS. 5B and 5C, the mode of the temperature change of the object to be kept cool is substantially the same as the mode of the temperature change shown in FIGS. 2A to 3C. It has become. That is, the temperature of the object to be kept cool first rises, then maintains a constant temperature near the freezing point of the coolant, and then rises again. However, the influence of the temperature of the environment in which the container is placed appears more significantly on the side opposite to the refrigerant than on the side of the refrigerant. For example, the temperature on the side opposite to the cold insulator changes in a waveform corresponding to the waveform of the environmental temperature change. In addition, the temperature on the opposite side of the refrigerant is maintained at a temperature slightly higher than the freezing point of the refrigerant while utilizing the latent heat of the refrigerant.
 この実験では、保冷対象物のうちの保冷剤とは反対側においても、20時間以上に亘って-25℃以下の温度が保たれている。この結果から、例えば、十分に長い移送時間に亘って保冷対象物を-25℃以下に保つことが可能であることが確認できた。 実 験 In this experiment, the temperature of -25 ° C. or lower was maintained for more than 20 hours on the opposite side of the cold storage object among the cold storage objects. From this result, it was confirmed that, for example, the object to be kept cool could be kept at -25 ° C. or lower over a sufficiently long transfer time.
(MgClの濃度の例)
 以下では、MgClの濃度を異ならせた保冷剤の温度変化の実験結果を示し、MgClの濃度の範囲の例を提示する。実験内容は、CaClをMgClに置き換えた以外は、CaClで述べた実験と同様である。
(Example of MgCl 2 concentration)
In the following, an experimental result of a temperature change of the cooling agent having a different MgCl 2 concentration is shown, and an example of a range of the MgCl 2 concentration is presented. Experiments content, but substituting CaCl 2 to MgCl 2 is similar to the experiment described in CaCl 2.
 図6(a)~図7(c)は実験結果を示す図であり、図2(a)~図3(c)と同様の図である。各図とMgClの濃度との関係は、以下のとおりである。図6(a):10.0%、図6(b):15.0%、図6(c):20.0%、図7(a):25.0%、図7(b):30.0%、図7(c):35.0%。 FIGS. 6 (a) to 7 (c) are diagrams showing experimental results, and are the same as FIGS. 2 (a) to 3 (c). The relationship between each figure and the concentration of MgCl 2 is as follows. 6 (a): 10.0%, FIG. 6 (b): 15.0%, FIG. 6 (c): 20.0%, FIG. 7 (a): 25.0%, FIG. 7 (b): 30.0%, FIG. 7 (c): 35.0%.
 これらの図においても、図1を参照して説明した温度変化を確認することができる。すなわち、温度は、最初に上昇した後、保冷剤の凝固点付近(-33℃~-30℃)で停滞し、その後、再び上昇する。なお、保冷剤(MgCl)の凝固点は、保冷剤(CaCl)の凝固点よりも高いから、潜熱が保冷に利用されているときの温度は-25℃の線に近い。 Also in these figures, the temperature change described with reference to FIG. 1 can be confirmed. That is, after the temperature first rises, the temperature stagnates around the freezing point of the refrigerant (−33 ° C. to −30 ° C.), and then rises again. Since the freezing point of the cooling agent (MgCl 2 ) is higher than the freezing point of the cooling agent (CaCl 2 ), the temperature when the latent heat is used for cooling is close to the −25 ° C. line.
 図6(a)~図7(c)の比較から理解されるように、MgClの濃度を高くしても、凝固点の温度に大きな差異は生じていない。従って、凝固点を下げるだけであれば、MgClの濃度は比較的低くてもよい(例えば10%程度でもよい)ことがわかる。 As can be understood from the comparison of FIGS. 6A to 7C, even when the concentration of MgCl 2 is increased, there is no large difference in the temperature of the freezing point. Therefore, it is understood that the concentration of MgCl 2 may be relatively low (for example, about 10%) if only the freezing point is lowered.
 また、基本的には、MgClの濃度を高くすることによって、凝固点付近の温度が維持される時間が長くなっている。ひいては、-25℃以下が維持される時間も長くなっている。また、今回の実験では、CaClの場合とは異なり、濃度の増加に対して-25℃以下の時間の長期化の効果が頭打ちになる濃度は確認されなかった。 In addition, basically, by increasing the concentration of MgCl 2 , the time during which the temperature near the freezing point is maintained becomes longer. As a result, the time during which the temperature is maintained at −25 ° C. or lower is also long. Further, in the present experiment, unlike the case of CaCl 2, no concentration was confirmed at which the effect of prolonging the time of −25 ° C. or less for the increase in concentration reached a plateau.
 図8は、図6(a)~図7(c)に示した-25℃以下の温度が維持される時間をMgClの濃度毎に示した図であり、図4と同様の図である。 FIG. 8 is a diagram showing the time during which the temperature of −25 ° C. or less is maintained for each MgCl 2 concentration shown in FIGS. 6A to 7C, and is similar to FIG. .
 この図に示されているように、MgClの濃度が15%になると、時間t-25として概ね6時間確保できており、さらに20%になると、時間t-25として概ね8時間が確保できている。また、濃度が25%になると、時間t-25は8時間を超え、また、濃度の増加に対する時間t-25の増加は若干鈍化する。 As shown in this figure, when the concentration of MgCl 2 is 15%, approximately 6 hours can be secured as time t −25 , and when it is further 20%, approximately 8 hours can be secured as time t −25. ing. Further, when the concentration becomes 25%, the time t- 25 exceeds 8 hours, and the increase in the time t- 25 with the increase in the concentration slightly slows down.
 以上の実験結果から、MgClの濃度の下限の例として、15%、20%又は25%を挙げることができる。濃度を15%超(例えば15.1%以上、15.5%以上又は16%以上)、20%以上又は25%以上にすることによって、例えば、MgClの添加による時間t-25の長期化の効果を十分に得ることができる。 From the above experimental results, examples of the lower limit of the concentration of MgCl 2 include 15%, 20%, and 25%. By increasing the concentration to more than 15% (for example, 15.1% or more, 15.5% or more or 16% or more), 20% or more or 25% or more, for example, the time t −25 is prolonged by adding MgCl 2 . Can be sufficiently obtained.
 また、MgClの濃度の上限の例として、40%又は35%を挙げることができる。濃度を40%以下又は35%以下にすることによって、例えば、大量のMgClを添加することによるコストの増大を抑えることができる。 An example of the upper limit of the concentration of MgCl 2 is 40% or 35%. By setting the concentration to 40% or less or 35% or less, for example, an increase in cost due to addition of a large amount of MgCl 2 can be suppressed.
 また、上述の濃度の下限及び上限の組み合わせから、CaClの濃度の範囲の例として、15%超40%以下、25%以上40%以下、又は25%以上35%以下を挙げることができる。この範囲であれば、MgClのコストを抑えつつ、時間t-25の長期化の効果を十分に得ることができる。 From the combination of the lower limit and the upper limit of the concentration described above, examples of the range of the CaCl 2 concentration include more than 15% and 40% or less, 25% or more and 40% or less, or 25% or more and 35% or less. Within this range, it is possible to sufficiently obtain the effect of prolonging the time t −25 while suppressing the cost of MgCl 2 .
 また、濃度の範囲の下限の例として、上述の下限よりも大きい30%又は35%を挙げることもできる。上述のように、今回の実験では、MgClの濃度の増加に対して、時間t-25の長期化の効果が頭打ちになる現象は確認されなかった。従って、濃度を30%以上又は35%以上とすることによって、例えば、時間t-25を極力長くすることができる。 Further, as an example of the lower limit of the concentration range, 30% or 35%, which is larger than the above lower limit, can also be mentioned. As described above, in this experiment, it was not confirmed that the effect of prolonging the time period t −25 reached a plateau with respect to the increase in the concentration of MgCl 2 . Therefore, by setting the concentration to 30% or more or 35% or more, for example, the time t- 25 can be made as long as possible.
(保冷実験(MgCl))
 図5(a)~図5(c)を参照して説明した実験と同様の実験を保冷剤(MgCl)についても行った。なお、MgClの濃度は30%とした。
(Cooling experiment (MgCl 2 ))
An experiment similar to the experiment described with reference to FIGS. 5A to 5C was also performed on the cooling agent (MgCl 2 ). The concentration of MgCl 2 was 30%.
 図9(a)~図9(c)は、実験結果を示す図であり、図5(a)~図5(c)と同様の図である。念のために記載すると、図9(a)は容器が置かれた環境の温度の変化を示している。図9(b)は保冷対象物のうちの保冷具側の温度の変化を示している。図9(c)は保冷対象物のうちの保冷具側とは反対側の温度の変化を示している。 FIGS. 9 (a) to 9 (c) are diagrams showing experimental results, and are the same as FIGS. 5 (a) to 5 (c). As a precautionary measure, FIG. 9A shows a change in the temperature of the environment in which the container is placed. FIG. 9 (b) shows a change in temperature on the side of the cooler among the objects to be kept cool. FIG. 9C shows a change in the temperature of the object to be cooled, which is opposite to the side of the cooling device.
 図9(a)~図9(c)において、保冷対象物の温度変化の態様は、図5(a)~図5(c)で示した温度変化の態様と概略同様となっている。ただし、保冷剤(MgCl)の凝固点は、保冷剤(CaCl)の凝固点よりも高いから、潜熱が利用されているときの温度は-25℃の線に近い。 9A to 9C, the mode of the temperature change of the object to be kept cool is substantially the same as the mode of the temperature change shown in FIGS. 5A to 5C. However, since the freezing point of the cooling agent (MgCl 2 ) is higher than the freezing point of the cooling agent (CaCl 2 ), the temperature when the latent heat is used is close to the line of −25 ° C.
 この実験では、保冷対象物のうちの保冷剤とは反対側においても、24時間以上に亘って-25℃以下の温度が保たれている。この結果から、例えば、十分に長い移送時間に亘って保冷対象物を-25℃以下に保つことが可能であることが確認できた。 実 験 In this experiment, the temperature of -25 ° C. or lower was maintained for more than 24 hours on the opposite side of the cooling object among the cooling objects. From this result, it was confirmed that, for example, the object to be kept cool could be kept at -25 ° C. or lower over a sufficiently long transfer time.
(CaCl及びMgClの比較)
 保冷剤(CaCl)の実験結果(図2(a)~図5(c))と、保冷剤(MgCl)の実験結果(図6(a)~図9(c))との比較から、保冷の具体的用途に応じて、いずれか一方を選択してよいことが分かる。
(Comparison of CaCl 2 and MgCl 2 )
From the comparison between the experimental results of the cold insulator (CaCl 2 ) (FIGS. 2 (a) to 5 (c)) and the experimental results of the cold insulator (MgCl 2 ) (FIGS. 6 (a) to 9 (c)) It can be seen that either one of them may be selected according to the specific use of the cold storage.
 例えば、CaCl又はMgClの濃度を25%以上にすると、-25℃以下の時間は保冷剤(MgCl)の方が長くなる。さらに、濃度を高くすると、保冷剤(CaCl)では、-25℃以下の時間の長期化の効果が頭打ちになるが、保冷剤(MgCl)では、-25℃以下の時間が更に長くなる。従って、-25℃以下の温度を長期間に亘って維持することを第1の目的とする場合においては、MgClの濃度を比較的高く(例えば25%以上、30%以上又は35%以上に)した保冷剤を用いてよい。 For example, when the concentration of CaCl 2 or MgCl 2 is set to 25% or more, the cooling agent (MgCl 2 ) becomes longer at −25 ° C. or less. Further, when the concentration is increased, the effect of prolonging the time of −25 ° C. or less is flattened for the cooling agent (CaCl 2 ), but the time of −25 ° C. or less is further lengthened for the cooling agent (MgCl 2 ). . Therefore, in the case where the first object is to maintain the temperature of −25 ° C. or less for a long period of time, the concentration of MgCl 2 is relatively high (for example, 25% or more, 30% or more, or 35% or more). ) May be used.
 ただし、梱包材によっては、-25℃以下の温度を長期間に亘って維持することを第1の目的とする場合においても、保冷剤(CaCl)が用いられてよい。その理由は、以下のとおりである。保冷材(MgCl)の方が保冷剤(CaCl)よりも-25℃以下の温度を維持する時間が長くなる理由としては、例えば、以下のものが考えられる。潜熱が保冷に利用されている間の温度(凝固点)が低くされると、容器の内部と外部との温度差は大きくなる。その結果、容器を介して外部の熱が内部へ伝わりやすくなる。ひいては、保冷剤の潜熱のロスが大きくなる。そして、保冷材(MgCl)は、保冷剤(CaCl)に比較して、凝固点が高いから、ロスが低減され、-25℃以下の温度を維持する時間が長くなる。一方、-25℃に至るまでの単位質量当たりの熱量(理論値)は、既に述べた試算から理解されるように、保冷剤(CaCl)の方が保冷材(MgCl)よりも大きい。従って、梱包材の断熱性が高い場合においては、保冷剤(CaCl)を用いて、-25℃以下の温度が維持される時間を長くすることができる。 However, depending on the packing material, even when the first purpose is to maintain a temperature of −25 ° C. or less for a long period of time, a cold insulator (CaCl 2 ) may be used. The reason is as follows. The reason why the time for maintaining the temperature of −25 ° C. or lower in the cold insulator (MgCl 2 ) is longer than that in the cold insulator (CaCl 2 ) is as follows, for example. When the temperature (freezing point) during which latent heat is used for keeping cool is lowered, the temperature difference between the inside and the outside of the container increases. As a result, external heat is easily transmitted to the inside through the container. As a result, the latent heat loss of the cooling agent increases. Further, since the cold insulator (MgCl 2 ) has a higher freezing point than the cold insulator (CaCl 2 ), the loss is reduced, and the time for maintaining the temperature of −25 ° C. or less becomes longer. On the other hand, the amount of heat (theoretical value) per unit mass up to -25 ° C. is larger for the cold insulator (CaCl 2 ) than for the cold insulator (MgCl 2 ), as understood from the above-described trial calculation. Therefore, when the heat insulating property of the packing material is high, the time during which the temperature of −25 ° C. or less is maintained can be extended by using the cold insulator (CaCl 2 ).
 また、例えば、保冷剤(CaCl)の凝固点が約-45℃であるのに対して、保冷剤(MgCl)の凝固点は約-30℃である。従って、より低温(例えば-35℃以下又は-40℃以下)での保冷時間を長くしたい場合においては、保冷剤(CaCl)を用いてよい。 Further, for example, the freezing point of the cooling agent (CaCl 2 ) is about −45 ° C., whereas the freezing point of the cooling agent (MgCl 2 ) is about −30 ° C. Therefore, when it is desired to extend the cooling time at a lower temperature (eg, −35 ° C. or lower or −40 ° C. or lower), a cooling agent (CaCl 2 ) may be used.
(保冷剤の応用例)
 以下、本実施形態に係る保冷剤の応用例について説明する。具体的には、保冷剤を利用している保冷具、貨物、輸送機器、輸送方法及び保冷方法について説明する。
(Application example of cold storage agent)
Hereinafter, application examples of the cold insulator according to the present embodiment will be described. Specifically, a cooling device, a cargo, a transportation device, a transportation method, and a cooling method using a cooling agent will be described.
 図10(a)は、保冷剤1を利用している保冷具3の一例を示している斜視図である。なお、保冷具3の一部は破断して示されている。 FIG. 10A is a perspective view showing an example of the cold insulator 3 using the cold insulator 1. Note that a part of the cooler 3 is shown broken.
 保冷具3は、保冷剤1と、保冷剤1が封入されている封入容器5とを有している。保冷剤1は、本実施形態に係る保冷剤(CaCl)又は保冷剤(MgCl)である。保冷具3は、繰り返し使用されるタイプのものであってもよいし、使い捨てタイプのものであってもよい。なお、封入容器5には、保冷剤1と共に気体(例えば空気)が封入されていても構わない。 The cooling device 3 includes a cooling agent 1 and an enclosure 5 in which the cooling agent 1 is sealed. The cooling agent 1 is the cooling agent (CaCl 2 ) or the cooling agent (MgCl 2 ) according to the present embodiment. The cooler 3 may be of a type that is used repeatedly, or may be of a disposable type. In addition, gas (for example, air) may be enclosed in the enclosure 5 together with the cooling agent 1.
 封入容器5の大きさ、形状及び材料は、適宜に設定されてよい。例えば、封入容器5として、公知の種々の保冷具の封入容器が利用されてよい。具体的には、例えば、封入容器5は、可撓性の材料(樹脂等)によって構成された袋状のものであってもよいし、可撓性を有さない材料(樹脂等)によって構成されたハードタイプ容器(図示の例)であってもよい。また、例えば、封入容器5は、注入口を有さない(封入容器5の破壊無しでは保冷剤1を取り出すことができない)ものであってもよいし、図示の例のようにキャップによって塞がれた注入口を有するものであってもよい。また、例えば、封入容器5の形状は、概略直方体状であってもよいし(図示の例)、用途に応じた特異な形状を有していてもよい。また、例えば、封入容器5の容積(可撓性の場合は最大容積)は、10ml以上1リットル以下とされてよい。 大 き The size, shape and material of the enclosing container 5 may be appropriately set. For example, as the encapsulation container 5, an encapsulation container of various well-known cooling devices may be used. Specifically, for example, the enclosing container 5 may be a bag-shaped material made of a flexible material (resin or the like) or made of a non-flexible material (resin or the like). A hard type container (illustrated example) may be used. Further, for example, the enclosing container 5 may not have an inlet (the cooling agent 1 cannot be taken out without breaking the enclosing container 5), or may be closed by a cap as shown in the illustrated example. It may have a filled inlet. In addition, for example, the shape of the enclosing container 5 may be a substantially rectangular parallelepiped shape (an example shown), or may have a unique shape according to the application. In addition, for example, the volume (maximum volume in the case of flexibility) of the enclosure 5 may be 10 ml or more and 1 liter or less.
 図10(b)は、保冷剤1を利用している貨物11の一例を示している断面図である。 FIG. 10B is a cross-sectional view showing an example of the cargo 11 using the cooling agent 1.
 貨物11は、例えば、1以上の保冷対象物13と、1以上の保冷具3と、これらを共に収容している箱15とを有している。なお、箱15は、収容容器の一例である。 The cargo 11 has, for example, one or more objects to be cooled 13, one or more pieces of cooling equipment 3, and a box 15 accommodating them. The box 15 is an example of a storage container.
 保冷対象物としては、例えば、食品を挙げることができる。食品としては、例えば、冷凍食品、冷凍菓子、生菓子、乳製品及び生鮮食品を挙げることができる。冷凍食品は、長期保存を目的に冷凍されている食品であり、冷凍前において、無加熱のもの、加熱されたもの、調理前のもの、調理後のものなどがある。冷凍菓子としては、例えば、アイスクリームを挙げることができる。生菓子としては、例えば、ケーキを挙げることができる。乳製品としては、例えば、ヨーグルトを挙げることができる。生鮮食品としては、例えば、鮮魚(魚介類)、精肉(肉類)及び青果を挙げることができる。図10(b)では、保冷対象物13として、カップ入りのアイスクリームを例示している。 冷 As an object to be kept cool, for example, food can be mentioned. Foods include, for example, frozen foods, frozen confectionery, fresh confectionery, dairy products and fresh foods. Frozen food is food that has been frozen for the purpose of long-term storage, and includes non-heated food, heated food, food before cooking, food after cooking, and the like before freezing. Examples of the frozen confectionery include ice cream. Examples of the raw confectionery include cake. Dairy products include, for example, yogurt. Examples of fresh foods include fresh fish (fish and shellfish), meat (meat), and fruits and vegetables. FIG. 10B exemplifies the ice cream in a cup as the object 13 to be kept cool.
 なお、保冷対象物としては、食品・飲料の他、例えば、移植用臓器及びワクチン(移植用臓器又はワクチンが封入された容器)を挙げることができる。保冷の語は、一般に食料品に用いられるが、前記の例示から理解されるように、本開示では、保冷対象物は食料品に限られない。 冷 In addition, as the object to be kept cool, in addition to foods and beverages, for example, organs for transplantation and vaccines (containers in which organs for transplantation or vaccines are enclosed) can be mentioned. Although the term cold storage is generally used for food products, as understood from the above examples, in the present disclosure, the cold storage target is not limited to food products.
 箱15の大きさ、形状及び材料は、適宜に設定されてよく、例えば、公知の種々の箱が適用されてよい。代表的なものとしては、例えば、発泡スチロール又は段ボールからなる比較的小型(例えば1m以下×1m以下×1m以下)の箱が挙げられ、また、プラスチックケースに断熱材を組み合わせたクーラーボックス(アイスボックス)が挙げられる。なお、箱15の材料は、比較的断熱性が高いものであってもよいし、断熱性が低いものであってもよい。 大 き The size, shape and material of the box 15 may be appropriately set, and for example, various known boxes may be applied. A typical example is a relatively small box (for example, 1 m or less × 1 m or less × 1 m or less) made of styrene foam or cardboard, and a cooler box (ice box) in which a plastic case is combined with a heat insulating material. Is mentioned. The material of the box 15 may be a material having relatively high heat insulating properties or a material having low heat insulating properties.
 箱15内における保冷対象物13及び保冷具3の配置位置も適宜に設定されてよい。例えば、保冷具3は、保冷対象物13に対して、側方に位置していてもよいし(図示の例)、上に位置していてもよいし、下に位置していてもよいし、これらの2以上の組み合わせで配置されてもよい。なお、保冷対象物13の種類、その包装及び/又は箱15の構成等によっては、保冷具3を箱15に収容するのではなく、保冷剤1を直接に(封入容器5に封入せずに)箱15に収容することも可能である。 (4) The positions of the cold storage object 13 and the cold storage tool 3 in the box 15 may be appropriately set. For example, the cool insulator 3 may be located laterally with respect to the cold insulator 13 (the example shown), may be located above, or may be located below. , May be arranged in a combination of two or more of these. Note that, depending on the type of the cold storage object 13, its packaging, and / or the configuration of the box 15, the cold storage agent 3 is not stored in the box 15, but the cold storage agent 1 is directly (without being sealed in the sealing container 5). ) It is also possible to house it in a box 15.
 図10(c)は、保冷剤1を利用している輸送機器21の一例を示している側面図である。 FIG. 10C is a side view showing an example of the transport equipment 21 using the cooling agent 1.
 輸送機器21は、例えば、1以上の貨物11と、当該貨物11を収容している1以上のコンテナ23とを有している。なお、コンテナ23も、箱15と同様に、収容容器の一例である。 The transport equipment 21 includes, for example, one or more cargoes 11 and one or more containers 23 that accommodate the cargos 11. Note that the container 23 is also an example of a storage container, like the box 15.
 輸送機器21としては、例えば、自動車(図示の例)、航空機、列車、船舶及び二輪車を挙げることができる。図10(c)では、備え付けのコンテナ23を有する保冷車又は冷凍車が図示されている。 Examples of the transportation device 21 include an automobile (an example shown), an aircraft, a train, a ship, and a motorcycle. FIG. 10 (c) illustrates a cooler car or a freezer car having the provided container 23.
 コンテナ23内における貨物11の配置は適宜に設定されてよい。また、貨物11をコンテナ23に収容するのではなく、保冷対象物13及び保冷具3が直接に(箱15に収容されずに)コンテナ23に収容されていてもよい。なお、保冷対象物13の種類、その包装及び/又はコンテナ23の構成等によっては、保冷剤1を直接に(封入容器5に封入せずに)コンテナ23に収容することも可能である。 配置 The arrangement of the cargo 11 in the container 23 may be appropriately set. Further, instead of storing the cargo 11 in the container 23, the object 13 and the cooler 3 may be directly stored in the container 23 (not in the box 15). Note that, depending on the type of the cooling object 13, its packaging, and / or the configuration of the container 23, the cooling agent 1 can be directly stored in the container 23 (without being sealed in the sealing container 5).
 ここでは、箱15及びその内容物を貨物11として説明している。換言すれば、1人又は少人数で(人力で)運搬できるような比較的小型のものを貨物として例示した。ただし、貨物は、そのような大きさのものよりも大きくてもよい。例えば、図10(c)では、コンテナ23は、自動車に備え付けのものとしたが、コンテナ船、トラック及び/又は列車に積みおろしされるものであってもよく、このコンテナ及びその内容物が貨物と捉えられてもよい。 Here, the box 15 and its contents are described as the cargo 11. In other words, a relatively small cargo that can be carried by one person or a small number of people (by human power) is exemplified as the cargo. However, the cargo may be larger than such a size. For example, in FIG. 10 (c), the container 23 is provided on a car. However, the container 23 may be unloaded on a container ship, a truck, and / or a train. It may be caught.
 図10(a)~図10(c)は、実施形態に係る輸送方法及び保冷方法も示している。輸送方法は、保冷具3を冷却するステップ(図10(a))と、保冷具3と保冷対象物13とを共に箱15に収容するステップ(図10(b))と、保冷具3及び保冷対象物13を共に収容している箱15を移送するステップ(図10(c))とを有している。また、保冷方法は、保冷具3を冷却するステップ(図10(a))と、保冷具3と保冷対象物13とを共に箱15に収容するステップ(図10(b))とを有している。保冷方法では、輸送せずに単に保冷を行うだけであってもよい。 FIGS. 10 (a) to 10 (c) also show a transportation method and a cooling method according to the embodiment. The transportation method includes a step of cooling the cooler 3 (FIG. 10A), a step of storing both the cooler 3 and the object 13 in the box 15 (FIG. 10B), Transferring the box 15 accommodating the cold storage object 13 (FIG. 10C). Further, the method for keeping cool has a step of cooling the cooler 3 (FIG. 10A) and a step of housing both the cooler 3 and the object 13 to be kept cool in the box 15 (FIG. 10B). ing. In the cool keeping method, it is possible to simply keep cool without transporting.
 保冷具3は、例えば、保冷具3の冷却完了時において、又は保冷具3の使用開始時(例えば保冷対象物13と共に梱包された時)若しくはその直前(例えば使用開始時の10分以内)において-25℃以下とされる。より詳細には、例えば、保冷具3の温度は、-35℃以下(換言すれば保冷剤(MgCl)の凝固点よりも低い温度)、-50℃以下(換言すれば保冷剤(CaCl)の凝固点よりも低い温度)、-60℃以下、-100℃以下又は-120℃以下の温度とされる。 The cooler 3 is, for example, when the cooling of the cooler 3 is completed, or when the cooler 3 is started to be used (for example, when the cooler 3 is packed together with the cooling object 13) or immediately before (for example, within 10 minutes after the start of use). -25 ° C or less. More specifically, for example, the temperature of the cooler 3 is −35 ° C. or less (in other words, a temperature lower than the freezing point of the cooler (MgCl 2 )), or −50 ° C. or less (in other words, the cooler (CaCl 2 )). , Below -60 ° C, below -100 ° C or below -120 ° C.
 -100℃以下又は-120℃以下のように極めて低い温度まで保冷具3を冷却した場合においては、例えば、保冷剤1が固体状のときの顕熱を多くすることができる。その結果、-25℃以下の保冷時間を長くすることができる。 When the cooler 3 is cooled to a very low temperature, such as -100 ° C or lower or -120 ° C or lower, for example, the sensible heat when the cooler 1 is solid can be increased. As a result, it is possible to prolong the cooling time at −25 ° C. or less.
 保冷具3を-100℃以下まで冷却するには、例えば、株式会社エイディーディー社製の「超低温チラー コールドウェーブ」を用いてよい。この超低温チラーは、多段蒸発器及び混合冷媒を用いることによって、供給された気体(例えば、空気、フロンガス、液体窒素又はアルゴンガス)を-130℃程度の温度まで冷却することができる。そして、例えば、保冷具3の周囲に前記のチラーによって冷却された気体を供給することによって、保冷具3(保冷剤1)を-100℃以下まで冷却することができる。 To cool the cooler 3 to −100 ° C. or lower, for example, “Ultra-Low Temperature Chiller—Cold Wave” manufactured by ADD Corporation may be used. This ultra-low temperature chiller can cool a supplied gas (for example, air, Freon gas, liquid nitrogen or argon gas) to a temperature of about −130 ° C. by using a multi-stage evaporator and a mixed refrigerant. Then, for example, by supplying the gas cooled by the chiller around the cooler 3, the cooler 3 (coolant 1) can be cooled to −100 ° C. or less.
 確認的に記載すると、チラーは、フリーザの概念を含むものである。また、特に図示しないが、チラーは、例えば、基本的な構成として、冷媒を圧縮する圧縮機、圧縮された冷媒を冷却する凝縮器、冷却された冷媒の圧力を下げて送る膨張弁及び圧力が下げられた冷媒によって冷却対象(保冷剤又は保冷剤の周囲に供給される気体)を冷却する蒸発器をこの列挙順に環状に有している。チラーは、例えば、保冷対象物が生産若しくは卸される場所に設置されたり、宅配を担う業者の各営業所に設置されたりしてよい。 Confirmatively stated, a chiller includes the concept of a freezer. Further, although not particularly shown, for example, the chiller includes, as basic components, a compressor that compresses a refrigerant, a condenser that cools the compressed refrigerant, an expansion valve that reduces the pressure of the cooled refrigerant, and a pressure that increases the pressure. An evaporator for cooling a cooling object (coolant or a gas supplied around the coolant) with the lowered refrigerant is provided in a ring shape in this order of enumeration. The chiller may be installed, for example, at a place where the object to be cooled is produced or wholesaled, or installed at each sales office of a company responsible for home delivery.
 以上のとおり、本実施形態では、保冷剤は、水と、CaCl又はMgClである塩と、を含み、前記塩の濃度が15%超である。従って、例えば、図1等を参照して説明したように、-25℃以下の時間を長くすることができる。さらに、CaCl又はMgClは、輸送に関わる国内外の規格及び/又は法令に照らして規制対象となっていない、又は規制対象となり難い。従って、本実施形態の保冷剤の応用範囲は広い。なお、輸送に関わる国内の法令としては、例えば、食品衛生法、毒物及び劇物取締法、労働安全衛生法及び化学物質管理促進法が挙げられる。 As described above, in the present embodiment, the cooling agent includes water and a salt that is CaCl 2 or MgCl 2 , and the concentration of the salt is more than 15%. Therefore, for example, as described with reference to FIG. 1 and the like, the time at −25 ° C. or less can be lengthened. Furthermore, CaCl 2 or MgCl 2 is not regulated or hardly regulated in light of domestic and foreign standards and / or laws and regulations related to transportation. Therefore, the application range of the refrigerant according to the present embodiment is wide. In addition, domestic laws relating to transportation include, for example, the Food Sanitation Law, the Poisonous and Deleterious Substances Control Law, the Occupational Safety and Health Law, and the Chemical Substance Management Promotion Law.
 1…保冷剤、3…保冷具、5…封入容器、11…貨物、13…保冷対象物、21…輸送機器。 1: Cold insulator, 3: Cooler, 5: Enclosed container, 11: Cargo, 13: Cold insulator, 21: Transport equipment.

Claims (10)

  1.  水と、
     CaCl又はMgClである塩と、
     を含み、
     前記塩の濃度が15%超である
     保冷剤。
    water and,
    A salt which is CaCl 2 or MgCl 2 ;
    Including
    A refrigerating agent having a salt concentration of more than 15%.
  2.  前記塩がCaClであり、
     CaClの濃度が15%超30%以下である
     請求項1に記載の保冷剤。
    The salt is CaCl 2 ,
    Cooler agent according to claim 1 the concentration of CaCl 2 is less than 15% 30%.
  3.  前記塩がMgClであり、
     MgClの濃度が35%以上である
     請求項1に記載の保冷剤。
    The salt is MgCl 2 ,
    Cooler agent according to claim 1 the concentration of MgCl 2 is 35% or more.
  4.  温度が-25℃以下である
     請求項1~3のいずれか1項に記載の保冷剤。
    The cooling agent according to any one of claims 1 to 3, wherein the temperature is -25 ° C or lower.
  5.  請求項1~4のいずれか1項に記載の保冷剤と、
     前記保冷剤が封入されている封入容器と、
     を有している保冷具。
    A cooling agent according to any one of claims 1 to 4,
    An enclosure in which the cooling agent is enclosed,
    Cooler having.
  6.  請求項5に記載の保冷具と、
     保冷対象物と、
     前記保冷具と前記保冷対象物とを共に収容している収容容器と、
     を有している貨物。
    A cooler according to claim 5,
    The object to be kept cool
    An accommodation container accommodating both the cold insulator and the object to be cooled,
    Have freight.
  7.  請求項5に記載の保冷具と、
     保冷対象物と、
     前記保冷具と前記保冷対象物とを共に収容している収容容器と、
     を有している輸送機器。
    A cooler according to claim 5,
    The object to be kept cool
    An accommodation container accommodating both the cold insulator and the object to be cooled,
    Having transport equipment.
  8.  請求項5に記載の保冷具と保冷対象物とを共に収容容器に収容するステップと、
     前記保冷具及び前記保冷対象物を共に収容している前記収容容器を移送するステップと、
     を有している輸送方法。
    A step of accommodating both the cool keeping device and the cool keeping object according to claim 5 in a containing container,
    Transferring the storage container that stores both the cooling tool and the cooling target,
    Having a transport method.
  9.  前記収容するステップにおいて前記保冷具の温度が-100℃以下である
     請求項8に記載の輸送方法。
    The transportation method according to claim 8, wherein the temperature of the cooler is -100 ° C or lower in the housing step.
  10.  請求項5に記載の保冷具と保冷対象物とを共に収容容器に収容するステップ
     を有している保冷方法。
    A cold insulation method, comprising: accommodating both the cool keeping device and the cold keeping object according to claim 5 in a containing container.
PCT/JP2019/027492 2018-07-11 2019-07-11 Cooling agent, cooling pack, freight, transportation equipment, transportation method, and cooling method WO2020013274A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018131743A JP7219905B2 (en) 2018-07-11 2018-07-11 Refrigerant, ice pack, cargo, transportation equipment, transportation method and cold insulation method
JP2018-131743 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020013274A1 true WO2020013274A1 (en) 2020-01-16

Family

ID=69142701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027492 WO2020013274A1 (en) 2018-07-11 2019-07-11 Cooling agent, cooling pack, freight, transportation equipment, transportation method, and cooling method

Country Status (2)

Country Link
JP (1) JP7219905B2 (en)
WO (1) WO2020013274A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351963A (en) * 1999-04-09 2000-12-19 Koji Mizutani Regenerating agent, regenerating pack and cooling box
JP2001201222A (en) * 2000-01-20 2001-07-27 Masao Umemoto Low-temperature cold insulating body and cryogenic refrigerating apparatus
JP2001214157A (en) * 2000-02-02 2001-08-07 Mitsubishi Cable Ind Ltd Latent-heat cold accumulator
JP2002130884A (en) * 2000-10-17 2002-05-09 Masao Umemoto Dry ice alternative freezing and storing system
JP2003155473A (en) * 2001-11-21 2003-05-30 Koji Mizutani Cold storage agent, cold storage pack and cold insulating box
JP2003171657A (en) * 2001-12-04 2003-06-20 Mac:Kk Cold storage medium and its manufacturing method
WO2016204284A1 (en) * 2015-06-19 2016-12-22 株式会社カネカ Cold storage material composition, cold storage material, and transport container

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000351963A (en) * 1999-04-09 2000-12-19 Koji Mizutani Regenerating agent, regenerating pack and cooling box
JP2001201222A (en) * 2000-01-20 2001-07-27 Masao Umemoto Low-temperature cold insulating body and cryogenic refrigerating apparatus
JP2001214157A (en) * 2000-02-02 2001-08-07 Mitsubishi Cable Ind Ltd Latent-heat cold accumulator
JP2002130884A (en) * 2000-10-17 2002-05-09 Masao Umemoto Dry ice alternative freezing and storing system
JP2003155473A (en) * 2001-11-21 2003-05-30 Koji Mizutani Cold storage agent, cold storage pack and cold insulating box
JP2003171657A (en) * 2001-12-04 2003-06-20 Mac:Kk Cold storage medium and its manufacturing method
WO2016204284A1 (en) * 2015-06-19 2016-12-22 株式会社カネカ Cold storage material composition, cold storage material, and transport container

Also Published As

Publication number Publication date
JP7219905B2 (en) 2023-02-09
JP2020007499A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
US4294079A (en) Insulated container and process for shipping perishables
US5235819A (en) Method and apparatus for storing and distributing materials
WO2007049380A1 (en) Constant-temperature cold-reserving box and method of reserving cold at constant temperature
CN109868115A (en) A kind of fresh cold chain efficient cold-storage material and preparation method thereof
WO2017138177A1 (en) Cold-storage agent, refrigerated container, and method for refrigerated transportation
CN110268209B (en) Logistics system and logistics method
WO2020013274A1 (en) Cooling agent, cooling pack, freight, transportation equipment, transportation method, and cooling method
JP6723266B2 (en) Heat storage material, refrigerator and cold storage container using the same
WO2003013318B1 (en) Cold storage box
KR20210069147A (en) Refrigerant Composition And The Manufacturing Method Thereof
US1688023A (en) Refrigerating unit
GB2615086A (en) Phase change material for a temperature-controlled shipping package
JP7217878B2 (en) Refrigerator, Cargo, Transportation Equipment, Transportation Method and Refrigeration Method
JP2022082954A (en) Cold-retaining agent, cold-retaining tool, cargo, transportation machine, transportation method, and cold-retaining method
WO2023199338A1 (en) Ammonium chloride based inorganic phase change material for sub-zero and low temperature applications
CN203473550U (en) Packaging box for biological medicine
JP2022085249A (en) Viscosity enhancer for cold-retaining agent, cold-retaining agent, cold-retaining tool, cargo, transportation machine, method for manufacturing cold-retaining tool, transportation method, and cold-retaining method
CZ9902137A3 (en) Thermally insulated storage tank
JP6176581B1 (en) Cold storage agent, cold storage container, and cold transport method
WO2006120756A1 (en) Cold-reserving material, method of cold reservation with cold-reserving material, and cooling cycle employing cold-reserving material
SK77999A3 (en) Thermally insulated container
JP2022142141A (en) Refrigerant, refrigerating tool, cargo, transporter, transporting method and refrigerating method
WO2000006959A1 (en) Storage container
KR20230014241A (en) A bowl that keeps the ice cream from melting
JP2019120429A (en) Cold storage item, cargo, transport equipment, transport method, and cold storage method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834301

Country of ref document: EP

Kind code of ref document: A1