WO2020013082A1 - Method for manufacturing grinding roller and temperature-raising device - Google Patents

Method for manufacturing grinding roller and temperature-raising device Download PDF

Info

Publication number
WO2020013082A1
WO2020013082A1 PCT/JP2019/026730 JP2019026730W WO2020013082A1 WO 2020013082 A1 WO2020013082 A1 WO 2020013082A1 JP 2019026730 W JP2019026730 W JP 2019026730W WO 2020013082 A1 WO2020013082 A1 WO 2020013082A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
heating
heater
temperature
peripheral surface
Prior art date
Application number
PCT/JP2019/026730
Other languages
French (fr)
Japanese (ja)
Inventor
貴之 梅野
大坪 栄一郎
悠一 廣瀬
大成 池村
Original Assignee
三菱日立パワーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱日立パワーシステムズ株式会社 filed Critical 三菱日立パワーシステムズ株式会社
Priority to KR1020207036735A priority Critical patent/KR102431648B1/en
Priority to CN201980038767.4A priority patent/CN112292209B/en
Publication of WO2020013082A1 publication Critical patent/WO2020013082A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/28Details
    • B02C4/30Shape or construction of rollers

Definitions

  • the present invention relates to a method for manufacturing a crushing roller and a temperature raising device.
  • a pulverizing table that rotates around a vertical axis as a pulverizer that pulverizes a solid fuel such as coal into a fine powder having a particle size smaller than a predetermined particle size and supplies it to a combustion device.
  • a crushing roller used in such a crusher has a journal housing rotatably attached to a housing of the crusher, and a roller portion formed of a metal material that actually contacts and presses the object to be crushed. are doing.
  • the journal housing and the roller portion are fitted by shrink fitting, and when the roller portion is worn, the roller portion is removed to enable maintenance (for example, pulverized coal described in Patent Document 1). Machine roller).
  • a pulverizing roller used in a pulverizer a pulverizing roller having a roller part having a hardened part on its surface, and furthermore, a ceramic is applied to the surface of a roller part made of high chromium cast iron having excellent wear resistance.
  • An embedded ceramic embedded casting roller may be used. The ceramic embedded casting roller can grind the object to be crushed not only with the ceramic part on the surface but also with the high chromium cast iron as the base material, so the allowable wear amount is greatly increased and the life of the grinding roller can be extended. it can.
  • the thermal expansion coefficient of the hardened portion provided on the surface of the roller portion (particularly, the ceramic embedded in the hardened portion) is different from that of the high chromium cast iron base material.
  • the roller portion and the base material are assembled by shrink fitting like the pulverized coal machine roller of Patent Document 1
  • the hardened portion of the surface is hardened. (Especially, the ceramic part) may be damaged, so the assembly by gap fitting has been the mainstream.
  • the present invention has been made in view of such circumstances, and a method of manufacturing a crushing roller capable of making it difficult to damage a hardened portion by making it difficult for a crack to propagate to the hardened portion during shrink fitting. And a heating device.
  • a method for manufacturing a pulverizing roller and a temperature raising device employ the following means.
  • a method of manufacturing a crushing roller according to one embodiment of the present invention is used for a crusher that crushes an object to be crushed, and a support portion rotatably supported with respect to a housing of the crusher, an annular base, and an annular base.
  • An annular roller portion provided on a radially outer peripheral surface of the base portion and having a hardened portion having a different coefficient of thermal expansion from the base portion, wherein the center axis of the roller portion is a floor.
  • La portion is cooled, and a, a fitting step of fitting the said support portion and the roller portion.
  • the roller and the support are fitted by so-called shrink fitting in which the heated roller is cooled and fitted to the support.
  • the roller portion in the heating step, is heated from the outer peripheral surface side in a state where the inner peripheral surface of the roller portion is open to the outside air. For this reason, the temperature of the outer peripheral surface side of the roller portion rises faster than that of the inner peripheral surface side, and becomes higher than that of the inner peripheral surface side. Thereby, the base of the roller portion thermally expands outward in the radial direction (that is, so as to increase the outer shape).
  • the cured portion has a different thermal expansion coefficient from that of the base portion, and therefore has a smaller thermal expansion amount than the base portion or has a larger thermal expansion amount than the base portion.
  • the roller portion thermally expands outward in the radial direction, a pressing force acts on the hardened portion in the radial direction by being restrained by the base portion. Therefore, a compressive stress in the radial direction is generated in the hardened portion.
  • the stress generated in the hardened portion can be mainly used as the compressive stress, so that the tensile stress generated in the hardened portion is suppressed, and the crack propagates to the hardened portion. It can be difficult. Therefore, the hardened portion can be hardly damaged.
  • roller portion and the support portion can be fitted by shrink fitting as described above, even if the grinding roller has a hardened portion on the outer peripheral surface, special processing is performed on the roller portion and the support portion.
  • the crushing roller can be manufactured by fitting the roller portion and the support portion together. Therefore, the cost can be reduced and the time required for manufacturing can be reduced as compared with a method of performing special processing on the roller portion and the support portion.
  • the roller unit is installed in a state where the center axis of the roller unit is orthogonal to the floor surface, and the inner peripheral surface is open to the outside air (in other words, the state where it is open to the atmosphere). Heating.
  • the air in a space hereinafter, referred to as an “inner space” formed inside the inner peripheral surface of the annular roller portion rises in temperature by heating, and becomes a rising airflow due to a chimney effect and is released to the atmosphere. Is done. Therefore, since the heated air does not stay in the inner space, the expansion of the temperature distribution on the inner peripheral surface of the roller portion can be suppressed, and the generation of uneven stress in the entire roller portion can be suppressed. Therefore, the roller portion can be hardly damaged.
  • the damage to the roller portion includes, for example, generation of partial micro-cracks, growth of internal cracks, and partial drop-off.
  • the inner peripheral surface of the roller unit is open to the outside air in the step of heating the roller unit, the inner peripheral surface of the roller unit can be accessed in the heating step.
  • the amount of thermal expansion of the inner diameter of the roller portion can be measured with a caliper, a laser distance measuring device, or the like. Therefore, the heating can be performed while checking the thermal expansion amount of the inner diameter of the roller portion, so that the desired thermal expansion amount can be reliably obtained.
  • the heating process can be completed when the desired amount of thermal elongation is reached. Can be shortened.
  • the hardening unit may include at least a part of a member having a smaller coefficient of thermal expansion than the base.
  • the hardened portion at least partially includes a base and a member having a small coefficient of thermal expansion, for example, a ceramic.
  • a pressing force acts on the hardened part and a radial compressive stress is generated, so even if there is a member with less thermal expansion than the base, it is generated in the hardened part Due to the compressive stress, it is possible to make it difficult for cracks to propagate in a member having a small coefficient of thermal expansion in the hardened portion, for example, ceramics. Therefore, the hardened portion can be hardly damaged.
  • a lower space is formed between the roller portion and the floor surface, and the inner space of the lower space and the roller portion is formed.
  • the roller unit may be heated in a state where the inner space formed inside the surface communicates with the roller unit.
  • the lower space formed between the roller portion and the floor surface communicates with the inner space. This allows air to flow from below the inner space through the lower space, so that the chimney effect can be more effectively applied and an ascending airflow can be reliably generated in the inner space. Therefore, more preferably, the temperature distribution on the inner peripheral surface of the roller can be suppressed, and the occurrence of uneven stress in the entire roller portion can be suppressed.
  • a radial outer peripheral surface of the roller unit is covered with a heater, and a radial outer peripheral surface of the heater is covered with a heat insulating material.
  • the roller unit may be heated by raising the temperature of the heater.
  • the outer peripheral surface of the heater is covered with the heat insulating material, heat dissipation from the heater can be reduced, and the heat flux from the heater to the roller unit can be stabilized. Therefore, the distribution of the amount of heat transfer from the heater to the outer peripheral surface of the roller portion can be suppressed and uniformized.
  • the inner peripheral surface of the roller portion is open to the atmosphere (that is, the low temperature side), heat input from the outer peripheral surface easily moves toward the inner peripheral surface. In this manner, the direction of the heat flux toward the inner peripheral surface side can be directed, so that the temperature rise on the inner peripheral surface side of the roller portion can be stabilized.
  • the roller unit in the heating step, may be heated while the heater is heated from a room temperature state at a predetermined heating rate.
  • the predetermined heating rate may be 1 ° C / min or more and 2 ° C / min or less.
  • the heating rate of the heater is reduced, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion can be sufficiently reduced and the roller portion can be hardly damaged, but the roller portion and the support portion are shrink-fitted. Therefore, it takes time to obtain the necessary thermal elongation, so that the heating step is lengthened and the workability is reduced.
  • the heating rate of the heater is increased, the heating process can be shortened, but the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller unit cannot be sufficiently reduced, so that the roller unit cannot be heated. Damage is more likely to occur.
  • the temperature of the heater is raised at a rate of 1 ° C./min or more and 2 ° C./min or less.
  • the heating rate By setting the heating rate to 2 ° C./min or less in this manner, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion can be sufficiently reduced, and the roller portion can be hardly damaged.
  • the temperature rate By setting the temperature rate to 1 ° C./min or more, it is possible to prevent an excessively long heating step and improve workability.
  • a metal foil may be provided between the roller unit and the heater.
  • a metal foil is provided between the roller section and the heater. Since the metal foil is easily deformed and has high thermal conductivity, the metal foil provided between the roller portion and the heater is deformed into a shape corresponding to the gap between the roller portion and the heater, and the roller is deformed. The contact thermal resistance is reduced by making close contact with the section and the heater. As described above, by providing the metal foil between the roller portion and the heater, the gap formed between the roller portion and the heater can be filled with the metal foil. Since the metal foil has good thermal conductivity, filling the gap formed between the roller and the heater with the metal foil improves the thermal conductivity between the roller and the heater. Thereby, the heat flux from the heater to the roller unit can be increased.
  • the heat of the heater is easily transmitted to the inner peripheral surface of the roller portion, and thus the temperature on the inner peripheral surface is suitably increased. Therefore, the temperature distribution on the inner peripheral surface of the roller portion can be suppressed, and the occurrence of uneven stress in the entire roller portion can be suppressed. Therefore, the roller portion can be hardly damaged.
  • a metal foil an aluminum foil is mentioned, for example.
  • the heating of the roller unit is performed by increasing the temperature of the heater at a first temperature increasing rate until a predetermined time has elapsed from the start of heating.
  • the roller unit is heated by increasing the temperature of the heater at the first temperature increasing rate until a predetermined time has elapsed from the start of heating.
  • the plurality of heaters are provided, and the plurality of heaters are arranged in a circumferential direction so as to be along the outer peripheral surface of the roller unit.
  • the heating rate may be controlled by different heating rate control units.
  • a plurality of heaters that cover the outer peripheral surface of the roller unit are arranged side by side, and the heating rates are controlled by different heating rate controllers.
  • the heating rate of each heater individually, it is possible to suppress the occurrence of temperature distribution on the outer peripheral surface of the roller unit even in the case of a large roller unit.
  • the heat input from the outer peripheral surface can be made uniform, so that the temperature distribution on the inner peripheral surface of the roller portion can be suppressed.
  • each heater Since a plurality of heaters covering the outer peripheral surface of the roller portion are arranged side by side, each heater is downsized. Thus, the temperature distribution in each heater can be reduced, so that the occurrence of a temperature distribution on the outer peripheral surface of the roller unit can be suppressed.
  • a heating rate storing step of storing a heating rate of the heater in the heating step; and a thermal elongation of the roller unit in the heating step storing the amount, a heating rate stored in the heating rate storing step, and a thermal elongation amount stored based on the thermal elongation amount stored in the thermal elongation amount storing step.
  • the heating of the roller unit may be performed at a temperature increasing rate determined based on the amount of thermal expansion of the roller unit and the table.
  • the appropriate heating rate of the roller section is determined by determining the appropriate heating rate of the heat treatment of the roller section by performing preliminary heating in which the roller section is heated at a temporary heating rate at the site where the pulverizer is located.
  • the heating can be performed within the range described above.
  • the determined heating rate can be achieved under conditions where the temperature difference due to the rapid temperature gradient between the inner surface of the roller and the outer surface of the roller does not increase, so that the stress applied to the hardened portion provided on the outer peripheral surface of the roller portion can be reduced. This is preferable because generation can be suppressed and partial damage can be suppressed.
  • a temperature raising device is used for a crusher that crushes an object to be crushed, is provided on an annular base and a radially outer peripheral surface of the base, and has a different coefficient of thermal expansion than the base.
  • a temperature raising device for raising the temperature of an annular roller portion having a hardening portion comprising: a heater provided to cover a radially outer peripheral surface of the roller portion; and controlling a temperature rising speed of the heater.
  • a heating rate control unit wherein the heating rate control unit controls the heater so that the heating rate is 1 ° C./min or more and 2 ° C./min or less.
  • the heater is disposed in a state where a central axis is in a direction orthogonal to a floor surface, and a radial inner peripheral surface of the roller unit is open to the outside air. It may be provided for the roller portion arranged in a state where it is set.
  • the heating rate of the heater is reduced, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion can be sufficiently reduced and the roller portion can be hardly damaged, but the roller portion and the support portion are shrink-fitted. Therefore, it takes a long time to obtain a necessary amount of thermal elongation, so that the heating step is lengthened.
  • the heating rate of the heater is increased, the heating process can be shortened, but the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller unit cannot be sufficiently reduced, so that the roller unit cannot be heated. Damage is more likely to occur.
  • the temperature of the heater is raised at a rate of 1 ° C./min or more and 2 ° C./min or less.
  • the heating rate By setting the heating rate to 2 ° C./min or less in this manner, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion can be sufficiently reduced, and the roller portion can be hardly damaged.
  • the temperature rate By setting the temperature rate to 1 ° C./min or more, an excessively long heating step can be suppressed and workability can be improved.
  • a plurality of the heaters are provided, a plurality of the temperature raising speed control units are provided, and a plurality of the heaters have the radius of the roller unit. May be arranged in the circumferential direction so as to be along the outer peripheral surface in the direction, and the heating rate may be controlled by different heating rate control units.
  • a plurality of heaters that cover the outer peripheral surface of the roller unit are arranged side by side, and the heating rates are controlled by different heating rate controllers.
  • the heating rate of each heater individually, it is possible to suppress the occurrence of a temperature distribution on the outer peripheral surface of the roller unit even if the roller unit becomes large.
  • the heat input from the outer peripheral surface can be made uniform, so that the temperature distribution on the inner peripheral surface of the roller portion can be suppressed.
  • each heater Since a plurality of heaters covering the outer peripheral surface of the roller portion are arranged side by side, each heater is downsized. Thus, the temperature distribution in each heater can be reduced, so that the occurrence of a temperature distribution on the outer peripheral surface of the roller unit can be suppressed.
  • the present invention it is possible to make it difficult for the crack to propagate to the hardened portion during shrink fitting, so that the hardened portion is hardly damaged.
  • FIG. 2 is a perspective view of the crushing roller of FIG. 1. It is a longitudinal cross-sectional view of the grinding roller of FIG. It is a typical longitudinal section of a grinding roller for explaining a heating process of a manufacturing method of a grinding roller concerning this embodiment. It is a schematic diagram which shows the outline of the temperature raising apparatus which concerns on this embodiment. 6 is a graph showing changes in the temperature of the heater, the temperature of the inner surface of the roller, and the temperature difference between the inner surface of the roller and the outer surface of the roller portion with elapsed time.
  • FIG. 1 is a perspective view of the crushing roller of FIG. 1. It is a longitudinal cross-sectional view of the grinding roller of FIG. It is a typical longitudinal section of a grinding roller for explaining a heating process of a manufacturing method of a grinding roller concerning this embodiment.
  • It is a schematic diagram which shows the outline of the temperature raising apparatus which concerns on this embodiment. 6 is a graph showing changes in the temperature of the heater, the temperature of the inner surface of the roller, and the temperature difference
  • FIG. 9 is a graph showing changes in the temperature of the heater, the temperature of the inner surface of the roller, the temperature difference between the inner surface of the roller and the outer surface of the roller, and the amount of thermal elongation of the inner diameter with the lapse of time when the heater is heated at a heating rate of 10 ° C./30 minutes. is there.
  • FIG. 6 is a graph showing changes in the temperature of the heater, the temperature of the inner surface of the roller, the temperature difference between the inner surface of the roller and the outer surface of the roller, and the amount of thermal elongation of the inner diameter with the lapse of time when the heater is heated at a heating rate of 50 ° C./30 minutes. is there.
  • 5 is a graph showing changes in the temperature of the heater, the temperature of the inner surface of the roller, the temperature difference between the inner surface of the roller and the outer surface of the roller, and the amount of thermal expansion of the inner diameter with the lapse of time when the heater is heated at a heating rate of 90 ° C./30 minutes. is there.
  • 4 is a graph showing a relationship between a heating rate of a heater and a time required to reach a required thermal elongation, and a relationship between a heating rate of the heater and a roller inner surface temperature.
  • 4 is a graph showing a relationship between a heater temperature and a roller inner surface temperature.
  • 5 is a graph showing a relationship between elapsed time and a temperature difference between a heater temperature or a roller outer surface temperature and a roller inner surface temperature.
  • 6 is a graph showing changes in the temperature of the heater, the temperature of the roller inner surface, and the temperature difference between the roller inner surface and the roller outer surface with elapsed time.
  • the crushing roller 5 manufactured by the crushing roller manufacturing method according to the present embodiment can be used, for example, as the crushing roller 5 applied to the crusher 1 described below.
  • “upward” indicates a vertically upward direction
  • “upper” such as an upper portion or an upper surface indicates a vertically upward portion.
  • “below” indicates a vertically lower portion.
  • the outer peripheral surface and the inner peripheral surface indicate the outer periphery and the inner periphery in the radial direction from the center axis of the annular roller portion 24.
  • a crusher 1 includes a hollow cylindrical housing 2 forming an outer shell, and an air supply duct 3 communicating with a lower side surface of the housing 2 and supplying a carrier gas into the housing 2.
  • a crushing table 4 rotatably supported on the housing 2 about a rotation axis along a vertical vertical direction, and an object to be crushed on the crushing table 4 (in the present embodiment, as an example, A pulverizing roller 5 for pulverizing a solid fuel such as coal) is accommodated.
  • the housing 2 has a cylindrical shape, and a tubular fuel supply pipe 7 is provided at the upper center so as to penetrate the ceiling surface 2b.
  • the fuel supply pipe 7 supplies solid fuel such as coal into the housing 2 from a solid fuel supply device (not shown), and extends vertically at the center of the housing 2.
  • a rotary separator 8 that rotates around the fuel supply pipe 7 in the housing 2 and exists in a direction orthogonal to the longitudinal direction of the fuel supply pipe 7 is provided.
  • the rotary separator 8 classifies the pulverized solid fuel (hereinafter, the pulverized solid fuel is referred to as “pulverized fuel”) based on a predetermined particle size.
  • An outlet port 9 is provided in the ceiling surface 2 b of the housing 2, which is a carry-out port for conveying the pulverized fuel having a predetermined particle size or less classified by the rotary separator 8 to a downstream device.
  • the crushing table 4 has a rotation support portion 15 rotatably supported at substantially the center of the bottom surface portion 2c of the housing 2, and a substantially circular plate-shaped table portion 16 fixed to the upper end of the rotation support portion 15.
  • the rotation support unit 15 is rotationally driven by a driving device (not shown).
  • the table portion 16 is arranged to face the lower end portion on the vertically lower side of the fuel supply pipe 7, and rotates together with the rotation support portion 15.
  • the upper surface of the crushing table 4 has an inclined shape that extends in the horizontal direction, the height of the center portion is vertically higher than the outside, and the height decreases from the center to the outside. ,
  • the outer peripheral portion is curved upward again.
  • the air supply duct 3 is provided so as to extend substantially parallel to the horizontal plane, and communicates with the side surface 2 a of the housing 2.
  • the air supply duct 3 supplies a carrier gas supplied from an air supply device (not shown) into the housing 2.
  • the carrier gas supplied from the air supply duct 3 is interposed between the crushing table 4 and the crushing roller 5 on the crushing table 4 to pneumatically transport the crushed fine fuel to the rotary separator 8.
  • a plurality (three in the present embodiment, for example) of the crushing rollers 5 are arranged vertically above the outer peripheral portion of the table 16 so as to face the table 16. Note that, in FIG. 1, only one of the plurality of crushing rollers 5 is illustrated for the sake of illustration.
  • the plurality of crushing rollers 5 are arranged at equal intervals in the circumferential direction. For example, three crushing rollers 5 are equally spaced in the circumferential direction at an angular interval of 120 ° on the outer peripheral portion. The detailed description of the crushing roller 5 will be described later.
  • Each grinding roller 5 is fixed to the housing 2 via a journal shaft 17, a journal head 18 and an eccentric shaft 19 (see also FIGS. 2 and 3).
  • the journal shaft 17 extends from the side surface portion 2a of the housing 2 toward the center portion so as to be inclined vertically downward, and the tip end portion rotatably supports the grinding roller 5 via a bearing (not shown). That is, the crushing roller 5 is rotatably supported vertically above the crushing table 4 in an inclined state in which the upper side is located closer to the center of the housing 2 than the lower side.
  • the journal head 18 is supported on the side surface 2a of the housing 2 so as to be vertically swingable by an eccentric shaft 19 having a middle portion extending in the horizontal direction.
  • the journal head 18 supports the base end of the journal shaft 17 to which the grinding roller 5 is rotatably mounted at the tip. That is, the crushing roller 5 is supported so as to be detachable from the upper surface of the crushing table 4 by the journal head 18 swinging vertically about the eccentric shaft 19 as a fulcrum.
  • a pressing device 20 is provided at an upper end vertically above the journal head 18, and a stopper 21 is provided at a lower end of the journal head 18.
  • the pressing device 20 is fixed to the housing 2 and applies a downward load to the pulverizing roller 5 via the journal head 18 or the like to pulverize the solid fuel supplied on the pulverizing table 4.
  • the stopper 21 is fixed to the housing 2 and regulates the amount by which the crushing roller 5 can rotate vertically downward, and adjusts the gap between the crushing roller 5 and the crushing table 4.
  • the crushing roller 5 includes a journal housing (supporting portion) 23 rotatably supported by a tip end portion of the journal shaft 17, and an annular roller portion 24 which is fitted on the journal housing 23.
  • the journal housing 23 is provided so as to cover the tip of the journal shaft 17, and has a cylindrical outer peripheral surface.
  • the roller portion 24 partially includes a base portion 25 made of high chromium cast iron fitted to the journal housing 23 and a ceramic member provided on the outer peripheral surface of the base portion 25. And a curing unit 26. That is, the roller section 24 according to the present embodiment is a so-called ceramic embedded high chromium cast iron roller.
  • the base 25 is formed in a substantially annular shape. Further, the base 25 is fitted to the journal housing 23 such that the inner peripheral surface is in contact with the outer peripheral surface of the journal housing 23.
  • the hardened portion 26 is fixed so as to be embedded over substantially the entire circumferential surface of the outer peripheral surface of the annular base 25.
  • the hardened portion 26 is made of ceramic, it has a smaller coefficient of thermal expansion than the base 25 made of high chromium cast iron.
  • the outer diameter L1 of the roller portion 24 is, for example, about 1 m to about 2 m, and the length L2 in the central axis direction of the roller section 24 is, for example, about 0.3 m to about 0.7 m. 24 has a radial length L3 of, for example, about 0.1 m to about 0.3 m. That is, the inner diameter L4 of the roller portion 24 is from about 0.5 m to about 1.8 m (see FIG. 4).
  • the inner diameter of the inner peripheral surface of the roller portion 24 is increased by heating the roller portion 24 from the outer peripheral surface side in the radial direction (thermal process), and the inner diameter is increased by heating.
  • the journal housing 23 is positioned in a space (hereinafter, referred to as “inside space”) formed inside the inner peripheral surface of the roller portion 24 in the state (arrangement step), and then the roller portion 24 is cooled to cool the roller portion.
  • the journal housing 23 and the roller portion 24 are fitted by reducing the inner diameter of the 24 (fitting step). That is, the journal housing 23 and the roller portion 24 are fitted by so-called shrink fitting.
  • the roller unit 24 is arranged so that the inner peripheral surface thereof faces or contacts the outer peripheral surface of the journal housing 23.
  • the roller unit 24 is disposed on a base on the floor surface formed of the insulating bricks 27 so that the central axis C1 is in a direction orthogonal to the floor surface.
  • the roller unit 24 is arranged such that the circular surface is placed and is horizontal with respect to the floor surface.
  • the base has a height of 50 mm to 200 mm and is provided so that a lower space is formed between the roller portion 24 and the ground.
  • the heat-insulating bricks 27 forming the base are arranged such that the lower space communicates with the inner space of the roller portion 24.
  • the arrows in FIG. 4 indicate a situation in which the air in the inner space is heated by the temperature difference with the inner peripheral surface of the roller portion 24 and rises in temperature.
  • the outer peripheral surface of the roller portion 24 is substantially entirely covered by a plurality of heaters 31 provided along the outer peripheral surface.
  • the heater 31 When the heater 31 is installed on the outer peripheral surface of the roller portion 24, it is desirable that the heater 31 be in close contact with the outer peripheral surface of the roller portion 24 as uniformly as possible.
  • the outer peripheral surface is fixed at a plurality of locations in the vertical direction with wires or the like without rattling.
  • the entire outer peripheral surface of the heater 31 is covered with a heat insulating material 29 provided along the outer peripheral surface.
  • the inner peripheral surface of the roller portion 24 is not covered with the heater 31, the heat insulating material 29, and the like, and is in a state of being opened to the outside air (that is, a state of being opened to the atmosphere).
  • the heater 31 is heated at a predetermined heating rate from the room temperature state to the roller unit 24 in the room temperature state thus arranged.
  • the temperature raising device 30 includes a plurality of (in the present embodiment, three as an example, three) heaters 31 arranged in the circumferential direction along the outer peripheral surface of the roller portion 24, A plurality (three in the present embodiment, for example, three) of power supply control units (heating rate control units) 32 for controlling the amount of power supply to the heater 31, and a power supply unit 33 for supplying electricity to each power supply control unit 32 , A temperature measuring device 34 for measuring the temperature of the outer peripheral surface of the roller portion 24.
  • Each heater 31 is, for example, a planar heater 31 having flexibility that can be in close contact with the outer peripheral surface of the roller unit 24 such as an Almat heater or a ribbon heater.
  • Each heater 31 is arranged so as to cover a region obtained by equally dividing the outer peripheral surface of the roller portion 24 in the circumferential direction. That is, three substantially identical heaters 31 cover substantially the entire outer peripheral surface of the roller portion 24.
  • the temperature measuring device 34 is provided one by one in the area where each heater 31 is provided on the outer peripheral surface of the roller section 24, and measures the temperature of the outer peripheral surface of the roller section 24 in the provided area.
  • the temperature measuring device 34 transmits the measured temperature to the power supply control unit 32.
  • the temperature measuring device 34 may be any device that can measure the temperature, for example, a thermocouple.
  • each of the three power supply control units 32 controls a heating rate of the heater 31 by controlling a power supply amount to a different heater 31. . That is, the three power supply control units 32 and the three heaters 31 are in one-to-one correspondence.
  • Each power supply control unit 32 may adjust the amount of power supplied to each heater 31 based on the temperature measured by the temperature measuring device 34 so that the temperature measured by each temperature measuring device 34 is substantially the same. Good.
  • the power supply control unit 32 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like, and executes information processing and arithmetic processing. Thereby, various functions are realized.
  • the program may be installed in a ROM or other storage medium in advance, provided in a state stored in a computer-readable storage medium, or delivered via a wired or wireless communication unit. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the numbers of the heaters 31, the power supply control units 32, and the temperature measuring devices 34 are not limited to the above examples. It may be singular or plural other than three.
  • the roller unit 24 is heated while the heater 31 of the temperature raising device 30 is heated at a predetermined temperature rising rate. Specifically, the roller unit 24 is heated by increasing the temperature of the heater 31 at a rate of 1 ° C./min or more and 2 ° C./min or less. As described above, in the present embodiment, by heating the roller unit 24 while increasing the temperature of the heater 31 at a predetermined heating rate, the temperature of the outer peripheral surface of the roller unit 24 and the inner peripheral surface of the roller unit 24 are increased in the temperature of the heater 31.
  • the temperature of the outer peripheral surface of the roller unit 24 and the inner peripheral surface of the roller unit 24 are increased in the temperature of the heater 31.
  • a method of heating the roller unit 24 using the heater 31 a method of heating the roller unit 24 with the heater 31 maintaining a constant temperature is also conceivable.
  • the temperature of the outer peripheral surface of the roller portion 24 is maintained at a substantially constant temperature slightly lower than the temperature of the heater 31, but the inner peripheral portion of the roller portion 24 is maintained. It has been found that the temperature difference between the surface and the outer peripheral surface increases, and there is a possibility that the roller portion 24 may be damaged.
  • the method of heating the roller unit 24 while heating the heater 31 at a predetermined heating rate is more effective than the method of heating the roller unit 24 with the heater 31 maintaining a constant temperature. It has been found that the temperature difference between the outer peripheral surface and the outer peripheral surface can be reduced, and the stress generated in the hardened portion 26 provided on the outer peripheral surface of the roller portion 24 can be reduced.
  • FIG. 6 shows the temperature of the heater 31, the temperature of the inner peripheral surface of the roller portion 24 (hereinafter, also referred to as “roller inner surface”), and the outer peripheral surfaces of the roller inner surface and the roller portion 24 (hereinafter, also referred to as “roller outer surface”).
  • 5 is a graph showing a change in the temperature difference with the elapsed time, with the horizontal axis indicating the elapsed time (minutes) and the vertical axis indicating the temperature difference ⁇ T (° C.) or the temperature (° C.).
  • a broken line 64 in FIG. 6 indicates the temperature of the heater 31 when the temperature of the heater 31 is increased at a rate of 50 ° C./30 minutes.
  • a broken line 65 indicates the roller inner surface temperature when the temperature of the heater 31 is increased at a heating rate of 50 ° C./30 minutes, and a broken line 66 indicates a temperature difference between the roller inner surface and the roller outer surface in this case. ing.
  • the roller inner surface temperature T in FIG. 6 is calculated by the following equation (1).
  • T the unsteady temperature of the inner surface of the roller
  • T the unsteady temperature of the inner surface of the roller
  • T the unsteady temperature of the inner surface of the roller
  • T the unsteady temperature of the inner surface of the roller
  • Ta heating side temperature (that is, heater 31 temperature this time)
  • C Specific heat of the roller (for example, 0.5 to 0.6 kJ / kg ° C)
  • h Heat conductivity from the heater 31 to the inside of the roller (for example, 1 to 50 W / m 2 K)
  • time M: mass of the roller
  • A area of the roller
  • density of the roller
  • t heat conduction distance of the roller
  • T ⁇ Ta) / (To ⁇ Ta) Exp ( ⁇ h / (C ⁇ t) ⁇ ⁇ ) (2)
  • the roller 31 is heated while the temperature of the heater 31 is kept constant at all times. It can be seen that the temperature difference between the heater heating surface (that is, the roller outer surface) and the roller inner surface is smaller when the portion 24 is heated. For example, during the elapsed time of 20 minutes to 40 minutes, the temperature difference between the heater heating surface (that is, the outer surface of the roller) and the inner surface of the roller is smaller than when the roller portion 24 is heated while the temperature of the heater 31 is kept constant. It can be seen from FIG. 6 that the case where the roller portion 24 is heated while the temperature of the heater 31 is increased can be suppressed to about 1/3 or less.
  • the roller unit 24 is heated by increasing the temperature of the heater 31 at a rate of 1 ° C./min or more and 2 ° C./min or less.
  • the temperature of the inner peripheral surface of the roller unit 24 is relatively low (for example, about 30 ° C. to 50 ° C.) by appropriately selecting the temperature rising rate of the heater 31 from the result of the heating test of the roller unit 24. ) Is set based on the finding that there is a roller heating condition capable of obtaining a thermal expansion amount of the inner diameter of the roller portion 24 that can be shrink-fitted.
  • a heating test of the roller unit 24 will be described with reference to FIGS.
  • the roller portion 24 of the present embodiment when shrink-fitting the roller portion 24 and the journal housing 23, the roller portion 24 of the present embodiment has an inner diameter L4 of, for example, about 0.5 m to about 1.8 m.
  • the amount of required thermal expansion in the radial direction of the inner diameter of the roller portion 24 is set to, for example, about 0.2 mm.
  • FIGS. 7 to 9 are graphs showing measured values of the temperature of the heater 31, the temperature of the inner surface of the roller, the temperature difference between the inner surface of the roller and the outer surface of the roller, and the change in the thermal expansion amount of the inner diameter with the lapse of time.
  • the horizontal axis indicates elapsed time (minutes), and the vertical axis indicates the amount of thermal elongation (mm) and the temperature difference or temperature (° C.) of the inner diameter.
  • the shaded portion indicates the elapsed time zone when the required thermal elongation reaches 0.2 mm.
  • Each temperature and elapsed time is an example of the influence on the temperature rising rate of the heater 31, and is an example of the present embodiment.
  • FIG. 7 shows a case where the heater 31 is heated at a heating rate of 10 ° C./30 minutes.
  • a solid line 71 is a heater temperature
  • a solid line 72 is a roller inner surface temperature
  • a solid line 73 is a temperature difference between the roller inner surface and the roller outer surface.
  • the solid line 74 indicates the measured value of the thermal expansion amount of the inner diameter of the roller.
  • the rate of temperature rise of the heater 31 when the rate of temperature rise of the heater 31 is relatively slow, it is necessary to heat the roller inner surface temperature from about 40 ° C. to about 45 ° C. in order to obtain the necessary thermal elongation, and the time is also from 115 minutes to 120 ° C. It takes about a minute.
  • the temperature difference between the outer surface of the roller and the inner surface of the roller is as small as about 20 ° C. to 25 ° C., and the temperature of the entire roller unit 24 can be relatively uniformly increased.
  • FIG. 8 shows a case where the heater 31 is heated at a heating rate of 50 ° C./30 minutes.
  • a broken line 81 indicates a heater temperature
  • a broken line 82 indicates a roller inner surface temperature
  • a broken line 83 indicates a temperature difference between the roller inner surface and the roller outer surface.
  • the broken line 84 indicates the measured value of the thermal expansion of the inner diameter of the roller.
  • the amount of thermal expansion of the inner diameter of the roller portion 24 increases in proportion to the passage of time, including when the required amount of thermal expansion (0.2 mm) is reached after about 30 to about 35 minutes have elapsed.
  • the roller inner surface temperature hardly rises for about 20 minutes from the start of heating.
  • the roller inner surface temperature is about 30 ° C. to 35 ° C.
  • the reason why the required amount of thermal elongation is reached even though the roller inner surface temperature is relatively low is that the roller inner surface is subjected to tensile stress due to thermal expansion (thermal elongation) of the roller outer surface. Is due.
  • the required thermal elongation is at a relatively low level with the roller inner surface temperature. From this, it can be seen that, as described above, the tensile force due to the thermal expansion of the roller outer surface has begun to be generated on the roller inner surface.
  • the temperature difference between the inner surface of the roller and the outer surface of the roller is about 50 ° C. to 55 ° C. when the required thermal elongation (0.2 mm) is reached. Accordingly, it is considered that the compressive stress on the hardened portion 26 provided on the outer peripheral surface of the roller has begun to increase.
  • FIG. 9 shows a case where the heater 31 is heated at a heating rate of 90 ° C./30 minutes, where a dashed line 91 is a heater temperature, a dashed line 92 is a roller inner surface temperature, and a dashed line 93 is a roller inner surface and a roller outer surface.
  • the dashed line 94 indicates the measured value of the thermal expansion amount of the roller inner diameter.
  • the inner temperature of the roller hardly increases at the beginning of the heating, and the temperature rapidly increases after about 20 minutes. Since the temperature rises (see the dashed-dotted line 92) and reaches the required thermal elongation (0.2 mm) at this time, it is substantially difficult to control the temperature rise time.
  • the cause of the rapid temperature rise is that the outer peripheral surface of the roller portion 24 thermally expands as the heating is advanced, and the thermal contact state between the heater 31 and the outer peripheral surface of the roller portion 24 improves, as in the example of FIG. It is.
  • the thermal expansion amount of the inner diameter of the roller portion 24 has reached the required thermal expansion amount (0.2 mm) after about 15 to about 20 minutes have elapsed, and the roller inner surface temperature at this time is almost the same as at the beginning of heating.
  • the temperature remains unchanged at about 25 ° C. to 30 ° C.
  • the heater 31 When the heater 31 is heated at a heating rate of 90 ° C./30 minutes as described above, the stress on the hardened portion 26 and the stress on the roller portion 24 (particularly, the outer peripheral side of the base portion 25) are increased. The risk of partial damage to the roller portion 24 increases.
  • roller portion 24 is heated only from the outer peripheral surface side, when the thermal expansion amount (0.2 mm) required for shrink fitting is reached, “roller outer surface temperature> roller inner surface temperature” ", And the inner surface of the roller receives a tensile stress due to the thermal expansion (thermal expansion) of the outer surface of the roller.
  • Table 1 below shows that when the required amount of thermal elongation is reached, the roller inner surface temperature, heater temperature, arrival time, the amount of thermal elongation caused by the roller inner surface temperature, and the thermal expansion (thermal elongation) of the roller outer surface are generated on the inner surface of the roller.
  • the state of occurrence of the tensile stress is shown for each heating rate of the heater 31. Note that, in the present embodiment, as described above, the crack limit radial stress ⁇ réelle is set to about 40 N / mm 2 .
  • the thermal expansion caused by the roller inner surface temperature is such that the Young's modulus E of the material of the base portion 25 of the roller portion 24 is 1.8 to 2.0 ⁇ 10 5 N / mm 2 and the linear expansion coefficient is 11 ⁇ 10 ⁇ It is calculated as 6 to 12 ⁇ 10 ⁇ 6 .
  • the roller inner surface is pulled by the thermal expansion (thermal elongation) of the roller outer surface, and the roller inner surface is subjected to tensile stress.
  • the longer the temperature rise rate the longer the length of the roller inner surface that has been stretched by being pulled.
  • the higher the heating rate the greater the tensile stress applied to the inner surface of the roller.
  • the state of occurrence of tensile stress generated on the inner surface of the roller at each heating rate is as follows.
  • the heating rate was 30 ° C./30 minutes or 50 ° C./30 minutes
  • the tensile stress generated did not reach the crack limit radial stress ⁇ réelle.
  • the heating rate is 60 ° C./30 minutes
  • the generated tensile stress does not reach the crack limit radial stress ⁇
  • a tensile stress of about 80% of the crack limit radial stress ⁇ réelle is generated.
  • the temperature rise rate is 90 ° C./30 minutes
  • the generated tensile stress has a value slightly smaller than the crack limit radial stress ⁇ réelle.
  • the upper limit of the heating rate of the heater 31 is preferably set to about 60 ° C./30 minutes (that is, 2 ° C./min).
  • the crushing roller 5 may be replaced for the purpose of maintenance of the crushing roller 5 or the like.
  • a temporary placement step of temporarily placing the replacement roller section, a heating step of heating the roller section 24, and a fitting step of fitting the roller section 24 and the journal housing 23 are performed.
  • a step and an installation step of installing the crushing roller 5 in which the roller portion 24 and the journal housing 23 are fitted in the crusher 1 are required.
  • the time required in each step is, for example, as follows in the present embodiment. Note that the required time in the following description is merely an example, and the required time may be another time. It takes about 5 minutes for the temporary placement step, about 10 minutes for the fitting step, and about 25 minutes for the installation step. That is, a total of about 40 minutes is required in other steps except the heating step. Therefore, assuming that the time of the heating step is Ht, the time required to replace one crushing roller 5 is Ht + 40 (minutes).
  • a time suitable for replacing one crushing roller 5 is set as follows.
  • the working time per day is reduced by 10 days.
  • the working time for one crushing roller 5 is determined to be 100 minutes from the following equation (3). (10 ⁇ 60) minutes / 3 ⁇ 2 units ⁇ ⁇ ⁇ (3)
  • the time Ht required for the heating step is desirably 60 minutes or less. Ht + 40 minutes ⁇ 100 minutes (4)
  • Table 1 shows that it is preferable to set the lower limit of the heating rate of the heater 31 to about 30 ° C./30 minutes (that is, 1 ° C./min).
  • the lower limit of the heating rate of the heater 31 is set to 1 ° C./min from the viewpoint of workability, and the upper limit of the heating rate of the heater 31 is reduced from the risk of damage to the crushing roller 5.
  • the relationship between the rate of temperature rise of the heater 31 (° C./min) and the time required to reach the required thermal elongation (0.2 mm) (minutes) is indicated by a broken line, and the rate of temperature rise of the heater 31 (° C./min)
  • the relationship with the roller inner surface temperature (° C.) is shown by a solid line.
  • the heating rate of the heater 31 is 2 ° C./min or more, the roller inner surface temperature when the required amount of thermal elongation is reached becomes low, and the risk of damage increases, which is not suitable. Further, if the heating rate of the heater 31 is 1 ° C./min or less, the time required for the heating step becomes 60 minutes or more, and the workability deteriorates, which is not suitable. Therefore, the preferred range is 1 ° C./min to 2 ° C./min, which is the range indicated by the shaded arrow in FIG. In particular, from the viewpoint of both the risk of damage and the workability, the heating rate of 50 ° C./30 minutes shown by P in FIG. 10 is preferable. It should be noted that a heating rate higher than 3 ° C./min is not appropriate because the required amount of thermal elongation is attained before the inner surface temperature of the roller is increased, and it is difficult to control the amount of thermal elongation.
  • the roller portion 24 in the heating step, is heated from the outer peripheral surface side in the radial direction with the inner peripheral surface open to the outside air. Therefore, the temperature of the outer peripheral surface side of the base 25 rises faster than that of the inner peripheral surface side, and becomes higher than that of the inner peripheral surface side. As a result, the base portion 25 thermally expands outward in the radial direction (that is, so as to increase the outer shape).
  • the hardened portion 26 has a different coefficient of thermal expansion from the base 25, and the hardened portion 26 may include a member having a low coefficient of thermal expansion, for example, ceramics.
  • the temperature of the hardened portion 26 is higher than that of the base portion 25, the amount of thermal expansion increases. Therefore, when the roller portion 24 thermally expands outward in the radial direction, the pressing portion acts on the hardened portion 26 in the radial direction while being restrained by the base portion 25. Therefore, a compressive stress in the radial direction is generated in the hardened portion 26.
  • the stress generated in the hardened portion 26 can be mainly used as the compressive stress, so that the tensile stress generated in the hardened portion 26 is suppressed, and Cracks can be less likely to propagate. Therefore, the hardened portion 26 can be hardly damaged.
  • the roller portion 24 and the journal housing 23 can be fitted by shrink fitting as described above. For this reason, there is no need to perform gap fitting, and even with the crushing roller 5 having the hardened portion 26 on the outer peripheral surface, the crushing roller 5 and the journal housing 23 can be fitted to the fixing member in addition to the dimensional management of the fitted portion.
  • the crushing roller 5 can be manufactured by fitting the roller portion 24 and the journal housing 23 by shrink fitting without performing any special processing such as mounting processing. Therefore, the cost can be reduced and the time required for manufacturing can be reduced as compared with a method of performing special processing on the roller portion 24 and the journal housing 23.
  • the roller unit 24 is installed in a state where the central axis C1 is orthogonal to the floor surface and the inner peripheral surface is open to the outside air (in other words, the state where the inner peripheral surface is open to the atmosphere).
  • the part 24 is being heated.
  • the temperature of the air in the annular inner space rises by heating, and as a result of the chimney effect, as shown by an arrow in FIG. Therefore, since the heated air does not stay in the inner space, the temperature distribution on the inner peripheral surface of the roller portion 24 is suppressed to be reduced, and the occurrence of uneven stress in the entire roller portion 24 can be suppressed. . Therefore, the roller portion 24 can be hardly damaged.
  • the damage to the roller portion 24 includes, for example, generation of a partial micro-crack, growth of an internal crack, and partial drop-off.
  • the lower space formed between the roller portion 24 and the floor surface and the inner space communicate with each other. This allows air to flow from below the inner space through the lower space, so that the chimney effect can be more effectively applied and an ascending airflow can be reliably generated in the inner space. Therefore, it is possible to more suitably suppress the temperature distribution on the inner peripheral surface of the roller and suppress the occurrence of uneven stress in the entire roller portion 24.
  • the inner peripheral surface of the roller unit 24 is open to the outside air in the step of heating the roller unit 24, the inner peripheral surface of the roller unit 24 can be accessed in the heating step.
  • the amount of thermal expansion of the inner diameter of the roller portion 24 can be measured with a caliper, a laser distance measuring device, or the like. Therefore, since the heating can be performed while checking the thermal expansion amount of the inner diameter of the roller portion 24, the desired thermal expansion amount can be reliably obtained. Therefore, since the amount of thermal elongation is continuously checked, the heating step can be completed when the desired amount of thermal elongation is reached. Can be optimized. In order to obtain a desired amount of thermal expansion of the inner diameter of the roller portion 24, the relationship between the heating time and the heating time when the heater 31 is set to a predetermined heating rate is confirmed by a preliminary test. The heating step may be managed.
  • the radial outer peripheral surface of the roller portion 24 is covered with the heater 31 and the radial outer peripheral surface of the heater 31 is covered with the heat insulating material 29, heat dissipation from the heater 31 is reduced.
  • the heat flux from 31 to the roller unit 24 can be stabilized. Therefore, the distribution of the amount of heat transfer from the heater 31 to the outer peripheral surface of the roller portion 24 can be suppressed and made uniform.
  • the inner peripheral surface of the roller portion 24 is open to the atmosphere (that is, the low-temperature side), heat input from the outer peripheral surface is likely to move toward the inner peripheral surface. In this manner, the direction of the heat flux toward the inner peripheral surface side can be directed, so that the temperature rise on the inner peripheral surface side of the roller portion 24 can be stabilized.
  • the heating rate of the heater 31 When the heating rate of the heater 31 is reduced, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion 24 can be sufficiently reduced and the roller portion 24 can be hardly damaged. Since it takes a long time to obtain the amount of thermal elongation necessary for shrink-fitting, the heating step is lengthened and the workability is reduced. On the other hand, if the heating rate of the heater 31 is increased, the heating process can be shortened, but the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion 24 cannot be sufficiently reduced. The possibility that the part 24 will be damaged increases.
  • the temperature of the heater 31 is raised at a rate of 1 ° C./min or more and 2 ° C./min or less.
  • the heating rate is set to 2 ° C./min or less, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion 24 can be sufficiently reduced, and the roller portion 24 can be hardly damaged.
  • the heating rate is set to 1 ° C./min or more, the workability can be improved by preventing an excessively long heating step.
  • the plurality of heaters 31 that cover the outer peripheral surface of the roller unit 24 are arranged side by side, and the heating rates are controlled by different power supply control units 32, respectively. Accordingly, by appropriately controlling the rate of temperature increase of each heater 31 individually, it is possible to suppress the occurrence of a temperature distribution on the outer peripheral surface of the roller unit 24. By suppressing the occurrence of the temperature distribution on the outer peripheral surface, the heat input from the outer peripheral surface can be made uniform, so that the temperature distribution on the inner peripheral surface of the roller unit 24 can be suppressed.
  • each heater 31 Since the plurality of heaters 31 covering the outer peripheral surface of the roller portion 24 are arranged side by side so as to increase the heat generation density, each heater 31 is downsized. Thus, the temperature distribution in each heater 31 can be reduced, so that the occurrence of a temperature distribution on the outer peripheral surface of the roller unit 24 can be suppressed.
  • Modification 1 of the present embodiment will be described.
  • the present modified example is different from the above embodiment in that the roller unit 24 is heated in a state where the metal foil is provided between the outer peripheral surface of the roller unit 24 and the heater 31.
  • the metal foil be easily deformable and have good thermal conductivity, and for example, an aluminum foil is suitable. Alternatively, a copper foil or the like may be used.
  • the heater 31 and the roller portion 24 are fixed by, for example, securing the heater 31 to the outer peripheral surface of the roller portion 24 with a wire or the like at a plurality of locations in the vertical direction of the outer peripheral surface without rattling. (Hereinafter, referred to as “normally fixed state”).
  • the heater 31 is desirably provided so as to be in close contact with the outer peripheral surface of the roller portion 24 as much as possible.
  • the state of thermal contact is not always sufficiently high. It is presumed that the heat transfer coefficient to the roller portion 24 may be about ⁇ to 1/10 as compared with the case where the heater 31 is completely in close contact thermally.
  • the temperature of the inner surface of the roller increases approximately 20% faster, and the temperature difference between the outer surface of the roller and the inner surface of the roller also decreases. 20% reduction.
  • FIG. 11 shows the relationship between the elapsed time (minutes) and the heater temperature (° C.) or the roller inner surface temperature (° C.). Further, a solid line 111 in FIG. 11 indicates a heater temperature when the temperature is increased at a rate of 10 ° C./30 minutes, and a broken line 112 indicates a heater temperature when the temperature is increased at a rate of 50 ° C./30 minutes.
  • Reference numeral 113 denotes a roller inner surface temperature when the temperature is raised at a temperature rising rate of 10 ° C./30 minutes in the normal fixed state
  • a broken line 114 denotes a roller inner surface temperature when the temperature is raised at a temperature rising rate of 50 ° C./30 minutes in the normal fixed state
  • a two-dot chain line 115 indicates the roller inner surface temperature when the heater 31 and the roller section 24 are heated at a heating rate of 50 ° C./30 minutes in a contact state in which the thermal contact state is improved.
  • FIG. 12 shows the relationship between the elapsed time (minutes) and the temperature difference ⁇ T (° C.) between the heater temperature (° C.) or the roller outer surface temperature and the roller inner surface temperature.
  • a broken line 121 in FIG. 12 indicates a heater temperature when the temperature is raised at a heating rate of 50 ° C./30 minutes
  • a broken line 122 indicates a heater temperature when the temperature is raised at a heating rate of 50 ° C./30 minutes in a normal fixed state.
  • the two-dot chain line 123 indicates the temperature difference between the roller outer surface temperature and the roller inner surface temperature, and the temperature is increased at a heating rate of 50 ° C./30 minutes in a contact state where the heater 31 and the roller section 24 are in a close contact state.
  • 4 shows a temperature difference between the roller outer surface temperature and the roller inner surface temperature at the time of the operation. Comparing the dashed line 122 with the two-dot chain line 123, even when the same elapsed time, when the heater 31 and the roller unit 24 are in a close contact state in which the thermal close state is improved, the state is higher than in the normal fixed state. It can be seen that the temperature difference between the roller outer surface temperature and the roller inner surface temperature is smaller (see the arrow in FIG. 12).
  • a metal foil is provided between the roller unit 24 and the heater 31. Since the metal foil is easily deformed, the metal foil provided between the roller section 24 and the heater 31 is deformed into a shape corresponding to the gap between the roller section 24 and the heater 31, and And the heater 31. By providing the metal foil between the roller unit 24 and the heater 31, the gap formed between the roller unit 24 and the heater 31 can be filled with the metal foil.
  • the metal foil has good thermal conductivity
  • filling the gap formed between the roller portion 24 and the heater 31 with the metal foil improves the heat conductivity between the roller portion 24 and the heater 31.
  • the heat flux from the heater 31 to the roller unit 24 can be increased. Therefore, the heat of the heater 31 is easily transmitted to the inner peripheral surface of the roller portion 24, and the temperature on the inner peripheral surface is suitably increased. Therefore, the temperature distribution on the inner peripheral surface of the roller unit 24 can be suppressed, and the occurrence of uneven stress in the entire roller unit 24 can be suppressed. Therefore, the roller portion 24 can be hardly damaged.
  • the control device (not shown) stores the heating rate of the heater 31 and the thermal expansion amount of the roller unit 24 in the heating step (heating rate storage step, thermal expansion amount storing step), and stores the stored heating rate.
  • a table that defines the relationship between the temperature rise rate and the amount of thermal elongation based on the thermal elongation and the table (table creating step), and stores the table.
  • a preliminary heating test is performed in which the roller unit 24 is heated at a temporary heating rate at a site where the crusher 1 is located. This makes it possible to select an appropriate temperature increase rate for the heat treatment of the roller and perform heating within a range of appropriate heating conditions for the roller unit 24.
  • the roller unit 24 is preheated for about 10 minutes at a predetermined heating rate, and the amount of thermal elongation and the heating rate over time (for example, one to two conditions) are performed.
  • This is a test in which correlation data is collected and compared with an accumulated database (table) to judge and select an appropriate heating rate.
  • preliminary heating is performed on the roller unit 24 at a temporary heating rate, and the roller unit 24 is determined based on the table and the thermal expansion amount of the roller unit 24 at the temporary heating rate and the preliminary heating.
  • the heating of the roller unit 24 may be performed at the increased temperature rising rate.
  • the selected heating rate can be set under such a condition that the temperature difference due to a sharp temperature gradient between the inner surface of the roller and the outer surface of the roller does not become large, so that the generation of stress to the hardened portion 26 provided on the outer peripheral surface of the roller is reduced. This is preferable because it can suppress partial damage.
  • an appropriate heating rate of the heat treatment of the roller unit 24 is previously selected by a preliminary heating test, and heating is performed within a range of appropriate heating conditions of the roller unit 24.
  • the heating condition is determined by a table based on the database.
  • the AI range is determined so that the appropriate range of the heating condition for the size of each roller can be determined.
  • a system may be constructed, and an appropriate heating rate such as a heating rate or a target heating temperature may be determined by the AI system.
  • FIG. 13 is a graph showing changes in the temperature of the heater 31, the temperature of the inner surface of the roller, and the temperature difference ⁇ T between the inner surface of the roller and the outer surface of the roller with the elapsed time, in which the horizontal axis indicates the elapsed time (minutes) and the vertical axis indicates the elapsed time. Indicates a temperature difference ( ⁇ T) or a temperature (° C.). The shaded portion indicates the elapsed time zone when the required thermal elongation reaches 0.2 mm.
  • the broken line 131 in FIG. 13 indicates the heater temperature when the temperature is increased at a rate of 50 ° C./30 minutes. Further, a solid line 132 indicates the heater temperature when the heating rate is changed. A broken line 133 indicates the roller inner surface temperature when the temperature is increased at a rate of 50 ° C./30 minutes. Further, a solid line 134 indicates the roller inner surface temperature when the heating rate is changed. A broken line 135 indicates a temperature difference between the inner surface of the roller and the outer surface of the roller when the temperature is increased at a temperature increase rate of 50 ° C./30 minutes. A solid line 136 indicates a temperature difference between the inner surface of the roller and the outer surface of the roller when the heating rate is changed.
  • the temperature difference between the roller inner surface and the roller outer surface is greater when the heating rate is changed than when the temperature is increased at a heating rate of 50 ° C./30 minutes. Is reduced by about 5 ° C.
  • the outer peripheral surface of the roller portion 24 is heated by raising the temperature of the heater 31 at a temperature rising rate of 2 ° C./min to obtain a necessary thermal elongation (0.2 mm).
  • the inner surface temperature of the roller hardly changes between the case where the heating rate is 50 ° C./30 minutes and the case where the heating rate is changed.
  • the operation time related to the heating step does not increase.
  • the predetermined time for changing the heating rate is not limited to the above description.
  • the predetermined time is a temperature at which the required thermal elongation (0.2 mm) can be obtained by determining the temperature of the roller outer peripheral surface by the higher one of the heating rate before the change and the heating rate after the change. (Eg, about 30 ° C. to 50 ° C.) or more, about ⁇ ⁇ to ⁇ of the time required for heating.
  • a predetermined time may be set in advance, and the heating rate may be set in accordance with the predetermined time.
  • the present invention is not limited to the invention according to the above-described embodiment, and can be appropriately modified without departing from the gist thereof. For example, each of the modifications may be combined. Further, for example, in the above-described embodiment, the roller portion 24 having the outer diameter L1 of about 1.5 m and the inner diameter L4 of about 1.1 m has been described, but the present invention is not limited to this. The roller portion 24 having an inner diameter of about 0.5 m to about 1.8 m can be suitably heated.
  • crusher 2 housing 2a: side surface 2b: ceiling surface 2c: bottom surface 3: air supply duct 4: crush table 5: crush roller 7: fuel supply pipe 8: rotary separator 9: outlet port 15: rotation support 16: Table 17: Journal shaft 18: Journal head 19: Eccentric shaft 20: Pressing device 21: Stopper 23: Journal housing (support)

Abstract

This method is for manufacturing a grinding roller that is provided with: a journal housing that is rotatably supported with respect to the housing of a grinder; and an annular roller (24) that has an annular base (25) and a hardened part (26), which is provided on the outer circumferential surface of the base (25) and has a smaller coefficient of thermal expansion than the base (25). This method for manufacturing the grinding roller comprises: a heating step for heating the roller (24) from the outer circumferential surface with the roller (24) disposed so that the central axis line (C1) thereof is orthogonal to the floor and the inner circumferential surface is open to outside air; a placement step for placing the journal housing and the roller (24), the temperature of which has been raised by the heating step, so that the inner circumferential surface of the roller (24) and the outer circumferential surface of the journal housing face or contact each other; and a fitting step for cooling the roller (24), which has been placed in the placement step, and fitting the journal housing together with the roller (24).

Description

粉砕ローラの製造方法及び昇温装置Method for manufacturing crushing roller and heating device
 本発明は、粉砕ローラの製造方法及び昇温装置に関するものである。 The present invention relates to a method for manufacturing a crushing roller and a temperature raising device.
 石炭等の固体燃料を所定粒径より小さい微粉状に粉砕して、燃焼装置へ供給する等の目的で用いられる、被粉砕物を粉砕する粉砕機として、鉛直上下軸線を中心として回転する粉砕テーブル上に載置された被粉砕物を、粉砕機の内部で回転自在に支持されている粉砕ローラで押圧することで粉砕する粉砕機が知られている。 A pulverizing table that rotates around a vertical axis as a pulverizer that pulverizes a solid fuel such as coal into a fine powder having a particle size smaller than a predetermined particle size and supplies it to a combustion device. 2. Description of the Related Art A pulverizer that pulverizes an object to be pulverized placed thereon by being pressed by a pulverizing roller rotatably supported inside the pulverizer is known.
 このような粉砕機に用いられる粉砕ローラは、粉砕機のハウジングに対して回転自在に取り付けられるジャーナルハウジングと、実際に被粉砕物と接触し押圧する金属材料で形成されたローラ部と、を有している。そして、このジャーナルハウジングとローラ部とは、焼嵌めによって嵌合されていて、ローラ部が摩耗した場合にはローラ部を取り外してメンテナンスを可能とするものがある(例えば、特許文献1の微粉炭機ローラ)。 A crushing roller used in such a crusher has a journal housing rotatably attached to a housing of the crusher, and a roller portion formed of a metal material that actually contacts and presses the object to be crushed. are doing. The journal housing and the roller portion are fitted by shrink fitting, and when the roller portion is worn, the roller portion is removed to enable maintenance (for example, pulverized coal described in Patent Document 1). Machine roller).
特許第5259162号公報Japanese Patent No. 5259162
 ところで、最近では、粉砕機に用いられる粉砕ローラとして、表面に硬化部があるローラ部を備えた粉砕ローラや、さらには耐摩耗性に優れる高クロム鋳鉄で製造されたローラ部の表面にセラミックを埋め込んだセラミック埋め込み型鋳物ローラが用いられることがある。セラミック埋め込み型鋳物ローラは、表面のセラミック部分だけでなく母材である高クロム鋳鉄でも被粉砕物を粉砕可能であるため、許容摩耗量が大幅に増大し、粉砕ローラを長寿命化させることができる。 By the way, recently, as a pulverizing roller used in a pulverizer, a pulverizing roller having a roller part having a hardened part on its surface, and furthermore, a ceramic is applied to the surface of a roller part made of high chromium cast iron having excellent wear resistance. An embedded ceramic embedded casting roller may be used. The ceramic embedded casting roller can grind the object to be crushed not only with the ceramic part on the surface but also with the high chromium cast iron as the base material, so the allowable wear amount is greatly increased and the life of the grinding roller can be extended. it can.
 しかしながら、セラミック埋め込み型鋳物ローラは、ローラ部の表面に設けた硬化部(特に、硬化部に埋め込んだセラミック)と、高クロム鋳鉄製の母材との熱膨張係数が異なる。このため、ローラ部と母材とは、特許文献1の微粉炭機ローラのように焼嵌めによって組立を行うと、ローラ部の加熱による昇温時に、熱膨張係数の相違から、表面の硬化部(特にセラミック部分)を損傷する可能性があるので、隙間嵌めによる組み立てが主流であった。この隙間嵌めを行うには、ジャーナルハウジングとローラ部との嵌め合い部分の寸法管理に加えて固定部材の取り付け加工が必要になるため、改造コスト及びメンテナンス作業の工数を増加させる要因となっていた。 However, in the ceramic embedded casting roller, the thermal expansion coefficient of the hardened portion provided on the surface of the roller portion (particularly, the ceramic embedded in the hardened portion) is different from that of the high chromium cast iron base material. For this reason, when the roller portion and the base material are assembled by shrink fitting like the pulverized coal machine roller of Patent Document 1, when the temperature of the roller portion rises due to the difference in thermal expansion coefficient, the hardened portion of the surface is hardened. (Especially, the ceramic part) may be damaged, so the assembly by gap fitting has been the mainstream. In order to perform this gap fitting, in addition to the dimensional control of the fitting portion between the journal housing and the roller portion, it is necessary to attach and fix the fixing member, which has been a factor for increasing the remodeling cost and the number of man-hours for maintenance work. .
 本発明は、このような事情に鑑みてなされたものであって、焼嵌めの際に硬化部に亀裂が伝播し難くすることで、硬化部を損傷し難くすることができる粉砕ローラの製造方法及び昇温装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and a method of manufacturing a crushing roller capable of making it difficult to damage a hardened portion by making it difficult for a crack to propagate to the hardened portion during shrink fitting. And a heating device.
 上記課題を解決するために、本発明の粉砕ローラの製造方法及び昇温装置は以下の手段を採用する。
 本発明の一態様に係る粉砕ローラの製造方法は、被粉砕物を粉砕する粉砕機に用いられ、該粉砕機のハウジングに対して回転自在に支持される支持部と、円環状の基部及び該基部の半径方向の外周面に設けられて前記基部と熱膨張係数が異なる硬化部を有する円環状のローラ部と、を備えた粉砕ローラの製造方法であって、前記ローラ部の中心軸線が床面と直交する方向となる状態であって、かつ、前記ローラ部の半径方向の内周面が外気へ開放した状態で、前記ローラ部の半径方向の外周面側から前記ローラ部を加熱する加熱工程と、前記支持部と前記加熱工程によって昇温した状態にある前記ローラ部とを、前記ローラ部の前記内周面が前記支持部の外周面と対向又は接触するように配置する配置工程と、前記配置工程で配置した前記ローラ部を冷却して、前記支持部と前記ローラ部とを嵌合する嵌合工程と、を備えている。
In order to solve the above-mentioned problems, a method for manufacturing a pulverizing roller and a temperature raising device according to the present invention employ the following means.
A method of manufacturing a crushing roller according to one embodiment of the present invention is used for a crusher that crushes an object to be crushed, and a support portion rotatably supported with respect to a housing of the crusher, an annular base, and an annular base. An annular roller portion provided on a radially outer peripheral surface of the base portion and having a hardened portion having a different coefficient of thermal expansion from the base portion, wherein the center axis of the roller portion is a floor. Heating in which the roller portion is heated from the radially outer peripheral surface side of the roller portion in a state in which the roller portion is in a direction orthogonal to the surface and the radially inner peripheral surface of the roller portion is open to the outside air. And an arrangement step of arranging the support section and the roller section in a state where the temperature is increased by the heating step, such that the inner peripheral surface of the roller section faces or contacts the outer peripheral surface of the support section. The above-mentioned b arranged in the above-mentioned arranging step. La portion is cooled, and a, a fitting step of fitting the said support portion and the roller portion.
 上記構成では、加熱したローラ部を冷却することで支持部と嵌合させる、いわゆる焼嵌めによってローラ部と支持部とを嵌合している。 In the above configuration, the roller and the support are fitted by so-called shrink fitting in which the heated roller is cooled and fitted to the support.
 また、上記構成では、加熱工程において、ローラ部の内周面が外気へ開放した状態で外周面側からローラ部を加熱している。このため、ローラ部の外周面側は、内周面側よりも早く昇温するとともに、内周面側よりも高温となる。これにより、ローラ部の基部は、半径方向外側に(すなわち、外形が大きくなるように)熱膨張する。一方、硬化部は、基部と熱膨張係数が異なるので、基部よりも熱膨張量が少なくなるか、もしくは基部よりも熱膨張量が多くなる。したがって、ローラ部が半径方向外側に熱膨張する際に、硬化部には、基部に拘束されることによる半径方向に押圧力が作用する。このため、硬化部には、半径方向の圧縮応力が発生する。このように、ローラ部を加熱する加熱工程において、硬化部に発生する応力を、主に圧縮応力とすることができるので、硬化部に発生する引張応力を抑制し、硬化部に亀裂が伝播し難くすることができる。よって、硬化部を損傷し難くすることができる。 Further, in the above configuration, in the heating step, the roller portion is heated from the outer peripheral surface side in a state where the inner peripheral surface of the roller portion is open to the outside air. For this reason, the temperature of the outer peripheral surface side of the roller portion rises faster than that of the inner peripheral surface side, and becomes higher than that of the inner peripheral surface side. Thereby, the base of the roller portion thermally expands outward in the radial direction (that is, so as to increase the outer shape). On the other hand, the cured portion has a different thermal expansion coefficient from that of the base portion, and therefore has a smaller thermal expansion amount than the base portion or has a larger thermal expansion amount than the base portion. Therefore, when the roller portion thermally expands outward in the radial direction, a pressing force acts on the hardened portion in the radial direction by being restrained by the base portion. Therefore, a compressive stress in the radial direction is generated in the hardened portion. As described above, in the heating step of heating the roller portion, the stress generated in the hardened portion can be mainly used as the compressive stress, so that the tensile stress generated in the hardened portion is suppressed, and the crack propagates to the hardened portion. It can be difficult. Therefore, the hardened portion can be hardly damaged.
 また、このように焼嵌めによってローラ部と支持部とを嵌合させることができるので、外周面に硬化部を有する粉砕ローラであっても、ローラ部及び支持部に対して特別な加工を施すことなく、ローラ部と支持部とを嵌合させて粉砕ローラを製造することができる。したがって、ローラ部及び支持部に対して特別な加工を施す方法と比較して、コストを低減するとともに、製造に要する時間を短縮化することができる。 Further, since the roller portion and the support portion can be fitted by shrink fitting as described above, even if the grinding roller has a hardened portion on the outer peripheral surface, special processing is performed on the roller portion and the support portion. Thus, the crushing roller can be manufactured by fitting the roller portion and the support portion together. Therefore, the cost can be reduced and the time required for manufacturing can be reduced as compared with a method of performing special processing on the roller portion and the support portion.
 また、ローラ部の中心軸線が床面と直交方向となる状態で設置され、かつ、内周面が外気に開放した状態(換言すれば、大気開放した状態)で、外周面側からローラ部を加熱している。これにより、円環状のローラ部の内周面の内側に形成される空間(以下、「内側空間」という。)内の空気は、加熱により昇温し、煙突効果により、上昇気流となり大気に放出される。したがって、内側空間内に昇温した空気が滞留しないので、ローラ部の内周面の温度分布の拡大を抑制し、ローラ部全体における不均一な応力の発生を抑制することができる。よって、ローラ部を損傷し難くすることができる。ローラ部の損傷とは、例えば、部分的な微小亀裂の発生、内部亀裂の進展や、一部の脱落などが挙げられる。 Further, the roller unit is installed in a state where the center axis of the roller unit is orthogonal to the floor surface, and the inner peripheral surface is open to the outside air (in other words, the state where it is open to the atmosphere). Heating. As a result, the air in a space (hereinafter, referred to as an “inner space”) formed inside the inner peripheral surface of the annular roller portion rises in temperature by heating, and becomes a rising airflow due to a chimney effect and is released to the atmosphere. Is done. Therefore, since the heated air does not stay in the inner space, the expansion of the temperature distribution on the inner peripheral surface of the roller portion can be suppressed, and the generation of uneven stress in the entire roller portion can be suppressed. Therefore, the roller portion can be hardly damaged. The damage to the roller portion includes, for example, generation of partial micro-cracks, growth of internal cracks, and partial drop-off.
 また、ローラ部を加熱する工程で、ローラ部の内周面が外気に開放した状態としているので、加熱工程において、ローラ部の内周面にアクセスすることができる。これにより、加熱工程において、ローラ部の内径の熱伸び量をノギスやレーザ距離計測器などで計測することができる。したがって、ローラ部の内径の熱伸び量を確認しながら加熱することができるので、確実に所望の熱伸び量とすることができる。また、継続的に熱伸び量を確認しているので、所望の熱伸び量となった時点で加熱工程を終えることができるので、過度の加熱等による無駄な時間の発生を防止し、加熱工程を短縮化することができる。 (4) Since the inner peripheral surface of the roller unit is open to the outside air in the step of heating the roller unit, the inner peripheral surface of the roller unit can be accessed in the heating step. Thus, in the heating step, the amount of thermal expansion of the inner diameter of the roller portion can be measured with a caliper, a laser distance measuring device, or the like. Therefore, the heating can be performed while checking the thermal expansion amount of the inner diameter of the roller portion, so that the desired thermal expansion amount can be reliably obtained. In addition, since the amount of thermal elongation is continuously checked, the heating process can be completed when the desired amount of thermal elongation is reached. Can be shortened.
 また、本発明の一態様に係る粉砕ローラの製造方法は、前記硬化部は、熱膨張係数が前記基部よりも小さい部材を少なくとも一部に含んでいてもよい。 In addition, in the method for manufacturing a pulverizing roller according to one aspect of the present invention, the hardening unit may include at least a part of a member having a smaller coefficient of thermal expansion than the base.
 上記構成では、硬化部が、少なくとも一部に基部と熱膨張率が小さい部材、例えばセラミックスを含んでいる。硬化部が半径方向外側に膨張する際に、硬化部には押圧力が作用し半径方向の圧縮応力が発生するので、基部よりも熱膨張量が少ない部材が存在しても、硬化部内に発生する圧縮応力により、硬化部内の熱膨張率が小さい部材、例えばセラミックスに亀裂が伝播し難くすることができる。よって、硬化部を損傷し難くすることができる。 In the above configuration, the hardened portion at least partially includes a base and a member having a small coefficient of thermal expansion, for example, a ceramic. When the hardened part expands outward in the radial direction, a pressing force acts on the hardened part and a radial compressive stress is generated, so even if there is a member with less thermal expansion than the base, it is generated in the hardened part Due to the compressive stress, it is possible to make it difficult for cracks to propagate in a member having a small coefficient of thermal expansion in the hardened portion, for example, ceramics. Therefore, the hardened portion can be hardly damaged.
 また、本発明の一態様に係る粉砕ローラの製造方法は、前記加熱工程では、前記ローラ部と前記床面との間に下部空間を形成するとともに、該下部空間と前記ローラ部の前記内周面の内側に形成される内側空間とが連通した状態で、前記ローラ部を加熱してもよい。 Further, in the method of manufacturing a crushing roller according to one aspect of the present invention, in the heating step, a lower space is formed between the roller portion and the floor surface, and the inner space of the lower space and the roller portion is formed. The roller unit may be heated in a state where the inner space formed inside the surface communicates with the roller unit.
 上記構成では、ローラ部と床面との間に形成される下部空間と内側空間とが連通している。これにより、下部空間を介して、内側空間の下方から空気が流入するので、より効果的に煙突効果を作用させて、確実に内側空間内に上昇気流を発生させることができる。したがって、より好適に、ローラ内周面の温度分布を抑制し、ローラ部全体における不均一な応力の発生を抑制することができる。 で は In the above configuration, the lower space formed between the roller portion and the floor surface communicates with the inner space. This allows air to flow from below the inner space through the lower space, so that the chimney effect can be more effectively applied and an ascending airflow can be reliably generated in the inner space. Therefore, more preferably, the temperature distribution on the inner peripheral surface of the roller can be suppressed, and the occurrence of uneven stress in the entire roller portion can be suppressed.
 また、本発明の一態様に係る粉砕ローラの製造方法は、前記加熱工程では、前記ローラ部の半径方向の外周面をヒータで覆うとともに、前記ヒータの半径方向の外周面を断熱材で覆った状態において、前記ヒータを昇温することで、前記ローラ部を加熱してもよい。 In the method of manufacturing a crushing roller according to one aspect of the present invention, in the heating step, a radial outer peripheral surface of the roller unit is covered with a heater, and a radial outer peripheral surface of the heater is covered with a heat insulating material. In this state, the roller unit may be heated by raising the temperature of the heater.
 上記構成では、ヒータの外周面を断熱材で覆っているので、ヒータからの熱散逸を低減し、ヒータからローラ部へ向かう熱流束を安定化させることができる。したがって、ヒータからローラ部の外周面への伝熱量の分布を抑制して均一化することができる。
 また、ローラ部の内周面が大気開放した状態(すなわち、低温側)であるので、外周面側から入熱した熱は内周面側に向かって移動し易い。このように、内周面側へ向かう熱流束の方向付けをすることができるので、ローラ部の内周面側の昇温を安定化させることができる。
In the above configuration, since the outer peripheral surface of the heater is covered with the heat insulating material, heat dissipation from the heater can be reduced, and the heat flux from the heater to the roller unit can be stabilized. Therefore, the distribution of the amount of heat transfer from the heater to the outer peripheral surface of the roller portion can be suppressed and uniformized.
In addition, since the inner peripheral surface of the roller portion is open to the atmosphere (that is, the low temperature side), heat input from the outer peripheral surface easily moves toward the inner peripheral surface. In this manner, the direction of the heat flux toward the inner peripheral surface side can be directed, so that the temperature rise on the inner peripheral surface side of the roller portion can be stabilized.
 また、本発明の一態様に係る粉砕ローラの製造方法は、前記加熱工程では、前記ヒータを室温状態から所定の昇温速度で昇温しながら前記ローラ部を加熱してもよい。 In the method of manufacturing a pulverizing roller according to one aspect of the present invention, in the heating step, the roller unit may be heated while the heater is heated from a room temperature state at a predetermined heating rate.
 外周面から入熱した熱が、内周面まで伝達するには所定の時間がかかる。このため、ローラ部を外周面からヒータで加熱した場合、外周面と内周面とに温度差が発生する。上記構成では、室温状態からヒータを所定の昇温速度で昇温しながらローラ部を加熱している。これにより、ヒータの昇温に追従するようにローラ部の外周面と内周面も昇温する。したがって、温度を一定に保っているヒータでローラ部の外周面の温度を一定に保ちながら加熱する方法と比較して、ローラ部の内周面と外周面との温度差が小さくなる。したがって、ローラ部の外周面側に設けられている硬化部へ発生する応力を低減することができる。よって、ローラ部を損傷し難くすることができる。 熱 It takes a certain time for the heat input from the outer peripheral surface to transfer to the inner peripheral surface. For this reason, when the roller portion is heated from the outer peripheral surface by the heater, a temperature difference occurs between the outer peripheral surface and the inner peripheral surface. In the above configuration, the roller unit is heated while the heater is heated at a predetermined temperature rising rate from the room temperature state. As a result, the outer peripheral surface and the inner peripheral surface of the roller section also rise in temperature so as to follow the temperature rise of the heater. Therefore, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion is smaller than that of a method in which the heater that maintains the temperature at a constant value and heats the outer peripheral surface of the roller portion at a constant temperature. Therefore, it is possible to reduce the stress generated in the hardened portion provided on the outer peripheral surface side of the roller portion. Therefore, the roller portion can be hardly damaged.
 また、本発明の一態様に係る粉砕ローラの製造方法は、前記所定の昇温速度は、1℃/min以上であって、かつ、2℃/min以下であってもよい。 In addition, in the method for manufacturing a pulverizing roller according to one aspect of the present invention, the predetermined heating rate may be 1 ° C / min or more and 2 ° C / min or less.
 ヒータの昇温速度を遅くすると、ローラ部の内周面と外周面との温度差を十分に低減でき、ローラ部を損傷し難くすることができるが、ローラ部と支持部とを焼嵌めするために必要な熱伸び量を得るまでに時間がかかるため、加熱工程が長時間化してしまい、作業性が低下する。一方、ヒータの昇温速度を速くすると、加熱工程を短時間化することができるが、ローラ部の内周面と外周面との温度差を十分に低減することができずに、ローラ部に損傷が発生する可能性が高まる。 If the heating rate of the heater is reduced, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion can be sufficiently reduced and the roller portion can be hardly damaged, but the roller portion and the support portion are shrink-fitted. Therefore, it takes time to obtain the necessary thermal elongation, so that the heating step is lengthened and the workability is reduced. On the other hand, if the heating rate of the heater is increased, the heating process can be shortened, but the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller unit cannot be sufficiently reduced, so that the roller unit cannot be heated. Damage is more likely to occur.
 上記構成では、ヒータを1℃/min以上であって、かつ、2℃/min以下の昇温速度で昇温している。このように、昇温速度を2℃/min以下とすることで、ローラ部の内周面と外周面との温度差を十分に低減し、ローラ部を損傷し難くすることができるとともに、昇温速度を1℃/min以上とすることで、加熱工程の過剰な長時間化を防止して作業性を向上することができる。 In the above configuration, the temperature of the heater is raised at a rate of 1 ° C./min or more and 2 ° C./min or less. By setting the heating rate to 2 ° C./min or less in this manner, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion can be sufficiently reduced, and the roller portion can be hardly damaged. By setting the temperature rate to 1 ° C./min or more, it is possible to prevent an excessively long heating step and improve workability.
 また、本発明の一態様に係る粉砕ローラの製造方法は、前記加熱工程では、前記ローラ部と前記ヒータとの間に金属箔を設けてもよい。 In the method of manufacturing a grinding roller according to one aspect of the present invention, in the heating step, a metal foil may be provided between the roller unit and the heater.
 上記構成では、ローラ部とヒータとの間に金属箔を設けている。金属箔は、変形が容易であるとともに熱伝導性が高いので、ローラ部とヒータとの間に設けられた金属箔は、ローラ部とヒータとの間の隙間に応じた形状に変形し、ローラ部及びヒータと密着して、接触熱抵抗を低減する。このように、ローラ部とヒータとの間に金属箔を設けることで、ローラ部とヒータとの間に形成される隙間を、金属箔で埋めることができる。
 金属箔は、熱伝導性がよいので、ローラ部とヒータとの間に形成される隙間を金属箔で埋めることで、ローラ部とヒータとの熱伝導率が向上する。これにより、ヒータからローラ部への熱流束を大きくすることができる。したがって、ヒータの熱がローラ部の内周面に伝達し易くなるので、内周面における昇温が好適に行われる。よって、ローラ部の内周面の温度分布を抑制し、ローラ部全体における不均一な応力の発生を抑制することができる。よって、ローラ部を損傷し難くすることができる。
 なお、金属箔としては、例えば、アルミ箔が挙げられる。
In the above configuration, a metal foil is provided between the roller section and the heater. Since the metal foil is easily deformed and has high thermal conductivity, the metal foil provided between the roller portion and the heater is deformed into a shape corresponding to the gap between the roller portion and the heater, and the roller is deformed. The contact thermal resistance is reduced by making close contact with the section and the heater. As described above, by providing the metal foil between the roller portion and the heater, the gap formed between the roller portion and the heater can be filled with the metal foil.
Since the metal foil has good thermal conductivity, filling the gap formed between the roller and the heater with the metal foil improves the thermal conductivity between the roller and the heater. Thereby, the heat flux from the heater to the roller unit can be increased. Therefore, the heat of the heater is easily transmitted to the inner peripheral surface of the roller portion, and thus the temperature on the inner peripheral surface is suitably increased. Therefore, the temperature distribution on the inner peripheral surface of the roller portion can be suppressed, and the occurrence of uneven stress in the entire roller portion can be suppressed. Therefore, the roller portion can be hardly damaged.
In addition, as a metal foil, an aluminum foil is mentioned, for example.
 また、本発明の一態様に係る粉砕ローラの製造方法は、前記加熱工程は、加熱開始時から所定時間経過するまで前記ヒータを第1昇温速度で昇温することで前記ローラ部の加熱を行う第1加温工程と、前記第1加温工程の後に前記ヒータを前記第1昇温速度よりも早い第2昇温速度で昇温することで前記ローラ部の加熱を行う第2加温工程とを備えていてもよい。 Further, in the method of manufacturing a crushing roller according to one aspect of the present invention, in the heating step, the heating of the roller unit is performed by increasing the temperature of the heater at a first temperature increasing rate until a predetermined time has elapsed from the start of heating. A first heating step to be performed, and a second heating step of heating the roller unit by heating the heater at a second heating rate higher than the first heating rate after the first heating step. And a step.
 上記構成では、加熱開始時から所定時間経過するまでヒータを第1昇温速度で昇温することでローラ部の加熱を行っている。これにより、加熱開始に伴ってローラ部の外周面での急激な温度上昇に起因して発生する、ローラ部の外周面と内周面との温度差の増大を抑制することができる。したがって、ローラ部の外周面側に設けられている硬化部へ発生する応力を低減することができる。よって、ローラ部を損傷し難くすることができる。 In the above configuration, the roller unit is heated by increasing the temperature of the heater at the first temperature increasing rate until a predetermined time has elapsed from the start of heating. Thus, it is possible to suppress an increase in the temperature difference between the outer peripheral surface and the inner peripheral surface of the roller portion, which is caused by a sharp rise in temperature on the outer peripheral surface of the roller portion with the start of heating. Therefore, it is possible to reduce the stress generated in the hardened portion provided on the outer peripheral surface side of the roller portion. Therefore, the roller portion can be hardly damaged.
 また、本発明の一態様に係る粉砕ローラの製造方法は、前記ヒータは、複数設けられていて、複数の前記ヒータは、前記ローラ部の前記外周面に沿うように、周方向に並んで配置されているとともに、各々、異なる昇温速度制御部により昇温速度を制御されていてもよい。 Further, in the method of manufacturing the pulverizing roller according to one aspect of the present invention, the plurality of heaters are provided, and the plurality of heaters are arranged in a circumferential direction so as to be along the outer peripheral surface of the roller unit. In addition, the heating rate may be controlled by different heating rate control units.
 上記構成では、ローラ部の外周面を覆う複数のヒータが、並んで配置され、各々異なる昇温速度制御部により昇温速度を制御されている。これにより、各ヒータの昇温速度を個別に適宜制御することで、大型化したローラ部であっても、ローラ部の外周面の温度分布の発生を抑制することができる。外周面の温度分布の発生を抑制することで、外周面から入力する熱を均一化できるので、ローラ部の内周面の温度分布を抑制することができる。 In the above configuration, a plurality of heaters that cover the outer peripheral surface of the roller unit are arranged side by side, and the heating rates are controlled by different heating rate controllers. Thus, by appropriately controlling the heating rate of each heater individually, it is possible to suppress the occurrence of temperature distribution on the outer peripheral surface of the roller unit even in the case of a large roller unit. By suppressing the occurrence of the temperature distribution on the outer peripheral surface, the heat input from the outer peripheral surface can be made uniform, so that the temperature distribution on the inner peripheral surface of the roller portion can be suppressed.
 また、ローラ部の外周面を覆う複数のヒータが、並んで配置されているので、各ヒータが小型化される。これにより、各ヒータにおける温度分布を低減することができるので、ローラ部の外周面の温度分布の発生を抑制することができる。 (4) Since a plurality of heaters covering the outer peripheral surface of the roller portion are arranged side by side, each heater is downsized. Thus, the temperature distribution in each heater can be reduced, so that the occurrence of a temperature distribution on the outer peripheral surface of the roller unit can be suppressed.
 また、本発明の一態様に係る粉砕ローラの製造方法は、前記加熱工程での、前記ヒータの昇温速度を記憶する昇温速度記憶工程と、前記加熱工程での、前記ローラ部の熱伸び量を記憶する熱伸び量記憶工程と、前記昇温速度記憶工程で記憶した昇温速度と、前記熱伸び量記憶工程で記憶した熱伸び量とに基づいて、昇温速度と熱伸び量との関係を定めたテーブルを作成するテーブル作成工程と、を備え、前記加熱工程では、前記ローラ部に対して仮の昇温速度で予備加熱を行うとともに、前記仮の昇温速度及び前記予備加熱における前記ローラ部の熱伸び量と、前記テーブルと、に基づいて決定された昇温速度によって前記ローラ部の加熱を行ってもよい。 Further, in the method for manufacturing a pulverizing roller according to one aspect of the present invention, a heating rate storing step of storing a heating rate of the heater in the heating step; and a thermal elongation of the roller unit in the heating step. A thermal elongation amount storing step of storing the amount, a heating rate stored in the heating rate storing step, and a thermal elongation amount stored based on the thermal elongation amount stored in the thermal elongation amount storing step. And a table creation step of creating a table that defines the relationship between the roller section and the preliminary heating of the roller portion at a temporary heating rate, and the temporary heating rate and the preliminary heating. The heating of the roller unit may be performed at a temperature increasing rate determined based on the amount of thermal expansion of the roller unit and the table.
 上記構成では、粉砕機のある現地でローラ部に対して仮の昇温速度で加熱を行う予備加熱により、ローラ部の加熱処理の適正な昇温速度を決定して適正なローラ部の加熱条件の範囲内で加熱を行うことができる。
 また、決定した昇温速度は、ローラ内面とローラ外面との急激な温度勾配による温度差が大きくならない条件とすることで可能であるので、ローラ部の外周面に設けられた硬化部への応力発生を抑えて、部分的な損傷を抑制することができるので、好適である。
In the above configuration, the appropriate heating rate of the roller section is determined by determining the appropriate heating rate of the heat treatment of the roller section by performing preliminary heating in which the roller section is heated at a temporary heating rate at the site where the pulverizer is located. The heating can be performed within the range described above.
Further, the determined heating rate can be achieved under conditions where the temperature difference due to the rapid temperature gradient between the inner surface of the roller and the outer surface of the roller does not increase, so that the stress applied to the hardened portion provided on the outer peripheral surface of the roller portion can be reduced. This is preferable because generation can be suppressed and partial damage can be suppressed.
 本発明の一態様に係る昇温装置は、被粉砕物を粉砕する粉砕機に用いられ、円環状の基部及び該基部の半径方向の外周面に設けられて前記基部よりも熱膨張係数が異なる硬化部を有している円環状のローラ部を昇温する昇温装置であって、前記ローラ部の半径方向の外周面を覆うように設けられるヒータと、前記ヒータの昇温速度を制御する昇温速度制御部と、を備え、前記昇温速度制御部は、1℃/min以上であって、かつ、2℃/min以下の昇温速度となるように前記ヒータを制御する。
 また、本発明の一態様に係る昇温装置は、前記ヒータは、中心軸線が床面と直交する方向となる状態に配置され、かつ、前記ローラ部の半径方向の内周面が外気へ開放した状態で配置された前記ローラ部に対して設けられていてもよい。
A temperature raising device according to one embodiment of the present invention is used for a crusher that crushes an object to be crushed, is provided on an annular base and a radially outer peripheral surface of the base, and has a different coefficient of thermal expansion than the base. What is claimed is: 1. A temperature raising device for raising the temperature of an annular roller portion having a hardening portion, comprising: a heater provided to cover a radially outer peripheral surface of the roller portion; and controlling a temperature rising speed of the heater. A heating rate control unit, wherein the heating rate control unit controls the heater so that the heating rate is 1 ° C./min or more and 2 ° C./min or less.
Further, in the temperature raising device according to an aspect of the present invention, the heater is disposed in a state where a central axis is in a direction orthogonal to a floor surface, and a radial inner peripheral surface of the roller unit is open to the outside air. It may be provided for the roller portion arranged in a state where it is set.
 ヒータの昇温速度を遅くすると、ローラ部の内周面と外周面との温度差を十分に低減でき、ローラ部を損傷し難くすることができるが、ローラ部と支持部とを焼嵌めするために必要な熱伸び量を得るまでに時間がかかるため、加熱工程が長時間化してしまう。一方、ヒータの昇温速度を速くすると、加熱工程を短時間化することができるが、ローラ部の内周面と外周面との温度差を十分に低減することができずに、ローラ部に損傷が発生する可能性が高まる。 If the heating rate of the heater is reduced, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion can be sufficiently reduced and the roller portion can be hardly damaged, but the roller portion and the support portion are shrink-fitted. Therefore, it takes a long time to obtain a necessary amount of thermal elongation, so that the heating step is lengthened. On the other hand, if the heating rate of the heater is increased, the heating process can be shortened, but the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller unit cannot be sufficiently reduced, so that the roller unit cannot be heated. Damage is more likely to occur.
 上記構成では、ヒータを1℃/min以上であって、かつ、2℃/min以下の昇温速度で昇温している。このように、昇温速度を2℃/min以下とすることで、ローラ部の内周面と外周面との温度差を十分に低減し、ローラ部を損傷し難くすることができるとともに、昇温速度を1℃/min以上とすることで、加熱工程の過剰な長時間化を抑制して作業性を向上することができる。 In the above configuration, the temperature of the heater is raised at a rate of 1 ° C./min or more and 2 ° C./min or less. By setting the heating rate to 2 ° C./min or less in this manner, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion can be sufficiently reduced, and the roller portion can be hardly damaged. By setting the temperature rate to 1 ° C./min or more, an excessively long heating step can be suppressed and workability can be improved.
 また、本発明の一態様に係る昇温装置は、前記ヒータは、複数設けられていて、前記昇温速度制御部は、複数設けられていて、複数の前記ヒータは、前記ローラ部の前記半径方向の外周面に沿うように、周方向に並んで配置されているとともに、各々、異なる前記昇温速度制御部により昇温速度を制御されていてもよい。 Further, in the temperature raising device according to an aspect of the present invention, a plurality of the heaters are provided, a plurality of the temperature raising speed control units are provided, and a plurality of the heaters have the radius of the roller unit. May be arranged in the circumferential direction so as to be along the outer peripheral surface in the direction, and the heating rate may be controlled by different heating rate control units.
 上記構成では、ローラ部の外周面を覆う複数のヒータが、並んで配置され、各々異なる昇温速度制御部により昇温速度を制御されている。これにより、各ヒータの昇温速度を個別に適宜制御することで、ローラ部が大型化してもローラ部の外周面の温度分布の発生を抑制することができる。外周面の温度分布の発生を抑制することで、外周面から入力する熱を均一化できるので、ローラ部の内周面の温度分布を抑制することができる。 In the above configuration, a plurality of heaters that cover the outer peripheral surface of the roller unit are arranged side by side, and the heating rates are controlled by different heating rate controllers. Thus, by appropriately controlling the heating rate of each heater individually, it is possible to suppress the occurrence of a temperature distribution on the outer peripheral surface of the roller unit even if the roller unit becomes large. By suppressing the occurrence of the temperature distribution on the outer peripheral surface, the heat input from the outer peripheral surface can be made uniform, so that the temperature distribution on the inner peripheral surface of the roller portion can be suppressed.
 また、ローラ部の外周面を覆う複数のヒータが、並んで配置されているので、各ヒータが小型化される。これにより、各ヒータにおける温度分布を低減することができるので、ローラ部の外周面の温度分布の発生を抑制することができる。 (4) Since a plurality of heaters covering the outer peripheral surface of the roller portion are arranged side by side, each heater is downsized. Thus, the temperature distribution in each heater can be reduced, so that the occurrence of a temperature distribution on the outer peripheral surface of the roller unit can be suppressed.
 本発明によれば、焼嵌めの際に硬化部に亀裂が伝播し難くすることで、硬化部を損傷し難くすることができる。 According to the present invention, it is possible to make it difficult for the crack to propagate to the hardened portion during shrink fitting, so that the hardened portion is hardly damaged.
本発明の実施形態に係る粉砕ローラの製造方法によって製造された粉砕ローラが適用される固体燃料粉砕装置の概略構成を示した縦断面図である。It is a longitudinal section showing the schematic structure of the solid fuel crushing device to which the crush roller manufactured by the manufacturing method of the crush roller concerning the embodiment of the present invention is applied. 図1の粉砕ローラの斜視図である。FIG. 2 is a perspective view of the crushing roller of FIG. 1. 図1の粉砕ローラの縦断面図である。It is a longitudinal cross-sectional view of the grinding roller of FIG. 本実施形態に係る粉砕ローラの製造方法の加熱工程を説明するための粉砕ローラの模式的な縦断面図である。It is a typical longitudinal section of a grinding roller for explaining a heating process of a manufacturing method of a grinding roller concerning this embodiment. 本実施形態に係る昇温装置の概略を示す模式的な図である。It is a schematic diagram which shows the outline of the temperature raising apparatus which concerns on this embodiment. ヒータの温度、ローラ内面の温度及びローラ内面とローラ部外面との温度差の経過時間による変化を示したグラフである。6 is a graph showing changes in the temperature of the heater, the temperature of the inner surface of the roller, and the temperature difference between the inner surface of the roller and the outer surface of the roller portion with elapsed time. 昇温速度10℃/30分間でヒータを昇温した場合のヒータの温度、ローラ内面の温度、ローラ内面とローラ外面との温度差及び内径の熱伸び量の経過時間による変化を示したグラフである。FIG. 9 is a graph showing changes in the temperature of the heater, the temperature of the inner surface of the roller, the temperature difference between the inner surface of the roller and the outer surface of the roller, and the amount of thermal elongation of the inner diameter with the lapse of time when the heater is heated at a heating rate of 10 ° C./30 minutes. is there. 昇温速度50℃/30分間でヒータを昇温した場合のヒータの温度、ローラ内面の温度、ローラ内面とローラ外面との温度差及び内径の熱伸び量の経過時間による変化を示したグラフである。FIG. 6 is a graph showing changes in the temperature of the heater, the temperature of the inner surface of the roller, the temperature difference between the inner surface of the roller and the outer surface of the roller, and the amount of thermal elongation of the inner diameter with the lapse of time when the heater is heated at a heating rate of 50 ° C./30 minutes. is there. 昇温速度90℃/30分間でヒータを昇温した場合のヒータの温度、ローラ内面の温度、ローラ内面とローラ外面との温度差及び内径の熱伸び量の経過時間による変化を示したグラフである。FIG. 5 is a graph showing changes in the temperature of the heater, the temperature of the inner surface of the roller, the temperature difference between the inner surface of the roller and the outer surface of the roller, and the amount of thermal expansion of the inner diameter with the lapse of time when the heater is heated at a heating rate of 90 ° C./30 minutes. is there. ヒータの昇温速度と必要熱伸び量到達時間との関係及びヒータの昇温速度とローラ内面温度との関係を示したグラフである。4 is a graph showing a relationship between a heating rate of a heater and a time required to reach a required thermal elongation, and a relationship between a heating rate of the heater and a roller inner surface temperature. ヒータ温度またはローラ内面温度との関係を示したグラフである。4 is a graph showing a relationship between a heater temperature and a roller inner surface temperature. 経過時間と、ヒータ温度またはローラ外面温度とローラ内面温度との温度差と、の関係を示したグラフである。5 is a graph showing a relationship between elapsed time and a temperature difference between a heater temperature or a roller outer surface temperature and a roller inner surface temperature. ヒータの温度、ローラ内面の温度及びローラ内面とローラ外面との温度差の経過時間による変化を示したグラフである。6 is a graph showing changes in the temperature of the heater, the temperature of the roller inner surface, and the temperature difference between the roller inner surface and the roller outer surface with elapsed time.
 以下に、本発明に係る粉砕ローラの製造方法及び昇温装置の一実施形態について、図面を参照して説明する。
 本実施形態に係る粉砕ローラの製造方法によって製造される粉砕ローラ5は、例えば、以下の説明の粉砕機1に適用される粉砕ローラ5として用いることができる。
 なお、本実施形態では、上方とは鉛直上側の方向を、上部や上面などの“上”とは鉛直上側の部分を示している。また同様に“下”とは鉛直下側の部分を示している。また外周面と内周面は、円環状のローラ部24の中心軸から半径方向への外周と内周を示している。
Hereinafter, an embodiment of a method of manufacturing a crushing roller and a temperature raising device according to the present invention will be described with reference to the drawings.
The crushing roller 5 manufactured by the crushing roller manufacturing method according to the present embodiment can be used, for example, as the crushing roller 5 applied to the crusher 1 described below.
In the present embodiment, “upward” indicates a vertically upward direction, and “upper” such as an upper portion or an upper surface indicates a vertically upward portion. Similarly, “below” indicates a vertically lower portion. The outer peripheral surface and the inner peripheral surface indicate the outer periphery and the inner periphery in the radial direction from the center axis of the annular roller portion 24.
 図1に示すように、粉砕機1は、外殻をなす円筒中空形状のハウジング2と、ハウジング2の下部側面に連通してハウジング2の内部に搬送用ガスを供給する空気供給ダクト3とを備える。ハウジング2の内部には、鉛直上下方向に沿う回転軸を中心として回転可能にハウジング2に対して支持される粉砕テーブル4と、粉砕テーブル4の上で被粉砕物(本実施形態では、一例として石炭などの固体燃料)を粉砕する粉砕ローラ5が収容されている。 As shown in FIG. 1, a crusher 1 includes a hollow cylindrical housing 2 forming an outer shell, and an air supply duct 3 communicating with a lower side surface of the housing 2 and supplying a carrier gas into the housing 2. Prepare. Inside the housing 2, a crushing table 4 rotatably supported on the housing 2 about a rotation axis along a vertical vertical direction, and an object to be crushed on the crushing table 4 (in the present embodiment, as an example, A pulverizing roller 5 for pulverizing a solid fuel such as coal) is accommodated.
 ハウジング2は、円筒形状であって、上部中央には天井面部2bを貫通するように、筒形状の燃料供給管7が設けられる。燃料供給管7は、図示しない固体燃料供給装置からハウジング2内に石炭などの固体燃料を供給するものであり、ハウジング2の中心位置に鉛直上下方向に沿って延在する。また、ハウジング2内の燃料供給管7の周りを回転し、燃料供給管7の長手方向に直交する方向に存在する、ロータリセパレータ8が設けられている。ロータリセパレータ8は、粉砕された固体燃料(以下、粉砕された固体燃料を「微粉燃料」という。)を所定粒径に基づいて分級するものである。ハウジング2の天井面部2bには、ロータリセパレータ8で分級された所定粒径以下の微粉燃料を後流機器へ搬送する際の搬出口である、出口ポート9が設けられている。 The housing 2 has a cylindrical shape, and a tubular fuel supply pipe 7 is provided at the upper center so as to penetrate the ceiling surface 2b. The fuel supply pipe 7 supplies solid fuel such as coal into the housing 2 from a solid fuel supply device (not shown), and extends vertically at the center of the housing 2. In addition, a rotary separator 8 that rotates around the fuel supply pipe 7 in the housing 2 and exists in a direction orthogonal to the longitudinal direction of the fuel supply pipe 7 is provided. The rotary separator 8 classifies the pulverized solid fuel (hereinafter, the pulverized solid fuel is referred to as “pulverized fuel”) based on a predetermined particle size. An outlet port 9 is provided in the ceiling surface 2 b of the housing 2, which is a carry-out port for conveying the pulverized fuel having a predetermined particle size or less classified by the rotary separator 8 to a downstream device.
 粉砕テーブル4は、ハウジング2の底面部2cの略中心に回転可能に支持される回転支持部15と、回転支持部15の上端に固定される略円形板状のテーブル部16とを有する。回転支持部15は、図示しない駆動装置により回転駆動する。テーブル部16は、燃料供給管7の鉛直下側の下端部に対向して配置され、回転支持部15とともに回転する。また、粉砕テーブル4の上面は、水平方向に延在し、中心部が外側よりも鉛直上方向に高さが高くなり、中心部から外側に向けて高さが低くなるような傾斜形状をなし、外周部が再び上方に湾曲している。 The crushing table 4 has a rotation support portion 15 rotatably supported at substantially the center of the bottom surface portion 2c of the housing 2, and a substantially circular plate-shaped table portion 16 fixed to the upper end of the rotation support portion 15. The rotation support unit 15 is rotationally driven by a driving device (not shown). The table portion 16 is arranged to face the lower end portion on the vertically lower side of the fuel supply pipe 7, and rotates together with the rotation support portion 15. The upper surface of the crushing table 4 has an inclined shape that extends in the horizontal direction, the height of the center portion is vertically higher than the outside, and the height decreases from the center to the outside. , The outer peripheral portion is curved upward again.
 空気供給ダクト3は、水平面に対して略平行に延在するように設けられ、ハウジング2の側面部2aに連通している。空気供給ダクト3は、図示しない空気供給装置から供給される搬送用ガスをハウジング2内に供給する。空気供給ダクト3から供給された搬送用ガスは、粉砕テーブル4上で、粉砕テーブル4と粉砕ローラ5との間に挟まれることで粉砕された微粉燃料をロータリセパレータ8へと気流搬送する。 The air supply duct 3 is provided so as to extend substantially parallel to the horizontal plane, and communicates with the side surface 2 a of the housing 2. The air supply duct 3 supplies a carrier gas supplied from an air supply device (not shown) into the housing 2. The carrier gas supplied from the air supply duct 3 is interposed between the crushing table 4 and the crushing roller 5 on the crushing table 4 to pneumatically transport the crushed fine fuel to the rotary separator 8.
 粉砕ローラ5は、テーブル部16の外周部分の鉛直上方に、テーブル部16と対向するように複数(本実施形態では、一例として3つ)配置される。なお、図1では、図示の関係上複数の粉砕ローラ5のうち、1つのみを図示している。複数の粉砕ローラ5は、周方向に等間隔に並んで配置されている。例えば、外周部上に120°の角度間隔を空けて、3つの粉砕ローラ5が周方向に均等間隔配置される。粉砕ローラ5の詳細な説明は、後述する。
 各粉砕ローラ5は、ジャーナルシャフト17、ジャーナルヘッド18及び偏心軸19を介してハウジング2に固定されている(図2及び図3も参照)。ジャーナルシャフト17は、ハウジング2の側面部2aから中心部側へ鉛直下方に傾斜するように延在し、先端部に軸受(図示略)を介して粉砕ローラ5が回転自在に支持されている。即ち、粉砕ローラ5は、粉砕テーブル4の鉛直上方で、上部側が下部側よりもハウジング2の中心部側に向くように位置する傾斜した状態で、回転可能に支持されている。
A plurality (three in the present embodiment, for example) of the crushing rollers 5 are arranged vertically above the outer peripheral portion of the table 16 so as to face the table 16. Note that, in FIG. 1, only one of the plurality of crushing rollers 5 is illustrated for the sake of illustration. The plurality of crushing rollers 5 are arranged at equal intervals in the circumferential direction. For example, three crushing rollers 5 are equally spaced in the circumferential direction at an angular interval of 120 ° on the outer peripheral portion. The detailed description of the crushing roller 5 will be described later.
Each grinding roller 5 is fixed to the housing 2 via a journal shaft 17, a journal head 18 and an eccentric shaft 19 (see also FIGS. 2 and 3). The journal shaft 17 extends from the side surface portion 2a of the housing 2 toward the center portion so as to be inclined vertically downward, and the tip end portion rotatably supports the grinding roller 5 via a bearing (not shown). That is, the crushing roller 5 is rotatably supported vertically above the crushing table 4 in an inclined state in which the upper side is located closer to the center of the housing 2 than the lower side.
 ジャーナルヘッド18は、中間部が水平方向に沿った偏心軸19によって、ハウジング2の側面部2aに鉛直上下方向に揺動可能に支持されている。そして、ジャーナルヘッド18は、先端部に粉砕ローラ5が回転可能に装着されたジャーナルシャフト17の基端部を支持している。即ち、粉砕ローラ5は、ジャーナルヘッド18が偏心軸19を支点として鉛直上下方向に揺動することで、粉砕テーブル4の上面に対して離接可能に支持される。 The journal head 18 is supported on the side surface 2a of the housing 2 so as to be vertically swingable by an eccentric shaft 19 having a middle portion extending in the horizontal direction. The journal head 18 supports the base end of the journal shaft 17 to which the grinding roller 5 is rotatably mounted at the tip. That is, the crushing roller 5 is supported so as to be detachable from the upper surface of the crushing table 4 by the journal head 18 swinging vertically about the eccentric shaft 19 as a fulcrum.
 ジャーナルヘッド18の鉛直上側にある上端部には、押圧装置20が設けられ、ジャーナルヘッド18の下端部にはストッパ21が設けられている。押圧装置20は、ハウジング2に固定され、ジャーナルヘッド18等を介して、粉砕ローラ5に粉砕テーブル4上に供給された固体燃料を粉砕する下向きの荷重を付与する。ストッパ21は、ハウジング2に固定され、粉砕ローラ5が鉛直下方側に回動できる量を規制し、粉砕ローラ5と粉砕テーブル4の隙間を調整する。 押 圧 A pressing device 20 is provided at an upper end vertically above the journal head 18, and a stopper 21 is provided at a lower end of the journal head 18. The pressing device 20 is fixed to the housing 2 and applies a downward load to the pulverizing roller 5 via the journal head 18 or the like to pulverize the solid fuel supplied on the pulverizing table 4. The stopper 21 is fixed to the housing 2 and regulates the amount by which the crushing roller 5 can rotate vertically downward, and adjusts the gap between the crushing roller 5 and the crushing table 4.
 次に、粉砕ローラ5の詳細について図2及び図3を用いて説明する。
 粉砕ローラ5は、ジャーナルシャフト17の先端部に回転自在に支持されるジャーナルハウジング(支持部)23と、ジャーナルハウジング23に外嵌される円環状のローラ部24と、を備えている。ジャーナルハウジング23は、ジャーナルシャフト17の先端を覆うように設けられ、外周面が円筒状に形成されている。
Next, details of the crushing roller 5 will be described with reference to FIGS.
The crushing roller 5 includes a journal housing (supporting portion) 23 rotatably supported by a tip end portion of the journal shaft 17, and an annular roller portion 24 which is fitted on the journal housing 23. The journal housing 23 is provided so as to cover the tip of the journal shaft 17, and has a cylindrical outer peripheral surface.
 ローラ部24は、本実施形態では、図3に示すように、ジャーナルハウジング23に嵌合する高クロム鋳鉄製の基部25と、基部25の外周面に設けられるセラミック製の部材を一部に含む硬化部26とを備えている。すなわち、本実施形態に係るローラ部24は、いわゆるセラミック埋め込み型高クロム鋳鉄ローラである。基部25は、略円環形状に形成される。また、基部25は、内周面がジャーナルハウジング23の外周面と接触するように、該ジャーナルハウジング23と嵌合している。硬化部26は、円環状の基部25の外周面の周方向の略全域に亘って、埋め込まれるように固定されている。また、硬化部26は、セラミック製であるので、高クロム鋳鉄製の基部25よりも熱膨張係数が小さい。
 また、ローラ部24の外径L1は本実施形態では例えば約1mから約2mであり、ローラ部24の中心軸方向の長さL2は例えば約0.3mから約0.7mであり、ローラ部24の径方向の長さL3は例えば約0.1mから約0.3mである。すなわち、ローラ部24の内径L4は、約0.5mから約1.8mとなっている(図4参照)。
In the present embodiment, as shown in FIG. 3, the roller portion 24 partially includes a base portion 25 made of high chromium cast iron fitted to the journal housing 23 and a ceramic member provided on the outer peripheral surface of the base portion 25. And a curing unit 26. That is, the roller section 24 according to the present embodiment is a so-called ceramic embedded high chromium cast iron roller. The base 25 is formed in a substantially annular shape. Further, the base 25 is fitted to the journal housing 23 such that the inner peripheral surface is in contact with the outer peripheral surface of the journal housing 23. The hardened portion 26 is fixed so as to be embedded over substantially the entire circumferential surface of the outer peripheral surface of the annular base 25. Further, since the hardened portion 26 is made of ceramic, it has a smaller coefficient of thermal expansion than the base 25 made of high chromium cast iron.
In the present embodiment, the outer diameter L1 of the roller portion 24 is, for example, about 1 m to about 2 m, and the length L2 in the central axis direction of the roller section 24 is, for example, about 0.3 m to about 0.7 m. 24 has a radial length L3 of, for example, about 0.1 m to about 0.3 m. That is, the inner diameter L4 of the roller portion 24 is from about 0.5 m to about 1.8 m (see FIG. 4).
 次に、粉砕ローラ5を製造する方法におけるジャーナルハウジング23とローラ部24とを嵌合する方法について説明する。
 本実施形態では、ローラ部24を半径方向の外周面側から加熱することで熱膨張によりローラ部24の内周面の内径を大きくし(加熱工程)、加熱されることで内径が大きくなった状態のローラ部24の内周面の内側に形成された空間(以下、「内側空間」という。)内にジャーナルハウジング23を位置するようにし(配置工程)、その後ローラ部24を冷却しローラ部24の内径を小さくすることで、ジャーナルハウジング23とローラ部24とを嵌合させる(嵌合工程)。すなわち、いわゆる焼嵌めによってジャーナルハウジング23とローラ部24とを嵌合させる。なお、配置工程では、ローラ部24の内周面がジャーナルハウジング23の外周面と対向又は接触するように配置する。
Next, a method of fitting the journal housing 23 and the roller portion 24 in the method of manufacturing the crushing roller 5 will be described.
In the present embodiment, the inner diameter of the inner peripheral surface of the roller portion 24 is increased by heating the roller portion 24 from the outer peripheral surface side in the radial direction (thermal process), and the inner diameter is increased by heating. The journal housing 23 is positioned in a space (hereinafter, referred to as “inside space”) formed inside the inner peripheral surface of the roller portion 24 in the state (arrangement step), and then the roller portion 24 is cooled to cool the roller portion. The journal housing 23 and the roller portion 24 are fitted by reducing the inner diameter of the 24 (fitting step). That is, the journal housing 23 and the roller portion 24 are fitted by so-called shrink fitting. In the arranging step, the roller unit 24 is arranged so that the inner peripheral surface thereof faces or contacts the outer peripheral surface of the journal housing 23.
 加熱工程について詳細に説明する。
 加熱工程では、まず、図4に示すように、ローラ部24を、断熱レンガ27で形成された床面上の土台の上に、中心軸線C1が床面と直交方向となるように配置する。換言すれば、ローラ部24は、円形面を置き床面に対して水平となるように配置する。土台は、高さ50mm~200mmであって、ローラ部24と地面との間に下部空間が形成されるように設けられている。土台を形成する断熱レンガ27は、この下部空間とローラ部24の内側空間とが連通するように配置する。図4の矢印は、内側空間内の空気は、ローラ部24の内周面との温度差により加熱されて昇温し、煙突効果により、上昇気流となり大気に放出される状況を示している。
The heating step will be described in detail.
In the heating step, first, as shown in FIG. 4, the roller unit 24 is disposed on a base on the floor surface formed of the insulating bricks 27 so that the central axis C1 is in a direction orthogonal to the floor surface. In other words, the roller unit 24 is arranged such that the circular surface is placed and is horizontal with respect to the floor surface. The base has a height of 50 mm to 200 mm and is provided so that a lower space is formed between the roller portion 24 and the ground. The heat-insulating bricks 27 forming the base are arranged such that the lower space communicates with the inner space of the roller portion 24. The arrows in FIG. 4 indicate a situation in which the air in the inner space is heated by the temperature difference with the inner peripheral surface of the roller portion 24 and rises in temperature.
 ローラ部24の外周面は、外周面に沿うように設けられた複数のヒータ31によって略全域が覆われている。ヒータ31をローラ部24の外周面に設置する際には、ヒータ31がローラ部24の外周面に極力均一に密着することが望ましいが、実作業として、少なくともヒータ31がローラ部24の外周面に対してガタつくことがなく、外周面の上下方向複数箇所をワイヤ等で固縛するなどで固定されている。ヒータ31の外周面は、外周面に沿うように設けられた断熱材29によって略全域が覆われている。
 ローラ部24の内周面は、ヒータ31や断熱材29等に覆われておらず、外気へ開放した状態(すなわち、大気開放された状態)となっている。
The outer peripheral surface of the roller portion 24 is substantially entirely covered by a plurality of heaters 31 provided along the outer peripheral surface. When the heater 31 is installed on the outer peripheral surface of the roller portion 24, it is desirable that the heater 31 be in close contact with the outer peripheral surface of the roller portion 24 as uniformly as possible. The outer peripheral surface is fixed at a plurality of locations in the vertical direction with wires or the like without rattling. The entire outer peripheral surface of the heater 31 is covered with a heat insulating material 29 provided along the outer peripheral surface.
The inner peripheral surface of the roller portion 24 is not covered with the heater 31, the heat insulating material 29, and the like, and is in a state of being opened to the outside air (that is, a state of being opened to the atmosphere).
 加熱工程では、このように配置された室温状態のローラ部24に対して、室温状態からヒータ31を所定の昇温速度で昇温することで加熱を行う。 (4) In the heating step, the heater 31 is heated at a predetermined heating rate from the room temperature state to the roller unit 24 in the room temperature state thus arranged.
 次に、加熱工程でローラ部24の加熱を行う昇温装置30について図5を用いて説明する。
 図5に示すように、昇温装置30は、ローラ部24の外周面に沿うように周方向に並んで配置される複数(本実施形態では、一例として、3つ)のヒータ31と、各ヒータ31への給電量を制御する複数(本実施形態では、一例として、3つ)の給電制御部(昇温速度制御部)32と、各給電制御部32に電気を供給する電源部33と、ローラ部24の外周面の温度を計測する温度計測器34と、を備えている。
Next, a temperature raising device 30 for heating the roller unit 24 in the heating step will be described with reference to FIG.
As shown in FIG. 5, the temperature raising device 30 includes a plurality of (in the present embodiment, three as an example, three) heaters 31 arranged in the circumferential direction along the outer peripheral surface of the roller portion 24, A plurality (three in the present embodiment, for example, three) of power supply control units (heating rate control units) 32 for controlling the amount of power supply to the heater 31, and a power supply unit 33 for supplying electricity to each power supply control unit 32 , A temperature measuring device 34 for measuring the temperature of the outer peripheral surface of the roller portion 24.
 各ヒータ31は、例えば、アルマットヒータやリボンヒータなどのローラ部24の外周面に密着可能な柔軟性を有する面状のヒータ31である。各ヒータ31は、ローラ部24の外周面を周方向に3等分した領域を覆うように配置される。すなわち、3つの略同形のヒータ31によって、ローラ部24の外周面の略全域が覆われている。 Each heater 31 is, for example, a planar heater 31 having flexibility that can be in close contact with the outer peripheral surface of the roller unit 24 such as an Almat heater or a ribbon heater. Each heater 31 is arranged so as to cover a region obtained by equally dividing the outer peripheral surface of the roller portion 24 in the circumferential direction. That is, three substantially identical heaters 31 cover substantially the entire outer peripheral surface of the roller portion 24.
 温度計測器34は、ローラ部24の外周面のうち、各ヒータ31が設けられる領域に1つずつ設けられており、設けられた領域におけるローラ部24の外周面の温度を計測している。温度計測器34は、計測した温度を給電制御部32に送信する。温度計測器34は、温度が計測できるものであればよく、例えば、熱電対などが挙げられる。 The temperature measuring device 34 is provided one by one in the area where each heater 31 is provided on the outer peripheral surface of the roller section 24, and measures the temperature of the outer peripheral surface of the roller section 24 in the provided area. The temperature measuring device 34 transmits the measured temperature to the power supply control unit 32. The temperature measuring device 34 may be any device that can measure the temperature, for example, a thermocouple.
 給電制御部32は、上述のように3台設けられていて、3台の給電制御部32は、各々、異なったヒータ31への給電量を制御することでヒータ31の昇温速度を制御する。すなわち、3台の給電制御部32と、3つのヒータ31とは、一対一対応となっている。なお、各給電制御部32は、温度計測器34が計測した温度に基づいて、各温度計測器34が計測する温度が略同一となるように、各ヒータ31への給電量を調整してもよい。 As described above, three power supply control units 32 are provided, and each of the three power supply control units 32 controls a heating rate of the heater 31 by controlling a power supply amount to a different heater 31. . That is, the three power supply control units 32 and the three heaters 31 are in one-to-one correspondence. Each power supply control unit 32 may adjust the amount of power supplied to each heater 31 based on the temperature measured by the temperature measuring device 34 so that the temperature measured by each temperature measuring device 34 is substantially the same. Good.
 給電制御部32は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The power supply control unit 32 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium. For example, a series of processes for realizing various functions are stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like, and executes information processing and arithmetic processing. Thereby, various functions are realized. The program may be installed in a ROM or other storage medium in advance, provided in a state stored in a computer-readable storage medium, or delivered via a wired or wireless communication unit. Etc. may be applied. The computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
 なお、ヒータ31、給電制御部32及び温度計測器34の数は、上記例に限定されない。単数であってもよく、また、3つ以外の複数であってもよい。 The numbers of the heaters 31, the power supply control units 32, and the temperature measuring devices 34 are not limited to the above examples. It may be singular or plural other than three.
 次に、加熱工程で昇温装置30が行うローラ部24の加熱方法について説明する。
 本実施形態に係る加熱工程では、昇温装置30のヒータ31を所定の昇温速度で昇温しながら、ローラ部24を加熱している。具体的には、ヒータ31を1℃/min以上であって、かつ、2℃/min以下の昇温速度で昇温することで、ローラ部24の加熱を行っている。このように、本実施形態では、ヒータ31を所定の昇温速度で昇温しながらローラ部24を加熱することで、ヒータ31の温度の上昇にローラ部24の外周面温度と内周面の温度を追従させている。
Next, a method of heating the roller unit 24 performed by the temperature raising device 30 in the heating step will be described.
In the heating step according to the present embodiment, the roller unit 24 is heated while the heater 31 of the temperature raising device 30 is heated at a predetermined temperature rising rate. Specifically, the roller unit 24 is heated by increasing the temperature of the heater 31 at a rate of 1 ° C./min or more and 2 ° C./min or less. As described above, in the present embodiment, by heating the roller unit 24 while increasing the temperature of the heater 31 at a predetermined heating rate, the temperature of the outer peripheral surface of the roller unit 24 and the inner peripheral surface of the roller unit 24 are increased in the temperature of the heater 31. Follows the temperature.
 一方、ヒータ31を用いてローラ部24を加熱する方法として、一定の温度を保ったヒータ31でローラ部24を加熱する方法も考えられる。しかしながら、一定の温度を保ったヒータ31でローラ部24を加熱すると、ローラ部24の外周面の温度はヒータ31の温度より少し低い温度でほぼ一定の温度を保つが、ローラ部24の内周面と外周面との温度差が大きくなり、ローラ部24に損傷等が発生する可能性があることがわかった。また、ヒータ31を所定の昇温速度で昇温しながらローラ部24を加熱する方法では、一定の温度を保ったヒータ31でローラ部24を加熱する方法よりも、ローラ部24の内周面と外周面との温度差が小さくすることができ、ローラ部24の外周面に設けられた硬化部26へ発生する応力を低減することができることがわかった。 On the other hand, as a method of heating the roller unit 24 using the heater 31, a method of heating the roller unit 24 with the heater 31 maintaining a constant temperature is also conceivable. However, when the roller portion 24 is heated by the heater 31 maintaining the constant temperature, the temperature of the outer peripheral surface of the roller portion 24 is maintained at a substantially constant temperature slightly lower than the temperature of the heater 31, but the inner peripheral portion of the roller portion 24 is maintained. It has been found that the temperature difference between the surface and the outer peripheral surface increases, and there is a possibility that the roller portion 24 may be damaged. In addition, the method of heating the roller unit 24 while heating the heater 31 at a predetermined heating rate is more effective than the method of heating the roller unit 24 with the heater 31 maintaining a constant temperature. It has been found that the temperature difference between the outer peripheral surface and the outer peripheral surface can be reduced, and the stress generated in the hardened portion 26 provided on the outer peripheral surface of the roller portion 24 can be reduced.
 ローラ部24の内周面と外周面との温度差が小さくなることを、図6のグラフを用いて詳しく説明する。図6は、ヒータ31の温度、ローラ部24の内周面(以下、「ローラ内面」ともいう。)の温度及びローラ内面とローラ部24の外周面(以下、「ローラ外面」ともいう。)との温度差の経過時間による変化を示したグラフであって、横軸が経過時間(分)を示し、縦軸が温度差ΔT(℃)または温度(℃)を示している。
 また、図6の実線61は、ヒータ31の温度を200℃の一定に保った場合のヒータ31温度を示している。また、実線62は、ヒータ31の温度を200℃の一定に保った場合のローラ内面温度を示し、実線63は、この場合のローラ内面とローラ外面との温度差を示している。また、図6の破線64は、ヒータ31の温度を50℃/30分間の昇温速度で昇温した場合のヒータ31温度を示している。また、破線65は、ヒータ31の温度を50℃/30分間の昇温速度で昇温した場合のローラ内面温度を示し、破線66は、この場合のローラ内面とローラ外面との温度差を示している。
The reduction in the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion 24 will be described in detail with reference to the graph of FIG. FIG. 6 shows the temperature of the heater 31, the temperature of the inner peripheral surface of the roller portion 24 (hereinafter, also referred to as “roller inner surface”), and the outer peripheral surfaces of the roller inner surface and the roller portion 24 (hereinafter, also referred to as “roller outer surface”). 5 is a graph showing a change in the temperature difference with the elapsed time, with the horizontal axis indicating the elapsed time (minutes) and the vertical axis indicating the temperature difference ΔT (° C.) or the temperature (° C.).
The solid line 61 in FIG. 6 indicates the temperature of the heater 31 when the temperature of the heater 31 is kept constant at 200 ° C. The solid line 62 indicates the roller inner surface temperature when the temperature of the heater 31 is kept constant at 200 ° C., and the solid line 63 indicates the temperature difference between the roller inner surface and the roller outer surface in this case. A broken line 64 in FIG. 6 indicates the temperature of the heater 31 when the temperature of the heater 31 is increased at a rate of 50 ° C./30 minutes. A broken line 65 indicates the roller inner surface temperature when the temperature of the heater 31 is increased at a heating rate of 50 ° C./30 minutes, and a broken line 66 indicates a temperature difference between the roller inner surface and the roller outer surface in this case. ing.
 なお、図6のローラ内面温度Tは、下記式(1)によって算出する。
(T-Ta)/(To-Ta)=Exp(-hA/(CM)×τ)・・・(1)
 但し、T:ローラ内面の非定常温度
    To:ローラ内面の初期温度(例えば、今回は室温の25℃)
    Ta:加熱側温度(すなわち、今回はヒータ31温度)
    C:ローラの比熱(例えば、0.5~0.6kJ/kg℃)
    h:ヒータ31からローラ内部の熱伝導率(例えば、1~50W/m2K)
    τ:時間
    M:ローラの質量
    A:ローラの面積
    ρ:ローラの密度
    t:ローラの熱伝導距離
 ここで、M=Aρtであるので、上記式(1)は、下記式(2)となる。
(T-Ta)/(To-Ta)=Exp(-h/(Cρt)×τ)・・・(2)
The roller inner surface temperature T in FIG. 6 is calculated by the following equation (1).
(T−Ta) / (To−Ta) = Exp (−hA / (CM) × τ) (1)
However, T: the unsteady temperature of the inner surface of the roller To: the initial temperature of the inner surface of the roller (for example, this time, the room temperature is 25 ° C.)
Ta: heating side temperature (that is, heater 31 temperature this time)
C: Specific heat of the roller (for example, 0.5 to 0.6 kJ / kg ° C)
h: Heat conductivity from the heater 31 to the inside of the roller (for example, 1 to 50 W / m 2 K)
τ: time M: mass of the roller A: area of the roller ρ: density of the roller t: heat conduction distance of the roller Here, since M = Aρt, the above equation (1) becomes the following equation (2).
(T−Ta) / (To−Ta) = Exp (−h / (Cρt) × τ) (2)
 図6に示されている実線63と、破線66とを比較すると、すべての時間でヒータ31の温度を一定に保ってローラ部24を加熱した場合に比べて、ヒータ31を昇温させながらローラ部24を加熱した場合の方がヒータ加熱面(すなわちローラ外面)とローラ内面との温度差が小さくなっていることが分かる。例えば、経過時間が20分間~40分間においては、ヒータ加熱面(すなわちローラ外面)とローラ内面との温度差は、ヒータ31の温度を一定に保ってローラ部24を加熱した場合に比べて、ヒータ31を昇温させながらローラ部24を加熱した場合の方が約1/3以下に抑制できることが、図6からわかる。 Comparing the solid line 63 and the dashed line 66 shown in FIG. 6, the roller 31 is heated while the temperature of the heater 31 is kept constant at all times. It can be seen that the temperature difference between the heater heating surface (that is, the roller outer surface) and the roller inner surface is smaller when the portion 24 is heated. For example, during the elapsed time of 20 minutes to 40 minutes, the temperature difference between the heater heating surface (that is, the outer surface of the roller) and the inner surface of the roller is smaller than when the roller portion 24 is heated while the temperature of the heater 31 is kept constant. It can be seen from FIG. 6 that the case where the roller portion 24 is heated while the temperature of the heater 31 is increased can be suppressed to about 1/3 or less.
 次に、ヒータ31の昇温速度の設定方法について説明する。
 本実施形態では、1℃/min以上であって、かつ、2℃/min以下の昇温速度でヒータ31を昇温することで、ローラ部24の加熱を行っている。この昇温速度は、ローラ部24の加熱試験の結果から、ヒータ31の昇温速度を適切に選定することでローラ部24の内周面の温度が比較的低温(例えば30℃~50℃程度)でも、焼嵌め可能なローラ部24の内径の熱伸び量が得られるローラの加熱条件があることを見出したことに基づいて設定されている。以下で、ローラ部24の加熱試験について、図7~図9を用いて説明する。
 なお、本実施形態では、ローラ部24とジャーナルハウジング23との焼嵌めを行うにあたり、本実施形態のローラ部24のサイズは、内径L4が例えば、約0.5mから約1.8mであり、ローラ部24の内径の径方向の必要熱伸びの量を例えば、0.2mm程度と設定している。
Next, a method of setting the temperature rising rate of the heater 31 will be described.
In this embodiment, the roller unit 24 is heated by increasing the temperature of the heater 31 at a rate of 1 ° C./min or more and 2 ° C./min or less. The temperature of the inner peripheral surface of the roller unit 24 is relatively low (for example, about 30 ° C. to 50 ° C.) by appropriately selecting the temperature rising rate of the heater 31 from the result of the heating test of the roller unit 24. ) Is set based on the finding that there is a roller heating condition capable of obtaining a thermal expansion amount of the inner diameter of the roller portion 24 that can be shrink-fitted. Hereinafter, a heating test of the roller unit 24 will be described with reference to FIGS.
In the present embodiment, when shrink-fitting the roller portion 24 and the journal housing 23, the roller portion 24 of the present embodiment has an inner diameter L4 of, for example, about 0.5 m to about 1.8 m. The amount of required thermal expansion in the radial direction of the inner diameter of the roller portion 24 is set to, for example, about 0.2 mm.
 図7から図9は、各々、ヒータ31の温度、ローラ内面の温度、ローラ内面とローラ外面との温度差及び内径の熱伸び量の経過時間による変化の計測値を示したグラフであって、横軸が経過時間(分)を示し、縦軸が内径の熱伸び量(mm)及び温度差または温度(℃)を示している。また、網掛け部分は、必要熱伸びの量である0.2mmに達した際の経過時間帯を示している。各温度と経過時間は、ヒータ31の昇温速度に対する影響を例示すものであり、本実施形態の一例を例示するものである。 FIGS. 7 to 9 are graphs showing measured values of the temperature of the heater 31, the temperature of the inner surface of the roller, the temperature difference between the inner surface of the roller and the outer surface of the roller, and the change in the thermal expansion amount of the inner diameter with the lapse of time. The horizontal axis indicates elapsed time (minutes), and the vertical axis indicates the amount of thermal elongation (mm) and the temperature difference or temperature (° C.) of the inner diameter. The shaded portion indicates the elapsed time zone when the required thermal elongation reaches 0.2 mm. Each temperature and elapsed time is an example of the influence on the temperature rising rate of the heater 31, and is an example of the present embodiment.
 図7は、昇温速度10℃/30分間でヒータ31を昇温した場合を示しており、実線71はヒータ温度、実線72はローラ内面温度、実線73はローラ内面とローラ外面との温度差、実線74はローラ内径の熱伸び量の計測値を示している。 FIG. 7 shows a case where the heater 31 is heated at a heating rate of 10 ° C./30 minutes. A solid line 71 is a heater temperature, a solid line 72 is a roller inner surface temperature, and a solid line 73 is a temperature difference between the roller inner surface and the roller outer surface. , The solid line 74 indicates the measured value of the thermal expansion amount of the inner diameter of the roller.
 図7に示すように、ヒータ31の昇温速度が比較的遅い場合、必要熱伸び量を得るには、ローラ内面温度を40℃から45℃程度まで加熱する必要があり、時間も115分から120分程度要する。一方、ローラ外面とローラ内面との温度差は、20℃から25℃程度と小さく、ローラ部24全体を比較的均一に昇温が可能となる。 As shown in FIG. 7, when the rate of temperature rise of the heater 31 is relatively slow, it is necessary to heat the roller inner surface temperature from about 40 ° C. to about 45 ° C. in order to obtain the necessary thermal elongation, and the time is also from 115 minutes to 120 ° C. It takes about a minute. On the other hand, the temperature difference between the outer surface of the roller and the inner surface of the roller is as small as about 20 ° C. to 25 ° C., and the temperature of the entire roller unit 24 can be relatively uniformly increased.
 図8は、昇温速度50℃/30分間でヒータ31を昇温した場合を示しており、破線81はヒータ温度、破線82はローラ内面温度、破線83はローラ内面とローラ外面との温度差、破線84はローラ内径の熱伸び量の計測値を示している。 FIG. 8 shows a case where the heater 31 is heated at a heating rate of 50 ° C./30 minutes. A broken line 81 indicates a heater temperature, a broken line 82 indicates a roller inner surface temperature, and a broken line 83 indicates a temperature difference between the roller inner surface and the roller outer surface. The broken line 84 indicates the measured value of the thermal expansion of the inner diameter of the roller.
 図8に示すように、ヒータ31の昇温速度が比較的速い場合、ローラ内面温度は、加熱開始当初は温度上昇をほとんどせずに、約20分経過後から温度上昇している(破線82参照)。これは、加熱を進めるにつれて、ローラ部24の外周面が熱膨張し、ヒータ31とローラ部24の外周面との熱的接触状態が向上したためである。 As shown in FIG. 8, when the heating rate of the heater 31 is relatively high, the roller inner surface temperature rises almost 20 minutes after the start of the heating, and hardly rises (dashed line 82). reference). This is because the outer peripheral surface of the roller portion 24 thermally expands as the heating is advanced, and the thermal contact between the heater 31 and the outer peripheral surface of the roller portion 24 is improved.
 ローラ部24の内径の熱伸び量は、約30分から約35分経過後の必要熱伸び量(0.2mm)に到達した時を含めて、時間経過と比例するように増大する。これに対し、ローラ内面温度は、上述のように、加熱開始当初から20分程度の間、温度上昇をほとんどしていない。これにより、必要熱伸び量に到達したときには、ローラ内面温度は30℃から35℃程度となっている。このように、ローラ内面温度が比較的低い温度にもかかわらず、必要熱伸び量に到達しているのは、ローラ内面が、ローラ外面の熱膨張(熱伸び)による引張り応力を受けたことに起因している。 熱 The amount of thermal expansion of the inner diameter of the roller portion 24 increases in proportion to the passage of time, including when the required amount of thermal expansion (0.2 mm) is reached after about 30 to about 35 minutes have elapsed. On the other hand, as described above, the roller inner surface temperature hardly rises for about 20 minutes from the start of heating. Thus, when the required thermal elongation is reached, the roller inner surface temperature is about 30 ° C. to 35 ° C. As described above, the reason why the required amount of thermal elongation is reached even though the roller inner surface temperature is relatively low is that the roller inner surface is subjected to tensile stress due to thermal expansion (thermal elongation) of the roller outer surface. Is due.
 このように、昇温速度50℃/30分間でヒータ31を昇温した場合には、ローラ内面温度が比較的低い状態で必要熱伸び量となっている。このことから、上述のように、ローラ内面に対して、ローラ外面の熱伸びによる引張り力が発生し始めていることがわかる。
 また、ローラ内面とローラ外面との温度差は、必要熱伸び量(0.2mm)到達時に、50℃から55℃程度が発生している。これにより、ローラの外周面に設けられた硬化部26への圧縮応力が増加し始めていると考えられる。
As described above, when the heater 31 is heated at a heating rate of 50 ° C./30 minutes, the required thermal elongation is at a relatively low level with the roller inner surface temperature. From this, it can be seen that, as described above, the tensile force due to the thermal expansion of the roller outer surface has begun to be generated on the roller inner surface.
The temperature difference between the inner surface of the roller and the outer surface of the roller is about 50 ° C. to 55 ° C. when the required thermal elongation (0.2 mm) is reached. Accordingly, it is considered that the compressive stress on the hardened portion 26 provided on the outer peripheral surface of the roller has begun to increase.
 図9は、昇温速度90℃/30分間でヒータ31を昇温した場合を示しており、一点鎖線91はヒータ温度、一点鎖線92はローラ内面温度、一点鎖線93はローラ内面とローラ外面との温度差、一点鎖線94はローラ内径の熱伸び量の計測値を示している。 FIG. 9 shows a case where the heater 31 is heated at a heating rate of 90 ° C./30 minutes, where a dashed line 91 is a heater temperature, a dashed line 92 is a roller inner surface temperature, and a dashed line 93 is a roller inner surface and a roller outer surface. The dashed line 94 indicates the measured value of the thermal expansion amount of the roller inner diameter.
 図9に示すように、ヒータ31の昇温速度が図8の例よりもさらに速い場合、ローラ内面温度は、加熱開始当初は温度上昇をほとんどせずに、約20分経過後から急激に温度上昇していて(一点鎖線92参照)、この時に必要熱伸び量(0.2mm)に到達していることから昇温時間の制御が実質的に困難になっている。急激に温度上昇する要因は、図8の例と同様に、加熱を進めるにつれて、ローラ部24の外周面が熱膨張し、ヒータ31とローラ部24の外周面との熱的接触状態が向上したためである。また、ローラ部24の内径の熱伸び量は、約15分から約20分経過後に、必要熱伸び量(0.2mm)に到達しており、このときのローラ内面温度は、加熱開始当初とほとんど変わらない25℃から30℃程度となっている。 As shown in FIG. 9, when the heating rate of the heater 31 is even faster than that in the example of FIG. 8, the inner temperature of the roller hardly increases at the beginning of the heating, and the temperature rapidly increases after about 20 minutes. Since the temperature rises (see the dashed-dotted line 92) and reaches the required thermal elongation (0.2 mm) at this time, it is substantially difficult to control the temperature rise time. The cause of the rapid temperature rise is that the outer peripheral surface of the roller portion 24 thermally expands as the heating is advanced, and the thermal contact state between the heater 31 and the outer peripheral surface of the roller portion 24 improves, as in the example of FIG. It is. Further, the thermal expansion amount of the inner diameter of the roller portion 24 has reached the required thermal expansion amount (0.2 mm) after about 15 to about 20 minutes have elapsed, and the roller inner surface temperature at this time is almost the same as at the beginning of heating. The temperature remains unchanged at about 25 ° C. to 30 ° C.
 このように、ローラ内面温度がほとんど変わらないにもかかわらず、必要熱伸び量に到達しているのは、ローラ内面がローラ外面の熱膨張(熱伸び)による引張り応力を強く受けたことに起因している。したがって、ローラ部24(特に、基部25)に対して、割れ限界半径方向応力σo(本実施形態では、内部亀裂のある場合として約40N/mmを想定している)を超える応力の発生が懸念され、ローラ部24(特に、基部25の外周側)に微小亀裂が発生することが懸念される。 The reason why the required amount of thermal elongation is reached despite the fact that the roller inner surface temperature hardly changes is that the roller inner surface is strongly subjected to tensile stress due to the thermal expansion (thermal elongation) of the roller outer surface. are doing. Therefore, the generation of stress exceeding the crack limit radial stress σo (in the present embodiment, about 40 N / mm 2 is assumed in the case of the internal crack) on the roller portion 24 (particularly, the base portion 25). There is a concern that micro-cracks may occur in the roller portion 24 (particularly, on the outer peripheral side of the base portion 25).
 また、ローラ内面の温度上昇が1℃から5℃程度に留まるに対して、ローラ内面とローラ外面との温度差は、50℃から55℃程度と大きい。これにより、ローラの外周面に設けられた硬化部26への圧縮応力が更に増加し始めていると考えられる。 (4) While the temperature rise on the inner surface of the roller stays at about 1 ° C. to 5 ° C., the temperature difference between the inner surface of the roller and the outer surface of the roller is as large as about 50 ° C. to 55 ° C. Thus, it is considered that the compressive stress on the hardened portion 26 provided on the outer peripheral surface of the roller has begun to further increase.
 このように、昇温速度90℃/30分間でヒータ31を昇温した場合には、硬化部26への応力増加及びローラ部24(特に、基部25の外周側)への応力の増加により、ローラ部24の部分的損傷のリスクが高くなる。 When the heater 31 is heated at a heating rate of 90 ° C./30 minutes as described above, the stress on the hardened portion 26 and the stress on the roller portion 24 (particularly, the outer peripheral side of the base portion 25) are increased. The risk of partial damage to the roller portion 24 increases.
 また、他の場合(図7及び図8で示した例)よりも、ヒータ31に供給する電力を多く必要とし、大型の電源と設備が必要となる。本実施形態で、90℃/30分間の昇温速度でヒータ31を昇温するには、例えば、200V、40Aの大型電源を必要であり、粉砕機1のある現地でローラの焼き嵌め作業を行うには、この程度の電源容量が上限にある。このため、これ以上の高速昇温は、難しい。 Moreover, compared to other cases (examples shown in FIGS. 7 and 8), more power is required to be supplied to the heater 31, and a large power supply and equipment are required. In this embodiment, in order to raise the temperature of the heater 31 at a heating rate of 90 ° C./30 minutes, for example, a large power supply of 200 V and 40 A is required. To do so, this level of power capacity is at the upper limit. For this reason, it is difficult to raise the temperature more rapidly than this.
 このように、図7~図9から、ヒータ31の昇温速度を速くすると、必要熱伸び量を短時間で得られるが、ローラ部24の損傷のリスクが高くなることがわかる。 Thus, from FIGS. 7 to 9, it can be seen that when the rate of temperature rise of the heater 31 is increased, the required amount of thermal expansion can be obtained in a short time, but the risk of damage to the roller portion 24 increases.
 より詳細に、ヒータ31の昇温速度と損傷のリスク(特に、ローラ外面側の熱膨張(熱伸び)によってローラ内面側に発生する引張応力の発生状態)との関係について説明する。 {Circle around (2)} The relationship between the heating rate of the heater 31 and the risk of damage (particularly, the state of occurrence of tensile stress generated on the roller inner surface due to thermal expansion (thermal elongation) on the roller outer surface) will be described in more detail.
 上述のように、本実施形態では、外周面側からのみローラ部24の加熱を行っているので、焼嵌めに必要熱伸び量(0.2mm)に到達時には、「ローラ外面温度>ローラ内面温度」となり、ローラ外面の熱膨張(熱伸び)によってローラ内面が引張応力を受ける状態となる。 As described above, in the present embodiment, since the roller portion 24 is heated only from the outer peripheral surface side, when the thermal expansion amount (0.2 mm) required for shrink fitting is reached, “roller outer surface temperature> roller inner surface temperature” ", And the inner surface of the roller receives a tensile stress due to the thermal expansion (thermal expansion) of the outer surface of the roller.
 下記の表1は、必要熱伸び量に到達した際における、ローラ内面温度、ヒータ温度、到達時間、ローラ内面温度に起因する熱伸び量、ローラ外面の熱膨張(熱伸び)によってローラ内面に発生する引張応力の発生状態を、ヒータ31の昇温速度ごとに示している。なお、本実施形態では、上述のように、割れ限界半径方向応力σоを、約40N/mmとしている。また、ローラ内面温度に起因する熱伸び量は、ローラ部24の基部25の材料のヤング率Eを1.8~2.0×10N/mmとし、線膨張率を11×10-6~12×10-6として算出している。 Table 1 below shows that when the required amount of thermal elongation is reached, the roller inner surface temperature, heater temperature, arrival time, the amount of thermal elongation caused by the roller inner surface temperature, and the thermal expansion (thermal elongation) of the roller outer surface are generated on the inner surface of the roller. The state of occurrence of the tensile stress is shown for each heating rate of the heater 31. Note that, in the present embodiment, as described above, the crack limit radial stress σо is set to about 40 N / mm 2 . The thermal expansion caused by the roller inner surface temperature is such that the Young's modulus E of the material of the base portion 25 of the roller portion 24 is 1.8 to 2.0 × 10 5 N / mm 2 and the linear expansion coefficient is 11 × 10 It is calculated as 6 to 12 × 10 −6 .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、昇温速度が30℃/30分間~90℃/30分間の場合には、必要熱伸び量の0.2mmに到達した際における、ローラ内面温度に起因する熱伸び量は、いずれも0.2mm以下となっている。すなわち、0.2mmからローラ内面温度に起因する熱伸び量を引いた数値が、ローラ外面の熱膨張(熱伸び)によって引っ張られることで、ローラ内面が伸びた長さとなる。 From Table 1, when the heating rate is 30 ° C./30 minutes to 90 ° C./30 minutes, when the required thermal elongation reaches 0.2 mm, the thermal elongation due to the roller inner surface temperature is Is 0.2 mm or less. That is, a value obtained by subtracting the thermal expansion caused by the roller inner surface temperature from 0.2 mm is pulled by the thermal expansion (thermal expansion) of the roller outer surface, and thus the length of the roller inner surface is extended.
 したがって、昇温速度が30℃/30分間~90℃/30分間の場合には、いずれもローラ外面の熱膨張(熱伸び)によってローラ内面が引っ張られ、ローラ内面が引張応力を受ける状態となっているが、昇温速度が速くなるほど、ローラ内面が引っ張られることで伸びた長さが大きくなっていることが分かる。すなわち、昇温速度が速くなるほど、ローラ内面が受ける引張応力が大きくなっていることが分かる。 Therefore, when the heating rate is 30 ° C./30 minutes to 90 ° C./30 minutes, the roller inner surface is pulled by the thermal expansion (thermal elongation) of the roller outer surface, and the roller inner surface is subjected to tensile stress. However, it can be seen that the longer the temperature rise rate, the longer the length of the roller inner surface that has been stretched by being pulled. In other words, it can be seen that the higher the heating rate, the greater the tensile stress applied to the inner surface of the roller.
 また、各昇温速度におけるローラ内面に発生する引張応力の発生状態は次のようになる。昇温速度が30℃/30分間及び50℃/30分間の場合には、いずれも発生する引張応力が、割れ限界半径方向応力σоに及んでいない。また、昇温速度が60℃/30分間の場合にも、発生する引張応力が割れ限界半径方向応力σоに及んでおらず、割れ限界半径方向応力σоの80%程度の引張応力が発生している。また、昇温速度が90℃/30分の場合には、発生する引張応力が割れ限界半径方向応力σоよりも僅かに小さい値となっている。 引 張 Further, the state of occurrence of tensile stress generated on the inner surface of the roller at each heating rate is as follows. When the heating rate was 30 ° C./30 minutes or 50 ° C./30 minutes, the tensile stress generated did not reach the crack limit radial stress σо. In addition, even when the heating rate is 60 ° C./30 minutes, the generated tensile stress does not reach the crack limit radial stress σо, and a tensile stress of about 80% of the crack limit radial stress σо is generated. I have. When the temperature rise rate is 90 ° C./30 minutes, the generated tensile stress has a value slightly smaller than the crack limit radial stress σо.
 以上の結果を考慮すると、昇温速度が90℃/30分間の場合には、ローラ内面に発生する引張応力が、割れ限界半径方向応力σоを超えてしまうことが危惧され、ローラ部24の損傷のリスクが高くなっていると考えられる。したがって、ヒータ31の昇温速度の上限は、60℃/30分間程度(すなわち、2℃/min)に設定することが好ましいことが分かる。 In consideration of the above results, when the heating rate is 90 ° C./30 minutes, it is feared that the tensile stress generated on the inner surface of the roller exceeds the crack limit radial direction stress σо, and the roller portion 24 is damaged. It is considered that the risk of the disease has increased. Therefore, it is understood that the upper limit of the heating rate of the heater 31 is preferably set to about 60 ° C./30 minutes (that is, 2 ° C./min).
 次に、ヒータ31の昇温速度の下限の設定方法について説明する。
 表1からわかるように、昇温速度が遅くなると、必要熱伸び量(0.2mm)に到達する時間が長くなる。
Next, a method of setting the lower limit of the heating rate of the heater 31 will be described.
As can be seen from Table 1, the slower the heating rate, the longer the time to reach the required thermal elongation (0.2 mm).
 粉砕ローラ5のメンテナンス等の目的から粉砕ローラ5を交換する場合がある。交換用の粉砕ローラ5を設置するためには、交換用ローラ部を仮置きする仮置き工程と、ローラ部24を加熱する加熱工程と、ローラ部24とジャーナルハウジング23とを嵌合する嵌合工程と、ローラ部24とジャーナルハウジング23とが嵌合した粉砕ローラ5を粉砕機1に設置する設置工程と、が必要である。 粉 砕 The crushing roller 5 may be replaced for the purpose of maintenance of the crushing roller 5 or the like. In order to install the replacement crushing roller 5, a temporary placement step of temporarily placing the replacement roller section, a heating step of heating the roller section 24, and a fitting step of fitting the roller section 24 and the journal housing 23 are performed. A step and an installation step of installing the crushing roller 5 in which the roller portion 24 and the journal housing 23 are fitted in the crusher 1 are required.
 各工程において要する時間は、本実施形態では例えば以下のようになる。なお、以下の説明における必要時間は、あくまで一例であり、必要時間は他の時間であってもよい。
 仮置き工程には5分間程度、嵌合工程には10分間程度、設置工程には25分間程度要する。すなわち、加熱工程を除く他の工程において、合計40分間程度要する。したがって、加熱工程の時間をHtとすると、1つの粉砕ローラ5を交換するのに必要な時間は、Ht+40(分)となる。
The time required in each step is, for example, as follows in the present embodiment. Note that the required time in the following description is merely an example, and the required time may be another time.
It takes about 5 minutes for the temporary placement step, about 10 minutes for the fitting step, and about 25 minutes for the installation step. That is, a total of about 40 minutes is required in other steps except the heating step. Therefore, assuming that the time of the heating step is Ht, the time required to replace one crushing roller 5 is Ht + 40 (minutes).
 次に、1つの粉砕ローラ5を交換するのに適した時間は次のように設定する。
 本実施形態のように、粉砕ローラ5が3つ設けられている粉砕機1の2台分(粉砕ローラ5を6つ)の交換を1日で行う場合には、1日の作業時間を10時間とすると、1つの粉砕ローラ5に対する作業時間は、以下の式(3)から100分間と求められる。
 (10×60)分/3つ×2台・・・(3)
Next, a time suitable for replacing one crushing roller 5 is set as follows.
When two crushers 1 each having three crushing rollers 5 (six crushing rollers 5) are exchanged in one day as in the present embodiment, the working time per day is reduced by 10 days. In terms of time, the working time for one crushing roller 5 is determined to be 100 minutes from the following equation (3).
(10 × 60) minutes / 3 × 2 units ・ ・ ・ (3)
 したがって、以下の式(4)から、加熱工程に要する時間Htは、60分間以下であることが望ましいことが分かる。
 Ht+40分≦100分・・・(4)
Therefore, from the following equation (4), it can be seen that the time Ht required for the heating step is desirably 60 minutes or less.
Ht + 40 minutes ≦ 100 minutes (4)
 以上の結果を考慮すると、表1から、ヒータ31の昇温速度の下限は、30℃/30分間程度(すなわち、1℃/min)に設定することが好ましいことが分かる。 Considering the above results, Table 1 shows that it is preferable to set the lower limit of the heating rate of the heater 31 to about 30 ° C./30 minutes (that is, 1 ° C./min).
 以上述べたとおり、本実施形態では、作業性の観点から、ヒータ31の昇温速度の下限を1℃/minとし、粉砕ローラ5の損傷のリスクの観点から、ヒータ31の昇温速度の上限を2℃/minとしている。
 このことについて、図10を用いて説明する。図10では、ヒータ31の昇温速度(℃/min)と必要熱伸び量(0.2mm)到達時間(分)との関係を破線で示し、ヒータ31の昇温速度(℃/min)とローラ内面温度(℃)との関係を実線で示している。
As described above, in the present embodiment, the lower limit of the heating rate of the heater 31 is set to 1 ° C./min from the viewpoint of workability, and the upper limit of the heating rate of the heater 31 is reduced from the risk of damage to the crushing roller 5. Is set to 2 ° C./min.
This will be described with reference to FIG. In FIG. 10, the relationship between the rate of temperature rise of the heater 31 (° C./min) and the time required to reach the required thermal elongation (0.2 mm) (minutes) is indicated by a broken line, and the rate of temperature rise of the heater 31 (° C./min) The relationship with the roller inner surface temperature (° C.) is shown by a solid line.
 図10の破線で示すように、ヒータ31の昇温速度が2℃/min以上となると、必要熱伸び量到達時のローラ内面温度が低くなり、損傷のリスクが高くなるため不適である。また、ヒータ31の昇温速度が1℃/min以下となると、加熱工程に要する時間が60分以上となり、作業性が悪化するため不適である。したがって、図10の網掛け部分の矢印で示した範囲である1℃/minから2℃/minが好適な範囲となる。特に、損傷のリスク及び作業性の両方の観点から図10にPで示した、昇温速度50℃/30分間が好適となる。
 なお、3℃/minよりも速い昇温速度では、ローラ内面温度が上昇する前に必要熱伸び量となるため、熱伸び量の制御が困難であるので、適切でない。
As shown by the dashed line in FIG. 10, if the heating rate of the heater 31 is 2 ° C./min or more, the roller inner surface temperature when the required amount of thermal elongation is reached becomes low, and the risk of damage increases, which is not suitable. Further, if the heating rate of the heater 31 is 1 ° C./min or less, the time required for the heating step becomes 60 minutes or more, and the workability deteriorates, which is not suitable. Therefore, the preferred range is 1 ° C./min to 2 ° C./min, which is the range indicated by the shaded arrow in FIG. In particular, from the viewpoint of both the risk of damage and the workability, the heating rate of 50 ° C./30 minutes shown by P in FIG. 10 is preferable.
It should be noted that a heating rate higher than 3 ° C./min is not appropriate because the required amount of thermal elongation is attained before the inner surface temperature of the roller is increased, and it is difficult to control the amount of thermal elongation.
 本実施形態によれば、以下の作用効果を奏する。
 本実施形態では、加熱工程において、内周面が外気へ開放した状態で半径方向の外周面側からローラ部24を加熱している。このため、基部25の外周面側は、内周面側よりも早く昇温するとともに、内周面側よりも高温となる。これにより、基部25は、半径方向外側に(すなわち、外形が大きくなるように)熱膨張する。一方、硬化部26は、基部25と熱膨張係数が異なり、硬化部26には、熱膨張率が小さい部材、例えばセラミックスを含んでもよいので、基部25よりも熱膨張量が少なくなるか、もしくは硬化部26は、基部25よりも温度が高くなることで熱膨張量が多くなる。したがって、ローラ部24が半径方向外側に熱膨張する際に、硬化部26には、基部25に拘束され半径方向に押圧力が作用する。このため、硬化部26には、半径方向の圧縮応力が発生する。このように、ローラ部24を加熱する加熱工程において、硬化部26に発生する応力を、主に圧縮応力とすることができるので、硬化部26に発生する引張応力を抑制し、硬化部26に亀裂が伝播し難くすることができる。よって、硬化部26を損傷し難くすることができる。
According to the present embodiment, the following operation and effect can be obtained.
In the present embodiment, in the heating step, the roller portion 24 is heated from the outer peripheral surface side in the radial direction with the inner peripheral surface open to the outside air. Therefore, the temperature of the outer peripheral surface side of the base 25 rises faster than that of the inner peripheral surface side, and becomes higher than that of the inner peripheral surface side. As a result, the base portion 25 thermally expands outward in the radial direction (that is, so as to increase the outer shape). On the other hand, the hardened portion 26 has a different coefficient of thermal expansion from the base 25, and the hardened portion 26 may include a member having a low coefficient of thermal expansion, for example, ceramics. When the temperature of the hardened portion 26 is higher than that of the base portion 25, the amount of thermal expansion increases. Therefore, when the roller portion 24 thermally expands outward in the radial direction, the pressing portion acts on the hardened portion 26 in the radial direction while being restrained by the base portion 25. Therefore, a compressive stress in the radial direction is generated in the hardened portion 26. As described above, in the heating step of heating the roller portion 24, the stress generated in the hardened portion 26 can be mainly used as the compressive stress, so that the tensile stress generated in the hardened portion 26 is suppressed, and Cracks can be less likely to propagate. Therefore, the hardened portion 26 can be hardly damaged.
 また、このように焼嵌めによってローラ部24とジャーナルハウジング23とを嵌合させることができる。このため、隙間嵌めを行う必要が無く、外周面に硬化部26を有する粉砕ローラ5であっても、ローラ部24及びジャーナルハウジング23に対して、嵌め合い部分の寸法管理に加えて固定部材の取り付け加工などの特別な加工を施すことなく、ローラ部24とジャーナルハウジング23とを焼嵌めで嵌合させて粉砕ローラ5を製造することができる。したがって、ローラ部24及びジャーナルハウジング23に対して特別な加工を施す方法と比較して、コストを低減するとともに、製造に要する時間を短縮化することができる。 ロ ー ラ Further, the roller portion 24 and the journal housing 23 can be fitted by shrink fitting as described above. For this reason, there is no need to perform gap fitting, and even with the crushing roller 5 having the hardened portion 26 on the outer peripheral surface, the crushing roller 5 and the journal housing 23 can be fitted to the fixing member in addition to the dimensional management of the fitted portion. The crushing roller 5 can be manufactured by fitting the roller portion 24 and the journal housing 23 by shrink fitting without performing any special processing such as mounting processing. Therefore, the cost can be reduced and the time required for manufacturing can be reduced as compared with a method of performing special processing on the roller portion 24 and the journal housing 23.
 また、ローラ部24の中心軸線C1が床面と直交方向となる状態で設置され、かつ、内周面が外気に開放した状態(換言すれば、大気開放した状態)で、外周面側からローラ部24を加熱している。これにより、円環状の内側空間内の空気は、加熱により昇温し、煙突効果により、図4の矢印で示すように、上昇気流となり大気に放出される。したがって、内側空間内に昇温した空気が滞留しないので、ローラ部24の内周面の温度分布を少なくなるように抑制し、ローラ部24全体における不均一な応力の発生を抑制することができる。よって、ローラ部24を損傷し難くすることができる。ローラ部24の損傷とは、例えば、部分的な微小亀裂の発生、内部の亀裂の進展や、一部の脱落などが挙げられる。 In addition, the roller unit 24 is installed in a state where the central axis C1 is orthogonal to the floor surface and the inner peripheral surface is open to the outside air (in other words, the state where the inner peripheral surface is open to the atmosphere). The part 24 is being heated. As a result, the temperature of the air in the annular inner space rises by heating, and as a result of the chimney effect, as shown by an arrow in FIG. Therefore, since the heated air does not stay in the inner space, the temperature distribution on the inner peripheral surface of the roller portion 24 is suppressed to be reduced, and the occurrence of uneven stress in the entire roller portion 24 can be suppressed. . Therefore, the roller portion 24 can be hardly damaged. The damage to the roller portion 24 includes, for example, generation of a partial micro-crack, growth of an internal crack, and partial drop-off.
 本実施形態では、ローラ部24と床面との間に形成される下部空間と内側空間とが連通している。これにより、下部空間を介して、内側空間の下方から空気が流入するので、より効果的に煙突効果を作用させて、確実に内側空間内に上昇気流を発生させることができる。したがって、より好適に、ローラ内周面の温度分布を抑制し、ローラ部24全体における不均一な応力の発生を抑制することができる。 In the present embodiment, the lower space formed between the roller portion 24 and the floor surface and the inner space communicate with each other. This allows air to flow from below the inner space through the lower space, so that the chimney effect can be more effectively applied and an ascending airflow can be reliably generated in the inner space. Therefore, it is possible to more suitably suppress the temperature distribution on the inner peripheral surface of the roller and suppress the occurrence of uneven stress in the entire roller portion 24.
 また、ローラ部24を加熱する工程で、ローラ部24の内周面が外気へと開放した状態としているので、加熱工程において、ローラ部24の内周面にアクセスすることができる。これにより、加熱工程において、ローラ部24の内径の熱伸び量をノギスやレーザ距離計測器などで計測することができる。したがって、ローラ部24の内径の熱伸び量を確認しながら加熱することができるので、確実に所望の熱伸び量とすることができる。従い、継続的に熱伸び量を確認しているので、所望の熱伸び量となった時点で加熱工程を終えることができるので、過度の加熱等による無駄な時間の発生を防止し、加熱工程を適正化することができる。またローラ部24の内径の所望の熱伸び量を得るに際しては、ヒータ31を所定の昇温速度とした際の加熱経過時間との関係を事前試験で確認しておくことで、加熱経過時間で加熱工程を管理してもよい。 In addition, since the inner peripheral surface of the roller unit 24 is open to the outside air in the step of heating the roller unit 24, the inner peripheral surface of the roller unit 24 can be accessed in the heating step. Thus, in the heating step, the amount of thermal expansion of the inner diameter of the roller portion 24 can be measured with a caliper, a laser distance measuring device, or the like. Therefore, since the heating can be performed while checking the thermal expansion amount of the inner diameter of the roller portion 24, the desired thermal expansion amount can be reliably obtained. Therefore, since the amount of thermal elongation is continuously checked, the heating step can be completed when the desired amount of thermal elongation is reached. Can be optimized. In order to obtain a desired amount of thermal expansion of the inner diameter of the roller portion 24, the relationship between the heating time and the heating time when the heater 31 is set to a predetermined heating rate is confirmed by a preliminary test. The heating step may be managed.
 本実施形態では、ローラ部24の半径方向の外周面をヒータ31で覆うとともに、ヒータ31の半径方向の外周面を断熱材29で覆っているので、ヒータ31からの熱散逸を低減し、ヒータ31からローラ部24へ向かう熱流束を安定化させることができる。したがって、ヒータ31からローラ部24の外周面への伝熱量の分布を抑制して均一化することができる。
 また、ローラ部24の内周面が大気開放した状態(すなわち、低温側)であるので、外周面側から入熱した熱は内周面側に向かって移動し易い。このように、内周面側へ向かう熱流束の方向付けをすることができるので、ローラ部24の内周面側の昇温を安定化させることができる。
In the present embodiment, since the radial outer peripheral surface of the roller portion 24 is covered with the heater 31 and the radial outer peripheral surface of the heater 31 is covered with the heat insulating material 29, heat dissipation from the heater 31 is reduced. The heat flux from 31 to the roller unit 24 can be stabilized. Therefore, the distribution of the amount of heat transfer from the heater 31 to the outer peripheral surface of the roller portion 24 can be suppressed and made uniform.
Further, since the inner peripheral surface of the roller portion 24 is open to the atmosphere (that is, the low-temperature side), heat input from the outer peripheral surface is likely to move toward the inner peripheral surface. In this manner, the direction of the heat flux toward the inner peripheral surface side can be directed, so that the temperature rise on the inner peripheral surface side of the roller portion 24 can be stabilized.
 外周面から入熱した熱が、内周面まで伝達するには所定の時間がかかる。このため、ローラ部24を外周面からヒータ31で加熱した場合、外周面と内周面とに温度差が発生する。本実施形態では、室温状態からヒータ31を所定の昇温速度で昇温しながらローラ部24を加熱している。これにより、ヒータ31の昇温に追従するようにローラ部24の外周面と内周面も昇温する。したがって、温度を一定に保っているヒータ31でローラ部24の外周面の温度を一定に保ちながら加熱する方法と比較して、ローラ部24の内周面と外周面との温度差が小さくなる。したがって、ローラ部24の外周面側に設けられている硬化部26へ発生する応力を低減することができる。よって、ローラ部24を損傷し難くすることができる。 熱 It takes a certain time for the heat input from the outer peripheral surface to transfer to the inner peripheral surface. For this reason, when the roller portion 24 is heated from the outer peripheral surface by the heater 31, a temperature difference occurs between the outer peripheral surface and the inner peripheral surface. In the present embodiment, the roller unit 24 is heated while the temperature of the heater 31 is increased from a room temperature state at a predetermined heating rate. As a result, the outer peripheral surface and the inner peripheral surface of the roller portion 24 are also heated so as to follow the temperature rise of the heater 31. Therefore, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion 24 is smaller than that of a method in which the temperature of the outer peripheral surface of the roller portion 24 is kept constant by the heater 31 that keeps the temperature constant. . Therefore, stress generated in the hardened portion 26 provided on the outer peripheral surface side of the roller portion 24 can be reduced. Therefore, the roller portion 24 can be hardly damaged.
 ヒータ31の昇温速度を遅くすると、ローラ部24の内周面と外周面との温度差を十分に低減でき、ローラ部24を損傷し難くすることができるが、ローラ部24とジャーナルハウジング23とを焼嵌めするために必要な熱伸び量を得るまでに時間がかかるため、加熱工程が長時間化してしまい、作業性が低下する。一方、ヒータ31の昇温速度を速くすると、加熱工程を短時間化することができるが、ローラ部24の内周面と外周面との温度差を十分に低減することができずに、ローラ部24に損傷が発生する可能性が高まる。 When the heating rate of the heater 31 is reduced, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion 24 can be sufficiently reduced and the roller portion 24 can be hardly damaged. Since it takes a long time to obtain the amount of thermal elongation necessary for shrink-fitting, the heating step is lengthened and the workability is reduced. On the other hand, if the heating rate of the heater 31 is increased, the heating process can be shortened, but the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion 24 cannot be sufficiently reduced. The possibility that the part 24 will be damaged increases.
 本実施形態では、ヒータ31を1℃/min以上であって、かつ、2℃/min以下の昇温速度で昇温している。このように、昇温速度を2℃/min以下とすることで、ローラ部24の内周面と外周面との温度差を十分に低減し、ローラ部24を損傷し難くすることができるとともに、昇温速度を1℃/min以上とすることで、加熱工程の過剰な長時間化を防止して作業性を向上することができる。 In the present embodiment, the temperature of the heater 31 is raised at a rate of 1 ° C./min or more and 2 ° C./min or less. As described above, by setting the heating rate to 2 ° C./min or less, the temperature difference between the inner peripheral surface and the outer peripheral surface of the roller portion 24 can be sufficiently reduced, and the roller portion 24 can be hardly damaged. By setting the heating rate to 1 ° C./min or more, the workability can be improved by preventing an excessively long heating step.
 本実施形態では、ローラ部24の外周面を覆う複数のヒータ31が、並んで配置され、各々異なる給電制御部32により昇温速度を制御されている。これにより、各ヒータ31の昇温速度を個別に適宜制御することで、ローラ部24の外周面の温度分布の発生を抑制することができる。外周面の温度分布の発生を抑制することで、外周面から入力する熱を均一化できるので、ローラ部24の内周面の温度分布を抑制することができる。 In the present embodiment, the plurality of heaters 31 that cover the outer peripheral surface of the roller unit 24 are arranged side by side, and the heating rates are controlled by different power supply control units 32, respectively. Accordingly, by appropriately controlling the rate of temperature increase of each heater 31 individually, it is possible to suppress the occurrence of a temperature distribution on the outer peripheral surface of the roller unit 24. By suppressing the occurrence of the temperature distribution on the outer peripheral surface, the heat input from the outer peripheral surface can be made uniform, so that the temperature distribution on the inner peripheral surface of the roller unit 24 can be suppressed.
 また、ローラ部24の外周面を覆う複数のヒータ31が、発熱密度を上昇できるように並んで配置されているので、各ヒータ31が小型化される。これにより、各ヒータ31における温度分布を低減することができるので、ローラ部24の外周面の温度分布の発生を抑制することができる。 {Circle around (2)} Since the plurality of heaters 31 covering the outer peripheral surface of the roller portion 24 are arranged side by side so as to increase the heat generation density, each heater 31 is downsized. Thus, the temperature distribution in each heater 31 can be reduced, so that the occurrence of a temperature distribution on the outer peripheral surface of the roller unit 24 can be suppressed.
[変形例1]
 本実施形態の変形例1について説明する。
 本変形例では、ローラ部24の外周面とヒータ31との間に金属箔を設けた状態で、ローラ部24の加熱を行う点で上記実施形態と異なる。なお、金属箔は変形が容易で、熱伝導性が良いものが好ましく、例えばアルミ箔が好適である。また他には、銅箔などでもよい。
[Modification 1]
Modification 1 of the present embodiment will be described.
The present modified example is different from the above embodiment in that the roller unit 24 is heated in a state where the metal foil is provided between the outer peripheral surface of the roller unit 24 and the heater 31. It is preferable that the metal foil be easily deformable and have good thermal conductivity, and for example, an aluminum foil is suitable. Alternatively, a copper foil or the like may be used.
 ローラ部24の外周面へのヒータ31の熱的密着状態で、ヒータ31からローラ部24への熱流束が大きく変化して、ローラ内面の昇温状態が変化することが判明した。
 加熱工程において、ヒータ31とローラ部24とは、少なくともヒータ31がローラ部24の外周面に対してガタつくことがなく、外周面の上下方向複数箇所をワイヤ等で固縛するなどで固定されている(以下、「通常固定状態」という。)。ヒータ31は、ローラ部24の外周面に極力均一に密着するように設けることが望ましいが、実際には、加熱開始時点においては、熱的密着状態が十分に高いとは限らず、ヒータ31からローラ部24への熱伝達率は、ヒータ31が熱的に完全密着している場合と比較して、1/2~1/10程度になっている場合があると推察される。
It has been found that in a state in which the heater 31 is in close contact with the outer peripheral surface of the roller portion 24, the heat flux from the heater 31 to the roller portion 24 changes greatly, and the temperature rising state of the roller inner surface changes.
In the heating step, the heater 31 and the roller portion 24 are fixed by, for example, securing the heater 31 to the outer peripheral surface of the roller portion 24 with a wire or the like at a plurality of locations in the vertical direction of the outer peripheral surface without rattling. (Hereinafter, referred to as “normally fixed state”). The heater 31 is desirably provided so as to be in close contact with the outer peripheral surface of the roller portion 24 as much as possible. However, in actuality, at the start of heating, the state of thermal contact is not always sufficiently high. It is presumed that the heat transfer coefficient to the roller portion 24 may be about ~ to 1/10 as compared with the case where the heater 31 is completely in close contact thermally.
 すなわち、ローラ外面に対して、ヒータ31が密着して熱伝達率が、例えば5倍に向上することで約20%速くローラ内面の温度が上昇し、ローラ外面とローラ内面との温度差も約20%低減される。 That is, when the heater 31 is in close contact with the outer surface of the roller and the heat transfer coefficient is improved, for example, by a factor of five, the temperature of the inner surface of the roller increases approximately 20% faster, and the temperature difference between the outer surface of the roller and the inner surface of the roller also decreases. 20% reduction.
 このことは、図11及び図12から判断することができる。
 図11は、経過時間(分)と、ヒータ温度(℃)またはローラ内面温度(℃)との関係を示している。また、図11の実線111は昇温速度10℃/30分間で昇温する際のヒータ温度を示し、破線112は昇温速度50℃/30分間で昇温する際のヒータ温度を示し、実線113は通常固定状態において昇温速度10℃/30分間で昇温する際のローラ内面温度を示し、破線114は通常固定状態において昇温速度50℃/30分間で昇温する際のローラ内面温度を示し、2点鎖線115はヒータ31とローラ部24とが熱的密着状態を向上させた密着状態において昇温速度50℃/30分間で昇温する際のローラ内面温度を示している。
 破線114と、2点鎖線115とを比較すると、同じ経過時間であっても、ヒータ31とローラ部24とが熱的密着状態を向上させた密着状態の場合には、通常固定状態の場合よりも、ローラ内面温度が高くなっていることが分かる(図11の矢印参照)。
This can be determined from FIGS. 11 and 12.
FIG. 11 shows the relationship between the elapsed time (minutes) and the heater temperature (° C.) or the roller inner surface temperature (° C.). Further, a solid line 111 in FIG. 11 indicates a heater temperature when the temperature is increased at a rate of 10 ° C./30 minutes, and a broken line 112 indicates a heater temperature when the temperature is increased at a rate of 50 ° C./30 minutes. Reference numeral 113 denotes a roller inner surface temperature when the temperature is raised at a temperature rising rate of 10 ° C./30 minutes in the normal fixed state, and a broken line 114 denotes a roller inner surface temperature when the temperature is raised at a temperature rising rate of 50 ° C./30 minutes in the normal fixed state. And a two-dot chain line 115 indicates the roller inner surface temperature when the heater 31 and the roller section 24 are heated at a heating rate of 50 ° C./30 minutes in a contact state in which the thermal contact state is improved.
When the broken line 114 is compared with the two-dot chain line 115, even when the same elapsed time, when the heater 31 and the roller unit 24 are in the close contact state in which the thermal close state is improved, the state is higher than in the normal fixed state. Also, it can be seen that the roller inner surface temperature is high (see the arrow in FIG. 11).
 図12は、経過時間(分)と、ヒータ温度(℃)またはローラ外面温度とローラ内面温度との温度差ΔT(℃)と、の関係を示している。また、図12の破線121は、昇温速度50℃/30分間で昇温する際のヒータ温度を示し、破線122は、通常固定状態において昇温速度50℃/30分間で昇温する際のローラ外面温度とローラ内面温度との温度差を示し、2点鎖線123は、ヒータ31とローラ部24とが熱的密着状態を向上させた密着状態において昇温速度50℃/30分間で昇温する際のローラ外面温度とローラ内面温度との温度差を示している。
 破線122と2点鎖線123を比較すると、同じ経過時間であっても、ヒータ31とローラ部24とが熱的密着状態を向上させた密着状態の場合には、通常固定状態の場合よりも、ローラ外面温度とローラ内面温度との温度差が小さくなっていることが分かる(図12の矢印参照)。
FIG. 12 shows the relationship between the elapsed time (minutes) and the temperature difference ΔT (° C.) between the heater temperature (° C.) or the roller outer surface temperature and the roller inner surface temperature. In addition, a broken line 121 in FIG. 12 indicates a heater temperature when the temperature is raised at a heating rate of 50 ° C./30 minutes, and a broken line 122 indicates a heater temperature when the temperature is raised at a heating rate of 50 ° C./30 minutes in a normal fixed state. The two-dot chain line 123 indicates the temperature difference between the roller outer surface temperature and the roller inner surface temperature, and the temperature is increased at a heating rate of 50 ° C./30 minutes in a contact state where the heater 31 and the roller section 24 are in a close contact state. 4 shows a temperature difference between the roller outer surface temperature and the roller inner surface temperature at the time of the operation.
Comparing the dashed line 122 with the two-dot chain line 123, even when the same elapsed time, when the heater 31 and the roller unit 24 are in a close contact state in which the thermal close state is improved, the state is higher than in the normal fixed state. It can be seen that the temperature difference between the roller outer surface temperature and the roller inner surface temperature is smaller (see the arrow in FIG. 12).
 本変形例では、以下の作用効果を奏する。
 本変形例では、ローラ部24とヒータ31との間に金属箔を設けている。金属箔は、変形が容易であるので、ローラ部24とヒータ31との間に設けられた金属箔は、ローラ部24とヒータ31との間の隙間に応じた形状に変形し、ローラ部24及びヒータ31と密着する。このように、ローラ部24とヒータ31との間に金属箔を設けることで、ローラ部24とヒータ31との間に形成される隙間を、金属箔で埋めることができる。
In this modification, the following operation and effect can be obtained.
In this modification, a metal foil is provided between the roller unit 24 and the heater 31. Since the metal foil is easily deformed, the metal foil provided between the roller section 24 and the heater 31 is deformed into a shape corresponding to the gap between the roller section 24 and the heater 31, and And the heater 31. By providing the metal foil between the roller unit 24 and the heater 31, the gap formed between the roller unit 24 and the heater 31 can be filled with the metal foil.
 金属箔は、熱伝導性がよいので、ローラ部24とヒータ31との間に形成される隙間を金属箔で埋めることで、ローラ部24とヒータ31との熱伝導率が向上する。これにより、ヒータ31からローラ部24への熱流束を大きくすることができる。したがって、ヒータ31の熱がローラ部24の内周面に伝達し易くなるので、内周面における昇温が好適に行われる。よって、ローラ部24の内周面の温度分布を抑制し、ローラ部24全体における不均一な応力の発生を抑制することができる。よって、ローラ部24を損傷し難くすることができる。 (4) Since the metal foil has good thermal conductivity, filling the gap formed between the roller portion 24 and the heater 31 with the metal foil improves the heat conductivity between the roller portion 24 and the heater 31. Thereby, the heat flux from the heater 31 to the roller unit 24 can be increased. Therefore, the heat of the heater 31 is easily transmitted to the inner peripheral surface of the roller portion 24, and the temperature on the inner peripheral surface is suitably increased. Therefore, the temperature distribution on the inner peripheral surface of the roller unit 24 can be suppressed, and the occurrence of uneven stress in the entire roller unit 24 can be suppressed. Therefore, the roller portion 24 can be hardly damaged.
[変形例2]
 次に、本実施形態の変形例2について説明する。
 本変形例では、複数の所定のヒータ昇温速度の条件と複数のローラ部24の構造に対応して、ローラ部24の加熱工程と嵌合工程で収集した計測データをデータベースに蓄積して、データのテーブルが構築されている。予めヒータ昇温速度に対するローラ部24の構造や加熱によるローラ部24の各部分の温度やローラ内径の熱伸び量の計測値に関するデータを蓄積して、データベースによるテーブルが作成されている。すなわち、制御装置(図示省略)が、加熱工程におけるヒータ31の昇温速度及びローラ部24の熱伸び量を記憶する(昇温速度記憶工程、熱伸び量記憶工程)とともに、記憶した昇温速度と、熱伸び量とに基づいて、昇温速度と熱伸び量との関係を定めたテーブルを作成する(テーブル作成工程)とともに、テーブルを記憶している。
 ここで、粉砕機1のある現地でローラ部24に対して仮の昇温速度で加熱工程を行う予備加熱試験を実施する。これにより、ローラの加熱処理の適正な昇温速度を選定して適正なローラ部24の加熱条件の範囲内で加熱を行うことができる。
 予備加熱試験とは、例えば、ローラ部24に対して、予定の昇温速度に対する10分間程度の予備加熱を行い、時間経過に対する熱伸び量と昇温速度(例えば、1つ~2つの条件)との相関データを採取し、蓄積したデータベース(テーブル)と比較して適正な昇温速度を判断して選定する試験である。また、加熱工程において、ローラ部24に対して仮の昇温速度で予備加熱を行うとともに、仮の昇温速度及び予備加熱におけるローラ部24の熱伸び量と、テーブルと、に基づいて決定された昇温速度によってローラ部24の加熱を行ってもよい。
[Modification 2]
Next, a second modification of the present embodiment will be described.
In this modification, the measurement data collected in the heating step and the fitting step of the roller unit 24 are stored in a database in accordance with the conditions of the plurality of predetermined heater heating rates and the structure of the plurality of roller units 24, A table of data has been built. A table based on a database is created by previously accumulating data on the structure of the roller unit 24 with respect to the heater heating speed, the temperature of each part of the roller unit 24 due to heating, and the measured value of the thermal expansion amount of the roller inner diameter. That is, the control device (not shown) stores the heating rate of the heater 31 and the thermal expansion amount of the roller unit 24 in the heating step (heating rate storage step, thermal expansion amount storing step), and stores the stored heating rate. And a table that defines the relationship between the temperature rise rate and the amount of thermal elongation based on the thermal elongation and the table (table creating step), and stores the table.
Here, a preliminary heating test is performed in which the roller unit 24 is heated at a temporary heating rate at a site where the crusher 1 is located. This makes it possible to select an appropriate temperature increase rate for the heat treatment of the roller and perform heating within a range of appropriate heating conditions for the roller unit 24.
In the preheating test, for example, the roller unit 24 is preheated for about 10 minutes at a predetermined heating rate, and the amount of thermal elongation and the heating rate over time (for example, one to two conditions) are performed. This is a test in which correlation data is collected and compared with an accumulated database (table) to judge and select an appropriate heating rate. Further, in the heating step, preliminary heating is performed on the roller unit 24 at a temporary heating rate, and the roller unit 24 is determined based on the table and the thermal expansion amount of the roller unit 24 at the temporary heating rate and the preliminary heating. The heating of the roller unit 24 may be performed at the increased temperature rising rate.
 また、選定した昇温速度は、ローラ内面とローラ外面との急激な温度勾配による温度差が大きくならない条件とすることができるので、ローラの外周面に設けられた硬化部26への応力発生を抑えて、部分的な損傷を抑制することができるので、好適である。 Further, the selected heating rate can be set under such a condition that the temperature difference due to a sharp temperature gradient between the inner surface of the roller and the outer surface of the roller does not become large, so that the generation of stress to the hardened portion 26 provided on the outer peripheral surface of the roller is reduced. This is preferable because it can suppress partial damage.
 本変形例によれば、以下の作用効果を奏する。
 本変形例では、予備加熱試験によってローラ部24の加熱処理の適正な昇温速度を予め選定して、適正なローラ部24の加熱条件の範囲内で加熱を行っているので、ローラの外周面に設けられた硬化部26への応力発生を抑えて部分的な損傷を抑制して、加熱工程での作業時間を短縮することができる。
According to this modification, the following operation and effect can be obtained.
In the present modified example, an appropriate heating rate of the heat treatment of the roller unit 24 is previously selected by a preliminary heating test, and heating is performed within a range of appropriate heating conditions of the roller unit 24. Thus, it is possible to suppress the occurrence of stress on the hardened portion 26 provided on the substrate, to suppress partial damage, and to shorten the working time in the heating step.
 なお、本変形例では、データベースによるテーブルによって加熱条件を決定する例について説明したが、加熱条件のデータの蓄積を進めることで、各種ローラのサイズに対する加熱条件の適正範囲を判断できるように、AIシステムを構築し、当該AIシステムによって適切な昇温速度や、目安とする加熱温度などの加熱条件を決定してもよい。 In the present modified example, an example in which the heating condition is determined by a table based on the database has been described. However, by accumulating the data of the heating condition, the AI range is determined so that the appropriate range of the heating condition for the size of each roller can be determined. A system may be constructed, and an appropriate heating rate such as a heating rate or a target heating temperature may be determined by the AI system.
[変形例3]
 次に、本実施形態の変形例3について説明する。
 本変形例では、加熱工程において、昇温速度を、1℃/min~2℃/minの適正範囲内で、変更している点が上記実施形態と異なる。
 本変形例では、図13に示すように、加熱開始時から所定の時間(本実施形態では十数分間)のみ昇温速度1℃/min(第1昇温速度)でヒータ31を昇温することでローラ部24の外周面を加熱(第1加温工程)し、所定の時間が経過した後は、昇温速度2℃/min(第2昇温速度)でヒータ31を昇温することでローラ部24の外周面を加熱している(第2加温工程)。
[Modification 3]
Next, a third modification of the present embodiment will be described.
This modification is different from the above embodiment in that the heating rate is changed within a proper range of 1 ° C./min to 2 ° C./min in the heating step.
In the present modified example, as shown in FIG. 13, the heater 31 is heated at a heating rate of 1 ° C./min (first heating rate) only for a predetermined time (ten and several minutes in this embodiment) from the start of heating. Thus, the outer peripheral surface of the roller portion 24 is heated (first heating step), and after a predetermined time has elapsed, the heater 31 is heated at a heating rate of 2 ° C./min (second heating rate). To heat the outer peripheral surface of the roller portion 24 (second heating step).
 昇温速度を変化させた際のローラ内面とローラ外面との温度差の変化を、図13を用いて説明する。図13は、ヒータ31の温度、ローラ内面の温度及びローラ内面とローラ外面との温度差ΔTの経過時間による変化を示したグラフであって、横軸が経過時間(分)を示し、縦軸が温度差(ΔT)または温度(℃)を示している。また、網掛け部分は、必要熱伸びの量である0.2mmに達した際の経過時間帯を示している。 The change in the temperature difference between the inner surface of the roller and the outer surface of the roller when the heating rate is changed will be described with reference to FIG. FIG. 13 is a graph showing changes in the temperature of the heater 31, the temperature of the inner surface of the roller, and the temperature difference ΔT between the inner surface of the roller and the outer surface of the roller with the elapsed time, in which the horizontal axis indicates the elapsed time (minutes) and the vertical axis indicates the elapsed time. Indicates a temperature difference (ΔT) or a temperature (° C.). The shaded portion indicates the elapsed time zone when the required thermal elongation reaches 0.2 mm.
 また、図13の破線131は、昇温速度50℃/30分間で昇温する際のヒータ温度を示している。また、実線132は、昇温速度を変化させた際のヒータ温度を示している。また、破線133は、昇温速度50℃/30分間で昇温する際のローラ内面温度を示している。また、実線134は、昇温速度を変化させた際のローラ内面温度を示している。また、破線135は、昇温速度50℃/30分間で昇温する際のローラ内面とローラ外面との温度差を示している。また、実線136は、昇温速度を変化させた際のローラ内面とローラ外面との温度差を示している。 {Circle around (1)} The broken line 131 in FIG. 13 indicates the heater temperature when the temperature is increased at a rate of 50 ° C./30 minutes. Further, a solid line 132 indicates the heater temperature when the heating rate is changed. A broken line 133 indicates the roller inner surface temperature when the temperature is increased at a rate of 50 ° C./30 minutes. Further, a solid line 134 indicates the roller inner surface temperature when the heating rate is changed. A broken line 135 indicates a temperature difference between the inner surface of the roller and the outer surface of the roller when the temperature is increased at a temperature increase rate of 50 ° C./30 minutes. A solid line 136 indicates a temperature difference between the inner surface of the roller and the outer surface of the roller when the heating rate is changed.
 破線133と、実線134とを比較することで、昇温速度50℃/30分間で昇温する際のローラ内面温度と、昇温速度を変化させた際のローラ内面温度とは、ほとんど差がないことが分かる。また、破線135と、実線136とを比較することで、加熱開始時から所定の時間において、昇温速度を変化させた場合の方が、昇温速度50℃/30分間で昇温する場合よりも、ローラ内面とローラ外面との温度差が低減していることが分かる。そして、必要熱伸び量に達した際にも、昇温速度を変化させた場合の方が、昇温速度50℃/30分間で昇温する場合よりも、ローラ内面とローラ外面との温度差が約5℃低減していることがわかる。 By comparing the dashed line 133 with the solid line 134, there is almost no difference between the roller inner surface temperature when the temperature is increased at a heating rate of 50 ° C./30 minutes and the roller inner surface temperature when the heating rate is changed. I understand that there is no. Further, by comparing the broken line 135 with the solid line 136, the case where the heating rate is changed at a predetermined time from the start of heating is more effective than the case where the heating is performed at a heating rate of 50 ° C./30 minutes. Also, it can be seen that the temperature difference between the roller inner surface and the roller outer surface is reduced. Even when the required thermal elongation is reached, the temperature difference between the roller inner surface and the roller outer surface is greater when the heating rate is changed than when the temperature is increased at a heating rate of 50 ° C./30 minutes. Is reduced by about 5 ° C.
 このように、加熱開始時から所定の時間(本実施形態では十数分間)のみ昇温速度1℃/minでヒータ31を昇温することで、ローラ外面側での急激な温度勾配の発生による、ローラ内面とローラ外面との温度差の増大を抑制することができる。また、その後に、昇温速度2℃/minでヒータ31を昇温することでローラ部24の外周面を加熱して、必要熱伸び量(0.2mm)を得ることで、ローラ内面とローラ外面との温度差を小さくして、粉砕ローラ5の硬化部26への応力発生を抑制することができる。よって、ローラ部24を損傷し難くすることができる。また、ローラの内面温度は、昇温速度50℃/30分間の場合と、昇温速度を変化させた場合とで、ほとんど変化することがないことから、昇温速度を変化させた場合であっても、加熱工程に係る作業時間が増加することもない。 As described above, by increasing the temperature of the heater 31 at a temperature increasing rate of 1 ° C./min only for a predetermined time (ten and several minutes in this embodiment) from the start of heating, a sharp temperature gradient is generated on the outer surface of the roller. Thus, it is possible to suppress an increase in the temperature difference between the inner surface of the roller and the outer surface of the roller. Further, thereafter, the outer peripheral surface of the roller portion 24 is heated by raising the temperature of the heater 31 at a temperature rising rate of 2 ° C./min to obtain a necessary thermal elongation (0.2 mm). By reducing the temperature difference from the outer surface, the generation of stress on the hardened portion 26 of the crushing roller 5 can be suppressed. Therefore, the roller portion 24 can be hardly damaged. Further, the inner surface temperature of the roller hardly changes between the case where the heating rate is 50 ° C./30 minutes and the case where the heating rate is changed. However, the operation time related to the heating step does not increase.
 本変形例によれば、以下の作用効果を奏する。
 加熱開始に伴ってローラ部24の外周面での急激な温度上昇に起因して発生する、ローラ部24の外周面と内周面との温度差の増大を抑制し、ローラ部24の外周面に設けられている硬化部26へ発生する応力を低減することができる。よって、ローラ部24を損傷し難くすることができる。
According to this modification, the following operation and effect can be obtained.
An increase in the temperature difference between the outer peripheral surface and the inner peripheral surface of the roller portion 24, which is caused by a rapid temperature rise on the outer peripheral surface of the roller portion 24 with the start of heating, is suppressed. Can be reduced. Therefore, the roller portion 24 can be hardly damaged.
 なお、昇温速度を変化させる所定の時間は、上記説明に限定されない。所定の時間は、変化前の昇温速度と、変化後の昇温速度とのうち、高い方の昇温速度によって、ローラ外周面の温度を必要熱伸び量(0.2mm)が得られる温度(例えば、30℃~50℃程度)以上に加熱するために必要な時間の1/3~1/2程度であればよい。
 また、所定の時間を予め設定しておき、それに合わせて昇温速度を設定してもよい。
Note that the predetermined time for changing the heating rate is not limited to the above description. The predetermined time is a temperature at which the required thermal elongation (0.2 mm) can be obtained by determining the temperature of the roller outer peripheral surface by the higher one of the heating rate before the change and the heating rate after the change. (Eg, about 30 ° C. to 50 ° C.) or more, about よ い to の of the time required for heating.
In addition, a predetermined time may be set in advance, and the heating rate may be set in accordance with the predetermined time.
 なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
 例えば、各変形例は、各々、組み合わせてもよい。
 また、例えば、上記実施形態では、外径L1が約1.5mであり、内径L4が、約1.1mであるローラ部24について説明したが、本発明はこれに限定されない。内径が約0.5mから約1.8mの間であるローラ部24であれば、好適な加熱することができる。
Note that the present invention is not limited to the invention according to the above-described embodiment, and can be appropriately modified without departing from the gist thereof.
For example, each of the modifications may be combined.
Further, for example, in the above-described embodiment, the roller portion 24 having the outer diameter L1 of about 1.5 m and the inner diameter L4 of about 1.1 m has been described, but the present invention is not limited to this. The roller portion 24 having an inner diameter of about 0.5 m to about 1.8 m can be suitably heated.
1   :粉砕機
2   :ハウジング
2a  :側面部
2b  :天井面部
2c  :底面部
3   :空気供給ダクト
4   :粉砕テーブル
5   :粉砕ローラ
7   :燃料供給管
8   :ロータリセパレータ
9   :出口ポート
15  :回転支持部
16  :テーブル部
17  :ジャーナルシャフト
18  :ジャーナルヘッド
19  :偏心軸
20  :押圧装置
21  :ストッパ
23  :ジャーナルハウジング(支持部)
24  :ローラ部
25  :基部
26  :硬化部
27  :断熱レンガ
29  :断熱材
30  :昇温装置
31  :ヒータ
32  :給電制御部
33  :電源部
34  :温度計測器
 
 
1: crusher 2: housing 2a: side surface 2b: ceiling surface 2c: bottom surface 3: air supply duct 4: crush table 5: crush roller 7: fuel supply pipe 8: rotary separator 9: outlet port 15: rotation support 16: Table 17: Journal shaft 18: Journal head 19: Eccentric shaft 20: Pressing device 21: Stopper 23: Journal housing (support)
Reference numeral 24: roller portion 25: base portion 26: hardening portion 27: insulating brick 29: heat insulating material 30: heating device 31: heater 32: power supply control portion 33: power supply portion 34: temperature measuring device

Claims (13)

  1.  被粉砕物を粉砕する粉砕機に用いられ、該粉砕機のハウジングに対して回転自在に支持される支持部と、円環状の基部及び該基部の半径方向の外周面に設けられて前記基部と熱膨張係数が異なる硬化部を有する円環状のローラ部と、を備えた粉砕ローラの製造方法であって、
     前記ローラ部の中心軸線が床面と直交する方向となる状態であって、かつ、前記ローラ部の半径方向の内周面が外気へ開放した状態で、前記ローラ部の半径方向の外周面側から前記ローラ部を加熱する加熱工程と、
     前記支持部と前記加熱工程によって昇温した状態にある前記ローラ部とを、前記ローラ部の前記内周面が前記支持部の外周面と対向又は接触するように配置する配置工程と、
     前記配置工程で配置した前記ローラ部を冷却して、前記支持部と前記ローラ部とを嵌合する嵌合工程と、を備えた粉砕ローラの製造方法。
    Used in a crusher for crushing the object to be crushed, a support portion rotatably supported with respect to a housing of the crusher, an annular base portion and the base portion provided on a radially outer peripheral surface of the base portion. An annular roller portion having a cured portion having a different coefficient of thermal expansion, and a method of manufacturing a pulverizing roller including:
    In a state where the central axis of the roller portion is in a direction orthogonal to the floor surface, and in a state where the radial inner peripheral surface of the roller portion is open to the outside air, the radial outer peripheral surface side of the roller portion A heating step of heating the roller portion from
    An arranging step of arranging the supporting portion and the roller portion in a state where the temperature is increased by the heating step, such that the inner peripheral surface of the roller portion faces or contacts the outer peripheral surface of the supporting portion;
    A method of manufacturing the pulverizing roller, comprising: cooling the roller portion arranged in the disposing step, and fitting the supporting portion and the roller portion.
  2.  前記硬化部は、熱膨張係数が前記基部よりも小さい部材を少なくとも一部に含んでいる請求項1に記載の粉砕ローラの製造方法。 The method according to claim 1, wherein the hardened portion includes at least a part of a member having a smaller coefficient of thermal expansion than the base.
  3.  前記加熱工程では、前記ローラ部と前記床面との間に下部空間を形成するとともに、該下部空間と前記ローラ部の前記内周面の内側に形成される内側空間とが連通した状態で、前記ローラ部を加熱する請求項1または請求項2に記載の粉砕ローラの製造方法。 In the heating step, a lower space is formed between the roller portion and the floor surface, and in a state where the lower space communicates with an inner space formed inside the inner peripheral surface of the roller portion, The method according to claim 1, wherein the roller unit is heated.
  4.  前記加熱工程では、前記ローラ部の半径方向の外周面をヒータで覆うとともに、前記ヒータの半径方向の外周面を断熱材で覆った状態において、前記ヒータを昇温することで、前記ローラ部を加熱する請求項1から請求項3のいずれかに記載の粉砕ローラの製造方法。 In the heating step, while covering the radial outer peripheral surface of the roller portion with a heater, and heating the heater in a state where the radial outer peripheral surface of the heater is covered with a heat insulating material, the roller portion is heated. The method for producing a crushing roller according to claim 1, wherein the crushing roller is heated.
  5.  前記加熱工程では、前記ヒータを室温状態から所定の昇温速度で昇温しながら前記ローラ部を加熱する請求項4に記載の粉砕ローラの製造方法。 The method according to claim 4, wherein, in the heating step, the roller unit is heated while the heater is heated from a room temperature state at a predetermined heating rate.
  6.  前記所定の昇温速度は、1℃/min以上であって、かつ、2℃/min以下である請求項5に記載の粉砕ローラの製造方法。 The method according to claim 5, wherein the predetermined heating rate is 1 ° C / min or more and 2 ° C / min or less.
  7.  前記加熱工程では、前記ローラ部と前記ヒータとの間に金属箔を設ける請求項4から請求項6のいずれかに記載の粉砕ローラの製造方法。 The method according to any one of claims 4 to 6, wherein, in the heating step, a metal foil is provided between the roller unit and the heater.
  8.  前記加熱工程は、加熱開始時から所定時間経過するまで前記ヒータを第1昇温速度で昇温することで前記ローラ部の加熱を行う第1加温工程と、前記第1加温工程の後に前記ヒータを前記第1昇温速度よりも早い第2昇温速度で昇温することで前記ローラ部の加熱を行う第2加温工程とを備えている請求項4から請求項7のいずれかに記載の粉砕ローラの製造方法。 The heating step includes a first heating step of heating the roller unit by heating the heater at a first heating rate until a predetermined time has elapsed from the start of heating, and after the first heating step. 8. A second heating step of heating the roller section by heating the heater at a second heating rate higher than the first heating rate. 3. The method for producing a crushing roller according to 1.
  9.  前記ヒータは、複数設けられていて、
     複数の前記ヒータは、前記ローラ部の前記外周面に沿うように、周方向に並んで配置されているとともに、各々、異なる昇温速度制御部により昇温速度を制御されている請求項4から請求項8のいずれかに記載の粉砕ローラの製造方法。
    The heater is provided in plurality,
    The plurality of heaters are arranged side by side in the circumferential direction so as to be along the outer peripheral surface of the roller portion, and the heating rates are controlled by different heating rate control units, respectively. A method for manufacturing the grinding roller according to claim 8.
  10.  前記加熱工程における前記ヒータの昇温速度を記憶する昇温速度記憶工程と、
     前記加熱工程における前記ローラ部の熱伸び量を記憶する熱伸び量記憶工程と、
     前記昇温速度記憶工程で記憶した昇温速度と、前記熱伸び量記憶工程で記憶した熱伸び量とに基づいて、昇温速度と熱伸び量との関係を定めたテーブルを作成するテーブル作成工程と、を備え、
     前記加熱工程では、前記ローラ部に対して仮の昇温速度で予備加熱を行うとともに、前記仮の昇温速度及び前記予備加熱における前記ローラ部の熱伸び量と、前記テーブルと、に基づいて決定された昇温速度によって前記ローラ部の加熱を行う請求項5から請求項9のいずれかに記載の粉砕ローラの製造方法。
    A heating rate storing step of storing a heating rate of the heater in the heating step;
    A thermal expansion amount storage step of storing a thermal expansion amount of the roller unit in the heating step,
    Table creation for creating a table that defines the relationship between the heating rate and the thermal elongation based on the heating rate stored in the heating rate storing step and the thermal elongation stored in the thermal elongation storing step. And a process,
    In the heating step, the preliminary heating is performed on the roller unit at a provisional heating rate, and based on the provisional heating rate and the amount of thermal expansion of the roller unit in the preliminary heating, and the table. The method for manufacturing a crushing roller according to any one of claims 5 to 9, wherein the heating of the roller unit is performed at the determined heating rate.
  11.  被粉砕物を粉砕する粉砕機に用いられ、円環状の基部及び該基部の半径方向の外周面に設けられて前記基部よりも熱膨張係数が異なる硬化部を有している円環状のローラ部を昇温する昇温装置であって、
     前記ローラ部の半径方向の外周面を覆うように設けられるヒータと、
     前記ヒータの昇温速度を制御する昇温速度制御部と、を備え、
     前記昇温速度制御部は、1℃/min以上であって、かつ、2℃/min以下の昇温速度となるように前記ヒータを制御する昇温装置。
    An annular roller portion used for a crusher for crushing an object to be crushed, having an annular base portion and a hardening portion provided on a radially outer peripheral surface of the base portion and having a different coefficient of thermal expansion than the base portion. A temperature raising device for raising the temperature of
    A heater provided to cover a radially outer peripheral surface of the roller unit;
    A heating rate control unit that controls a heating rate of the heater,
    The temperature increasing device controls the heater so that the temperature increasing speed is 1 ° C./min or more and 2 ° C./min or less.
  12.  前記ヒータは、中心軸線が床面と直交する方向となる状態に配置され、かつ、前記ローラ部の半径方向の内周面が外気へ開放した状態で配置された前記ローラ部に対して設けられている請求項11に記載の昇温装置。 The heater is provided for the roller portion arranged such that a central axis is in a direction orthogonal to the floor surface, and a radially inner peripheral surface of the roller portion is open to the outside air. The heating device according to claim 11, wherein:
  13.  前記ヒータは、複数設けられていて、
     前記昇温速度制御部は、複数設けられていて、
     複数の前記ヒータは、前記ローラ部の半径方向の外周面に沿うように、周方向に並んで配置されているとともに、各々、異なる前記昇温速度制御部により昇温速度を制御されている請求項11または請求項12に記載の昇温装置。
    The heater is provided in plurality,
    The plurality of heating rate control units are provided,
    The plurality of heaters are arranged side by side in the circumferential direction so as to be along the outer circumferential surface of the roller portion in the radial direction, and the heating rates are controlled by different heating rate controllers, respectively. The temperature raising device according to claim 11 or 12.
PCT/JP2019/026730 2018-07-13 2019-07-04 Method for manufacturing grinding roller and temperature-raising device WO2020013082A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207036735A KR102431648B1 (en) 2018-07-13 2019-07-04 Grinding roller manufacturing method and temperature rising device
CN201980038767.4A CN112292209B (en) 2018-07-13 2019-07-04 Method for manufacturing grinding roller and temperature rising device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-133156 2018-07-13
JP2018133156A JP7102270B2 (en) 2018-07-13 2018-07-13 Manufacturing method of crushing roller and heating device

Publications (1)

Publication Number Publication Date
WO2020013082A1 true WO2020013082A1 (en) 2020-01-16

Family

ID=69142507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026730 WO2020013082A1 (en) 2018-07-13 2019-07-04 Method for manufacturing grinding roller and temperature-raising device

Country Status (4)

Country Link
JP (1) JP7102270B2 (en)
KR (1) KR102431648B1 (en)
CN (1) CN112292209B (en)
WO (1) WO2020013082A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721036U (en) * 1980-07-09 1982-02-03
JPH057345U (en) * 1991-07-04 1993-02-02 川崎重工業株式会社 Grinding roller for vertical mill
JPH11276919A (en) * 1998-03-31 1999-10-12 Babcock Hitachi Kk Roller mill
JP2001286779A (en) * 2000-04-10 2001-10-16 Babcock Hitachi Kk Vertical roller grinder and method for replacing grinding roller
JP2009131744A (en) * 2007-11-29 2009-06-18 Chugoku Electric Power Co Inc:The Drawing out method of coal mill roller

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940001617Y1 (en) * 1991-07-11 1994-03-21 삼성전자 주식회사 Audio recording control circuit for hi-fi vtr
CN2834698Y (en) * 2005-06-29 2006-11-08 黄继荣 A novel vertical mill
CN100482350C (en) * 2007-06-27 2009-04-29 西安建筑科技大学 Composite-material abrasive roller of tungsten carbide grain reinforced metal base and its production
EP2193850B1 (en) * 2008-12-04 2013-02-27 VSE Aktiengesellschaft Coal mill
DK2399673T3 (en) * 2010-06-24 2013-05-27 Metso Brasil Ind E Com Ltda Roll for high pressure roller mill, roller mill and method for assembling a roller for a roller mill
CN102574125A (en) * 2010-09-16 2012-07-11 里基·E·沃克 Coal pulverizer/classifier deflector
CN103920566A (en) * 2014-04-24 2014-07-16 厦门金邦达实业有限责任公司 Grinding roller device of easily-dismountable bowl-type medium-speed coal mill
CN104630610B (en) * 2015-02-13 2016-07-13 河北泰铭投资集团有限公司 Super wear-resisting compound vertical grinding roll cover and preparation method thereof
CN107552162B (en) * 2017-09-19 2022-11-01 佛山科学技术学院 Roller device of ceramic raw material grinding equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721036U (en) * 1980-07-09 1982-02-03
JPH057345U (en) * 1991-07-04 1993-02-02 川崎重工業株式会社 Grinding roller for vertical mill
JPH11276919A (en) * 1998-03-31 1999-10-12 Babcock Hitachi Kk Roller mill
JP2001286779A (en) * 2000-04-10 2001-10-16 Babcock Hitachi Kk Vertical roller grinder and method for replacing grinding roller
JP2009131744A (en) * 2007-11-29 2009-06-18 Chugoku Electric Power Co Inc:The Drawing out method of coal mill roller

Also Published As

Publication number Publication date
CN112292209B (en) 2021-12-10
CN112292209A (en) 2021-01-29
KR20210011430A (en) 2021-02-01
JP2020011164A (en) 2020-01-23
JP7102270B2 (en) 2022-07-19
KR102431648B1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
TWI527997B (en) Verfahren zur energierueckgewinnung in huettentechnischen anlagen und huettentechnische anlage auf basis von thermoelementen
JP5777130B2 (en) Method and apparatus for manufacturing a strip
JP2019536638A (en) Method for manufacturing a mold or core and mold or core tool
WO2020013082A1 (en) Method for manufacturing grinding roller and temperature-raising device
AU715773B2 (en) Heating glass sheets in tempering furnace
WO1997044283A9 (en) Heating glass sheets in tempering furnace
JPH10501328A (en) Heating furnace and lining
JP5224019B2 (en) Vertical furnace cooling system
CN102481624A (en) Method and device for guiding and orienting a strand in a continuous casting facility for large-sized round profiles
CN109072319B (en) Additional column for checker brick support metal member, and column addition method
WO2002004381A1 (en) Infrared heating method and apparatus for curing refractories
CN105420482A (en) Steel ball heat treatment device and process
CN113817483B (en) Construction method for chute area of coke dry quenching furnace
CN103421935A (en) Continuous tempering treatment device
JP6015680B2 (en) Steel cooling equipment and steel cooling method
CN202913027U (en) Two-speed furnace roller and continuous rolling rod heat-treatment furnace
JP2002030310A (en) Structure of furnace wall in blast furnace and method for constructing furnace
JPS632546A (en) High temperature cast slab drawing in continuous casting
JP2804008B2 (en) Asphalt plant dryer
JP5671785B2 (en) Manufacturing method of hearth filling material used for heat treatment furnace for metal lump
WO2013080259A1 (en) Method of heating long object in radiant heating furnace as well as radiant heating furnace therefor
JPH07280456A (en) Furnace wall structure
JP2022063774A (en) Sand heat treatment device
JP6809663B2 (en) Friction material heating device and heating method
KR101751861B1 (en) Feed apparatus for Integral heat treating furnace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207036735

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834256

Country of ref document: EP

Kind code of ref document: A1