WO2020012685A1 - Thin film, electronic device, organic electroluminescent element, material for organic electroluminescence, display device, and lighting equipment - Google Patents
Thin film, electronic device, organic electroluminescent element, material for organic electroluminescence, display device, and lighting equipment Download PDFInfo
- Publication number
- WO2020012685A1 WO2020012685A1 PCT/JP2019/005624 JP2019005624W WO2020012685A1 WO 2020012685 A1 WO2020012685 A1 WO 2020012685A1 JP 2019005624 W JP2019005624 W JP 2019005624W WO 2020012685 A1 WO2020012685 A1 WO 2020012685A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ring
- organic
- layer
- thin film
- light
- Prior art date
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 66
- 239000000463 material Substances 0.000 title claims description 72
- 238000005401 electroluminescence Methods 0.000 title claims description 24
- 150000001875 compounds Chemical class 0.000 claims abstract description 96
- 239000010410 layer Substances 0.000 claims description 299
- 238000002347 injection Methods 0.000 claims description 58
- 239000007924 injection Substances 0.000 claims description 58
- 125000000623 heterocyclic group Chemical group 0.000 claims description 27
- 229910052709 silver Inorganic materials 0.000 claims description 27
- 239000004332 silver Substances 0.000 claims description 25
- 239000002346 layers by function Substances 0.000 claims description 24
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 19
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 19
- 125000003373 pyrazinyl group Chemical group 0.000 claims description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 12
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 8
- 125000002294 quinazolinyl group Chemical group N1=C(N=CC2=CC=CC=C12)* 0.000 claims description 8
- JWVCLYRUEFBMGU-UHFFFAOYSA-N quinazoline Chemical compound N1=CN=CC2=CC=CC=C21 JWVCLYRUEFBMGU-UHFFFAOYSA-N 0.000 claims description 4
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 claims 6
- 238000000034 method Methods 0.000 description 123
- 239000000758 substrate Substances 0.000 description 67
- 239000010408 film Substances 0.000 description 52
- 239000002019 doping agent Substances 0.000 description 41
- 230000008859 change Effects 0.000 description 39
- 238000003860 storage Methods 0.000 description 33
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 32
- -1 pyrimidine compound Chemical class 0.000 description 31
- 230000005525 hole transport Effects 0.000 description 29
- 230000000903 blocking effect Effects 0.000 description 27
- 238000000151 deposition Methods 0.000 description 27
- 230000008021 deposition Effects 0.000 description 26
- 239000011521 glass Substances 0.000 description 26
- 239000000203 mixture Substances 0.000 description 25
- 239000000872 buffer Substances 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 22
- 239000002184 metal Substances 0.000 description 22
- 229910052757 nitrogen Inorganic materials 0.000 description 18
- 238000007740 vapor deposition Methods 0.000 description 18
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 17
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 15
- 238000000576 coating method Methods 0.000 description 14
- 238000007789 sealing Methods 0.000 description 14
- 229910052782 aluminium Inorganic materials 0.000 description 13
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 13
- 229910001873 dinitrogen Inorganic materials 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 12
- 229910052749 magnesium Inorganic materials 0.000 description 12
- 239000011777 magnesium Substances 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 12
- 238000010586 diagram Methods 0.000 description 11
- 239000000975 dye Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 9
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000007772 electrode material Substances 0.000 description 9
- 238000000605 extraction Methods 0.000 description 9
- 229920000642 polymer Polymers 0.000 description 9
- 238000007639 printing Methods 0.000 description 9
- 238000006862 quantum yield reaction Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 239000003086 colorant Substances 0.000 description 8
- 239000000470 constituent Substances 0.000 description 8
- 238000001704 evaporation Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 8
- 238000007738 vacuum evaporation Methods 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 7
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 7
- 238000000059 patterning Methods 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 238000004528 spin coating Methods 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 230000008020 evaporation Effects 0.000 description 6
- 229910052744 lithium Inorganic materials 0.000 description 6
- 230000001681 protective effect Effects 0.000 description 6
- 150000002910 rare earth metals Chemical class 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 125000001424 substituent group Chemical group 0.000 description 6
- 238000001771 vacuum deposition Methods 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 5
- 238000004220 aggregation Methods 0.000 description 5
- 230000002776 aggregation Effects 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- DKHNGUNXLDCATP-UHFFFAOYSA-N dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile Chemical compound C12=NC(C#N)=C(C#N)N=C2C2=NC(C#N)=C(C#N)N=C2C2=C1N=C(C#N)C(C#N)=N2 DKHNGUNXLDCATP-UHFFFAOYSA-N 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- UEEXRMUCXBPYOV-UHFFFAOYSA-N iridium;2-phenylpyridine Chemical class [Ir].C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1.C1=CC=CC=C1C1=CC=CC=N1 UEEXRMUCXBPYOV-UHFFFAOYSA-N 0.000 description 5
- 229910052750 molybdenum Inorganic materials 0.000 description 5
- 239000011733 molybdenum Substances 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910052761 rare earth metal Inorganic materials 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 4
- VFUDMQLBKNMONU-UHFFFAOYSA-N 9-[4-(4-carbazol-9-ylphenyl)phenyl]carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1=CC=C(C=2C=CC(=CC=2)N2C3=CC=CC=C3C3=CC=CC=C32)C=C1 VFUDMQLBKNMONU-UHFFFAOYSA-N 0.000 description 4
- BZHCVCNZIJZMRN-UHFFFAOYSA-N 9h-pyridazino[3,4-b]indole Chemical class N1=CC=C2C3=CC=CC=C3NC2=N1 BZHCVCNZIJZMRN-UHFFFAOYSA-N 0.000 description 4
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 4
- 150000001342 alkaline earth metals Chemical class 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 4
- 229910052741 iridium Inorganic materials 0.000 description 4
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical class OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000011698 potassium fluoride Substances 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 229910006404 SnO 2 Inorganic materials 0.000 description 3
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 150000001340 alkali metals Chemical class 0.000 description 3
- 125000000217 alkyl group Chemical group 0.000 description 3
- 125000005577 anthracene group Chemical group 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000007766 curtain coating Methods 0.000 description 3
- 238000007607 die coating method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005281 excited state Effects 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 125000002883 imidazolyl group Chemical group 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- 125000001624 naphthyl group Chemical group 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 150000004866 oxadiazoles Chemical class 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- 125000003226 pyrazolyl group Chemical group 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 150000003852 triazoles Chemical group 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- DMEVMYSQZPJFOK-UHFFFAOYSA-N 3,4,5,6,9,10-hexazatetracyclo[12.4.0.02,7.08,13]octadeca-1(18),2(7),3,5,8(13),9,11,14,16-nonaene Chemical group N1=NN=C2C3=CC=CC=C3C3=CC=NN=C3C2=N1 DMEVMYSQZPJFOK-UHFFFAOYSA-N 0.000 description 2
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 2
- KDCGOANMDULRCW-UHFFFAOYSA-N 7H-purine Chemical group N1=CNC2=NC=NC2=C1 KDCGOANMDULRCW-UHFFFAOYSA-N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical group C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- XJHCXCQVJFPJIK-UHFFFAOYSA-M caesium fluoride Chemical compound [F-].[Cs+] XJHCXCQVJFPJIK-UHFFFAOYSA-M 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 150000001716 carbazoles Chemical class 0.000 description 2
- 150000001721 carbon Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010549 co-Evaporation Methods 0.000 description 2
- 229940125904 compound 1 Drugs 0.000 description 2
- 229920001940 conductive polymer Polymers 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000007733 ion plating Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 2
- 238000001182 laser chemical vapour deposition Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000004020 luminiscence type Methods 0.000 description 2
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 2
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000001451 molecular beam epitaxy Methods 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- SWELZOZIOHGSPA-UHFFFAOYSA-N palladium silver Chemical compound [Pd].[Ag] SWELZOZIOHGSPA-UHFFFAOYSA-N 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 2
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 125000004309 pyranyl group Chemical group O1C(C=CC=C1)* 0.000 description 2
- 125000005581 pyrene group Chemical group 0.000 description 2
- PBMFSQRYOILNGV-UHFFFAOYSA-N pyridazine Chemical group C1=CC=NN=C1 PBMFSQRYOILNGV-UHFFFAOYSA-N 0.000 description 2
- 125000000168 pyrrolyl group Chemical group 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 2
- 125000001567 quinoxalinyl group Chemical class N1=C(C=NC2=CC=CC=C12)* 0.000 description 2
- 238000005546 reactive sputtering Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 150000003378 silver Chemical group 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- VNFWTIYUKDMAOP-UHFFFAOYSA-N sphos Chemical group COC1=CC=CC(OC)=C1C1=CC=CC=C1P(C1CCCCC1)C1CCCCC1 VNFWTIYUKDMAOP-UHFFFAOYSA-N 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 235000021286 stilbenes Nutrition 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 238000000859 sublimation Methods 0.000 description 2
- 230000008022 sublimation Effects 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- OCJBOOLMMGQPQU-UHFFFAOYSA-N 1,4-dichlorobenzene Chemical compound ClC1=CC=C(Cl)C=C1 OCJBOOLMMGQPQU-UHFFFAOYSA-N 0.000 description 1
- VERMWGQSKPXSPZ-BUHFOSPRSA-N 1-[(e)-2-phenylethenyl]anthracene Chemical class C=1C=CC2=CC3=CC=CC=C3C=C2C=1\C=C\C1=CC=CC=C1 VERMWGQSKPXSPZ-BUHFOSPRSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- HYZJCKYKOHLVJF-UHFFFAOYSA-N 1H-benzimidazole Chemical group C1=CC=C2NC=NC2=C1 HYZJCKYKOHLVJF-UHFFFAOYSA-N 0.000 description 1
- MVWPVABZQQJTPL-UHFFFAOYSA-N 2,3-diphenylcyclohexa-2,5-diene-1,4-dione Chemical class O=C1C=CC(=O)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 MVWPVABZQQJTPL-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- IJVRPNIWWODHHA-UHFFFAOYSA-N 2-cyanoprop-2-enoic acid Chemical compound OC(=O)C(=C)C#N IJVRPNIWWODHHA-UHFFFAOYSA-N 0.000 description 1
- HONWGFNQCPRRFM-UHFFFAOYSA-N 2-n-(3-methylphenyl)-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C(=CC=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 HONWGFNQCPRRFM-UHFFFAOYSA-N 0.000 description 1
- MGADZUXDNSDTHW-UHFFFAOYSA-N 2H-pyran Chemical compound C1OC=CC=C1 MGADZUXDNSDTHW-UHFFFAOYSA-N 0.000 description 1
- ZJSMHFNBMMAKRI-UHFFFAOYSA-N 4-[4-(4-methoxyanilino)phenyl]aniline Chemical group COC1=CC=C(C=C1)NC1=CC=C(C=C1)C1=CC=C(C=C1)N ZJSMHFNBMMAKRI-UHFFFAOYSA-N 0.000 description 1
- AHDTYXOIJHCGKH-UHFFFAOYSA-N 4-[[4-(dimethylamino)-2-methylphenyl]-phenylmethyl]-n,n,3-trimethylaniline Chemical compound CC1=CC(N(C)C)=CC=C1C(C=1C(=CC(=CC=1)N(C)C)C)C1=CC=CC=C1 AHDTYXOIJHCGKH-UHFFFAOYSA-N 0.000 description 1
- MEIBOBDKQKIBJH-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-4-phenylcyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCC(CC1)C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MEIBOBDKQKIBJH-UHFFFAOYSA-N 0.000 description 1
- ZOKIJILZFXPFTO-UHFFFAOYSA-N 4-methyl-n-[4-[1-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]cyclohexyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C1(CCCCC1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 ZOKIJILZFXPFTO-UHFFFAOYSA-N 0.000 description 1
- DUSWRTUHJVJVRY-UHFFFAOYSA-N 4-methyl-n-[4-[2-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]propan-2-yl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C)(C)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 DUSWRTUHJVJVRY-UHFFFAOYSA-N 0.000 description 1
- MVIXNQZIMMIGEL-UHFFFAOYSA-N 4-methyl-n-[4-[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]phenyl]-n-(4-methylphenyl)aniline Chemical group C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 MVIXNQZIMMIGEL-UHFFFAOYSA-N 0.000 description 1
- XIQGFRHAIQHZBD-UHFFFAOYSA-N 4-methyl-n-[4-[[4-(4-methyl-n-(4-methylphenyl)anilino)phenyl]-phenylmethyl]phenyl]-n-(4-methylphenyl)aniline Chemical compound C1=CC(C)=CC=C1N(C=1C=CC(=CC=1)C(C=1C=CC=CC=1)C=1C=CC(=CC=1)N(C=1C=CC(C)=CC=1)C=1C=CC(C)=CC=1)C1=CC=C(C)C=C1 XIQGFRHAIQHZBD-UHFFFAOYSA-N 0.000 description 1
- ZYASLTYCYTYKFC-UHFFFAOYSA-N 9-methylidenefluorene Chemical class C1=CC=C2C(=C)C3=CC=CC=C3C2=C1 ZYASLTYCYTYKFC-UHFFFAOYSA-N 0.000 description 1
- VIJYEGDOKCKUOL-UHFFFAOYSA-N 9-phenylcarbazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2C2=CC=CC=C21 VIJYEGDOKCKUOL-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920000623 Cellulose acetate phthalate Polymers 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910004542 HfN Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000799 K alloy Inorganic materials 0.000 description 1
- MPCRDALPQLDDFX-UHFFFAOYSA-L Magnesium perchlorate Chemical compound [Mg+2].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O MPCRDALPQLDDFX-UHFFFAOYSA-L 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229920010524 Syndiotactic polystyrene Polymers 0.000 description 1
- 229910003087 TiOx Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052769 Ytterbium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910008322 ZrN Inorganic materials 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 239000004964 aerogel Substances 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000008425 anthrones Chemical class 0.000 description 1
- 101150059062 apln gene Proteins 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- SGUXGJPBTNFBAD-UHFFFAOYSA-L barium iodide Chemical compound [I-].[I-].[Ba+2] SGUXGJPBTNFBAD-UHFFFAOYSA-L 0.000 description 1
- 229910001638 barium iodide Inorganic materials 0.000 description 1
- 229940075444 barium iodide Drugs 0.000 description 1
- XEZLJFJDQMLNER-UHFFFAOYSA-N c(cc1)ccc1-c1c(cccc2)c2nc(-c2nc(-c3ccccc3)nc(-c(cc3)ccc3-c(cc3)ncc3-c3nc(-c4ccccc4)nc(-c4nc(-c5ccccc5)c(cccc5)c5n4)c3)c2)n1 Chemical compound c(cc1)ccc1-c1c(cccc2)c2nc(-c2nc(-c3ccccc3)nc(-c(cc3)ccc3-c(cc3)ncc3-c3nc(-c4ccccc4)nc(-c4nc(-c5ccccc5)c(cccc5)c5n4)c3)c2)n1 XEZLJFJDQMLNER-UHFFFAOYSA-N 0.000 description 1
- OOYLMLQILOVLNC-UHFFFAOYSA-N c(cc1)ccc1-c1cc(-c(cc23)ccc2[o]c2c3nccc2-c2nc(-c3cnccc3)nc(-c3ccccc3)c2)nc(-c2cnccc2)n1 Chemical compound c(cc1)ccc1-c1cc(-c(cc23)ccc2[o]c2c3nccc2-c2nc(-c3cnccc3)nc(-c3ccccc3)c2)nc(-c2cnccc2)n1 OOYLMLQILOVLNC-UHFFFAOYSA-N 0.000 description 1
- WWGKVDWBLLWXOG-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2ccc(-c(cc3)ccc3-c(nc3)ccc3-c3nc(-c4ccccc4)nc(-c4cccnc4)c3)nc2)cc(-c2cnccc2)n1 Chemical compound c(cc1)ccc1-c1nc(-c2ccc(-c(cc3)ccc3-c(nc3)ccc3-c3nc(-c4ccccc4)nc(-c4cccnc4)c3)nc2)cc(-c2cnccc2)n1 WWGKVDWBLLWXOG-UHFFFAOYSA-N 0.000 description 1
- SUOFNERLXQDKRD-UHFFFAOYSA-N c(cc1)ccc1-c1nc(-c2ncc(cccc3)c3n2)cc(-c(cc2)cc3c2[o]c2c3nccc2-c2nc(-c3ccccc3)nc(-c3nc(cccc4)c4cn3)c2)n1 Chemical compound c(cc1)ccc1-c1nc(-c2ncc(cccc3)c3n2)cc(-c(cc2)cc3c2[o]c2c3nccc2-c2nc(-c3ccccc3)nc(-c3nc(cccc4)c4cn3)c2)n1 SUOFNERLXQDKRD-UHFFFAOYSA-N 0.000 description 1
- DAPQFWGINRWXRL-UHFFFAOYSA-N c1cc2cccc(-c3nc(-c(cc4)ncc4-c4ccc(-c5nc(-c6cccc7c6cccc7)nc(-c6ccncc6)c5)nc4)cc(-c4ccncc4)n3)c2cc1 Chemical compound c1cc2cccc(-c3nc(-c(cc4)ncc4-c4ccc(-c5nc(-c6cccc7c6cccc7)nc(-c6ccncc6)c5)nc4)cc(-c4ccncc4)n3)c2cc1 DAPQFWGINRWXRL-UHFFFAOYSA-N 0.000 description 1
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical compound [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- 229910001942 caesium oxide Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 150000001718 carbodiimides Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- 229940081734 cellulose acetate phthalate Drugs 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- MOOUSOJAOQPDEH-UHFFFAOYSA-K cerium(iii) bromide Chemical compound [Br-].[Br-].[Br-].[Ce+3] MOOUSOJAOQPDEH-UHFFFAOYSA-K 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- HHNHBFLGXIUXCM-GFCCVEGCSA-N cyclohexylbenzene Chemical compound [CH]1CCCC[C@@H]1C1=CC=CC=C1 HHNHBFLGXIUXCM-GFCCVEGCSA-N 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 229940117389 dichlorobenzene Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 125000006575 electron-withdrawing group Chemical group 0.000 description 1
- 229920000775 emeraldine polymer Polymers 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000008376 fluorenones Chemical class 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 150000002240 furans Chemical class 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- RBTKNAXYKSUFRK-UHFFFAOYSA-N heliogen blue Chemical compound [Cu].[N-]1C2=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=NC([N-]1)=C(C=CC=C3)C3=C1N=C([N-]1)C3=CC=CC=C3C1=N2 RBTKNAXYKSUFRK-UHFFFAOYSA-N 0.000 description 1
- 125000001072 heteroaryl group Chemical group 0.000 description 1
- 229940083761 high-ceiling diuretics pyrazolone derivative Drugs 0.000 description 1
- 239000012943 hotmelt Substances 0.000 description 1
- 150000007857 hydrazones Chemical class 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- YZASAXHKAQYPEH-UHFFFAOYSA-N indium silver Chemical compound [Ag].[In] YZASAXHKAQYPEH-UHFFFAOYSA-N 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- CECAIMUJVYQLKA-UHFFFAOYSA-N iridium 1-phenylisoquinoline Chemical compound [Ir].C1=CC=CC=C1C1=NC=CC2=CC=CC=C12.C1=CC=CC=C1C1=NC=CC2=CC=CC=C12.C1=CC=CC=C1C1=NC=CC2=CC=CC=C12 CECAIMUJVYQLKA-UHFFFAOYSA-N 0.000 description 1
- NSABRUJKERBGOU-UHFFFAOYSA-N iridium(3+);2-phenylpyridine Chemical compound [Ir+3].[C-]1=CC=CC=C1C1=CC=CC=N1.[C-]1=CC=CC=C1C1=CC=CC=N1.[C-]1=CC=CC=C1C1=CC=CC=N1 NSABRUJKERBGOU-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000000990 laser dye Substances 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- OTCKOJUMXQWKQG-UHFFFAOYSA-L magnesium bromide Chemical compound [Mg+2].[Br-].[Br-] OTCKOJUMXQWKQG-UHFFFAOYSA-L 0.000 description 1
- 229910001623 magnesium bromide Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- BLQJIBCZHWBKSL-UHFFFAOYSA-L magnesium iodide Chemical compound [Mg+2].[I-].[I-] BLQJIBCZHWBKSL-UHFFFAOYSA-L 0.000 description 1
- 229910001641 magnesium iodide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- AODWRBPUCXIRKB-UHFFFAOYSA-N naphthalene perylene Chemical group C1=CC=CC2=CC=CC=C21.C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 AODWRBPUCXIRKB-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical group C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- 150000007978 oxazole derivatives Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- GPRIERYVMZVKTC-UHFFFAOYSA-N p-quaterphenyl Chemical group C1=CC=CC=C1C1=CC=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 GPRIERYVMZVKTC-UHFFFAOYSA-N 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 150000004986 phenylenediamines Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- BITYAPCSNKJESK-UHFFFAOYSA-N potassiosodium Chemical compound [Na].[K] BITYAPCSNKJESK-UHFFFAOYSA-N 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- JEXVQSWXXUJEMA-UHFFFAOYSA-N pyrazol-3-one Chemical class O=C1C=CN=N1 JEXVQSWXXUJEMA-UHFFFAOYSA-N 0.000 description 1
- 150000003219 pyrazolines Chemical class 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- WVIICGIFSIBFOG-UHFFFAOYSA-N pyrylium Chemical compound C1=CC=[O+]C=C1 WVIICGIFSIBFOG-UHFFFAOYSA-N 0.000 description 1
- MCJGNVYPOGVAJF-UHFFFAOYSA-N quinolin-8-ol Chemical class C1=CN=C2C(O)=CC=CC2=C1 MCJGNVYPOGVAJF-UHFFFAOYSA-N 0.000 description 1
- DLJHXMRDIWMMGO-UHFFFAOYSA-N quinolin-8-ol;zinc Chemical compound [Zn].C1=CN=C2C(O)=CC=CC2=C1.C1=CN=C2C(O)=CC=CC2=C1 DLJHXMRDIWMMGO-UHFFFAOYSA-N 0.000 description 1
- 150000002909 rare earth metal compounds Chemical class 0.000 description 1
- 239000001022 rhodamine dye Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- YRGLXIVYESZPLQ-UHFFFAOYSA-I tantalum pentafluoride Chemical compound F[Ta](F)(F)(F)F YRGLXIVYESZPLQ-UHFFFAOYSA-I 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- IBBLKSWSCDAPIF-UHFFFAOYSA-N thiopyran Chemical compound S1C=CC=C=C1 IBBLKSWSCDAPIF-UHFFFAOYSA-N 0.000 description 1
- HLLICFJUWSZHRJ-UHFFFAOYSA-N tioxidazole Chemical compound CCCOC1=CC=C2N=C(NC(=O)OC)SC2=C1 HLLICFJUWSZHRJ-UHFFFAOYSA-N 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- ILJSQTXMGCGYMG-UHFFFAOYSA-N triacetic acid Chemical compound CC(=O)CC(=O)CC(O)=O ILJSQTXMGCGYMG-UHFFFAOYSA-N 0.000 description 1
- 125000005259 triarylamine group Chemical group 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- PXXNTAGJWPJAGM-UHFFFAOYSA-N vertaline Natural products C1C2C=3C=C(OC)C(OC)=CC=3OC(C=C3)=CC=C3CCC(=O)OC1CC1N2CCCC1 PXXNTAGJWPJAGM-UHFFFAOYSA-N 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- NAWDYIZEMPQZHO-UHFFFAOYSA-N ytterbium Chemical compound [Yb] NAWDYIZEMPQZHO-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D403/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
- C07D403/14—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/14—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D491/00—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
- C07D491/02—Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
- C07D491/04—Ortho-condensed systems
- C07D491/044—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
- C07D491/048—Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being five-membered
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/16—Electron transporting layers
- H10K50/166—Electron transporting layers comprising a multilayered structure
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/19—Tandem OLEDs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/17—Passive-matrix OLED displays
Definitions
- the present invention relates to a thin film, an electronic device, an organic electroluminescence element, a material for organic electroluminescence, a display device, and a lighting device.
- An organic electroluminescence element (hereinafter, referred to as an organic EL element) has a configuration including an electrode (anode and a cathode) and a light emitting layer, in which holes injected from the anode and electrons injected from the cathode are recombined in the light emitting layer. This produces excitons. Utilizing the emission of light when the exciton is deactivated.
- organic EL elements are widely used as electronic devices, and various organic EL materials have been developed to improve the performance of the organic EL elements. Examples thereof include the organic EL materials described in Patent Literature 1 and Patent Literature 2. In these examples, a pyrimidine compound is used for the organic EL material to improve the performance of the organic EL element.
- a pyrimidine compound is used for the organic EL material to improve the performance of the organic EL element.
- an electronic device that has a lower driving voltage and a higher driving voltage when stored for a certain period of time, that is, a storage stability that is further improved.
- the present invention provides a thin film that contributes to a reduction in drive voltage of an electronic device and an improvement in stability during storage for improving the performance of an electronic device, an electronic device using the thin film, and an organic device using the thin film.
- An object of the present invention is to provide an electroluminescence element, a material for organic electroluminescence used for the organic electroluminescence element, a display device, and a lighting device.
- a thin film containing a compound having a structure represented by the following general formula (1) 1.
- Ar 1 to Ar 3 each independently represent a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and at least one of them represents a pyridine ring, a pyrazine ring, a pyrimidine ring, or a quinazoline.
- Ar 4 to Ar 6 each independently represent a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and at least one of them represents a pyridine ring, a pyrazine ring, a pyrimidine ring, or a quinazoline ring.
- n represents an integer of 1 or more and 5 or less
- L independently represents an aromatic hydrocarbon ring or a heterocyclic ring.
- n 3 or more.
- L independently represents a phenyl ring, a pyridine ring, a pyrazine ring, or a pyrimidine ring.
- An electrode an organic electroluminescence device having a plurality of organic functional layers including a light emitting layer, 6.
- the electrode is mainly composed of silver, 8.
- An organic electroluminescent material comprising a compound having a structure represented by the following general formula (1).
- Ar 1 to Ar 3 each independently represent a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and at least one of them represents a pyridine ring, a pyrazine ring, a pyrimidine ring, or a quinazoline.
- Ar 4 to Ar 6 each independently represent a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and at least one of them represents a pyridine ring, a pyrazine ring, a pyrimidine ring, or a quinazoline ring.
- n represents an integer of 1 or more and 5 or less
- L independently represents an aromatic hydrocarbon ring or a heterocyclic ring.
- a display device comprising the organic electroluminescence element according to any one of items 6 to 9.
- a lighting device comprising the organic electroluminescent element according to any one of items 6 to 9.
- An electronic device comprising an electrode and the thin film according to any one of the first to fifth aspects.
- an organic electroluminescence device having improved driving voltage and stability during high-temperature storage, and a material for organic electroluminescence used for the organic electroluminescence device. Further, a display device and a lighting device with improved driving voltage and stability during high-temperature storage can be provided.
- Schematic diagram showing an example of a display device composed of organic EL elements Schematic diagram of the display unit
- a Pixel circuit diagram Schematic diagram of passive matrix type full color display device
- Schematic diagram of lighting device Schematic diagram showing a cross section of the lighting device
- the thin film of the present invention is characterized by containing a compound having a structure represented by the following general formula (1).
- This feature is a technical feature common to the inventions according to claims 1 to 4. Further, the thin film of the present invention may contain other compounds in addition to the compound having the structure represented by the following general formula (1).
- Ar 1 to Ar 3 each independently represent a hydrogen atom or an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent, and at least one of them is a pyridine ring Or a pyrazine ring, a pyrimidine ring, or a quinazoline ring. That is, Ar 1 to Ar 3 each independently represent a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring, or a substituted or unsubstituted heterocyclic ring, and at least one of them is a pyridine ring or a pyrazine. Or a pyrimidine ring or a quinazoline ring.
- aromatic hydrocarbon ring examples include, for example, a benzene ring, a naphthyl ring, an anthracene ring, a pyrene ring and the like.
- heterocyclic ring examples include, there is a heterocyclic ring in which a part of carbon atoms in the aromatic hydrocarbon ring is substituted with a hetero atom (an oxygen atom, a nitrogen atom, or a sulfur atom).
- Ar 4 to Ar 6 each independently represent a hydrogen atom or an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent, and at least one of them is a pyridine ring Or a pyrazine ring, a pyrimidine ring, or a quinazoline ring. That is, Ar 4 to Ar 6 each independently represent a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring, or a substituted or unsubstituted heterocyclic ring, and at least one of them is a pyridine ring or a pyrazine. Or a pyrimidine ring or a quinazoline ring.
- aromatic hydrocarbon ring examples include, for example, a benzene ring, a naphthyl ring, an anthracene ring, a pyrene ring and the like.
- heterocyclic ring examples include, there is a heterocyclic ring in which a part of carbon atoms in the aromatic hydrocarbon ring is substituted with a hetero atom (an oxygen atom, a nitrogen atom, or a sulfur atom).
- n represents an integer of 1 or more and 5 or less.
- L independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. That is, L independently represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heterocyclic ring.
- L include, but are not particularly limited to, for example, a benzene ring, a naphthyl ring, an anthracene ring, a fluorene ring, a pyridine ring, a pyrazine ring, a triazine ring, a pyrimidine ring, a thiophene ring, a benzothiophene ring, an indole ring, and an imidazole ring.
- a divalent linking group containing a benzoimidazole ring, a pyrazole ring or a triazole ring, or an azadibenzofuran ring.
- L preferably independently represents a phenyl ring, a pyridine ring, a pyrazine ring, or a pyrimidine ring. These may further have a substituent.
- Specific examples of the heterocyclic ring are not particularly limited, and include the same examples as described above.
- n is preferably 3 or more and 5 or less. Further, it is preferable that n is 3 or more and 5 or less, and L independently represents a phenyl ring, a pyridine ring, a pyrazine ring, or a pyrimidine ring. These may have a substituent.
- the substituent used in the general formula (1) is not particularly limited, but for example, an alkyl group (eg, a methyl group, an ethyl group, a trifluoromethyl group, an isopropyl group), an aryl group (eg, a phenyl group) , A heteroaryl group (eg, a pyridyl group, a carbazolyl group, etc.), a halogen atom (eg, a fluorine atom, etc.), a cyano group, or a fluorinated alkyl group, and those used in the exemplified compounds described later are also preferable. .
- an alkyl group eg, a methyl group, an ethyl group, a trifluoromethyl group, an isopropyl group
- an aryl group eg, a phenyl group
- a heteroaryl group eg, a pyridyl group, a carbazolyl
- the method of using the thin film of the present invention described above is not particularly limited, and can be used for various products.
- Examples of products using the thin film of the present invention include various electronic devices such as solar panels and organic EL elements. These electronic devices have electrodes formed of metal or the like, and the thin film.
- the organic electroluminescent material of the present invention is characterized by containing a compound having a structure represented by the general formula (1).
- the general formula (1) is as described above.
- the plurality of nitrogen-containing heterocycles in the compound having the structure represented by the general formula (1) have an interaction with silver, which reduces the diffusion distance of silver atoms and suppresses the aggregation of silver. it can. Thereby, a uniform film of an electrode containing silver as a main component can be achieved. Details of the electrodes will be described later. Further, since the compound of the present invention can suppress the crystallinity, it can be easily laminated at the time of film formation and can improve smoothness. Further, by suppressing the aggregation of silver, it is possible to suppress an increase in grain boundaries of silver atoms, so that it is possible to suppress a decrease in drive voltage and a rise in drive voltage over time.
- the heteroatom in the compound having the structure represented by the general formula (1) interacts with an alkali metal, an alkaline earth metal, or a rare earth used as an electron injecting material. Diffusion of each metal, alkaline earth metal, and rare earth atom into the light emitting layer can be suppressed, and a decrease in driving voltage and an increase in driving voltage over time can be suppressed.
- the electrodes mean an anode and a cathode. Preferred specific examples of the layer structure of the various organic functional layers sandwiched between the anode and the cathode are shown below, but the present invention is not limited thereto.
- anode / light emitting layer unit / electron transport layer / cathode ii) anode / hole transport layer / light emitting layer unit / electron transport layer / cathode (iii) anode / hole transport layer / light emitting layer unit / hole blocking Layer / electron transport layer / cathode (iv) anode / hole transport layer / emission layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) anode / anode buffer layer / hole transport layer / emission Layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) anode / anode buffer layer / hole transport layer / emission Layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode
- the light emitting layer unit may have a non-light emitting intermediate layer between the plurality of light emitting layers, and may have a multi-photon unit configuration in which the intermediate layer is a charge generating layer.
- the charge generation layer ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2 , CuGaO 2 , a conductive inorganic compound layer such as SrCu 2 O 2 , LaB 6 , RuO 2 , a two-layer film such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 Multilayer films such as O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fulleren
- the charge generation layer has a function of promoting the transfer of electrons between the plurality of light emitting layers, and preferably contains an alkali metal such as lithium, an alkaline earth metal, a rare earth, or the like.
- the function and configuration of the charge generation layer may be the same as those of the electron injection layer described later.
- the organic EL device of the present invention has an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order. That is, the organic functional layer according to the present invention is located between the anode and the cathode.
- the organic EL element of the present invention has a plurality of organic functional layers, and the organic functional layer includes a light emitting layer and the above-described thin film of the present invention. Note that the number of the light emitting layers may be one or plural.
- the organic functional layer has a layer containing a compound having the structure represented by the general formula (1) and an electron injection material. That is, it is preferable that an electron injecting material is included in the thin film as the organic functional layer, or that an organic functional layer (an electron injecting layer described later) in which an electron injecting material is included is provided separately from the thin film. When an electron injection layer described later is present, it is also preferable that the thin film, the electron injection layer, and the cathode are stacked in this order.
- the light-emitting layer used in the present invention is a layer that emits light by recombination of electrons and holes injected from an electrode or an electron transport layer and a hole transport layer, and a light-emitting portion is in the light-emitting layer. May be the interface between the light emitting layer and the adjacent layer.
- the total sum of the thicknesses of the light emitting layers is not particularly limited. Preferably, it is adjusted to a range of 2 nm to 5 ⁇ m.
- the total thickness of the light emitting layer is more preferably adjusted in the range of 2 to 200 nm, and particularly preferably adjusted in the range of 5 to 100 nm.
- the light-emitting layer can be formed by using a light-emitting dopant or a host compound described later and forming a film by, for example, a vacuum evaporation method or a wet method.
- the wet method is also called a wet process.
- the light emitting layer of the organic EL device of the present invention preferably contains a light emitting dopant (phosphorescent light emitting dopant, fluorescent light emitting dopant, etc.) compound and a host compound.
- Light-Emitting Dopant also referred to as a light-emitting dopant, a dopant compound, or simply a dopant
- the luminescent dopant include a phosphorescent dopant (also referred to as a phosphorescent dopant, a phosphorescent compound, and a phosphorescent compound), and a fluorescent dopant (also referred to as a fluorescent dopant, a fluorescent compound, and a fluorescent compound). .) Can be used.
- a phosphorescent dopant is a compound in which light emission from an excited triplet is observed, and specifically, a compound that emits phosphorescent light at room temperature (25 ° C.).
- the phosphorescent dopant is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C., and a preferable phosphorescence quantum yield is 0.1 or more.
- the phosphorescence quantum yield can be measured by the method described in Spectroscopy II, 4th Edition, pp. 398 (1992 edition, Maruzen) of Experimental Chemistry Course 7.
- the phosphorescence quantum yield in a solution can be measured using various solvents.
- the phosphorescent dopant used in the present invention only needs to achieve the above-mentioned phosphorescent quantum yield (0.01 or more) in any of the solvents.
- the excited state of the light emitting host compound is generated by the recombination of the carrier on the host compound to which the carrier is transported, and the energy is transferred to the phosphorescent dopant to obtain light emission from the phosphorescent dopant. Things.
- the other is a carrier trap type.
- a phosphorescent dopant serves as a carrier trap, carriers are recombined on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In either case, the condition is that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
- Fluorescent dopant As the fluorescent dopant, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squarium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, Examples include perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex fluorescent materials, and compounds having a high fluorescence quantum yield represented by laser dyes.
- the light emitting dopant used in the present invention may be used in combination of plural kinds of compounds, or may be used in combination of phosphorescent dopants having different structures or in combination of phosphorescent dopant and fluorescent dopant.
- the luminescent dopant conventionally known compounds described in WO 2013/061850 can be suitably used, but the present invention is not limited thereto.
- the host compound (also referred to as a light-emitting host or a light-emitting host compound) that can be used in the present invention has a mass ratio of 20% or more in the layer contained in the light-emitting layer and a room temperature ( (25 ° C.) is defined as a compound having a phosphorescence quantum yield of phosphorescence at less than 0.1.
- the phosphorescence quantum yield is less than 0.01.
- the mass ratio in the layer is preferably 20% or more.
- the host compound that can be used in the present invention is not particularly limited, and a compound that is conventionally used in an organic EL device can be used.
- a compound that is conventionally used in an organic EL device can be used.
- those having a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound, or a carboline derivative or a diazacarbazole derivative (here Wherein the diazacarbazole derivative is one in which at least one carbon atom of a hydrocarbon ring constituting a carboline ring of the carboline derivative is substituted with a nitrogen atom.
- a compound that has a hole transporting ability and an electron transporting ability, prevents a longer wavelength of light emission, and has a high Tg (glass transition temperature) is preferable.
- a conventionally known host compound may be used alone or in combination of two or more. By using a plurality of host compounds, charge transfer can be adjusted, and the efficiency of the organic EL device can be increased. In addition, by using a plurality of conventionally known compounds, it is possible to mix different luminescence, and thus, it is possible to obtain an arbitrary luminescence color.
- the host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable host compound). Good. Further, as the host compound used in the present invention, one or more of such compounds may be used.
- the known host compound include the compounds described in the following documents. JP-A-2001-257076, JP-A-2002-308855, JP-A-2001-313179, JP-A-2002-319493, JP-A-2001-357977, JP-A-2002-334786, JP-A-2002-8860, JP-A-2002-334787, JP-A-2002-15871, JP-A-2002-334788, JP-A-2002-43056, JP-A-2002-334789, JP-A-2002-75645, JP-A-2002-338579, and JP-A-2002-338579.
- JP-A-2002-105445 JP-A-2002-343568, JP-A-2002-141173, JP-A-2002-352957, JP-A-2002-203683, JP-A-2002-363227, JP-A-2002-231453, and JP-A-2002-231453.
- cathode As the cathode, a metal having a low work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material.
- electrode materials include aluminum, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
- a mixture of an electron-injecting metal and a second metal that is a stable metal having a large work function value such as a magnesium / silver mixture
- a magnesium / aluminum mixture a magnesium / indium mixture
- an aluminum / aluminum oxide (Al 2 O 3 ) mixture a lithium / aluminum mixture, aluminum and the like.
- the cathode is particularly preferably composed mainly of silver.
- the alloy containing silver as a main component include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn), and the like.
- the “main component” in the present invention means that the content is 50% by mass or more in the film or layer, preferably 80% by mass or more, more preferably 90% by mass or more. .
- the cathode using an alloy containing silver as a main component may have a configuration in which the cathode is divided into a plurality of layers and stacked as necessary.
- the thickness of the cathode is selected in the range of usually 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
- the film thickness is preferably 15 nm or less, more preferably 12 nm or less.
- the thickness is preferably 4 nm or more. That is, when an alloy containing silver as a main component is used, the film thickness is more preferably in the range of 4 to 12 nm.
- the film thickness is within the range, the component of light absorbed or reflected by the film can be further reduced, the light transmittance can be further maintained, and the conductivity of the layer can be further ensured.
- the cathode when the cathode mainly contains silver, the cathode is preferably adjacent to the organic functional layer containing the compound having the structure represented by the general formula (1), that is, the thin film.
- the thin film is preferably adjacent to the cathode. Even when the cathode is formed on the thin film, the thin film may be formed on the cathode. Further, the cathode may be formed on the thin film, the thin film may be further formed on the cathode, and the cathode may be sandwiched between the two thin films.
- a cathode mainly composed of silver When a cathode mainly composed of silver is formed on the thin film, silver atoms constituting the cathode interact with a compound having a structure represented by the general formula (1) contained in the thin film. I do. As a result, the diffusion distance of silver atoms on the surface of the thin film is reduced, and aggregation (migration) of silver at a specific portion can be suppressed. That is, a silver atom first forms a two-dimensional nucleus on the surface of the thin film having an atom having an affinity for the silver atom, and forms a two-dimensional single crystal layer around the nucleus. -Van der Merwe (FM type) is formed.
- VW type three-dimensional island shape
- the compound having the structure represented by the general formula (1) contained in the thin film suppresses island growth and promotes layer growth. Therefore, a cathode having a small thickness but a uniform thickness can be obtained. As a result, it is possible to obtain a transparent electrode that has sufficient conductivity while maintaining light transmittance due to the thin film thickness.
- the thin film when the thin film is formed on the cathode, it is considered that silver atoms constituting the cathode interact with atoms having an affinity for silver atoms contained in the thin film, and the mobility is suppressed. Can be Thereby, the surface smoothness of the cathode is improved, so that irregular reflection can be suppressed, and the light transmittance can be improved. It is presumed that such an interaction suppresses a change in the film quality of the cathode due to a physical stimulus such as heat or temperature, thereby improving the durability.
- the cathode can be manufactured by forming a thin film of a general electrode material other than an alloy containing silver as a main component by a method such as evaporation or sputtering. Further, from the viewpoint of lowering the driving voltage and further improving the luminous efficiency, the element life and the like, the sheet resistance value of the cathode is several hundred ⁇ / sq. ( ⁇ / ⁇ ) or less, preferably 50 ⁇ / sq. The following is more preferable, and especially 25 ⁇ / sq. The following is preferred. Although the lower limit is not particularly specified, for example, 1 ⁇ / sq. The above can be considered.
- the anode or the cathode of the organic EL element is transparent or translucent to improve the light emission luminance.
- the light transmittance of the cathode is preferably 30% or more, and more preferably 50% or more. More preferably, it is 70% or more.
- the upper limit is not particularly defined, but may be, for example, 95% or less.
- a transparent or translucent cathode can be manufactured by forming the above metal on the cathode in a thickness of 1 to 20 nm and then manufacturing a conductive transparent material mentioned in the description of the anode described later thereon. . By applying this, an element in which both the anode and the cathode have transparency can be manufactured.
- the electron transport layer is made of a material having a function of transporting electrons, and preferably contains a compound having a structure represented by the general formula (1) as described above. That is, the electron transport layer is preferably the thin film. In a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
- the electron transport layer can be provided with a single layer or a plurality of layers. Further, an electron injection / transport layer that also contains a material included in the electron injection layer described below may be provided.
- the electron transporting layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer. As a constituent material of the electron transporting layer, any one of conventionally known compounds may be selected and used in combination. Is also possible.
- electron transport materials examples include polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and naphthalene perylene; Heterocyclic tetracarboxylic anhydride, carbodiimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxadiazole derivative, carboline derivative, or carbon atom of a hydrocarbon ring constituting a carboline ring of the carboline derivative Derivatives having a ring structure in which at least one is substituted by a nitrogen atom, hexaazatriphenylene derivatives, and the like.
- polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and naphthalene perylene
- a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transporting material.
- Polymer materials in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain, can also be used.
- metal complexes of 8-quinolinol derivatives for example, tris (8-quinolinol) aluminum (Alq) 3 , tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like; , Cu, Ca, Sn, Ga or Pb can be used as the electron transport material.
- metal-free or metal phthalocyanine or those whose terminals are substituted with an alkyl group, a sulfonic acid group, or the like, can also be used as the electron transporting material.
- an inorganic semiconductor such as n-type Si or n-type SiC can also be used as the electron transporting material.
- the electron transport layer is preferably formed by thinning an electron transport material by, for example, a vacuum evaporation method, a wet method, or the like.
- the wet method is also called a wet process.
- a spin coating method for example, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, an LB method (Langmuir Blodgett) (Langmuir @ Blodgett method)).
- the thickness of the electron transport layer is not particularly limited, but is usually about 5 to 5000 nm, preferably 5 to 200 nm.
- the electron transport layer may have a single-layer structure composed of one or more of the above materials.
- an n-type dopant such as a metal compound such as a metal complex and a metal halide may be doped.
- Injection layer electron injection layer (cathode buffer layer), hole injection layer >>
- the injection layer is provided as needed, and has an electron injection layer and a hole injection layer, and may be present between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer.
- the injection layer is a layer provided between the electrode and the organic functional layer for lowering the driving voltage and improving the light emission luminance.
- the injection layer is described in detail in Chapter 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL Device and Its Forefront of Industrialization (published by NTT Corporation on November 30, 1998)”. And a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
- anode buffer layer (hole injection layer) is described in JP-A-9-45479, JP-A-9-260062, and JP-A-8-288069.
- the anode buffer layer include, as specific examples, a phthalocyanine buffer layer represented by copper phthalocyanine, a hexaazatriphenylene derivative buffer layer described in JP-T-2003-519432, JP-A-2006-135145, and the like; Oxide buffer layers such as vanadium oxide, amorphous carbon buffer layers, polymer buffer layers using conductive polymers such as polyaniline (emeraldine) and polythiophene, and tris (2-phenylpyridine) iridium complexes. Orthometalated complex layer.
- cathode buffer layer (electron injection layer)
- specific examples of the cathode buffer layer include a metal buffer layer represented by strontium and aluminum, an alkali metal compound buffer layer represented by lithium, lithium fluoride, sodium fluoride, and potassium fluoride; magnesium fluoride; Examples include an alkaline earth metal compound buffer layer represented by cesium oxide, a rare earth metal compound buffer layer represented by ytterbium and scandium, and an oxide buffer layer represented by aluminum oxide.
- the buffer layer (injection layer) is desirably an extremely thin film, and the thickness is preferably in the range of 0.1 nm to 5 ⁇ m, depending on the material.
- the organic functional layer preferably contains a compound having a structure represented by the general formula (1).
- the electron transport layer when the electron transport layer and the cathode are adjacent to each other and the electron injection layer is not provided, the electron transport layer contains an electron injection material in addition to the compound having the structure represented by the general formula (1). Is also preferable (that is, an electron injection transport layer is provided).
- an electron injection transport layer is provided.
- the electron transport layer contains a compound having a structure represented by the general formula (1) (the electron transport layer corresponds to the thin film). ), It is also preferable that the electron injection layer contains an electron injection material.
- the compound having the structure represented by the general formula (1) interacts with an alkali metal, an alkaline earth metal, a rare earth, or the like used as an electron injection material, and diffuses the electron injection material into the light emitting layer. Therefore, it is considered that a decrease in the drive voltage and a rise in the drive voltage over time can be suppressed.
- Blocking layer hole blocking layer, electron blocking layer
- the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A-11-204258 and JP-A-11-204359, and page 237 of "Organic EL Devices and Their Forefront of Industrialization (published by NTT Corporation on November 30, 1998)". There is a hole blocking (hole block) layer.
- the hole blocking layer has a function of an electron transporting layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and having an extremely small ability to transport holes.
- the hole blocking layer can improve the probability of recombination of electrons and holes by blocking holes while transporting electrons.
- the above-described structure of the electron transport layer can be used as a hole blocking layer, if necessary.
- the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
- a carbazole derivative, a carboline derivative, or a diazacarbazole derivative (here, a diazacarbazole derivative is one in which one of carbon atoms constituting a carboline ring is a nitrogen atom) Is preferable.).
- the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes and having an extremely small ability to transport electrons.
- the electron blocking layer can improve the recombination probability of electrons and holes by blocking electrons while transporting holes.
- the configuration of the hole transport layer described below can be used as an electron blocking layer as needed.
- the thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, more preferably 5 to 30 nm.
- the hole transport layer is made of a hole transport material having a function of transporting holes.
- a hole injection layer and an electron blocking layer are also included in the hole transport layer.
- the hole transport layer can be provided as a single layer or a plurality of layers.
- the hole transporting material has any of hole injection or transport and electron barrier properties, and may be any of an organic substance and an inorganic substance.
- triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives,
- Examples include a stilbene derivative, a silazane derivative, an aniline-based copolymer, a conductive polymer oligomer, particularly a thiophene oligomer.
- azatriphenylene derivatives described in JP-T-2003-519432, JP-A-2006-135145, and the like can also be used as the hole transport material.
- the hole transporting material those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
- aromatic tertiary amine compound and styrylamine compound include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl; 1,1-bis (4-di-
- a polymer material in which these materials are introduced into a polymer chain or a polymer material in which these materials are used as a polymer main chain, can also be used.
- inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material and the hole transport material.
- JP-A-11-251067, J.P. Huang @ et. al. A so-called p-type hole transport material as described in a well-known document (Applied Physics Letters 80 (2002), p. 139) can also be used. In the invention, it is preferable to use these materials since a light emitting element with higher efficiency can be obtained.
- the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method. it can.
- the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
- the hole transport layer may have a one-layer structure composed of one or more of the above materials.
- a hole transporting layer having a high p property and doped with an impurity may be used.
- Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, and J.P. Appl. Phys. , 95, 5773 (2004).
- anode As the anode in the organic EL element, a metal, an alloy, an electrically conductive compound, or a mixture thereof having a large work function (4 eV or more) as an electrode material is preferably used.
- an electrode material include metals such as Au and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO.
- a material such as IDIXO (In 2 O 3 —ZnO) which can form an amorphous and transparent conductive film may be used.
- the anode may be formed by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering and forming a pattern of a desired shape by a photolithography method. Alternatively, when the pattern accuracy is not so required (about 100 ⁇ m or more), a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
- a wet film forming method such as a printing method and a coating method can be used.
- the light transmittance is greater than 10%, and the sheet resistance of the anode is several hundred ⁇ / sq.
- the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
- the support substrate (hereinafter, also referred to as a base, a substrate, a base, a support, or the like) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, and the like, and is transparent. Or opaque. When light is extracted from the support substrate side, the support substrate is preferably transparent. Preferred examples of the transparent support substrate include glass, quartz, and a transparent resin film. A particularly preferred support substrate is a resin film that can provide flexibility to the organic EL element.
- the resin film examples include polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide , Polyether sulfone (PES), polyphenylene sulfide, polysulfones Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cycloolefin-based resins such as ARTON (trade name, manufactured by JSR) or
- Hybrid coating was measured by a method conforming to JIS K 7129-1992, the water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) following gas 0.01g / m 2 ⁇ 24h Preferably, it is a barrier film.
- oxygen permeability was measured by the method based on JIS K 7126-1987 is, 1 ⁇ 10 -3 mL / m 2 ⁇ 24h ⁇ atm or less, the water vapor permeability, 1 ⁇ 10 -5 it is preferable g / m 2 ⁇ 24h or less of a high gas barrier film.
- any material may be used as long as it has a function of suppressing intrusion of a substance that causes deterioration of the element such as moisture and oxygen, and examples thereof include silicon oxide, silicon dioxide, and silicon nitride. .
- the order of laminating the inorganic layer and the organic functional layer is not particularly limited, but it is preferable that both layers are alternately laminated plural times.
- the method of forming the gas barrier layer includes a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and an atmospheric pressure plasma weight method.
- a legal method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
- a method based on an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferred.
- the opaque support substrate include a metal plate such as aluminum and stainless steel, a film, an opaque resin substrate, and a ceramic substrate.
- the external extraction yield at room temperature of the light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
- the external extraction quantum yield (%) the number of photons emitted to the outside of the organic EL element / the number of electrons flowing to the organic EL element ⁇ 100.
- a hue improving filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color of the organic EL element into multiple colors using a phosphor may be used in combination.
- ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
- a method for producing an element comprising an anode / a hole injection layer / a hole transport layer / a light emitting layer / a hole blocking layer / an electron transport layer / a cathode buffer layer (electron injection layer) / a cathode Will be described.
- a thin film made of a desired electrode material for example, a material for an anode, is formed on an appropriate substrate so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm, to produce an anode.
- a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and a cathode buffer layer, which are element materials, is formed thereon.
- a thin film can be formed by a vacuum evaporation method, a wet method (also referred to as a wet process), or the like.
- the wet method include a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, and an LB method.
- a method having high suitability for a roll-to-roll method such as a die coat method, a roll coat method, an ink jet method, a spray coat method or the like is preferable from the viewpoint of forming a precise thin film and high productivity.
- a different film formation method may be applied to each layer.
- liquid medium for dissolving or dispersing the organic EL material such as the luminescent dopant used in the present invention examples include, for example, methyl ethyl ketone, ketones such as cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, Aromatic hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as dimethylformamide (DMF) and DMSO can be used.
- dispersing can be performed by a dispersing method such as ultrasonic wave, high shear force dispersion and media dispersion.
- a thin film made of a material for a cathode is formed thereon to a thickness of 1 ⁇ m or less, preferably in a range of 50 to 200 nm, and a desired organic EL element can be obtained by providing a cathode.
- the order can be reversed, and the cathode, the cathode buffer layer, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be formed in this order.
- the organic EL element of the present invention is manufactured from the hole injection layer to the cathode consistently by one evacuation, but it may be taken out in the middle and subjected to a different film forming method. At that time, it is preferable to perform the operation under a dry inert gas atmosphere.
- sealing means used in the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
- the sealing member only needs to be disposed so as to cover the display area of the organic EL element, and may have a concave plate shape or a flat plate shape.
- the transparency and the electrical insulation are not particularly limited.
- Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
- the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
- the polymer plate include those formed from polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone, and the like.
- Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
- a polymer film or a metal film can be preferably used because the element can be thinned.
- the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 mL / m 2 ⁇ 24 h ⁇ atm or less, and is measured by a method according to JIS K 7129-1992.
- is water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably one of the following 1 ⁇ 10 -3 g / m 2 ⁇ 24h.
- the adhesive examples include an acrylic acid-based oligomer, a photocurable and thermosetting adhesive having a reactive vinyl group of a methacrylic acid-based oligomer, and a moisture-curable adhesive such as 2-cyanoacrylate. be able to.
- a heat and chemical curing type (two-liquid mixing) of an epoxy type or the like can be used.
- hot melt type polyamide, polyester, and polyolefin can be used.
- a cationic curing type ultraviolet curing epoxy resin adhesive can be used.
- the organic EL element may be deteriorated by the heat treatment, it is preferable that the organic EL element can be adhesively cured from room temperature to 80 ° C. Further, a desiccant may be dispersed in the adhesive.
- the application of the adhesive to the sealing portion may be performed by using a commercially available dispenser or by printing such as screen printing.
- an encapsulation film by coating the electrode and the organic functional layer on the outside of the electrode facing the support substrate with the organic functional layer interposed therebetween, and forming an inorganic or organic material layer in contact with the support substrate.
- the material for forming the film may be any material having a function of suppressing intrusion of elements that cause deterioration of the element such as moisture or oxygen, and for example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
- the method for forming these films is not particularly limited, and examples thereof include a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and an atmospheric pressure plasma.
- a polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
- an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicone oil may be injected in a gas phase or a liquid phase.
- an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicone oil may be injected in a gas phase or a liquid phase.
- a vacuum it is also possible to use a vacuum.
- a hygroscopic compound can be sealed inside.
- Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate) Etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, perchloric acid) Barium, magnesium perchlorate, etc.), and sulfates, metal halides and perchloric acids are preferably anhydrous salts.
- metal oxides eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.
- sulfates eg, sodium sulfate, calcium sulfate, magnesium sulf
- a protective film or a protective plate may be provided on the side facing the support substrate with the organic functional layer therebetween, outside the sealing film or the sealing film in order to increase the mechanical strength of the element.
- the mechanical strength is not always high. Therefore, it is preferable to provide such a protective film and a protective plate.
- a glass plate, a polymer plate / film, a metal plate / film, etc. similar to those used for the sealing can be used. It is preferable to use
- the organic EL element emits light inside a layer having a higher refractive index than air (having a refractive index of about 1.7 to 2.1), and can extract only about 15 to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (the interface between the transparent substrate and air) at an angle ⁇ equal to or larger than the critical angle causes total reflection and cannot be extracted outside the element. Further, light is totally reflected between the transparent electrode or the light emitting layer and the transparent substrate, and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the element side direction.
- a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and air (US Pat. No. 4,774,435), a method of condensing light on the substrate (Japanese Patent Application Laid-Open No. 63-31479), a method of forming a reflective surface on a side surface of an element or the like (Japanese Patent Application Laid-Open No. 220394/1990), A method in which a flat layer having an intermediate refractive index is introduced to form an anti-reflection film (Japanese Patent Laid-Open No.
- these methods can be used in combination with the organic EL device of the present invention.
- a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light-emitting body, or a diffraction grating between any of the substrate, the transparent electrode layer, and the light-emitting layer (including between the substrate and the outside). can be preferably used.
- by combining these means it is possible to obtain a device having higher luminance and more excellent durability.
- the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of a transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is more preferably 1.35 or less. Also, the thickness of the low refractive index medium is desirably at least twice the wavelength in the medium. This is because the effect of the low-refractive-index layer is reduced when the thickness of the low-refractive-index medium becomes about the wavelength of light and the thickness of the electromagnetic wave oozing out by evanescent enters the substrate.
- the method of introducing a diffraction grating into an interface that causes total reflection or any of the media is characterized in that the effect of improving light extraction efficiency is high.
- This method utilizes the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction.
- a diffraction grating is introduced into one of the layers or a medium (in a transparent substrate or a transparent electrode) for light that cannot be emitted due to total reflection between layers of light generated from the light emitting layer. By doing so, the light is diffracted and the light is taken out.
- the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so a general one-dimensional diffraction grating that has a periodic refractive index distribution only in a certain direction diffracts only light traveling in a specific direction. And light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and the light extraction efficiency is increased.
- the position where the diffraction grating is introduced may be between any layers or in a medium (in a transparent substrate or a transparent electrode), but is preferably near the organic light emitting layer where light is generated.
- the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
- the arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, a honeycomb lattice, or the like.
- the organic EL element of the present invention is processed on the light extraction side of the substrate, for example, to provide a microlens array-like structure, or in combination with a so-called condensing sheet, in a specific direction, for example, with respect to the element light emitting surface.
- a microlens array quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate.
- One side is preferably 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction occurs and coloring occurs, and if it is too large, the thickness becomes undesirably thick.
- the condensing sheet for example, a sheet practically used in an LED backlight of a liquid crystal display device can be used.
- a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
- BEF brightness enhancement film
- the shape of the prism sheet for example, a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m may be formed on the base material, or a shape in which the vertex angle is rounded, and the pitch is randomly changed. The shape may be a bent shape or another shape.
- a light diffusing plate / film may be used in combination with the light collecting sheet.
- a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
- the organic EL element of the present invention can be used for display devices, displays, various light emitting devices, and the like.
- Light emitting devices include, for example, lighting devices (home lighting, vehicle interior lighting), clocks and backlights for LCDs, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copiers, light sources for optical communication processors, and light sources. Examples include, but are not limited to, light sources for sensors. In particular, it can be effectively used for a backlight of a liquid crystal display device and a light source for illumination.
- patterning may be performed by a metal mask, an inkjet printing method, or the like at the time of film formation, if necessary.
- patterning only the electrode may be patterned, or the electrode and the light emitting layer may be patterned. All layers of the element may be patterned, and a conventionally known method can be used for manufacturing the element.
- the emission color of the organic EL device of the present invention or the compound of the present invention is shown in FIG. 7.16 on page 108 of “New Edition of Color Science Handbook” (edited by The Japan Society for Color Science, edited by The University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta) is applied to the CIE chromaticity coordinates.
- the organic EL element of the present invention is a white element
- the organic EL element of the present invention can be used for a display device.
- the display device of the present invention includes the organic EL element of the present invention.
- the display device may be single-color or multi-color, a multi-color display device will be described here.
- a shadow mask is provided only when a light emitting layer is formed, and a film can be formed on one surface by an evaporation method, a casting method, a spin coating method, an inkjet method, a printing method, or the like.
- the method is not particularly limited, but is preferably an evaporation method, an inkjet method, a spin coating method, or a printing method.
- the configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
- the method for manufacturing the organic EL element is as described in the above-described one embodiment of the method for manufacturing the organic EL element of the present invention.
- a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode having a positive polarity and the cathode having a negative polarity. Also, even if a voltage is applied in the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
- the waveform of the applied AC may be arbitrary.
- the multicolor display device can be used as a display device, a display, and various light emission light sources.
- display devices and displays full-color display is possible by using three types of organic EL elements emitting blue, red, and green light.
- the display device and the display include a television, a personal computer, a mobile device, an AV device, a teletext display, an information display in a car, and the like.
- the display device may be used as a display device for reproducing a still image or a moving image, and when used as a display device for reproducing a moving image, the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
- Lighting sources include home lighting, interior lighting, backlights for watches and LCDs, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copiers, light sources for optical communication processors, and light sources for optical sensors.
- the present invention is not limited to these.
- FIG. 1 is a schematic diagram illustrating an example of a display device including an organic EL element.
- FIG. 3 is a schematic diagram of a display such as a mobile phone for displaying image information by light emission of an organic EL element.
- the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like.
- the control unit B is electrically connected to the display unit A via the wiring unit C, and sends a scanning signal and an image data signal to each of the plurality of pixels based on external image information. Then, the pixels for each scanning line sequentially emit light according to the image data signal according to the scanning signal, perform image scanning, and display image information on the display unit A.
- FIG. 2 is a schematic diagram of a display device using an active matrix system, and is a schematic diagram of a display unit A.
- the display section A has a wiring section C including a plurality of scanning lines 5 and data lines 6 and a plurality of pixels 3 on a substrate.
- the main members of the display unit A will be described below.
- FIG. 2 shows a case where light emitted from the pixel 3 (emitted light L) is extracted in the direction of the white arrow (downward).
- the scanning lines 5 and the plurality of data lines 6 of the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid and are connected to the pixels 3 at orthogonal positions (details are shown in the drawing). Not).
- the pixel 3 receives an image data signal from the data line 6 and emits light in accordance with the received image data.
- FIG. 3 is a schematic diagram showing a circuit of a pixel.
- the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
- Full-color display can be performed by using red, green, and blue light-emitting organic EL elements as the organic EL elements 10 in a plurality of pixels and juxtaposing them on the same substrate.
- an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. Then, when a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on. Then, the image data signal applied to the drain is transmitted to the capacitor 13 and the gate of the driving transistor 12.
- the capacitor 13 is charged according to the potential of the image data signal, and the driving of the drive transistor 12 is turned on.
- the driving transistor 12 has a drain connected to the power supply line 7, a source connected to the electrode of the organic EL element 10, and from the power supply line 7 to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
- the driving of the switching transistor 11 is turned off. However, even when the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on. Then, the emission of the organic EL element 10 continues until the next scanning signal is applied.
- the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
- the organic EL element 10 emits light by providing a switching transistor 11 and a driving transistor 12 as active elements to the organic EL elements 10 of each of the plurality of pixels, and emitting light of the organic EL elements 10 of each of the plurality of pixels 3 It is carried out.
- a light emitting method is called an active matrix method.
- the light emission of the organic EL element 10 may be a light emission of a plurality of gradations by a multi-valued image data signal having a plurality of gradation potentials, or a predetermined light emission amount on / off by a binary image data signal. Good. Further, the holding of the potential of the capacitor 13 may be continued until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
- the present invention is not limited to the active matrix method described above, but may be a passive matrix light emission drive in which the organic EL element emits light in accordance with a data signal only when a scanning signal is scanned.
- FIG. 4 is a schematic view of a display device using a passive matrix system.
- a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape facing each other with the pixel 3 interposed therebetween.
- the scanning signal of the scanning line 5 is applied by the sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
- the pixel 3 has no active element, and the manufacturing cost can be reduced.
- the organic EL device of the present invention a display device with improved luminous efficiency was obtained.
- the organic EL element of the present invention can be used for a lighting device.
- the lighting device of the present invention includes the organic EL element of the present invention.
- the organic EL device of the present invention may be used as an organic EL device having a resonator structure.
- the intended use of the organic EL device having such a resonator structure is, for example, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Not limited. Further, it may be used for the above purpose by causing laser oscillation.
- the organic EL element of the present invention may be used as a kind of lamp for illumination or an exposure light source, a projection device of a type for projecting an image, or a type of a type for directly recognizing a still image or a moving image. It may be used as a display device (display).
- a driving method may be either a passive matrix method or an active matrix method.
- a full-color display device can be manufactured by using two or more kinds of the organic EL elements of the present invention having different emission colors.
- white light can be obtained by simultaneously emitting a plurality of light-emitting colors and mixing colors.
- a plurality of emission colors those containing three emission maximum wavelengths of the three primary colors of red, green and blue, or two emission using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. What contained the maximum wavelength may be used.
- a mask is provided only when a light-emitting layer, a hole transport layer, an electron transport layer, or the like is formed, and the layers may be simply arranged such as by applying different masks. Since the other layers are common, patterning such as a mask is not necessary.
- an electrode film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an inkjet method, a printing method, or the like, and productivity is improved. According to this method, unlike a white organic EL device in which light-emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves emit white light.
- the non-light-emitting surface of the organic EL element of the present invention is covered with a glass case, and a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate.
- An epoxy-based photocurable adhesive (Luxtrack LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is overlaid on the cathode and closely adhered to the transparent support substrate. Then, UV light is irradiated from the glass substrate side, cured, and sealed, so that a lighting device as shown in FIGS. 5 and 6 can be formed.
- FIG. 5 and 6 UV light
- FIG. 5 is a schematic view of a lighting device, in which the organic EL element (the organic EL element 101 in the lighting device) of the present invention is covered with a glass cover 102 (the sealing operation with the glass cover is a lighting operation).
- the test was performed in a glove box under a nitrogen atmosphere (in an atmosphere of a high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 in the apparatus into contact with the atmosphere.
- FIG. 6 is a cross-sectional view of the lighting device.
- reference numeral 105 denotes a cathode
- 106 denotes an organic functional layer
- 107 denotes a glass substrate with a transparent electrode.
- the glass cover 102 is filled with a nitrogen gas 108 and a water catching agent 109 is provided.
- an organic EL element is described as an example, but the thin film of the present invention is not limited to this, and can be used for various electronic devices other than the organic EL element.
- Example 1 (Production of organic EL element) ⁇ Preparation of Organic EL Element 1-1> A 150 nm thick ITO (indium tin oxide) film was formed on a 50 mm ⁇ 50 mm glass substrate having a thickness of 0.7 mm as an anode. After patterning, the transparent substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Next, the substrate was dried with dry nitrogen gas and subjected to UV ozone cleaning for 5 minutes. Thereafter, the transparent substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
- ITO indium tin oxide
- Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element.
- the crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material. After the pressure was reduced to a degree of vacuum of 1 ⁇ 10 ⁇ 4 Pa, the deposition crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was energized and heated. Then, vapor deposition was performed on the ITO transparent electrode at a vapor deposition rate of 0.1 nm / sec to form a hole injection layer having a layer thickness of 10 nm.
- ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
- CBP 4,4'-Bis (carbazol-9-yl) biphenyl) as a host compound
- Ir (ppy) 3 Tris (2-phenylpyridinato) iridium (III)
- a co-evaporation was performed at a deposition rate of 0.1 nm / sec so as to be a volume% to form a light emitting layer having a layer thickness of 30 nm.
- the comparative compound 1 (electron transporting layer (1)) and LiQ (8-hydroxyquinolinato lithium) (electron transporting layer (2)) were deposited at a deposition rate of 0.1 nm / sec to 50% and 50% volume%, respectively.
- an electron transport layer having a thickness of 30 nm As the electron transport layer (a layer obtained by combining the electron transport layer (1) and the electron transport layer (2)) corresponds to a thin film in the present invention.
- LiQ was deposited at a deposition rate of 0.1 nm / sec to form an electron injection layer having a thickness of 2 nm, and then aluminum was deposited at a deposition rate of 0.1 nm / sec to form a cathode having a thickness of 100 nm.
- the non-light-emitting surface side of the device was covered with a can-shaped glass case under an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and wiring for taking out electrodes was provided, thereby producing an organic EL device 1-1.
- the organic EL devices 1-2 to 1-1-2 were prepared in the same manner as the organic EL device 1-1 except that the compounds contained in the electron transport layers (1) and (2) and the electron injection layer were changed as shown in Table I. 35 were produced. In Table I, "-" indicates that no component was contained.
- Example 2 (Production of organic EL element) ⁇ Preparation of Organic EL Element 2-1> After forming ITO (indium tin oxide) into a film with a thickness of 150 nm as an anode on a glass substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm, performing patterning, and then forming a transparent substrate provided with the ITO transparent electrode.
- ITO indium tin oxide
- Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element.
- the crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material. After the pressure was reduced to a degree of vacuum of 1 ⁇ 10 ⁇ 4 Pa, a current was passed through a crucible for vapor deposition containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile), and the mixture was heated and vaporized.
- a hole injection layer having a thickness of 10 nm was formed by vapor deposition on the ITO transparent electrode at a rate of 0.1 nm / sec.
- ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
- CBP as a host compound
- Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / sec to 90% and 10% by volume, respectively, to form a light emitting layer having a layer thickness of 30 nm.
- Comparative Compound 2 and KF were co-deposited at a deposition rate of 0.1 nm / sec so as to be 85% and 15% by volume, respectively, to form an electron transport layer having a thickness of 30 nm.
- the electron transport layer corresponds to the thin film in the present invention.
- silver and magnesium were co-deposited at a deposition rate of 0.1 nm / sec so as to be 90% and 10% by volume, respectively, to form a cathode having a thickness of 15 nm.
- the non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and wiring for taking out electrodes was provided, thereby producing an organic EL element 2-1.
- Organic EL devices 2-2 to 2-18 were fabricated in the same manner as in the organic EL device 2-1 except that the compound ratio of the electron transport layer and the silver and magnesium components of the cathode were changed as shown in Table II. .
- the electron transport layer contains 15% of KF, but in Table II, the notation of KF is omitted.
- Example 3 (Production of organic EL element) ⁇ Preparation of Organic EL Element 3-1> A glass substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm was ultrasonically cleaned with isopropyl alcohol. Next, after drying with a dry nitrogen gas, this glass substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
- Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element.
- the crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material. After reducing the pressure to a degree of vacuum of 1 ⁇ 10 ⁇ 4 Pa, a vapor deposition mask was attached to the glass substrate, and a crucible for vapor deposition containing Al was heated as an anode. Then, vapor deposition was performed on the glass substrate at a vapor deposition rate of 0.1 nm / sec to form a patterned anode having a layer thickness of 100 nm.
- HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) is deposited on the anode at a deposition rate of 0.1 nm / sec to form a hole injection layer having a thickness of 10 nm. did.
- ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
- CBP as a host compound
- Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / sec to 90% and 10% by volume, respectively, to form a light emitting layer having a layer thickness of 30 nm.
- Alq 3 was deposited at a deposition rate of 0.1 nm / sec to form an electron transport layer having a thickness of 30 nm.
- Comparative Compound 3 and LiQ were co-deposited at a deposition rate of 0.1 nm / sec to 50% and 50% volume%, respectively, to form an electron injection layer having a thickness of 2 nm. Note that the electron injection layer corresponds to the thin film in the present invention.
- silver was deposited at a deposition rate of 0.1 nm / sec to form a cathode having a thickness of 15 nm.
- the non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was provided to produce an organic EL element 3-1.
- Organic EL devices 3-2 to 3--3 were formed in the same manner as the organic EL device 3-1 except that the compound of the electron injection layer, the ratio of silver to magnesium of the cathode, and the thickness of the cathode were changed as shown in Table III. 21 was produced.
- the electron injection layer contains 50% of LiQ, but the description of LiQ is omitted in Table III.
- Example 4 (Production of organic EL element) ⁇ Preparation of Organic EL Element 4-1> A 150 nm thick ITO (indium tin oxide) film was formed on a 50 mm ⁇ 50 mm glass substrate having a thickness of 0.7 mm as an anode. After patterning, the transparent substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Next, the substrate was dried with dry nitrogen gas and subjected to UV ozone cleaning for 5 minutes. Thereafter, the transparent substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
- ITO indium tin oxide
- Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element.
- the crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material. After the pressure was reduced to a degree of vacuum of 1 ⁇ 10 ⁇ 4 Pa, the deposition crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was energized and heated. And it vapor-deposited on the ITO transparent electrode at the vapor deposition rate of 0.1 nm / sec, and formed the 1st hole injection layer with a layer thickness of 20 nm.
- compound 4-A represented by the following structural formula was deposited on the first hole injection layer at a deposition rate of 0.1 nm / sec to form a first hole transport layer having a thickness of 50 nm.
- compound 4-B represented by the following structural formula was deposited on the first hole transport layer at a deposition rate of 0.1 nm / sec to form an electron blocking layer having a thickness of 10 nm.
- Compound 4-C represented by the following structural formula as a host compound of the first light-emitting layer, and compound 4-D as a blue fluorescent light-emitting dopant were formed at a deposition rate of 0.1 nm / sec so as to be 95% and 5% by volume, respectively. Co-evaporation was performed to form a first light-emitting layer having a thickness of 30 nm.
- a compound 4-E represented by the following structural formula was deposited at a deposition rate of 0.1 nm / sec to form a first electron transporting layer having a thickness of 30 nm.
- a first light emitting unit including a first hole transport layer, an electron blocking layer, a first light emitting layer, and a first electron transport layer was produced.
- the comparative compound 1 and Li were co-evaporated at a deposition rate of 0.1 nm / sec so as to be 95% and 5% by volume, respectively, to form a 20 nm-thick charge generation layer on the first electron transport layer. did.
- the charge generation layer corresponds to the thin film in the present invention.
- HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was deposited on the charge generation layer at a deposition rate of 0.1 nm / sec as in the case of the first hole transport layer.
- the second hole injection layer having a thickness of 20 nm was formed by vapor deposition.
- compound 4-A was deposited on the second hole injection layer at a deposition rate of 0.1 nm / sec to form a second hole transport layer having a thickness of 60 nm.
- the compound 4-F represented by the following structural formula as a host compound of the second light emitting layer, Ir (ppy) 3 as a green phosphorescent dopant, and Ir (piq) 3 (Tris [1-phenylisoquinoline-C 2] as a red phosphorescent dopant , N] iridium (III)) were co-deposited at a deposition rate of 0.1 nm / sec to 79%, 20%, and 1% by volume, respectively, to form a second light emitting layer having a layer thickness of 20 nm.
- compound 4-E was deposited at an evaporation rate of 0.1 nm / sec to form a second electron transport layer having a thickness of 30 nm. Furthermore, after depositing LiQ at a deposition rate of 0.1 nm / sec to form an electron injection layer having a thickness of 2 nm, aluminum was deposited at a deposition rate of 0.1 nm / sec to form a cathode having a thickness of 100 nm. Was covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and wiring for taking out electrodes was provided to produce an organic EL device 4-1.
- Organic EL devices 4-2 to 4-11 were produced in the same manner as in the organic EL device 4-1 except that the compounds of the charge generation layer were changed as shown in Table IV.
- the charge generation layer contains 5% of Li, but notation of Li is omitted in Table IV.
- Relative drive voltage change rate (%) under high-temperature storage (drive voltage change amount of each organic EL element / drive voltage change amount of organic EL element 4-1) ⁇ 100 The smaller the obtained numerical value, the better the result.
- the organic EL device of the present invention has a lower relative drive voltage than the organic EL device of the comparative example, and a small change in the relative drive voltage under high-temperature storage. It turned out to be excellent.
- the present invention provides a thin film, an electronic device, an organic electroluminescence element, a material for organic electroluminescence, a display device, and a display device, which contribute to a reduction in driving voltage of the electronic device and an improvement in stability during storage for improving the performance of the electronic device. It can be used for lighting devices.
- Reference Signs List 1 display 3 pixel 5 scanning line 6 data line 7 power supply line 10 organic EL element 11 switching transistor 12 drive transistor 13 capacitor 101 organic EL element 102 in lighting device glass cover 105 cathode 106 organic functional layer 107 glass substrate with transparent electrode 108 nitrogen Gas 109 Water collecting agent A Display unit B Control unit C Wiring unit L Emitted light
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
This thin film comprises a compound having a structure represented by general formula (1).
Description
本発明は、薄膜、電子デバイス、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置に関する。
<< The present invention relates to a thin film, an electronic device, an organic electroluminescence element, a material for organic electroluminescence, a display device, and a lighting device.
電子デバイスは一般に広く普及しており、例えば、太陽光パネルや有機エレクトロルミネッセンス素子などがその代表例である。有機エレクトロルミネッセンス素子(以下、有機EL素子)は、電極(陽極及び陰極)、発光層を有する構成であり、陽極から注入された正孔と陰極から注入された電子を発光層内で再結合させることで励起子(エキシトン)を生成させる。このエキシトンが失活する際の光の放出を利用している。
Electronic devices are generally widely used, and examples thereof include solar panels and organic electroluminescent elements. 2. Description of the Related Art An organic electroluminescence element (hereinafter, referred to as an organic EL element) has a configuration including an electrode (anode and a cathode) and a light emitting layer, in which holes injected from the anode and electrons injected from the cathode are recombined in the light emitting layer. This produces excitons. Utilizing the emission of light when the exciton is deactivated.
近年、省電力化などの観点から、それら電子デバイスの性能向上が求められている。例えば、一般的に普及している電子デバイスとして有機EL素子が挙げられ、有機EL素子の性能向上のため、様々な有機EL材料が開発されている。その例としては、特許文献1及び特許文献2に記載の有機EL材料が挙げられる。これらの例では、ピリミジン化合物が有機EL材料に用いられ、有機EL素子の性能向上を図っている。
しかしながら、さらなる電子デバイスの性能向上が求められており、より駆動電圧が低減され、一定時間保存した際の駆動電圧の上昇、すなわち保存安定性がより向上された電子デバイスが求められている。 In recent years, from the viewpoint of power saving and the like, there has been a demand for improved performance of these electronic devices. For example, organic EL elements are widely used as electronic devices, and various organic EL materials have been developed to improve the performance of the organic EL elements. Examples thereof include the organic EL materials described inPatent Literature 1 and Patent Literature 2. In these examples, a pyrimidine compound is used for the organic EL material to improve the performance of the organic EL element.
However, there is a demand for further improvement in the performance of electronic devices, and there is a demand for an electronic device that has a lower driving voltage and a higher driving voltage when stored for a certain period of time, that is, a storage stability that is further improved.
しかしながら、さらなる電子デバイスの性能向上が求められており、より駆動電圧が低減され、一定時間保存した際の駆動電圧の上昇、すなわち保存安定性がより向上された電子デバイスが求められている。 In recent years, from the viewpoint of power saving and the like, there has been a demand for improved performance of these electronic devices. For example, organic EL elements are widely used as electronic devices, and various organic EL materials have been developed to improve the performance of the organic EL elements. Examples thereof include the organic EL materials described in
However, there is a demand for further improvement in the performance of electronic devices, and there is a demand for an electronic device that has a lower driving voltage and a higher driving voltage when stored for a certain period of time, that is, a storage stability that is further improved.
本発明は上記問題に鑑みて、電子デバイスの性能向上のため、電子デバイスの駆動電圧の低減及び保存時の安定性向上に寄与する薄膜、当該薄膜を用いた電子デバイス、当該薄膜を用いた有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子に用いる有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置を提供することである。
In view of the above problems, the present invention provides a thin film that contributes to a reduction in drive voltage of an electronic device and an improvement in stability during storage for improving the performance of an electronic device, an electronic device using the thin film, and an organic device using the thin film. An object of the present invention is to provide an electroluminescence element, a material for organic electroluminescence used for the organic electroluminescence element, a display device, and a lighting device.
本発明に係る上記課題は、以下の手段により解決される。
上 記 The above object according to the present invention is solved by the following means.
1.下記一般式(1)で表される構造を有する化合物を含有する薄膜。
1. A thin film containing a compound having a structure represented by the following general formula (1).
(一般式(1)中、Ar1~Ar3は、各々独立に、水素原子、芳香族炭化水素環又は複素環を表し、かつ、少なくとも一つはピリジン環、ピラジン環、ピリミジン環、又はキナゾリン環を表す。Ar4~Ar6は、各々独立に、水素原子、芳香族炭化水素環又は複素環を表し、かつ、少なくとも一つはピリジン環、ピラジン環、ピリミジン環、又はキナゾリン環を表す。nは1以上、かつ5以下の整数を表す。Lは、各々独立に、芳香族炭化水素環又は複素環を表す。)
(In the general formula (1), Ar 1 to Ar 3 each independently represent a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and at least one of them represents a pyridine ring, a pyrazine ring, a pyrimidine ring, or a quinazoline. Ar 4 to Ar 6 each independently represent a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and at least one of them represents a pyridine ring, a pyrazine ring, a pyrimidine ring, or a quinazoline ring. n represents an integer of 1 or more and 5 or less, and L independently represents an aromatic hydrocarbon ring or a heterocyclic ring.)
2.前記一般式(1)において、n=2の場合、Lのうち少なくとも一つは複素環である第1項に記載の薄膜。
{2. 2. The thin film according to claim 1, wherein in the general formula (1), when n = 2, at least one of L is a heterocyclic ring.
3.前記一般式(1)において、nは3以上である第1項に記載の薄膜。
{3. 2. The thin film according to item 1, wherein in the general formula (1), n is 3 or more.
4.前記一般式(1)において、Lが、各々独立に、フェニル環、ピリジン環、ピラジン環、又はピリミジン環を表す第1項から第3項までのいずれか一項に記載の薄膜。
4. 4. The thin film according to any one of items 1 to 3, wherein in the general formula (1), L independently represents a phenyl ring, a pyridine ring, a pyrazine ring, or a pyrimidine ring.
5.更に電子注入材料を含有する第1項から第4項までのいずれか一項に記載の薄膜。
5. 5. The thin film according to any one of items 1 to 4, further comprising an electron injection material.
6.電極と、発光層を含む複数の有機機能層を有する有機エレクトロルミネッセンス素子であって、
前記有機機能層の少なくとも一層が、第1項から第5項までのいずれか一項に記載の前記薄膜である有機エレクトロルミネッセンス素子。 6. An electrode, an organic electroluminescence device having a plurality of organic functional layers including a light emitting layer,
6. An organic electroluminescence device, wherein at least one of the organic functional layers is the thin film according to any one ofItems 1 to 5.
前記有機機能層の少なくとも一層が、第1項から第5項までのいずれか一項に記載の前記薄膜である有機エレクトロルミネッセンス素子。 6. An electrode, an organic electroluminescence device having a plurality of organic functional layers including a light emitting layer,
6. An organic electroluminescence device, wherein at least one of the organic functional layers is the thin film according to any one of
7.前記薄膜、電子注入層、前記電極の順に積層されている第6項に記載の有機エレクトロルミネッセンス素子。
$ 7. 7. The organic electroluminescence device according to claim 6, wherein the thin film, the electron injection layer, and the electrode are stacked in this order.
8.前記電極が、銀を主成分としており、
前記有機機能層が、前記電極に隣接して設けられている第6項または第7項に記載の有機エレクトロルミネッセンス素子。 8. The electrode is mainly composed of silver,
8. The organic electroluminescence device according toclaim 6, wherein the organic functional layer is provided adjacent to the electrode.
前記有機機能層が、前記電極に隣接して設けられている第6項または第7項に記載の有機エレクトロルミネッセンス素子。 8. The electrode is mainly composed of silver,
8. The organic electroluminescence device according to
9.前記電極が、膜厚が15nm以下であり、かつ透明である第6項から第8項までのいずれか一項に記載の有機エレクトロルミネッセンス素子。
9. 9. The organic electroluminescence device according to any one of items 6 to 8, wherein the electrode has a thickness of 15 nm or less and is transparent.
10.下記一般式(1)で表される構造を有する化合物を含有する有機エレクトロルミネッセンス用材料。
{10. An organic electroluminescent material comprising a compound having a structure represented by the following general formula (1).
(一般式(1)中、Ar1~Ar3は、各々独立に、水素原子、芳香族炭化水素環又は複素環を表し、かつ、少なくとも一つはピリジン環、ピラジン環、ピリミジン環、又はキナゾリン環を表す。Ar4~Ar6は、各々独立に、水素原子、芳香族炭化水素環又は複素環を表し、かつ、少なくとも一つはピリジン環、ピラジン環、ピリミジン環、又はキナゾリン環を表す。nは1以上、かつ5以下の整数を表す。Lは、各々独立に、芳香族炭化水素環又は複素環を表す。)
(In the general formula (1), Ar 1 to Ar 3 each independently represent a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and at least one of them represents a pyridine ring, a pyrazine ring, a pyrimidine ring, or a quinazoline. Ar 4 to Ar 6 each independently represent a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and at least one of them represents a pyridine ring, a pyrazine ring, a pyrimidine ring, or a quinazoline ring. n represents an integer of 1 or more and 5 or less, and L independently represents an aromatic hydrocarbon ring or a heterocyclic ring.)
11.第6項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備する表示装置。
{11. A display device comprising the organic electroluminescence element according to any one of items 6 to 9.
12.第6項から第9項までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備する照明装置。
{12. A lighting device comprising the organic electroluminescent element according to any one of items 6 to 9.
13.電極と、第1項から第5項までのいずれか一項に記載の薄膜を有する電子デバイス。
{13. An electronic device comprising an electrode and the thin film according to any one of the first to fifth aspects.
本発明によれば、駆動電圧及び高温保存時の安定性が改善された有機エレクトロルミネッセンス素子及び当該有機エレクトロルミネッセンス素子に用いる有機エレクトロルミネッセンス用材料を提供することができる。また、駆動電圧及び高温保存時の安定性が改善された表示装置及び照明装置を提供することができる。
According to the present invention, it is possible to provide an organic electroluminescence device having improved driving voltage and stability during high-temperature storage, and a material for organic electroluminescence used for the organic electroluminescence device. Further, a display device and a lighting device with improved driving voltage and stability during high-temperature storage can be provided.
本発明の薄膜は、下記一般式(1)で表される構造を有する化合物を含有することを特徴とする。この特徴は、請求項1から請求項4までの請求項に係る発明に共通する技術的特徴である。また、本発明の薄膜は、下記一般式(1)で表される構造を有する化合物以外にも、他の化合物を含んでもよい。
薄膜 The thin film of the present invention is characterized by containing a compound having a structure represented by the following general formula (1). This feature is a technical feature common to the inventions according to claims 1 to 4. Further, the thin film of the present invention may contain other compounds in addition to the compound having the structure represented by the following general formula (1).
《一般式(1)で表される構造を有する化合物》
<< Compound having a structure represented by the general formula (1) >>
一般式(1)中、Ar1~Ar3は、各々独立に、水素原子又は芳香族炭化水素環又は複素環を表し、更に置換基を有してもよく、かつ、少なくとも一つはピリジン環又はピラジン環又はピリミジン環又はキナゾリン環である。すなわち、Ar1~Ar3は、各々独立に、水素原子、又は、置換又は無置換の芳香族炭化水素環、又は、置換又は無置換の複素環を表し、かつ少なくとも一つはピリジン環又はピラジン環又はピリミジン環又はキナゾリン環である。芳香族炭化水素環の具体例としては、特に制限されないが、例えば、ベンゼン環、ナフチル環、アントラセン環、ピレン環等が挙げられる。複素環の具体例としては、特に制限されないが、例えば、上記芳香族炭化水素環における炭素原子の一部が、ヘテロ原子(酸素原子、窒素原子又は硫黄原子)によって置換されたものもあり、例えば、ピリジン環、ピロール環、フラン環、ピラン環、イミダゾール環、ピラゾール環、オキサゾール環、ピリダジン環、ピリミジン環、プリン環、トリアジン環、トリアゾール環、キノリン環、イソキノリン環等が挙げられる。
In the general formula (1), Ar 1 to Ar 3 each independently represent a hydrogen atom or an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent, and at least one of them is a pyridine ring Or a pyrazine ring, a pyrimidine ring, or a quinazoline ring. That is, Ar 1 to Ar 3 each independently represent a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring, or a substituted or unsubstituted heterocyclic ring, and at least one of them is a pyridine ring or a pyrazine. Or a pyrimidine ring or a quinazoline ring. Specific examples of the aromatic hydrocarbon ring are not particularly limited, and include, for example, a benzene ring, a naphthyl ring, an anthracene ring, a pyrene ring and the like. Specific examples of the heterocyclic ring are not particularly limited. For example, there is a heterocyclic ring in which a part of carbon atoms in the aromatic hydrocarbon ring is substituted with a hetero atom (an oxygen atom, a nitrogen atom, or a sulfur atom). Pyridine ring, pyrrole ring, furan ring, pyran ring, imidazole ring, pyrazole ring, oxazole ring, pyridazine ring, pyrimidine ring, purine ring, triazine ring, triazole ring, quinoline ring, isoquinoline ring and the like.
一般式(1)中、Ar4~Ar6は、各々独立に、水素原子又は芳香族炭化水素環又は複素環を表し、更に置換基を有してもよく、かつ、少なくとも一つはピリジン環又はピラジン環又はピリミジン環又はキナゾリン環である。すなわち、Ar4~Ar6は、各々独立に、水素原子、又は、置換又は無置換の芳香族炭化水素環、又は、置換又は無置換の複素環を表し、かつ少なくとも一つはピリジン環又はピラジン環又はピリミジン環又はキナゾリン環である。芳香族炭化水素環の具体例としては、特に制限されないが、例えば、ベンゼン環、ナフチル環、アントラセン環、ピレン環等が挙げられる。複素環の具体例としては、特に制限されないが、例えば、上記芳香族炭化水素環における炭素原子の一部が、ヘテロ原子(酸素原子、窒素原子又は硫黄原子)によって置換されたものもあり、例えば、ピリジン環、ピロール環、フラン環、ピラン環、イミダゾール環、ピラゾール環、オキサゾール環、ピリダジン環、ピリミジン環、プリン環、トリアジン環、トリアゾール環、キノリン環、イソキノリン環等が挙げられる。
In the general formula (1), Ar 4 to Ar 6 each independently represent a hydrogen atom or an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent, and at least one of them is a pyridine ring Or a pyrazine ring, a pyrimidine ring, or a quinazoline ring. That is, Ar 4 to Ar 6 each independently represent a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring, or a substituted or unsubstituted heterocyclic ring, and at least one of them is a pyridine ring or a pyrazine. Or a pyrimidine ring or a quinazoline ring. Specific examples of the aromatic hydrocarbon ring are not particularly limited, and include, for example, a benzene ring, a naphthyl ring, an anthracene ring, a pyrene ring and the like. Specific examples of the heterocyclic ring are not particularly limited. For example, there is a heterocyclic ring in which a part of carbon atoms in the aromatic hydrocarbon ring is substituted with a hetero atom (an oxygen atom, a nitrogen atom, or a sulfur atom). Pyridine ring, pyrrole ring, furan ring, pyran ring, imidazole ring, pyrazole ring, oxazole ring, pyridazine ring, pyrimidine ring, purine ring, triazine ring, triazole ring, quinoline ring, isoquinoline ring and the like.
一般式(1)中、nは1以上、かつ5以下の整数を表す。
中 In the general formula (1), n represents an integer of 1 or more and 5 or less.
一般式(1)中、Lは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。すなわち、Lは、各々独立に、置換又は無置換の芳香族炭化水素環、又は、置換又は無置換の複素環を表す。Lの具体例としては、特に制限されないが、例えば、ベンゼン環、ナフチル環、アントラセン環、フルオレン環、ピリジン環、ピラジン環、トリアジン環、ピリミジン環、チオフェン環、ベンゾチオフェン環、インドール環、イミダゾール環、ベンゾイミダゾール環、ピラゾール環又はトリアゾール環、アザジベンゾフラン環を含む二価の連結基を表すもの等が挙げられる。
中 In the general formula (1), L independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. That is, L independently represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heterocyclic ring. Specific examples of L include, but are not particularly limited to, for example, a benzene ring, a naphthyl ring, an anthracene ring, a fluorene ring, a pyridine ring, a pyrazine ring, a triazine ring, a pyrimidine ring, a thiophene ring, a benzothiophene ring, an indole ring, and an imidazole ring. And a divalent linking group containing a benzoimidazole ring, a pyrazole ring or a triazole ring, or an azadibenzofuran ring.
これらのうち、Lは、各々独立に、フェニル環、ピリジン環、ピラジン環、ピリミジン環、を表すものであることが好ましい。これらは、更に置換基を有してもよい。
の う ち Of these, L preferably independently represents a phenyl ring, a pyridine ring, a pyrazine ring, or a pyrimidine ring. These may further have a substituent.
n=2の場合、Lのうち少なくとも一つは複素環であることが好ましい。すなわち、n=2の場合、Lのうち少なくとも一つは置換又は無置換の複素環であることが好ましい。複素環の具体例としては、特に制限されず、前述の同様の例が挙げられる。
When n = 2, at least one of L is preferably a heterocyclic ring. That is, when n = 2, at least one of L is preferably a substituted or unsubstituted heterocyclic ring. Specific examples of the heterocyclic ring are not particularly limited, and include the same examples as described above.
一般式(1)中、nは3以上、5以下であることが好ましい。さらに、nは3以上、5以下であり、かつ、Lは、各々独立に、フェニル環、ピリジン環、ピラジン環、ピリミジン環、を表すものであることが好ましい。これらは置換基を有してもよい。
中 In the general formula (1), n is preferably 3 or more and 5 or less. Further, it is preferable that n is 3 or more and 5 or less, and L independently represents a phenyl ring, a pyridine ring, a pyrazine ring, or a pyrimidine ring. These may have a substituent.
一般式(1)で用いられる置換基としては、特に制限されないが、例えば、アルキル基(例えば、メチル基、エチル基、トリフルオロメチル基、イソプロピル基等)、アリール基(例えば、フェニル基等)、ヘテロアリール基(例えば、ピリジル基、カルバゾリル基等)、ハロゲン原子(例えば、フッ素原子等)、シアノ基、若しくはフッ化アルキル基等が挙げられ、後述する例示化合物で使用されているものも好ましい。
The substituent used in the general formula (1) is not particularly limited, but for example, an alkyl group (eg, a methyl group, an ethyl group, a trifluoromethyl group, an isopropyl group), an aryl group (eg, a phenyl group) , A heteroaryl group (eg, a pyridyl group, a carbazolyl group, etc.), a halogen atom (eg, a fluorine atom, etc.), a cyano group, or a fluorinated alkyl group, and those used in the exemplified compounds described later are also preferable. .
《一般式(1)で表される構造を有する化合物の合成例》
<合成例1>
本発明化合物(1)の合成 << Synthesis example of compound having structure represented by general formula (1) >>
<Synthesis example 1>
Synthesis of compound (1) of the present invention
<合成例1>
本発明化合物(1)の合成 << Synthesis example of compound having structure represented by general formula (1) >>
<Synthesis example 1>
Synthesis of compound (1) of the present invention
200mLの4頭コルベンに化合物(1-1) 1.8g(4.64mmol)、化合物(1-2) 0.84g(2.55mmol)、炭酸カリウム 1.28g(9.28mmol)、純水 5mL、THF 43mLを投入して、窒素ガスを流入しながら室温で30分撹拌した。その後、トリス(ジベンジリデンアセトン)ジパラジウム(0) 0.575g(0.348mmol)、2-ジシクロヘキシルホスフィノ-2′,6′-ジメトキシビフェニル 0.142g(0.348mmol)を投入して撹拌しながら7時間加熱還流した。反応終了後、室温まで冷却し、水を加えて撹拌、濾過した。得られた粗結晶にTHFを加えて加熱還流下、懸濁撹拌した後、室温に冷却して濾過、乾燥して1.56gの固体を得た。得られた固体を昇華精製して、化合物(1) 1.04g(収率65%)を得た。構造は1H-NMRにより確認した。
1.8 g (4.64 mmol) of compound (1-1), 0.84 g (2.55 mmol) of compound (1-2), 1.28 g (9.28 mmol) of potassium carbonate, and 5 mL of pure water And 43 mL of THF, and the mixture was stirred at room temperature for 30 minutes while flowing nitrogen gas. Thereafter, 0.575 g (0.348 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 0.142 g (0.348 mmol) of 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl were charged and stirred. The mixture was refluxed for 7 hours while heating. After completion of the reaction, the mixture was cooled to room temperature, water was added, and the mixture was stirred and filtered. THF was added to the obtained crude crystals, and the mixture was suspended and stirred under reflux with heating, cooled to room temperature, filtered and dried to obtain 1.56 g of a solid. The obtained solid was purified by sublimation to obtain 1.04 g (yield: 65%) of compound (1). The structure was confirmed by 1 H-NMR.
<合成例2>
本発明化合物(49)の合成 <Synthesis Example 2>
Synthesis of compound (49) of the present invention
本発明化合物(49)の合成 <Synthesis Example 2>
Synthesis of compound (49) of the present invention
200mLの4頭コルベンに化合物(49-1) 1.7g(4.34mmol)、化合物(49-2) 0.82g(2.48mmol)、炭酸カリウム 0.92g(6.68mmol)、純水 4mL、THF 40mLを投入して、窒素ガスを流入しながら室温で30分撹拌した。その後、トリス(ジベンジリデンアセトン)ジパラジウム(0) 0.144g(0.25mmol)2-ジシクロヘキシルホスフィノ-2′,6′-ジメトキシビフェニル 0.102g(0.25mmol)を投入して撹拌しながら7時間加熱還流した。反応終了後、室温まで冷却し、水を加えて撹拌、濾過した。得られた粗結晶にTHFを加えて加熱還流下、懸濁撹拌した後、室温に冷却して濾過、乾燥して1.02gの固体を得た。得られた固体を昇華精製して、化合物(49) 0.90g(収率60%)を得た。構造は1H-NMRにより確認した。
1.7 g (4.34 mmol) of compound (49-1), 0.82 g (2.48 mmol) of compound (49-2), 0.92 g (6.68 mmol) of potassium carbonate, and 4 mL of pure water in a 200 mL four-headed colben And THF (40 mL), and the mixture was stirred at room temperature for 30 minutes while flowing nitrogen gas. Thereafter, 0.144 g (0.25 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 0.102 g (0.25 mmol) of 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl were added thereto and stirred. The mixture was refluxed for 7 hours. After completion of the reaction, the mixture was cooled to room temperature, water was added, and the mixture was stirred and filtered. THF was added to the obtained crude crystals, and the mixture was suspended and stirred under reflux with heating, cooled to room temperature, filtered and dried to obtain 1.02 g of a solid. The obtained solid was purified by sublimation to obtain 0.90 g (yield: 60%) of compound (49). The structure was confirmed by 1 H-NMR.
《一般式(1)で表される構造を有する化合物の具体例》
一般式(1)で表される構造を有する化合物の具体例を以下に示す。これらの化合物は一例であって、本発明はこれに限定されるものではない。 << Specific Example of Compound Having Structure Represented by General Formula (1) >>
Specific examples of the compound having the structure represented by the general formula (1) are shown below. These compounds are merely examples, and the present invention is not limited thereto.
一般式(1)で表される構造を有する化合物の具体例を以下に示す。これらの化合物は一例であって、本発明はこれに限定されるものではない。 << Specific Example of Compound Having Structure Represented by General Formula (1) >>
Specific examples of the compound having the structure represented by the general formula (1) are shown below. These compounds are merely examples, and the present invention is not limited thereto.
前記説明した本発明の薄膜に関して、その使用方法は特に限定されず、様々な製品等に用いることができる。本発明の薄膜を用いる製品としては、例えば、太陽光パネルや有機EL素子など、種々の電子デバイス等が挙げられる。それら電子デバイスは、金属等により形成される電極と、前記薄膜を有している。
The method of using the thin film of the present invention described above is not particularly limited, and can be used for various products. Examples of products using the thin film of the present invention include various electronic devices such as solar panels and organic EL elements. These electronic devices have electrodes formed of metal or the like, and the thin film.
また、本発明の有機エレクトロルミネッセンス用材料は、前記一般式(1)で表される構造を有する化合物を含有することを特徴とする。前記一般式(1)については、前記説明したとおりである。
有機 The organic electroluminescent material of the present invention is characterized by containing a compound having a structure represented by the general formula (1). The general formula (1) is as described above.
また、前記一般式(1)で表される構造を有する化合物における複数の窒素含有ヘテロ環は、銀との相互作用があり、銀原子の拡散距離が減少し、銀の凝集を抑制することができる。それにより銀を主成分とした電極の均一膜を達成することもできる。電極の詳細については後述する。また、本発明化合物は結晶性を抑制することができるため、膜形成時に積層しやすく平滑性を向上させることができる。さらに、銀の凝集を抑制することにより、銀原子の粒界が増えることを抑制できるため、駆動電圧の低下や、経時的な駆動電圧の上昇を抑制することができる。
Further, the plurality of nitrogen-containing heterocycles in the compound having the structure represented by the general formula (1) have an interaction with silver, which reduces the diffusion distance of silver atoms and suppresses the aggregation of silver. it can. Thereby, a uniform film of an electrode containing silver as a main component can be achieved. Details of the electrodes will be described later. Further, since the compound of the present invention can suppress the crystallinity, it can be easily laminated at the time of film formation and can improve smoothness. Further, by suppressing the aggregation of silver, it is possible to suppress an increase in grain boundaries of silver atoms, so that it is possible to suppress a decrease in drive voltage and a rise in drive voltage over time.
また、前記一般式(1)で表される構造を有する化合物におけるヘテロ原子は、電子注入材料として用いられるアルカリ金属、アルカリ土類金属、希土類と相互作用があり、それら電子注入材料として用いられるアルカリ金属、アルカリ土類金属、希土類の各原子の発光層への拡散を抑制し、駆動電圧の低下や、経時的な駆動電圧の上昇を抑制することができる。
The heteroatom in the compound having the structure represented by the general formula (1) interacts with an alkali metal, an alkaline earth metal, or a rare earth used as an electron injecting material. Diffusion of each metal, alkaline earth metal, and rare earth atom into the light emitting layer can be suppressed, and a decrease in driving voltage and an increase in driving voltage over time can be suppressed.
《有機EL素子の構成層》
本発明の有機EL素子の構成層について説明する。本発明の有機EL素子において、電極とは、陽極と陰極を意味する。陽極と陰極との間に挟持される各種有機機能層の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極/発光層ユニット/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層ユニット/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極 << Constituent Layer of Organic EL Element >>
The constituent layers of the organic EL device of the present invention will be described. In the organic EL device of the present invention, the electrodes mean an anode and a cathode. Preferred specific examples of the layer structure of the various organic functional layers sandwiched between the anode and the cathode are shown below, but the present invention is not limited thereto.
(I) anode / light emitting layer unit / electron transport layer / cathode (ii) anode / hole transport layer / light emitting layer unit / electron transport layer / cathode (iii) anode / hole transport layer / light emitting layer unit / hole blocking Layer / electron transport layer / cathode (iv) anode / hole transport layer / emission layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) anode / anode buffer layer / hole transport layer / emission Layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode
本発明の有機EL素子の構成層について説明する。本発明の有機EL素子において、電極とは、陽極と陰極を意味する。陽極と陰極との間に挟持される各種有機機能層の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
(i)陽極/発光層ユニット/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層ユニット/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極
(iv)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(v)陽極/陽極バッファー層/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極 << Constituent Layer of Organic EL Element >>
The constituent layers of the organic EL device of the present invention will be described. In the organic EL device of the present invention, the electrodes mean an anode and a cathode. Preferred specific examples of the layer structure of the various organic functional layers sandwiched between the anode and the cathode are shown below, but the present invention is not limited thereto.
(I) anode / light emitting layer unit / electron transport layer / cathode (ii) anode / hole transport layer / light emitting layer unit / electron transport layer / cathode (iii) anode / hole transport layer / light emitting layer unit / hole blocking Layer / electron transport layer / cathode (iv) anode / hole transport layer / emission layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) anode / anode buffer layer / hole transport layer / emission Layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode
更に、発光層ユニットは複数の発光層の間に非発光性の中間層を有していてもよく、該中間層が電荷発生層であるようなマルチフォトンユニット構成であってもよい。この場合、電荷発生層としては、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO2、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO2、CuGaO2、SrCu2O2、LaB6、RuO2等の導電性無機化合物層や、Au/Bi2O3等の2層膜や、SnO2/Ag/SnO2、ZnO/Ag/ZnO、Bi2O3/Au/Bi2O3、TiO2/TiN/TiO2、TiO2/ZrN/TiO2等の多層膜、またC60等のフラーレン類、オリゴチオフェン類、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられる。また、電荷発生層は、複数の発光層間の電子の移動を促進する機能を有し、リチウム等のアルカリ金属や、アルカリ土類金属、希土類等が含まれていることが望ましい。その他、電荷発生層の機能や構成としては、後述する電子注入層と同様であってもよい。
以下、本発明の有機EL素子を構成する各層について説明する。 Further, the light emitting layer unit may have a non-light emitting intermediate layer between the plurality of light emitting layers, and may have a multi-photon unit configuration in which the intermediate layer is a charge generating layer. In this case, as the charge generation layer, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2 , CuGaO 2 , a conductive inorganic compound layer such as SrCu 2 O 2 , LaB 6 , RuO 2 , a two-layer film such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 Multilayer films such as O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , oligothiophenes, metal phthalocyanines, metal-free phthalocyanines And conductive organic compound layers such as metal porphyrins and metal-free porphyrins. In addition, the charge generation layer has a function of promoting the transfer of electrons between the plurality of light emitting layers, and preferably contains an alkali metal such as lithium, an alkaline earth metal, a rare earth, or the like. In addition, the function and configuration of the charge generation layer may be the same as those of the electron injection layer described later.
Hereinafter, each layer constituting the organic EL device of the present invention will be described.
以下、本発明の有機EL素子を構成する各層について説明する。 Further, the light emitting layer unit may have a non-light emitting intermediate layer between the plurality of light emitting layers, and may have a multi-photon unit configuration in which the intermediate layer is a charge generating layer. In this case, as the charge generation layer, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2 , CuGaO 2 , a conductive inorganic compound layer such as SrCu 2 O 2 , LaB 6 , RuO 2 , a two-layer film such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 Multilayer films such as O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , oligothiophenes, metal phthalocyanines, metal-free phthalocyanines And conductive organic compound layers such as metal porphyrins and metal-free porphyrins. In addition, the charge generation layer has a function of promoting the transfer of electrons between the plurality of light emitting layers, and preferably contains an alkali metal such as lithium, an alkaline earth metal, a rare earth, or the like. In addition, the function and configuration of the charge generation layer may be the same as those of the electron injection layer described later.
Hereinafter, each layer constituting the organic EL device of the present invention will be described.
《有機機能層》
本発明の有機EL素子は、陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する。すなわち、本発明に係る有機機能層は、陽極と陰極の間に位置することを特徴とする。
本発明の有機EL素子は、複数の有機機能層を有し、当該有機機能層は、発光層、及び、前記説明した本発明の薄膜を含んでいる。なお、発光層は一つであっても複数であってもよい。 《Organic functional layer》
The organic EL device of the present invention has an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order. That is, the organic functional layer according to the present invention is located between the anode and the cathode.
The organic EL element of the present invention has a plurality of organic functional layers, and the organic functional layer includes a light emitting layer and the above-described thin film of the present invention. Note that the number of the light emitting layers may be one or plural.
本発明の有機EL素子は、陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する。すなわち、本発明に係る有機機能層は、陽極と陰極の間に位置することを特徴とする。
本発明の有機EL素子は、複数の有機機能層を有し、当該有機機能層は、発光層、及び、前記説明した本発明の薄膜を含んでいる。なお、発光層は一つであっても複数であってもよい。 《Organic functional layer》
The organic EL device of the present invention has an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order. That is, the organic functional layer according to the present invention is located between the anode and the cathode.
The organic EL element of the present invention has a plurality of organic functional layers, and the organic functional layer includes a light emitting layer and the above-described thin film of the present invention. Note that the number of the light emitting layers may be one or plural.
また、有機機能層として、前記一般式(1)で表される構造を有する化合物及び電子注入材料を含有する層を有することが好ましい。すなわち、有機機能層としての前記薄膜に電子注入材料が含まれる、若しくは前記薄膜とは別に、電子注入材料が含まれた有機機能層(後述する電子注入層)が設けられることが好ましい。
また、後述する電子注入層が存在する場合、前記薄膜、電子注入層及び前記陰極の順に積層されていることも好ましい。 Further, it is preferable that the organic functional layer has a layer containing a compound having the structure represented by the general formula (1) and an electron injection material. That is, it is preferable that an electron injecting material is included in the thin film as the organic functional layer, or that an organic functional layer (an electron injecting layer described later) in which an electron injecting material is included is provided separately from the thin film.
When an electron injection layer described later is present, it is also preferable that the thin film, the electron injection layer, and the cathode are stacked in this order.
また、後述する電子注入層が存在する場合、前記薄膜、電子注入層及び前記陰極の順に積層されていることも好ましい。 Further, it is preferable that the organic functional layer has a layer containing a compound having the structure represented by the general formula (1) and an electron injection material. That is, it is preferable that an electron injecting material is included in the thin film as the organic functional layer, or that an organic functional layer (an electron injecting layer described later) in which an electron injecting material is included is provided separately from the thin film.
When an electron injection layer described later is present, it is also preferable that the thin film, the electron injection layer, and the cathode are stacked in this order.
《発光層》
本発明に用いる発光層は、電極又は電子輸送層及び正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
発光層の層厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加することを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、好ましくは2nm~5μmの範囲に調整される。発光層の層厚の総和は、更に好ましくは2~200nmの範囲に調整され、特に好ましくは5~100nmの範囲に調整される。 << Light-emitting layer >>
The light-emitting layer used in the present invention is a layer that emits light by recombination of electrons and holes injected from an electrode or an electron transport layer and a hole transport layer, and a light-emitting portion is in the light-emitting layer. May be the interface between the light emitting layer and the adjacent layer.
The total sum of the thicknesses of the light emitting layers is not particularly limited. Preferably, it is adjusted to a range of 2 nm to 5 μm. The total thickness of the light emitting layer is more preferably adjusted in the range of 2 to 200 nm, and particularly preferably adjusted in the range of 5 to 100 nm.
本発明に用いる発光層は、電極又は電子輸送層及び正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
発光層の層厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加することを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、好ましくは2nm~5μmの範囲に調整される。発光層の層厚の総和は、更に好ましくは2~200nmの範囲に調整され、特に好ましくは5~100nmの範囲に調整される。 << Light-emitting layer >>
The light-emitting layer used in the present invention is a layer that emits light by recombination of electrons and holes injected from an electrode or an electron transport layer and a hole transport layer, and a light-emitting portion is in the light-emitting layer. May be the interface between the light emitting layer and the adjacent layer.
The total sum of the thicknesses of the light emitting layers is not particularly limited. Preferably, it is adjusted to a range of 2 nm to 5 μm. The total thickness of the light emitting layer is more preferably adjusted in the range of 2 to 200 nm, and particularly preferably adjusted in the range of 5 to 100 nm.
発光層の作製には、後述する発光ドーパントやホスト化合物を用いて、例えば、真空蒸着法、湿式法等により成膜して形成することができる。湿式法は、ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法))等を挙げることができる。
本発明の有機EL素子の発光層には、発光性ドーパント(リン光発光性ドーパントや蛍光発光性ドーパント等)化合物と、ホスト化合物とを含有することが好ましい。 The light-emitting layer can be formed by using a light-emitting dopant or a host compound described later and forming a film by, for example, a vacuum evaporation method or a wet method. The wet method is also called a wet process. For example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, an LB method (Langmuir Blodgett) (Langmuir Bloodgett method)).
The light emitting layer of the organic EL device of the present invention preferably contains a light emitting dopant (phosphorescent light emitting dopant, fluorescent light emitting dopant, etc.) compound and a host compound.
本発明の有機EL素子の発光層には、発光性ドーパント(リン光発光性ドーパントや蛍光発光性ドーパント等)化合物と、ホスト化合物とを含有することが好ましい。 The light-emitting layer can be formed by using a light-emitting dopant or a host compound described later and forming a film by, for example, a vacuum evaporation method or a wet method. The wet method is also called a wet process. For example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, an LB method (Langmuir Blodgett) (Langmuir Bloodgett method)).
The light emitting layer of the organic EL device of the present invention preferably contains a light emitting dopant (phosphorescent light emitting dopant, fluorescent light emitting dopant, etc.) compound and a host compound.
(1)発光性ドーパント
発光性ドーパント(発光ドーパント、ドーパント化合物、単にドーパントともいう。)について説明する。
発光性ドーパントとしては、リン光発光性ドーパント(リン光ドーパント、リン光性化合物、リン光発光性化合物等ともいう。)、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物、蛍光発光性化合物ともいう。)を用いることができる。 (1) Light-Emitting Dopant A light-emitting dopant (also referred to as a light-emitting dopant, a dopant compound, or simply a dopant) will be described.
Examples of the luminescent dopant include a phosphorescent dopant (also referred to as a phosphorescent dopant, a phosphorescent compound, and a phosphorescent compound), and a fluorescent dopant (also referred to as a fluorescent dopant, a fluorescent compound, and a fluorescent compound). .) Can be used.
発光性ドーパント(発光ドーパント、ドーパント化合物、単にドーパントともいう。)について説明する。
発光性ドーパントとしては、リン光発光性ドーパント(リン光ドーパント、リン光性化合物、リン光発光性化合物等ともいう。)、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物、蛍光発光性化合物ともいう。)を用いることができる。 (1) Light-Emitting Dopant A light-emitting dopant (also referred to as a light-emitting dopant, a dopant compound, or simply a dopant) will be described.
Examples of the luminescent dopant include a phosphorescent dopant (also referred to as a phosphorescent dopant, a phosphorescent compound, and a phosphorescent compound), and a fluorescent dopant (also referred to as a fluorescent dopant, a fluorescent compound, and a fluorescent compound). .) Can be used.
(1.1)リン光ドーパント
リン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物である。リン光ドーパントは、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できる。しかし、本発明で用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 (1.1) Phosphorescent dopant A phosphorescent dopant is a compound in which light emission from an excited triplet is observed, and specifically, a compound that emits phosphorescent light at room temperature (25 ° C.). The phosphorescent dopant is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C., and a preferable phosphorescence quantum yield is 0.1 or more.
The phosphorescence quantum yield can be measured by the method described in Spectroscopy II, 4th Edition, pp. 398 (1992 edition, Maruzen) ofExperimental Chemistry Course 7. The phosphorescence quantum yield in a solution can be measured using various solvents. However, the phosphorescent dopant used in the present invention only needs to achieve the above-mentioned phosphorescent quantum yield (0.01 or more) in any of the solvents.
リン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物である。リン光ドーパントは、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できる。しかし、本発明で用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 (1.1) Phosphorescent dopant A phosphorescent dopant is a compound in which light emission from an excited triplet is observed, and specifically, a compound that emits phosphorescent light at room temperature (25 ° C.). The phosphorescent dopant is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C., and a preferable phosphorescence quantum yield is 0.1 or more.
The phosphorescence quantum yield can be measured by the method described in Spectroscopy II, 4th Edition, pp. 398 (1992 edition, Maruzen) of
リン光ドーパントの発光は原理としては2種挙げられる。一つはエネルギー移動型である。エネルギー移動型は、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こって発光ホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るものである。もう一つはキャリアトラップ型である。キャリアトラップ型は、リン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパントからの発光が得られるというものである。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
(2) In principle, two types of light emission from the phosphorescent dopant can be given. One is an energy transfer type. In the energy transfer type, the excited state of the light emitting host compound is generated by the recombination of the carrier on the host compound to which the carrier is transported, and the energy is transferred to the phosphorescent dopant to obtain light emission from the phosphorescent dopant. Things. The other is a carrier trap type. In the carrier trap type, a phosphorescent dopant serves as a carrier trap, carriers are recombined on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In either case, the condition is that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
(1.2)蛍光ドーパント
蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。 (1.2) Fluorescent dopant As the fluorescent dopant, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squarium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, Examples include perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex fluorescent materials, and compounds having a high fluorescence quantum yield represented by laser dyes.
蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。 (1.2) Fluorescent dopant As the fluorescent dopant, coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squarium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, Examples include perylene dyes, stilbene dyes, polythiophene dyes, rare earth complex fluorescent materials, and compounds having a high fluorescence quantum yield represented by laser dyes.
[従来公知のドーパントとの併用]
また、本発明に用いられる発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。
ここで、発光ドーパントとして、従来公知の国際公開第2013/061850号に記載の化合物を好適に用いることができるが、本発明はこれらに限定されない。 [Use in combination with a conventionally known dopant]
The light emitting dopant used in the present invention may be used in combination of plural kinds of compounds, or may be used in combination of phosphorescent dopants having different structures or in combination of phosphorescent dopant and fluorescent dopant.
Here, as the luminescent dopant, conventionally known compounds described in WO 2013/061850 can be suitably used, but the present invention is not limited thereto.
また、本発明に用いられる発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。
ここで、発光ドーパントとして、従来公知の国際公開第2013/061850号に記載の化合物を好適に用いることができるが、本発明はこれらに限定されない。 [Use in combination with a conventionally known dopant]
The light emitting dopant used in the present invention may be used in combination of plural kinds of compounds, or may be used in combination of phosphorescent dopants having different structures or in combination of phosphorescent dopant and fluorescent dopant.
Here, as the luminescent dopant, conventionally known compounds described in WO 2013/061850 can be suitably used, but the present invention is not limited thereto.
[ホスト化合物]
本発明に用いることができるホスト化合物(発光ホスト、発光ホスト化合物ともいう。)は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。 [Host compound]
The host compound (also referred to as a light-emitting host or a light-emitting host compound) that can be used in the present invention has a mass ratio of 20% or more in the layer contained in the light-emitting layer and a room temperature ( (25 ° C.) is defined as a compound having a phosphorescence quantum yield of phosphorescence at less than 0.1. Preferably, the phosphorescence quantum yield is less than 0.01. Further, among the compounds contained in the light emitting layer, the mass ratio in the layer is preferably 20% or more.
本発明に用いることができるホスト化合物(発光ホスト、発光ホスト化合物ともいう。)は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。 [Host compound]
The host compound (also referred to as a light-emitting host or a light-emitting host compound) that can be used in the present invention has a mass ratio of 20% or more in the layer contained in the light-emitting layer and a room temperature ( (25 ° C.) is defined as a compound having a phosphorescence quantum yield of phosphorescence at less than 0.1. Preferably, the phosphorescence quantum yield is less than 0.01. Further, among the compounds contained in the light emitting layer, the mass ratio in the layer is preferably 20% or more.
本発明に用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、又は、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。
ホ ス ト The host compound that can be used in the present invention is not particularly limited, and a compound that is conventionally used in an organic EL device can be used. Typically, those having a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound, or a carboline derivative or a diazacarbazole derivative (here Wherein the diazacarbazole derivative is one in which at least one carbon atom of a hydrocarbon ring constituting a carboline ring of the carboline derivative is substituted with a nitrogen atom.
本発明に用いることができる公知のホスト化合物としては正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
また、本発明においては、従来公知のホスト化合物を単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、従来公知の化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the known host compound that can be used in the present invention, a compound that has a hole transporting ability and an electron transporting ability, prevents a longer wavelength of light emission, and has a high Tg (glass transition temperature) is preferable.
In the present invention, a conventionally known host compound may be used alone or in combination of two or more. By using a plurality of host compounds, charge transfer can be adjusted, and the efficiency of the organic EL device can be increased. In addition, by using a plurality of conventionally known compounds, it is possible to mix different luminescence, and thus, it is possible to obtain an arbitrary luminescence color.
また、本発明においては、従来公知のホスト化合物を単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、従来公知の化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 As the known host compound that can be used in the present invention, a compound that has a hole transporting ability and an electron transporting ability, prevents a longer wavelength of light emission, and has a high Tg (glass transition temperature) is preferable.
In the present invention, a conventionally known host compound may be used alone or in combination of two or more. By using a plurality of host compounds, charge transfer can be adjusted, and the efficiency of the organic EL device can be increased. In addition, by using a plurality of conventionally known compounds, it is possible to mix different luminescence, and thus, it is possible to obtain an arbitrary luminescence color.
また、本発明に用いられるホスト化合物としては、低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性ホスト化合物)でもよい。また、本発明に用いられるホスト化合物としては、このような化合物を1種又は複数種用いても良い。
Further, the host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound having a polymerizable group such as a vinyl group or an epoxy group (polymerizable host compound). Good. Further, as the host compound used in the present invention, one or more of such compounds may be used.
公知のホスト化合物の具体例としては、以下の文献に記載の化合物が挙げられる。
特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等である。 Specific examples of the known host compound include the compounds described in the following documents.
JP-A-2001-257076, JP-A-2002-308855, JP-A-2001-313179, JP-A-2002-319493, JP-A-2001-357977, JP-A-2002-334786, JP-A-2002-8860, JP-A-2002-334787, JP-A-2002-15871, JP-A-2002-334788, JP-A-2002-43056, JP-A-2002-334789, JP-A-2002-75645, JP-A-2002-338579, and JP-A-2002-338579. JP-A-2002-105445, JP-A-2002-343568, JP-A-2002-141173, JP-A-2002-352957, JP-A-2002-203683, JP-A-2002-363227, JP-A-2002-231453, and JP-A-2002-231453. JP-A-2003-3165, JP-A-2002-234888, JP-A-2003-27048, JP-A-2002-255934, JP-A-2002-260861, JP-A-2002-280183, JP-A-2002-299060, and 2002 JP-A-302516, JP-A-2002-305083, JP-A-2002-305084, and JP-A-2002-308837.
特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等である。 Specific examples of the known host compound include the compounds described in the following documents.
JP-A-2001-257076, JP-A-2002-308855, JP-A-2001-313179, JP-A-2002-319493, JP-A-2001-357977, JP-A-2002-334786, JP-A-2002-8860, JP-A-2002-334787, JP-A-2002-15871, JP-A-2002-334788, JP-A-2002-43056, JP-A-2002-334789, JP-A-2002-75645, JP-A-2002-338579, and JP-A-2002-338579. JP-A-2002-105445, JP-A-2002-343568, JP-A-2002-141173, JP-A-2002-352957, JP-A-2002-203683, JP-A-2002-363227, JP-A-2002-231453, and JP-A-2002-231453. JP-A-2003-3165, JP-A-2002-234888, JP-A-2003-27048, JP-A-2002-255934, JP-A-2002-260861, JP-A-2002-280183, JP-A-2002-299060, and 2002 JP-A-302516, JP-A-2002-305083, JP-A-2002-305084, and JP-A-2002-308837.
《陰極》
陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する。)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものも用いられる。このような電極物質の具体例としては、アルミニウム、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
陰極は、特に、銀を主成分として構成されていることが好ましい。銀を主成分とする合金は、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。
なお、本発明における「主成分」とは、膜又は層中の50質量%以上含有されていることを表し、好ましくは80質量%以上、更に好ましくは90質量%以上含有されていることを表す。 "cathode"
As the cathode, a metal having a low work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material. Specific examples of such electrode materials include aluminum, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among them, a mixture of an electron-injecting metal and a second metal that is a stable metal having a large work function value, such as a magnesium / silver mixture, from the viewpoint of durability against electron injection and oxidation. Preferred are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
The cathode is particularly preferably composed mainly of silver. Examples of the alloy containing silver as a main component include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn), and the like.
The “main component” in the present invention means that the content is 50% by mass or more in the film or layer, preferably 80% by mass or more, more preferably 90% by mass or more. .
陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する。)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものも用いられる。このような電極物質の具体例としては、アルミニウム、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al2O3)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
陰極は、特に、銀を主成分として構成されていることが好ましい。銀を主成分とする合金は、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。
なお、本発明における「主成分」とは、膜又は層中の50質量%以上含有されていることを表し、好ましくは80質量%以上、更に好ましくは90質量%以上含有されていることを表す。 "cathode"
As the cathode, a metal having a low work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof are used as an electrode material. Specific examples of such electrode materials include aluminum, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among them, a mixture of an electron-injecting metal and a second metal that is a stable metal having a large work function value, such as a magnesium / silver mixture, from the viewpoint of durability against electron injection and oxidation. Preferred are a magnesium / aluminum mixture, a magnesium / indium mixture, an aluminum / aluminum oxide (Al 2 O 3 ) mixture, a lithium / aluminum mixture, aluminum and the like.
The cathode is particularly preferably composed mainly of silver. Examples of the alloy containing silver as a main component include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn), and the like.
The “main component” in the present invention means that the content is 50% by mass or more in the film or layer, preferably 80% by mass or more, more preferably 90% by mass or more. .
銀を主成分とする合金を用いる陰極は、必要に応じて複数の層に分けて積層された構成であってもよい。
陰極の膜厚は、通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。銀を主成分とする合金を用いる場合は、膜厚が、15nm以下であることが好ましく、12nm以下であることがより好ましい。また、銀を主成分とする合金を用いる場合は、膜厚が、4nm以上であることが好ましい。すなわち、銀を主成分とする合金を用いる場合は、膜厚が、4~12nmの範囲内であることがより好ましい。膜厚が当該範囲内であることにより、膜が吸収又は反射する光の成分をより低減することができ、光透過率をより維持することができ、かつ層の導電性もより確保できる。 The cathode using an alloy containing silver as a main component may have a configuration in which the cathode is divided into a plurality of layers and stacked as necessary.
The thickness of the cathode is selected in the range of usually 10 nm to 5 μm, preferably 50 to 200 nm. When an alloy containing silver as a main component is used, the film thickness is preferably 15 nm or less, more preferably 12 nm or less. When an alloy containing silver as a main component is used, the thickness is preferably 4 nm or more. That is, when an alloy containing silver as a main component is used, the film thickness is more preferably in the range of 4 to 12 nm. When the film thickness is within the range, the component of light absorbed or reflected by the film can be further reduced, the light transmittance can be further maintained, and the conductivity of the layer can be further ensured.
陰極の膜厚は、通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。銀を主成分とする合金を用いる場合は、膜厚が、15nm以下であることが好ましく、12nm以下であることがより好ましい。また、銀を主成分とする合金を用いる場合は、膜厚が、4nm以上であることが好ましい。すなわち、銀を主成分とする合金を用いる場合は、膜厚が、4~12nmの範囲内であることがより好ましい。膜厚が当該範囲内であることにより、膜が吸収又は反射する光の成分をより低減することができ、光透過率をより維持することができ、かつ層の導電性もより確保できる。 The cathode using an alloy containing silver as a main component may have a configuration in which the cathode is divided into a plurality of layers and stacked as necessary.
The thickness of the cathode is selected in the range of usually 10 nm to 5 μm, preferably 50 to 200 nm. When an alloy containing silver as a main component is used, the film thickness is preferably 15 nm or less, more preferably 12 nm or less. When an alloy containing silver as a main component is used, the thickness is preferably 4 nm or more. That is, when an alloy containing silver as a main component is used, the film thickness is more preferably in the range of 4 to 12 nm. When the film thickness is within the range, the component of light absorbed or reflected by the film can be further reduced, the light transmittance can be further maintained, and the conductivity of the layer can be further ensured.
前述のとおり、陰極が銀を主成分とする場合、陰極は、前記一般式(1)で表される構造を有する化合物を含有する有機機能層、すなわち前記薄膜に隣接することが好ましい。
前記薄膜は、陰極に隣接していることが好ましく、前記薄膜上に陰極を形成する場合であっても、陰極上に前記薄膜を形成してもよい。更には、前記薄膜上に陰極を形成し、更に当該陰極上に前記薄膜を形成し、陰極を2層の前記薄膜で挟持する構成であってもよい。 As described above, when the cathode mainly contains silver, the cathode is preferably adjacent to the organic functional layer containing the compound having the structure represented by the general formula (1), that is, the thin film.
The thin film is preferably adjacent to the cathode. Even when the cathode is formed on the thin film, the thin film may be formed on the cathode. Further, the cathode may be formed on the thin film, the thin film may be further formed on the cathode, and the cathode may be sandwiched between the two thin films.
前記薄膜は、陰極に隣接していることが好ましく、前記薄膜上に陰極を形成する場合であっても、陰極上に前記薄膜を形成してもよい。更には、前記薄膜上に陰極を形成し、更に当該陰極上に前記薄膜を形成し、陰極を2層の前記薄膜で挟持する構成であってもよい。 As described above, when the cathode mainly contains silver, the cathode is preferably adjacent to the organic functional layer containing the compound having the structure represented by the general formula (1), that is, the thin film.
The thin film is preferably adjacent to the cathode. Even when the cathode is formed on the thin film, the thin film may be formed on the cathode. Further, the cathode may be formed on the thin film, the thin film may be further formed on the cathode, and the cathode may be sandwiched between the two thin films.
前記薄膜の上部に、銀を主成分とする陰極を成膜する際、陰極を構成する銀原子が前記薄膜に含有されている前記一般式(1)で表される構造を有する化合物と相互作用する。これにより、前記薄膜表面上での銀原子の拡散距離が減少し、特異箇所での銀の凝集(マイグレーション)を抑制することができる。
すなわち、銀原子は、まず銀原子と親和性のある原子を有する前記薄膜表面上で二次元的な核を形成し、それを中心に二次元の単結晶層を形成するという層状成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。 When a cathode mainly composed of silver is formed on the thin film, silver atoms constituting the cathode interact with a compound having a structure represented by the general formula (1) contained in the thin film. I do. As a result, the diffusion distance of silver atoms on the surface of the thin film is reduced, and aggregation (migration) of silver at a specific portion can be suppressed.
That is, a silver atom first forms a two-dimensional nucleus on the surface of the thin film having an atom having an affinity for the silver atom, and forms a two-dimensional single crystal layer around the nucleus. -Van der Merwe (FM type) is formed.
すなわち、銀原子は、まず銀原子と親和性のある原子を有する前記薄膜表面上で二次元的な核を形成し、それを中心に二次元の単結晶層を形成するという層状成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。 When a cathode mainly composed of silver is formed on the thin film, silver atoms constituting the cathode interact with a compound having a structure represented by the general formula (1) contained in the thin film. I do. As a result, the diffusion distance of silver atoms on the surface of the thin film is reduced, and aggregation (migration) of silver at a specific portion can be suppressed.
That is, a silver atom first forms a two-dimensional nucleus on the surface of the thin film having an atom having an affinity for the silver atom, and forms a two-dimensional single crystal layer around the nucleus. -Van der Merwe (FM type) is formed.
なお、一般的には、前記薄膜表面において付着した銀原子が表面を拡散しながら結合して3次元的な核を形成し、3次元的な島状に成長するという島状成長型(Volumer-Weber:VW型)での膜成長により、島状に成膜しやすいと考えられる。
しかし、本発明においては、前記薄膜に含有されている前記一般式(1)で表される構造を有する化合物により、島状成長が抑制され、層状成長が促進されると推察される。
したがって、薄い膜厚でありながらも均一な膜厚の陰極が得られるようになる。その結果、その薄い膜厚により光透過性を保ちつつも、導電性が確保された透明電極とすることができる。 Generally, silver atoms attached on the surface of the thin film are bonded while diffusing on the surface to form a three-dimensional nucleus, and grow in a three-dimensional island shape (Volume-type). It is considered that film growth in a Weber (VW type) facilitates film formation in an island shape.
However, in the present invention, it is assumed that the compound having the structure represented by the general formula (1) contained in the thin film suppresses island growth and promotes layer growth.
Therefore, a cathode having a small thickness but a uniform thickness can be obtained. As a result, it is possible to obtain a transparent electrode that has sufficient conductivity while maintaining light transmittance due to the thin film thickness.
しかし、本発明においては、前記薄膜に含有されている前記一般式(1)で表される構造を有する化合物により、島状成長が抑制され、層状成長が促進されると推察される。
したがって、薄い膜厚でありながらも均一な膜厚の陰極が得られるようになる。その結果、その薄い膜厚により光透過性を保ちつつも、導電性が確保された透明電極とすることができる。 Generally, silver atoms attached on the surface of the thin film are bonded while diffusing on the surface to form a three-dimensional nucleus, and grow in a three-dimensional island shape (Volume-type). It is considered that film growth in a Weber (VW type) facilitates film formation in an island shape.
However, in the present invention, it is assumed that the compound having the structure represented by the general formula (1) contained in the thin film suppresses island growth and promotes layer growth.
Therefore, a cathode having a small thickness but a uniform thickness can be obtained. As a result, it is possible to obtain a transparent electrode that has sufficient conductivity while maintaining light transmittance due to the thin film thickness.
さらに、前記説明したように、特異箇所での銀の凝集を抑制することにより、陰極と前記薄膜との界面において、銀原子の粒界が増えることを抑制できるため、駆動電圧の低下や、経時的な駆動電圧の上昇を抑制することができる。
Further, as described above, by suppressing the aggregation of silver at a specific portion, it is possible to suppress an increase in grain boundaries of silver atoms at the interface between the cathode and the thin film. Drive voltage can be suppressed from increasing.
また、陰極の上部に前記薄膜を成膜した場合、陰極を構成する銀原子が前記薄膜に含有されている銀原子と親和性のある原子と相互作用し、運動性が抑制されるものと考えられる。これによって、陰極の表面平滑性が良化することで乱反射を抑制することができ、光透過率を向上することが可能である。
このような相互作用によって、熱や温度といった物理刺激に対する陰極の膜質変化が抑制され、耐久性を向上させることができたものと推測している。 Further, when the thin film is formed on the cathode, it is considered that silver atoms constituting the cathode interact with atoms having an affinity for silver atoms contained in the thin film, and the mobility is suppressed. Can be Thereby, the surface smoothness of the cathode is improved, so that irregular reflection can be suppressed, and the light transmittance can be improved.
It is presumed that such an interaction suppresses a change in the film quality of the cathode due to a physical stimulus such as heat or temperature, thereby improving the durability.
このような相互作用によって、熱や温度といった物理刺激に対する陰極の膜質変化が抑制され、耐久性を向上させることができたものと推測している。 Further, when the thin film is formed on the cathode, it is considered that silver atoms constituting the cathode interact with atoms having an affinity for silver atoms contained in the thin film, and the mobility is suppressed. Can be Thereby, the surface smoothness of the cathode is improved, so that irregular reflection can be suppressed, and the light transmittance can be improved.
It is presumed that such an interaction suppresses a change in the film quality of the cathode due to a physical stimulus such as heat or temperature, thereby improving the durability.
陰極は、銀を主成分とする合金の他、一般的な電極物質を蒸着やスパッタリング等の方法で薄膜を形成させることにより、作製することができる。また、駆動電圧をより低くし、発光効率、素子寿命等をより向上させる観点から、陰極としてのシート抵抗値は数百Ω/sq.(Ω/□)以下が好ましく、50Ω/sq.以下がより好ましく、特に25Ω/sq.以下であることが好ましい。下限については特に規定されるものではないが、例えば、1Ω/sq.以上とすることができる。
なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。陰極の光透過率は、30%以上であることが好ましく、50%以上であることがより好ましい。更に好ましくは70%以上である。上限については特に規定されるものではないが、例えば、95%以下とすることができる。
また、陰極に上記金属を1~20nmの膜厚で作製した後に、後述する陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができる。これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 The cathode can be manufactured by forming a thin film of a general electrode material other than an alloy containing silver as a main component by a method such as evaporation or sputtering. Further, from the viewpoint of lowering the driving voltage and further improving the luminous efficiency, the element life and the like, the sheet resistance value of the cathode is several hundred Ω / sq. (Ω / □) or less, preferably 50 Ω / sq. The following is more preferable, and especially 25 Ω / sq. The following is preferred. Although the lower limit is not particularly specified, for example, 1 Ω / sq. The above can be considered.
In order to transmit the emitted light, it is convenient if either the anode or the cathode of the organic EL element is transparent or translucent to improve the light emission luminance. The light transmittance of the cathode is preferably 30% or more, and more preferably 50% or more. More preferably, it is 70% or more. The upper limit is not particularly defined, but may be, for example, 95% or less.
In addition, a transparent or translucent cathode can be manufactured by forming the above metal on the cathode in a thickness of 1 to 20 nm and then manufacturing a conductive transparent material mentioned in the description of the anode described later thereon. . By applying this, an element in which both the anode and the cathode have transparency can be manufactured.
なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。陰極の光透過率は、30%以上であることが好ましく、50%以上であることがより好ましい。更に好ましくは70%以上である。上限については特に規定されるものではないが、例えば、95%以下とすることができる。
また、陰極に上記金属を1~20nmの膜厚で作製した後に、後述する陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができる。これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 The cathode can be manufactured by forming a thin film of a general electrode material other than an alloy containing silver as a main component by a method such as evaporation or sputtering. Further, from the viewpoint of lowering the driving voltage and further improving the luminous efficiency, the element life and the like, the sheet resistance value of the cathode is several hundred Ω / sq. (Ω / □) or less, preferably 50 Ω / sq. The following is more preferable, and especially 25 Ω / sq. The following is preferred. Although the lower limit is not particularly specified, for example, 1 Ω / sq. The above can be considered.
In order to transmit the emitted light, it is convenient if either the anode or the cathode of the organic EL element is transparent or translucent to improve the light emission luminance. The light transmittance of the cathode is preferably 30% or more, and more preferably 50% or more. More preferably, it is 70% or more. The upper limit is not particularly defined, but may be, for example, 95% or less.
In addition, a transparent or translucent cathode can be manufactured by forming the above metal on the cathode in a thickness of 1 to 20 nm and then manufacturing a conductive transparent material mentioned in the description of the anode described later thereon. . By applying this, an element in which both the anode and the cathode have transparency can be manufactured.
《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料からなり、前述のとおり、前記一般式(1)で表される構造を有する化合物を含有することも好ましい。すなわち、電子輸送層は前記薄膜であることも好ましい。広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層若しくは複数層を設けることができる。更に、後述する電子注入層に含まれる材料も含有する電子注入輸送層を設けてもよい。
電子輸送層は陰極より注入された電子を発光層に伝達する機能を有していればよく、電子輸送層の構成材料としては、従来公知の化合物の中から任意のものを選択し併用することも可能である。 《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and preferably contains a compound having a structure represented by the general formula (1) as described above. That is, the electron transport layer is preferably the thin film. In a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided with a single layer or a plurality of layers. Further, an electron injection / transport layer that also contains a material included in the electron injection layer described below may be provided.
The electron transporting layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer. As a constituent material of the electron transporting layer, any one of conventionally known compounds may be selected and used in combination. Is also possible.
電子輸送層とは電子を輸送する機能を有する材料からなり、前述のとおり、前記一般式(1)で表される構造を有する化合物を含有することも好ましい。すなわち、電子輸送層は前記薄膜であることも好ましい。広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層若しくは複数層を設けることができる。更に、後述する電子注入層に含まれる材料も含有する電子注入輸送層を設けてもよい。
電子輸送層は陰極より注入された電子を発光層に伝達する機能を有していればよく、電子輸送層の構成材料としては、従来公知の化合物の中から任意のものを選択し併用することも可能である。 《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and preferably contains a compound having a structure represented by the general formula (1) as described above. That is, the electron transport layer is preferably the thin film. In a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided with a single layer or a plurality of layers. Further, an electron injection / transport layer that also contains a material included in the electron injection layer described below may be provided.
The electron transporting layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer. As a constituent material of the electron transporting layer, any one of conventionally known compounds may be selected and used in combination. Is also possible.
電子輸送層に用いられる従来公知の材料(以下、電子輸送材料という。)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の多環芳香族炭化水素、複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、カルボリン誘導体、又は、該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体、ヘキサアザトリフェニレン誘導体等が挙げられる。
更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。
これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Examples of conventionally known materials used for the electron transport layer (hereinafter, referred to as electron transport materials) include polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and naphthalene perylene; Heterocyclic tetracarboxylic anhydride, carbodiimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxadiazole derivative, carboline derivative, or carbon atom of a hydrocarbon ring constituting a carboline ring of the carboline derivative Derivatives having a ring structure in which at least one is substituted by a nitrogen atom, hexaazatriphenylene derivatives, and the like.
Further, in the oxadiazole derivative, a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transporting material.
Polymer materials in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain, can also be used.
更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。
これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Examples of conventionally known materials used for the electron transport layer (hereinafter, referred to as electron transport materials) include polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, and naphthalene perylene; Heterocyclic tetracarboxylic anhydride, carbodiimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxadiazole derivative, carboline derivative, or carbon atom of a hydrocarbon ring constituting a carboline ring of the carboline derivative Derivatives having a ring structure in which at least one is substituted by a nitrogen atom, hexaazatriphenylene derivatives, and the like.
Further, in the oxadiazole derivative, a thiadiazole derivative in which an oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as the electron transporting material.
Polymer materials in which these materials are introduced into a polymer chain, or in which these materials are used as a polymer main chain, can also be used.
また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)3、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も電子輸送材料として用いることができる。
その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として用いることができる。
また、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 Also, metal complexes of 8-quinolinol derivatives, for example, tris (8-quinolinol) aluminum (Alq) 3 , tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like; , Cu, Ca, Sn, Ga or Pb can be used as the electron transport material.
In addition, metal-free or metal phthalocyanine, or those whose terminals are substituted with an alkyl group, a sulfonic acid group, or the like, can also be used as the electron transporting material.
Further, an inorganic semiconductor such as n-type Si or n-type SiC can also be used as the electron transporting material.
その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として用いることができる。
また、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 Also, metal complexes of 8-quinolinol derivatives, for example, tris (8-quinolinol) aluminum (Alq) 3 , tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like; , Cu, Ca, Sn, Ga or Pb can be used as the electron transport material.
In addition, metal-free or metal phthalocyanine, or those whose terminals are substituted with an alkyl group, a sulfonic acid group, or the like, can also be used as the electron transporting material.
Further, an inorganic semiconductor such as n-type Si or n-type SiC can also be used as the electron transporting material.
電子輸送層は電子輸送材料を、例えば、真空蒸着法、湿式法等により、薄膜化することで形成することが好ましい。湿式法は、ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法))等を挙げることができる。
The electron transport layer is preferably formed by thinning an electron transport material by, for example, a vacuum evaporation method, a wet method, or the like. The wet method is also called a wet process. For example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, an LB method (Langmuir Blodgett) (Langmuir @ Blodgett method)).
電子輸送層の層厚については特に制限はないが、通常は5~5000nm程度、好ましくは5~200nmである。この電子輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。
また、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントをドープして用いてもよい。 The thickness of the electron transport layer is not particularly limited, but is usually about 5 to 5000 nm, preferably 5 to 200 nm. The electron transport layer may have a single-layer structure composed of one or more of the above materials.
Further, an n-type dopant such as a metal compound such as a metal complex and a metal halide may be doped.
また、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントをドープして用いてもよい。 The thickness of the electron transport layer is not particularly limited, but is usually about 5 to 5000 nm, preferably 5 to 200 nm. The electron transport layer may have a single-layer structure composed of one or more of the above materials.
Further, an n-type dopant such as a metal compound such as a metal complex and a metal halide may be doped.
本発明の有機EL素子の電子輸送層の形成に好ましく用いられる従来公知の電子輸送材料の一例として、国際公開第2013/061850号に記載の化合物を好適に用いることができるが、本発明はこれらに限定されない。
As an example of a conventionally known electron transporting material preferably used for forming an electron transporting layer of the organic EL device of the present invention, compounds described in WO 2013/061850 can be suitably used. It is not limited to.
《注入層:電子注入層(陰極バッファー層)、正孔注入層》
注入層は必要に応じて設け、電子注入層と正孔注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機機能層間に設けられる層のことである。注入層は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 << Injection layer: electron injection layer (cathode buffer layer), hole injection layer >>
The injection layer is provided as needed, and has an electron injection layer and a hole injection layer, and may be present between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. .
The injection layer is a layer provided between the electrode and the organic functional layer for lowering the driving voltage and improving the light emission luminance. The injection layer is described in detail in Chapter 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL Device and Its Forefront of Industrialization (published by NTT Corporation on November 30, 1998)”. And a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
注入層は必要に応じて設け、電子注入層と正孔注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
注入層とは、駆動電圧低下や発光輝度向上のために電極と有機機能層間に設けられる層のことである。注入層は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 << Injection layer: electron injection layer (cathode buffer layer), hole injection layer >>
The injection layer is provided as needed, and has an electron injection layer and a hole injection layer, and may be present between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. .
The injection layer is a layer provided between the electrode and the organic functional layer for lowering the driving voltage and improving the light emission luminance. The injection layer is described in detail in Chapter 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL Device and Its Forefront of Industrialization (published by NTT Corporation on November 30, 1998)”. And a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されている。陽極バッファー層としては、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体バッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。
The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, and JP-A-8-288069. Examples of the anode buffer layer include, as specific examples, a phthalocyanine buffer layer represented by copper phthalocyanine, a hexaazatriphenylene derivative buffer layer described in JP-T-2003-519432, JP-A-2006-135145, and the like; Oxide buffer layers such as vanadium oxide, amorphous carbon buffer layers, polymer buffer layers using conductive polymers such as polyaniline (emeraldine) and polythiophene, and tris (2-phenylpyridine) iridium complexes. Orthometalated complex layer.
陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されている。陰極バッファー層としては、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、リチウム、フッ化リチウム、フッ化ナトリウム、フッ化カリウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウム、フッ化セシウムに代表されるアルカリ土類金属化合物バッファー層、イッテルビウム、スカンジウムに代表される希土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。
The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, and JP-A-10-74586. Specific examples of the cathode buffer layer include a metal buffer layer represented by strontium and aluminum, an alkali metal compound buffer layer represented by lithium, lithium fluoride, sodium fluoride, and potassium fluoride; magnesium fluoride; Examples include an alkaline earth metal compound buffer layer represented by cesium oxide, a rare earth metal compound buffer layer represented by ytterbium and scandium, and an oxide buffer layer represented by aluminum oxide. The buffer layer (injection layer) is desirably an extremely thin film, and the thickness is preferably in the range of 0.1 nm to 5 μm, depending on the material.
また、前記説明したように、前記有機機能層は、前記一般式(1)で表される構造を有する化合物を含有することが好ましい。
As described above, the organic functional layer preferably contains a compound having a structure represented by the general formula (1).
例えば、電子輸送層と陰極が隣接し、電子注入層が設けられていない場合、電子輸送層に前記一般式(1)で表される構造を有する化合物に加えて、電子注入材料を含有することも好ましい(すなわち、電子注入輸送層が設けられている)。このような場合であり、かつ、陰極の主成分として銀が用いられる場合、前記説明したように、特異箇所での銀の凝集を抑制することで、駆動電圧の低下や経時的な駆動電圧上昇の抑制が可能である。
For example, when the electron transport layer and the cathode are adjacent to each other and the electron injection layer is not provided, the electron transport layer contains an electron injection material in addition to the compound having the structure represented by the general formula (1). Is also preferable (that is, an electron injection transport layer is provided). In such a case, and when silver is used as a main component of the cathode, as described above, by suppressing the aggregation of silver at a specific portion, the drive voltage decreases and the drive voltage increases with time. Can be suppressed.
例えば、電子輸送層、電子注入層、陰極がこの順に積層される場合、電子輸送層に前記一般式(1)で表される構造を有する化合物を含有し(電子輸送層が前記薄膜に該当する)、電子注入層に電子注入材料を含有することも好ましい。この場合、前記一般式(1)で表される構造を有する化合物が、電子注入材料として使用されるアルカリ金属、アルカリ土類金属、希土類等と相互作用し、電子注入材料の発光層への拡散を抑制すると考えられるため、駆動電圧の低下と経時的な駆動電圧上昇を抑制することができると考えられる。
For example, when an electron transport layer, an electron injection layer, and a cathode are laminated in this order, the electron transport layer contains a compound having a structure represented by the general formula (1) (the electron transport layer corresponds to the thin film). ), It is also preferable that the electron injection layer contains an electron injection material. In this case, the compound having the structure represented by the general formula (1) interacts with an alkali metal, an alkaline earth metal, a rare earth, or the like used as an electron injection material, and diffuses the electron injection material into the light emitting layer. Therefore, it is considered that a decrease in the drive voltage and a rise in the drive voltage over time can be suppressed.
《阻止層:正孔阻止層、電子阻止層》
阻止層は、上記のように有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。 << Blocking layer: hole blocking layer, electron blocking layer >>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A-11-204258 and JP-A-11-204359, and page 237 of "Organic EL Devices and Their Forefront of Industrialization (published by NTT Corporation on November 30, 1998)". There is a hole blocking (hole block) layer.
阻止層は、上記のように有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。 << Blocking layer: hole blocking layer, electron blocking layer >>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A-11-204258 and JP-A-11-204359, and page 237 of "Organic EL Devices and Their Forefront of Industrialization (published by NTT Corporation on November 30, 1998)". There is a hole blocking (hole block) layer.
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなる。正孔阻止層は、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
また、前述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
正孔阻止層には、前述のホスト化合物として挙げた、カルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン環を構成する炭素原子のいずれか一つが窒素原子で置き換わったものをいう。)を含有することが好ましい。 The hole blocking layer has a function of an electron transporting layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and having an extremely small ability to transport holes. The hole blocking layer can improve the probability of recombination of electrons and holes by blocking holes while transporting electrons.
In addition, the above-described structure of the electron transport layer can be used as a hole blocking layer, if necessary.
The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
In the hole blocking layer, a carbazole derivative, a carboline derivative, or a diazacarbazole derivative (here, a diazacarbazole derivative is one in which one of carbon atoms constituting a carboline ring is a nitrogen atom) Is preferable.).
また、前述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
正孔阻止層には、前述のホスト化合物として挙げた、カルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン環を構成する炭素原子のいずれか一つが窒素原子で置き換わったものをいう。)を含有することが好ましい。 The hole blocking layer has a function of an electron transporting layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and having an extremely small ability to transport holes. The hole blocking layer can improve the probability of recombination of electrons and holes by blocking holes while transporting electrons.
In addition, the above-described structure of the electron transport layer can be used as a hole blocking layer, if necessary.
The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
In the hole blocking layer, a carbazole derivative, a carboline derivative, or a diazacarbazole derivative (here, a diazacarbazole derivative is one in which one of carbon atoms constituting a carboline ring is a nitrogen atom) Is preferable.).
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなる。電子阻止層は、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の層厚としては、好ましくは3~100nmであり、更に好ましくは5~30nmである。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes and having an extremely small ability to transport electrons. The electron blocking layer can improve the recombination probability of electrons and holes by blocking electrons while transporting holes.
In addition, the configuration of the hole transport layer described below can be used as an electron blocking layer as needed. The thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, more preferably 5 to 30 nm.
また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の層厚としては、好ましくは3~100nmであり、更に好ましくは5~30nmである。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes and having an extremely small ability to transport electrons. The electron blocking layer can improve the recombination probability of electrons and holes by blocking electrons while transporting holes.
In addition, the configuration of the hole transport layer described below can be used as an electron blocking layer as needed. The thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, more preferably 5 to 30 nm.
《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes. In a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
The hole transporting material has any of hole injection or transport and electron barrier properties, and may be any of an organic substance and an inorganic substance. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples include a stilbene derivative, a silazane derivative, an aniline-based copolymer, a conductive polymer oligomer, particularly a thiophene oligomer.
Further, azatriphenylene derivatives described in JP-T-2003-519432, JP-A-2006-135145, and the like can also be used as the hole transport material.
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。 《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes. In a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
The hole transporting material has any of hole injection or transport and electron barrier properties, and may be any of an organic substance and an inorganic substance. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples include a stilbene derivative, a silazane derivative, an aniline-based copolymer, a conductive polymer oligomer, particularly a thiophene oligomer.
Further, azatriphenylene derivatives described in JP-T-2003-519432, JP-A-2006-135145, and the like can also be used as the hole transport material.
正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベン;N-フェニルカルバゾール、更には米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 As the hole transporting material, those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
Representative examples of the aromatic tertiary amine compound and styrylamine compound include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl; 1,1-bis (4-di-p-tolyl Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' - (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbene; N-phenylcarbazole, and two condensed aromatic rings described in US Pat. No. 5,061,569. In the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308688 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) in which triphenylamine units described in (3) are linked in a three-star burst type Is mentioned.
芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベン;N-フェニルカルバゾール、更には米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 As the hole transporting material, those described above can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
Representative examples of the aromatic tertiary amine compound and styrylamine compound include N, N, N ', N'-tetraphenyl-4,4'-diaminophenyl; N, N'-diphenyl-N, N'- Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl; 1,1-bis (4-di-p-tolyl Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' - (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbene; N-phenylcarbazole, and two condensed aromatic rings described in US Pat. No. 5,061,569. In the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308688 4,4 ', 4 "-tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA) in which triphenylamine units described in (3) are linked in a three-star burst type Is mentioned.
更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain, or a polymer material in which these materials are used as a polymer main chain, can also be used.
Further, inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material and the hole transport material.
また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain, or a polymer material in which these materials are used as a polymer main chain, can also be used.
Further, inorganic compounds such as p-type Si and p-type SiC can also be used as the hole injection material and the hole transport material.
また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。
、 Also, JP-A-11-251067, J.P. Huang @ et. al. A so-called p-type hole transport material as described in a well-known document (Applied Physics Letters 80 (2002), p. 139) can also be used. In the invention, it is preferable to use these materials since a light emitting element with higher efficiency can be obtained.
正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。
正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method. it can.
The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a one-layer structure composed of one or more of the above materials.
正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, and an LB method. it can.
The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. The hole transport layer may have a one-layer structure composed of one or more of the above materials.
また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 Alternatively, a hole transporting layer having a high p property and doped with an impurity may be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, and J.P. Appl. Phys. , 95, 5773 (2004).
In the present invention, it is preferable to use such a hole-transporting layer having a high p-property because a device with lower power consumption can be manufactured.
本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 Alternatively, a hole transporting layer having a high p property and doped with an impurity may be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, and J.P. Appl. Phys. , 95, 5773 (2004).
In the present invention, it is preferable to use such a hole-transporting layer having a high p-property because a device with lower power consumption can be manufactured.
《陽極》
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、ITO、SnO2、ZnO等の導電性透明材料が挙げられる。
また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよい。又はパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 "anode"
As the anode in the organic EL element, a metal, an alloy, an electrically conductive compound, or a mixture thereof having a large work function (4 eV or more) as an electrode material is preferably used. Specific examples of such an electrode material include metals such as Au and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO.
Alternatively, a material such as IDIXO (In 2 O 3 —ZnO) which can form an amorphous and transparent conductive film may be used. The anode may be formed by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering and forming a pattern of a desired shape by a photolithography method. Alternatively, when the pattern accuracy is not so required (about 100 μm or more), a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、ITO、SnO2、ZnO等の導電性透明材料が挙げられる。
また、IDIXO(In2O3-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよい。又はパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 "anode"
As the anode in the organic EL element, a metal, an alloy, an electrically conductive compound, or a mixture thereof having a large work function (4 eV or more) as an electrode material is preferably used. Specific examples of such an electrode material include metals such as Au and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO.
Alternatively, a material such as IDIXO (In 2 O 3 —ZnO) which can form an amorphous and transparent conductive film may be used. The anode may be formed by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering and forming a pattern of a desired shape by a photolithography method. Alternatively, when the pattern accuracy is not so required (about 100 μm or more), a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
又は、導電性有機化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等の湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、光透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗値は数百Ω/sq.以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。
Alternatively, when a substance that can be applied such as a conductive organic compound is used, a wet film forming method such as a printing method and a coating method can be used. When light is extracted from this anode, it is desirable that the light transmittance is greater than 10%, and the sheet resistance of the anode is several hundred Ω / sq. The following is preferred. Further, the film thickness depends on the material, but is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
《支持基板》
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。 《Support substrate》
The support substrate (hereinafter, also referred to as a base, a substrate, a base, a support, or the like) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, and the like, and is transparent. Or opaque. When light is extracted from the support substrate side, the support substrate is preferably transparent. Preferred examples of the transparent support substrate include glass, quartz, and a transparent resin film. A particularly preferred support substrate is a resin film that can provide flexibility to the organic EL element.
本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。 《Support substrate》
The support substrate (hereinafter, also referred to as a base, a substrate, a base, a support, or the like) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, and the like, and is transparent. Or opaque. When light is extracted from the support substrate side, the support substrate is preferably transparent. Preferred examples of the transparent support substrate include glass, quartz, and a transparent resin film. A particularly preferred support substrate is a resin film that can provide flexibility to the organic EL element.
樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等のフィルムを挙げることができる。
Examples of the resin film include polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, and cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyetherketone, polyimide , Polyether sulfone (PES), polyphenylene sulfide, polysulfones Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cycloolefin-based resins such as ARTON (trade name, manufactured by JSR) or Apel (trade name, manufactured by Mitsui Chemicals, Inc.), etc. Film.
樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよい。ハイブリッド被膜は、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が0.01g/m2・24h以下のガスバリアー性フィルムであることが好ましい。更には、ハイブリッド被膜は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m2・24h・atm以下、水蒸気透過度が、1×10-5g/m2・24h以下の高ガスバリアー性フィルムであることが好ましい。
An inorganic or organic coating or a hybrid coating of both may be formed on the surface of the resin film. Hybrid coating was measured by a method conforming to JIS K 7129-1992, the water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)%) following gas 0.01g / m 2 · 24h Preferably, it is a barrier film. Furthermore, the hybrid coating, oxygen permeability was measured by the method based on JIS K 7126-1987 is, 1 × 10 -3 mL / m 2 · 24h · atm or less, the water vapor permeability, 1 × 10 -5 it is preferable g / m 2 · 24h or less of a high gas barrier film.
ガスバリアー層を形成する材料としては、水分や酸素等の素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機機能層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
As a material for forming the gas barrier layer, any material may be used as long as it has a function of suppressing intrusion of a substance that causes deterioration of the element such as moisture and oxygen, and examples thereof include silicon oxide, silicon dioxide, and silicon nitride. . Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and a layer made of an organic material. The order of laminating the inorganic layer and the organic functional layer is not particularly limited, but it is preferable that both layers are alternately laminated plural times.
ガスバリアー層の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。しかし、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 There is no particular limitation on the method of forming the gas barrier layer, and examples thereof include a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and an atmospheric pressure plasma weight method. A legal method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used. However, a method based on an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferred.
Examples of the opaque support substrate include a metal plate such as aluminum and stainless steel, a film, an opaque resin substrate, and a ceramic substrate.
不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 There is no particular limitation on the method of forming the gas barrier layer, and examples thereof include a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and an atmospheric pressure plasma weight method. A legal method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used. However, a method based on an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferred.
Examples of the opaque support substrate include a metal plate such as aluminum and stainless steel, a film, an opaque resin substrate, and a ceramic substrate.
本発明の有機EL素子の発光の室温における外部取り出し収率は、1%以上であることが好ましく、5%以上であるとより好ましい。
ここで、外部取り出し量子収率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。 The external extraction yield at room temperature of the light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
Here, the external extraction quantum yield (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons flowing to the organic EL element × 100.
In addition, a hue improving filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color of the organic EL element into multiple colors using a phosphor may be used in combination. When a color conversion filter is used, λmax of light emission of the organic EL element is preferably 480 nm or less.
ここで、外部取り出し量子収率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。 The external extraction yield at room temperature of the light emission of the organic EL device of the present invention is preferably 1% or more, more preferably 5% or more.
Here, the external extraction quantum yield (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons flowing to the organic EL element × 100.
In addition, a hue improving filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color of the organic EL element into multiple colors using a phosphor may be used in combination. When a color conversion filter is used, λmax of light emission of the organic EL element is preferably 480 nm or less.
《有機EL素子の作製方法》
有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極からなる素子の作製方法について説明する。
まず、適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの膜厚になるように形成させ、陽極を作製する。
次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層等の有機化合物を含有する薄膜を形成させる。 << Method of manufacturing organic EL element >>
As an example of a method for producing an organic EL element, a method for producing an element comprising an anode / a hole injection layer / a hole transport layer / a light emitting layer / a hole blocking layer / an electron transport layer / a cathode buffer layer (electron injection layer) / a cathode Will be described.
First, a thin film made of a desired electrode material, for example, a material for an anode, is formed on an appropriate substrate so as to have a thickness of 1 μm or less, preferably 10 to 200 nm, to produce an anode.
Next, a thin film containing an organic compound, such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and a cathode buffer layer, which are element materials, is formed thereon.
有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極からなる素子の作製方法について説明する。
まず、適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの膜厚になるように形成させ、陽極を作製する。
次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層等の有機化合物を含有する薄膜を形成させる。 << Method of manufacturing organic EL element >>
As an example of a method for producing an organic EL element, a method for producing an element comprising an anode / a hole injection layer / a hole transport layer / a light emitting layer / a hole blocking layer / an electron transport layer / a cathode buffer layer (electron injection layer) / a cathode Will be described.
First, a thin film made of a desired electrode material, for example, a material for an anode, is formed on an appropriate substrate so as to have a thickness of 1 μm or less, preferably 10 to 200 nm, to produce an anode.
Next, a thin film containing an organic compound, such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and a cathode buffer layer, which are element materials, is formed thereon.
薄膜の形成方法としては、例えば、真空蒸着法、湿式法(ウェットプロセスともいう。)等により成膜して形成することができる。
湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法等がある。しかし、湿式法としては、精密な薄膜が形成可能で、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・to・ロール方式適性の高い方法が好ましい。また、層ごとに異なる成膜法を適用してもよい。 As a method for forming a thin film, for example, a thin film can be formed by a vacuum evaporation method, a wet method (also referred to as a wet process), or the like.
Examples of the wet method include a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, and an LB method. However, as the wet method, a method having high suitability for a roll-to-roll method such as a die coat method, a roll coat method, an ink jet method, a spray coat method or the like is preferable from the viewpoint of forming a precise thin film and high productivity. . Further, a different film formation method may be applied to each layer.
湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法等がある。しかし、湿式法としては、精密な薄膜が形成可能で、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・to・ロール方式適性の高い方法が好ましい。また、層ごとに異なる成膜法を適用してもよい。 As a method for forming a thin film, for example, a thin film can be formed by a vacuum evaporation method, a wet method (also referred to as a wet process), or the like.
Examples of the wet method include a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, and an LB method. However, as the wet method, a method having high suitability for a roll-to-roll method such as a die coat method, a roll coat method, an ink jet method, a spray coat method or the like is preferable from the viewpoint of forming a precise thin film and high productivity. . Further, a different film formation method may be applied to each layer.
本発明に用いられる発光ドーパント等の有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、ジメチルホルムアミド(DMF)、DMSO等の有機溶媒を用いることができる。
また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material such as the luminescent dopant used in the present invention include, for example, methyl ethyl ketone, ketones such as cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, Aromatic hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as dimethylformamide (DMF) and DMSO can be used.
In addition, as a dispersing method, dispersing can be performed by a dispersing method such as ultrasonic wave, high shear force dispersion and media dispersion.
また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material such as the luminescent dopant used in the present invention include, for example, methyl ethyl ketone, ketones such as cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, Aromatic hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as dimethylformamide (DMF) and DMSO can be used.
In addition, as a dispersing method, dispersing can be performed by a dispersing method such as ultrasonic wave, high shear force dispersion and media dispersion.
これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように形成させ、陰極を設けることにより所望の有機EL素子が得られる。
また、順序を逆にして、陰極、陰極バッファー層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
本発明の有機EL素子の作製は、1回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。 After these layers are formed, a thin film made of a material for a cathode is formed thereon to a thickness of 1 μm or less, preferably in a range of 50 to 200 nm, and a desired organic EL element can be obtained by providing a cathode. .
The order can be reversed, and the cathode, the cathode buffer layer, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be formed in this order.
It is preferable that the organic EL element of the present invention is manufactured from the hole injection layer to the cathode consistently by one evacuation, but it may be taken out in the middle and subjected to a different film forming method. At that time, it is preferable to perform the operation under a dry inert gas atmosphere.
また、順序を逆にして、陰極、陰極バッファー層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
本発明の有機EL素子の作製は、1回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。 After these layers are formed, a thin film made of a material for a cathode is formed thereon to a thickness of 1 μm or less, preferably in a range of 50 to 200 nm, and a desired organic EL element can be obtained by providing a cathode. .
The order can be reversed, and the cathode, the cathode buffer layer, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode can be formed in this order.
It is preferable that the organic EL element of the present invention is manufactured from the hole injection layer to the cathode consistently by one evacuation, but it may be taken out in the middle and subjected to a different film forming method. At that time, it is preferable to perform the operation under a dry inert gas atmosphere.
《封止》
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。 《Sealing》
Examples of the sealing means used in the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
The sealing member only needs to be disposed so as to cover the display area of the organic EL element, and may have a concave plate shape or a flat plate shape. The transparency and the electrical insulation are not particularly limited.
本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。 《Sealing》
Examples of the sealing means used in the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
The sealing member only needs to be disposed so as to cover the display area of the organic EL element, and may have a concave plate shape or a flat plate shape. The transparency and the electrical insulation are not particularly limited.
具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。
また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等から形成されたものを挙げることができる。
金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選
ばれる1種以上の金属又は合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
Examples of the polymer plate include those formed from polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone, and the like.
Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等から形成されたものを挙げることができる。
金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選
ばれる1種以上の金属又は合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
Examples of the polymer plate include those formed from polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone, and the like.
Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。
更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/m2・24h・atm以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/m2・24h以下のものであることが好ましい。
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 In the present invention, a polymer film or a metal film can be preferably used because the element can be thinned.
Further, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 mL / m 2 · 24 h · atm or less, and is measured by a method according to JIS K 7129-1992. is water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)%) is preferably one of the following 1 × 10 -3 g / m 2 · 24h.
To process the sealing member into a concave shape, sand blasting, chemical etching, or the like is used.
更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/m2・24h・atm以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/m2・24h以下のものであることが好ましい。
封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 In the present invention, a polymer film or a metal film can be preferably used because the element can be thinned.
Further, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 mL / m 2 · 24 h · atm or less, and is measured by a method according to JIS K 7129-1992. is water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)%) is preferably one of the following 1 × 10 -3 g / m 2 · 24h.
To process the sealing member into a concave shape, sand blasting, chemical etching, or the like is used.
接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
Specific examples of the adhesive include an acrylic acid-based oligomer, a photocurable and thermosetting adhesive having a reactive vinyl group of a methacrylic acid-based oligomer, and a moisture-curable adhesive such as 2-cyanoacrylate. be able to. Further, a heat and chemical curing type (two-liquid mixing) of an epoxy type or the like can be used. In addition, hot melt type polyamide, polyester, and polyolefin can be used. In addition, a cationic curing type ultraviolet curing epoxy resin adhesive can be used.
なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
Since the organic EL element may be deteriorated by the heat treatment, it is preferable that the organic EL element can be adhesively cured from room temperature to 80 ° C. Further, a desiccant may be dispersed in the adhesive. The application of the adhesive to the sealing portion may be performed by using a commercially available dispenser or by printing such as screen printing.
また、有機機能層を挟み支持基板と対向する側の電極の外側に当該電極と有機機能層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、当該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
更に、当該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 In addition, it is also preferable to form an encapsulation film by coating the electrode and the organic functional layer on the outside of the electrode facing the support substrate with the organic functional layer interposed therebetween, and forming an inorganic or organic material layer in contact with the support substrate. Can be. In this case, the material for forming the film may be any material having a function of suppressing intrusion of elements that cause deterioration of the element such as moisture or oxygen, and for example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and a layer made of an organic material. The method for forming these films is not particularly limited, and examples thereof include a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and an atmospheric pressure plasma. A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
更に、当該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 In addition, it is also preferable to form an encapsulation film by coating the electrode and the organic functional layer on the outside of the electrode facing the support substrate with the organic functional layer interposed therebetween, and forming an inorganic or organic material layer in contact with the support substrate. Can be. In this case, the material for forming the film may be any material having a function of suppressing intrusion of elements that cause deterioration of the element such as moisture or oxygen, and for example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and a layer made of an organic material. The method for forming these films is not particularly limited, and examples thereof include a vacuum deposition method, a sputtering method, a reactive sputtering method, a molecular beam epitaxy method, a cluster ion beam method, an ion plating method, a plasma polymerization method, and an atmospheric pressure plasma. A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコーンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicone oil may be injected in a gas phase or a liquid phase. preferable. It is also possible to use a vacuum. Further, a hygroscopic compound can be sealed inside.
Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate) Etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, perchloric acid) Barium, magnesium perchlorate, etc.), and sulfates, metal halides and perchloric acids are preferably anhydrous salts.
吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorocarbon or silicone oil may be injected in a gas phase or a liquid phase. preferable. It is also possible to use a vacuum. Further, a hygroscopic compound can be sealed inside.
Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide, etc.), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate) Etc.), metal halides (eg, calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide, etc.), perchloric acids (eg, perchloric acid) Barium, magnesium perchlorate, etc.), and sulfates, metal halides and perchloric acids are preferably anhydrous salts.
《保護膜、保護板》
有機機能層を挟み支持基板と対向する側の前記封止膜、又は前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、又は保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。 《Protective film, protective plate》
A protective film or a protective plate may be provided on the side facing the support substrate with the organic functional layer therebetween, outside the sealing film or the sealing film in order to increase the mechanical strength of the element. In particular, when the sealing is performed by the sealing film, the mechanical strength is not always high. Therefore, it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, a glass plate, a polymer plate / film, a metal plate / film, etc. similar to those used for the sealing can be used. It is preferable to use
有機機能層を挟み支持基板と対向する側の前記封止膜、又は前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、又は保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。 《Protective film, protective plate》
A protective film or a protective plate may be provided on the side facing the support substrate with the organic functional layer therebetween, outside the sealing film or the sealing film in order to increase the mechanical strength of the element. In particular, when the sealing is performed by the sealing film, the mechanical strength is not always high. Therefore, it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, a glass plate, a polymer plate / film, a metal plate / film, etc. similar to those used for the sealing can be used. It is preferable to use
《光取り出し》
有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15~20%程度の光しか取り出せないことが一般的にいわれている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないためである。また、透明電極又は発光層と透明基板との間で光が全反射を起こし、光が透明電極又は発光層を導波し、結果として光が素子側面方向に逃げるためである。 《Light extraction》
The organic EL element emits light inside a layer having a higher refractive index than air (having a refractive index of about 1.7 to 2.1), and can extract only about 15 to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (the interface between the transparent substrate and air) at an angle θ equal to or larger than the critical angle causes total reflection and cannot be extracted outside the element. Further, light is totally reflected between the transparent electrode or the light emitting layer and the transparent substrate, and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the element side direction.
有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15~20%程度の光しか取り出せないことが一般的にいわれている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないためである。また、透明電極又は発光層と透明基板との間で光が全反射を起こし、光が透明電極又は発光層を導波し、結果として光が素子側面方向に逃げるためである。 《Light extraction》
The organic EL element emits light inside a layer having a higher refractive index than air (having a refractive index of about 1.7 to 2.1), and can extract only about 15 to 20% of the light generated in the light emitting layer. It is generally said. This is because light incident on the interface (the interface between the transparent substrate and air) at an angle θ equal to or larger than the critical angle causes total reflection and cannot be extracted outside the element. Further, light is totally reflected between the transparent electrode or the light emitting layer and the transparent substrate, and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the element side direction.
この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(基板と外界間を含む。)に回折格子を形成する方法(特開平11-283751号公報)等がある。
As a method of improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and air (US Pat. No. 4,774,435), a method of condensing light on the substrate (Japanese Patent Application Laid-Open No. 63-31479), a method of forming a reflective surface on a side surface of an element or the like (Japanese Patent Application Laid-Open No. 220394/1990), A method in which a flat layer having an intermediate refractive index is introduced to form an anti-reflection film (Japanese Patent Laid-Open No. 62-172691), and a flat layer having a lower refractive index than the substrate is introduced between the substrate and the light-emitting body. Method (Japanese Patent Application Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside world) (Japanese Patent Application Laid-Open No. 11-283751), and the like. There is.
本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができる。しかし、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(基板と外界間を含む。)に回折格子を形成する方法を好適に用いることができる。
本発明はこれらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light-emitting body, or a diffraction grating between any of the substrate, the transparent electrode layer, and the light-emitting layer (including between the substrate and the outside). Can be preferably used.
In the present invention, by combining these means, it is possible to obtain a device having higher luminance and more excellent durability.
本発明はこれらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light-emitting body, or a diffraction grating between any of the substrate, the transparent electrode layer, and the light-emitting layer (including between the substrate and the outside). Can be preferably used.
In the present invention, by combining these means, it is possible to obtain a device having higher luminance and more excellent durability.
透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
また、低屈折率媒質の厚さは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。 If a medium with a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, light emitted from the transparent electrode has a higher efficiency of being taken out as the refractive index of the medium is lower. .
Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of a transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is more preferably 1.35 or less.
Also, the thickness of the low refractive index medium is desirably at least twice the wavelength in the medium. This is because the effect of the low-refractive-index layer is reduced when the thickness of the low-refractive-index medium becomes about the wavelength of light and the thickness of the electromagnetic wave oozing out by evanescent enters the substrate.
低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
また、低屈折率媒質の厚さは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。 If a medium with a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, light emitted from the transparent electrode has a higher efficiency of being taken out as the refractive index of the medium is lower. .
Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of a transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is more preferably 1.35 or less.
Also, the thickness of the low refractive index medium is desirably at least twice the wavelength in the medium. This is because the effect of the low-refractive-index layer is reduced when the thickness of the low-refractive-index medium becomes about the wavelength of light and the thickness of the electromagnetic wave oozing out by evanescent enters the substrate.
全反射を起こす界面若しくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が一次の回折や二次の回折といったいわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用したものである。この方法は、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
(4) The method of introducing a diffraction grating into an interface that causes total reflection or any of the media is characterized in that the effect of improving light extraction efficiency is high. This method utilizes the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction or second-order diffraction. According to this method, a diffraction grating is introduced into one of the layers or a medium (in a transparent substrate or a transparent electrode) for light that cannot be emitted due to total reflection between layers of light generated from the light emitting layer. By doing so, the light is diffracted and the light is taken out.
導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so a general one-dimensional diffraction grating that has a periodic refractive index distribution only in a certain direction diffracts only light traveling in a specific direction. And light extraction efficiency does not increase so much.
However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and the light extraction efficiency is increased.
しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so a general one-dimensional diffraction grating that has a periodic refractive index distribution only in a certain direction diffracts only light traveling in a specific direction. And light extraction efficiency does not increase so much.
However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and the light extraction efficiency is increased.
回折格子を導入する位置としては前述のとおり、いずれかの層間若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。
回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。 As described above, the position where the diffraction grating is introduced may be between any layers or in a medium (in a transparent substrate or a transparent electrode), but is preferably near the organic light emitting layer where light is generated.
At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
The arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, a honeycomb lattice, or the like.
このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。
回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。 As described above, the position where the diffraction grating is introduced may be between any layers or in a medium (in a transparent substrate or a transparent electrode), but is preferably near the organic light emitting layer where light is generated.
At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
The arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, a honeycomb lattice, or the like.
《集光シート》
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、又はいわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。 《Light collecting sheet》
The organic EL element of the present invention is processed on the light extraction side of the substrate, for example, to provide a microlens array-like structure, or in combination with a so-called condensing sheet, in a specific direction, for example, with respect to the element light emitting surface. By condensing light in the front direction, the luminance in a specific direction can be increased.
As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it is smaller than this, the effect of diffraction occurs and coloring occurs, and if it is too large, the thickness becomes undesirably thick.
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、又はいわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。 《Light collecting sheet》
The organic EL element of the present invention is processed on the light extraction side of the substrate, for example, to provide a microlens array-like structure, or in combination with a so-called condensing sheet, in a specific direction, for example, with respect to the element light emitting surface. By condensing light in the front direction, the luminance in a specific direction can be increased.
As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it is smaller than this, the effect of diffraction occurs and coloring occurs, and if it is too large, the thickness becomes undesirably thick.
集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。
プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。 As the condensing sheet, for example, a sheet practically used in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
As the shape of the prism sheet, for example, a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm may be formed on the base material, or a shape in which the vertex angle is rounded, and the pitch is randomly changed. The shape may be a bent shape or another shape.
Further, in order to control the light emission angle from the light emitting element, a light diffusing plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。 As the condensing sheet, for example, a sheet practically used in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
As the shape of the prism sheet, for example, a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm may be formed on the base material, or a shape in which the vertex angle is rounded, and the pitch is randomly changed. The shape may be a bent shape or another shape.
Further, in order to control the light emission angle from the light emitting element, a light diffusing plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
《用途》
本発明の有機EL素子は、表示装置、ディスプレイ、各種発光装置等に用いることができる。発光装置として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 《Applications》
The organic EL element of the present invention can be used for display devices, displays, various light emitting devices, and the like. Light emitting devices include, for example, lighting devices (home lighting, vehicle interior lighting), clocks and backlights for LCDs, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copiers, light sources for optical communication processors, and light sources. Examples include, but are not limited to, light sources for sensors. In particular, it can be effectively used for a backlight of a liquid crystal display device and a light source for illumination.
本発明の有機EL素子は、表示装置、ディスプレイ、各種発光装置等に用いることができる。発光装置として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。 《Applications》
The organic EL element of the present invention can be used for display devices, displays, various light emitting devices, and the like. Light emitting devices include, for example, lighting devices (home lighting, vehicle interior lighting), clocks and backlights for LCDs, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copiers, light sources for optical communication processors, and light sources. Examples include, but are not limited to, light sources for sensors. In particular, it can be effectively used for a backlight of a liquid crystal display device and a light source for illumination.
本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよい。素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
有機 In the organic EL device of the present invention, patterning may be performed by a metal mask, an inkjet printing method, or the like at the time of film formation, if necessary. When patterning, only the electrode may be patterned, or the electrode and the light emitting layer may be patterned. All layers of the element may be patterned, and a conventionally known method can be used for manufacturing the element.
本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図7.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/m2でのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。 The emission color of the organic EL device of the present invention or the compound of the present invention is shown in FIG. 7.16 onpage 108 of “New Edition of Color Science Handbook” (edited by The Japan Society for Color Science, edited by The University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta) is applied to the CIE chromaticity coordinates.
When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when measured at the 2 ° viewing angle front luminance by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/m2でのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。 The emission color of the organic EL device of the present invention or the compound of the present invention is shown in FIG. 7.16 on
When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when measured at the 2 ° viewing angle front luminance by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
《表示装置》
本発明の有機EL素子は、表示装置に用いることもできる。
本発明の表示装置は、本発明の有機EL素子を具備する。表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。 《Display device》
The organic EL element of the present invention can be used for a display device.
The display device of the present invention includes the organic EL element of the present invention. Although the display device may be single-color or multi-color, a multi-color display device will be described here.
In the case of a multicolor display device, a shadow mask is provided only when a light emitting layer is formed, and a film can be formed on one surface by an evaporation method, a casting method, a spin coating method, an inkjet method, a printing method, or the like.
When patterning is performed only on the light emitting layer, the method is not particularly limited, but is preferably an evaporation method, an inkjet method, a spin coating method, or a printing method.
本発明の有機EL素子は、表示装置に用いることもできる。
本発明の表示装置は、本発明の有機EL素子を具備する。表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。 《Display device》
The organic EL element of the present invention can be used for a display device.
The display device of the present invention includes the organic EL element of the present invention. Although the display device may be single-color or multi-color, a multi-color display device will be described here.
In the case of a multicolor display device, a shadow mask is provided only when a light emitting layer is formed, and a film can be formed on one surface by an evaporation method, a casting method, a spin coating method, an inkjet method, a printing method, or the like.
When patterning is performed only on the light emitting layer, the method is not particularly limited, but is preferably an evaporation method, an inkjet method, a spin coating method, or a printing method.
表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。 The configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
The method for manufacturing the organic EL element is as described in the above-described one embodiment of the method for manufacturing the organic EL element of the present invention.
When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode having a positive polarity and the cathode having a negative polarity. Also, even if a voltage is applied in the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The waveform of the applied AC may be arbitrary.
また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。 The configuration of the organic EL element included in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
The method for manufacturing the organic EL element is as described in the above-described one embodiment of the method for manufacturing the organic EL element of the present invention.
When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode having a positive polarity and the cathode having a negative polarity. Also, even if a voltage is applied in the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The waveform of the applied AC may be arbitrary.
多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。 The multicolor display device can be used as a display device, a display, and various light emission light sources. In display devices and displays, full-color display is possible by using three types of organic EL elements emitting blue, red, and green light.
Examples of the display device and the display include a television, a personal computer, a mobile device, an AV device, a teletext display, an information display in a car, and the like. In particular, the display device may be used as a display device for reproducing a still image or a moving image, and when used as a display device for reproducing a moving image, the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
Lighting sources include home lighting, interior lighting, backlights for watches and LCDs, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copiers, light sources for optical communication processors, and light sources for optical sensors. However, the present invention is not limited to these.
表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。 The multicolor display device can be used as a display device, a display, and various light emission light sources. In display devices and displays, full-color display is possible by using three types of organic EL elements emitting blue, red, and green light.
Examples of the display device and the display include a television, a personal computer, a mobile device, an AV device, a teletext display, an information display in a car, and the like. In particular, the display device may be used as a display device for reproducing a still image or a moving image, and when used as a display device for reproducing a moving image, the driving method may be either a simple matrix (passive matrix) method or an active matrix method.
Lighting sources include home lighting, interior lighting, backlights for watches and LCDs, signboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copiers, light sources for optical communication processors, and light sources for optical sensors. However, the present invention is not limited to these.
以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。 Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram illustrating an example of a display device including an organic EL element. FIG. 3 is a schematic diagram of a display such as a mobile phone for displaying image information by light emission of an organic EL element.
図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。 Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram illustrating an example of a display device including an organic EL element. FIG. 3 is a schematic diagram of a display such as a mobile phone for displaying image information by light emission of an organic EL element.
ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B、表示部Aと制御部Bとを電気的に接続する配線部C等を有する。
制御部Bは表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送る。そして、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。 Thedisplay 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like.
The control unit B is electrically connected to the display unit A via the wiring unit C, and sends a scanning signal and an image data signal to each of the plurality of pixels based on external image information. Then, the pixels for each scanning line sequentially emit light according to the image data signal according to the scanning signal, perform image scanning, and display image information on the display unit A.
制御部Bは表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送る。そして、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。 The
The control unit B is electrically connected to the display unit A via the wiring unit C, and sends a scanning signal and an image data signal to each of the plurality of pixels based on external image information. Then, the pixels for each scanning line sequentially emit light according to the image data signal according to the scanning signal, perform image scanning, and display image information on the display unit A.
図2はアクティブマトリクス方式による表示装置の模式図であり、表示部Aの模式図である。
表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
図2においては、画素3の発光した光(発光光L)が白矢印方向(下方向)へ取り出される場合を示している。 FIG. 2 is a schematic diagram of a display device using an active matrix system, and is a schematic diagram of a display unit A.
The display section A has a wiring section C including a plurality ofscanning lines 5 and data lines 6 and a plurality of pixels 3 on a substrate. The main members of the display unit A will be described below.
FIG. 2 shows a case where light emitted from the pixel 3 (emitted light L) is extracted in the direction of the white arrow (downward).
表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
図2においては、画素3の発光した光(発光光L)が白矢印方向(下方向)へ取り出される場合を示している。 FIG. 2 is a schematic diagram of a display device using an active matrix system, and is a schematic diagram of a display unit A.
The display section A has a wiring section C including a plurality of
FIG. 2 shows a case where light emitted from the pixel 3 (emitted light L) is extracted in the direction of the white arrow (downward).
配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。 Thescanning lines 5 and the plurality of data lines 6 of the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid and are connected to the pixels 3 at orthogonal positions (details are shown in the drawing). Not).
When a scanning signal is applied from thescanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light in accordance with the received image data.
By appropriately arranging pixels in a red region, pixels in a green region, and pixels in a blue region on the same substrate, full-color display becomes possible.
画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。 The
When a scanning signal is applied from the
By appropriately arranging pixels in a red region, pixels in a green region, and pixels in a blue region on the same substrate, full-color display becomes possible.
次に、画素の発光プロセスを説明する。図3は画素の回路を示した概略図である。
画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。 Next, a light emitting process of the pixel will be described. FIG. 3 is a schematic diagram showing a circuit of a pixel.
The pixel includes anorganic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. Full-color display can be performed by using red, green, and blue light-emitting organic EL elements as the organic EL elements 10 in a plurality of pixels and juxtaposing them on the same substrate.
画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。 Next, a light emitting process of the pixel will be described. FIG. 3 is a schematic diagram showing a circuit of a pixel.
The pixel includes an
図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンする。そして、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスタ12のゲートに伝達される。
(3) In FIG. 3, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. Then, when a scanning signal is applied from the control unit B to the gate of the switching transistor 11 via the scanning line 5, the driving of the switching transistor 11 is turned on. Then, the image data signal applied to the drain is transmitted to the capacitor 13 and the gate of the driving transistor 12.
画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。
伝 達 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the driving of the drive transistor 12 is turned on. The driving transistor 12 has a drain connected to the power supply line 7, a source connected to the electrode of the organic EL element 10, and from the power supply line 7 to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれる。そして、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。 When the scanning signal is transferred to thenext scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, even when the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on. Then, the emission of the organic EL element 10 continues until the next scanning signal is applied. When the next scanning signal is applied by the sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
That is, theorganic EL element 10 emits light by providing a switching transistor 11 and a driving transistor 12 as active elements to the organic EL elements 10 of each of the plurality of pixels, and emitting light of the organic EL elements 10 of each of the plurality of pixels 3 It is carried out. Such a light emitting method is called an active matrix method.
すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。 When the scanning signal is transferred to the
That is, the
ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。 Here, the light emission of theorganic EL element 10 may be a light emission of a plurality of gradations by a multi-valued image data signal having a plurality of gradation potentials, or a predetermined light emission amount on / off by a binary image data signal. Good. Further, the holding of the potential of the capacitor 13 may be continued until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
The present invention is not limited to the active matrix method described above, but may be a passive matrix light emission drive in which the organic EL element emits light in accordance with a data signal only when a scanning signal is scanned.
本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。 Here, the light emission of the
The present invention is not limited to the active matrix method described above, but may be a passive matrix light emission drive in which the organic EL element emits light in accordance with a data signal only when a scanning signal is scanned.
図4は、パッシブマトリクス方式による表示装置の模式図である。図4において、複数
の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
パッシブマトリクス方式では画素3にアクティブ素子がなく、製造コストの低減が計れる。
本発明の有機EL素子を用いることにより、発光効率が向上した表示装置が得られた。 FIG. 4 is a schematic view of a display device using a passive matrix system. In FIG. 4, a plurality ofscanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape facing each other with the pixel 3 interposed therebetween.
When the scanning signal of thescanning line 5 is applied by the sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
In the passive matrix system, thepixel 3 has no active element, and the manufacturing cost can be reduced.
By using the organic EL device of the present invention, a display device with improved luminous efficiency was obtained.
の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
パッシブマトリクス方式では画素3にアクティブ素子がなく、製造コストの低減が計れる。
本発明の有機EL素子を用いることにより、発光効率が向上した表示装置が得られた。 FIG. 4 is a schematic view of a display device using a passive matrix system. In FIG. 4, a plurality of
When the scanning signal of the
In the passive matrix system, the
By using the organic EL device of the present invention, a display device with improved luminous efficiency was obtained.
《照明装置》
本発明の有機EL素子は、照明装置に用いることもできる。
本発明の照明装置は、本発明の有機EL素子を具備する。
本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 《Lighting device》
The organic EL element of the present invention can be used for a lighting device.
The lighting device of the present invention includes the organic EL element of the present invention.
The organic EL device of the present invention may be used as an organic EL device having a resonator structure. The intended use of the organic EL device having such a resonator structure is, for example, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Not limited. Further, it may be used for the above purpose by causing laser oscillation.
Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or an exposure light source, a projection device of a type for projecting an image, or a type of a type for directly recognizing a still image or a moving image. It may be used as a display device (display).
When used as a display device for reproducing moving images, a driving method may be either a passive matrix method or an active matrix method. Alternatively, a full-color display device can be manufactured by using two or more kinds of the organic EL elements of the present invention having different emission colors.
本発明の有機EL素子は、照明装置に用いることもできる。
本発明の照明装置は、本発明の有機EL素子を具備する。
本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。 《Lighting device》
The organic EL element of the present invention can be used for a lighting device.
The lighting device of the present invention includes the organic EL element of the present invention.
The organic EL device of the present invention may be used as an organic EL device having a resonator structure. The intended use of the organic EL device having such a resonator structure is, for example, a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, a light source of an optical sensor, and the like. Not limited. Further, it may be used for the above purpose by causing laser oscillation.
Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or an exposure light source, a projection device of a type for projecting an image, or a type of a type for directly recognizing a still image or a moving image. It may be used as a display device (display).
When used as a display device for reproducing moving images, a driving method may be either a passive matrix method or an active matrix method. Alternatively, a full-color display device can be manufactured by using two or more kinds of the organic EL elements of the present invention having different emission colors.
例えば、複数の発光材料を用いる場合、複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の三原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。
For example, when a plurality of light-emitting materials are used, white light can be obtained by simultaneously emitting a plurality of light-emitting colors and mixing colors. As a combination of a plurality of emission colors, those containing three emission maximum wavelengths of the three primary colors of red, green and blue, or two emission using the relationship of complementary colors such as blue and yellow, blue green and orange, etc. What contained the maximum wavelength may be used.
また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層又は電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。
この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。 In the method for forming an organic EL device of the present invention, a mask is provided only when a light-emitting layer, a hole transport layer, an electron transport layer, or the like is formed, and the layers may be simply arranged such as by applying different masks. Since the other layers are common, patterning such as a mask is not necessary. For example, an electrode film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an inkjet method, a printing method, or the like, and productivity is improved.
According to this method, unlike a white organic EL device in which light-emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves emit white light.
この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。 In the method for forming an organic EL device of the present invention, a mask is provided only when a light-emitting layer, a hole transport layer, an electron transport layer, or the like is formed, and the layers may be simply arranged such as by applying different masks. Since the other layers are common, patterning such as a mask is not necessary. For example, an electrode film can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an inkjet method, a printing method, or the like, and productivity is improved.
According to this method, unlike a white organic EL device in which light-emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves emit white light.
[照明装置の一態様]
本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いる。周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させる。そして、ガラス基板側からUV光を照射して、硬化させて、封止し、図5及び図6に示すような照明装置を形成することができる。
図5は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機機能層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
本発明の有機EL素子を用いることにより、発光効率が向上した照明装置が得られた。 [One embodiment of lighting device]
The non-light-emitting surface of the organic EL element of the present invention is covered with a glass case, and a glass substrate having a thickness of 300 μm is used as a sealing substrate. An epoxy-based photocurable adhesive (Luxtrack LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is overlaid on the cathode and closely adhered to the transparent support substrate. Then, UV light is irradiated from the glass substrate side, cured, and sealed, so that a lighting device as shown in FIGS. 5 and 6 can be formed.
FIG. 5 is a schematic view of a lighting device, in which the organic EL element (theorganic EL element 101 in the lighting device) of the present invention is covered with a glass cover 102 (the sealing operation with the glass cover is a lighting operation). The test was performed in a glove box under a nitrogen atmosphere (in an atmosphere of a high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 in the apparatus into contact with the atmosphere.
FIG. 6 is a cross-sectional view of the lighting device. In FIG. 6,reference numeral 105 denotes a cathode, 106 denotes an organic functional layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with a nitrogen gas 108 and a water catching agent 109 is provided.
By using the organic EL element of the present invention, a lighting device with improved luminous efficiency was obtained.
本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いる。周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させる。そして、ガラス基板側からUV光を照射して、硬化させて、封止し、図5及び図6に示すような照明装置を形成することができる。
図5は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機機能層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
本発明の有機EL素子を用いることにより、発光効率が向上した照明装置が得られた。 [One embodiment of lighting device]
The non-light-emitting surface of the organic EL element of the present invention is covered with a glass case, and a glass substrate having a thickness of 300 μm is used as a sealing substrate. An epoxy-based photocurable adhesive (Luxtrack LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is overlaid on the cathode and closely adhered to the transparent support substrate. Then, UV light is irradiated from the glass substrate side, cured, and sealed, so that a lighting device as shown in FIGS. 5 and 6 can be formed.
FIG. 5 is a schematic view of a lighting device, in which the organic EL element (the
FIG. 6 is a cross-sectional view of the lighting device. In FIG. 6,
By using the organic EL element of the present invention, a lighting device with improved luminous efficiency was obtained.
以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り、「質量部」又は「質量%」を表す。
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto. In the examples, “parts” or “%” is used, but unless otherwise specified, “parts by weight” or “% by weight” is used.
なお、本実施例では有機EL素子を例に挙げているが、本発明の薄膜はこれに限定されず、有機EL素子以外の様々な電子デバイスに用いることができる。
In the present embodiment, an organic EL element is described as an example, but the thin film of the present invention is not limited to this, and can be used for various electronic devices other than the organic EL element.
[実施例1]
(有機EL素子の作製)
<有機EL素子1-1の作製>
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜した。パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄した。次いで、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。その後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。 [Example 1]
(Production of organic EL element)
<Preparation of Organic EL Element 1-1>
A 150 nm thick ITO (indium tin oxide) film was formed on a 50 mm × 50 mm glass substrate having a thickness of 0.7 mm as an anode. After patterning, the transparent substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Next, the substrate was dried with dry nitrogen gas and subjected to UV ozone cleaning for 5 minutes. Thereafter, the transparent substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
(有機EL素子の作製)
<有機EL素子1-1の作製>
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜した。パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄した。次いで、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。その後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。 [Example 1]
(Production of organic EL element)
<Preparation of Organic EL Element 1-1>
A 150 nm thick ITO (indium tin oxide) film was formed on a 50 mm × 50 mm glass substrate having a thickness of 0.7 mm as an anode. After patterning, the transparent substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Next, the substrate was dried with dry nitrogen gas and subjected to UV ozone cleaning for 5 minutes. Thereafter, the transparent substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱した。そして、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。 Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element. The crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material.
After the pressure was reduced to a degree of vacuum of 1 × 10 −4 Pa, the deposition crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was energized and heated. Then, vapor deposition was performed on the ITO transparent electrode at a vapor deposition rate of 0.1 nm / sec to form a hole injection layer having a layer thickness of 10 nm.
真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱した。そして、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。 Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element. The crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material.
After the pressure was reduced to a degree of vacuum of 1 × 10 −4 Pa, the deposition crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was energized and heated. Then, vapor deposition was performed on the ITO transparent electrode at a vapor deposition rate of 0.1 nm / sec to form a hole injection layer having a layer thickness of 10 nm.
次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。ホスト化合物としてCBP(4,4′-Bis(carbazol-9-yl)biphenyl)、発光ドーパントとしてIr(ppy)3(Tris(2-phenylpyridinato)iridium(III))を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。
Then, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was deposited on the hole injection layer at a deposition rate of 0.1 nm / sec. Was formed. CBP (4,4'-Bis (carbazol-9-yl) biphenyl) as a host compound, Ir (ppy) 3 (Tris (2-phenylpyridinato) iridium (III)) as a luminescent dopant, 90% and 10%, respectively. A co-evaporation was performed at a deposition rate of 0.1 nm / sec so as to be a volume% to form a light emitting layer having a layer thickness of 30 nm.
その後、比較化合物1(電子輸送層(1))とLiQ(8-hydroxyquinolinato lithium)(電子輸送層(2))をそれぞれ50%、50%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの電子輸送層を形成した。なお、電子輸送層(電子輸送層(1)と電子輸送層(2)を合わせた層)が本発明における薄膜に相当する。
更に、LiQを蒸着速度0.1nm/秒で蒸着し、膜厚2nmの電子注入層を形成した後に、アルミニウムを蒸着速度0.1nm/秒で蒸着し、層厚100nmの陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子1-1を作製した。 Thereafter, the comparative compound 1 (electron transporting layer (1)) and LiQ (8-hydroxyquinolinato lithium) (electron transporting layer (2)) were deposited at a deposition rate of 0.1 nm / sec to 50% and 50% volume%, respectively. To form an electron transport layer having a thickness of 30 nm. Note that the electron transport layer (a layer obtained by combining the electron transport layer (1) and the electron transport layer (2)) corresponds to a thin film in the present invention.
Further, LiQ was deposited at a deposition rate of 0.1 nm / sec to form an electron injection layer having a thickness of 2 nm, and then aluminum was deposited at a deposition rate of 0.1 nm / sec to form a cathode having a thickness of 100 nm.
The non-light-emitting surface side of the device was covered with a can-shaped glass case under an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and wiring for taking out electrodes was provided, thereby producing an organic EL device 1-1.
更に、LiQを蒸着速度0.1nm/秒で蒸着し、膜厚2nmの電子注入層を形成した後に、アルミニウムを蒸着速度0.1nm/秒で蒸着し、層厚100nmの陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子1-1を作製した。 Thereafter, the comparative compound 1 (electron transporting layer (1)) and LiQ (8-hydroxyquinolinato lithium) (electron transporting layer (2)) were deposited at a deposition rate of 0.1 nm / sec to 50% and 50% volume%, respectively. To form an electron transport layer having a thickness of 30 nm. Note that the electron transport layer (a layer obtained by combining the electron transport layer (1) and the electron transport layer (2)) corresponds to a thin film in the present invention.
Further, LiQ was deposited at a deposition rate of 0.1 nm / sec to form an electron injection layer having a thickness of 2 nm, and then aluminum was deposited at a deposition rate of 0.1 nm / sec to form a cathode having a thickness of 100 nm.
The non-light-emitting surface side of the device was covered with a can-shaped glass case under an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and wiring for taking out electrodes was provided, thereby producing an organic EL device 1-1.
<有機EL素子1-2~1-35の作製>
電子輸送層(1)、(2)及び電子注入層に含有させる化合物等を表Iに示すように変えた以外は有機EL素子1-1と同様の方法で有機EL素子1-2~1-35を作製した。
なお、表I中、「-」は、成分を含有していないことを示す。 <Preparation of organic EL elements 1-2 to 1-35>
The organic EL devices 1-2 to 1-1-2 were prepared in the same manner as the organic EL device 1-1 except that the compounds contained in the electron transport layers (1) and (2) and the electron injection layer were changed as shown in Table I. 35 were produced.
In Table I, "-" indicates that no component was contained.
電子輸送層(1)、(2)及び電子注入層に含有させる化合物等を表Iに示すように変えた以外は有機EL素子1-1と同様の方法で有機EL素子1-2~1-35を作製した。
なお、表I中、「-」は、成分を含有していないことを示す。 <Preparation of organic EL elements 1-2 to 1-35>
The organic EL devices 1-2 to 1-1-2 were prepared in the same manner as the organic EL device 1-1 except that the compounds contained in the electron transport layers (1) and (2) and the electron injection layer were changed as shown in Table I. 35 were produced.
In Table I, "-" indicates that no component was contained.
(評価)
(1)相対駆動電圧の測定
作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/m2となるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
上記で得られた駆動電圧を下記式に当てはめて、有機EL素子1-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子1-1の駆動電圧)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (Evaluation)
(1) Measurement of Relative Drive Voltage For each organic EL device produced, the front luminance was measured on both the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL device. , And the voltage when the sum was 1000 cd / m 2 was measured as the driving voltage (V). The luminance was measured using a spectroradiometer CS-1000 (manufactured by Konica Minolta).
The driving voltage obtained above was applied to the following equation to determine the relative driving voltage of each organic EL element with respect to the driving voltage of the organic EL element 1-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 1-1) × 100
The smaller the obtained numerical value, the better the result.
(1)相対駆動電圧の測定
作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/m2となるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
上記で得られた駆動電圧を下記式に当てはめて、有機EL素子1-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子1-1の駆動電圧)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (Evaluation)
(1) Measurement of Relative Drive Voltage For each organic EL device produced, the front luminance was measured on both the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL device. , And the voltage when the sum was 1000 cd / m 2 was measured as the driving voltage (V). The luminance was measured using a spectroradiometer CS-1000 (manufactured by Konica Minolta).
The driving voltage obtained above was applied to the following equation to determine the relative driving voltage of each organic EL element with respect to the driving voltage of the organic EL element 1-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 1-1) × 100
The smaller the obtained numerical value, the better the result.
(2)高温保存下での相対駆動電圧変化の測定
上記作製した有機EL素子を、温度80℃で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子1-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
高温保存下での相対駆動電圧変化率(%)=(各有機EL素子の駆動電圧変化量/有機EL素子1-1の駆動電圧変化量)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (2) Measurement of change in relative drive voltage under high-temperature storage The organic EL device produced above was allowed to emit light at a temperature of 80 ° C. under a constant current of 2.5 mA / cm 2 , The driving voltage was measured 100 hours after the start.
By comparing the obtained driving voltages before and after the high-temperature storage, the amount of change in the driving voltage (a value obtained by subtracting the driving voltage after the high-temperature storage from the driving voltage before the high-temperature storage) was obtained.
The change amount of the drive voltage obtained above is applied to the following equation, and the relative value of the change amount of the drive voltage of each organic EL element with respect to the change amount of the drive voltage of the organic EL element 1-1 is determined by the relative drive under high-temperature storage. It was obtained as a voltage change.
Relative drive voltage change rate (%) under high temperature storage = (drive voltage change amount of each organic EL element / drive voltage change amount of organic EL element 1-1) × 100
The smaller the obtained numerical value, the better the result.
上記作製した有機EL素子を、温度80℃で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子1-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
高温保存下での相対駆動電圧変化率(%)=(各有機EL素子の駆動電圧変化量/有機EL素子1-1の駆動電圧変化量)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (2) Measurement of change in relative drive voltage under high-temperature storage The organic EL device produced above was allowed to emit light at a temperature of 80 ° C. under a constant current of 2.5 mA / cm 2 , The driving voltage was measured 100 hours after the start.
By comparing the obtained driving voltages before and after the high-temperature storage, the amount of change in the driving voltage (a value obtained by subtracting the driving voltage after the high-temperature storage from the driving voltage before the high-temperature storage) was obtained.
The change amount of the drive voltage obtained above is applied to the following equation, and the relative value of the change amount of the drive voltage of each organic EL element with respect to the change amount of the drive voltage of the organic EL element 1-1 is determined by the relative drive under high-temperature storage. It was obtained as a voltage change.
Relative drive voltage change rate (%) under high temperature storage = (drive voltage change amount of each organic EL element / drive voltage change amount of organic EL element 1-1) × 100
The smaller the obtained numerical value, the better the result.
[実施例2]
(有機EL素子の作製)
<有機EL素子2-1の作製>
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。 [Example 2]
(Production of organic EL element)
<Preparation of Organic EL Element 2-1>
After forming ITO (indium tin oxide) into a film with a thickness of 150 nm as an anode on a glass substrate having a size of 50 mm × 50 mm and a thickness of 0.7 mm, performing patterning, and then forming a transparent substrate provided with the ITO transparent electrode. Was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes, and then this transparent substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
(有機EL素子の作製)
<有機EL素子2-1の作製>
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。 [Example 2]
(Production of organic EL element)
<Preparation of Organic EL Element 2-1>
After forming ITO (indium tin oxide) into a film with a thickness of 150 nm as an anode on a glass substrate having a size of 50 mm × 50 mm and a thickness of 0.7 mm, performing patterning, and then forming a transparent substrate provided with the ITO transparent electrode. Was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes, and then this transparent substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。 Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element. The crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material.
After the pressure was reduced to a degree of vacuum of 1 × 10 −4 Pa, a current was passed through a crucible for vapor deposition containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile), and the mixture was heated and vaporized. A hole injection layer having a thickness of 10 nm was formed by vapor deposition on the ITO transparent electrode at a rate of 0.1 nm / sec.
真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。 Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element. The crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material.
After the pressure was reduced to a degree of vacuum of 1 × 10 −4 Pa, a current was passed through a crucible for vapor deposition containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile), and the mixture was heated and vaporized. A hole injection layer having a thickness of 10 nm was formed by vapor deposition on the ITO transparent electrode at a rate of 0.1 nm / sec.
次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。
ホスト化合物としてCBP、発光ドーパントとしてIr(ppy)3を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。 Then, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was deposited on the hole injection layer at a deposition rate of 0.1 nm / sec. Was formed.
CBP as a host compound and Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / sec to 90% and 10% by volume, respectively, to form a light emitting layer having a layer thickness of 30 nm.
ホスト化合物としてCBP、発光ドーパントとしてIr(ppy)3を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。 Then, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was deposited on the hole injection layer at a deposition rate of 0.1 nm / sec. Was formed.
CBP as a host compound and Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / sec to 90% and 10% by volume, respectively, to form a light emitting layer having a layer thickness of 30 nm.
その後、比較化合物2とKFをそれぞれ85%、15%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの電子輸送層を形成した。なお、電子輸送層が本発明における薄膜に相当する。
この後、銀とマグネシウムをそれぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、膜厚15nmの陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子2-1を作製した。 Thereafter, Comparative Compound 2 and KF were co-deposited at a deposition rate of 0.1 nm / sec so as to be 85% and 15% by volume, respectively, to form an electron transport layer having a thickness of 30 nm. Note that the electron transport layer corresponds to the thin film in the present invention.
Thereafter, silver and magnesium were co-deposited at a deposition rate of 0.1 nm / sec so as to be 90% and 10% by volume, respectively, to form a cathode having a thickness of 15 nm.
The non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and wiring for taking out electrodes was provided, thereby producing an organic EL element 2-1.
この後、銀とマグネシウムをそれぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、膜厚15nmの陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子2-1を作製した。 Thereafter, Comparative Compound 2 and KF were co-deposited at a deposition rate of 0.1 nm / sec so as to be 85% and 15% by volume, respectively, to form an electron transport layer having a thickness of 30 nm. Note that the electron transport layer corresponds to the thin film in the present invention.
Thereafter, silver and magnesium were co-deposited at a deposition rate of 0.1 nm / sec so as to be 90% and 10% by volume, respectively, to form a cathode having a thickness of 15 nm.
The non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and wiring for taking out electrodes was provided, thereby producing an organic EL element 2-1.
<有機EL素子2-2~2-18の作製>
電子輸送層の化合物と、陰極の銀とマグネシウムの成分比を、表IIに示すように変えた以外は有機EL素子2-1と同様にして有機EL素子2-2~2-18を作製した。
なお、有機EL素子2-1~2-18において、電子輸送層にはKFが15%含まれるが、表II中、KFの表記は省略している。 <Preparation of organic EL elements 2-2 to 2-18>
Organic EL devices 2-2 to 2-18 were fabricated in the same manner as in the organic EL device 2-1 except that the compound ratio of the electron transport layer and the silver and magnesium components of the cathode were changed as shown in Table II. .
In the organic EL elements 2-1 to 2-18, the electron transport layer contains 15% of KF, but in Table II, the notation of KF is omitted.
電子輸送層の化合物と、陰極の銀とマグネシウムの成分比を、表IIに示すように変えた以外は有機EL素子2-1と同様にして有機EL素子2-2~2-18を作製した。
なお、有機EL素子2-1~2-18において、電子輸送層にはKFが15%含まれるが、表II中、KFの表記は省略している。 <Preparation of organic EL elements 2-2 to 2-18>
Organic EL devices 2-2 to 2-18 were fabricated in the same manner as in the organic EL device 2-1 except that the compound ratio of the electron transport layer and the silver and magnesium components of the cathode were changed as shown in Table II. .
In the organic EL elements 2-1 to 2-18, the electron transport layer contains 15% of KF, but in Table II, the notation of KF is omitted.
(評価)
(1)相対駆動電圧の測定
作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/m2となるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
上記で得られた駆動電圧を下記式に当てはめて、有機EL素子2-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子2-1の駆動電圧)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (Evaluation)
(1) Measurement of Relative Drive Voltage For each organic EL device produced, the front luminance was measured on both the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL device. , And the voltage when the sum was 1000 cd / m 2 was measured as the driving voltage (V). The luminance was measured using a spectroradiometer CS-1000 (manufactured by Konica Minolta).
The drive voltage obtained above was applied to the following equation to determine the relative drive voltage of each organic EL element with respect to the drive voltage of the organic EL element 2-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 2-1) × 100
The smaller the obtained numerical value, the better the result.
(1)相対駆動電圧の測定
作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/m2となるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
上記で得られた駆動電圧を下記式に当てはめて、有機EL素子2-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子2-1の駆動電圧)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (Evaluation)
(1) Measurement of Relative Drive Voltage For each organic EL device produced, the front luminance was measured on both the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL device. , And the voltage when the sum was 1000 cd / m 2 was measured as the driving voltage (V). The luminance was measured using a spectroradiometer CS-1000 (manufactured by Konica Minolta).
The drive voltage obtained above was applied to the following equation to determine the relative drive voltage of each organic EL element with respect to the drive voltage of the organic EL element 2-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 2-1) × 100
The smaller the obtained numerical value, the better the result.
(2)高温保存下での相対駆動電圧変化の測定
上記作製した有機EL素子を、温度80℃で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子2-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
高温保存下での相対駆動電圧変化率(%)=(各有機EL素子の駆動電圧変化量/有機EL素子2-1の駆動電圧変化量)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (2) Measurement of change in relative drive voltage under high-temperature storage The organic EL device produced above was allowed to emit light at a temperature of 80 ° C. under a constant current of 2.5 mA / cm 2 , The driving voltage was measured 100 hours after the start.
By comparing the obtained driving voltages before and after the high-temperature storage, the amount of change in the driving voltage (a value obtained by subtracting the driving voltage after the high-temperature storage from the driving voltage before the high-temperature storage) was obtained.
The change amount of the drive voltage obtained above is applied to the following equation, and the relative value of the change amount of the drive voltage of each organic EL element with respect to the change amount of the drive voltage of the organic EL element 2-1 is determined by the relative drive under high-temperature storage. It was obtained as a voltage change.
Relative drive voltage change rate (%) under high temperature storage = (drive voltage change amount of each organic EL element / drive voltage change amount of organic EL element 2-1) × 100
The smaller the obtained numerical value, the better the result.
上記作製した有機EL素子を、温度80℃で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子2-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
高温保存下での相対駆動電圧変化率(%)=(各有機EL素子の駆動電圧変化量/有機EL素子2-1の駆動電圧変化量)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (2) Measurement of change in relative drive voltage under high-temperature storage The organic EL device produced above was allowed to emit light at a temperature of 80 ° C. under a constant current of 2.5 mA / cm 2 , The driving voltage was measured 100 hours after the start.
By comparing the obtained driving voltages before and after the high-temperature storage, the amount of change in the driving voltage (a value obtained by subtracting the driving voltage after the high-temperature storage from the driving voltage before the high-temperature storage) was obtained.
The change amount of the drive voltage obtained above is applied to the following equation, and the relative value of the change amount of the drive voltage of each organic EL element with respect to the change amount of the drive voltage of the organic EL element 2-1 is determined by the relative drive under high-temperature storage. It was obtained as a voltage change.
Relative drive voltage change rate (%) under high temperature storage = (drive voltage change amount of each organic EL element / drive voltage change amount of organic EL element 2-1) × 100
The smaller the obtained numerical value, the better the result.
[実施例3]
(有機EL素子の作製)
<有機EL素子3-1の作製>
50mm×50mm、厚さ0.7mmのガラス基板をイソプロピルアルコールで超音波洗浄した。次いで、乾燥窒素ガスで乾燥させた後、このガラス基板を市販の真空蒸着装置の基板ホルダーに固定した。 [Example 3]
(Production of organic EL element)
<Preparation of Organic EL Element 3-1>
A glass substrate having a size of 50 mm × 50 mm and a thickness of 0.7 mm was ultrasonically cleaned with isopropyl alcohol. Next, after drying with a dry nitrogen gas, this glass substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
(有機EL素子の作製)
<有機EL素子3-1の作製>
50mm×50mm、厚さ0.7mmのガラス基板をイソプロピルアルコールで超音波洗浄した。次いで、乾燥窒素ガスで乾燥させた後、このガラス基板を市販の真空蒸着装置の基板ホルダーに固定した。 [Example 3]
(Production of organic EL element)
<Preparation of Organic EL Element 3-1>
A glass substrate having a size of 50 mm × 50 mm and a thickness of 0.7 mm was ultrasonically cleaned with isopropyl alcohol. Next, after drying with a dry nitrogen gas, this glass substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度1×10-4Paまで減圧した後、ガラス基板に蒸着マスクを装着し、陽極としてAlの入った蒸着用るつぼに通電して加熱した。そして、蒸着速度0.1nm/秒でガラス基板上に蒸着し、層厚100nmのパターニングされた陽極を形成した。
次いで、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)を蒸着速度0.1nm/秒で陽極上に蒸着し、層厚10nmの正孔注入層を形成した。 Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element. The crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material.
After reducing the pressure to a degree of vacuum of 1 × 10 −4 Pa, a vapor deposition mask was attached to the glass substrate, and a crucible for vapor deposition containing Al was heated as an anode. Then, vapor deposition was performed on the glass substrate at a vapor deposition rate of 0.1 nm / sec to form a patterned anode having a layer thickness of 100 nm.
Next, HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) is deposited on the anode at a deposition rate of 0.1 nm / sec to form a hole injection layer having a thickness of 10 nm. did.
真空度1×10-4Paまで減圧した後、ガラス基板に蒸着マスクを装着し、陽極としてAlの入った蒸着用るつぼに通電して加熱した。そして、蒸着速度0.1nm/秒でガラス基板上に蒸着し、層厚100nmのパターニングされた陽極を形成した。
次いで、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)を蒸着速度0.1nm/秒で陽極上に蒸着し、層厚10nmの正孔注入層を形成した。 Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element. The crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material.
After reducing the pressure to a degree of vacuum of 1 × 10 −4 Pa, a vapor deposition mask was attached to the glass substrate, and a crucible for vapor deposition containing Al was heated as an anode. Then, vapor deposition was performed on the glass substrate at a vapor deposition rate of 0.1 nm / sec to form a patterned anode having a layer thickness of 100 nm.
Next, HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) is deposited on the anode at a deposition rate of 0.1 nm / sec to form a hole injection layer having a thickness of 10 nm. did.
さらに、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。
ホスト化合物としてCBP、発光ドーパントとしてIr(ppy)3を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。 Further, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was vapor-deposited on the hole injection layer at a vapor deposition rate of 0.1 nm / sec. Was formed.
CBP as a host compound and Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / sec to 90% and 10% by volume, respectively, to form a light emitting layer having a layer thickness of 30 nm.
ホスト化合物としてCBP、発光ドーパントとしてIr(ppy)3を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。 Further, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was vapor-deposited on the hole injection layer at a vapor deposition rate of 0.1 nm / sec. Was formed.
CBP as a host compound and Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / sec to 90% and 10% by volume, respectively, to form a light emitting layer having a layer thickness of 30 nm.
その後、電子輸送層として、Alq3を蒸着速度0.1nm/秒で蒸着し、層厚30nmの電子輸送層を形成した。
その後、比較化合物3とLiQをそれぞれ50%、50%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚2nmの電子注入層を形成した。なお、電子注入層が本発明における薄膜に相当する。
この後、銀を蒸着速度0.1nm/秒で蒸着し、膜厚15nmの陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子3-1を作製した。 Thereafter, as an electron transport layer, Alq 3 was deposited at a deposition rate of 0.1 nm / sec to form an electron transport layer having a thickness of 30 nm.
Thereafter,Comparative Compound 3 and LiQ were co-deposited at a deposition rate of 0.1 nm / sec to 50% and 50% volume%, respectively, to form an electron injection layer having a thickness of 2 nm. Note that the electron injection layer corresponds to the thin film in the present invention.
Thereafter, silver was deposited at a deposition rate of 0.1 nm / sec to form a cathode having a thickness of 15 nm.
The non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was provided to produce an organic EL element 3-1.
その後、比較化合物3とLiQをそれぞれ50%、50%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚2nmの電子注入層を形成した。なお、電子注入層が本発明における薄膜に相当する。
この後、銀を蒸着速度0.1nm/秒で蒸着し、膜厚15nmの陰極を形成した。
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子3-1を作製した。 Thereafter, as an electron transport layer, Alq 3 was deposited at a deposition rate of 0.1 nm / sec to form an electron transport layer having a thickness of 30 nm.
Thereafter,
Thereafter, silver was deposited at a deposition rate of 0.1 nm / sec to form a cathode having a thickness of 15 nm.
The non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was provided to produce an organic EL element 3-1.
<有機EL素子3-2~3-21の作製>
電子注入層の化合物と、陰極の銀とマグネシウムの比率及び陰極の膜厚を、表IIIに示すように変えた以外は有機EL素子3-1と同様にして有機EL素子3-2~3-21を作製した。
なお、有機EL素子3-1~3-21において、電子注入層にはLiQが50%含まれるが、表III中、LiQの表記は省略している。 <Preparation of organic EL elements 3-2 to 3-21>
Organic EL devices 3-2 to 3--3 were formed in the same manner as the organic EL device 3-1 except that the compound of the electron injection layer, the ratio of silver to magnesium of the cathode, and the thickness of the cathode were changed as shown in Table III. 21 was produced.
In the organic EL elements 3-1 to 3-21, the electron injection layer contains 50% of LiQ, but the description of LiQ is omitted in Table III.
電子注入層の化合物と、陰極の銀とマグネシウムの比率及び陰極の膜厚を、表IIIに示すように変えた以外は有機EL素子3-1と同様にして有機EL素子3-2~3-21を作製した。
なお、有機EL素子3-1~3-21において、電子注入層にはLiQが50%含まれるが、表III中、LiQの表記は省略している。 <Preparation of organic EL elements 3-2 to 3-21>
Organic EL devices 3-2 to 3--3 were formed in the same manner as the organic EL device 3-1 except that the compound of the electron injection layer, the ratio of silver to magnesium of the cathode, and the thickness of the cathode were changed as shown in Table III. 21 was produced.
In the organic EL elements 3-1 to 3-21, the electron injection layer contains 50% of LiQ, but the description of LiQ is omitted in Table III.
(評価)
(1)相対駆動電圧の測定
作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/m2となるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
上記で得られた駆動電圧を下記式に当てはめて、有機EL素子3-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子3-1の駆動電圧)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (Evaluation)
(1) Measurement of relative drive voltage For each organic EL element produced, the front luminance was measured on both the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL element. , And the voltage when the sum was 1000 cd / m 2 was measured as the driving voltage (V). The luminance was measured using a spectroradiometer CS-1000 (manufactured by Konica Minolta).
The driving voltage obtained above was applied to the following equation to determine the relative driving voltage of each organic EL element with respect to the driving voltage of the organic EL element 3-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 3-1) × 100
The smaller the obtained numerical value, the better the result.
(1)相対駆動電圧の測定
作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/m2となるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
上記で得られた駆動電圧を下記式に当てはめて、有機EL素子3-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子3-1の駆動電圧)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (Evaluation)
(1) Measurement of relative drive voltage For each organic EL element produced, the front luminance was measured on both the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL element. , And the voltage when the sum was 1000 cd / m 2 was measured as the driving voltage (V). The luminance was measured using a spectroradiometer CS-1000 (manufactured by Konica Minolta).
The driving voltage obtained above was applied to the following equation to determine the relative driving voltage of each organic EL element with respect to the driving voltage of the organic EL element 3-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 3-1) × 100
The smaller the obtained numerical value, the better the result.
(2)高温保存下での相対駆動電圧変化の測定
上記作製した有機EL素子を、温度80℃で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子3-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
高温保存下での相対駆動電圧変化率(%)=(各有機EL素子の駆動電圧変化量/有機EL素子3-1の駆動電圧変化量)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (2) Measurement of change in relative drive voltage under high-temperature storage The organic EL device produced above was allowed to emit light at a temperature of 80 ° C. under a constant current of 2.5 mA / cm 2 , The driving voltage was measured 100 hours after the start.
By comparing the obtained driving voltages before and after the high-temperature storage, the amount of change in the driving voltage (a value obtained by subtracting the driving voltage after the high-temperature storage from the driving voltage before the high-temperature storage) was obtained.
The change amount of the drive voltage obtained above is applied to the following equation, and the relative value of the change amount of the drive voltage of each organic EL element to the change amount of the drive voltage of the organic EL element 3-1 is determined by the relative drive under high-temperature storage. It was obtained as a voltage change.
Relative drive voltage change rate (%) under high temperature storage = (drive voltage change amount of each organic EL element / drive voltage change amount of organic EL element 3-1) × 100
The smaller the obtained numerical value, the better the result.
上記作製した有機EL素子を、温度80℃で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子3-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
高温保存下での相対駆動電圧変化率(%)=(各有機EL素子の駆動電圧変化量/有機EL素子3-1の駆動電圧変化量)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (2) Measurement of change in relative drive voltage under high-temperature storage The organic EL device produced above was allowed to emit light at a temperature of 80 ° C. under a constant current of 2.5 mA / cm 2 , The driving voltage was measured 100 hours after the start.
By comparing the obtained driving voltages before and after the high-temperature storage, the amount of change in the driving voltage (a value obtained by subtracting the driving voltage after the high-temperature storage from the driving voltage before the high-temperature storage) was obtained.
The change amount of the drive voltage obtained above is applied to the following equation, and the relative value of the change amount of the drive voltage of each organic EL element to the change amount of the drive voltage of the organic EL element 3-1 is determined by the relative drive under high-temperature storage. It was obtained as a voltage change.
Relative drive voltage change rate (%) under high temperature storage = (drive voltage change amount of each organic EL element / drive voltage change amount of organic EL element 3-1) × 100
The smaller the obtained numerical value, the better the result.
[実施例4]
(有機EL素子の作製)
<有機EL素子4-1の作製>
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜した。パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄した。次いで、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。その後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。 [Example 4]
(Production of organic EL element)
<Preparation of Organic EL Element 4-1>
A 150 nm thick ITO (indium tin oxide) film was formed on a 50 mm × 50 mm glass substrate having a thickness of 0.7 mm as an anode. After patterning, the transparent substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Next, the substrate was dried with dry nitrogen gas and subjected to UV ozone cleaning for 5 minutes. Thereafter, the transparent substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
(有機EL素子の作製)
<有機EL素子4-1の作製>
50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜した。パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄した。次いで、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。その後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。 [Example 4]
(Production of organic EL element)
<Preparation of Organic EL Element 4-1>
A 150 nm thick ITO (indium tin oxide) film was formed on a 50 mm × 50 mm glass substrate having a thickness of 0.7 mm as an anode. After patterning, the transparent substrate provided with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Next, the substrate was dried with dry nitrogen gas and subjected to UV ozone cleaning for 5 minutes. Thereafter, the transparent substrate was fixed to a substrate holder of a commercially available vacuum evaporation apparatus.
真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱した。そして、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚20nmの第1正孔注入層を形成した。 Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element. The crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material.
After the pressure was reduced to a degree of vacuum of 1 × 10 −4 Pa, the deposition crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was energized and heated. And it vapor-deposited on the ITO transparent electrode at the vapor deposition rate of 0.1 nm / sec, and formed the 1st hole injection layer with a layer thickness of 20 nm.
真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱した。そして、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚20nmの第1正孔注入層を形成した。 Each of the evaporation crucibles in the vacuum evaporation apparatus was filled with the constituent material of each layer in an amount optimal for producing each element. The crucible for vapor deposition used was made of a molybdenum or tungsten resistance heating material.
After the pressure was reduced to a degree of vacuum of 1 × 10 −4 Pa, the deposition crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was energized and heated. And it vapor-deposited on the ITO transparent electrode at the vapor deposition rate of 0.1 nm / sec, and formed the 1st hole injection layer with a layer thickness of 20 nm.
次いで、下記構造式に示す化合物4-Aを蒸着速度0.1nm/秒で前記第1正孔注入層上に蒸着し、層厚50nmの第1正孔輸送層を形成した。
Next, compound 4-A represented by the following structural formula was deposited on the first hole injection layer at a deposition rate of 0.1 nm / sec to form a first hole transport layer having a thickness of 50 nm.
さらに、下記構造式に示す化合物4-Bを蒸着速度0.1nm/秒で前記第1正孔輸送層上に蒸着し、層厚10nmの電子阻止層を形成した。
{Circle around (4)} Further, compound 4-B represented by the following structural formula was deposited on the first hole transport layer at a deposition rate of 0.1 nm / sec to form an electron blocking layer having a thickness of 10 nm.
第1発光層のホスト化合物として下記構造式に示す化合物4-C、青色蛍光発光ドーパントとして化合物4-Dを、それぞれ95%、5%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの第1発光層を形成した。
Compound 4-C represented by the following structural formula as a host compound of the first light-emitting layer, and compound 4-D as a blue fluorescent light-emitting dopant were formed at a deposition rate of 0.1 nm / sec so as to be 95% and 5% by volume, respectively. Co-evaporation was performed to form a first light-emitting layer having a thickness of 30 nm.
その後、第1電子輸送層として、下記構造式に示す化合物4-Eを蒸着速度0.1nm/秒で蒸着し、層厚30nmの第1電子輸送層を形成した。
Thereafter, as a first electron transporting layer, a compound 4-E represented by the following structural formula was deposited at a deposition rate of 0.1 nm / sec to form a first electron transporting layer having a thickness of 30 nm.
以上の工程により、第1正孔輸送層、電子阻止層、第1発光層、第1電子輸送層から成る第1発光ユニットを作製した。
Through the above steps, a first light emitting unit including a first hole transport layer, an electron blocking layer, a first light emitting layer, and a first electron transport layer was produced.
次に、比較化合物1とLiをそれぞれ95%、5%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、第1電子輸送層上に層厚20nmの電荷発生層を形成した。なお、電荷発生層が本発明における薄膜に相当する。
Next, the comparative compound 1 and Li were co-evaporated at a deposition rate of 0.1 nm / sec so as to be 95% and 5% by volume, respectively, to form a 20 nm-thick charge generation layer on the first electron transport layer. did. Note that the charge generation layer corresponds to the thin film in the present invention.
その後、上記第1正孔輸送層と同様にHAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)を蒸着速度0.1nm/秒で前記電荷発生層上に蒸着し、膜厚20nmの第2正孔注入層を形成した。次いで、化合物4-Aを蒸着速度0.1nm/秒で前記第2正孔注入層上に蒸着し、層厚60nmの第2正孔輸送層を形成した。
第2発光層のホスト化合物として下記構造式に示す化合物4-F、緑色リン光発光ドーパントとしてIr(ppy)3、赤色リン光発光ドーパントとしてIr(piq)3(Tris[1-phenylisoquinoline-C2,N]iridium(III))をそれぞれ79%、20%、1%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚20nmの第2発光層を形成した。 Then, HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was deposited on the charge generation layer at a deposition rate of 0.1 nm / sec as in the case of the first hole transport layer. The second hole injection layer having a thickness of 20 nm was formed by vapor deposition. Next, compound 4-A was deposited on the second hole injection layer at a deposition rate of 0.1 nm / sec to form a second hole transport layer having a thickness of 60 nm.
The compound 4-F represented by the following structural formula as a host compound of the second light emitting layer, Ir (ppy) 3 as a green phosphorescent dopant, and Ir (piq) 3 (Tris [1-phenylisoquinoline-C 2] as a red phosphorescent dopant , N] iridium (III)) were co-deposited at a deposition rate of 0.1 nm / sec to 79%, 20%, and 1% by volume, respectively, to form a second light emitting layer having a layer thickness of 20 nm.
第2発光層のホスト化合物として下記構造式に示す化合物4-F、緑色リン光発光ドーパントとしてIr(ppy)3、赤色リン光発光ドーパントとしてIr(piq)3(Tris[1-phenylisoquinoline-C2,N]iridium(III))をそれぞれ79%、20%、1%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚20nmの第2発光層を形成した。 Then, HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was deposited on the charge generation layer at a deposition rate of 0.1 nm / sec as in the case of the first hole transport layer. The second hole injection layer having a thickness of 20 nm was formed by vapor deposition. Next, compound 4-A was deposited on the second hole injection layer at a deposition rate of 0.1 nm / sec to form a second hole transport layer having a thickness of 60 nm.
The compound 4-F represented by the following structural formula as a host compound of the second light emitting layer, Ir (ppy) 3 as a green phosphorescent dopant, and Ir (piq) 3 (Tris [1-phenylisoquinoline-C 2] as a red phosphorescent dopant , N] iridium (III)) were co-deposited at a deposition rate of 0.1 nm / sec to 79%, 20%, and 1% by volume, respectively, to form a second light emitting layer having a layer thickness of 20 nm.
その後、上記第1電子輸送層と同様に、化合物4-Eを蒸着速度0.1nm/秒で蒸着し、層厚30nmの第2電子輸送層を形成した。
更に、LiQを蒸着速度0.1nm/秒で蒸着し、膜厚2nmの電子注入層を形成した後に、アルミニウムを蒸着速度0.1nm/秒で蒸着し、層厚100nmの陰極を形成した
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子4-1を作製した。 Thereafter, similarly to the first electron transport layer, compound 4-E was deposited at an evaporation rate of 0.1 nm / sec to form a second electron transport layer having a thickness of 30 nm.
Furthermore, after depositing LiQ at a deposition rate of 0.1 nm / sec to form an electron injection layer having a thickness of 2 nm, aluminum was deposited at a deposition rate of 0.1 nm / sec to form a cathode having a thickness of 100 nm. Was covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and wiring for taking out electrodes was provided to produce an organic EL device 4-1.
更に、LiQを蒸着速度0.1nm/秒で蒸着し、膜厚2nmの電子注入層を形成した後に、アルミニウムを蒸着速度0.1nm/秒で蒸着し、層厚100nmの陰極を形成した
上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子4-1を作製した。 Thereafter, similarly to the first electron transport layer, compound 4-E was deposited at an evaporation rate of 0.1 nm / sec to form a second electron transport layer having a thickness of 30 nm.
Furthermore, after depositing LiQ at a deposition rate of 0.1 nm / sec to form an electron injection layer having a thickness of 2 nm, aluminum was deposited at a deposition rate of 0.1 nm / sec to form a cathode having a thickness of 100 nm. Was covered with a can-shaped glass case in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more, and wiring for taking out electrodes was provided to produce an organic EL device 4-1.
<有機EL素子4-2~4-11の作製>
電荷発生層の化合物を表IVのように変えた以外は、有機EL素子4-1と同様にして有機EL素子4-2~4-11を作製した。
なお、有機EL素子4-1~4-11において、電荷発生層にはLiが5%含まれるが、表IV中、Liの表記は省略している。 <Production of organic EL elements 4-2 to 4-11>
Organic EL devices 4-2 to 4-11 were produced in the same manner as in the organic EL device 4-1 except that the compounds of the charge generation layer were changed as shown in Table IV.
In the organic EL elements 4-1 to 4-11, the charge generation layer contains 5% of Li, but notation of Li is omitted in Table IV.
電荷発生層の化合物を表IVのように変えた以外は、有機EL素子4-1と同様にして有機EL素子4-2~4-11を作製した。
なお、有機EL素子4-1~4-11において、電荷発生層にはLiが5%含まれるが、表IV中、Liの表記は省略している。 <Production of organic EL elements 4-2 to 4-11>
Organic EL devices 4-2 to 4-11 were produced in the same manner as in the organic EL device 4-1 except that the compounds of the charge generation layer were changed as shown in Table IV.
In the organic EL elements 4-1 to 4-11, the charge generation layer contains 5% of Li, but notation of Li is omitted in Table IV.
(評価)
(1)相対駆動電圧の測定
作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/m2となるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
上記で得られた駆動電圧を下記式に当てはめて、有機EL素子4-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子4-1の駆動電圧)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (Evaluation)
(1) Measurement of relative drive voltage For each organic EL element produced, the front luminance was measured on both the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL element. , And the voltage when the sum was 1000 cd / m 2 was measured as the driving voltage (V). The luminance was measured using a spectroradiometer CS-1000 (manufactured by Konica Minolta).
The drive voltage obtained above was applied to the following equation to determine the relative drive voltage of each organic EL element with respect to the drive voltage of the organic EL element 4-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 4-1) × 100
The smaller the obtained numerical value, the better the result.
(1)相対駆動電圧の測定
作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/m2となるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
上記で得られた駆動電圧を下記式に当てはめて、有機EL素子4-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子4-1の駆動電圧)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (Evaluation)
(1) Measurement of relative drive voltage For each organic EL element produced, the front luminance was measured on both the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL element. , And the voltage when the sum was 1000 cd / m 2 was measured as the driving voltage (V). The luminance was measured using a spectroradiometer CS-1000 (manufactured by Konica Minolta).
The drive voltage obtained above was applied to the following equation to determine the relative drive voltage of each organic EL element with respect to the drive voltage of the organic EL element 4-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 4-1) × 100
The smaller the obtained numerical value, the better the result.
(2)高温保存下での相対駆動電圧変化の測定
上記作製した有機EL素子を、温度80℃で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子4-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
高温保存下での相対駆動電圧変化率(%)=(各有機EL素子の駆動電圧変化量/有機EL素子4-1の駆動電圧変化量)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (2) Measurement of change in relative drive voltage under high-temperature storage The organic EL device produced above was allowed to emit light at a temperature of 80 ° C. under a constant current of 2.5 mA / cm 2 , The driving voltage was measured 100 hours after the start.
By comparing the obtained driving voltages before and after the high-temperature storage, the amount of change in the driving voltage (a value obtained by subtracting the driving voltage after the high-temperature storage from the driving voltage before the high-temperature storage) was obtained.
The change amount of the drive voltage obtained above is applied to the following equation, and the relative value of the change amount of the drive voltage of each organic EL element with respect to the change amount of the drive voltage of the organic EL element 4-1 is determined by the relative drive under high-temperature storage. It was obtained as a voltage change.
Relative drive voltage change rate (%) under high-temperature storage = (drive voltage change amount of each organic EL element / drive voltage change amount of organic EL element 4-1) × 100
The smaller the obtained numerical value, the better the result.
上記作製した有機EL素子を、温度80℃で、2.5mA/cm2の定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子4-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
高温保存下での相対駆動電圧変化率(%)=(各有機EL素子の駆動電圧変化量/有機EL素子4-1の駆動電圧変化量)×100
得られた数値が小さいほど、好ましい結果であることを表す。 (2) Measurement of change in relative drive voltage under high-temperature storage The organic EL device produced above was allowed to emit light at a temperature of 80 ° C. under a constant current of 2.5 mA / cm 2 , The driving voltage was measured 100 hours after the start.
By comparing the obtained driving voltages before and after the high-temperature storage, the amount of change in the driving voltage (a value obtained by subtracting the driving voltage after the high-temperature storage from the driving voltage before the high-temperature storage) was obtained.
The change amount of the drive voltage obtained above is applied to the following equation, and the relative value of the change amount of the drive voltage of each organic EL element with respect to the change amount of the drive voltage of the organic EL element 4-1 is determined by the relative drive under high-temperature storage. It was obtained as a voltage change.
Relative drive voltage change rate (%) under high-temperature storage = (drive voltage change amount of each organic EL element / drive voltage change amount of organic EL element 4-1) × 100
The smaller the obtained numerical value, the better the result.
以上より、本発明の有機EL素子は、比較例の有機EL素子よりも相対駆動電圧が低く、高温保存下での相対駆動電圧変化も小さいことから高温保存時の安定性に優れ、耐久性に優れていることがわかった。
As described above, the organic EL device of the present invention has a lower relative drive voltage than the organic EL device of the comparative example, and a small change in the relative drive voltage under high-temperature storage. It turned out to be excellent.
本発明は、電子デバイスの性能向上のため、電子デバイスの駆動電圧の低減及び保存時の安定性向上に寄与する薄膜、電子デバイス、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置に利用することができる。
The present invention provides a thin film, an electronic device, an organic electroluminescence element, a material for organic electroluminescence, a display device, and a display device, which contribute to a reduction in driving voltage of the electronic device and an improvement in stability during storage for improving the performance of the electronic device. It can be used for lighting devices.
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機機能層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
C 配線部
L 発光光Reference Signs List 1 display 3 pixel 5 scanning line 6 data line 7 power supply line 10 organic EL element 11 switching transistor 12 drive transistor 13 capacitor 101 organic EL element 102 in lighting device glass cover 105 cathode 106 organic functional layer 107 glass substrate with transparent electrode 108 nitrogen Gas 109 Water collecting agent A Display unit B Control unit C Wiring unit L Emitted light
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機機能層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
C 配線部
L 発光光
Claims (13)
- 下記一般式(1)で表される構造を有する化合物を含有する薄膜。
- 前記一般式(1)において、n=2の場合、Lのうち少なくとも一つは複素環である請求項1に記載の薄膜。 薄膜 The thin film according to claim 1, wherein in the general formula (1), when n = 2, at least one of L is a heterocyclic ring.
- 前記一般式(1)において、nは3以上である請求項1に記載の薄膜。 薄膜 The thin film according to claim 1, wherein in the general formula (1), n is 3 or more.
- 前記一般式(1)において、Lが、各々独立に、フェニル環、ピリジン環、ピラジン環、又はピリミジン環を表す請求項1から請求項3までのいずれか一項に記載の薄膜。 (4) The thin film according to any one of (1) to (3), wherein in the general formula (1), L independently represents a phenyl ring, a pyridine ring, a pyrazine ring, or a pyrimidine ring.
- 更に電子注入材料を含有する請求項1から請求項4までのいずれか一項に記載の薄膜。 (5) The thin film according to any one of (1) to (4), further comprising an electron injection material.
- 電極と、発光層を含む複数の有機機能層を有する有機エレクトロルミネッセンス素子であって、
前記有機機能層の少なくとも一層が、請求項1から請求項5までのいずれか一項に記載の前記薄膜である有機エレクトロルミネッセンス素子。 An electrode, an organic electroluminescence device having a plurality of organic functional layers including a light emitting layer,
An organic electroluminescence device, wherein at least one of the organic functional layers is the thin film according to any one of claims 1 to 5. - 前記薄膜、電子注入層、前記電極の順に積層されている請求項6に記載の有機エレクトロルミネッセンス素子。 7. The organic electroluminescence device according to claim 6, wherein the thin film, the electron injection layer, and the electrode are stacked in this order.
- 前記電極が、銀を主成分としており、
前記有機機能層が、前記電極に隣接して設けられている請求項6または請求項7に記載の有機エレクトロルミネッセンス素子。 The electrode is mainly composed of silver,
The organic electroluminescence device according to claim 6, wherein the organic functional layer is provided adjacent to the electrode. - 前記電極が、膜厚が15nm以下であり、かつ透明である請求項6から請求項8までのいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 6 to 8, wherein the electrode has a thickness of 15 nm or less and is transparent.
- 下記一般式(1)で表される構造を有する化合物を含有する有機エレクトロルミネッセンス用材料。
- 請求項6から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備する表示装置。 (10) A display device comprising the organic electroluminescence element according to any one of (6) to (9).
- 請求項6から請求項9までのいずれか一項に記載の有機エレクトロルミネッセンス素子を具備する照明装置。 A lighting device comprising the organic electroluminescent element according to any one of claims 6 to 9.
- 電極と、請求項1から請求項5までのいずれか一項に記載の薄膜を有する電子デバイス。 An electronic device having an electrode and the thin film according to any one of claims 1 to 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020529978A JP7173145B2 (en) | 2018-07-09 | 2019-02-15 | thin film, electronic device, organic electroluminescence element, organic electroluminescence material, display device, and lighting device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018129895 | 2018-07-09 | ||
JP2018-129895 | 2018-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020012685A1 true WO2020012685A1 (en) | 2020-01-16 |
Family
ID=69142517
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/005624 WO2020012685A1 (en) | 2018-07-09 | 2019-02-15 | Thin film, electronic device, organic electroluminescent element, material for organic electroluminescence, display device, and lighting equipment |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7173145B2 (en) |
WO (1) | WO2020012685A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022169184A1 (en) * | 2021-02-04 | 2022-08-11 | 주식회사 진웅산업 | Novel compound and organic light-emitting element comprising same |
KR20220113259A (en) * | 2021-02-04 | 2022-08-12 | 주식회사 진웅산업 | New compound and organic light emitting element comprising the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014507383A (en) * | 2010-12-13 | 2014-03-27 | ビーエーエスエフ ソシエタス・ヨーロピア | Bispyrimidine for electronic device applications |
JP2015117235A (en) * | 2013-11-13 | 2015-06-25 | 株式会社半導体エネルギー研究所 | Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device |
JP2015524797A (en) * | 2012-07-13 | 2015-08-27 | エルジー・ケム・リミテッド | Heterocyclic compounds and organic electronic devices using the same |
JP2016538238A (en) * | 2013-09-24 | 2016-12-08 | エルジー・ケム・リミテッド | Heterocyclic compound and organic light emitting device including the same |
WO2018033610A1 (en) * | 2016-08-19 | 2018-02-22 | Julius-Maximilians-Universität Würzburg | Ligands, electrochromic metallo-polymers obtained therewith and their use |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009173565A (en) * | 2008-01-23 | 2009-08-06 | Toyo Ink Mfg Co Ltd | Material for organic electroluminescent element and organic electroluminescent element |
-
2019
- 2019-02-15 JP JP2020529978A patent/JP7173145B2/en active Active
- 2019-02-15 WO PCT/JP2019/005624 patent/WO2020012685A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014507383A (en) * | 2010-12-13 | 2014-03-27 | ビーエーエスエフ ソシエタス・ヨーロピア | Bispyrimidine for electronic device applications |
JP2015524797A (en) * | 2012-07-13 | 2015-08-27 | エルジー・ケム・リミテッド | Heterocyclic compounds and organic electronic devices using the same |
JP2016538238A (en) * | 2013-09-24 | 2016-12-08 | エルジー・ケム・リミテッド | Heterocyclic compound and organic light emitting device including the same |
JP2015117235A (en) * | 2013-11-13 | 2015-06-25 | 株式会社半導体エネルギー研究所 | Organic compound, light-emitting element, display module, lighting module, light-emitting device, display device, electronic device, and lighting device |
WO2018033610A1 (en) * | 2016-08-19 | 2018-02-22 | Julius-Maximilians-Universität Würzburg | Ligands, electrochromic metallo-polymers obtained therewith and their use |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022169184A1 (en) * | 2021-02-04 | 2022-08-11 | 주식회사 진웅산업 | Novel compound and organic light-emitting element comprising same |
KR20220113259A (en) * | 2021-02-04 | 2022-08-12 | 주식회사 진웅산업 | New compound and organic light emitting element comprising the same |
KR102702819B1 (en) * | 2021-02-04 | 2024-09-06 | 주식회사 진웅산업 | New compound and organic light emitting element comprising the same |
Also Published As
Publication number | Publication date |
---|---|
JP7173145B2 (en) | 2022-11-16 |
JPWO2020012685A1 (en) | 2021-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5810529B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP5857724B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE, LIGHTING DEVICE, AND ORGANIC ELECTROLUMINESCENT ELEMENT MANUFACTURING METHOD | |
JP7107223B2 (en) | Organic electroluminescence element and material for organic electroluminescence | |
JP5862079B2 (en) | Organic electroluminescence element, display device and lighting device | |
JP2010045281A (en) | Organic electroluminescent element material, organic electroluminescent element, display, and lighting system | |
JP2015213119A (en) | Material for organic electroluminescent elements, organic electroluminescent element, illuminating device and display device | |
JP4506086B2 (en) | Organic electroluminescence device | |
JP6686891B2 (en) | Iridium complex, organic electroluminescent material, organic electroluminescent element, display device and lighting device | |
JP2004273190A (en) | Organic electroluminescent element, organic electroluminescent element material, display device, and lighting unit | |
JP2003272864A (en) | Organic el element and organic el display | |
JP6677246B2 (en) | Material for organic electroluminescence element, organic electroluminescence element, display device and lighting device | |
WO2020012685A1 (en) | Thin film, electronic device, organic electroluminescent element, material for organic electroluminescence, display device, and lighting equipment | |
WO2015046452A1 (en) | Iridium complex, method for producing iridium complex, organic electroluminescence element, display device and illumination device | |
WO2020012686A1 (en) | Organic electroluminescent element | |
WO2019107424A1 (en) | Organic electroluminescence element, organic electroluminescence material, display device, and illumination device | |
JP7029404B2 (en) | Organic electroluminescence devices and materials for organic electroluminescence | |
JP2005078996A (en) | Organic electroluminescent element and display device | |
WO2019176384A1 (en) | Organic electroluminescence element, material for organic electroluminescence, display device, and illumination device | |
WO2013137162A1 (en) | Organic electroluminescent element, lighting device, and display device | |
JP6662297B2 (en) | Organic electroluminescence element, lighting device and display device provided with the same | |
JP5930005B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD, DISPLAY DEVICE AND LIGHTING DEVICE | |
JP5708759B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE | |
JP5673746B2 (en) | Organic electroluminescence device | |
JP5359441B2 (en) | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE | |
JP2012028823A (en) | Organic electroluminescent element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19834517 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020529978 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19834517 Country of ref document: EP Kind code of ref document: A1 |