WO2019176384A1 - Organic electroluminescence element, material for organic electroluminescence, display device, and illumination device - Google Patents

Organic electroluminescence element, material for organic electroluminescence, display device, and illumination device Download PDF

Info

Publication number
WO2019176384A1
WO2019176384A1 PCT/JP2019/004099 JP2019004099W WO2019176384A1 WO 2019176384 A1 WO2019176384 A1 WO 2019176384A1 JP 2019004099 W JP2019004099 W JP 2019004099W WO 2019176384 A1 WO2019176384 A1 WO 2019176384A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
ring
layer
cathode
compound
Prior art date
Application number
PCT/JP2019/004099
Other languages
French (fr)
Japanese (ja)
Inventor
恵美子 御子柴
杉野 元昭
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2019176384A1 publication Critical patent/WO2019176384A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/26Light sources with substantially two-dimensional radiating surfaces characterised by the composition or arrangement of the conductive material used as an electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to an organic electroluminescence element, a material for organic electroluminescence, a display device, and a lighting device.
  • An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a structure in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode. When an electric field is applied thereto, holes injected from the anode and electrons injected from the cathode are recombined in the light emitting layer, thereby generating excitons.
  • the organic EL element is a light-emitting element utilizing light emission (fluorescence / phosphorescence) when the exciton is deactivated.
  • An organic EL element is an all-solid-state element composed of an organic material film having a thickness of only a submicron between electrodes, and can emit light at a voltage of about several volts to several tens of volts. . Therefore, it is expected to be used for next-generation flat displays and lighting.
  • organic EL elements are expected to improve performance.
  • Various organic electroluminescent materials (hereinafter also referred to as organic EL materials) have been developed for improving the performance of organic EL elements.
  • Patent Document 1 and Patent Document 2 describe the use of pyrimidine compounds.
  • a compound that can further improve the performance of the organic EL device for example, a compound that can lower the driving voltage or improve the stability during high-temperature storage is demanded.
  • the present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is an organic electroluminescence element having improved driving voltage and stability during high-temperature storage, and organic electroluminescence used in the organic electroluminescence element. Materials, display devices, and lighting devices.
  • An organic electroluminescence device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order, and having a structure represented by the following general formula (1) between the light emitting layer and the cathode
  • the organic electroluminescent element which has the said organic functional layer containing the compound which has.
  • Ar 1 , Ar 2 , Ar 5 , Ar 6 each independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent.
  • Ar 3 , Ar 4 each independently represents a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent, n represents an integer of 3 or more, and L represents each independently an aromatic carbon (It represents a hydrogen ring or a heterocyclic ring, and may further have a substituent, provided that when L is a single ring, they are linked by at least one of an ortho bond and a para bond.)
  • Ar 1 , Ar 2 , Ar 5 and Ar 6 each independently represent a phenyl ring, a naphthyl ring, a pyridine ring, a pyrimidine ring, a quinoline ring or an isoquinoline ring, and further have a substituent. 3.
  • each L independently represents a phenyl ring, a pyridine ring, a pyrimidine ring, or a pyrazine ring, and further may have a substituent.
  • Organic electroluminescence element independently represents a phenyl ring, a pyridine ring, a pyrimidine ring, or a pyrazine ring, and further may have a substituent.
  • the organic functional layer containing the compound having the structure represented by the general formula (1), the electron injection layer containing an electron injection material, and the cathode are laminated in this order, any one of 1 to 7 above
  • the organic electroluminescent element of description any one of 1 to 7 above
  • Ar 1 , Ar 2 , Ar 5 , Ar 6 each independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent.
  • Ar 3 , Ar 4 each independently represents a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent, n represents an integer of 3 or more, and L represents each independently an aromatic carbon (It represents a hydrogen ring or a heterocyclic ring, and may further have a substituent, provided that when L is a single ring, they are linked by at least one of an ortho bond and a para bond.)
  • a display device comprising the organic electroluminescence element according to any one of 1 to 8 above.
  • a lighting device comprising the organic electroluminescence element according to any one of 1 to 8 above.
  • an organic electroluminescence device having improved driving voltage and stability during high-temperature storage, and an organic electroluminescence material used for the organic electroluminescence device.
  • a display device and a lighting device with improved driving voltage and stability at high temperature storage.
  • the organic electroluminescence device of the present invention is an organic electroluminescence device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order, and the following general formula is provided between the light emitting layer and the cathode. It has the said organic functional layer containing the compound which has a structure represented by (1), It is characterized by the above-mentioned. This feature is a technical feature common to the inventions according to claims 1 to 8.
  • Ar 1 , Ar 2 , Ar 5 , Ar 6 each independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. That is, Ar 1 , Ar 2 , Ar 5 and Ar 6 each independently represent a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heterocyclic ring.
  • aromatic hydrocarbon ring are not particularly limited, and examples thereof include a phenyl ring, a naphthyl ring, an anthracene ring, and a pyrene ring.
  • Specific examples of the heterocyclic ring are not particularly limited.
  • a part of carbon atoms in the aromatic hydrocarbon ring is substituted with a hetero atom (oxygen atom, nitrogen atom or sulfur atom).
  • a hetero atom oxygen atom, nitrogen atom or sulfur atom.
  • Ar 1 , Ar 2 , Ar 5 , Ar 6 are preferably each independently a phenyl ring, naphthyl ring, pyridine ring, pyrimidine ring, quinoline ring or isoquinoline ring. These may further have a substituent.
  • Ar 3 and Ar 4 each independently represent a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. That is, Ar 3 and Ar 4 each independently represent a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring, or a substituted or unsubstituted heterocycle.
  • aromatic hydrocarbon ring are not particularly limited, and examples thereof include a phenyl ring, a naphthyl ring, an anthracene ring, and a pyrene ring.
  • Specific examples of the heterocyclic ring are not particularly limited.
  • a part of carbon atoms in the aromatic hydrocarbon ring is substituted with a hetero atom (oxygen atom, nitrogen atom or sulfur atom).
  • a hetero atom oxygen atom, nitrogen atom or sulfur atom.
  • Ar 3 and Ar 4 are preferably hydrogen atoms.
  • n represents an integer of 3 or more.
  • each L independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. That is, each L independently represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heterocycle. Specific examples of L are not particularly limited.
  • each L independently represents a phenyl ring, a pyridine ring, a pyrimidine ring or a pyrazine ring. These may further have a substituent.
  • L is a single ring
  • L is connected by at least one of an ortho bond and a para bond.
  • an alkyl group for example, a methyl group, an ethyl group, a trifluoromethyl group, an isopropyl group, etc.
  • an aryl group for example, a phenyl group etc.
  • Heteroaryl groups eg, pyridyl group, carbazolyl group, etc.
  • halogen atoms eg, fluorine atom, etc.
  • cyano groups fluorinated alkyl groups, etc.
  • the organic electroluminescent material of the present invention is characterized by containing a compound having a structure represented by the general formula (1).
  • General formula (1) is as described above.
  • the spread of the LUMO electron density distribution can be increased in the compound having the structure represented by the general formula (1).
  • the electron hopping between molecules can be accelerated and the electron mobility can be increased.
  • the drive voltage can be lowered, and the voltage rise during high temperature storage can be suppressed.
  • the calculation of LUMO by molecular orbital calculation of the compound having the structure represented by the general formula (1) is performed using molecular orbital calculation software using B3LYP as a functional and 6-31G (d) as a basis function as a calculation method.
  • molecular orbital calculation software using B3LYP as a functional and 6-31G (d) as a basis function as a calculation method.
  • B3LYP molecular orbital calculation software
  • 6-31G (d) as a basis function as a calculation method.
  • Gaussian 09 Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010. manufactured by Gaussian, USA was used as molecular orbital calculation software.
  • a plurality of nitrogen-containing heterocycles interact with silver, the diffusion distance of silver atoms is reduced, and silver aggregation can be suppressed. Thereby, a uniform film of an electrode mainly composed of silver can be achieved. Moreover, since this invention compound can suppress crystallinity, it can be laminated
  • the light emitting layer unit may have a non-light emitting intermediate layer between a plurality of light emitting layers, and may have a multi-photon unit configuration in which the intermediate layer is a charge generation layer.
  • the charge generating layer ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2, TiN, ZrN , HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2, CuGaO 2 , conductive inorganic compound layers such as SrCu 2 O 2 , LaB 6 , and RuO 2 , two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 Multilayer films such as O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C
  • the organic EL device of the present invention has an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order. That is, the organic functional layer according to the present invention is located between the anode and the cathode.
  • the organic EL element of the present invention has a plurality of organic functional layers, and the organic functional layer includes a light emitting layer. There may be one or more light emitting layers.
  • the electron injection layer contains a compound having a structure represented by the general formula (1).
  • the organic functional layer containing a compound having a structure represented by the general formula (1), the electron injection layer containing an electron injection material, and the cathode are laminated in this order.
  • the light emitting layer used in the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode or the electron transport layer and the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the total thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the stability of the emission color against the drive current and the uniformity of the film, preventing unnecessary application of high voltage during light emission. Preferably, it is adjusted in the range of 2 nm to 5 ⁇ m.
  • the total thickness of the light emitting layers is more preferably adjusted in the range of 2 to 200 nm, and particularly preferably in the range of 5 to 100 nm.
  • the light-emitting layer can be formed by using a light-emitting dopant or a host compound, which will be described later, by forming a film by, for example, a vacuum deposition method or a wet method.
  • the wet method is also called a wet process.
  • a spin coating method for example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, an LB method (Langmuir Brodgett). (Langmuir Broadgett method)) and the like.
  • the light emitting layer of the organic EL device of the present invention preferably contains a light emitting dopant (such as a phosphorescent light emitting dopant or a fluorescent light emitting dopant) compound and a host compound.
  • Luminescent dopant A luminescent dopant (a luminescent dopant, a dopant compound, or simply a dopant) will be described.
  • a phosphorescent dopant also referred to as a phosphorescent dopant, a phosphorescent compound, a phosphorescent compound, or the like
  • a fluorescent dopant also referred to as a fluorescent dopant, a fluorescent compound, or a fluorescent compound.
  • a phosphorescent dopant is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.).
  • the phosphorescence dopant is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C., but a preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition.
  • the phosphorescence quantum yield in a solution can be measured using various solvents. However, the phosphorescence dopant used by this invention should just achieve the said phosphorescence quantum yield (0.01 or more) in any solvent.
  • the energy transfer type In the energy transfer type, recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the luminescent host compound, and light is emitted from the phosphorescent dopant by transferring this energy to the phosphorescent dopant. Is.
  • the other is a carrier trap type. In the carrier trap type, the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
  • Fluorescent dopant examples include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, Examples include perylene dyes, stilbene dyes, polythiophene dyes, rare-earth complex phosphors, and compounds having high fluorescence quantum yields typified by laser dyes.
  • the light emitting dopant used in the present invention may be used in combination of a plurality of types of compounds, a combination of phosphorescent dopants having different structures, or a combination of a phosphorescent dopant and a fluorescent dopant.
  • the light-emitting dopant conventionally known compounds described in International Publication No. 2013/061850 can be preferably used, but the present invention is not limited thereto.
  • a host compound (also referred to as a light-emitting host or a light-emitting host compound) that can be used in the present invention has a mass ratio in the layer of 20% or more among the compounds contained in the light-emitting layer, and a room temperature ( 25 ° C.) is defined as a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the host compound that can be used in the present invention is not particularly limited, and a compound used in a conventional organic EL device can be used.
  • a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • a conventionally well-known host compound may be used independently, and may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of conventionally known compounds, it is possible to mix different light emission, thereby obtaining an arbitrary emission color.
  • the host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound (polymerizable host compound) having a polymerizable group such as a vinyl group or an epoxy group. Good. Moreover, as a host compound used for this invention, you may use 1 type or multiple types of such a compound.
  • host compounds include compounds described in the following documents. JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
  • cathode As the cathode, a metal having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof may be used.
  • electrode materials include aluminum, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode is particularly preferably composed mainly of silver.
  • the alloy mainly containing silver include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn), and the like.
  • the “main component” in the present invention means that 50% by mass or more in the film or layer is contained, preferably 80% by mass or more, and more preferably 90% by mass or more. .
  • the cathode using an alloy containing silver as a main component may have a structure in which a plurality of layers are laminated as necessary.
  • the film thickness of the cathode is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the film thickness is preferably 15 nm or less, and more preferably 12 nm or less.
  • it is preferable that a film thickness is 4 nm or more. That is, when an alloy containing silver as a main component is used, the film thickness is more preferably in the range of 4 to 12 nm.
  • the film thickness is within the range, the light component absorbed or reflected by the film can be further reduced, the light transmittance can be further maintained, and the conductivity of the layer can be further ensured.
  • the cathode when it is mainly composed of silver, it is preferably adjacent to the organic functional layer containing the compound having the structure represented by the general formula (1).
  • the organic functional layer containing the compound having the structure represented by the general formula (1) is preferably adjacent to the cathode, and even when the cathode is formed on the organic functional layer, The organic functional layer may be formed.
  • a structure in which a cathode is formed on the organic functional layer, an organic functional layer is further formed on the cathode, and the cathode is sandwiched between two organic functional layers may be employed.
  • the film is formed by film growth of (Frank-van der Merwe: FM type).
  • the silver atoms constituting the cathode interact with the atoms having an affinity for the silver atoms contained in the organic functional layer, and the mobility is suppressed. It is conceivable that. Thereby, irregular reflection can be suppressed by improving the surface smoothness of the cathode, and the light transmittance can be improved. It is presumed that such an interaction suppresses changes in the film quality of the cathode in response to physical stimuli such as heat and temperature, thereby improving durability.
  • the cathode can be produced by forming a thin film by vapor deposition, sputtering or the like using a general electrode material in addition to an alloy containing silver as a main component.
  • the sheet resistance value as the cathode is preferably several hundred ⁇ / sq ( ⁇ / ⁇ ) or less, more preferably 50 ⁇ / sq or less. In particular, it is preferably 25 ⁇ / sq or less.
  • the lower limit is not particularly specified, but can be, for example, 1 ⁇ / sq or more.
  • the emission luminance is advantageously improved.
  • the light transmittance of the cathode is preferably 30% or more, and more preferably 50% or more. More preferably, it is 70% or more.
  • the upper limit is not particularly specified, but can be 95% or less, for example.
  • a transparent or semi-transparent cathode can be produced by producing a conductive transparent material mentioned in the explanation of the anode described later on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode. . By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • the electron transport layer is made of a material having a function of transporting electrons, and preferably contains a compound having a structure represented by the general formula (1) as described above.
  • an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided with a single layer or a plurality of layers. Furthermore, you may provide the electron injection transport layer which also contains the material contained in the electron injection layer mentioned later.
  • the electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • any one of conventionally known compounds may be selected and used in combination. Is also possible.
  • electron transport materials examples include polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, Heterocyclic tetracarboxylic anhydride, carbodiimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxadiazole derivative, carboline derivative, or carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative Derivatives having a ring structure in which at least one is substituted with a nitrogen atom, hexaazatriphenylene derivatives, and the like can be mentioned.
  • polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, Heterocyclic tetrac
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material. It is also possible to use a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having a terminal substituted with an alkyl group or a sulfonic acid group can be used as the electron transport material.
  • An inorganic semiconductor such as n-type-Si and n-type-SiC can also be used as an electron transport material.
  • the electron transport layer is preferably formed by thinning an electron transport material by, for example, a vacuum deposition method or a wet method.
  • the wet method is also called a wet process.
  • a spin coating method for example, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, an LB method (Langmuir Brodgett). (Langmuir Brodgett method)) and the like.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 to 5000 nm, preferably 5 to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an n-type dopant such as a metal compound such as a metal complex or a metal halide may be doped.
  • the compounds described in International Publication No. 2013/061850 can be preferably used. It is not limited to.
  • Injection layer electron injection layer (cathode buffer layer), hole injection layer >>
  • the injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and may exist between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. .
  • the injection layer is a layer provided between the electrode and the organic functional layer in order to lower the driving voltage and improve the light emission luminance.
  • the injection layer is described in detail in the second chapter, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL devices and their forefront of industrialization” (issued on November 30, 1998 by NTT).
  • anode buffer layer (hole injection layer) is also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like.
  • Specific examples of the anode buffer layer include a phthalocyanine buffer layer typified by copper phthalocyanine, a hexaazatriphenylene derivative buffer layer described in JP-T-2003-519432, JP-A-2006-135145, and the like.
  • Typical examples include oxide buffer layers typified by vanadium oxide, amorphous carbon buffer layers, polymer buffer layers using conductive polymers such as polyaniline (emeraldine) and polythiophene, and tris (2-phenylpyridine) iridium complexes. Or ortho-metalated complex layer.
  • cathode buffer layer electro injection layer
  • a metal buffer layer typified by strontium or aluminum
  • an alkali metal compound buffer layer typified by lithium fluoride or potassium fluoride
  • a magnesium fluoride or a cesium fluoride examples thereof include an alkaline earth metal compound buffer layer and an oxide buffer layer typified by aluminum oxide.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transporting layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and an extremely small ability to transport holes.
  • the hole blocking layer can improve the recombination probability of electrons and holes by blocking holes while transporting electrons.
  • the structure of the electron carrying layer mentioned above can be used as a hole-blocking layer as needed.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer includes a carbazole derivative, a carboline derivative, a diazacarbazole derivative (the diazacarbazole derivative is a nitrogen atom in which any one of carbon atoms constituting the carboline ring is cited as the host compound described above. It is preferable to contain the thing replaced by.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes and an extremely small ability to transport electrons.
  • the electron blocking layer can improve the recombination probability of electrons and holes by blocking electrons while transporting holes.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers.
  • azatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • This hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities can be used.
  • examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • an electrode substance include metals such as Au, and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method.
  • a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • wet film-forming methods such as a printing system and a coating system, can also be used.
  • the light transmittance is desirably greater than 10%
  • the sheet resistance as the anode is preferably several hundred ⁇ / sq or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Appel (
  • the hybrid coating is a gas having a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) of 0.01 g / m 2 ⁇ 24 h or less, measured by a method according to JIS K 7129-1992.
  • a barrier film is preferred.
  • the hybrid film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 mL / m 2 ⁇ 24 h ⁇ atm or less, and a water vapor permeability of 1 ⁇ 10 ⁇ 5.
  • a high gas barrier film of g / m 2 ⁇ 24 h or less is preferable.
  • the material for forming the gas barrier layer may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the gas barrier layer is not particularly limited.
  • the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, and ceramic substrates.
  • the external extraction yield at room temperature for light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
  • the external extraction quantum yield (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • a device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode Will be described.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate so as to have a thickness of 1 ⁇ m or less, preferably 10 to 200 nm, and an anode is manufactured.
  • a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, or a cathode buffer layer, which is an element material, is formed thereon.
  • a thin film can be formed by a vacuum deposition method, a wet method (also referred to as a wet process) or the like.
  • the wet method include a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, and an LB method.
  • a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, and a spray coating method is preferable from the viewpoint of forming a precise thin film and high productivity.
  • Different film formation methods may be applied for each layer.
  • liquid medium for dissolving or dispersing the organic EL material such as a luminescent dopant used in the present invention include, for example, ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, Aromatic hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as dimethylformamide (DMF) and DMSO can be used.
  • a dispersion method it can disperse
  • a thin film made of a cathode material is formed thereon so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode.
  • the order can be reversed, and the cathode, cathode buffer layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in this order.
  • the organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include those formed from polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
  • Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 mL / m 2 ⁇ 24 h ⁇ atm or less, and measured by a method according to JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably 1 ⁇ 10 ⁇ 3 g / m 2 ⁇ 24 h or less.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic functional layer are coated on the outside of the electrode facing the support substrate with the organic functional layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • a material for forming the film any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside. Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic functional layer interposed therebetween, or the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15 to 20% of the light generated in the light emitting layer. Is generally said. This is because light incident on the interface (transparent substrate-air interface) at an angle ⁇ greater than the critical angle causes total reflection and cannot be extracted outside the device. Further, light is totally reflected between the transparent electrode or light emitting layer and the transparent substrate, and the light is guided through the transparent electrode or light emitting layer, and as a result, the light escapes in the side surface direction of the element.
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), condensing on the substrate.
  • a method of improving the efficiency by imparting a property Japanese Patent Laid-Open No. 63-314795
  • a method of forming a reflective surface on the side surface of the element Japanese Patent Laid-Open No. 1-220394
  • Japanese Patent Laid-Open No. 1-220394 Japanese Patent Laid-Open No. 1-220394
  • Japanese Patent Laid-Open No. 1-220394 Japanese Patent Laid-Open No. 1-220394
  • these methods can be used in combination with the organic EL device of the present invention.
  • the method of forming can be used suitably. In the present invention, by combining these means, it is possible to obtain an element having higher brightness or durability.
  • the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less. Further, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method utilizes the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as primary diffraction or secondary diffraction.
  • This method introduces a diffraction grating into any layer or medium (inside a transparent substrate or in a transparent electrode) of light generated from the light-emitting layer that cannot go out due to total internal reflection between layers. By doing so, the light is diffracted and the light is taken out.
  • the introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention is processed on the light extraction side of the substrate, for example, so as to provide a microlens array-like structure, or in combination with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface.
  • a specific direction for example, the device light emitting surface.
  • the luminance in a specific direction can be increased.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusing plate and a film with a condensing sheet for example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as an electronic device, a display device, a display, and various light emitting devices.
  • light emitting devices include lighting devices (home lighting, interior lighting), clocks and backlights for liquid crystals, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include, but are not limited to, a sensor light source. In particular, it can be effectively used as a backlight of a liquid crystal display device and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, or the electrode and the light emitting layer may be patterned.
  • the entire layer of the element may be patterned, and a conventionally known method can be used for manufacturing the element.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 7.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • CS-1000 manufactured by Konica Minolta Co., Ltd.
  • the organic EL element of the present invention can also be used for a display device.
  • the display device of the present invention includes the organic EL element of the present invention.
  • the display device may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
  • the method is not limited. However, the vapor deposition method, the ink jet method, the spin coating method, and the printing method are preferable.
  • the configuration of the organic EL element provided in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
  • the manufacturing method of an organic EL element is as having shown to the one aspect
  • the multicolor display device can be used as a display device, a display, and various light emission sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile.
  • the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
  • Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc.
  • the present invention is not limited to these examples.
  • FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like.
  • the control unit B is electrically connected via the display unit A and the wiring unit C, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Then, the pixels for each scanning line sequentially emit light in accordance with the image data signal by the scanning signal, and image scanning is performed to display image information on the display unit A.
  • FIG. 2 is a schematic diagram of a display device using an active matrix system, and is a schematic diagram of a display unit A.
  • the display unit A includes a wiring unit C including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate. The main members of the display unit A will be described below.
  • FIG. 2 shows a case where the light emitted from the pixel 3 (the emitted light L) is extracted in the white arrow direction (downward).
  • the scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated Not)
  • the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
  • Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram showing a pixel circuit.
  • the pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6.
  • the scanning signal is applied from the control unit B to the gate of the switching transistor 11 through the scanning line 5
  • the driving of the switching transistor 11 is turned on. Then, the image data signal applied to the drain is transmitted to the capacitor 13 and the gate of the driving transistor 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on. The light emission of the organic EL element 10 continues until the next scanning signal is applied.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3. It is carried out.
  • Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good.
  • the potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • FIG. 4 is a schematic view of a passive matrix display device.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
  • the pixel 3 has no active element, and the manufacturing cost can be reduced.
  • the organic EL element of the present invention By using the organic EL element of the present invention, a display device with improved luminous efficiency was obtained.
  • the organic EL element of the present invention can also be used for a lighting device.
  • the lighting device of the present invention includes the organic EL element of the present invention.
  • the organic EL element of the present invention may be used as an organic EL element having a resonator structure. Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
  • the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
  • the driving method when used as a display device for reproducing a moving image may be either a passive matrix method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
  • white light emission can be obtained by simultaneously emitting a plurality of light emission colors and mixing the colors.
  • the light emission may include three light emission maximum wavelengths of three primary colors of red, green and blue, or two light emission utilizing a complementary color relationship such as blue and yellow, blue green and orange, etc. It may contain a maximum wavelength.
  • the method for forming the organic EL device of the present invention may be simply arranged by providing a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, or the like, and separately coating with the mask. Since the other layers are common, patterning of a mask or the like is unnecessary, and for example, an electrode film can be formed on one surface by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is improved. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • the non-light-emitting surface of the organic EL element of the present invention is covered with a glass case, and a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate.
  • An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is stacked on the cathode and brought into close contact with the transparent support substrate. Then, UV light is irradiated from the glass substrate side to be cured and sealed, and an illumination device as shown in FIGS. 5 and 6 can be formed.
  • FIG. 5 and 6 An illumination device as shown in FIGS. 5 and 6 can be formed.
  • FIG. 5 shows a schematic diagram of the lighting device, and the organic EL element of the present invention (organic EL element 101 in the lighting device) is covered with a glass cover 102 (note that the sealing operation with the glass cover is performed by lighting. This was performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 in the apparatus into contact with the air.
  • 6 shows a cross-sectional view of the lighting device.
  • reference numeral 105 denotes a cathode
  • 106 denotes an organic functional layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • Example 1 (Production of organic EL element) ⁇ Preparation of organic EL element 1-1> An ITO (indium tin oxide) film having a thickness of 150 nm was formed as an anode on a glass substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm. After patterning, the transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Subsequently, it dried with dry nitrogen gas and performed UV ozone cleaning for 5 minutes. Thereafter, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • ITO indium tin oxide
  • Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten. After reducing the pressure to 1 ⁇ 10 ⁇ 4 Pa, the evaporation crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was energized and heated. And it vapor-deposited on the ITO transparent electrode with the vapor deposition rate of 0.1 nm / sec, and formed the 10-nm-thick hole injection layer.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the hole transport layer was formed.
  • CBP 4,4′-Bis (carbazol-9-yl) biphenyl) as the host compound and Ir (ppy) 3 as the luminescent dopant were deposited at a deposition rate of 0.1 nm / min so as to be 90% and 10% by volume, respectively.
  • Co-evaporation was performed in seconds to form a light emitting layer having a layer thickness of 30 nm.
  • the deposition rate was 0.1 nm / second so that the comparative compound 1 (electron transport layer (1)) and LiQ (8-hydroxyquinolinato lithium) (electron transport layer (2)) were 50% and 50% by volume, respectively.
  • the comparative compound 1 (electron transport layer (1)) and LiQ (8-hydroxyquinolinato lithium) (electron transport layer (2)) were 50% and 50% by volume, respectively.
  • 100 nm of aluminum was vapor-deposited to form a cathode.
  • the non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was installed to prepare an organic EL element 1-1.
  • organic EL elements 1-2 to 1-30 were prepared in the same manner as the organic EL element 1-1 except that the compounds contained in the electron transport layers (1) and (2) and the electron injection layer were changed as shown in Table 1. 30 was produced. In Table 1, “-” indicates that no component is contained.
  • Example 2 (Production of organic EL element) ⁇ Preparation of organic EL element 2-1> A transparent substrate with an ITO (Indium Tin Oxide) film having a thickness of 150 nm formed on a glass substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm, patterned, and this ITO transparent electrode was attached After ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas and UV ozone cleaning for 5 minutes, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • ITO Indium Tin Oxide
  • Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten. After reducing the vacuum to 1 ⁇ 10 ⁇ 4 Pa, energize and heat the evaporation crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) to evaporate Vapor deposition was performed on the ITO transparent electrode at a rate of 0.1 nm / second to form a hole injection layer having a layer thickness of 10 nm.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the hole transport layer was formed.
  • CBP as a host compound and Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / second so as to be 90% and 10% by volume, respectively, to form a light emitting layer having a layer thickness of 30 nm.
  • Comparative Compound 2 and KF were co-deposited at a deposition rate of 0.1 nm / second so as to be 85% and 15% by volume, respectively, to form an electron transport layer having a layer thickness of 30 nm.
  • silver was deposited at a deposition rate of 0.1 nm / second to form a cathode having a thickness of 15 nm.
  • the non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was installed to produce an organic EL element 2-1.
  • organic EL elements 2-2 to 2-21 were the same as the organic EL element 2-1, except that the compound of the electron transport layer, the ratio of silver and magnesium of the cathode, and the film thickness of the cathode were changed as shown in Table 2. 21 was produced.
  • the electron transport layer contains 15% KF, but in Table 2, the notation of KF is omitted.
  • Example 3 (Production of organic EL element) ⁇ Preparation of organic EL element 3-1> An ITO (indium tin oxide) film having a thickness of 150 nm was formed as an anode on a glass substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm. After patterning, the transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Subsequently, it dried with dry nitrogen gas and performed UV ozone cleaning for 5 minutes. Thereafter, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • ITO indium tin oxide
  • Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten. After reducing the pressure to 1 ⁇ 10 ⁇ 4 Pa, the evaporation crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was energized and heated. And it vapor-deposited on the ITO transparent electrode with the vapor deposition rate of 0.1 nm / sec, and formed the 10-nm-thick hole injection layer.
  • ⁇ -NPD 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • the hole transport layer was formed.
  • CBP as a host compound and Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / second so as to be 90% and 10% by volume, respectively, to form a light emitting layer having a layer thickness of 30 nm.
  • Alq 3 was deposited as an electron transport layer at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 30 nm.
  • Comparative Compound 3 and LiQ were co-deposited at a deposition rate of 0.1 nm / second so as to be 50% and 50% by volume, respectively, to form an electron injection layer having a layer thickness of 2 nm.
  • silver and magnesium were co-deposited at a deposition rate of 0.1 nm / second and 0.01 nm / second, respectively, to form a cathode having a thickness of 8 nm.
  • the non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and an electrode lead-out wiring was installed to prepare an organic EL element 3-1.
  • the organic EL devices 3-2 to 3-3 were the same as the organic EL device 3-1, except that the compound of the electron injection layer, the ratio of silver and magnesium of the cathode, and the thickness of the cathode were changed as shown in Table 3. 17 was produced.
  • 50% of LiQ is contained in the electron injection layer, but the LiQ notation is omitted in Table 3.
  • the organic EL device of the present invention has a lower relative driving voltage than the organic EL device of the comparative example and a smaller change in the relative driving voltage under high temperature storage, so that it has excellent stability during high temperature storage and durability. I found it excellent.

Abstract

The present invention addresses the problem of providing an organic electroluminescence element in which stability during high-temperature storage and the drive voltage are improved, a material for organic electroluminescence used in the organic electroluminescence element, a display device, and an illumination device. This organic electroluminescence element has a positive electrode, a plurality of organic functional layers including a light-emitting layer, and a negative electrode in the stated order, wherein the organic electroluminescence element has, between the light-emitting layer and the negative electrode, an organic functional layer containing a compound that has a structure represented by general formula (1).

Description

有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT MATERIAL, DISPLAY DEVICE, AND LIGHTING DEVICE
 本発明は、有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置に関する。 The present invention relates to an organic electroluminescence element, a material for organic electroluminescence, a display device, and a lighting device.
 有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう。)は、発光する化合物を含有する発光層を、陰極と陽極とで挟んだ構成を有する。これに、電界を印加することにより、陽極から注入された正孔と陰極から注入された電子を発光層内で再結合させることで励起子(エキシトン)を生成させる。有機EL素子は、このエキシトンが失活する際の光の放出(蛍光・リン光)を利用した発光素子である。また、有機EL素子は、電極と電極の間を厚さが僅かサブミクロン程度である有機材料の膜で構成する全固体素子であり、数V~数十V程度の電圧で発光が可能である。そのため、次世代の平面ディスプレイや照明への利用が期待されている。 An organic electroluminescence element (hereinafter also referred to as an organic EL element) has a structure in which a light emitting layer containing a light emitting compound is sandwiched between a cathode and an anode. When an electric field is applied thereto, holes injected from the anode and electrons injected from the cathode are recombined in the light emitting layer, thereby generating excitons. The organic EL element is a light-emitting element utilizing light emission (fluorescence / phosphorescence) when the exciton is deactivated. An organic EL element is an all-solid-state element composed of an organic material film having a thickness of only a submicron between electrodes, and can emit light at a voltage of about several volts to several tens of volts. . Therefore, it is expected to be used for next-generation flat displays and lighting.
 近年、有機EL素子は、性能の向上が期待されている。そして、有機EL素子の性能の向上のため、種々の有機エレクトロルミネッセンス用材料(以下、有機EL材料ともいう。)が開発されている。例えば、特許文献1及び特許文献2には、ピリミジン化合物を用いることが記載されている。しかしながら、更に有機EL素子の性能を向上させることができる化合物、例えば、駆動電圧を低くしたり、高温保存時の安定性を向上させたりすることができる化合物が求められている。 In recent years, organic EL elements are expected to improve performance. Various organic electroluminescent materials (hereinafter also referred to as organic EL materials) have been developed for improving the performance of organic EL elements. For example, Patent Document 1 and Patent Document 2 describe the use of pyrimidine compounds. However, a compound that can further improve the performance of the organic EL device, for example, a compound that can lower the driving voltage or improve the stability during high-temperature storage is demanded.
国際公開第2004/39786号International Publication No. 2004/39786 米国特許出願公開第2007/190355号明細書US Patent Application Publication No. 2007/190355
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、駆動電圧及び高温保存時の安定性が改善された有機エレクトロルミネッセンス素子、当該有機エレクトロルミネッセンス素子に用いる有機エレクトロルミネッセンス用材料、表示装置、及び、照明装置を提供することである。 The present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is an organic electroluminescence element having improved driving voltage and stability during high-temperature storage, and organic electroluminescence used in the organic electroluminescence element. Materials, display devices, and lighting devices.
 本発明に係る上記課題は、以下の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 1.陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、前記発光層と前記陰極の間に、下記一般式(1)で表される構造を有する化合物を含有する前記有機機能層を有する有機エレクトロルミネッセンス素子。 1. An organic electroluminescence device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order, and having a structure represented by the following general formula (1) between the light emitting layer and the cathode The organic electroluminescent element which has the said organic functional layer containing the compound which has.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(一般式(1)中、Ar、Ar、Ar、Arは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。Ar、Arは、各々独立に、水素原子、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。nは3以上の整数を表す。Lは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。但し、Lが単環の場合は、オルト結合及びパラ結合のうちの少なくとも1つの結合で連結する。) (In general formula (1), Ar 1 , Ar 2 , Ar 5 , Ar 6 each independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. Ar 3 , Ar 4 each independently represents a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent, n represents an integer of 3 or more, and L represents each independently an aromatic carbon (It represents a hydrogen ring or a heterocyclic ring, and may further have a substituent, provided that when L is a single ring, they are linked by at least one of an ortho bond and a para bond.)
 2.前記一般式(1)において、Ar、Arは、水素原子である前記1に記載の有機エレクトロルミネッセンス素子。 2. 2. The organic electroluminescence device according to 1, wherein Ar 3 and Ar 4 in the general formula (1) are hydrogen atoms.
 3.前記一般式(1)において、Ar、Ar、Ar、Arは、各々独立に、フェニル環、ナフチル環、ピリジン環、ピリミジン環、キノリン環又はイソキノリン環を表し、更に置換基を有してもよい前記1又は前記2に記載の有機エレクトロルミネッセンス素子。 3. In the general formula (1), Ar 1 , Ar 2 , Ar 5 and Ar 6 each independently represent a phenyl ring, a naphthyl ring, a pyridine ring, a pyrimidine ring, a quinoline ring or an isoquinoline ring, and further have a substituent. 3. The organic electroluminescence device according to 1 or 2, which may be used.
 4.前記一般式(1)において、Lは、各々独立に、フェニル環、ピリジン環、ピリミジン環又はピラジン環を表し、更に置換基を有してもよい前記1から前記3のいずれか一つに記載の有機エレクトロルミネッセンス素子。 4. In the general formula (1), each L independently represents a phenyl ring, a pyridine ring, a pyrimidine ring, or a pyrazine ring, and further may have a substituent. Organic electroluminescence element.
 5.前記陰極が、銀を主成分としており、前記有機機能層が、前記陰極に隣接して設けられている前記1から前記4のいずれか一つに記載の有機エレクトロルミネッセンス素子。 5. 5. The organic electroluminescent element according to any one of 1 to 4, wherein the cathode is mainly composed of silver, and the organic functional layer is provided adjacent to the cathode.
 6.前記陰極の厚さが、15nm以下である前記1から前記5のいずれか一つに記載の有機エレクトロルミネッセンス素子。 6. 6. The organic electroluminescence device according to any one of 1 to 5, wherein the cathode has a thickness of 15 nm or less.
 7.前記有機機能層として、前記一般式(1)で表される構造を有する化合物及び電子注入材料を含有する層を有する前記1から前記6のいずれか一つに記載の有機エレクトロルミネッセンス素子。 7. 7. The organic electroluminescence device according to any one of 1 to 6, wherein the organic functional layer has a layer containing a compound having a structure represented by the general formula (1) and an electron injection material.
 8.前記一般式(1)で表される構造を有する化合物を含有する前記有機機能層、電子注入材料を含有する電子注入層及び前記陰極の順に積層されている前記1から前記7のいずれか一つに記載の有機エレクトロルミネッセンス素子。 8. The organic functional layer containing the compound having the structure represented by the general formula (1), the electron injection layer containing an electron injection material, and the cathode are laminated in this order, any one of 1 to 7 above The organic electroluminescent element of description.
 9.下記一般式(1)で表される構造を有する化合物を含有する有機エレクトロルミネッセンス用材料。 9. The organic electroluminescent material containing the compound which has a structure represented by following General formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(一般式(1)中、Ar、Ar、Ar、Arは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。Ar、Arは、各々独立に、水素原子、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。nは3以上の整数を表す。Lは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。但し、Lが単環の場合は、オルト結合及びパラ結合のうちの少なくとも1つの結合で連結する。) (In general formula (1), Ar 1 , Ar 2 , Ar 5 , Ar 6 each independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. Ar 3 , Ar 4 each independently represents a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent, n represents an integer of 3 or more, and L represents each independently an aromatic carbon (It represents a hydrogen ring or a heterocyclic ring, and may further have a substituent, provided that when L is a single ring, they are linked by at least one of an ortho bond and a para bond.)
 10.前記1から前記8のいずれか一つに記載の有機エレクトロルミネッセンス素子を具備する表示装置。 10. 9. A display device comprising the organic electroluminescence element according to any one of 1 to 8 above.
 11.前記1から前記8のいずれか一つに記載の有機エレクトロルミネッセンス素子を具備する照明装置。 11. 9. A lighting device comprising the organic electroluminescence element according to any one of 1 to 8 above.
 本発明によれば、駆動電圧及び高温保存時の安定性が改善された有機エレクトロルミネッセンス素子及び当該有機エレクトロルミネッセンス素子に用いる有機エレクトロルミネッセンス用材料を提供することができる。また、駆動電圧及び高温保存時の安定性が改善された表示装置及び照明装置を提供することができる。 According to the present invention, it is possible to provide an organic electroluminescence device having improved driving voltage and stability during high-temperature storage, and an organic electroluminescence material used for the organic electroluminescence device. In addition, it is possible to provide a display device and a lighting device with improved driving voltage and stability at high temperature storage.
有機EL素子から構成される表示装置の一例を示した模式図Schematic diagram showing an example of a display device composed of organic EL elements 表示部Aの模式図Schematic diagram of display part A 画素の回路図Pixel circuit diagram パッシブマトリクス方式フルカラー表示装置の模式図Schematic diagram of passive matrix type full color display device 照明装置の概略図Schematic of lighting device 照明装置の断面を示す模式図Schematic showing the cross section of the lighting device
 本発明の有機エレクトロルミネッセンス素子は、陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、前記発光層と前記陰極の間に、下記一般式(1)で表される構造を有する化合物を含有する前記有機機能層を有することを特徴とする。この特徴は、請求項1から請求項8までの請求項に係る発明に共通する技術的特徴である。 The organic electroluminescence device of the present invention is an organic electroluminescence device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order, and the following general formula is provided between the light emitting layer and the cathode. It has the said organic functional layer containing the compound which has a structure represented by (1), It is characterized by the above-mentioned. This feature is a technical feature common to the inventions according to claims 1 to 8.
《一般式(1)で表される構造を有する化合物》 << Compound having a structure represented by the general formula (1) >>
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、Ar、Ar、Ar、Arは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。すなわち、Ar、Ar、Ar、Arは、各々独立に、置換又は無置換の芳香族炭化水素環、又は、置換又は無置換の複素環を表す。芳香族炭化水素環の具体例としては、特に制限されないが、例えば、フェニル環、ナフチル環、アントラセン環、ピレン環等が挙げられる。複素環の具体例としては、特に制限されないが、例えば、上記芳香族炭化水素環における炭素原子の一部が、ヘテロ原子(酸素原子、窒素原子又は硫黄原子)によって置換されたものもあり、例えば、ピリジン環、ピロール環、フラン環、ピラン環、イミダゾール環、ピラゾール環、オキサゾール環、ピリダジン環、ピリミジン環、プリン環、トリアジン環、トリアゾール環、キノリン環、イソキノリン環等が挙げられる。 In general formula (1), Ar 1 , Ar 2 , Ar 5 , Ar 6 each independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. That is, Ar 1 , Ar 2 , Ar 5 and Ar 6 each independently represent a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heterocyclic ring. Specific examples of the aromatic hydrocarbon ring are not particularly limited, and examples thereof include a phenyl ring, a naphthyl ring, an anthracene ring, and a pyrene ring. Specific examples of the heterocyclic ring are not particularly limited. For example, there are those in which a part of carbon atoms in the aromatic hydrocarbon ring is substituted with a hetero atom (oxygen atom, nitrogen atom or sulfur atom). Pyridine ring, pyrrole ring, furan ring, pyran ring, imidazole ring, pyrazole ring, oxazole ring, pyridazine ring, pyrimidine ring, purine ring, triazine ring, triazole ring, quinoline ring, isoquinoline ring and the like.
 これらのうち、Ar、Ar、Ar、Arは、各々独立に、フェニル環、ナフチル環、ピリジン環、ピリミジン環、キノリン環又はイソキノリン環を表すものであることが好ましい。これらは、更に置換基を有してもよい。 Among these, Ar 1 , Ar 2 , Ar 5 , Ar 6 are preferably each independently a phenyl ring, naphthyl ring, pyridine ring, pyrimidine ring, quinoline ring or isoquinoline ring. These may further have a substituent.
 一般式(1)中、Ar、Arは、各々独立に、水素原子、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。すなわち、Ar、Arは、各々独立に、水素原子、又は、置換又は無置換の芳香族炭化水素環、又は、置換又は無置換の複素環を表す。芳香族炭化水素環の具体例としては、特に制限されないが、例えば、フェニル環、ナフチル環、アントラセン環、ピレン環等が挙げられる。複素環の具体例としては、特に制限されないが、例えば、上記芳香族炭化水素環における炭素原子の一部が、ヘテロ原子(酸素原子、窒素原子又は硫黄原子)によって置換されたものもあり、例えば、ピリジン環、ピロール環、フラン環、ピラン環、イミダゾール環、ピラゾール環、オキサゾール環、ピリダジン環、ピリミジン環、プリン環、トリアジン環、トリアゾール環、キノリン環、イソキノリン環等が挙げられる。 In general formula (1), Ar 3 and Ar 4 each independently represent a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. That is, Ar 3 and Ar 4 each independently represent a hydrogen atom, a substituted or unsubstituted aromatic hydrocarbon ring, or a substituted or unsubstituted heterocycle. Specific examples of the aromatic hydrocarbon ring are not particularly limited, and examples thereof include a phenyl ring, a naphthyl ring, an anthracene ring, and a pyrene ring. Specific examples of the heterocyclic ring are not particularly limited. For example, there are those in which a part of carbon atoms in the aromatic hydrocarbon ring is substituted with a hetero atom (oxygen atom, nitrogen atom or sulfur atom). Pyridine ring, pyrrole ring, furan ring, pyran ring, imidazole ring, pyrazole ring, oxazole ring, pyridazine ring, pyrimidine ring, purine ring, triazine ring, triazole ring, quinoline ring, isoquinoline ring and the like.
 これらのうち、Ar、Arは、水素原子であることが好ましい。 Of these, Ar 3 and Ar 4 are preferably hydrogen atoms.
 一般式(1)中、nは3以上の整数を表す。 In general formula (1), n represents an integer of 3 or more.
 一般式(1)中、Lは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。すなわち、Lは、各々独立に、置換又は無置換の芳香族炭化水素環、又は、置換又は無置換の複素環を表す。Lの具体例としては、特に制限されないが、例えば、フェニル環、ナフチル環、アントラセン環、フルオレン環、ピリジン環、ピラジン環、トリアジン環、ピリミジン環、チオフェン環、ベンゾチオフェン環、インドール環、イミダゾール環、ベンゾイミダゾール環、ピラゾール環又はトリアゾール環、アザジベンゾフラン環を含む二価の連結基を表すも等が挙げられる。 In the general formula (1), each L independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. That is, each L independently represents a substituted or unsubstituted aromatic hydrocarbon ring or a substituted or unsubstituted heterocycle. Specific examples of L are not particularly limited. For example, phenyl ring, naphthyl ring, anthracene ring, fluorene ring, pyridine ring, pyrazine ring, triazine ring, pyrimidine ring, thiophene ring, benzothiophene ring, indole ring, imidazole ring , A benzimidazole ring, a pyrazole ring or a triazole ring, a divalent linking group containing an azadibenzofuran ring, and the like.
 これらのうち、Lは、各々独立に、フェニル環、ピリジン環、ピリミジン環又はピラジン環を表すものであることが好ましい。これらは、更に置換基を有してもよい。 Of these, it is preferable that each L independently represents a phenyl ring, a pyridine ring, a pyrimidine ring or a pyrazine ring. These may further have a substituent.
 但し、Lが単環の場合は、Lは、オルト結合及びパラ結合のうちの少なくとも1つの結合で連結する。 However, when L is a single ring, L is connected by at least one of an ortho bond and a para bond.
 一般式(1)で用いられる置換基としては、特に制限されないが、例えば、アルキル基(例えば、メチル基、エチル基、トリフルオロメチル基、イソプロピル基等)、アリール基(例えば、フェニル基等)、ヘテロアリール基(例えば、ピリジル基、カルバゾリル基等)、ハロゲン原子(例えば、フッ素原子等)、シアノ基、若しくはフッ化アルキル基等が挙げられ、後述する例示化合物で使用されているものも好ましい。 Although it does not restrict | limit especially as a substituent used by General formula (1), For example, an alkyl group (for example, a methyl group, an ethyl group, a trifluoromethyl group, an isopropyl group, etc.), an aryl group (for example, a phenyl group etc.) , Heteroaryl groups (eg, pyridyl group, carbazolyl group, etc.), halogen atoms (eg, fluorine atom, etc.), cyano groups, fluorinated alkyl groups, etc., and those used in the exemplified compounds described below are also preferred. .
《一般式(1)で表される構造を有する化合物の合成例》
<合成例1>
本発明化合物(3)の合成
<< Synthesis Example of Compound having Structure Represented by General Formula (1) >>
<Synthesis Example 1>
Synthesis of the present compound (3)
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 200mlの4頭コルベンに化合物(3-1) 1.8g(4.64mmol)、化合物(3-2) 0.84g(2.55mmol)、炭酸カリウム 1.28g(9.28mmol)、純水 5ml、THF 43mlを投入して、窒素ガスを流入しながら室温で30分撹拌した。その後、トリス(ジベンジリデンアセトン)ジパラジウム(0) 0.575g(0.348mmol)、2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル 0.142g(0.348mmol)を投入して撹拌しながら7時間加熱還流した。反応終了後、室温まで冷却し、水を加えて撹拌、ろ過した。得られた粗結晶にTHFを加えて加熱還流下、懸濁撹拌した後、室温に冷却してろ過、乾燥して1.56gの固体を得た。得られた固体を昇華精製して、化合物(3) 1.09g(収率68%)を得た。構造はH-NMRにより確認した。 Compound (3-1) 1.8g (4.64mmol), Compound (3-2) 0.84g (2.55mmol), potassium carbonate 1.28g (9.28mmol), pure water 5ml Then, 43 ml of THF was added, and the mixture was stirred at room temperature for 30 minutes while flowing in nitrogen gas. Thereafter, 0.575 g (0.348 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 0.142 g (0.348 mmol) of 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl were added and stirred. The mixture was heated to reflux for 7 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, water was added, and the mixture was stirred and filtered. To the obtained crude crystals, THF was added and suspended under heating and refluxing, then cooled to room temperature, filtered and dried to obtain 1.56 g of a solid. The obtained solid was purified by sublimation to obtain 1.09 g of Compound (3) (yield 68%). The structure was confirmed by 1 H-NMR.
<合成例2>
本発明化合物(50)の合成
<Synthesis Example 2>
Synthesis of the present compound (50)
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 200mlの4頭コルベンに化合物(50-1) 1.3g(3.34mmol)、化合物(50-2) 0.75g(1.84mmol)、炭酸カリウム 0.92g(6.68mmol)、純水 4ml、THF 40mlを投入して、窒素ガスを流入しながら室温で30分撹拌した。その後、トリス(ジベンジリデンアセトン)ジパラジウム(0) 0.144g(0.25mmol)2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル 0.102g(0.25mmol)を投入して撹拌しながら7時間加熱還流した。反応終了後、室温まで冷却し、水を加えて撹拌、ろ過した。得られた粗結晶にTHFを加えて加熱還流下、懸濁撹拌した後、室温に冷却してろ過、乾燥して1.02gの固体を得た。得られた固体を昇華精製して、化合物(50) 0.74g(収率58%)を得た。構造はH-NMRにより確認した。 Compound (50-1) 1.3 g (3.34 mmol), Compound (50-2) 0.75 g (1.84 mmol), potassium carbonate 0.92 g (6.68 mmol), pure water 4 ml Then, 40 ml of THF was added, and the mixture was stirred at room temperature for 30 minutes while flowing in nitrogen gas. Thereafter, 0.144 g (0.25 mmol) of tris (dibenzylideneacetone) dipalladium (0) and 0.102 g (0.25 mmol) of 2-dicyclohexylphosphino-2 ′, 6′-dimethoxybiphenyl were added and stirred. The mixture was heated to reflux for 7 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, water was added, and the mixture was stirred and filtered. To the obtained crude crystals, THF was added and suspended under heating and reflux, then cooled to room temperature, filtered and dried to obtain 1.02 g of a solid. The obtained solid was purified by sublimation to obtain 0.74 g (yield 58%) of compound (50). The structure was confirmed by 1 H-NMR.
《一般式(1)で表される構造を有する化合物の具体例》
 一般式(1)で表される構造を有する化合物の具体例を以下に示す。これらの化合物は一例であって、本発明はこれに限定されるものではない。
<< Specific Example of Compound Having Structure Represented by General Formula (1) >>
Specific examples of the compound having the structure represented by the general formula (1) are shown below. These compounds are examples, and the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 また、本発明の有機エレクトロルミネッセンス用材料は、前記した一般式(1)で表される構造を有する化合物を含有することを特徴とする。一般式(1)については、前記説明したとおりである。 The organic electroluminescent material of the present invention is characterized by containing a compound having a structure represented by the general formula (1). General formula (1) is as described above.
 本発明によれば、一般式(1)で表される構造を有する化合物において、LUMOの電子密度分布の広がりを大きくすることができる。電子密度分布の広がりを大きくすることで、分子間の電子ホッピングを速くすることができ、電子移動度を上げることが可能になる。そのため、駆動電圧を低くすることができ、また、高温保存時の電圧上昇を抑制することができる。 According to the present invention, the spread of the LUMO electron density distribution can be increased in the compound having the structure represented by the general formula (1). By increasing the spread of the electron density distribution, the electron hopping between molecules can be accelerated and the electron mobility can be increased. As a result, the drive voltage can be lowered, and the voltage rise during high temperature storage can be suppressed.
 一般式(1)で表される構造を有する化合物の分子軌道計算によるLUMOの算出は、計算手法として、汎関数としてB3LYP、基底関数として6-31G(d)を用いた分子軌道計算用ソフトウェアを用いて算出することができ、ソフトウェアに特に限定はなく、いずれを用いても同様に求めることができる。
 本発明においては、分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を用いた。
The calculation of LUMO by molecular orbital calculation of the compound having the structure represented by the general formula (1) is performed using molecular orbital calculation software using B3LYP as a functional and 6-31G (d) as a basis function as a calculation method. There is no particular limitation on the software, and any of them can be similarly calculated.
In the present invention, Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA was used as molecular orbital calculation software.
 また、複数の窒素含有ヘテロ環は、銀との相互作用があり、銀原子の拡散距離が減少し、銀の凝集を抑制することができる。それにより銀を主成分とした電極の均一膜を達成することもできる。また、本発明化合物は結晶性を抑制することができるため、膜形成時に積層しやすく平滑性を向上させることができる。 In addition, a plurality of nitrogen-containing heterocycles interact with silver, the diffusion distance of silver atoms is reduced, and silver aggregation can be suppressed. Thereby, a uniform film of an electrode mainly composed of silver can be achieved. Moreover, since this invention compound can suppress crystallinity, it can be laminated | stacked easily at the time of film formation, and smoothness can be improved.
《有機EL素子の構成層》
 本発明の有機EL素子の構成層について説明する。本発明の有機EL素子において、陽極と陰極との間に挟持される各種有機機能層の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
 (i)陽極/発光層ユニット/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層ユニット/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層ユニット/正孔阻止層/電子輸送層/陰極バッファー層/陰極
<< Constituent layers of organic EL elements >>
The constituent layers of the organic EL element of the present invention will be described. In the organic EL device of the present invention, preferred specific examples of the layer structure of various organic functional layers sandwiched between the anode and the cathode are shown below, but the present invention is not limited thereto.
(I) Anode / light emitting layer unit / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer unit / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer unit / hole blocking Layer / electron transport layer / cathode (iv) anode / hole transport layer / light emitting layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) anode / anode buffer layer / hole transport layer / light emission Layer unit / hole blocking layer / electron transport layer / cathode buffer layer / cathode
 更に、発光層ユニットは複数の発光層の間に非発光性の中間層を有していてもよく、該中間層が電荷発生層であるようなマルチフォトンユニット構成であってもよい。この場合、電荷発生層としては、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン類、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられる。
 本発明の有機EL素子における発光層としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
 本発明の有機EL素子を構成する各層について説明する。
Furthermore, the light emitting layer unit may have a non-light emitting intermediate layer between a plurality of light emitting layers, and may have a multi-photon unit configuration in which the intermediate layer is a charge generation layer. In this case, as the charge generating layer, ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2, TiN, ZrN , HfN, TiOx, VOx, CuI, InN, GaN, CuAlO 2, CuGaO 2 , conductive inorganic compound layers such as SrCu 2 O 2 , LaB 6 , and RuO 2 , two-layer films such as Au / Bi 2 O 3 , SnO 2 / Ag / SnO 2 , ZnO / Ag / ZnO, Bi 2 Multilayer films such as O 3 / Au / Bi 2 O 3 , TiO 2 / TiN / TiO 2 , TiO 2 / ZrN / TiO 2 , fullerenes such as C 60 , oligothiophenes, metal phthalocyanines, metal-free phthalocyanines And conductive organic compound layers such as metal porphyrins and metal-free porphyrins.
The light emitting layer in the organic EL device of the present invention is preferably a white light emitting layer, and an illumination device using these is preferable.
Each layer which comprises the organic EL element of this invention is demonstrated.
《有機機能層》
 本発明の有機EL素子は、陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する。すなわち、本発明に係る有機機能層は、陽極と陰極の間に位置することを特徴とする。
 本発明の有機EL素子は、複数の有機機能層を有し、当該有機機能層は、発光層を含んでいる。発光層は一つであっても複数であってもよい。
《Organic functional layer》
The organic EL device of the present invention has an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order. That is, the organic functional layer according to the present invention is located between the anode and the cathode.
The organic EL element of the present invention has a plurality of organic functional layers, and the organic functional layer includes a light emitting layer. There may be one or more light emitting layers.
 また、有機機能層として、前記一般式(1)で表される構造を有する化合物及び電子注入材料を含有する層を有することが好ましい。すなわち、電子注入層に一般式(1)で表される構造を有する化合物が含まれていることも好ましい。
 また、一般式(1)で表される構造を有する化合物を含有する前記有機機能層、電子注入材料を含有する電子注入層及び前記陰極の順に積層されていることも好ましい。
Moreover, it is preferable that it has a layer containing the compound which has a structure represented by the said General formula (1), and an electron injection material as an organic functional layer. That is, it is also preferable that the electron injection layer contains a compound having a structure represented by the general formula (1).
It is also preferable that the organic functional layer containing a compound having a structure represented by the general formula (1), the electron injection layer containing an electron injection material, and the cathode are laminated in this order.
《発光層》
 本発明に用いる発光層は、電極又は電子輸送層及び正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
 発光層の層厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加することを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、好ましくは2nm~5μmの範囲に調整される。発光層の層厚の総和は、更に好ましくは2~200nmの範囲に調整され、特に好ましくは5~100nmの範囲に調整される。
<Light emitting layer>
The light emitting layer used in the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode or the electron transport layer and the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
The total thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the stability of the emission color against the drive current and the uniformity of the film, preventing unnecessary application of high voltage during light emission. Preferably, it is adjusted in the range of 2 nm to 5 μm. The total thickness of the light emitting layers is more preferably adjusted in the range of 2 to 200 nm, and particularly preferably in the range of 5 to 100 nm.
 発光層の作製には、後述する発光ドーパントやホスト化合物を用いて、例えば、真空蒸着法、湿式法等により成膜して形成することができる。湿式法は、ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法))等を挙げることができる。
 本発明の有機EL素子の発光層には、発光性ドーパント(リン光発光性ドーパントや蛍光発光性ドーパント等)化合物と、ホスト化合物とを含有することが好ましい。
The light-emitting layer can be formed by using a light-emitting dopant or a host compound, which will be described later, by forming a film by, for example, a vacuum deposition method or a wet method. The wet method is also called a wet process. For example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, an LB method (Langmuir Brodgett). (Langmuir Broadgett method)) and the like.
The light emitting layer of the organic EL device of the present invention preferably contains a light emitting dopant (such as a phosphorescent light emitting dopant or a fluorescent light emitting dopant) compound and a host compound.
(1)発光性ドーパント
 発光性ドーパント(発光ドーパント、ドーパント化合物、単にドーパントともいう。)について説明する。
 発光性ドーパントとしては、リン光発光性ドーパント(リン光ドーパント、リン光性化合物、リン光発光性化合物等ともいう。)、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物、蛍光発光性化合物ともいう。)を用いることができる。
(1) Luminescent dopant A luminescent dopant (a luminescent dopant, a dopant compound, or simply a dopant) will be described.
As the luminescent dopant, a phosphorescent dopant (also referred to as a phosphorescent dopant, a phosphorescent compound, a phosphorescent compound, or the like), or a fluorescent dopant (also referred to as a fluorescent dopant, a fluorescent compound, or a fluorescent compound). .) Can be used.
(1.1)リン光ドーパント
 リン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には室温(25℃)にてリン光発光する化合物である。リン光ドーパントは、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できる。しかし、本発明で用いられるリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
(1.1) Phosphorescent dopant A phosphorescent dopant is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.). The phosphorescence dopant is defined as a compound having a phosphorescence quantum yield of 0.01 or more at 25 ° C., but a preferred phosphorescence quantum yield is 0.1 or more.
The phosphorescence quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of Experimental Chemistry Course 4 of the 4th edition. The phosphorescence quantum yield in a solution can be measured using various solvents. However, the phosphorescence dopant used by this invention should just achieve the said phosphorescence quantum yield (0.01 or more) in any solvent.
 リン光ドーパントの発光は原理としては2種挙げられる。一つはエネルギー移動型である。エネルギー移動型は、キャリアが輸送されるホスト化合物上でキャリアの再結合が起こって発光ホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るものである。もう一つはキャリアトラップ型である。キャリアトラップ型は、リン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こり、リン光ドーパントからの発光が得られるというものである。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of emission of phosphorescent dopants in principle. One is the energy transfer type. In the energy transfer type, recombination of carriers occurs on the host compound to which carriers are transported to generate an excited state of the luminescent host compound, and light is emitted from the phosphorescent dopant by transferring this energy to the phosphorescent dopant. Is. The other is a carrier trap type. In the carrier trap type, the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
(1.2)蛍光ドーパント
 蛍光ドーパントとしては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等や、レーザー色素に代表される蛍光量子収率が高い化合物が挙げられる。
(1.2) Fluorescent dopant Examples of fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, Examples include perylene dyes, stilbene dyes, polythiophene dyes, rare-earth complex phosphors, and compounds having high fluorescence quantum yields typified by laser dyes.
 [従来公知のドーパントとの併用]
 また、本発明に用いられる発光ドーパントは、複数種の化合物を併用して用いてもよく、構造の異なるリン光ドーパント同士の組み合わせや、リン光ドーパントと蛍光ドーパントを組み合わせて用いてもよい。
 ここで、発光ドーパントとして、従来公知の国際公開第2013/061850号に記載の化合物を好適に用いることができるが、本発明はこれらに限定されない。
[Combination with conventionally known dopants]
In addition, the light emitting dopant used in the present invention may be used in combination of a plurality of types of compounds, a combination of phosphorescent dopants having different structures, or a combination of a phosphorescent dopant and a fluorescent dopant.
Here, as the light-emitting dopant, conventionally known compounds described in International Publication No. 2013/061850 can be preferably used, but the present invention is not limited thereto.
 [ホスト化合物]
 本発明に用いることができるホスト化合物(発光ホスト、発光ホスト化合物ともいう。)は、発光層に含有される化合物の内で、その層中での質量比が20%以上であり、かつ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。
[Host compound]
A host compound (also referred to as a light-emitting host or a light-emitting host compound) that can be used in the present invention has a mass ratio in the layer of 20% or more among the compounds contained in the light-emitting layer, and a room temperature ( 25 ° C.) is defined as a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
 本発明に用いることができるホスト化合物としては、特に制限はなく、従来の有機EL素子で用いられる化合物を用いることができる。代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、又は、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)等が挙げられる。 The host compound that can be used in the present invention is not particularly limited, and a compound used in a conventional organic EL device can be used. Typically, a carbazole derivative, a triarylamine derivative, an aromatic derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, an oligoarylene compound or the like having a basic skeleton, or a carboline derivative or a diazacarbazole derivative (here And the diazacarbazole derivative represents one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom.
 本発明に用いることができる公知のホスト化合物としては正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。
 また、本発明においては、従来公知のホスト化合物を単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、従来公知の化合物を複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。
As the known host compound that can be used in the present invention, a compound that has a hole transporting ability and an electron transporting ability, prevents the emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
Moreover, in this invention, a conventionally well-known host compound may be used independently, and may be used in combination of multiple types. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. In addition, by using a plurality of conventionally known compounds, it is possible to mix different light emission, thereby obtaining an arbitrary emission color.
 また、本発明に用いられるホスト化合物としては、低分子化合物でも、繰り返し単位を持つ高分子化合物でもよく、ビニル基やエポキシ基のような重合性基を有する低分子化合物(重合性ホスト化合物)でもよい。また、本発明に用いられるホスト化合物としては、このような化合物を1種又は複数種用いても良い。 The host compound used in the present invention may be a low molecular compound, a high molecular compound having a repeating unit, or a low molecular compound (polymerizable host compound) having a polymerizable group such as a vinyl group or an epoxy group. Good. Moreover, as a host compound used for this invention, you may use 1 type or multiple types of such a compound.
 公知のホスト化合物の具体例としては、以下の文献に記載の化合物が挙げられる。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等である。
Specific examples of known host compounds include compounds described in the following documents.
JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445 gazette, 2002-343568 gazette, 2002-141173 gazette, 2002-352957 gazette, 2002-203683 gazette, 2002-363227 gazette, 2002-231453 gazette, No. 003-3165, No. 2002-234888, No. 2003-27048, No. 2002-255934, No. 2002-260861, No. 2002-280183, No. 2002-299060, No. 2002. -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
《陰極》
 陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する。)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものも用いられる。このような電極物質の具体例としては、アルミニウム、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極は、特に、銀を主成分として構成されていることが好ましい。銀を主成分とする合金は、例えば、銀マグネシウム(AgMg)、銀銅(AgCu)、銀パラジウム(AgPd)、銀パラジウム銅(AgPdCu)、銀インジウム(AgIn)等が挙げられる。
 なお、本発明における「主成分」とは、膜又は層中の50質量%以上含有されていることを表し、好ましくは80質量%以上、更に好ましくは90質量%以上含有されていることを表す。
"cathode"
As the cathode, a metal having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof may be used. Specific examples of such electrode materials include aluminum, sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
The cathode is particularly preferably composed mainly of silver. Examples of the alloy mainly containing silver include silver magnesium (AgMg), silver copper (AgCu), silver palladium (AgPd), silver palladium copper (AgPdCu), silver indium (AgIn), and the like.
The “main component” in the present invention means that 50% by mass or more in the film or layer is contained, preferably 80% by mass or more, and more preferably 90% by mass or more. .
 銀を主成分とする合金を用いる陰極は、必要に応じて複数の層に分けて積層された構成であってもよい。
 陰極の膜厚は、通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。銀を主成分とする合金を用いる場合は、膜厚が、15nm以下であることが好ましく、12nm以下であることがより好ましい。また、銀を主成分とする合金を用いる場合は、膜厚が、4nm以上であることが好ましい。すなわち、銀を主成分とする合金を用いる場合は、膜厚が、4~12nmの範囲内であることがより好ましい。膜厚が当該範囲内であることにより、膜が吸収又は反射する光の成分をより低減することができ、光透過率をより維持することができ、かつ層の導電性もより確保できる。
The cathode using an alloy containing silver as a main component may have a structure in which a plurality of layers are laminated as necessary.
The film thickness of the cathode is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. When an alloy containing silver as a main component is used, the film thickness is preferably 15 nm or less, and more preferably 12 nm or less. Moreover, when using the alloy which has silver as a main component, it is preferable that a film thickness is 4 nm or more. That is, when an alloy containing silver as a main component is used, the film thickness is more preferably in the range of 4 to 12 nm. When the film thickness is within the range, the light component absorbed or reflected by the film can be further reduced, the light transmittance can be further maintained, and the conductivity of the layer can be further ensured.
 前述のとおり、陰極が銀を主成分とする場合、一般式(1)で表される構造を有する化合物を含有する有機機能層に隣接することが好ましい。
 一般式(1)で表される構造を有する化合物を含有する有機機能層は、陰極に隣接していることが好ましく、当該有機機能層上に陰極を形成する場合であっても、陰極上に当該有機機能層を形成してもよい。更には、有機機能層上に陰極を形成し、更に当該陰極上に有機機能層を形成し、陰極を2層の有機機能層で挟持する構成であってもよい。
As described above, when the cathode is mainly composed of silver, it is preferably adjacent to the organic functional layer containing the compound having the structure represented by the general formula (1).
The organic functional layer containing the compound having the structure represented by the general formula (1) is preferably adjacent to the cathode, and even when the cathode is formed on the organic functional layer, The organic functional layer may be formed. Furthermore, a structure in which a cathode is formed on the organic functional layer, an organic functional layer is further formed on the cathode, and the cathode is sandwiched between two organic functional layers may be employed.
 有機機能層の上部に、銀を主成分とする陰極を成膜する際、陰極を構成する銀原子が金属親和性層に含有されている一般式(1)で表される構造を有する化合物と相互作用する。これにより、有機機能層表面上での銀原子の拡散距離が減少し、特異箇所での銀の凝集(マイグレーション)を抑制することができる。
 すなわち、銀原子は、まず銀原子と親和性のある原子を有する有機機能層表面上で二次元的な核を形成し、それを中心に二次元の単結晶層を形成するという層状成長型(Frank-van der Merwe:FM型)の膜成長によって成膜されるようになる。
A compound having a structure represented by the general formula (1) in which a silver atom constituting the cathode is contained in the metal affinity layer when a cathode composed mainly of silver is formed on the organic functional layer; Interact. Thereby, the diffusion distance of silver atoms on the surface of the organic functional layer is reduced, and aggregation (migration) of silver at a specific location can be suppressed.
That is, the silver atoms first form a two-dimensional nucleus on the surface of the organic functional layer having atoms that have an affinity for silver atoms, and then form a two-dimensional single crystal layer around it. The film is formed by film growth of (Frank-van der Merwe: FM type).
 なお、一般的には、有機機能層表面において付着した銀原子が表面を拡散しながら結合して3次元的な核を形成し、3次元的な島状に成長するという島状成長型(Volumer-Weber:VW型)での膜成長により、島状に成膜しやすいと考えられる。
 しかし、本発明においては、有機機能層に含有されている一般式(1)で表される構造を有する化合物により、島状成長が抑制され、層状成長が促進されると推察される。
 したがって、薄い膜厚でありながらも均一な膜厚の陰極が得られるようになる。その結果、その薄い膜厚により光透過性を保ちつつも、導電性が確保された透明電極とすることができる。
In general, silver atoms attached on the surface of the organic functional layer are bonded while diffusing the surface to form a three-dimensional nucleus, and grow into a three-dimensional island shape (Volumer). -Weber: VW type), it is considered that it is easy to form islands.
However, in the present invention, it is presumed that island growth is suppressed and layer growth is promoted by the compound having a structure represented by the general formula (1) contained in the organic functional layer.
Therefore, it is possible to obtain a cathode having a uniform film thickness even though it is a thin film. As a result, it is possible to obtain a transparent electrode in which conductivity is ensured while maintaining light transmittance due to the thin film thickness.
 また、陰極の上部に有機機能層を成膜した場合、陰極を構成する銀原子が有機機能層に含有されている銀原子と親和性のある原子と相互作用し、運動性が抑制されるものと考えられる。これによって、陰極の表面平滑性が良化することで乱反射を抑制することができ、光透過率を向上することが可能である。
 このような相互作用によって、熱や温度といった物理刺激に対する陰極の膜質変化が抑制され、耐久性を向上させることができたものと推測している。
In addition, when an organic functional layer is formed on the upper part of the cathode, the silver atoms constituting the cathode interact with the atoms having an affinity for the silver atoms contained in the organic functional layer, and the mobility is suppressed. it is conceivable that. Thereby, irregular reflection can be suppressed by improving the surface smoothness of the cathode, and the light transmittance can be improved.
It is presumed that such an interaction suppresses changes in the film quality of the cathode in response to physical stimuli such as heat and temperature, thereby improving durability.
 陰極は、銀を主成分とする合金の他、一般的な電極物質を蒸着やスパッタリング等の方法で薄膜を形成させることにより、作製することができる。また、駆動電圧をより低くし、発光効率、素子寿命等をより向上させる観点から、陰極としてのシート抵抗値は数百Ω/sq(Ω/□)以下が好ましく、50Ω/sq以下がより好ましく、特に25Ω/sq以下であることが好ましい。下限については特に規定されるものではないが、例えば、1Ω/sq以上とすることができる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。陰極の光透過率は、30%以上であることが好ましく、50%以上であることがより好ましい。更に好ましくは70%以上である。上限については特に規定されるものではないが、例えば、95%以下とすることができる。
 また、陰極に上記金属を1~20nmの膜厚で作製した後に、後述する陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができる。これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
The cathode can be produced by forming a thin film by vapor deposition, sputtering or the like using a general electrode material in addition to an alloy containing silver as a main component. Further, from the viewpoint of lowering the driving voltage and further improving the light emission efficiency, device lifetime, etc., the sheet resistance value as the cathode is preferably several hundred Ω / sq (Ω / □) or less, more preferably 50 Ω / sq or less. In particular, it is preferably 25Ω / sq or less. The lower limit is not particularly specified, but can be, for example, 1 Ω / sq or more.
In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the emission luminance is advantageously improved. The light transmittance of the cathode is preferably 30% or more, and more preferably 50% or more. More preferably, it is 70% or more. The upper limit is not particularly specified, but can be 95% or less, for example.
In addition, a transparent or semi-transparent cathode can be produced by producing a conductive transparent material mentioned in the explanation of the anode described later on the cathode after producing the metal with a thickness of 1 to 20 nm on the cathode. . By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、前述のとおり、一般式(1)で表される構造を有する化合物を含有することも好ましい。広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層若しくは複数層を設けることができる。更に、後述する電子注入層に含まれる材料も含有する電子注入輸送層を設けてもよい。
 電子輸送層は陰極より注入された電子を発光層に伝達する機能を有していればよく、電子輸送層の構成材料としては、従来公知の化合物の中から任意のものを選択し併用することも可能である。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and preferably contains a compound having a structure represented by the general formula (1) as described above. In a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided with a single layer or a plurality of layers. Furthermore, you may provide the electron injection transport layer which also contains the material contained in the electron injection layer mentioned later.
The electron transport layer only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer. As a constituent material of the electron transport layer, any one of conventionally known compounds may be selected and used in combination. Is also possible.
 電子輸送層に用いられる従来公知の材料(以下、電子輸送材料という。)の例としては、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、ナフタレンペリレン等の多環芳香族炭化水素、複素環テトラカルボン酸無水物、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体、カルボリン誘導体、又は、該カルボリン誘導体のカルボリン環を構成する炭化水素環の炭素原子の少なくとも一つが窒素原子で置換されている環構造を有する誘導体、ヘキサアザトリフェニレン誘導体等が挙げられる。
 更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引性基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。
 これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
Examples of conventionally known materials used for the electron transport layer (hereinafter referred to as electron transport materials) include polycyclic aromatic hydrocarbons such as nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, naphthalene perylene, Heterocyclic tetracarboxylic anhydride, carbodiimide, fluorenylidenemethane derivative, anthraquinodimethane and anthrone derivative, oxadiazole derivative, carboline derivative, or carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative Derivatives having a ring structure in which at least one is substituted with a nitrogen atom, hexaazatriphenylene derivatives, and the like can be mentioned.
Furthermore, in the oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron-withdrawing group can also be used as an electron transport material.
It is also possible to use a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain.
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも電子輸送材料として用いることができる。
 また、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metals of these metal complexes are In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
In addition, metal-free or metal phthalocyanine, or those having a terminal substituted with an alkyl group or a sulfonic acid group can be used as the electron transport material.
An inorganic semiconductor such as n-type-Si and n-type-SiC can also be used as an electron transport material.
 電子輸送層は電子輸送材料を、例えば、真空蒸着法、湿式法等により、薄膜化することで形成することが好ましい。湿式法は、ウェットプロセスともいい、例えば、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法(ラングミュア・ブロジェット(Langmuir Blodgett法))等を挙げることができる。 The electron transport layer is preferably formed by thinning an electron transport material by, for example, a vacuum deposition method or a wet method. The wet method is also called a wet process. For example, a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, an LB method (Langmuir Brodgett). (Langmuir Brodgett method)) and the like.
 電子輸送層の層厚については特に制限はないが、通常は5~5000nm程度、好ましくは5~200nmである。この電子輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。
 また、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントをドープして用いてもよい。
The thickness of the electron transport layer is not particularly limited, but is usually about 5 to 5000 nm, preferably 5 to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
Further, an n-type dopant such as a metal compound such as a metal complex or a metal halide may be doped.
 本発明の有機EL素子の電子輸送層の形成に好ましく用いられる従来公知の電子輸送材料の一例として、国際公開第2013/061850号に記載の化合物を好適に用いることができるが、本発明はこれらに限定されない。 As an example of a conventionally known electron transport material preferably used for forming the electron transport layer of the organic EL device of the present invention, the compounds described in International Publication No. 2013/061850 can be preferably used. It is not limited to.
《注入層:電子注入層(陰極バッファー層)、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機機能層間に設けられる層のことである。注入層は、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。
<< Injection layer: electron injection layer (cathode buffer layer), hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and may exist between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer. .
The injection layer is a layer provided between the electrode and the organic functional layer in order to lower the driving voltage and improve the light emission luminance. The injection layer is described in detail in the second chapter, Chapter 2, “Electrode Materials” (pages 123 to 166) of “Organic EL devices and their forefront of industrialization” (issued on November 30, 1998 by NTT). There are a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されている。陽極バッファー層としては、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体バッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体層等が挙げられる。 Details of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. Specific examples of the anode buffer layer include a phthalocyanine buffer layer typified by copper phthalocyanine, a hexaazatriphenylene derivative buffer layer described in JP-T-2003-519432, JP-A-2006-135145, and the like. Typical examples include oxide buffer layers typified by vanadium oxide, amorphous carbon buffer layers, polymer buffer layers using conductive polymers such as polyaniline (emeraldine) and polythiophene, and tris (2-phenylpyridine) iridium complexes. Or ortho-metalated complex layer.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されている。陰極バッファー層としては、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウム、フッ化カリウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウム、フッ化セシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。 Details of the cathode buffer layer (electron injection layer) are also described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, as the cathode buffer layer, a metal buffer layer typified by strontium or aluminum, an alkali metal compound buffer layer typified by lithium fluoride or potassium fluoride, a magnesium fluoride or a cesium fluoride Examples thereof include an alkaline earth metal compound buffer layer and an oxide buffer layer typified by aluminum oxide. The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material.
《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記のごとく有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
As described above, the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなる。正孔阻止層は、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する電子輸送層の構成を必要に応じて、正孔阻止層として用いることができる。
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 正孔阻止層には、前述のホスト化合物として挙げた、カルバゾール誘導体、カルボリン誘導体、ジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン環を構成する炭素原子のいずれか一つが窒素原子で置き換わったものをいう。)を含有することが好ましい。
The hole blocking layer has a function of an electron transporting layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and an extremely small ability to transport holes. The hole blocking layer can improve the recombination probability of electrons and holes by blocking holes while transporting electrons.
Moreover, the structure of the electron carrying layer mentioned above can be used as a hole-blocking layer as needed.
The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
The hole blocking layer includes a carbazole derivative, a carboline derivative, a diazacarbazole derivative (the diazacarbazole derivative is a nitrogen atom in which any one of carbon atoms constituting the carboline ring is cited as the host compound described above. It is preferable to contain the thing replaced by.
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなる。電子阻止層は、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の層厚としては、好ましくは3~100nmであり、更に好ましくは5~30nmである。
On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes and an extremely small ability to transport electrons. The electron blocking layer can improve the recombination probability of electrons and holes by blocking electrons while transporting holes.
Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The thickness of the hole blocking layer and the electron transporting layer according to the present invention is preferably 3 to 100 nm, and more preferably 5 to 30 nm.
《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層設けることができる。
 正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
The hole transport material has any of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, particularly thiophene oligomers.
In addition, azatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as hole transport materials.
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベン;N-フェニルカルバゾール、更には米国特許第5061569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが三つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。
The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' - (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl; N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino- (2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbene; N-phenylcarbazole, and further two fused aromatic rings described in US Pat. No. 5,061,569. Those possessed in the molecule, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), Japanese Patent Laid-Open No. 4-308688 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine (MTDATA), etc., in which the triphenylamine units described in 3 are linked in a three star burst type Is mentioned.
 更にこれらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material as described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。
 正孔輸送層の層厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5~200nmである。この正孔輸送層は上記材料の1種又は2種以上からなる1層構造であってもよい。
The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
The layer thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 to 200 nm. This hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。
Alternatively, a hole transport layer having a high p property doped with impurities can be used. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、ITO、SnO、ZnO等の導電性透明材料が挙げられる。
 また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよい。又はパターン精度を余り必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such an electrode substance include metals such as Au, and conductive transparent materials such as CuI, ITO, SnO 2 , and ZnO.
Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used. For the anode, a thin film may be formed by depositing these electrode materials by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method. Alternatively, when pattern accuracy is not so high (about 100 μm or more), a pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
 又は、導電性有機化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等の湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、光透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗値は数百Ω/sq以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。 Or when using the substance which can be apply | coated like a conductive organic compound, wet film-forming methods, such as a printing system and a coating system, can also be used. When light emission is extracted from the anode, the light transmittance is desirably greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / sq or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等ともいう。)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
The support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is transparent. Or opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等のフィルムを挙げることができる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Can be mentioned.
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよい。ハイブリッド被膜は、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が0.01g/m・24h以下のガスバリアー性フィルムであることが好ましい。更には、ハイブリッド被膜は、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3mL/m・24h・atm以下、水蒸気透過度が、1×10-5g/m・24h以下の高ガスバリアー性フィルムであることが好ましい。 An inorganic film, an organic film, or a hybrid film of both may be formed on the surface of the resin film. The hybrid coating is a gas having a water vapor transmission rate (25 ± 0.5 ° C., relative humidity (90 ± 2)%) of 0.01 g / m 2 · 24 h or less, measured by a method according to JIS K 7129-1992. A barrier film is preferred. Furthermore, the hybrid film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 mL / m 2 · 24 h · atm or less, and a water vapor permeability of 1 × 10 −5. A high gas barrier film of g / m 2 · 24 h or less is preferable.
 ガスバリアー層を形成する材料としては、水分や酸素等の素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機機能層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the gas barrier layer may be any material as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. . Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination order of an inorganic layer and an organic functional layer, It is preferable to laminate | stack both alternately several times.
 ガスバリアー層の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。しかし、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
The method for forming the gas barrier layer is not particularly limited. For example, the vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma weight A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used. However, an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, and ceramic substrates.
 本発明の有機EL素子の発光の室温における外部取り出し収率は、1%以上であることが好ましく、5%以上であるとより好ましい。
 ここで、外部取り出し量子収率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を、蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
The external extraction yield at room temperature for light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
Here, the external extraction quantum yield (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
In addition, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.
《有機EL素子の作製方法》
 有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層(電子注入層)/陰極からなる素子の作製方法について説明する。
 まず、適当な基板上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10~200nmの膜厚になるように形成させ、陽極を作製する。
 次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極バッファー層等の有機化合物を含有する薄膜を形成させる。
<< Method for producing organic EL element >>
As an example of a method for producing an organic EL device, a device comprising an anode / hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode Will be described.
First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate so as to have a thickness of 1 μm or less, preferably 10 to 200 nm, and an anode is manufactured.
Next, a thin film containing an organic compound such as a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, or a cathode buffer layer, which is an element material, is formed thereon.
 薄膜の形成方法としては、例えば、真空蒸着法、湿式法(ウェットプロセスともいう。)等により成膜して形成することができる。
 湿式法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法、LB法等がある。しかし、湿式法としては、精密な薄膜が形成可能で、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・to・ロール方式適性の高い方法が好ましい。また、層ごとに異なる成膜法を適用してもよい。
As a method for forming a thin film, for example, a thin film can be formed by a vacuum deposition method, a wet method (also referred to as a wet process) or the like.
Examples of the wet method include a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, and an LB method. However, as the wet method, a method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, and a spray coating method is preferable from the viewpoint of forming a precise thin film and high productivity. . Different film formation methods may be applied for each layer.
 本発明に用いられる発光ドーパント等の有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、ジメチルホルムアミド(DMF)、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
Examples of the liquid medium for dissolving or dispersing the organic EL material such as a luminescent dopant used in the present invention include, for example, ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, Aromatic hydrocarbons such as toluene, xylene, mesitylene and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin and dodecane, and organic solvents such as dimethylformamide (DMF) and DMSO can be used.
Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
 これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50~200nmの範囲の膜厚になるように形成させ、陰極を設けることにより所望の有機EL素子が得られる。
 また、順序を逆にして、陰極、陰極バッファー層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。
 本発明の有機EL素子の作製は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
After these layers are formed, a thin film made of a cathode material is formed thereon so as to have a thickness of 1 μm or less, preferably in the range of 50 to 200 nm, and a desired organic EL device can be obtained by providing a cathode. .
Further, the order can be reversed, and the cathode, cathode buffer layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode can be formed in this order.
The organic EL device of the present invention is preferably produced from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. At that time, it is preferable to perform the work in a dry inert gas atmosphere.
《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
 封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。
<Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.
The sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。
 また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等から形成されたものを挙げることができる。
 金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金からなるものが挙げられる。
Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
Examples of the polymer plate include those formed from polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like.
Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。
 更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3mL/m・24h・atm以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/m・24h以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
In the present invention, a polymer film and a metal film can be preferably used because the element can be thinned.
Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 mL / m 2 · 24 h · atm or less, and measured by a method according to JIS K 7129-1992. The water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)%) is preferably 1 × 10 −3 g / m 2 · 24 h or less.
For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また、有機機能層を挟み支持基板と対向する側の電極の外側に当該電極と有機機能層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、当該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
 更に、当該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
It is also preferable that the electrode and the organic functional layer are coated on the outside of the electrode facing the support substrate with the organic functional layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. Can be. In this case, as a material for forming the film, any material may be used as long as it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
Furthermore, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition method, sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma A polymerization method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
《保護膜、保護板》
 有機機能層を挟み支持基板と対向する側の前記封止膜、又は前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、又は保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic functional layer interposed therebetween, or the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15~20%程度の光しか取り出せないことが一般的にいわれている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないためである。また、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15 to 20% of the light generated in the light emitting layer. Is generally said. This is because light incident on the interface (transparent substrate-air interface) at an angle θ greater than the critical angle causes total reflection and cannot be extracted outside the device. Further, light is totally reflected between the transparent electrode or light emitting layer and the transparent substrate, and the light is guided through the transparent electrode or light emitting layer, and as a result, the light escapes in the side surface direction of the element.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(基板と外界間を含む。)に回折格子を形成する方法(特開平11-283751号公報)等がある。 As a technique for improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (US Pat. No. 4,774,435), condensing on the substrate. A method of improving the efficiency by imparting a property (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of the element (Japanese Patent Laid-Open No. 1-220394), and between the substrate and the light emitter A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index (Japanese Patent Laid-Open No. 62-172691), and introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter. A method (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283751), etc. There is.
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができる。しかし、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(基板と外界間を含む。)に回折格子を形成する方法を好適に用いることができる。
 本発明はこれらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。
In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside). The method of forming can be used suitably.
In the present invention, by combining these means, it is possible to obtain an element having higher brightness or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。
 また、低屈折率媒質の厚さは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
When a medium with a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower. .
Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
Further, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
 全反射を起こす界面若しくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が一次の回折や二次の回折といったいわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用したものである。この方法は、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method utilizes the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as primary diffraction or secondary diffraction. This method introduces a diffraction grating into any layer or medium (inside a transparent substrate or in a transparent electrode) of light generated from the light-emitting layer that cannot go out due to total internal reflection between layers. By doing so, the light is diffracted and the light is taken out.
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
The introduced diffraction grating desirably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much.
However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
 回折格子を導入する位置としては前述のとおり、いずれかの層間若しくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。
As described above, the position where the diffraction grating is introduced may be in any one of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
The arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、又はいわゆる集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚さが厚くなり好ましくない。
《Condensing sheet》
The organic EL device of the present invention is processed on the light extraction side of the substrate, for example, so as to provide a microlens array-like structure, or in combination with a so-called condensing sheet, for example, with respect to a specific direction, for example, the device light emitting surface. By condensing in the front direction, the luminance in a specific direction can be increased.
As an example of the microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。
 プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
As the condensing sheet, for example, a sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
Moreover, in order to control the light emission angle from a light emitting element, you may use together a light diffusing plate and a film with a condensing sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
《用途》
 本発明の有機EL素子は、電子デバイス、表示装置、ディスプレイ、各種発光装置として用いることができる。発光装置として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではない。特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as an electronic device, a display device, a display, and various light emitting devices. Examples of light emitting devices include lighting devices (home lighting, interior lighting), clocks and backlights for liquid crystals, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Examples include, but are not limited to, a sensor light source. In particular, it can be effectively used as a backlight of a liquid crystal display device and a light source for illumination.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよい。素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. In the case of patterning, only the electrode may be patterned, or the electrode and the light emitting layer may be patterned. The entire layer of the element may be patterned, and a conventionally known method can be used for manufacturing the element.
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図7.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。
The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 7.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total of CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
《表示装置》
 本発明の有機EL素子は、表示装置に用いることもできる。
 本発明の表示装置は、本発明の有機EL素子を具備する。表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。
 多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる。
 発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。
<Display device>
The organic EL element of the present invention can also be used for a display device.
The display device of the present invention includes the organic EL element of the present invention. The display device may be single color or multicolor, but here, the multicolor display device will be described.
In the case of a multicolor display device, a shadow mask is provided only at the time of forming a light emitting layer, and a film can be formed on one surface by vapor deposition, casting, spin coating, ink jet, printing, or the like.
In the case of patterning only the light emitting layer, the method is not limited. However, the vapor deposition method, the ink jet method, the spin coating method, and the printing method are preferable.
 表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。
 また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。
 このようにして得られた多色表示装置に直流電圧を印加する場合には、陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
The configuration of the organic EL element provided in the display device is selected from the above-described configuration examples of the organic EL element as necessary.
Moreover, the manufacturing method of an organic EL element is as having shown to the one aspect | mode of manufacture of the organic EL element of said invention.
When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. Further, even when a voltage is applied with the opposite polarity, no current flows and no light emission occurs. Further, when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state. The alternating current waveform to be applied may be arbitrary.
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。
The multicolor display device can be used as a display device, a display, and various light emission sources. In a display device or display, full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
Examples of the display device and display include a television, a personal computer, a mobile device, an AV device, a character broadcast display, and an information display in an automobile. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method.
Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. The present invention is not limited to these examples.
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
Hereinafter, an example of a display device having the organic EL element of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an example of a display device composed of organic EL elements. It is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
 ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B、表示部Aと制御部Bとを電気的に接続する配線部C等を有する。
 制御部Bは表示部Aと配線部Cを介して電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送る。そして、走査信号により走査線ごとの画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。
The display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, a wiring unit C that electrically connects the display unit A and the control unit B, and the like.
The control unit B is electrically connected via the display unit A and the wiring unit C, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Then, the pixels for each scanning line sequentially emit light in accordance with the image data signal by the scanning signal, and image scanning is performed to display image information on the display unit A.
 図2はアクティブマトリクス方式による表示装置の模式図であり、表示部Aの模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部Cと複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。
 図2においては、画素3の発光した光(発光光L)が白矢印方向(下方向)へ取り出される場合を示している。
FIG. 2 is a schematic diagram of a display device using an active matrix system, and is a schematic diagram of a display unit A. FIG.
The display unit A includes a wiring unit C including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate. The main members of the display unit A will be described below.
FIG. 2 shows a case where the light emitted from the pixel 3 (the emitted light L) is extracted in the white arrow direction (downward).
 配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している(詳細は図示していない)。
 画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
The scanning line 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are illustrated Not)
When a scanning signal is applied from the scanning line 5, the pixel 3 receives an image data signal from the data line 6 and emits light according to the received image data.
Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
 次に、画素の発光プロセスを説明する。図3は画素の回路を示した概略図である。
 画素は、有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサー13等を備えている。複数の画素に有機EL素子10として、赤色、緑色及び青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
Next, the light emission process of the pixel will be described. FIG. 3 is a schematic diagram showing a pixel circuit.
The pixel includes an organic EL element 10, a switching transistor 11, a driving transistor 12, a capacitor 13, and the like. A full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements 10 in a plurality of pixels, and juxtaposing them on the same substrate.
 図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンする。そして、ドレインに印加された画像データ信号がコンデンサー13と駆動トランジスタ12のゲートに伝達される。 3, an image data signal is applied from the control unit B to the drain of the switching transistor 11 via the data line 6. When the scanning signal is applied from the control unit B to the gate of the switching transistor 11 through the scanning line 5, the driving of the switching transistor 11 is turned on. Then, the image data signal applied to the drain is transmitted to the capacitor 13 and the gate of the driving transistor 12.
 画像データ信号の伝達により、コンデンサー13が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ12の駆動がオンする。駆動トランジスタ12は、ドレインが電源ライン7に接続され、ソースが有機EL素子10の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン7から有機EL素子10に電流が供給される。 By transmitting the image data signal, the capacitor 13 is charged according to the potential of the image data signal, and the drive transistor 12 is turned on. The drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the power supply line 7 connects to the organic EL element 10 according to the potential of the image data signal applied to the gate. Current is supplied.
 制御部Bの順次走査により走査信号が次の走査線5に移ると、スイッチングトランジスタ11の駆動がオフする。しかし、スイッチングトランジスタ11の駆動がオフしてもコンデンサー13は充電された画像データ信号の電位を保持するので、駆動トランジスタ12の駆動はオン状態が保たれる。そして、次の走査信号の印加が行われるまで有機EL素子10の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ12が駆動して有機EL素子10が発光する。
 すなわち、有機EL素子10の発光は、複数の画素それぞれの有機EL素子10に対して、アクティブ素子であるスイッチングトランジスタ11と駆動トランジスタ12を設けて、複数の画素3それぞれの有機EL素子10の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。
When the scanning signal is moved to the next scanning line 5 by the sequential scanning of the control unit B, the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on. The light emission of the organic EL element 10 continues until the next scanning signal is applied. When the scanning signal is next applied by sequential scanning, the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
That is, the organic EL element 10 emits light by the switching transistor 11 and the drive transistor 12 that are active elements for the organic EL element 10 of each of the plurality of pixels, and the light emission of the organic EL element 10 of each of the plurality of pixels 3. It is carried out. Such a light emitting method is called an active matrix method.
 ここで、有機EL素子10の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサー13の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
Here, the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or by turning on / off a predetermined light emission amount by a binary image data signal. Good. The potential of the capacitor 13 may be held continuously until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
In the present invention, not only the active matrix method described above, but also a passive matrix light emission drive in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
 図4は、パッシブマトリクス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。
 順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。
 パッシブマトリクス方式では画素3にアクティブ素子がなく、製造コストの低減が計れる。
 本発明の有機EL素子を用いることにより、発光効率が向上した表示装置が得られた。
FIG. 4 is a schematic view of a passive matrix display device. In FIG. 4, a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
When the scanning signal of the scanning line 5 is applied by sequential scanning, the pixels 3 connected to the applied scanning line 5 emit light according to the image data signal.
In the passive matrix system, the pixel 3 has no active element, and the manufacturing cost can be reduced.
By using the organic EL element of the present invention, a display device with improved luminous efficiency was obtained.
《照明装置》
 本発明の有機EL素子は、照明装置に用いることもできる。
 本発明の照明装置は、本発明の有機EL素子を具備する。
 本発明の有機EL素子は、共振器構造を持たせた有機EL素子として用いてもよい。このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザー発振をさせることにより上記用途に使用してもよい。
 また、本発明の有機EL素子は、照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置(ディスプレイ)として使用してもよい。
 動画再生用の表示装置として使用する場合の駆動方式は、パッシブマトリクス方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。
《Lighting device》
The organic EL element of the present invention can also be used for a lighting device.
The lighting device of the present invention includes the organic EL element of the present invention.
The organic EL element of the present invention may be used as an organic EL element having a resonator structure. Examples of the purpose of use of the organic EL element having such a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processing machine, and a light source of an optical sensor. It is not limited. Moreover, you may use for the said use by making a laser oscillation.
Further, the organic EL element of the present invention may be used as a kind of lamp for illumination or exposure light source, a projection device for projecting an image, or a type for directly viewing a still image or a moving image. It may be used as a display device (display).
The driving method when used as a display device for reproducing a moving image may be either a passive matrix method or an active matrix method. Alternatively, it is possible to produce a full-color display device by using two or more organic EL elements of the present invention having different emission colors.
 例えば、複数の発光材料を用いる場合、複数の発光色を同時に発光させて、混色することで白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色及び青色の三原色の三つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用した二つの発光極大波長を含有したものでもよい。 For example, when a plurality of light emitting materials are used, white light emission can be obtained by simultaneously emitting a plurality of light emission colors and mixing the colors. As a combination of a plurality of light emission colors, the light emission may include three light emission maximum wavelengths of three primary colors of red, green and blue, or two light emission utilizing a complementary color relationship such as blue and yellow, blue green and orange, etc. It may contain a maximum wavelength.
 また、本発明の有機EL素子の形成方法は、発光層、正孔輸送層又は電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよい。他層は共通であるのでマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法及び印刷法等で、例えば、電極膜を形成でき、生産性も向上する。
 この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
In addition, the method for forming the organic EL device of the present invention may be simply arranged by providing a mask only when forming a light emitting layer, a hole transport layer, an electron transport layer, or the like, and separately coating with the mask. Since the other layers are common, patterning of a mask or the like is unnecessary, and for example, an electrode film can be formed on one surface by a vapor deposition method, a cast method, a spin coating method, an ink jet method, a printing method, or the like, and productivity is improved.
According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
 [照明装置の一態様]
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いる。周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させる。そして、ガラス基板側からUV光を照射して、硬化させて、封止し、図5及び図6に示すような照明装置を形成することができる。
 図5は、照明装置の概略図を示し、本発明の有機EL素子(照明装置内の有機EL素子101)はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、照明装置内の有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った。)。
 図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機機能層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 本発明の有機EL素子を用いることにより、発光効率が向上した照明装置が得られた。
[One aspect of lighting device]
The non-light-emitting surface of the organic EL element of the present invention is covered with a glass case, and a glass substrate having a thickness of 300 μm is used as a sealing substrate. An epoxy photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealant around the periphery, and this is stacked on the cathode and brought into close contact with the transparent support substrate. Then, UV light is irradiated from the glass substrate side to be cured and sealed, and an illumination device as shown in FIGS. 5 and 6 can be formed.
FIG. 5 shows a schematic diagram of the lighting device, and the organic EL element of the present invention (organic EL element 101 in the lighting device) is covered with a glass cover 102 (note that the sealing operation with the glass cover is performed by lighting. This was performed in a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas having a purity of 99.999% or more) without bringing the organic EL element 101 in the apparatus into contact with the air.
6 shows a cross-sectional view of the lighting device. In FIG. 6, reference numeral 105 denotes a cathode, 106 denotes an organic functional layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
By using the organic EL element of the present invention, an illumination device with improved luminous efficiency was obtained.
 以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り、「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless there is particular notice, "mass part" or "mass%" is represented.
[実施例1]
(有機EL素子の作製)
 <有機EL素子1-1の作製>
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜した。パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄した。次いで、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。その後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
[Example 1]
(Production of organic EL element)
<Preparation of organic EL element 1-1>
An ITO (indium tin oxide) film having a thickness of 150 nm was formed as an anode on a glass substrate having a size of 50 mm × 50 mm and a thickness of 0.7 mm. After patterning, the transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Subsequently, it dried with dry nitrogen gas and performed UV ozone cleaning for 5 minutes. Thereafter, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱した。そして、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。
Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
After reducing the pressure to 1 × 10 −4 Pa, the evaporation crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was energized and heated. And it vapor-deposited on the ITO transparent electrode with the vapor deposition rate of 0.1 nm / sec, and formed the 10-nm-thick hole injection layer.
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。ホスト化合物としてCBP(4,4′-Bis(carbazol-9-yl)biphenyl)、発光ドーパントとしてIr(ppy)を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。 Next, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was deposited on the hole injection layer at a deposition rate of 0.1 nm / second, and the layer thickness was 40 nm. The hole transport layer was formed. CBP (4,4′-Bis (carbazol-9-yl) biphenyl) as the host compound and Ir (ppy) 3 as the luminescent dopant were deposited at a deposition rate of 0.1 nm / min so as to be 90% and 10% by volume, respectively. Co-evaporation was performed in seconds to form a light emitting layer having a layer thickness of 30 nm.
 その後、比較化合物1(電子輸送層(1))とLiQ(8-hydroxyquinolinato lithium)(電子輸送層(2))をそれぞれ50%、50%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの電子輸送層を形成した。
 更に、LiQを膜厚2nmで形成した後に、アルミニウム100nmを蒸着して陰極を形成した。
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子1-1を作製した。
Thereafter, the deposition rate was 0.1 nm / second so that the comparative compound 1 (electron transport layer (1)) and LiQ (8-hydroxyquinolinato lithium) (electron transport layer (2)) were 50% and 50% by volume, respectively. Was co-evaporated to form an electron transport layer having a layer thickness of 30 nm.
Furthermore, after forming LiQ with a film thickness of 2 nm, 100 nm of aluminum was vapor-deposited to form a cathode.
The non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was installed to prepare an organic EL element 1-1.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 <有機EL素子1-2~1-30の作製>
 電子輸送層(1)、(2)及び電子注入層に含有させる化合物等を表1に示すように変えた以外は有機EL素子1-1と同様の方法で有機EL素子1-2~1-30を作製した。
 なお、表1中、「-」は、成分を含有していないことを示す。
<Preparation of organic EL elements 1-2 to 1-30>
The organic EL elements 1-2 to 1- 1 were prepared in the same manner as the organic EL element 1-1 except that the compounds contained in the electron transport layers (1) and (2) and the electron injection layer were changed as shown in Table 1. 30 was produced.
In Table 1, “-” indicates that no component is contained.
(評価)
(1)相対駆動電圧の測定
 作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/mとなるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
 上記で得られた駆動電圧を下記式に当てはめて、有機EL素子1-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
 相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子1-1の駆動電圧)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
(Evaluation)
(1) Measurement of relative driving voltage For each of the produced organic EL elements, the front luminance on both sides of the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL element is measured. The voltage when the sum is 1000 cd / m 2 was measured as the drive voltage (V). For the measurement of luminance, a spectral radiance meter CS-1000 (manufactured by Konica Minolta) was used.
The drive voltage obtained above was applied to the following equation to determine the relative drive voltage of each organic EL element with respect to the drive voltage of the organic EL element 1-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 1-1) × 100
It represents that it is so preferable that the obtained numerical value is small.
(2)高温保存下での相対駆動電圧変化の測定
 上記作製した有機EL素子を、温度80℃で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
 得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
 上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子1-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
 高温保存による相対駆動電圧変化量(%)=(各有機EL素子の駆動電圧変化量/有機EL素子1-1の駆動電圧変化量)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
(2) Measurement of relative drive voltage change under high temperature storage The organic EL device prepared above was allowed to emit light at a temperature of 80 ° C. under a constant current condition of 2.5 mA / cm 2 , The driving voltage 100 hours after the start was measured.
The obtained drive voltage before and after storage at high temperature was compared to determine the amount of change in drive voltage (the value obtained by subtracting the drive voltage after storage at high temperature from the drive voltage before storage at high temperature).
By applying the change amount of the driving voltage obtained above to the following equation, the relative value of the drive voltage change amount of each organic EL element with respect to the drive voltage change amount of the organic EL element 1-1 is a relative drive under high temperature storage. Obtained as voltage change.
Relative drive voltage change amount (%) due to high temperature storage = (Drive voltage change amount of each organic EL element / Drive voltage change amount of organic EL element 1-1) × 100
It represents that it is so preferable that the obtained numerical value is small.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
[実施例2]
(有機EL素子の作製)
 <有機EL素子2-1の作製>
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
[Example 2]
(Production of organic EL element)
<Preparation of organic EL element 2-1>
A transparent substrate with an ITO (Indium Tin Oxide) film having a thickness of 150 nm formed on a glass substrate of 50 mm × 50 mm and a thickness of 0.7 mm, patterned, and this ITO transparent electrode was attached After ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas and UV ozone cleaning for 5 minutes, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。
Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
After reducing the vacuum to 1 × 10 −4 Pa, energize and heat the evaporation crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) to evaporate Vapor deposition was performed on the ITO transparent electrode at a rate of 0.1 nm / second to form a hole injection layer having a layer thickness of 10 nm.
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。
 ホスト化合物としてCBP、発光ドーパントとしてIr(ppy)を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。
Next, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was deposited on the hole injection layer at a deposition rate of 0.1 nm / second, and the layer thickness was 40 nm. The hole transport layer was formed.
CBP as a host compound and Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / second so as to be 90% and 10% by volume, respectively, to form a light emitting layer having a layer thickness of 30 nm.
 その後、比較化合物2とKFをそれぞれ85%、15%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの電子輸送層を形成した。
 この後、銀を蒸着速度0.1nm/秒で蒸着し、膜厚15nmの陰極を形成した。
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子2-1を作製した。
Thereafter, Comparative Compound 2 and KF were co-deposited at a deposition rate of 0.1 nm / second so as to be 85% and 15% by volume, respectively, to form an electron transport layer having a layer thickness of 30 nm.
Thereafter, silver was deposited at a deposition rate of 0.1 nm / second to form a cathode having a thickness of 15 nm.
The non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas having a purity of 99.999% or more, and an electrode lead-out wiring was installed to produce an organic EL element 2-1.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 <有機EL素子2-2~2-21の作製>
 電子輸送層の化合物と、陰極の銀とマグネシウムの比率及び陰極の膜厚を、表2に示すように変えた以外は有機EL素子2-1と同様にして有機EL素子2-2~2-21を作製した。
 なお、有機EL素子2-1~2-21において、電子輸送層にはKFが15%含まれるが、表2中、KFの表記は省略している。
<Production of organic EL elements 2-2 to 2-21>
The organic EL elements 2-2 to 2-2 were the same as the organic EL element 2-1, except that the compound of the electron transport layer, the ratio of silver and magnesium of the cathode, and the film thickness of the cathode were changed as shown in Table 2. 21 was produced.
In the organic EL elements 2-1 to 2-21, the electron transport layer contains 15% KF, but in Table 2, the notation of KF is omitted.
(評価)
 (1)相対駆動電圧の測定
 作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/mとなるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
 上記で得られた駆動電圧を下記式に当てはめて、有機EL素子2-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
 相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子2-1の駆動電圧)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
(Evaluation)
(1) Measurement of relative driving voltage For each of the produced organic EL elements, the front luminance on both sides of the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL element is measured. The voltage when the sum is 1000 cd / m 2 was measured as the drive voltage (V). For the measurement of luminance, a spectral radiance meter CS-1000 (manufactured by Konica Minolta) was used.
The drive voltage obtained above was applied to the following equation to determine the relative drive voltage of each organic EL element with respect to the drive voltage of the organic EL element 2-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 2-1) × 100
It represents that it is so preferable that the obtained numerical value is small.
(2)高温保存下での相対駆動電圧変化の測定
 上記作製した有機EL素子を、温度80℃で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
 得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
 上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子2-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
 高温保存による相対駆動電圧変化量(%)=(各有機EL素子の駆動電圧変化量/有機EL素子2-1の駆動電圧変化量)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
(2) Measurement of relative drive voltage change under high temperature storage The organic EL device prepared above was allowed to emit light at a temperature of 80 ° C. under a constant current condition of 2.5 mA / cm 2 , The driving voltage 100 hours after the start was measured.
The obtained drive voltage before and after storage at high temperature was compared to determine the amount of change in drive voltage (the value obtained by subtracting the drive voltage after storage at high temperature from the drive voltage before storage at high temperature).
By applying the change amount of the driving voltage obtained above to the following equation, the relative value of the drive voltage change amount of each organic EL element with respect to the drive voltage change amount of the organic EL element 2-1 is relatively driven under high temperature storage. Obtained as voltage change.
Relative drive voltage change amount (%) due to high temperature storage = (Drive voltage change amount of each organic EL element / Drive voltage change amount of organic EL element 2-1) × 100
It represents that it is so preferable that the obtained numerical value is small.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
[実施例3]
(有機EL素子の作製)
 <有機EL素子3-1の作製>
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を150nmの厚さで成膜した。パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄した。次いで、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。その後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
[Example 3]
(Production of organic EL element)
<Preparation of organic EL element 3-1>
An ITO (indium tin oxide) film having a thickness of 150 nm was formed as an anode on a glass substrate having a size of 50 mm × 50 mm and a thickness of 0.7 mm. After patterning, the transparent substrate with the ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol. Subsequently, it dried with dry nitrogen gas and performed UV ozone cleaning for 5 minutes. Thereafter, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
 真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用るつぼはモリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
 真空度1×10-4Paまで減圧した後、HAT-CN(1,4,5,8,9,12-ヘキサアザトリフェニレンヘキサカルボニトリル)の入った蒸着用るつぼに通電して加熱した。そして、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。
Each of the vapor deposition crucibles in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication. The evaporation crucible used was made of a resistance heating material made of molybdenum or tungsten.
After reducing the pressure to 1 × 10 −4 Pa, the evaporation crucible containing HAT-CN (1,4,5,8,9,12-hexaazatriphenylenehexacarbonitrile) was energized and heated. And it vapor-deposited on the ITO transparent electrode with the vapor deposition rate of 0.1 nm / sec, and formed the 10-nm-thick hole injection layer.
 次いで、α-NPD(4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル)を蒸着速度0.1nm/秒で前記正孔注入層上に蒸着し、層厚40nmの正孔輸送層を形成した。
 ホスト化合物としてCBP、発光ドーパントとしてIr(ppy)を、それぞれ90%、10%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚30nmの発光層を形成した。
Next, α-NPD (4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl) was deposited on the hole injection layer at a deposition rate of 0.1 nm / second, and the layer thickness was 40 nm. The hole transport layer was formed.
CBP as a host compound and Ir (ppy) 3 as a light emitting dopant were co-deposited at a deposition rate of 0.1 nm / second so as to be 90% and 10% by volume, respectively, to form a light emitting layer having a layer thickness of 30 nm.
 その後、電子輸送層として、Alqを蒸着速度0.1nm/秒で蒸着し、層厚30nmの電子輸送層を形成した。
 その後、比較化合物3とLiQをそれぞれ50%、50%の体積%になるように蒸着速度0.1nm/秒で共蒸着し、層厚2nmの電子注入層を形成した。
 この後、銀とマグネシウムをそれぞれ、蒸着速度0.1nm/秒、0.01nm/秒で共蒸着し、膜厚8nmの陰極を形成した。
 上記素子の非発光面側を、純度99.999%以上の高純度窒素ガスの雰囲気下で、缶状ガラスケースで覆い、電極取り出し配線を設置して、有機EL素子3-1を作製した。
Thereafter, Alq 3 was deposited as an electron transport layer at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 30 nm.
Thereafter, Comparative Compound 3 and LiQ were co-deposited at a deposition rate of 0.1 nm / second so as to be 50% and 50% by volume, respectively, to form an electron injection layer having a layer thickness of 2 nm.
Thereafter, silver and magnesium were co-deposited at a deposition rate of 0.1 nm / second and 0.01 nm / second, respectively, to form a cathode having a thickness of 8 nm.
The non-light-emitting surface side of the above element was covered with a can-shaped glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and an electrode lead-out wiring was installed to prepare an organic EL element 3-1.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 <有機EL素子3-2~3-17の作製>
 電子注入層の化合物と、陰極の銀とマグネシウムの比率及び陰極の膜厚を、表3に示すように変えた以外は有機EL素子3-1と同様にして有機EL素子3-2~3-17を作製した。
 なお、有機EL素子3-1~3-17において、電子注入層にはLiQが50%含まれるが、表3中、LiQの表記は省略している。
<Preparation of organic EL elements 3-2 to 3-17>
The organic EL devices 3-2 to 3-3 were the same as the organic EL device 3-1, except that the compound of the electron injection layer, the ratio of silver and magnesium of the cathode, and the thickness of the cathode were changed as shown in Table 3. 17 was produced.
In the organic EL elements 3-1 to 3-17, 50% of LiQ is contained in the electron injection layer, but the LiQ notation is omitted in Table 3.
(評価)
(1)相対駆動電圧の測定
 作製した各有機EL素子について、各有機EL素子の透明電極側(すなわち透明基板側)と、対向電極側(すなわち陰極側)との両側での正面輝度を測定し、その和が1000cd/mとなるときの電圧を駆動電圧(V)として測定した。なお、輝度の測定には、分光放射輝度計CS-1000(コニカミノルタ製)を用いた。
 上記で得られた駆動電圧を下記式に当てはめて、有機EL素子3-1の駆動電圧に対する、各有機EL素子の相対駆動電圧を求めた。
 相対駆動電圧(%)=(各有機EL素子の駆動電圧/有機EL素子3-1の駆動電圧)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
(Evaluation)
(1) Measurement of relative driving voltage For each of the produced organic EL elements, the front luminance on both sides of the transparent electrode side (that is, the transparent substrate side) and the counter electrode side (that is, the cathode side) of each organic EL element is measured. The voltage when the sum is 1000 cd / m 2 was measured as the drive voltage (V). For the measurement of luminance, a spectral radiance meter CS-1000 (manufactured by Konica Minolta) was used.
The drive voltage obtained above was applied to the following equation to determine the relative drive voltage of each organic EL element with respect to the drive voltage of the organic EL element 3-1.
Relative drive voltage (%) = (drive voltage of each organic EL element / drive voltage of organic EL element 3-1) × 100
It represents that it is so preferable that the obtained numerical value is small.
(2)高温保存下での相対駆動電圧変化の測定
 上記作製した有機EL素子を、温度80℃で、2.5mA/cmの定電流条件下で発光させ、発光開始直後の駆動電圧と、開始100時間後の駆動電圧を測定した。
 得られた高温保存前と保存後の駆動電圧を比較して、駆動電圧の変化量(高温保存前の駆動電圧から高温保存後の駆動電圧を差し引いた値)を求めた。
 上記で得られた駆動電圧の変化量を下記式に当てはめて、有機EL素子3-1の駆動電圧変化量に対する、各有機EL素子の駆動電圧変化量の相対値を高温保存下での相対駆動電圧変化として求めた。
 高温保存による相対駆動電圧変化量(%)=(各有機EL素子の駆動電圧変化量/有機EL素子3-1の駆動電圧変化量)×100
 得られた数値が小さいほど、好ましい結果であることを表す。
(2) Measurement of relative drive voltage change under high temperature storage The organic EL device prepared above was allowed to emit light at a temperature of 80 ° C. under a constant current condition of 2.5 mA / cm 2 , The driving voltage 100 hours after the start was measured.
The obtained drive voltage before and after storage at high temperature was compared to determine the amount of change in drive voltage (the value obtained by subtracting the drive voltage after storage at high temperature from the drive voltage before storage at high temperature).
By applying the change amount of the driving voltage obtained above to the following equation, the relative value of the drive voltage change amount of each organic EL element with respect to the drive voltage change amount of the organic EL element 3-1 is relatively driven under high temperature storage. Obtained as voltage change.
Relative drive voltage change amount (%) due to high temperature storage = (Drive voltage change amount of each organic EL element / Drive voltage change amount of organic EL element 3-1) × 100
It represents that it is so preferable that the obtained numerical value is small.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 以上より、本発明の有機EL素子は、比較例の有機EL素子よりも相対駆動電圧が低く、高温保存下での相対駆動電圧変化も小さいことから高温保存時の安定性に優れ、耐久性に優れていることがわかった。 As described above, the organic EL device of the present invention has a lower relative driving voltage than the organic EL device of the comparative example and a smaller change in the relative driving voltage under high temperature storage, so that it has excellent stability during high temperature storage and durability. I found it excellent.
1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサー
101 照明装置内の有機EL素子
102 ガラスカバー
105 陰極
106 有機機能層
107 透明電極付きガラス基板
108 窒素ガス
109 捕水剤
A 表示部
B 制御部
C 配線部
L 発光光
DESCRIPTION OF SYMBOLS 1 Display 3 Pixel 5 Scan line 6 Data line 7 Power supply line 10 Organic EL element 11 Switching transistor 12 Drive transistor 13 Capacitor 101 Organic EL element 102 in an illuminating device Glass cover 105 Cathode 106 Organic functional layer 107 Glass substrate 108 with a transparent electrode Nitrogen Gas 109 Water capturing agent A Display part B Control part C Wiring part L Light emission

Claims (11)

  1.  陽極と、発光層を含む複数の有機機能層と、陰極とをこの順に有する有機エレクトロルミネッセンス素子であって、
     前記発光層と前記陰極の間に、下記一般式(1)で表される構造を有する化合物を含有する前記有機機能層を有する有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)中、Ar、Ar、Ar、Arは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。Ar、Arは、各々独立に、水素原子、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。nは3以上の整数を表す。Lは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。但し、Lが単環の場合は、オルト結合及びパラ結合のうちの少なくとも1つの結合で連結する。)
    An organic electroluminescence device having an anode, a plurality of organic functional layers including a light emitting layer, and a cathode in this order,
    The organic electroluminescent element which has the said organic functional layer containing the compound which has a structure represented by following General formula (1) between the said light emitting layer and the said cathode.
    Figure JPOXMLDOC01-appb-C000001
    (In general formula (1), Ar 1 , Ar 2 , Ar 5 , Ar 6 each independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. Ar 3 , Ar 4 each independently represents a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent, n represents an integer of 3 or more, and L represents each independently an aromatic carbon (It represents a hydrogen ring or a heterocyclic ring, and may further have a substituent, provided that when L is a single ring, they are linked by at least one of an ortho bond and a para bond.)
  2.  前記一般式(1)において、Ar、Arは、水素原子である請求項1に記載の有機エレクトロルミネッセンス素子。 In Formula (1), Ar 3, Ar 4 is an organic electroluminescent device according to claim 1 is a hydrogen atom.
  3.  前記一般式(1)において、Ar、Ar、Ar、Arは、各々独立に、フェニル環、ナフチル環、ピリジン環、ピリミジン環、キノリン環又はイソキノリン環を表し、更に置換基を有してもよい請求項1又は請求項2に記載の有機エレクトロルミネッセンス素子。 In the general formula (1), Ar 1 , Ar 2 , Ar 5 and Ar 6 each independently represent a phenyl ring, a naphthyl ring, a pyridine ring, a pyrimidine ring, a quinoline ring or an isoquinoline ring, and further have a substituent. The organic electroluminescence device according to claim 1 or 2, which may be used.
  4.  前記一般式(1)において、Lは、各々独立に、フェニル環、ピリジン環、ピリミジン環又はピラジン環を表し、更に置換基を有してもよい請求項1から請求項3のいずれか一項に記載の有機エレクトロルミネッセンス素子。 4. In the general formula (1), each L independently represents a phenyl ring, a pyridine ring, a pyrimidine ring or a pyrazine ring, and may further have a substituent. The organic electroluminescent element of description.
  5.  前記陰極が、銀を主成分としており、
     前記有機機能層が、前記陰極に隣接して設けられている請求項1から請求項4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
    The cathode has silver as a main component,
    The organic electroluminescent element according to any one of claims 1 to 4, wherein the organic functional layer is provided adjacent to the cathode.
  6.  前記陰極の厚さが、15nm以下である請求項1から請求項5のいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 5, wherein the cathode has a thickness of 15 nm or less.
  7.  前記有機機能層として、前記一般式(1)で表される構造を有する化合物及び電子注入材料を含有する層を有する請求項1から請求項6のいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic electroluminescence device according to any one of claims 1 to 6, wherein the organic functional layer has a layer containing a compound having a structure represented by the general formula (1) and an electron injection material.
  8.  前記一般式(1)で表される構造を有する化合物を含有する前記有機機能層、電子注入材料を含有する電子注入層及び前記陰極の順に積層されている請求項1から請求項7のいずれか一項に記載の有機エレクトロルミネッセンス素子。 The organic functional layer containing a compound having a structure represented by the general formula (1), an electron injection layer containing an electron injection material, and the cathode are laminated in this order. The organic electroluminescence device according to one item.
  9.  下記一般式(1)で表される構造を有する化合物を含有する有機エレクトロルミネッセンス用材料。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(1)中、Ar、Ar、Ar、Arは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。Ar、Arは、各々独立に、水素原子、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。nは3以上の整数を表す。Lは、各々独立に、芳香族炭化水素環又は複素環を表し、更に置換基を有してもよい。但し、Lが単環の場合は、オルト結合及びパラ結合のうちの少なくとも1つの結合で連結する。)
    The organic electroluminescent material containing the compound which has a structure represented by following General formula (1).
    Figure JPOXMLDOC01-appb-C000002
    (In general formula (1), Ar 1 , Ar 2 , Ar 5 , Ar 6 each independently represents an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent. Ar 3 , Ar 4 each independently represents a hydrogen atom, an aromatic hydrocarbon ring or a heterocyclic ring, and may further have a substituent, n represents an integer of 3 or more, and L represents each independently an aromatic carbon (It represents a hydrogen ring or a heterocyclic ring, and may further have a substituent, provided that when L is a single ring, they are linked by at least one of an ortho bond and a para bond.)
  10.  請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備する表示装置。 A display device comprising the organic electroluminescence element according to any one of claims 1 to 8.
  11.  請求項1から請求項8のいずれか一項に記載の有機エレクトロルミネッセンス素子を具備する照明装置。 An illumination device comprising the organic electroluminescence element according to any one of claims 1 to 8.
PCT/JP2019/004099 2018-03-15 2019-02-05 Organic electroluminescence element, material for organic electroluminescence, display device, and illumination device WO2019176384A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-048544 2018-03-15
JP2018048544 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019176384A1 true WO2019176384A1 (en) 2019-09-19

Family

ID=67908276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004099 WO2019176384A1 (en) 2018-03-15 2019-02-05 Organic electroluminescence element, material for organic electroluminescence, display device, and illumination device

Country Status (1)

Country Link
WO (1) WO2019176384A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103570629A (en) * 2012-07-27 2014-02-12 昆山维信诺显示技术有限公司 Benzanthracene derivatives containing pyrimidinyl, pyrazinyl or triazinyl groups and applications thereof
CN103665014A (en) * 2012-08-30 2014-03-26 昆山维信诺显示技术有限公司 6-trimethylphenyl-6H-6-boroheterobenzo[cd]pyrene derivatives and application thereof
JP2015504422A (en) * 2011-11-10 2015-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 4H-imidazo [1,2-a] imidazole for electronics applications
KR20150037318A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Hetero-cyclic compound and organic light emitting device comprising the same
JP2015524797A (en) * 2012-07-13 2015-08-27 エルジー・ケム・リミテッド Heterocyclic compounds and organic electronic devices using the same
KR20160041019A (en) * 2014-10-06 2016-04-15 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
JP2016538238A (en) * 2013-09-24 2016-12-08 エルジー・ケム・リミテッド Heterocyclic compound and organic light emitting device including the same
KR20180044832A (en) * 2016-10-24 2018-05-03 주식회사 엘지화학 Organic light emitting device
KR20180115558A (en) * 2017-04-13 2018-10-23 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504422A (en) * 2011-11-10 2015-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 4H-imidazo [1,2-a] imidazole for electronics applications
JP2015524797A (en) * 2012-07-13 2015-08-27 エルジー・ケム・リミテッド Heterocyclic compounds and organic electronic devices using the same
CN103570629A (en) * 2012-07-27 2014-02-12 昆山维信诺显示技术有限公司 Benzanthracene derivatives containing pyrimidinyl, pyrazinyl or triazinyl groups and applications thereof
CN103665014A (en) * 2012-08-30 2014-03-26 昆山维信诺显示技术有限公司 6-trimethylphenyl-6H-6-boroheterobenzo[cd]pyrene derivatives and application thereof
JP2016538238A (en) * 2013-09-24 2016-12-08 エルジー・ケム・リミテッド Heterocyclic compound and organic light emitting device including the same
KR20150037318A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Hetero-cyclic compound and organic light emitting device comprising the same
KR20160041019A (en) * 2014-10-06 2016-04-15 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20180044832A (en) * 2016-10-24 2018-05-03 주식회사 엘지화학 Organic light emitting device
KR20180115558A (en) * 2017-04-13 2018-10-23 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same

Similar Documents

Publication Publication Date Title
JP5810529B2 (en) Organic electroluminescence element, display device and lighting device
JP5747736B2 (en) Organic electroluminescence element, display device and lighting device
JP5493309B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
WO2013168688A1 (en) Organic electroluminescence element, illumination device, and display device
CN109863614B (en) Organic electroluminescent element and material for organic electroluminescence
JP6146415B2 (en) Organic electroluminescence element, lighting device and display device
JP6011542B2 (en) Organic electroluminescence element, display device and lighting device
JP2015213119A (en) Material for organic electroluminescent elements, organic electroluminescent element, illuminating device and display device
WO2016056562A1 (en) Iridium complex, organic electroluminescence material, organic electroluminescence element, display device, and illumination device
WO2015046452A1 (en) Iridium complex, method for producing iridium complex, organic electroluminescence element, display device and illumination device
JP4941291B2 (en) Organic electroluminescence device
WO2016175068A1 (en) Material for organic electroluminescent elements, organic electroluminescent element, display device and lighting device
JP6020466B2 (en) Organic electroluminescence element, display device and lighting device
JP7173145B2 (en) thin film, electronic device, organic electroluminescence element, organic electroluminescence material, display device, and lighting device
WO2019107424A1 (en) Organic electroluminescence element, organic electroluminescence material, display device, and illumination device
WO2019176384A1 (en) Organic electroluminescence element, material for organic electroluminescence, display device, and illumination device
JP7029404B2 (en) Organic electroluminescence devices and materials for organic electroluminescence
WO2013161468A1 (en) Organic electroluminescent element
WO2013137162A1 (en) Organic electroluminescent element, lighting device, and display device
JP5930005B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT AND ITS MANUFACTURING METHOD, DISPLAY DEVICE AND LIGHTING DEVICE
JP5708759B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5673746B2 (en) Organic electroluminescence device
JP5359441B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19767663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP