WO2020012810A1 - Silicon carbide semiconductor device - Google Patents

Silicon carbide semiconductor device Download PDF

Info

Publication number
WO2020012810A1
WO2020012810A1 PCT/JP2019/021277 JP2019021277W WO2020012810A1 WO 2020012810 A1 WO2020012810 A1 WO 2020012810A1 JP 2019021277 W JP2019021277 W JP 2019021277W WO 2020012810 A1 WO2020012810 A1 WO 2020012810A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
silicon carbide
carbide semiconductor
semiconductor device
main surface
Prior art date
Application number
PCT/JP2019/021277
Other languages
French (fr)
Japanese (ja)
Inventor
田中 聡
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2020530025A priority Critical patent/JPWO2020012810A1/en
Publication of WO2020012810A1 publication Critical patent/WO2020012810A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present disclosure relates to a silicon carbide semiconductor device.
  • This application claims the priority based on Japanese Patent Application No. 2018-131496 filed on July 11, 2018. The entire contents described in the Japanese patent application are incorporated herein by reference.
  • Patent Document 1 discloses a trench MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
  • a silicon carbide semiconductor device includes a silicon carbide semiconductor chip and a resin.
  • the silicon carbide semiconductor chip includes a silicon carbide substrate and an electrode on the silicon carbide substrate.
  • the silicon carbide substrate has a first main surface in contact with the electrode, a second main surface opposite to the first main surface, an outer peripheral surface continuous with each of the first main surface and the second main surface, and an outer peripheral surface including the outer peripheral surface.
  • the resin covers each of the first main surface and the outer peripheral surface and is provided inside the first groove.
  • FIG. 1 is a schematic vertical sectional view showing a configuration of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 2 is a schematic plan view showing a configuration of the silicon carbide semiconductor chip according to the first embodiment.
  • FIG. 3 is a schematic sectional view taken along line III-III in FIG.
  • FIG. 4 is a schematic sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a schematic vertical sectional view showing a configuration of a first modification of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 6 is a schematic vertical sectional view showing a configuration of a second modification of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 7 is a schematic vertical sectional view showing a configuration of a third modification of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 8 is a schematic vertical sectional view showing a configuration of a fourth modification of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 9 is a schematic vertical cross-sectional view showing a configuration of a fifth modification of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 10 is a schematic longitudinal sectional view showing a configuration of a sixth modification of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 11 is a schematic vertical sectional view showing a configuration of a seventh modification of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 12 is a schematic plan view showing the configuration of the silicon carbide semiconductor chip according to the second embodiment.
  • FIG. 13 is a schematic plan view showing the configuration of the silicon carbide semiconductor chip according to the third embodiment.
  • FIG. 14 is a schematic plan view showing the configuration of the silicon carbide semiconductor chip according to the fourth embodiment.
  • FIG. 15 is a schematic plan view showing the configuration of the silicon carbide semiconductor chip according to the fifth embodiment.
  • Silicon carbide semiconductor device 100 includes silicon carbide semiconductor chip 30 and resin 8.
  • Silicon carbide semiconductor chip 30 includes silicon carbide substrate 10 and electrodes 28 on silicon carbide substrate 10.
  • Silicon carbide substrate 10 has a first main surface 1 in contact with electrode 28, a second main surface 2 opposite to first main surface 1, and an outer peripheral surface connected to each of first main surface 1 and second main surface 2. 3, an outer peripheral region 50 including the outer peripheral surface 3, an inner region 40 surrounded by the outer peripheral region 50 and provided with the silicon carbide semiconductor element 90, and a first groove located on the first main surface 1 of the outer peripheral region 50. 7 are provided.
  • the resin 8 covers each of the first main surface 1 and the outer peripheral surface 3 and is provided inside the first groove 7.
  • first groove 7 includes planar side surface 5 continuing to first main surface 1 and planar bottom surface 6 continuing to side surface 5. You may go out.
  • the angle formed between side surface 5 and bottom surface 6 may be 90 °.
  • the angle formed between side surface 5 and bottom surface 6 may be greater than 90 °.
  • the angle formed between side surface 5 and bottom surface 6 may be smaller than 90 °.
  • the resin 8 may be in contact with each of the side surface 5 and the bottom surface 6.
  • the depth of the first groove 7 may be 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the width of the opening 19 of the first groove 7 may be 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the value obtained by dividing the width of the opening 19 of the first groove 7 by the depth of the first groove 7 is 0.1. It may be 25 or more and 2 or less.
  • silicon carbide substrate 10 may have a rectangular shape in plan view.
  • the first groove 7, the second groove 82, the third groove 83, and the fourth groove 84 may be located at four corners of a quadrangle, respectively.
  • the first groove 7 may surround the internal region 40 in plan view.
  • silicon carbide semiconductor device 100 mainly includes silicon carbide semiconductor chip 30, resin 8, metal frame 74, and solder layer 73.
  • the metal frame 74 is, for example, a copper frame.
  • the copper frame may be plated with nickel.
  • Silicon carbide semiconductor chip 30 is provided on metal frame 74 via solder layer 73. From another viewpoint, solder layer 73 is located between silicon carbide semiconductor chip 30 and metal frame 74.
  • Resin 8 covers silicon carbide semiconductor chip 30 and solder layer 73.
  • Silicon carbide semiconductor chip 30 has third main surface 31 and fourth main surface 32.
  • the fourth main surface 32 is on the opposite side of the third main surface 31.
  • Silicon carbide semiconductor chip 30 is in contact with solder layer 73 on fourth main surface 32.
  • Resin 8 covers third main surface 31 of silicon carbide semiconductor chip 30.
  • the resin 8 is in contact with the solder layer 73 and the metal frame 74.
  • Silicon carbide semiconductor chip 30 has silicon carbide substrate 10 (see FIG. 3). Supply of a current or the like to silicon carbide semiconductor chip 30 is performed via a wire or the like (not shown).
  • FIG. 2 is a schematic plan view showing the configuration of silicon carbide substrate 10.
  • silicon carbide substrate 10 has an internal region 40 (active region 40) and an outer peripheral region 50.
  • outer peripheral region 50 surrounds active region 40.
  • the groove 7 (first groove 7) is located on the first main surface 1 of the outer peripheral region 50.
  • the outer peripheral region 50 has a first outer peripheral region 51 and a second outer peripheral region 52.
  • the first outer peripheral region 51 contacts the active region 40.
  • the second outer peripheral region 52 is located outside the first outer peripheral region 51.
  • the shoulder 4 has a corner region 41 and a side region 42.
  • the second outer peripheral region 52 surrounds the first outer peripheral region 51.
  • the second outer peripheral area 52 constitutes the shoulder 4.
  • a guard ring 16 (see FIG. 4) is provided in the first outer peripheral area 51.
  • Guard ring 16 surrounds active region 40.
  • the groove 7 is provided in the second outer peripheral region 52. As shown in FIG. 2, the groove 7 may surround the active region 40 when viewed from a direction perpendicular to the first main surface 1.
  • the groove 7 may surround the first outer peripheral region 51 as viewed from a direction perpendicular to the first main surface 1.
  • the groove 7 is annular when viewed from a direction perpendicular to the first main surface 1.
  • FIG. 3 is a schematic sectional view taken along line III-III in FIG.
  • silicon carbide semiconductor element 90 is provided in active region 40.
  • Silicon carbide semiconductor element 90 is, for example, a MOSFET.
  • Silicon carbide semiconductor element 90 includes silicon carbide substrate 10, gate insulating film 24, gate electrode 22, interlayer insulating film 23, source electrode 28, and drain electrode 25. Note that FIG. 2 shows only silicon carbide substrate 10 provided with groove 7, and that gate insulating film 24, gate electrode 22, interlayer insulating film 23, source electrode 28, and drain electrode 25 Omitted.
  • Silicon carbide substrate 10 includes a silicon carbide single crystal substrate 15 and a silicon carbide epitaxial layer 20 on silicon carbide single crystal substrate 15.
  • Silicon carbide substrate 10 has first main surface 1, second main surface 2, and outer peripheral surface 3.
  • the second main surface 2 is on the opposite side of the first main surface 1.
  • the outer peripheral surface 3 is continuous with each of the first main surface 1 and the second main surface 2.
  • the first main surface 1 and the outer peripheral surface 3 form a shoulder 4.
  • Silicon carbide epitaxial layer 20 forms first main surface 1.
  • Silicon carbide single crystal substrate 15 forms second main surface 2.
  • Silicon carbide single crystal substrate 15 and silicon carbide epitaxial layer 20 are made of, for example, hexagonal silicon carbide of polytype 4H.
  • Silicon carbide single crystal substrate 15 includes an n-type impurity such as nitrogen (N) and has an n-type (first conductivity type).
  • First main surface 1 ⁇ is, for example, a surface inclined by an off angle of 8 ° or less in the off direction with respect to the ⁇ 0001 ⁇ plane or the ⁇ 0001 ⁇ plane.
  • First main surface 1 may be, for example, a (000-1) plane or a (0001) plane.
  • the first main surface 1 may be, for example, a surface inclined by an off angle of 8 ° or less with respect to the (000-1) plane in the off direction, or 8 ° or less with respect to the (0001) plane in the off direction.
  • the surface may be inclined by the off angle.
  • the off direction may be, for example, a ⁇ 11-20> direction or a ⁇ 1-100> direction.
  • the off angle may be, for example, 1 ° or more, or 2 ° or more.
  • the off angle may be 6 ° or less or 4 ° or less.
  • first direction 101 is, for example, a ⁇ 11-20> direction.
  • first direction 101 is a direction in which the ⁇ 11-20> direction is projected on first main surface 1.
  • second direction 102 is, for example, a ⁇ 1-100> direction.
  • first main surface 1 is inclined with respect to the ⁇ 0001 ⁇ plane
  • second direction 102 is a direction in which the ⁇ 1-100> direction is projected onto first main surface 1.
  • the first main surface 1 extends along each of the first direction 101 and the second direction 102.
  • ⁇ ⁇ SiC epitaxial layer 20 mainly has drift region 11, body region 12, source region 13, and contact region 14.
  • Drift region 11 is provided on silicon carbide single crystal substrate 15.
  • Drift region 11 includes an n-type impurity such as nitrogen, for example, and has n-type conductivity.
  • Drift region 11 may have a concentration of an n-type impurity lower than that of silicon carbide single crystal substrate 15.
  • the body region 12 is provided on the drift region 11.
  • Body region 12 includes a p-type impurity such as aluminum (Al) and has a p-type (second conductivity type) conductivity type.
  • the concentration of p-type impurities in body region 12 may be higher than the concentration of n-type impurities in drift region 11.
  • Body region 12 is separated from each of first main surface 1 and second main surface 2.
  • Source region 13 is provided on body region 12 so as to be separated from drift region 11 by body region 12.
  • Source region 13 contains an n-type impurity such as nitrogen or phosphorus (P), and has an n-type conductivity.
  • Source region 13 constitutes first main surface 1.
  • the concentration of the n-type impurity in the source region 13 may be higher than the concentration of the p-type impurity in the body region 12.
  • the concentration of the n-type impurity in source region 13 is, for example, about 1 ⁇ 10 19 cm ⁇ 3 .
  • Contact region 14 contains a p-type impurity such as aluminum and has a p-type conductivity.
  • the concentration of the p-type impurity in contact region 14 may be higher than the concentration of the p-type impurity in body region 12.
  • Contact region 14 penetrates source region 13 and is in contact with body region 12.
  • Contact region 14 forms first main surface 1.
  • the concentration of the p-type impurity in contact region 14 is, for example, not less than 1 ⁇ 10 18 cm ⁇ 3 and not more than 1 ⁇ 10 20 cm ⁇ 3 .
  • a gate trench 9 is provided in the first main surface 1.
  • the gate trench 9 includes a side wall surface 91 and a bottom portion 92.
  • the side wall surface 91 is continuous with the first main surface 1.
  • the bottom 92 is continuous with the side wall surface 91.
  • Sidewall surface 91 penetrates source region 13 and body region 12 to reach drift region 11.
  • the side wall surface 91 includes the source region 13, the body region 12, and the drift region 11.
  • the bottom 92 is in the drift region 11.
  • the bottom portion 92 is constituted by the drift region 11.
  • Bottom portion 92 is, for example, a plane parallel to second main surface 2.
  • Angle ⁇ 1 formed between side wall surface 91 and bottom 92 is, for example, not less than 115 ° and not more than 135 °. Angle ⁇ 1 may be, for example, 120 ° or more. Angle ⁇ 1 may be, for example, 130 ° or less.
  • the gate insulating film 24 is, for example, an oxide film. Gate insulating film 24 is made of, for example, a material containing silicon dioxide. Gate insulating film 24 is in contact with each of side wall surface 91 and bottom portion 92 of gate trench 9. Gate insulating film 24 is in contact with drift region 11 at bottom 92. Gate insulating film 24 is in contact with source region 13, body region 12 and drift region 11 on sidewall surface 91. Gate insulating film 24 may be in contact with source region 13 on first main surface 1.
  • the gate electrode 22 is provided on the gate insulating film 24.
  • Gate electrode 22 is made of, for example, polysilicon containing conductive impurities.
  • Gate electrode 22 is arranged inside gate trench 9. Gate electrode 22 faces drift region 11, body region 12 and source region 13.
  • the source electrode 28 is in contact with the first main surface 1.
  • Source electrode 28 has contact electrode 21 and source wiring 29.
  • the source wiring 29 is provided on the contact electrode 21.
  • Contact electrode 21 is in contact with source region 13 on first main surface 1.
  • Contact electrode 21 may be in contact with contact region 14 on first main surface 1.
  • Contact electrode 21 is made of a material containing, for example, Ti (titanium), Al (aluminum), and Si (silicon).
  • the contact electrode 21 is in ohmic contact with the source region 13.
  • the contact electrode 21 may be in ohmic contact with the contact region 14.
  • Drain electrode 25 is in contact with the second main surface 2. Drain electrode 25 is in contact with silicon carbide single crystal substrate 15 on second main surface 2. Drain electrode 25 is electrically connected to drift region 11. Drain electrode 25 is made of a material containing, for example, NiSi (nickel silicon) or TiAlSi (titanium aluminum silicon).
  • the interlayer insulating film 23 is provided in contact with each of the gate electrode 22 and the gate insulating film 24.
  • Interlayer insulating film 23 is made of, for example, a material containing silicon dioxide.
  • the interlayer insulating film 23 electrically insulates the gate electrode 22 and the source electrode 28. Part of the interlayer insulating film 23 may be provided inside the gate trench 9.
  • the source wiring 29 may cover the interlayer insulating film 23.
  • Source wiring 29 is made of, for example, a material containing Al.
  • FIG. 4 is a schematic cross-sectional view taken along the line IV-IV of FIG.
  • the IV-IV line is a straight line along the diagonal line of silicon carbide semiconductor chip 30 when viewed from a direction perpendicular to first main surface 1.
  • groove 7 is provided in first main surface 1 of outer peripheral region 50 of silicon carbide substrate 10.
  • the groove 7 includes a side surface 5 and a bottom surface 6.
  • the side surface 5 is continuous with the first main surface 1.
  • the bottom surface 6 is continuous with the side surface 5.
  • the side surface 5 is, for example, planar.
  • the bottom surface 6 is, for example, planar.
  • the angle ⁇ 2 formed between the side surface 5 and the bottom surface 6 is, for example, greater than 90 °.
  • Angle ⁇ 2 is, for example, not less than 115 ° and not more than 135 °. Angle ⁇ 2 may be, for example, 120 ° or more. Angle ⁇ 2 may be, for example, 130 ° or less.
  • the interval between the pair of side surfaces 5 facing each other in a sectional view increases from the bottom surface 6 toward the first main surface 1 (forward taper).
  • the width 111 of the opening 19 of the groove 7 is larger than the width 113 of the bottom surface 6 of the groove 7.
  • the two side surfaces 5 of the groove 7 may be asymmetric with respect to a straight line perpendicular to the bottom surface 6. That is, the angle between one side surface 5 and the bottom surface 6 may be different from the angle between the other side surface 5 and the bottom surface. Illustratively, the angle between one side surface 5 and the bottom surface 6 may be greater than 90 °, and the angle between the other side surface 5 and the bottom surface may be less than 90 °.
  • the groove 7 can be formed by, for example, thermal etching. Specifically, it can be performed by heating in an atmosphere containing a reactive gas having at least one or more halogen atoms.
  • the at least one kind of halogen atom includes at least one of a chlorine (Cl) atom and a fluorine (F) atom.
  • the atmosphere includes, for example, chlorine (Cl 2 ), boron trichloride (BCl 3 ), SF 6 or carbon tetrafluoride (CF 4 ).
  • thermal etching is performed by using a mixed gas of chlorine gas and oxygen gas as a reaction gas and setting the heat treatment temperature to, for example, 800 ° C. or more and 900 ° C. or less.
  • the reaction gas may include a carrier gas in addition to the chlorine gas and the oxygen gas described above.
  • a carrier gas for example, a nitrogen gas, an argon gas, a helium gas, or the like can be used.
  • Groove 7 is formed in first main surface 1 of silicon carbide substrate 10 by thermal etching.
  • the first main surface 1 is a (000-1) plane or a plane inclined in an off direction by an off angle of 8 ° or less with respect to the (000-1) plane.
  • the groove 7 and the gate trench 9 may be formed at the same time.
  • guard ring 16 includes a p-type impurity such as aluminum (Al) or boron (B), and has a p-type (second conductivity type).
  • Drift region 11 in outer peripheral region 50 is continuous with drift region 11 in active region 40.
  • the drift region 11 in the outer peripheral region 50 forms the groove 7.
  • Each of the side surface 5 and the bottom surface 6 of the groove 7 is constituted by a drift region 11.
  • the groove 7 is located on the outer peripheral side of the guard ring 16.
  • the groove 7 is provided in the second outer peripheral area 52.
  • each of the width of second outer peripheral region 52 and the depth of groove 7 is, for example, 20 ⁇ m.
  • the value obtained by dividing the width of the second outer peripheral region 52 by the depth of the groove 7 is 1.
  • the angle ⁇ 2 formed between the side surface 5 and the bottom surface 6 (see FIG. 4) is, for example, in a range from 120 ° to 130 °.
  • the second outer peripheral region 52 includes the outer peripheral surface 3.
  • the groove 7 is located between the guard ring 16 and the outer peripheral surface 3.
  • Guard ring 16 is located on the outer peripheral side of body region 12. Guard ring 16 is located between body region 12 and groove 7.
  • Insulating film 26 is in contact with body region 12 and guard ring 16 on first main surface 1.
  • Insulating film 26 is made of, for example, a material containing silicon dioxide.
  • the insulating film 26 may be located on the inner peripheral side of the groove 7.
  • the resin 8 is provided inside the groove 7.
  • the resin 8 covers the first main surface 1, the outer peripheral surface 3, and the shoulder 4.
  • the resin 8 may be in contact with the insulating film 26.
  • the resin 8 covers each of the active region 40 and the outer peripheral region 50.
  • the resin 8 may be in contact with the source wiring 29.
  • the groove 7 may be filled with a resin 8.
  • the resin 8 is in contact with the drift region 11 on each of the side surface 5 and the bottom surface 6 of the groove 7.
  • the resin 8 is in contact with each of the side surface 5 and the bottom surface 6.
  • the resin 8 is in contact with the corner region 41 of the shoulder 4.
  • the resin 8 is in contact with the side region 42 of the shoulder 4 (see FIG. 2).
  • the resin 8 may be in contact with the drift region 11 on the outer peripheral surface 3.
  • Resin 8 may be in contact with silicon carbide single crystal substrate 15.
  • the resin 8 may be in contact with the drain electrode 25.
  • Resin 8 is resin 8 for sealing silicon carbide semiconductor chip 30.
  • the resin 8 is, for example, an epoxy resin, but is not limited to an epoxy resin.
  • the resin 8 may be a heat-resistant organic resin such as a phenol resin or a maleimide resin, or a resin nanocomposite resin in which inorganic nanoparticles are uniformly monodispersed in a polymer component.
  • the depth 112 of the groove 7 is, for example, 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the upper limit of the depth 112 of the groove 7 is not particularly limited, but is, for example, 10 ⁇ m or less.
  • the upper limit of the depth 112 of the groove 7 is 20 ⁇ m or less.
  • the lower limit of the depth 112 of the groove 7 is not particularly limited, but is, for example, 1 ⁇ m or more.
  • the lower limit of the depth 112 of the groove 7 is 3 ⁇ m or more.
  • the depth 112 of the groove 7 is a distance between the bottom surface 6 and the first main surface 1 in a direction perpendicular to the first main surface 1.
  • the width 111 of the opening 19 of the groove 7 is, for example, 0.1 ⁇ m or more and 30 ⁇ m or less.
  • the upper limit of the width 111 of the opening 19 of the groove 7 is not particularly limited, but is, for example, 20 ⁇ m or less.
  • the upper limit of the width 111 of the opening 19 of the groove 7 is 10 ⁇ m or less.
  • the lower limit of the width 111 of the opening 19 of the groove 7 is not particularly limited, but is, for example, 1 ⁇ m or more.
  • the lower limit of the width 111 of the opening 19 of the groove 7 is 10 ⁇ m or more.
  • the width 111 of the opening 19 of the groove 7 is the width of the opening 19 of the groove 7 in a direction parallel to the first main surface 1 in the cross section of FIG.
  • the width 111 of the opening 19 of the groove 7 is a width measured at the boundary between the side surface 5 of the groove 7 and the first main surface 1.
  • the value obtained by dividing the width 111 of the opening 19 of the groove 7 by the depth 112 of the groove 7 is, for example, 0.2 or more and 2 or less.
  • the upper limit of the value obtained by dividing the width 111 of the opening 19 of the groove 7 by the depth 112 of the groove 7 is not particularly limited, but is, for example, 1.5 or less.
  • the upper limit of the value obtained by dividing the width 111 of the opening 19 of the groove 7 by the depth 112 of the groove 7 is 1 or less.
  • the angle ⁇ 2 between the side surface 5 and the bottom surface 6 of the groove 7 may be, for example, 90 °.
  • the angle between the first main surface 1 and the side surface 5 is also 90 °.
  • the interval between the pair of side surfaces 5 facing each other in a sectional view is constant from the bottom surface 6 toward the first main surface 1.
  • Side surface 5 of groove 7 is parallel to outer peripheral surface 3 of silicon carbide substrate 10.
  • the depth of the groove 7 may be larger than the depth of the guard ring 16.
  • the depth of the groove 7 may be larger than the depth of the body region 12.
  • the groove 7 can be formed using, for example, reactive ion etching. More specifically, silicon carbide substrate 10 is etched with mask layer (not shown) having opening 19 formed on first main surface 1.
  • reactive ion etching in particular, inductively coupled plasma reactive ion etching can be used.
  • inductively coupled plasma reactive ion etching using sulfur hexafluoride (SF 6 ) or a mixed gas of sulfur hexafluoride and oxygen (O 2 ) as a reaction gas can be used.
  • the angle ⁇ 2 formed between the side surface 5 and the bottom surface 6 of the groove 7 may be smaller than 90 °, for example.
  • the angle formed by first main surface 1 and side surface 5 is also smaller than 90 °.
  • Angle ⁇ 2 is, for example, not less than 45 ° and not more than 65 °.
  • Angle ⁇ 2 may be, for example, 50 ° or more.
  • Angle ⁇ 2 may be, for example, 60 ° or less.
  • the distance between the pair of side surfaces 5 facing each other in a sectional view becomes narrower (reverse taper) from the bottom surface 6 toward the first main surface 1.
  • the width 111 of the opening 19 of the groove 7 is smaller than the width 113 of the bottom surface 6 of the groove 7.
  • the depth of the groove 7 may be larger than the depth of the guard ring 16.
  • the depth of the groove 7 may be larger than the depth of the body region 12.
  • the groove 7 can be formed by, for example, thermal etching.
  • the conditions of the thermal etching are as described above.
  • the first main surface 1 is a surface inclined in the off direction by an off angle of 8 ° or less with respect to the (0001) plane or the (0001) plane.
  • the insulating film 26 may be provided inside the groove 7.
  • the insulating film 26 may be in contact with each of the side surface 5 and the bottom surface 6 of the groove 7.
  • the insulating film 26 may be in contact with the drift region 11 on each of the side surface 5 and the bottom surface 6 of the groove 7.
  • the insulating film 26 is arranged in a part of the groove 7 but does not completely fill the groove 7. Therefore, the resin 8 enters the inside of the groove 7.
  • the resin 8 is provided between a pair of side surfaces 5 facing each other in a sectional view. The resin 8 is in contact with the insulating film 26 inside the groove 7.
  • the insulating film 26 and the stress buffer layer may be provided inside the groove 7.
  • the stress buffer layer 27 is provided on the insulating film 26.
  • the stress buffer layer 27 is made of, for example, a material containing polyimide.
  • the insulating film 26 may be in contact with each of the side surface 5 and the bottom surface 6 of the groove 7. In other words, the insulating film 26 may be in contact with the drift region 11 on each of the side surface 5 and the bottom surface 6 of the groove 7.
  • the insulating film 26 is disposed in a part of the groove 7, but does not completely fill the groove 7.
  • the stress buffer layer 27 is disposed in a part of the groove 7 but does not completely fill the groove 7. Therefore, the resin 8 enters the inside of the groove 7.
  • the resin 8 is provided between a pair of side surfaces 5 facing each other in a sectional view. The resin 8 is in contact with the stress buffer layer 27 inside the groove 7.
  • the stress buffer layer 27 is in contact with the insulating film 26 inside the groove 7.
  • each of insulating film 26 and stress buffer layer 27 may be provided along outer peripheral surface 3 of silicon carbide substrate 10. .
  • the insulating film 26 may be in contact with the resin 8 at the outer peripheral portion of the insulating film 26.
  • the stress buffer layer 27 may be in contact with the resin 8 at the outer peripheral portion of the stress buffer layer 27.
  • each of the insulating film 26 and the stress buffer layer 27 is provided on the first main surface 1, but may not be provided inside the groove 7.
  • the stress buffer layer 27 is provided on the insulating film 26.
  • the stress buffer layer 27 is made of, for example, a material containing polyimide.
  • Each of the insulating film 26 and the stress buffer layer 27 has a through hole 93.
  • the resin 8 enters the groove 7 through the through hole 93.
  • the resin 8 is in contact with the drift region 11 on each of the side surface 5 and the bottom surface 6 of the groove 7.
  • the resin 8 is in contact with each of the side surface 5 and the bottom surface 6.
  • the resin 8 may be in contact with a part of the first main surface 1.
  • the side surface 5 of the groove 7 may have a first side surface portion 17 and a second side surface portion 18.
  • the first side surface 17 is continuous with the first main surface 1.
  • the second side portion 18 is continuous with each of the first side portion 17 and the bottom surface 6.
  • the interval between the pair of opposing first side surfaces 17 increases from the bottom surface 6 to the first main surface 1 (forward taper).
  • the interval between the pair of second side surfaces 18 is substantially constant from the bottom surface 6 to the first main surface 1.
  • Each of the pair of second side surfaces 18 extends in a direction substantially perpendicular to the first main surface 1.
  • the angle ⁇ 2 formed between the second side surface portion 18 and the bottom surface 6 is, for example, 90 °.
  • the width 111 of the opening 19 of the groove 7 is larger than the width 113 of the bottom surface 6 of the groove 7.
  • the interval between the pair of opposing first side surfaces 17 may decrease from the bottom surface 6 to the first main surface 1 (reverse taper).
  • the interval between the pair of second side surfaces 18 is substantially constant from the bottom surface 6 to the first main surface 1.
  • Each of the pair of second side surfaces 18 extends in a direction substantially perpendicular to the first main surface 1.
  • the angle ⁇ 2 formed between the second side surface portion 18 and the bottom surface 6 is, for example, 90 °.
  • the width 111 of the opening 19 of the groove 7 is smaller than the width 113 of the bottom surface 6 of the groove 7.
  • the silicon carbide semiconductor device 100 according to the second embodiment is different from the silicon carbide semiconductor device 100 according to the first embodiment mainly in the configuration having a plurality of grooves, and other configurations are the same as those in the first embodiment. This is the same as silicon carbide semiconductor device 100.
  • a description will be given focusing on a configuration different from silicon carbide semiconductor device 100 according to the first embodiment.
  • silicon carbide substrate 10 is located on first main surface 1 of outer peripheral region 50 and is separated from each other by first groove 7, second groove 82, third groove 83, and third groove 83.
  • a fourth groove 84, a fifth groove 85, a sixth groove 86, a seventh groove 87, and an eighth groove 88 may be provided.
  • silicon carbide substrate 10 when viewed from a direction perpendicular to first main surface 1, silicon carbide substrate 10 has a quadrangular shape.
  • the first groove 7, the second groove 82, the third groove 83, and the fourth groove 84 are respectively located at four corners of a quadrangle. Specifically, the shape of first main surface 1 is a quadrangle.
  • the first groove 7, the second groove 82, the third groove 83, and the fourth groove 84 are located at four corners of the first main surface 1.
  • the active region 40 is located between the first groove 7 and the fourth groove 84.
  • the active region 40 is located between the second groove 82 and the third groove 83.
  • FIG. 10 an example in which grooves are arranged at eight locations is exemplified, but the number of grooves arranged on each side may be increased.
  • the fifth groove 85 is located between the first groove 7 and the second groove 82 in a direction parallel to the first direction 101.
  • the sixth groove 86 is located between the third groove 83 and the fourth groove 84 in a direction parallel to the first direction 101.
  • the seventh groove 87 is located between the first groove 7 and the third groove 83 in a direction parallel to the second direction 102.
  • the eighth groove 88 is located between the second groove 82 and the fourth groove 84 in a direction parallel to the second direction 102.
  • the shape of the first groove 7 when viewed from a direction perpendicular to the first main surface 1, is a hexagon, specifically, a regular hexagon. Opposite sides of the regular hexagon may be parallel to the first direction 101.
  • the plurality of grooves are spaced apart from each other in each of a direction parallel to the first direction 101 and a direction parallel to the second direction 102. The plurality of grooves are located so as to surround the first outer peripheral region 51.
  • the silicon carbide semiconductor device 100 according to the third embodiment differs from the silicon carbide semiconductor device 100 according to the second embodiment mainly in the configuration in which the shape of the groove is L-shaped. This is the same as silicon carbide semiconductor device 100 according to the second embodiment.
  • a configuration different from silicon carbide semiconductor device 100 according to the second embodiment will be mainly described.
  • silicon carbide substrate 10 has first groove 7, second groove 82, third groove 83, and fourth groove 84.
  • the first groove 7, the second groove 82, the third groove 83, and the fourth groove 84 are respectively located at four corners of a square.
  • each of the plurality of grooves when viewed from a direction perpendicular to the first main surface 1, has an L-shape.
  • Each of the plurality of grooves may be configured by the first region 71 and the second region 72.
  • Each of the first region 71 and the second region 72 is a quadrangle when viewed from a direction perpendicular to the first main surface 1.
  • Each of the first region 71 and the second region 72 may be rectangular when viewed from a direction perpendicular to the first main surface 1.
  • the first region 71 extends along the second direction 102.
  • the long side direction of the first region 71 is a direction parallel to the second direction 102.
  • the short side direction of the first region 71 is a direction parallel to the first direction 101.
  • the second region 72 extends along the first direction 101.
  • the long side direction of the second region 72 is a direction parallel to the first direction 101.
  • the short side direction of the second region 72 is a direction parallel to the second direction 102.
  • the long side of the first region 71 is in contact with the short side of the second region 72.
  • a groove may not be provided between the first groove 7 and the second groove 82 in a direction parallel to the first direction 101.
  • a groove may not be provided between the third groove 83 and the fourth groove 84 in a direction parallel to the first direction 101.
  • No groove may be provided between the first groove 7 and the third groove 83 in a direction parallel to the second direction 102.
  • the eighth groove 88 may not have a groove provided between the second groove 82 and the fourth groove 84 in a direction parallel to the second direction 102.
  • a groove provided to surround the chip as shown in FIG. 2 and a groove provided at four corners as shown in FIG. 13 may be combined.
  • the silicon carbide semiconductor device 100 according to the fourth embodiment differs from the silicon carbide semiconductor device 100 according to the third embodiment mainly in the configuration in which the shape of the groove is rectangular, and the other configurations are the same as those in the third embodiment. This is the same as silicon carbide semiconductor device 100 according to the embodiment.
  • a description will be given focusing on a configuration different from silicon carbide semiconductor device 100 according to the third embodiment.
  • each of the plurality of grooves has a rectangular shape when viewed from a direction perpendicular to the first main surface 1.
  • Each of the plurality of grooves extends in a direction inclined with respect to each of a direction parallel to the first direction 101 and a direction parallel to the second direction 102.
  • each of the long side and the short side of the rectangle extends in a direction inclined with respect to each of the direction parallel to the first direction 101 and the direction parallel to the second direction 102.
  • Two grooves facing each other across the active region 40 are parallel to each other. Specifically, the long side of the first groove 7 is parallel to the long side of the fourth groove 84. The short side of the first groove 7 is parallel to the short side of the fourth groove 84. Similarly, the long side of the second groove 82 is parallel to the long side of the third groove 83. The short side of the second groove 82 is parallel to the short side of the third groove 83.
  • the silicon carbide semiconductor device 100 according to the fifth embodiment is different from the silicon carbide semiconductor device 100 according to the fourth embodiment mainly in the configuration in which the extending directions of the four grooves are all parallel. Is the same as silicon carbide semiconductor device 100 according to the fourth embodiment.
  • a description will be given focusing on a configuration different from silicon carbide semiconductor device 100 according to the fourth embodiment.
  • all the extending directions of the four grooves may be parallel.
  • the long side of the first groove 7 is parallel to each of the long side of the second groove 82, the long side of the third groove 83, and the long side of the fourth groove 84.
  • the short side of the first groove 7 is parallel to each of the short side of the second groove 82, the short side of the third groove 83, and the short side of the fourth groove 84.
  • silicon carbide semiconductor device 100 according to the present disclosure has been described by exemplifying a MOSFET having a trench gate, but silicon carbide semiconductor device 100 according to the present disclosure is not limited to this.
  • Silicon carbide semiconductor device 100 according to the present disclosure may be, for example, a planar MOSFET, an IGBT (Insulated Gate Bipolar Transistor), an SBD (Schottky Barrier Diode), a thyristor, a GTO (Gate Turn Off Thyristor), or a PIN diode.
  • IGBT Insulated Gate Bipolar Transistor
  • SBD Schottky Barrier Diode
  • thyristor thyristor
  • GTO Gate Turn Off Thyristor
  • PIN diode PIN diode
  • the n-type is the first conductivity type and the p-type is the second conductivity type.
  • the p-type may be the first conductivity type and the n-type may be the second conductivity type.
  • the concentration of the p-type impurity and the concentration of the n-type impurity in each of the impurity regions can be measured by, for example, SCM (Scanning Capacitance Microscope) or SIMS (Secondary Ion Mass Mass Spectrometry).
  • SCM Sccanning Capacitance Microscope
  • SIMS Secondary Ion Mass Mass Spectrometry
  • silicon carbide semiconductor chip 30 is covered with resin 8.
  • Moisture that has entered the inside of the resin 8 from the external environment expands at a high temperature to form a space inside.
  • a crack is generated in the resin 8 by applying a stress to the resin 8.
  • the space is depressurized by dew condensation inside the space. Therefore, moisture is drawn from the external environment.
  • the water expands and the space further expands. As a result, cracks formed in the resin 8 elongate.
  • the high temperature is, for example, 150 ° C.
  • the low temperature is, for example, ⁇ 55 ° C.
  • groove 7 is provided in outer peripheral region 50.
  • the resin 8 covers the outer peripheral surface 3 and is provided inside the groove 7.
  • the contact area between resin 8 and silicon carbide semiconductor chip 30 is larger than when resin 8 is not provided inside groove 7. Therefore, adhesion between resin 8 and silicon carbide semiconductor chip 30 can be improved (anchor effect). As a result, peeling of the resin 8 can be suppressed.
  • the angle formed between side surface 5 and bottom surface 6 may be smaller than 90 °.
  • the interval between the pair of side surfaces 5 facing each other in a cross-sectional view becomes narrower from the bottom surface 6 toward the first main surface 1. Therefore, when the resin 8 that has entered the inside of the groove 7 is peeled off, the resin 8 is caught on the side surface 5 and the resin 8 is hardly peeled off. As a result, the anchor effect of the resin 8 can be enhanced.
  • silicon carbide semiconductor chip 30 may have a rectangular shape when viewed from a direction perpendicular to first main surface 1.
  • the grooves may be provided at four corners of the square.
  • stress is higher at four corners of the square than at the sides. Therefore, the resin 8 is more easily peeled off at the corners of the square than at the sides. By providing the groove at the corner where the stress becomes high, the peeling of the resin 8 can be effectively suppressed.
  • groove 7 may surround active region 40 when viewed from a direction perpendicular to first main surface 1. Thereby, the peeling of the resin 8 can be suppressed in the entire circumference.
  • the vertical dimension x the horizontal dimension of the chip size and the dimensions of the mounting surface of the mounting copper frame in the sample are shown.
  • the first sample has a chip size of 3 mm ⁇ 3 mm and a dimension of a mounting surface of a mounting copper frame of 14 mm ⁇ 9.5 mm.
  • the second sample has a chip size of 3 mm ⁇ 3 mm and a dimension of a mounting surface of a mounting copper frame of 17 mm ⁇ 10 mm.
  • the third sample has a chip size of 6 mm ⁇ 6 mm and a mounting surface dimension of the mounting copper frame of 14 mm ⁇ 9.5 mm.
  • the fourth sample has a chip size of 6 mm ⁇ 6 mm, and the dimensions of the mounting surface of the mounting copper frame are 17 mm ⁇ 10 mm.
  • the thickness of the chip is from 150 ⁇ m to 200 ⁇ m.
  • two levels were prepared, one in which the groove of the first embodiment (the structure shown in FIG. 4) was provided and one in which the groove for preventing peeling was not provided.
  • the relationship between the chip size and the dimensions of the mounting surface of the mounting copper frame is not limited to the above example. That is, if the chip size is smaller than the size of the mounting surface of the mounting copper frame other than the sample, the present invention is applicable.
  • the dimension of the mounting surface of the mounting copper frame may be 20 mm ⁇ 14 mm.
  • the dimensions of the mounting surface of the mounting copper frame may be 14 mm ⁇ 9.5 mm, 17 mm ⁇ 10 mm, or 20 mm ⁇ 14 mm.
  • the dimension of the mounting surface of the mounting copper frame may be 20 mm ⁇ 14 mm.
  • the dimension of the mounting surface of the mounting copper frame may be 20 mm ⁇ 14 mm.
  • the dimension of the mounting surface of the mounting copper frame may be 20 mm ⁇ 14 mm.
  • the grooves for suppressing peeling the grooves of the first to seventh modifications of the first embodiment or the grooves of the second to fifth embodiments can be provided.
  • Fine peeling that cannot be observed with an ultrasonic microscope can be detected by the following method.
  • a high-temperature and high-humidity test for example, a temperature of 85 ° C. and a humidity of 85%
  • the resin has a peeled or cracked portion, moisture will enter the resin and the chip will malfunction.
  • the presence or absence of resin peeling or cracking is indirectly determined.

Abstract

This silicon carbide semiconductor device has a silicon carbide semiconductor chip and a resin. The silicon carbide semiconductor chip includes a silicon carbide substrate and an electrode on the silicon carbide substrate. The silicon carbide substrate has: a first principal surface in contact with the electrode; a second principal surface on the opposite side to the first principal surface; an outer peripheral surface contiguous with each of the first principal surface and the second principal surface; an outer peripheral region including the outer peripheral surface; an inner region surrounded by the outer peripheral region and provided with a silicon carbide semiconductor element; and a first trench positioned in the first principal surface of the outer peripheral region. The resin covers each of the first principal surface and the outer peripheral surface and is provided inside the first trench.

Description

炭化珪素半導体装置Silicon carbide semiconductor device
 本開示は、炭化珪素半導体装置に関する。本出願は、2018年7月11日に出願した日本特許出願である特願2018-131496号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a silicon carbide semiconductor device. This application claims the priority based on Japanese Patent Application No. 2018-131496 filed on July 11, 2018. The entire contents described in the Japanese patent application are incorporated herein by reference.
 特開2014-139967号公報(特許文献1)には、トレンチ型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)が開示されている。 Japanese Patent Application Laid-Open No. 2014-139967 (Patent Document 1) discloses a trench MOSFET (Metal Oxide Semiconductor Field Effect Transistor).
特開2014-139967号公報JP 2014-139967 A
 本開示に係る炭化珪素半導体装置は、炭化珪素半導体チップと、樹脂とを備えている。炭化珪素半導体チップは、炭化珪素基板と、炭化珪素基板上にある電極とを含んでいる。炭化珪素基板は、電極に接する第1主面と、第1主面と反対側の第2主面と、第1主面および第2主面の各々に連なる外周面と、外周面を含む外周領域と、外周領域に取り囲まれ、かつ炭化珪素半導体素子が設けられた内部領域と、外周領域の第1主面に位置する第1溝とを有している。樹脂は、第1主面および外周面の各々を覆い、かつ第1溝の内部に設けられている。 珪 素 A silicon carbide semiconductor device according to the present disclosure includes a silicon carbide semiconductor chip and a resin. The silicon carbide semiconductor chip includes a silicon carbide substrate and an electrode on the silicon carbide substrate. The silicon carbide substrate has a first main surface in contact with the electrode, a second main surface opposite to the first main surface, an outer peripheral surface continuous with each of the first main surface and the second main surface, and an outer peripheral surface including the outer peripheral surface. A region, an inner region surrounded by the outer peripheral region and provided with the silicon carbide semiconductor element, and a first groove located on the first main surface of the outer peripheral region. The resin covers each of the first main surface and the outer peripheral surface and is provided inside the first groove.
図1は、第1実施形態に係る炭化珪素半導体装置の構成を示す縦断面模式図である。FIG. 1 is a schematic vertical sectional view showing a configuration of the silicon carbide semiconductor device according to the first embodiment. 図2は、第1実施形態に係る炭化珪素半導体チップの構成を示す平面模式図である。FIG. 2 is a schematic plan view showing a configuration of the silicon carbide semiconductor chip according to the first embodiment. 図3は、図2のIII-III線に沿った断面模式図である。FIG. 3 is a schematic sectional view taken along line III-III in FIG. 図4は、図2のIV-IV線に沿った断面模式図である。FIG. 4 is a schematic sectional view taken along line IV-IV in FIG. 図5は、第1実施形態に係る炭化珪素半導体装置の第1変形例の構成を示す縦断面模式図である。FIG. 5 is a schematic vertical sectional view showing a configuration of a first modification of the silicon carbide semiconductor device according to the first embodiment. 図6は、第1実施形態に係る炭化珪素半導体装置の第2変形例の構成を示す縦断面模式図である。FIG. 6 is a schematic vertical sectional view showing a configuration of a second modification of the silicon carbide semiconductor device according to the first embodiment. 図7は、第1実施形態に係る炭化珪素半導体装置の第3変形例の構成を示す縦断面模式図である。FIG. 7 is a schematic vertical sectional view showing a configuration of a third modification of the silicon carbide semiconductor device according to the first embodiment. 図8は、第1実施形態に係る炭化珪素半導体装置の第4変形例の構成を示す縦断面模式図である。FIG. 8 is a schematic vertical sectional view showing a configuration of a fourth modification of the silicon carbide semiconductor device according to the first embodiment. 図9は、第1実施形態に係る炭化珪素半導体装置の第5変形例の構成を示す縦断面模式図である。FIG. 9 is a schematic vertical cross-sectional view showing a configuration of a fifth modification of the silicon carbide semiconductor device according to the first embodiment. 図10は、第1実施形態に係る炭化珪素半導体装置の第6変形例の構成を示す縦断面模式図である。FIG. 10 is a schematic longitudinal sectional view showing a configuration of a sixth modification of the silicon carbide semiconductor device according to the first embodiment. 図11は、第1実施形態に係る炭化珪素半導体装置の第7変形例の構成を示す縦断面模式図である。FIG. 11 is a schematic vertical sectional view showing a configuration of a seventh modification of the silicon carbide semiconductor device according to the first embodiment. 図12は、第2実施形態に係る炭化珪素半導体チップの構成を示す平面模式図である。FIG. 12 is a schematic plan view showing the configuration of the silicon carbide semiconductor chip according to the second embodiment. 図13は、第3実施形態に係る炭化珪素半導体チップの構成を示す平面模式図である。FIG. 13 is a schematic plan view showing the configuration of the silicon carbide semiconductor chip according to the third embodiment. 図14は、第4実施形態に係る炭化珪素半導体チップの構成を示す平面模式図である。FIG. 14 is a schematic plan view showing the configuration of the silicon carbide semiconductor chip according to the fourth embodiment. 図15は、第5実施形態に係る炭化珪素半導体チップの構成を示す平面模式図である。FIG. 15 is a schematic plan view showing the configuration of the silicon carbide semiconductor chip according to the fifth embodiment.
 [本開示の実施形態の概要]
 まず、本開示の実施形態の概要について説明する。本明細書中の結晶学的記載においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示している。また結晶学上の指数が負であることは、通常、”-”(バー)を数字の上に付すことによって表現されるが、本明細書中では数字の前に負の符号を付している。
[Overview of Embodiment of the Present Disclosure]
First, an outline of an embodiment of the present disclosure will be described. In the crystallographic description in this specification, [] indicates the individual orientation, <> indicates the collective orientation, () indicates the individual plane, and indicates the collective plane with {}. In addition, the fact that a crystallographic index is negative is usually expressed by attaching a “-” (bar) to a number, but in this specification, a minus sign is added before the number. I have.
 (1)本開示に係る炭化珪素半導体装置100は、炭化珪素半導体チップ30と、樹脂8とを備えている。炭化珪素半導体チップ30は、炭化珪素基板10と、炭化珪素基板10上にある電極28とを含んでいる。炭化珪素基板10は、電極28に接する第1主面1と、第1主面1と反対側の第2主面2と、第1主面1および第2主面2の各々に連なる外周面3と、外周面3を含む外周領域50と、外周領域50に取り囲まれ、かつ炭化珪素半導体素子90が設けられた内部領域40と、外周領域50の第1主面1に位置する第1溝7とを有している。樹脂8は、第1主面1および外周面3の各々を覆い、かつ第1溝7の内部に設けられている。 (1) Silicon carbide semiconductor device 100 according to the present disclosure includes silicon carbide semiconductor chip 30 and resin 8. Silicon carbide semiconductor chip 30 includes silicon carbide substrate 10 and electrodes 28 on silicon carbide substrate 10. Silicon carbide substrate 10 has a first main surface 1 in contact with electrode 28, a second main surface 2 opposite to first main surface 1, and an outer peripheral surface connected to each of first main surface 1 and second main surface 2. 3, an outer peripheral region 50 including the outer peripheral surface 3, an inner region 40 surrounded by the outer peripheral region 50 and provided with the silicon carbide semiconductor element 90, and a first groove located on the first main surface 1 of the outer peripheral region 50. 7 are provided. The resin 8 covers each of the first main surface 1 and the outer peripheral surface 3 and is provided inside the first groove 7.
 (2)上記(1)に係る炭化珪素半導体装置100において、第1溝7は、第1主面1に連なりかつ平面状の側面5と、側面5に連なりかつ平面状の底面6とを含んでいてもよい。 (2) In silicon carbide semiconductor device 100 according to the above (1), first groove 7 includes planar side surface 5 continuing to first main surface 1 and planar bottom surface 6 continuing to side surface 5. You may go out.
 (3)上記(2)に係る炭化珪素半導体装置100において、側面5と底面6とがなす角度は、90°であってもよい。 (3) In silicon carbide semiconductor device 100 according to (2) above, the angle formed between side surface 5 and bottom surface 6 may be 90 °.
 (4)上記(2)に係る炭化珪素半導体装置100において、側面5と底面6とがなす角度は、90°よりも大きくてもよい。 (4) In silicon carbide semiconductor device 100 according to (2), the angle formed between side surface 5 and bottom surface 6 may be greater than 90 °.
 (5)上記(2)に係る炭化珪素半導体装置100において、側面5と底面6とがなす角度は、90°よりも小さくてもよい。 (5) In silicon carbide semiconductor device 100 according to (2) above, the angle formed between side surface 5 and bottom surface 6 may be smaller than 90 °.
 (6)上記(2)~(5)のいずれかに係る炭化珪素半導体装置100において、樹脂8は、側面5および底面6の各々に接していてもよい。 (6) In the silicon carbide semiconductor device 100 according to any one of the above (2) to (5), the resin 8 may be in contact with each of the side surface 5 and the bottom surface 6.
 (7)上記(1)~(6)のいずれかに係る炭化珪素半導体装置100において、第1溝7の深さは、0.1μm以上30μm以下であってもよい。 (7) In the silicon carbide semiconductor device 100 according to any one of the above (1) to (6), the depth of the first groove 7 may be 0.1 μm or more and 30 μm or less.
 (8)上記(1)~(6)のいずれかに係る炭化珪素半導体装置100において、第1溝7の開口部19の幅は、0.1μm以上30μm以下であってもよい。 (8) In the silicon carbide semiconductor device 100 according to any one of the above (1) to (6), the width of the opening 19 of the first groove 7 may be 0.1 μm or more and 30 μm or less.
 (9)上記(1)~(6)のいずれかに係る炭化珪素半導体装置100において、第1溝7の開口部19の幅を、第1溝7の深さで除した値は、0.25以上2以下であってもよい。 (9) In the silicon carbide semiconductor device 100 according to any one of the above (1) to (6), the value obtained by dividing the width of the opening 19 of the first groove 7 by the depth of the first groove 7 is 0.1. It may be 25 or more and 2 or less.
 (10)上記(1)~(9)のいずれかに係る炭化珪素半導体装置100において、外周領域50の第1主面1に位置し、かつ互いに離間した第2溝82と、第3溝83と、第4溝84とを有してもよい。 (10) In the silicon carbide semiconductor device 100 according to any one of the above (1) to (9), the second groove 82 and the third groove 83 which are located on the first main surface 1 of the outer peripheral region 50 and are separated from each other. And a fourth groove 84.
 (11)上記(10)に係る炭化珪素半導体装置100において、炭化珪素基板10の形状は、平面視で四角形であってもよい。第1溝7、第2溝82、第3溝83および第4溝84は、それぞれ四角形の4つの角部に位置していてもよい。 (11) In silicon carbide semiconductor device 100 according to (10) above, silicon carbide substrate 10 may have a rectangular shape in plan view. The first groove 7, the second groove 82, the third groove 83, and the fourth groove 84 may be located at four corners of a quadrangle, respectively.
 (12)上記(1)~(9)のいずれかに係る炭化珪素半導体装置100において、第1溝7は、平面視で内部領域40を取り囲んでいてもよい。 (12) In the silicon carbide semiconductor device 100 according to any one of the above (1) to (9), the first groove 7 may surround the internal region 40 in plan view.
 [本開示の実施形態の詳細]
 以下、実施の形態について図に基づいて説明する。なお、以下の図面において、同一または相当する部分には同一の参照番号を付し、その説明は繰り返さない。
[Details of Embodiment of the Present Disclosure]
Hereinafter, embodiments will be described with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters, and description thereof will not be repeated.
 (第1実施形態)
 まず、第1実施形態に係る炭化珪素半導体装置100の構成について説明する。
(1st Embodiment)
First, the configuration of silicon carbide semiconductor device 100 according to the first embodiment will be described.
 図1に示されるように、第1実施形態に係る炭化珪素半導体装置100は、炭化珪素半導体チップ30と、樹脂8と、金属フレーム74と、はんだ層73とを主に有している。金属フレーム74は、たとえば銅フレームである。当該銅フレームには、ニッケルが鍍金されても良い。炭化珪素半導体チップ30は、はんだ層73を介して金属フレーム74上に設けられている。別の観点から言えば、はんだ層73は、炭化珪素半導体チップ30と金属フレーム74との間に位置している。樹脂8は、炭化珪素半導体チップ30と、はんだ層73とを覆っている。 As shown in FIG. 1, silicon carbide semiconductor device 100 according to the first embodiment mainly includes silicon carbide semiconductor chip 30, resin 8, metal frame 74, and solder layer 73. The metal frame 74 is, for example, a copper frame. The copper frame may be plated with nickel. Silicon carbide semiconductor chip 30 is provided on metal frame 74 via solder layer 73. From another viewpoint, solder layer 73 is located between silicon carbide semiconductor chip 30 and metal frame 74. Resin 8 covers silicon carbide semiconductor chip 30 and solder layer 73.
 炭化珪素半導体チップ30は、第3主面31と、第4主面32とを有している。第4主面32は、第3主面31と反対側にある。炭化珪素半導体チップ30は、第4主面32においてはんだ層73に接している。樹脂8は、炭化珪素半導体チップ30の第3主面31を覆っている。樹脂8は、はんだ層73および金属フレーム74に接している。炭化珪素半導体チップ30は、炭化珪素基板10(図3参照)を有している。炭化珪素半導体チップ30への電流等の供給は、図示しないワイヤー等を介して行われる。 珪 素 Silicon carbide semiconductor chip 30 has third main surface 31 and fourth main surface 32. The fourth main surface 32 is on the opposite side of the third main surface 31. Silicon carbide semiconductor chip 30 is in contact with solder layer 73 on fourth main surface 32. Resin 8 covers third main surface 31 of silicon carbide semiconductor chip 30. The resin 8 is in contact with the solder layer 73 and the metal frame 74. Silicon carbide semiconductor chip 30 has silicon carbide substrate 10 (see FIG. 3). Supply of a current or the like to silicon carbide semiconductor chip 30 is performed via a wire or the like (not shown).
 図2は、炭化珪素基板10の構成を示す平面模式図である。図2に示されるように、炭化珪素基板10は、内部領域40(活性領域40)と、外周領域50とを有している。図2に示されるように、第1主面1に対して垂直な方向から見て(つまり平面視で)、外周領域50は、活性領域40を取り囲んでいる。外周領域50の第1主面1には、溝7(第1溝7)が位置している。外周領域50は、第1外周領域部51と、第2外周領域部52とを有する。第1外周領域部51は、活性領域40に接する。第2外周領域部52は、第1外周領域部51の外側に位置している。肩部4は、角領域41と、辺領域42とを有している。 FIG. 2 is a schematic plan view showing the configuration of silicon carbide substrate 10. As shown in FIG. 2, silicon carbide substrate 10 has an internal region 40 (active region 40) and an outer peripheral region 50. As shown in FIG. 2, when viewed from a direction perpendicular to first main surface 1 (that is, in a plan view), outer peripheral region 50 surrounds active region 40. The groove 7 (first groove 7) is located on the first main surface 1 of the outer peripheral region 50. The outer peripheral region 50 has a first outer peripheral region 51 and a second outer peripheral region 52. The first outer peripheral region 51 contacts the active region 40. The second outer peripheral region 52 is located outside the first outer peripheral region 51. The shoulder 4 has a corner region 41 and a side region 42.
 第2外周領域部52は、第1外周領域部51を取り囲んでいる。第2外周領域部52は、肩部4を構成する。第1外周領域部51には、たとえばガードリング16(図4参照)が設けられている。ガードリング16は、活性領域40を取り囲んでいる。第2外周領域部52には、溝7が設けられている。図2に示されるように、第1主面1に対して垂直な方向から見て、溝7は、活性領域40を取り囲んでいてもよい。第1主面1に対して垂直な方向から見て、溝7は、第1外周領域部51を取り囲んでいてもよい。第1主面1に対して垂直な方向から見て、溝7は、環状である。 The second outer peripheral region 52 surrounds the first outer peripheral region 51. The second outer peripheral area 52 constitutes the shoulder 4. In the first outer peripheral area 51, for example, a guard ring 16 (see FIG. 4) is provided. Guard ring 16 surrounds active region 40. The groove 7 is provided in the second outer peripheral region 52. As shown in FIG. 2, the groove 7 may surround the active region 40 when viewed from a direction perpendicular to the first main surface 1. The groove 7 may surround the first outer peripheral region 51 as viewed from a direction perpendicular to the first main surface 1. The groove 7 is annular when viewed from a direction perpendicular to the first main surface 1.
 図3は、図2のIII-III線に沿った断面模式図である。図3に示されるように、活性領域40には、炭化珪素半導体素子90が設けられている。炭化珪素半導体素子90は、たとえばMOSFETである。炭化珪素半導体素子90は、炭化珪素基板10と、ゲート絶縁膜24と、ゲート電極22と、層間絶縁膜23と、ソース電極28と、ドレイン電極25とを有している。なお図2においては、溝7が設けられた炭化珪素基板10のみを記載しており、ゲート絶縁膜24と、ゲート電極22と、層間絶縁膜23と、ソース電極28と、ドレイン電極25とは省略されている。 FIG. 3 is a schematic sectional view taken along line III-III in FIG. As shown in FIG. 3, silicon carbide semiconductor element 90 is provided in active region 40. Silicon carbide semiconductor element 90 is, for example, a MOSFET. Silicon carbide semiconductor element 90 includes silicon carbide substrate 10, gate insulating film 24, gate electrode 22, interlayer insulating film 23, source electrode 28, and drain electrode 25. Note that FIG. 2 shows only silicon carbide substrate 10 provided with groove 7, and that gate insulating film 24, gate electrode 22, interlayer insulating film 23, source electrode 28, and drain electrode 25 Omitted.
 炭化珪素基板10は、炭化珪素単結晶基板15と、炭化珪素単結晶基板15上にある炭化珪素エピタキシャル層20とを含んでいる。炭化珪素基板10は、第1主面1と、第2主面2と、外周面3とを有している。第2主面2は、第1主面1と反対側にある。外周面3は、第1主面1および第2主面2の各々に連なっている。第1主面1と外周面3とにより肩部4が構成されている。炭化珪素エピタキシャル層20は第1主面1を構成する。炭化珪素単結晶基板15は第2主面2を構成する。炭化珪素単結晶基板15および炭化珪素エピタキシャル層20は、たとえばポリタイプ4Hの六方晶炭化珪素から構成されている。炭化珪素単結晶基板15は、たとえば窒素(N)などのn型不純物を含みn型(第1導電型)を有する。 珪 素 Silicon carbide substrate 10 includes a silicon carbide single crystal substrate 15 and a silicon carbide epitaxial layer 20 on silicon carbide single crystal substrate 15. Silicon carbide substrate 10 has first main surface 1, second main surface 2, and outer peripheral surface 3. The second main surface 2 is on the opposite side of the first main surface 1. The outer peripheral surface 3 is continuous with each of the first main surface 1 and the second main surface 2. The first main surface 1 and the outer peripheral surface 3 form a shoulder 4. Silicon carbide epitaxial layer 20 forms first main surface 1. Silicon carbide single crystal substrate 15 forms second main surface 2. Silicon carbide single crystal substrate 15 and silicon carbide epitaxial layer 20 are made of, for example, hexagonal silicon carbide of polytype 4H. Silicon carbide single crystal substrate 15 includes an n-type impurity such as nitrogen (N) and has an n-type (first conductivity type).
 第1主面1は、たとえば{0001}面または{0001}面に対してオフ方向に8°以下のオフ角だけ傾斜した面である。第1主面1は、たとえば(000-1)面であってもよいし、(0001)面であってもよい。第1主面1は、たとえば(000-1)面に対してオフ方向に8°以下のオフ角だけ傾斜した面であってもよいし、(0001)面に対してオフ方向に8°以下のオフ角だけ傾斜した面であってもよい。オフ方向は、たとえば<11-20>方向であってもよいし、<1-100>方向であってもよい。オフ角は、たとえば1°以上であってもよいし、2°以上であってもよい。オフ角は、6°以下であってもよいし、4°以下であってもよい。 {First main surface 1} is, for example, a surface inclined by an off angle of 8 ° or less in the off direction with respect to the {0001} plane or the {0001} plane. First main surface 1 may be, for example, a (000-1) plane or a (0001) plane. The first main surface 1 may be, for example, a surface inclined by an off angle of 8 ° or less with respect to the (000-1) plane in the off direction, or 8 ° or less with respect to the (0001) plane in the off direction. The surface may be inclined by the off angle. The off direction may be, for example, a <11-20> direction or a <1-100> direction. The off angle may be, for example, 1 ° or more, or 2 ° or more. The off angle may be 6 ° or less or 4 ° or less.
 第1主面1が{0001}面である場合、第1方向101は、たとえば<11-20>方向である。第1主面1が{0001}面に対して傾斜している場合、第1方向101は、<11-20>方向が第1主面1に投影された方向である。同様に、第1主面1が{0001}面である場合、第2方向102は、たとえば<1-100>方向である。第1主面1が{0001}面に対して傾斜している場合、第2方向102は、<1-100>方向が第1主面1に投影された方向である。第1主面1は、第1方向101および第2方向102の各々に沿って延在している。 When {first main surface 1} is a {0001} surface, first direction 101 is, for example, a <11-20> direction. When first main surface 1 is inclined with respect to the {0001} plane, first direction 101 is a direction in which the <11-20> direction is projected on first main surface 1. Similarly, when first main surface 1 is a {0001} surface, second direction 102 is, for example, a <1-100> direction. When first main surface 1 is inclined with respect to the {0001} plane, second direction 102 is a direction in which the <1-100> direction is projected onto first main surface 1. The first main surface 1 extends along each of the first direction 101 and the second direction 102.
 炭化珪素エピタキシャル層20は、ドリフト領域11と、ボディ領域12と、ソース領域13と、コンタクト領域14とを主に有している。ドリフト領域11は、炭化珪素単結晶基板15上に設けられている。ドリフト領域11は、たとえば窒素などのn型不純物を含み、n型の導電型を有する。ドリフト領域11が含むn型不純物の濃度は、炭化珪素単結晶基板15が含むn型不純物の濃度よりも低くてもよい。 珪 素 SiC epitaxial layer 20 mainly has drift region 11, body region 12, source region 13, and contact region 14. Drift region 11 is provided on silicon carbide single crystal substrate 15. Drift region 11 includes an n-type impurity such as nitrogen, for example, and has n-type conductivity. Drift region 11 may have a concentration of an n-type impurity lower than that of silicon carbide single crystal substrate 15.
 ボディ領域12はドリフト領域11上に設けられている。ボディ領域12は、たとえばアルミニウム(Al)などのp型不純物を含み、p型(第2導電型)の導電型を有する。ボディ領域12のp型不純物の濃度は、ドリフト領域11のn型不純物の濃度よりも高くてもよい。ボディ領域12は、第1主面1および第2主面2の各々から離間している。 The body region 12 is provided on the drift region 11. Body region 12 includes a p-type impurity such as aluminum (Al) and has a p-type (second conductivity type) conductivity type. The concentration of p-type impurities in body region 12 may be higher than the concentration of n-type impurities in drift region 11. Body region 12 is separated from each of first main surface 1 and second main surface 2.
 ソース領域13は、ボディ領域12によってドリフト領域11から隔てられるようにボディ領域12上に設けられている。ソース領域13は、たとえば窒素またはリン(P)などのn型不純物を含んでおり、n型の導電型を有する。ソース領域13は、第1主面1を構成している。ソース領域13のn型不純物の濃度は、ボディ領域12のp型不純物の濃度よりも高くてもよい。ソース領域13のn型不純物の濃度は、たとえば1×1019cm-3程度である。 Source region 13 is provided on body region 12 so as to be separated from drift region 11 by body region 12. Source region 13 contains an n-type impurity such as nitrogen or phosphorus (P), and has an n-type conductivity. Source region 13 constitutes first main surface 1. The concentration of the n-type impurity in the source region 13 may be higher than the concentration of the p-type impurity in the body region 12. The concentration of the n-type impurity in source region 13 is, for example, about 1 × 10 19 cm −3 .
 コンタクト領域14は、たとえばアルミニウムなどのp型不純物を含んでおり、p型の導電型を有する。コンタクト領域14のp型不純物の濃度は、ボディ領域12のp型不純物の濃度よりも高くてもよい。コンタクト領域14は、ソース領域13を貫通し、ボディ領域12に接している。コンタクト領域14は、第1主面1を構成する。コンタクト領域14のp型不純物の濃度は、たとえば1×1018cm-3以上1×1020cm-3以下である。 Contact region 14 contains a p-type impurity such as aluminum and has a p-type conductivity. The concentration of the p-type impurity in contact region 14 may be higher than the concentration of the p-type impurity in body region 12. Contact region 14 penetrates source region 13 and is in contact with body region 12. Contact region 14 forms first main surface 1. The concentration of the p-type impurity in contact region 14 is, for example, not less than 1 × 10 18 cm −3 and not more than 1 × 10 20 cm −3 .
 図3に示されるように、第1主面1には、ゲートトレンチ9が設けられている。ゲートトレンチ9は、側壁面91と、底部92とにより構成されている。側壁面91は、第1主面1に連なっている。底部92は、側壁面91に連なっている。側壁面91は、ソース領域13およびボディ領域12を貫通してドリフト領域11に至っている。別の観点から言えば、側壁面91は、ソース領域13と、ボディ領域12と、ドリフト領域11とによって構成されている。底部92は、ドリフト領域11にある。別の観点から言えば、底部92は、ドリフト領域11によって構成されている。底部92は、たとえば第2主面2と平行な平面である。側壁面91と底部92とがなす角度θ1は、たとえば115°以上135°以下である。角度θ1は、たとえば120°以上であってもよい。角度θ1は、たとえば130°以下であってもよい。 ゲ ー ト As shown in FIG. 3, a gate trench 9 is provided in the first main surface 1. The gate trench 9 includes a side wall surface 91 and a bottom portion 92. The side wall surface 91 is continuous with the first main surface 1. The bottom 92 is continuous with the side wall surface 91. Sidewall surface 91 penetrates source region 13 and body region 12 to reach drift region 11. In other words, the side wall surface 91 includes the source region 13, the body region 12, and the drift region 11. The bottom 92 is in the drift region 11. In other words, the bottom portion 92 is constituted by the drift region 11. Bottom portion 92 is, for example, a plane parallel to second main surface 2. Angle θ1 formed between side wall surface 91 and bottom 92 is, for example, not less than 115 ° and not more than 135 °. Angle θ1 may be, for example, 120 ° or more. Angle θ1 may be, for example, 130 ° or less.
 ゲート絶縁膜24は、たとえば酸化膜である。ゲート絶縁膜24は、たとえば二酸化珪素を含む材料により構成されている。ゲート絶縁膜24は、ゲートトレンチ9の側壁面91および底部92の各々に接する。ゲート絶縁膜24は、底部92においてドリフト領域11と接している。ゲート絶縁膜24は、側壁面91において、ソース領域13、ボディ領域12およびドリフト領域11と接している。ゲート絶縁膜24は、第1主面1においてソース領域13と接していてもよい。 The gate insulating film 24 is, for example, an oxide film. Gate insulating film 24 is made of, for example, a material containing silicon dioxide. Gate insulating film 24 is in contact with each of side wall surface 91 and bottom portion 92 of gate trench 9. Gate insulating film 24 is in contact with drift region 11 at bottom 92. Gate insulating film 24 is in contact with source region 13, body region 12 and drift region 11 on sidewall surface 91. Gate insulating film 24 may be in contact with source region 13 on first main surface 1.
 ゲート電極22は、ゲート絶縁膜24上に設けられている。ゲート電極22は、たとえば導電性不純物を含むポリシリコンから構成されている。ゲート電極22は、ゲートトレンチ9の内部に配置されている。ゲート電極22は、ドリフト領域11、ボディ領域12およびソース領域13に対向している。 The gate electrode 22 is provided on the gate insulating film 24. Gate electrode 22 is made of, for example, polysilicon containing conductive impurities. Gate electrode 22 is arranged inside gate trench 9. Gate electrode 22 faces drift region 11, body region 12 and source region 13.
 ソース電極28は、第1主面1に接している。ソース電極28は、コンタクト電極21と、ソース配線29とを有する。ソース配線29は、コンタクト電極21上に設けられている。コンタクト電極21は、第1主面1において、ソース領域13に接している。コンタクト電極21は、第1主面1において、コンタクト領域14に接していてもよい。コンタクト電極21は、たとえばTi(チタン)と、Al(アルミニウム)と、Si(シリコン)とを含む材料から構成されている。コンタクト電極21は、ソース領域13とオーミック接合している。コンタクト電極21は、コンタクト領域14とオーミック接合していてもよい。 The source electrode 28 is in contact with the first main surface 1. Source electrode 28 has contact electrode 21 and source wiring 29. The source wiring 29 is provided on the contact electrode 21. Contact electrode 21 is in contact with source region 13 on first main surface 1. Contact electrode 21 may be in contact with contact region 14 on first main surface 1. Contact electrode 21 is made of a material containing, for example, Ti (titanium), Al (aluminum), and Si (silicon). The contact electrode 21 is in ohmic contact with the source region 13. The contact electrode 21 may be in ohmic contact with the contact region 14.
 ドレイン電極25は、第2主面2に接する。ドレイン電極25は、第2主面2において炭化珪素単結晶基板15に接している。ドレイン電極25は、ドリフト領域11と電気的に接続されている。ドレイン電極25は、たとえばNiSi(ニッケルシリコン)またはTiAlSi(チタンアルミニウムシリコン)を含む材料から構成されている。 The drain electrode 25 is in contact with the second main surface 2. Drain electrode 25 is in contact with silicon carbide single crystal substrate 15 on second main surface 2. Drain electrode 25 is electrically connected to drift region 11. Drain electrode 25 is made of a material containing, for example, NiSi (nickel silicon) or TiAlSi (titanium aluminum silicon).
 層間絶縁膜23は、ゲート電極22およびゲート絶縁膜24の各々に接して設けられている。層間絶縁膜23は、たとえば二酸化珪素を含む材料から構成されている。層間絶縁膜23は、ゲート電極22とソース電極28とを電気的に絶縁している。層間絶縁膜23の一部は、ゲートトレンチ9の内部に設けられていてもよい。ソース配線29は、層間絶縁膜23を覆っていてもよい。ソース配線29は、たとえばAlを含む材料により構成されている。 (4) The interlayer insulating film 23 is provided in contact with each of the gate electrode 22 and the gate insulating film 24. Interlayer insulating film 23 is made of, for example, a material containing silicon dioxide. The interlayer insulating film 23 electrically insulates the gate electrode 22 and the source electrode 28. Part of the interlayer insulating film 23 may be provided inside the gate trench 9. The source wiring 29 may cover the interlayer insulating film 23. Source wiring 29 is made of, for example, a material containing Al.
 図4は、図2のIV-IV線に沿った断面模式図である。図2に示されるように、IV-IV線は、第1主面1に垂直な方向から見た場合において、炭化珪素半導体チップ30の対角線に沿った直線である。図4に示されるように、炭化珪素基板10の外周領域50の第1主面1には、溝7が設けられている。溝7は、側面5と、底面6とを含んでいる。側面5は、第1主面1に連なっている。底面6は、側面5に連なっている。側面5は、たとえば平面状である。底面6は、たとえば平面状である。側面5と底面6とがなす角度θ2は、たとえば90°よりも大きい。角度θ2は、たとえば115°以上135°以下である。角度θ2は、たとえば120°以上であってもよい。角度θ2は、たとえば130°以下であってもよい。断面視において対向する一対の側面5の間隔は、底面6から第1主面1に向かうにつれて広がっている(順テーパ)。溝7の開口部19の幅111は、溝7の底面6の幅113よりも大きい。 FIG. 4 is a schematic cross-sectional view taken along the line IV-IV of FIG. As shown in FIG. 2, the IV-IV line is a straight line along the diagonal line of silicon carbide semiconductor chip 30 when viewed from a direction perpendicular to first main surface 1. As shown in FIG. 4, groove 7 is provided in first main surface 1 of outer peripheral region 50 of silicon carbide substrate 10. The groove 7 includes a side surface 5 and a bottom surface 6. The side surface 5 is continuous with the first main surface 1. The bottom surface 6 is continuous with the side surface 5. The side surface 5 is, for example, planar. The bottom surface 6 is, for example, planar. The angle θ2 formed between the side surface 5 and the bottom surface 6 is, for example, greater than 90 °. Angle θ2 is, for example, not less than 115 ° and not more than 135 °. Angle θ2 may be, for example, 120 ° or more. Angle θ2 may be, for example, 130 ° or less. The interval between the pair of side surfaces 5 facing each other in a sectional view increases from the bottom surface 6 toward the first main surface 1 (forward taper). The width 111 of the opening 19 of the groove 7 is larger than the width 113 of the bottom surface 6 of the groove 7.
 溝7が有する2つの側面5は、底面6に垂直な直線に対して非対称であってもよい。すなわち、一方の側面5と底面6とがなす角度は、他方の側面5と底面とがなす角度と異なっても良い。例示的には、一方の側面5と底面6とがなす角度は90°より大きく、他方の側面5と底面とがなす角度は90°より小さくても良い。 The two side surfaces 5 of the groove 7 may be asymmetric with respect to a straight line perpendicular to the bottom surface 6. That is, the angle between one side surface 5 and the bottom surface 6 may be different from the angle between the other side surface 5 and the bottom surface. Illustratively, the angle between one side surface 5 and the bottom surface 6 may be greater than 90 °, and the angle between the other side surface 5 and the bottom surface may be less than 90 °.
 溝7は、たとえば熱エッチングにより形成することができる。具体的には、少なくとも1種類以上のハロゲン原子を有する反応性ガスを含む雰囲気中での加熱によって行い得る。少なくとも1種類以上のハロゲン原子は、塩素(Cl)原子およびフッ素(F)原子の少なくともいずれかを含む。当該雰囲気は、たとえば、塩素(Cl2)、三塩化ホウ素(BCl3)、SF6または四フッ化炭素(CF4)を含む。たとえば、塩素ガスと酸素ガスとの混合ガスを反応ガスとして用い、熱処理温度を、たとえば800℃以上900℃以下として、熱エッチングが行われる。なお、反応ガスは、上述した塩素ガスと酸素ガスとに加えて、キャリアガスを含んでいてもよい。キャリアガスとしては、たとえば窒素ガス、アルゴンガスまたはヘリウムガスなどを用いることができる。熱エッチングにより、炭化珪素基板10の第1主面1に溝7が形成される。この場合、第1主面1は、(000-1)面または(000-1)面に対して8°以下のオフ角だけオフ方向に傾斜した面である。溝7およびゲートトレンチ9が同時に形成されてもよい。 The groove 7 can be formed by, for example, thermal etching. Specifically, it can be performed by heating in an atmosphere containing a reactive gas having at least one or more halogen atoms. The at least one kind of halogen atom includes at least one of a chlorine (Cl) atom and a fluorine (F) atom. The atmosphere includes, for example, chlorine (Cl 2 ), boron trichloride (BCl 3 ), SF 6 or carbon tetrafluoride (CF 4 ). For example, thermal etching is performed by using a mixed gas of chlorine gas and oxygen gas as a reaction gas and setting the heat treatment temperature to, for example, 800 ° C. or more and 900 ° C. or less. Note that the reaction gas may include a carrier gas in addition to the chlorine gas and the oxygen gas described above. As the carrier gas, for example, a nitrogen gas, an argon gas, a helium gas, or the like can be used. Groove 7 is formed in first main surface 1 of silicon carbide substrate 10 by thermal etching. In this case, the first main surface 1 is a (000-1) plane or a plane inclined in an off direction by an off angle of 8 ° or less with respect to the (000-1) plane. The groove 7 and the gate trench 9 may be formed at the same time.
 図4に示されるように、外周領域50において、炭化珪素基板10は、ガードリング16とドリフト領域11とを有している。ガードリング16は、たとえばアルミニウム(Al)またはホウ素(B)などのp型不純物を含み、p型(第2導電型)を有する。外周領域50におけるドリフト領域11は、活性領域40におけるドリフト領域11と連なっている。外周領域50におけるドリフト領域11は、溝7を構成している。溝7の側面5および底面6の各々は、ドリフト領域11により構成されている。溝7は、ガードリング16よりも外周側に位置している。溝7は、第2外周領域部52に設けられている。図4に示す断面において、第2外周領域部52の幅および溝7の深さの各々は、たとえば20μmである。このとき、第2外周領域部52の幅を溝7の深さで除した値は、1である。側面5と底面6とがなす角度θ2(図4参照)は、たとえば120°から130°の範囲である。第2外周領域部52は、外周面3を含んでいる。溝7は、ガードリング16と外周面3との間に位置している。ガードリング16は、ボディ領域12よりも外周側に位置している。ガードリング16は、ボディ領域12と、溝7との間に位置している。 珪 素 As shown in FIG. 4, in outer peripheral region 50, silicon carbide substrate 10 has guard ring 16 and drift region 11. Guard ring 16 includes a p-type impurity such as aluminum (Al) or boron (B), and has a p-type (second conductivity type). Drift region 11 in outer peripheral region 50 is continuous with drift region 11 in active region 40. The drift region 11 in the outer peripheral region 50 forms the groove 7. Each of the side surface 5 and the bottom surface 6 of the groove 7 is constituted by a drift region 11. The groove 7 is located on the outer peripheral side of the guard ring 16. The groove 7 is provided in the second outer peripheral area 52. In the cross section shown in FIG. 4, each of the width of second outer peripheral region 52 and the depth of groove 7 is, for example, 20 μm. At this time, the value obtained by dividing the width of the second outer peripheral region 52 by the depth of the groove 7 is 1. The angle θ2 formed between the side surface 5 and the bottom surface 6 (see FIG. 4) is, for example, in a range from 120 ° to 130 °. The second outer peripheral region 52 includes the outer peripheral surface 3. The groove 7 is located between the guard ring 16 and the outer peripheral surface 3. Guard ring 16 is located on the outer peripheral side of body region 12. Guard ring 16 is located between body region 12 and groove 7.
 絶縁膜26は、第1主面1において、ボディ領域12およびガードリング16の各々に接している。絶縁膜26は、たとえば二酸化珪素を含む材料から構成されている。絶縁膜26は、溝7よりも内周側に位置していてもよい。樹脂8は、溝7の内部に設けられている。樹脂8は、第1主面1と、外周面3と、肩部4とを覆っている。樹脂8は、絶縁膜26に接していてもよい。樹脂8は、活性領域40および外周領域50の各々を覆っている。樹脂8は、ソース配線29に接していてもよい。溝7は、樹脂8により埋められていてもよい。 Insulating film 26 is in contact with body region 12 and guard ring 16 on first main surface 1. Insulating film 26 is made of, for example, a material containing silicon dioxide. The insulating film 26 may be located on the inner peripheral side of the groove 7. The resin 8 is provided inside the groove 7. The resin 8 covers the first main surface 1, the outer peripheral surface 3, and the shoulder 4. The resin 8 may be in contact with the insulating film 26. The resin 8 covers each of the active region 40 and the outer peripheral region 50. The resin 8 may be in contact with the source wiring 29. The groove 7 may be filled with a resin 8.
 図4に示されるように、樹脂8は、溝7の側面5および底面6の各々において、ドリフト領域11に接している。樹脂8は、側面5および底面6の各々に接している。樹脂8は、肩部4の角領域41に接している。樹脂8は、肩部4の辺領域42(図2参照)に接している。樹脂8は、外周面3において、ドリフト領域11に接していてもよい。樹脂8は、炭化珪素単結晶基板15に接していてもよい。樹脂8は、ドレイン電極25に接していてもよい。樹脂8は、炭化珪素半導体チップ30を封止するための樹脂8である。樹脂8は、たとえばエポキシ樹脂であるが、エポキシ樹脂に限定されない。樹脂8は、たとえばフェノール樹脂、マレイミド樹脂等の耐熱性の有機樹脂、ポリマー成分中に無機ナノ粒子を均一に単分散させた樹脂ナノコンポジット樹脂などであってもよい。 樹脂 As shown in FIG. 4, the resin 8 is in contact with the drift region 11 on each of the side surface 5 and the bottom surface 6 of the groove 7. The resin 8 is in contact with each of the side surface 5 and the bottom surface 6. The resin 8 is in contact with the corner region 41 of the shoulder 4. The resin 8 is in contact with the side region 42 of the shoulder 4 (see FIG. 2). The resin 8 may be in contact with the drift region 11 on the outer peripheral surface 3. Resin 8 may be in contact with silicon carbide single crystal substrate 15. The resin 8 may be in contact with the drain electrode 25. Resin 8 is resin 8 for sealing silicon carbide semiconductor chip 30. The resin 8 is, for example, an epoxy resin, but is not limited to an epoxy resin. The resin 8 may be a heat-resistant organic resin such as a phenol resin or a maleimide resin, or a resin nanocomposite resin in which inorganic nanoparticles are uniformly monodispersed in a polymer component.
 図4に示されるように、溝7の深さ112は、たとえば0.1μm以上30μm以下である。溝7の深さ112の上限は、特に限定されないが、たとえば10μm以下である。好ましくは、溝7の深さ112の上限は、20μm以下である。溝7の深さ112の下限は、特に限定されないが、たとえば1μm以上である。好ましくは、溝7の深さ112の下限は、3μm以上である。なお、溝7の深さ112は、第1主面1に対して垂直な方向における、底面6と第1主面1との間の距離である。 (4) As shown in FIG. 4, the depth 112 of the groove 7 is, for example, 0.1 μm or more and 30 μm or less. The upper limit of the depth 112 of the groove 7 is not particularly limited, but is, for example, 10 μm or less. Preferably, the upper limit of the depth 112 of the groove 7 is 20 μm or less. The lower limit of the depth 112 of the groove 7 is not particularly limited, but is, for example, 1 μm or more. Preferably, the lower limit of the depth 112 of the groove 7 is 3 μm or more. Note that the depth 112 of the groove 7 is a distance between the bottom surface 6 and the first main surface 1 in a direction perpendicular to the first main surface 1.
 図4に示されるように、溝7の開口部19の幅111は、たとえば0.1μm以上30μm以下である。溝7の開口部19の幅111の上限は、特に限定されないが、たとえば20μm以下である。好ましくは、溝7の開口部19の幅111の上限は、10μm以下である。溝7の開口部19の幅111の下限は、特に限定されないが、たとえば1μm以上である。好ましくは、溝7の開口部19の幅111の下限は、10μm以上である。なお、溝7の開口部19の幅111は、図4の断面において、第1主面1に対して平行な方向における、溝7の開口部19の幅である。溝7の開口部19の幅111は、溝7の側面5と第1主面1との境界において測定される幅である。 (4) As shown in FIG. 4, the width 111 of the opening 19 of the groove 7 is, for example, 0.1 μm or more and 30 μm or less. The upper limit of the width 111 of the opening 19 of the groove 7 is not particularly limited, but is, for example, 20 μm or less. Preferably, the upper limit of the width 111 of the opening 19 of the groove 7 is 10 μm or less. The lower limit of the width 111 of the opening 19 of the groove 7 is not particularly limited, but is, for example, 1 μm or more. Preferably, the lower limit of the width 111 of the opening 19 of the groove 7 is 10 μm or more. The width 111 of the opening 19 of the groove 7 is the width of the opening 19 of the groove 7 in a direction parallel to the first main surface 1 in the cross section of FIG. The width 111 of the opening 19 of the groove 7 is a width measured at the boundary between the side surface 5 of the groove 7 and the first main surface 1.
 図4に示されるように、溝7の開口部19の幅111を溝7の深さ112で除した値は、たとえば0.2以上2以下である。溝7の開口部19の幅111を溝7の深さ112で除した値の上限は、特に限定されないが、たとえば1.5以下である。好ましくは、溝7の開口部19の幅111を溝7の深さ112で除した値の上限は、1以下である。 値 As shown in FIG. 4, the value obtained by dividing the width 111 of the opening 19 of the groove 7 by the depth 112 of the groove 7 is, for example, 0.2 or more and 2 or less. The upper limit of the value obtained by dividing the width 111 of the opening 19 of the groove 7 by the depth 112 of the groove 7 is not particularly limited, but is, for example, 1.5 or less. Preferably, the upper limit of the value obtained by dividing the width 111 of the opening 19 of the groove 7 by the depth 112 of the groove 7 is 1 or less.
 次に、第1実施形態に係る炭化珪素半導体装置100の第1変形例の構成について説明する。 Next, a configuration of a first modification of silicon carbide semiconductor device 100 according to the first embodiment will be described.
 図5に示されるように、溝7の側面5と底面6とがなす角度θ2は、たとえば90°であってもよい。この場合、第1主面1と側面5とがなす角度も90°である。断面視において対向する一対の側面5の間隔は、底面6から第1主面1に向かうにつれて一定である。溝7の側面5は、炭化珪素基板10の外周面3に平行である。溝7の深さは、ガードリング16の深さよりも大きくてもよい。溝7の深さは、ボディ領域12の深さよりも大きくてもよい。 角度 As shown in FIG. 5, the angle θ2 between the side surface 5 and the bottom surface 6 of the groove 7 may be, for example, 90 °. In this case, the angle between the first main surface 1 and the side surface 5 is also 90 °. The interval between the pair of side surfaces 5 facing each other in a sectional view is constant from the bottom surface 6 toward the first main surface 1. Side surface 5 of groove 7 is parallel to outer peripheral surface 3 of silicon carbide substrate 10. The depth of the groove 7 may be larger than the depth of the guard ring 16. The depth of the groove 7 may be larger than the depth of the body region 12.
 溝7は、たとえば反応性イオンエッチングを用いて形成することができる。具体的には、開口部19を有するマスク層(図示せず)が第1主面1上に形成された状態で、炭化珪素基板10がエッチングされる。エッチングの方法としては、たとえば反応性イオンエッチング、特に誘導結合プラズマ反応性イオンエッチングを用いることができる。たとえば反応ガスとして六フッ化硫黄(SF6)または六フッ化硫黄と酸素(O2)との混合ガスを用いた誘導結合プラズマ反応性イオンエッチングを用いることができる。 The groove 7 can be formed using, for example, reactive ion etching. More specifically, silicon carbide substrate 10 is etched with mask layer (not shown) having opening 19 formed on first main surface 1. As an etching method, for example, reactive ion etching, in particular, inductively coupled plasma reactive ion etching can be used. For example, inductively coupled plasma reactive ion etching using sulfur hexafluoride (SF 6 ) or a mixed gas of sulfur hexafluoride and oxygen (O 2 ) as a reaction gas can be used.
 次に、第1実施形態に係る炭化珪素半導体装置100の第2変形例の構成について説明する。 Next, the configuration of a second modification of silicon carbide semiconductor device 100 according to the first embodiment will be described.
 図6に示されるように、溝7の側面5と底面6とがなす角度θ2は、たとえば90°よりも小さくてもよい。この場合、第1主面1と側面5とがなす角度も、90°よりも小さい。角度θ2は、たとえば45°以上65°以下である。角度θ2は、たとえば50°以上であってもよい。角度θ2は、たとえば60°以下であってもよい。断面視において対向する一対の側面5の間隔は、底面6から第1主面1に向かうにつれて狭くなっている(逆テーパ)。溝7の開口部19の幅111は、溝7の底面6の幅113よりも小さい。溝7の深さは、ガードリング16の深さよりも大きくてもよい。溝7の深さは、ボディ領域12の深さよりも大きくてもよい。 As shown in FIG. 6, the angle θ2 formed between the side surface 5 and the bottom surface 6 of the groove 7 may be smaller than 90 °, for example. In this case, the angle formed by first main surface 1 and side surface 5 is also smaller than 90 °. Angle θ2 is, for example, not less than 45 ° and not more than 65 °. Angle θ2 may be, for example, 50 ° or more. Angle θ2 may be, for example, 60 ° or less. The distance between the pair of side surfaces 5 facing each other in a sectional view becomes narrower (reverse taper) from the bottom surface 6 toward the first main surface 1. The width 111 of the opening 19 of the groove 7 is smaller than the width 113 of the bottom surface 6 of the groove 7. The depth of the groove 7 may be larger than the depth of the guard ring 16. The depth of the groove 7 may be larger than the depth of the body region 12.
 溝7は、たとえば熱エッチングにより形成することができる。熱エッチングの条件は上述の通りである。第2変形例の溝7を形成する場合、第1主面1は、(0001)面または(0001)面に対して8°以下のオフ角だけオフ方向に傾斜した面である。 The groove 7 can be formed by, for example, thermal etching. The conditions of the thermal etching are as described above. When forming the groove 7 of the second modified example, the first main surface 1 is a surface inclined in the off direction by an off angle of 8 ° or less with respect to the (0001) plane or the (0001) plane.
 次に、第1実施形態に係る炭化珪素半導体装置100の第3変形例の構成について説明する。 Next, the configuration of a third modification of silicon carbide semiconductor device 100 according to the first embodiment will be described.
 図7に示されるように、絶縁膜26が溝7の内部に設けられていてもよい。絶縁膜26は、溝7の側面5および底面6の各々に接していてもよい。別の観点から言えば、絶縁膜26は、溝7の側面5および底面6の各々においてドリフト領域11に接していてもよい。絶縁膜26は、溝7の一部に配置されているが、溝7を完全には埋めていない。そのため、樹脂8は、溝7の内部に入り込んでいる。樹脂8は、断面視において対向する一対の側面5の間に設けられている。樹脂8は、溝7の内部において、絶縁膜26に接している。 絶 縁 As shown in FIG. 7, the insulating film 26 may be provided inside the groove 7. The insulating film 26 may be in contact with each of the side surface 5 and the bottom surface 6 of the groove 7. In other words, the insulating film 26 may be in contact with the drift region 11 on each of the side surface 5 and the bottom surface 6 of the groove 7. The insulating film 26 is arranged in a part of the groove 7 but does not completely fill the groove 7. Therefore, the resin 8 enters the inside of the groove 7. The resin 8 is provided between a pair of side surfaces 5 facing each other in a sectional view. The resin 8 is in contact with the insulating film 26 inside the groove 7.
 次に、第1実施形態に係る炭化珪素半導体装置100の第4変形例の構成について説明する。 Next, a configuration of a fourth modification of silicon carbide semiconductor device 100 according to the first embodiment will be described.
 図8に示されるように、絶縁膜26および応力緩衝層が溝7の内部に設けられていてもよい。応力緩衝層27は、絶縁膜26上に設けられている。応力緩衝層27は、たとえばポリイミドを含む材料から構成されている。絶縁膜26は、溝7の側面5および底面6の各々に接していてもよい。別の観点から言えば、絶縁膜26は、溝7の側面5および底面6の各々においてドリフト領域11に接していてもよい。 絶 縁 As shown in FIG. 8, the insulating film 26 and the stress buffer layer may be provided inside the groove 7. The stress buffer layer 27 is provided on the insulating film 26. The stress buffer layer 27 is made of, for example, a material containing polyimide. The insulating film 26 may be in contact with each of the side surface 5 and the bottom surface 6 of the groove 7. In other words, the insulating film 26 may be in contact with the drift region 11 on each of the side surface 5 and the bottom surface 6 of the groove 7.
 絶縁膜26は、溝7の一部に配置されているが、溝7を完全には埋めていない。同様に、応力緩衝層27は、溝7の一部に配置されているが、溝7を完全には埋めていない。そのため、樹脂8は、溝7の内部に入り込んでいる。樹脂8は、断面視において対向する一対の側面5の間に設けられている。樹脂8は、溝7の内部において、応力緩衝層27に接している。応力緩衝層27は、溝7の内部において、絶縁膜26に接している。 (4) The insulating film 26 is disposed in a part of the groove 7, but does not completely fill the groove 7. Similarly, the stress buffer layer 27 is disposed in a part of the groove 7 but does not completely fill the groove 7. Therefore, the resin 8 enters the inside of the groove 7. The resin 8 is provided between a pair of side surfaces 5 facing each other in a sectional view. The resin 8 is in contact with the stress buffer layer 27 inside the groove 7. The stress buffer layer 27 is in contact with the insulating film 26 inside the groove 7.
 図8に示されるように、第1主面1に対して垂直な断面において、絶縁膜26および応力緩衝層27の各々は、炭化珪素基板10の外周面3に沿って設けられていてもよい。絶縁膜26は、絶縁膜26の外周部において樹脂8に接していてもよい。同様に、応力緩衝層27は、応力緩衝層27の外周部において樹脂8に接していてもよい。 As shown in FIG. 8, in a cross section perpendicular to first main surface 1, each of insulating film 26 and stress buffer layer 27 may be provided along outer peripheral surface 3 of silicon carbide substrate 10. . The insulating film 26 may be in contact with the resin 8 at the outer peripheral portion of the insulating film 26. Similarly, the stress buffer layer 27 may be in contact with the resin 8 at the outer peripheral portion of the stress buffer layer 27.
 次に、第1実施形態に係る炭化珪素半導体装置100の第5変形例の構成について説明する。 Next, a configuration of a fifth modification example of silicon carbide semiconductor device 100 according to the first embodiment will be described.
 図9に示されるように、絶縁膜26および応力緩衝層27の各々が第1主面1上に設けられているが、溝7の内部には配置されていなくてもよい。応力緩衝層27は、絶縁膜26上に設けられている。応力緩衝層27は、たとえばポリイミドを含む材料から構成されている。絶縁膜26および応力緩衝層27の各々には、貫通孔93が設けられている。貫通孔93を通って、樹脂8は、溝7の内部に入り込んでいる。樹脂8は、溝7の側面5および底面6の各々において、ドリフト領域11に接している。樹脂8は、側面5および底面6の各々に接している。樹脂8は、第1主面1の一部に接していてもよい。 絶 縁 As shown in FIG. 9, each of the insulating film 26 and the stress buffer layer 27 is provided on the first main surface 1, but may not be provided inside the groove 7. The stress buffer layer 27 is provided on the insulating film 26. The stress buffer layer 27 is made of, for example, a material containing polyimide. Each of the insulating film 26 and the stress buffer layer 27 has a through hole 93. The resin 8 enters the groove 7 through the through hole 93. The resin 8 is in contact with the drift region 11 on each of the side surface 5 and the bottom surface 6 of the groove 7. The resin 8 is in contact with each of the side surface 5 and the bottom surface 6. The resin 8 may be in contact with a part of the first main surface 1.
 次に、第1実施形態に係る炭化珪素半導体装置100の第6変形例の構成について説明する。 Next, a configuration of a sixth modification of silicon carbide semiconductor device 100 according to the first embodiment will be described.
 図10に示されるように、溝7の側面5は、第1側面部17と、第2側面部18とを有していてもよい。第1側面部17は、第1主面1に連なっている。第2側面部18は、第1側面部17および底面6の各々に連なっている。断面視において、対向する一対の第1側面部17の間隔は、底面6から第1主面1に向かうにつれて広くなっている(順テーパ)。一対の第2側面部18の間隔は、底面6から第1主面1に向かうにつれてほぼ一定である。一対の第2側面部18の各々は、第1主面1に対してほぼ垂直な方向に延在している。第2側面部18と底面6とがなす角度θ2は、たとえば90°である。溝7の開口部19の幅111は、溝7の底面6の幅113よりも大きい。 As shown in FIG. 10, the side surface 5 of the groove 7 may have a first side surface portion 17 and a second side surface portion 18. The first side surface 17 is continuous with the first main surface 1. The second side portion 18 is continuous with each of the first side portion 17 and the bottom surface 6. In a cross-sectional view, the interval between the pair of opposing first side surfaces 17 increases from the bottom surface 6 to the first main surface 1 (forward taper). The interval between the pair of second side surfaces 18 is substantially constant from the bottom surface 6 to the first main surface 1. Each of the pair of second side surfaces 18 extends in a direction substantially perpendicular to the first main surface 1. The angle θ2 formed between the second side surface portion 18 and the bottom surface 6 is, for example, 90 °. The width 111 of the opening 19 of the groove 7 is larger than the width 113 of the bottom surface 6 of the groove 7.
 次に、第1実施形態に係る炭化珪素半導体装置100の第7変形例の構成について説明する。 Next, the configuration of a seventh modification of silicon carbide semiconductor device 100 according to the first embodiment will be described.
 図11に示されるように、断面視において、対向する一対の第1側面部17の間隔は、底面6から第1主面1に向かうにつれて狭くなっていてもよい(逆テーパ)。一対の第2側面部18の間隔は、底面6から第1主面1に向かうにつれてほぼ一定である。一対の第2側面部18の各々は、第1主面1に対してほぼ垂直な方向に延在している。第2側面部18と底面6とがなす角度θ2は、たとえば90°である。溝7の開口部19の幅111は、溝7の底面6の幅113よりも小さい。 As shown in FIG. 11, in a cross-sectional view, the interval between the pair of opposing first side surfaces 17 may decrease from the bottom surface 6 to the first main surface 1 (reverse taper). The interval between the pair of second side surfaces 18 is substantially constant from the bottom surface 6 to the first main surface 1. Each of the pair of second side surfaces 18 extends in a direction substantially perpendicular to the first main surface 1. The angle θ2 formed between the second side surface portion 18 and the bottom surface 6 is, for example, 90 °. The width 111 of the opening 19 of the groove 7 is smaller than the width 113 of the bottom surface 6 of the groove 7.
 (第2実施形態)
 次に、第2実施形態に係る炭化珪素半導体装置100の構成について説明する。第2実施形態に係る炭化珪素半導体装置100は、溝が複数である構成において、第1実施形態に係る炭化珪素半導体装置100と主に異なっており、その他の構成については、第1実施形態に係る炭化珪素半導体装置100と同様である。以下、第1実施形態に係る炭化珪素半導体装置100と異なる構成を中心に説明する。
(2nd Embodiment)
Next, the configuration of silicon carbide semiconductor device 100 according to the second embodiment will be described. The silicon carbide semiconductor device 100 according to the second embodiment is different from the silicon carbide semiconductor device 100 according to the first embodiment mainly in the configuration having a plurality of grooves, and other configurations are the same as those in the first embodiment. This is the same as silicon carbide semiconductor device 100. Hereinafter, a description will be given focusing on a configuration different from silicon carbide semiconductor device 100 according to the first embodiment.
 図12に示されるように、炭化珪素基板10は、外周領域50の第1主面1に位置し、かつ互いに離間した第1溝7と、第2溝82と、第3溝83と、第4溝84と、第5溝85と、第6溝86と、第7溝87と、第8溝88とを有していてもよい。図12に示されるように、第1主面1に対して垂直な方向から見て、炭化珪素基板10の形状は、四角形である。第1溝7と、第2溝82と、第3溝83と、第4溝84とは、それぞれ四角形の4つの角部に位置している。具体的には、第1主面1の形状は、四角形である。第1溝7と、第2溝82と、第3溝83と、第4溝84とは、第1主面1の4つの角部に位置している。第1溝7と、第4溝84との間には、活性領域40が位置している。同様に、第2溝82と、第3溝83との間には、活性領域40が位置している。図10では、例示的に8か所に溝が配置された例を挙げたが、各辺に配置する溝の個数を増やしてもよい。 As shown in FIG. 12, silicon carbide substrate 10 is located on first main surface 1 of outer peripheral region 50 and is separated from each other by first groove 7, second groove 82, third groove 83, and third groove 83. A fourth groove 84, a fifth groove 85, a sixth groove 86, a seventh groove 87, and an eighth groove 88 may be provided. As shown in FIG. 12, when viewed from a direction perpendicular to first main surface 1, silicon carbide substrate 10 has a quadrangular shape. The first groove 7, the second groove 82, the third groove 83, and the fourth groove 84 are respectively located at four corners of a quadrangle. Specifically, the shape of first main surface 1 is a quadrangle. The first groove 7, the second groove 82, the third groove 83, and the fourth groove 84 are located at four corners of the first main surface 1. The active region 40 is located between the first groove 7 and the fourth groove 84. Similarly, the active region 40 is located between the second groove 82 and the third groove 83. In FIG. 10, an example in which grooves are arranged at eight locations is exemplified, but the number of grooves arranged on each side may be increased.
 第5溝85は、第1方向101に平行な方向において、第1溝7と、第2溝82との中間に位置している。第6溝86は、第1方向101に平行な方向において、第3溝83と、第4溝84との中間に位置している。第7溝87は、第2方向102に平行な方向において、第1溝7と、第3溝83との中間に位置している。第8溝88は、第2方向102に平行な方向において、第2溝82と、第4溝84との中間に位置している。 The fifth groove 85 is located between the first groove 7 and the second groove 82 in a direction parallel to the first direction 101. The sixth groove 86 is located between the third groove 83 and the fourth groove 84 in a direction parallel to the first direction 101. The seventh groove 87 is located between the first groove 7 and the third groove 83 in a direction parallel to the second direction 102. The eighth groove 88 is located between the second groove 82 and the fourth groove 84 in a direction parallel to the second direction 102.
 図12に示されるように、第1主面1に対して垂直な方向から見て、第1溝7の形状は、六角形であり、特定的には、正六角形である。正六角形の対向する2辺は、第1方向101に平行であってもよい。複数の溝は、第1方向101に平行な方向および第2方向102に平行な方向の各々において、互いに離間して配列されている。複数の溝は、第1外周領域部51を取り囲むように位置している。 見 て As shown in FIG. 12, when viewed from a direction perpendicular to the first main surface 1, the shape of the first groove 7 is a hexagon, specifically, a regular hexagon. Opposite sides of the regular hexagon may be parallel to the first direction 101. The plurality of grooves are spaced apart from each other in each of a direction parallel to the first direction 101 and a direction parallel to the second direction 102. The plurality of grooves are located so as to surround the first outer peripheral region 51.
 (第3実施形態)
 次に、第3実施形態に係る炭化珪素半導体装置100の構成について説明する。第3実施形態に係る炭化珪素半導体装置100は、溝の形状がL字型である構成において、第2実施形態に係る炭化珪素半導体装置100と主に異なっており、その他の構成については、第2実施形態に係る炭化珪素半導体装置100と同様である。以下、第2実施形態に係る炭化珪素半導体装置100と異なる構成を中心に説明する。
(Third embodiment)
Next, the configuration of silicon carbide semiconductor device 100 according to the third embodiment will be described. The silicon carbide semiconductor device 100 according to the third embodiment differs from the silicon carbide semiconductor device 100 according to the second embodiment mainly in the configuration in which the shape of the groove is L-shaped. This is the same as silicon carbide semiconductor device 100 according to the second embodiment. Hereinafter, a configuration different from silicon carbide semiconductor device 100 according to the second embodiment will be mainly described.
 図13に示されるように、炭化珪素基板10は、第1溝7と、第2溝82と、第3溝83と、第4溝84とを有している。第1溝7、第2溝82、第3溝83および第4溝84は、それぞれ四角形の4つの角部に位置している。図13に示されるように、第1主面1に対して垂直な方向から見て、複数の溝の各々の形状は、L字型である。複数の溝の各々は、第1領域71と、第2領域72とにより構成されていてもよい。第1主面1に対して垂直な方向から見て、第1領域71および第2領域72の各々は、四角形である。第1主面1に対して垂直な方向から見て、第1領域71および第2領域72の各々は、長方形であってもよい。 As shown in FIG. 13, silicon carbide substrate 10 has first groove 7, second groove 82, third groove 83, and fourth groove 84. The first groove 7, the second groove 82, the third groove 83, and the fourth groove 84 are respectively located at four corners of a square. As shown in FIG. 13, when viewed from a direction perpendicular to the first main surface 1, each of the plurality of grooves has an L-shape. Each of the plurality of grooves may be configured by the first region 71 and the second region 72. Each of the first region 71 and the second region 72 is a quadrangle when viewed from a direction perpendicular to the first main surface 1. Each of the first region 71 and the second region 72 may be rectangular when viewed from a direction perpendicular to the first main surface 1.
 第1領域71は、第2方向102に沿って延在している。第1領域71の長辺方向は、第2方向102と平行な方向である。第1領域71の短辺方向は、第1方向101と平行な方向である。第2領域72は、第1方向101に沿って延在している。第2領域72の長辺方向は、第1方向101と平行な方向である。第2領域72の短辺方向は、第2方向102と平行な方向である。第1領域71の長辺は、第2領域72の短辺と接している。 The first region 71 extends along the second direction 102. The long side direction of the first region 71 is a direction parallel to the second direction 102. The short side direction of the first region 71 is a direction parallel to the first direction 101. The second region 72 extends along the first direction 101. The long side direction of the second region 72 is a direction parallel to the first direction 101. The short side direction of the second region 72 is a direction parallel to the second direction 102. The long side of the first region 71 is in contact with the short side of the second region 72.
 第1方向101に平行な方向において、第1溝7と、第2溝82との間には、溝が設けられていなくてもよい。第1方向101に平行な方向において、第3溝83と、第4溝84と間には、溝が設けられていなくてもよい。第2方向102に平行な方向において、第1溝7と、第3溝83との間には、溝が設けられていなくてもよい。第8溝88は、第2方向102に平行な方向において、第2溝82と、第4溝84との間には、溝が設けられていなくてもよい。図2に示されるようなチップを取り囲むように設けられる溝と、図13に示されるような4つの角部に設けられる溝とが、組み合わされていてもよい。 溝 A groove may not be provided between the first groove 7 and the second groove 82 in a direction parallel to the first direction 101. A groove may not be provided between the third groove 83 and the fourth groove 84 in a direction parallel to the first direction 101. No groove may be provided between the first groove 7 and the third groove 83 in a direction parallel to the second direction 102. The eighth groove 88 may not have a groove provided between the second groove 82 and the fourth groove 84 in a direction parallel to the second direction 102. A groove provided to surround the chip as shown in FIG. 2 and a groove provided at four corners as shown in FIG. 13 may be combined.
 (第4実施形態)
 次に、第4実施形態に係る炭化珪素半導体装置100の構成について説明する。第4実施形態に係る炭化珪素半導体装置100は、溝の形状が長方形である構成において、第3実施形態に係る炭化珪素半導体装置100と主に異なっており、その他の構成については、第3実施形態に係る炭化珪素半導体装置100と同様である。以下、第3実施形態に係る炭化珪素半導体装置100と異なる構成を中心に説明する。
(Fourth embodiment)
Next, the configuration of silicon carbide semiconductor device 100 according to the fourth embodiment will be described. The silicon carbide semiconductor device 100 according to the fourth embodiment differs from the silicon carbide semiconductor device 100 according to the third embodiment mainly in the configuration in which the shape of the groove is rectangular, and the other configurations are the same as those in the third embodiment. This is the same as silicon carbide semiconductor device 100 according to the embodiment. Hereinafter, a description will be given focusing on a configuration different from silicon carbide semiconductor device 100 according to the third embodiment.
 図14に示されるように、第1主面1に対して垂直な方向から見て、複数の溝の各々の形状は、長方形である。複数の溝の各々は、第1方向101に平行な方向および第2方向102に平行な方向の各々に対して傾斜する方向に延在している。別の観点から言えば、長方形の長辺および短辺の各々は、第1方向101に平行な方向および第2方向102に平行な方向の各々に対して傾斜する方向に延在している。 見 て As shown in FIG. 14, each of the plurality of grooves has a rectangular shape when viewed from a direction perpendicular to the first main surface 1. Each of the plurality of grooves extends in a direction inclined with respect to each of a direction parallel to the first direction 101 and a direction parallel to the second direction 102. In other words, each of the long side and the short side of the rectangle extends in a direction inclined with respect to each of the direction parallel to the first direction 101 and the direction parallel to the second direction 102.
 活性領域40を挟んで対向する2つの溝は、互いに平行である。具体的には、第1溝7の長辺は、第4溝84の長辺と平行である。第1溝7の短辺は、第4溝84の短辺と平行である。同様に、第2溝82の長辺は、第3溝83の長辺と平行である。第2溝82の短辺は、第3溝83の短辺と平行である。 溝 Two grooves facing each other across the active region 40 are parallel to each other. Specifically, the long side of the first groove 7 is parallel to the long side of the fourth groove 84. The short side of the first groove 7 is parallel to the short side of the fourth groove 84. Similarly, the long side of the second groove 82 is parallel to the long side of the third groove 83. The short side of the second groove 82 is parallel to the short side of the third groove 83.
 (第5実施形態)
 次に、第5実施形態に係る炭化珪素半導体装置100の構成について説明する。第5実施形態に係る炭化珪素半導体装置100は、4つの溝の延在方向が全て平行である構成において、第4実施形態に係る炭化珪素半導体装置100と主に異なっており、その他の構成については、第4実施形態に係る炭化珪素半導体装置100と同様である。以下、第4実施形態に係る炭化珪素半導体装置100と異なる構成を中心に説明する。
(Fifth embodiment)
Next, the configuration of silicon carbide semiconductor device 100 according to the fifth embodiment will be described. The silicon carbide semiconductor device 100 according to the fifth embodiment is different from the silicon carbide semiconductor device 100 according to the fourth embodiment mainly in the configuration in which the extending directions of the four grooves are all parallel. Is the same as silicon carbide semiconductor device 100 according to the fourth embodiment. Hereinafter, a description will be given focusing on a configuration different from silicon carbide semiconductor device 100 according to the fourth embodiment.
 図15に示されるように、第1主面1に対して垂直な方向から見て、4つの溝の延在方向は全て平行であってもよい。具体的には、第1溝7の長辺は、第2溝82の長辺、第3溝83の長辺および第4溝84の長辺の各々と平行である。同様に、第1溝7の短辺は、第2溝82の短辺、第3溝83の短辺および第4溝84の短辺の各々と平行である。 見 て As shown in FIG. 15, as viewed from a direction perpendicular to the first main surface 1, all the extending directions of the four grooves may be parallel. Specifically, the long side of the first groove 7 is parallel to each of the long side of the second groove 82, the long side of the third groove 83, and the long side of the fourth groove 84. Similarly, the short side of the first groove 7 is parallel to each of the short side of the second groove 82, the short side of the third groove 83, and the short side of the fourth groove 84.
 なお上記においては、トレンチゲートを有するMOSFETを例示して、本開示に係る炭化珪素半導体装置100を説明したが、本開示に係る炭化珪素半導体装置100はこれに限定されない。本開示に係る炭化珪素半導体装置100は、たとえば平面型MOSFET、IGBT(Insulated Gate Bipolar Transistor)、SBD(Schottky Barrier Diode)、サイリスタ、GTO(Gate Turn Off thyristor)、PiNダイオード等であってもよい。 In the above description, silicon carbide semiconductor device 100 according to the present disclosure has been described by exemplifying a MOSFET having a trench gate, but silicon carbide semiconductor device 100 according to the present disclosure is not limited to this. Silicon carbide semiconductor device 100 according to the present disclosure may be, for example, a planar MOSFET, an IGBT (Insulated Gate Bipolar Transistor), an SBD (Schottky Barrier Diode), a thyristor, a GTO (Gate Turn Off Thyristor), or a PIN diode.
 また上記においては、n型を第1導電型とし、かつp型を第2導電型して説明したが、p型を第1導電型とし、かつn型を第2導電型としてもよい。また上記各不純物領域におけるp型不純物の濃度およびn型不純物の濃度は、たとえばSCM(Scanning Capacitance Microscope)またはSIMS(Secondary Ion Mass Spectrometry)などにより測定可能である。さらに上記各実施形態および各変形例は、技術的に矛盾しない限りにおいて互いに組み合わされてもよい。 In the above description, the n-type is the first conductivity type and the p-type is the second conductivity type. However, the p-type may be the first conductivity type and the n-type may be the second conductivity type. The concentration of the p-type impurity and the concentration of the n-type impurity in each of the impurity regions can be measured by, for example, SCM (Scanning Capacitance Microscope) or SIMS (Secondary Ion Mass Mass Spectrometry). Furthermore, each of the above embodiments and each of the modifications may be combined with each other as long as there is no technical contradiction.
 次に、本開示に係る炭化珪素半導体装置100の作用効果について説明する。
 一般的に炭化珪素半導体チップ30は樹脂8によって覆われている。外部環境から樹脂8の内部に入り込んだ水分は、高温下において膨張して内部に空間を形成する。これにより、樹脂8に応力がかかることで、樹脂8にクラックが発生する。次に、低温下においては、空間の内部が結露することで、空間が減圧状態になる。そのため、外部環境から水分が引き込まれる。次に、高温下になると、水分が膨張して空間がさらに拡大する。結果として、樹脂8に形成されたクラックが伸長する。以上のように、炭化珪素半導体装置100が、高温と低温とが交互に繰り返される環境化に配置されると、炭化珪素半導体チップ30上の樹脂8が剥離する場合がある(ポップコーン現象)。上記において、高温は、たとえば150℃である。低温は、たとえば-55℃である。
Next, the function and effect of silicon carbide semiconductor device 100 according to the present disclosure will be described.
Generally, silicon carbide semiconductor chip 30 is covered with resin 8. Moisture that has entered the inside of the resin 8 from the external environment expands at a high temperature to form a space inside. As a result, a crack is generated in the resin 8 by applying a stress to the resin 8. Next, at a low temperature, the space is depressurized by dew condensation inside the space. Therefore, moisture is drawn from the external environment. Next, at high temperatures, the water expands and the space further expands. As a result, cracks formed in the resin 8 elongate. As described above, when silicon carbide semiconductor device 100 is placed in an environment where high and low temperatures are alternately repeated, resin 8 on silicon carbide semiconductor chip 30 may peel off (popcorn phenomenon). In the above, the high temperature is, for example, 150 ° C. The low temperature is, for example, −55 ° C.
 本開示に係る炭化珪素半導体装置100によれば、外周領域50には、溝7が設けられている。樹脂8は、外周面3を覆い、かつ溝7の内部に設けられている。樹脂8が溝7の内部に設けられている場合には、樹脂8が溝7の内部に設けられていない場合と比較して、樹脂8と炭化珪素半導体チップ30との接触面積が大きくなる。そのため、樹脂8と炭化珪素半導体チップ30との密着性を高めることができる(アンカー効果)。結果として、樹脂8が剥離することを抑制することができる。 れ ば According to silicon carbide semiconductor device 100 according to the present disclosure, groove 7 is provided in outer peripheral region 50. The resin 8 covers the outer peripheral surface 3 and is provided inside the groove 7. When resin 8 is provided inside groove 7, the contact area between resin 8 and silicon carbide semiconductor chip 30 is larger than when resin 8 is not provided inside groove 7. Therefore, adhesion between resin 8 and silicon carbide semiconductor chip 30 can be improved (anchor effect). As a result, peeling of the resin 8 can be suppressed.
 また本開示に係る炭化珪素半導体装置100によれば、側面5と底面6とがなす角度は、90°よりも小さくてもよい。この場合、断面視において対向する一対の側面5の間隔は、底面6から第1主面1に向かうにつれて狭くなっている。そのため、溝7の内部に入りこんだ樹脂8が剥離する場合に、樹脂8が側面5に引っかかるため樹脂8が剥離しづらくなる。結果として、樹脂8のアンカー効果を高めることができる。 According to silicon carbide semiconductor device 100 according to the present disclosure, the angle formed between side surface 5 and bottom surface 6 may be smaller than 90 °. In this case, the interval between the pair of side surfaces 5 facing each other in a cross-sectional view becomes narrower from the bottom surface 6 toward the first main surface 1. Therefore, when the resin 8 that has entered the inside of the groove 7 is peeled off, the resin 8 is caught on the side surface 5 and the resin 8 is hardly peeled off. As a result, the anchor effect of the resin 8 can be enhanced.
 さらに本開示に係る炭化珪素半導体装置100によれば、第1主面1に対して垂直な方向から見て、炭化珪素半導体チップ30の形状は、四角形であってもよい。溝は、四角形の4つの角部に設けられていてもよい。炭化珪素半導体チップ30の形状は、四角形の場合、四角形の4つの角部は、辺部と比較して応力が高くなる。そのため、四角形の角部は、辺部よりも樹脂8が剥離しやすい。応力が高くなる角部において溝を設けることにより、樹脂8が剥離することを効果的に抑制することができる。 According to silicon carbide semiconductor device 100 according to the present disclosure, silicon carbide semiconductor chip 30 may have a rectangular shape when viewed from a direction perpendicular to first main surface 1. The grooves may be provided at four corners of the square. When silicon carbide semiconductor chip 30 has a quadrangular shape, stress is higher at four corners of the square than at the sides. Therefore, the resin 8 is more easily peeled off at the corners of the square than at the sides. By providing the groove at the corner where the stress becomes high, the peeling of the resin 8 can be effectively suppressed.
 さらに本開示に係る炭化珪素半導体装置100によれば、第1主面1に対して垂直な方向から見て、溝7は、活性領域40を取り囲んでいてもよい。これにより、全周囲において、樹脂8が剥離することを抑制することができる。 According to silicon carbide semiconductor device 100 according to the present disclosure, groove 7 may surround active region 40 when viewed from a direction perpendicular to first main surface 1. Thereby, the peeling of the resin 8 can be suppressed in the entire circumference.
 (サンプル準備)
 以下のサンプルを用いて、樹脂の剥離抑制効果の確認実験を行った。サンプルにおけるチップサイズの縦寸法×横寸法と実装用銅フレームの実装面の寸法を示す。第1のサンプルは、チップサイズが3mm×3mm、実装用銅フレームの実装面の寸法14mm×9.5mmである。第2のサンプルは、チップサイズが3mm×3mm、実装用銅フレームの実装面の寸法17mm×10mmである。第3のサンプルは、チップサイズが6mm×6mm、実装用銅フレームの実装面の寸法14mm×9.5mmである。第4のサンプルは、チップサイズが6mm×6mm、実装用銅フレームの実装面の寸法は17mm×10mmである。チップの厚みは、150μmから200μmである。これらのサンプルにおいて第1実施形態(図4に示す構造)の溝を設けたものと、剥離抑制用の溝を設けていないものの2水準を準備した。
(Sample preparation)
Using the following samples, an experiment for confirming the effect of suppressing resin separation was performed. The vertical dimension x the horizontal dimension of the chip size and the dimensions of the mounting surface of the mounting copper frame in the sample are shown. The first sample has a chip size of 3 mm × 3 mm and a dimension of a mounting surface of a mounting copper frame of 14 mm × 9.5 mm. The second sample has a chip size of 3 mm × 3 mm and a dimension of a mounting surface of a mounting copper frame of 17 mm × 10 mm. The third sample has a chip size of 6 mm × 6 mm and a mounting surface dimension of the mounting copper frame of 14 mm × 9.5 mm. The fourth sample has a chip size of 6 mm × 6 mm, and the dimensions of the mounting surface of the mounting copper frame are 17 mm × 10 mm. The thickness of the chip is from 150 μm to 200 μm. In these samples, two levels were prepared, one in which the groove of the first embodiment (the structure shown in FIG. 4) was provided and one in which the groove for preventing peeling was not provided.
 なおチップサイズと実装用銅フレームの実装面の寸法との関係は、上記の例に限られない。つまり、サンプルの他にもチップサイズが実装用銅フレームの実装面の寸法よりも小さければ適用可能である。例えばチップサイズが3mm×3mmであれば、実装用銅フレームの実装面の寸法が20mm×14mmでも良い。チップサイズが5mm×6mmの場合は、実装用銅フレームの実装面の寸法が14mm×9.5mmまたは17mm×10mmまたは20mm×14mmでも良い。チップサイズが6mm×6mmの場合は、実装用銅フレームの実装面の寸法が20mm×14mmでも良い。チップサイズが10mm×12mmの場合は、実装用銅フレームの実装面の寸法が20mm×14mmでも良い。チップサイズが12mm×12mmの場合は、実装用銅フレームの実装面の寸法が20mm×14mmでも良い。さらに、剥離抑制用の溝としては、第1実施形態の第1変形例~第7変形例の溝、あるいは第2実施形態~第5実施形態の溝を設けることもできる。 The relationship between the chip size and the dimensions of the mounting surface of the mounting copper frame is not limited to the above example. That is, if the chip size is smaller than the size of the mounting surface of the mounting copper frame other than the sample, the present invention is applicable. For example, if the chip size is 3 mm × 3 mm, the dimension of the mounting surface of the mounting copper frame may be 20 mm × 14 mm. When the chip size is 5 mm × 6 mm, the dimensions of the mounting surface of the mounting copper frame may be 14 mm × 9.5 mm, 17 mm × 10 mm, or 20 mm × 14 mm. When the chip size is 6 mm × 6 mm, the dimension of the mounting surface of the mounting copper frame may be 20 mm × 14 mm. When the chip size is 10 mm × 12 mm, the dimension of the mounting surface of the mounting copper frame may be 20 mm × 14 mm. When the chip size is 12 mm × 12 mm, the dimension of the mounting surface of the mounting copper frame may be 20 mm × 14 mm. Further, as the grooves for suppressing peeling, the grooves of the first to seventh modifications of the first embodiment or the grooves of the second to fifth embodiments can be provided.
 (実験方法)
 高温と低温とが交互に繰り返される環境化でのサイクル試験の前と後の状態を、超音波プローブを用いた超音波顕微鏡を用いて観察することにより、樹脂の剥離の有無を確認することが可能である。樹脂とチップ上面との間および樹脂とフレーム面との間の密着状態を観察することで、剥離発生の有無の判断をすることができる。まず、高温(150℃)と低温側(-55℃)との温度サイクルが、1000回、より望ましくは5000回繰り返される。その後、超音波の反射、透過分析に基づいて、剥離の発生の有無が判断される。横方向寸法100μm程度の剥離の発生を良否判断の基準としている。
(experimental method)
By observing the state before and after the cycle test in an environment where high and low temperatures are alternately repeated, using an ultrasonic microscope using an ultrasonic probe, it is possible to confirm the presence or absence of resin peeling. It is possible. By observing the state of adhesion between the resin and the upper surface of the chip and between the resin and the frame surface, it is possible to determine whether or not peeling has occurred. First, the temperature cycle between the high temperature (150 ° C.) and the low temperature side (−55 ° C.) is repeated 1000 times, more preferably 5000 times. Thereafter, the presence or absence of peeling is determined based on the reflection and transmission analysis of the ultrasonic wave. The occurrence of peeling with a lateral dimension of about 100 μm is used as a criterion for quality judgment.
 また、超音波顕微鏡で観察できない微小剥離は、以下の方法で検知することが可能である。まず、サイクル試験の途中またはサイクル試験後に高温高湿試験(例えば温度85℃、湿度85%)が行われる。樹脂に剥離または亀裂部があると、水分が樹脂内部に侵入し、チップが動作不良となる。チップの動作不良を検知することで、樹脂の剥離または亀裂部の有無が間接的に判断される。 微小 Fine peeling that cannot be observed with an ultrasonic microscope can be detected by the following method. First, a high-temperature and high-humidity test (for example, a temperature of 85 ° C. and a humidity of 85%) is performed during or after the cycle test. If the resin has a peeled or cracked portion, moisture will enter the resin and the chip will malfunction. By detecting a malfunction of the chip, the presence or absence of resin peeling or cracking is indirectly determined.
 (実験結果)
 剥離抑制対策がなされていないサンプルにおいては、1000回未満の温度サイクルで剥離が発生し、サイクル試験後の高温高湿試験でも動作不良が発生した。特に、チップ角部においては、500回未満の温度サイクルで剥離が発生するという特徴が確認されている。一方、溝構造が形成されているサンプルにおいては、1000回以上でもチップの角部、辺部に剥離はなく、また、サイクル試験後の高温高湿試験でも良好な動作が確認された。同様の効果は、より厳しい高温側(175℃)と低温側(-55℃)での試験回数5000回のサイクル試験と、サイクル試験後の高温高湿試験後でも確認された。
(Experimental result)
In the sample not subjected to the peeling suppression measure, peeling occurred in a temperature cycle of less than 1000 times, and operation failure occurred in a high temperature and high humidity test after the cycle test. In particular, it has been confirmed that peeling occurs at a chip corner at a temperature cycle of less than 500 times. On the other hand, in the sample in which the groove structure was formed, there was no peeling at the corners and sides of the chip even after 1000 times or more, and good operation was confirmed in a high-temperature and high-humidity test after the cycle test. The same effect was confirmed in a stricter high-temperature side (175 ° C.) and a low-temperature side (−55 ° C.) in a cycle test of 5000 times, and in a high-temperature and high-humidity test after the cycle test.
 剥離抑制対策がなされていないサンプルについては、チップサイズが大きく、また、実装面の寸法が小さくなる場合に、サイクル試験での剥離発生が早く起こる傾向が確認された。また、チップサイズと実装面の比率が大きい方が、剥離発生が早く起こる傾向が確認された(なお今回の場合、チップ面積/実装面の面積の比率は、最小が3%である、最大が51%である)。剥離抑制対策ありのサンプルについては、上述のチップサイズ、実装面の寸法いずれの場合であっても、試験回数5000回のサイクル試験と、サイクル試験後の高温高湿試験後とにおいて、樹脂の剥離が発生していないことが確認された。 (4) Regarding the sample for which no measures were taken to prevent peeling, when the chip size was large and the dimensions of the mounting surface were small, the tendency for peeling to occur quickly in the cycle test was confirmed. Also, it was confirmed that the larger the ratio between the chip size and the mounting surface, the faster the occurrence of peeling. (In this case, the ratio of the chip area / the area of the mounting surface is 3% at the minimum and 3% at the maximum. 51%). Regarding the sample with the peeling suppression measure, the resin peeled off after the cycle test of 5000 times and after the high-temperature and high-humidity test after the cycle test regardless of the above-mentioned chip size and dimensions of the mounting surface. It was confirmed that no problem occurred.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
1 第1主面、2 第2主面、3 外周面、4 肩部、5 側面、6 底面、7 第1溝(溝)、8 樹脂、9 ゲートトレンチ、10 炭化珪素基板、11 ドリフト領域、12 ボディ領域、13 ソース領域、14 コンタクト領域、15 炭化珪素単結晶基板、16 ガードリング、17 第1側面部、18 第2側面部、19 開口部、20 炭化珪素エピタキシャル層、21 コンタクト電極、22 ゲート電極、23 層間絶縁膜、24 ゲート絶縁膜、25 ドレイン電極、26 絶縁膜、27 応力緩衝層、28 ソース電極、29 ソース配線、30 炭化珪素半導体チップ、31 第3主面、32 第4主面、40 内部領域(活性領域)、41 角領域、42 辺領域、50 外周領域、51 第1外周領域部、52 第2外周領域部、71 第1領域、72 第2領域、73 はんだ層、74 金属フレーム、82 第2溝、83 第3溝、84 第4溝、85 第5溝、86 第6溝、87 第7溝、88 第8溝、90 炭化珪素半導体素子、91 側壁面、92 底部、93 貫通孔、100 炭化珪素半導体装置、101 第1方向、102 第2方向、111,113 幅、112 厚さ。 1 {first principal surface, 2} second principal surface, 3} outer peripheral surface, 4 {shoulder portion, 5} side surface, 6} bottom surface, 7} first groove (groove), 8} resin, 9} gate trench, 10} silicon carbide substrate, 11} drift region, 12 body region, 13 source region, 14 contact region, 15 silicon carbide single crystal substrate, 16 guard ring, 17 first side surface, 18 second side surface, 19 opening, 20 silicon carbide epitaxial layer, 21 contact electrode, 22 Gate electrode, 23 interlayer insulating film, 24 gate insulating film, 25 drain electrode, 26 insulating film, 27 stress buffer layer, 28 source electrode, 29 source wiring, 30 silicon carbide semiconductor chip, 31 third main surface, 32 fourth main Surface, 40 ° inner region (active region), 41 ° corner region, 42 ° side region, 50 ° outer peripheral region, 51 ° first outer peripheral region portion, 5 Second outer peripheral area portion, 71 {first area, 72} second area, 73 # solder layer, 74 # metal frame, 82 # second groove, 83 # third groove, 84 # fourth groove, 85 # fifth groove, 86 # sixth groove, 87 7th groove, 88th eighth groove, 90th silicon carbide semiconductor element, 91th side wall surface, 92th bottom, 93th through hole, 100th silicon carbide semiconductor device, 101 first direction, 102 second direction, 111,113 width, 112th thickness .

Claims (12)

  1.  炭化珪素半導体チップを備え、
     前記炭化珪素半導体チップは、炭化珪素基板と、前記炭化珪素基板上にある電極とを含み、
     前記炭化珪素基板は、
      前記電極に接する第1主面と、
      前記第1主面と反対側の第2主面と、
      前記第1主面および前記第2主面の各々に連なる外周面と、
      前記外周面を含む外周領域と、
      前記外周領域に取り囲まれ、かつ炭化珪素半導体素子が設けられた内部領域と、
      前記外周領域の前記第1主面に位置する第1溝とを有し、さらに、
     前記第1主面および前記外周面の各々を覆い、かつ前記第1溝の内部に設けられている樹脂を備えた、炭化珪素半導体装置。
    A silicon carbide semiconductor chip,
    The silicon carbide semiconductor chip includes a silicon carbide substrate, and an electrode on the silicon carbide substrate,
    The silicon carbide substrate,
    A first main surface in contact with the electrode;
    A second main surface opposite to the first main surface;
    An outer peripheral surface connected to each of the first main surface and the second main surface;
    An outer peripheral region including the outer peripheral surface,
    An inner region surrounded by the outer peripheral region and provided with a silicon carbide semiconductor element;
    A first groove located on the first main surface of the outer peripheral region;
    A silicon carbide semiconductor device, comprising: a resin that covers each of the first main surface and the outer peripheral surface and is provided inside the first groove.
  2.  前記第1溝は、前記第1主面に連なりかつ平面状の側面と、前記側面に連なりかつ平面状の底面とを含む、請求項1に記載の炭化珪素半導体装置。 2. The silicon carbide semiconductor device according to claim 1, wherein the first groove includes a planar side surface connected to the first main surface and a planar bottom surface connected to the side surface. 3.
  3.  前記側面と前記底面とがなす角度は、90°である、請求項2に記載の炭化珪素半導体装置。 3. The silicon carbide semiconductor device according to claim 2, wherein an angle formed between the side surface and the bottom surface is 90 °.
  4.  前記側面と前記底面とがなす角度は、90°よりも大きい、請求項2に記載の炭化珪素半導体装置。 3. The silicon carbide semiconductor device according to claim 2, wherein an angle formed between the side surface and the bottom surface is larger than 90 °.
  5.  前記側面と前記底面とがなす角度は、90°よりも小さい、請求項2に記載の炭化珪素半導体装置。 3. The silicon carbide semiconductor device according to claim 2, wherein an angle formed between the side surface and the bottom surface is smaller than 90 °.
  6.  前記樹脂は、前記側面および前記底面の各々に接する、請求項2~請求項5のいずれか1項に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to any one of claims 2 to 5, wherein the resin is in contact with each of the side surface and the bottom surface.
  7.  前記第1溝の深さは、0.1μm以上30μm以下である、請求項1~請求項6のいずれか1項に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to any one of claims 1 to 6, wherein the depth of the first groove is 0.1 μm or more and 30 μm or less.
  8.  前記第1溝の開口部の幅は、0.1μm以上30μm以下である、請求項1~請求項6のいずれか1項に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to any one of claims 1 to 6, wherein the width of the opening of the first groove is 0.1 μm or more and 30 μm or less.
  9.  前記第1溝の開口部の幅を、前記第1溝の深さで除した値は、0.25以上2以下である、請求項1~請求項6のいずれか1項に記載の炭化珪素半導体装置。 7. The silicon carbide according to claim 1, wherein a value obtained by dividing a width of the opening of the first groove by a depth of the first groove is 0.25 or more and 2 or less. Semiconductor device.
  10.  前記炭化珪素基板は、前記外周領域の前記第1主面に位置し、かつ互いに離間した第2溝と、第3溝と、第4溝とを有する、請求項1~請求項9のいずれか1項に記載の炭化珪素半導体装置。 10. The silicon carbide substrate according to claim 1, further comprising a second groove, a third groove, and a fourth groove located on the first main surface of the outer peripheral region and separated from each other. 2. The silicon carbide semiconductor device according to item 1.
  11.  前記炭化珪素基板の形状は、平面視で四角形であり、
     前記第1溝、前記第2溝、前記第3溝および前記第4溝は、それぞれ前記四角形の4つの角部に位置している、請求項10に記載の炭化珪素半導体装置。
    The shape of the silicon carbide substrate is a quadrangle in plan view,
    The silicon carbide semiconductor device according to claim 10, wherein said first groove, said second groove, said third groove, and said fourth groove are respectively located at four corners of said square.
  12.  前記第1溝は、平面視で前記内部領域を取り囲んでいる、請求項1~請求項9のいずれか1項に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to any one of claims 1 to 9, wherein the first groove surrounds the internal region in plan view.
PCT/JP2019/021277 2018-07-11 2019-05-29 Silicon carbide semiconductor device WO2020012810A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020530025A JPWO2020012810A1 (en) 2018-07-11 2019-05-29 Silicon carbide semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-131496 2018-07-11
JP2018131496 2018-07-11

Publications (1)

Publication Number Publication Date
WO2020012810A1 true WO2020012810A1 (en) 2020-01-16

Family

ID=69142862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021277 WO2020012810A1 (en) 2018-07-11 2019-05-29 Silicon carbide semiconductor device

Country Status (2)

Country Link
JP (1) JPWO2020012810A1 (en)
WO (1) WO2020012810A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209609A1 (en) * 2021-03-31 2022-10-06 住友電気工業株式会社 Semiconductor device
WO2023033047A1 (en) * 2021-09-03 2023-03-09 株式会社デンソー Semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311345A (en) * 2004-03-25 2005-11-04 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2009049298A (en) * 2007-08-22 2009-03-05 Denso Corp Semiconductor component
JP2015032664A (en) * 2013-08-01 2015-02-16 住友電気工業株式会社 Wide bandgap semiconductor device
JP2016051885A (en) * 2014-09-02 2016-04-11 株式会社デンソー Semiconductor chip and manufacturing method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005311345A (en) * 2004-03-25 2005-11-04 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2009049298A (en) * 2007-08-22 2009-03-05 Denso Corp Semiconductor component
JP2015032664A (en) * 2013-08-01 2015-02-16 住友電気工業株式会社 Wide bandgap semiconductor device
JP2016051885A (en) * 2014-09-02 2016-04-11 株式会社デンソー Semiconductor chip and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022209609A1 (en) * 2021-03-31 2022-10-06 住友電気工業株式会社 Semiconductor device
WO2023033047A1 (en) * 2021-09-03 2023-03-09 株式会社デンソー Semiconductor device

Also Published As

Publication number Publication date
JPWO2020012810A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
US8399962B2 (en) Semiconductor chip and process for production thereof
JP6719090B2 (en) Semiconductor element
US10978367B2 (en) Semiconductor device and method for manufacturing the same
US20140077232A1 (en) Semiconductor device and method for manufacturing semiconductor device
US20190252374A1 (en) Semiconductor device
US9972572B2 (en) Semiconductor device having a barrier layer
US10090379B2 (en) Hydrogen occlusion semiconductor device
WO2020012810A1 (en) Silicon carbide semiconductor device
JP2015041638A (en) Silicon carbide semiconductor device, and method of manufacturing the same
US20230223445A1 (en) SiC SEMICONDUCTOR DEVICE
JP2013183143A (en) Method for manufacturing semiconductor device, and semiconductor device
JP5233158B2 (en) Silicon carbide semiconductor device
CN114430861A (en) Semiconductor device with a plurality of semiconductor chips
US20210296448A1 (en) SiC SEMICONDUCTOR DEVICE
US20230223433A1 (en) SiC SEMICONDUCTOR DEVICE
WO2020012812A1 (en) Silicon carbide semiconductor device
WO2020012811A1 (en) Silicon carbide semiconductor device
JPWO2019116684A1 (en) Silicon carbide semiconductor device
JP6064366B2 (en) Semiconductor device
JP6658257B2 (en) Silicon carbide semiconductor device
JP7304827B2 (en) Semiconductor device and crack detection method
US9293555B2 (en) Semiconductor device and manufacturing method of same
US20240162305A1 (en) Semiconductor device and method of manufacturing the same
JP2016149497A (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020530025

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834116

Country of ref document: EP

Kind code of ref document: A1