WO2020012057A1 - Preparación de librerías de ácidos nucléicos o genotecas - Google Patents

Preparación de librerías de ácidos nucléicos o genotecas Download PDF

Info

Publication number
WO2020012057A1
WO2020012057A1 PCT/ES2019/070494 ES2019070494W WO2020012057A1 WO 2020012057 A1 WO2020012057 A1 WO 2020012057A1 ES 2019070494 W ES2019070494 W ES 2019070494W WO 2020012057 A1 WO2020012057 A1 WO 2020012057A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligonucleotide
particle
joining
sequencing
single chain
Prior art date
Application number
PCT/ES2019/070494
Other languages
English (en)
French (fr)
Inventor
Julián López-Viota Gallardo
Ángel CARAZO GALLEGO
Javier SALMERÓN ESCOBAR
Anaïs REDRUELLO GARCÍA
Original Assignee
Universidad De Granada
Servicio Andaluz De Salud
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Granada, Servicio Andaluz De Salud filed Critical Universidad De Granada
Publication of WO2020012057A1 publication Critical patent/WO2020012057A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present invention relates to methods and compositions for high-performance analysis of populations of nucleic acid molecules, and more particularly, to methods and compositions related to the manufacture of libraries and their applications, especially in sequencing of high-performance nucleic acid (techniques of mass sequencing or “next-generation sequencing” - ngs-) and genetic analysis.
  • analytes such as nucleic acid sequences that are present in a biological sample
  • a common technique for detecting analytes, such as nucleic acid sequences in a biological sample is nucleic acid sequencing.
  • the nucleic acid sequencing methodology has evolved significantly from the chemical degradation methods used by Maxam and Gilbert and the chain elongation methods used by Sanger.
  • the next generation mass sequencing platforms allow millions of nucleic acids to be processed in parallel, all in a single sequence or fragment, obtaining a significant sequencing depth of the individual genomes or transcriptomes of different organisms.
  • the instrumentation that performs such methods is typically large and expensive since current methods are usually based on large amounts of expensive reagents and multiple sets of optical filters to record the incorporation of nucleic acids in sequencing reactions.
  • sequencing must advance and be accessible to high performance technologies not only for their high performance capabilities, but also in terms of ease of use, time and cost efficiency, and accessibility of clinicians to Instruments and reagents.
  • SBS synthesis sequencing
  • SMRT Single-MoleculeReal-TimeSequencing
  • luminum it detects the addition of the bases one by one by fluorophores
  • Ion Torrent which detects groups of equal bases and that measures the signal by semiconductors that evaluate concentration changes of protons (pH).
  • PH concentration changes of protons
  • PacBio reads long sequences in real time by measuring the light emission of the fluorinated forum released after the incorporation of each nucleotide. Minlon detects the bases of the sequence by measuring changes in electrical current in the pore membrane as the single strand sequence of the DNA passes.
  • Ion Torrent The sequencing technique of Ion Torrent begins its processing with an emulsion PCR with microdroplets (Nyrén, 1985) and uses semiconductors to detect the H + detached in the incorporation of the dNTPs.
  • an amplified sample library is prepared by creating a DNA library as described in the Mate Pair Library Prep kit, Genomic DNA Sample Preparation kits or TruSeq Sample Preparation kits and Exorne Enrichment (lllumina®, Inc., San Diego CA).
  • DNA libraries can be immobilized in a flow cell and a bridge amplification performed on immobilized polynucleotides before sequencing, for example sequence by synthesis methodologies.
  • bridge amplification an immobilized polynucleotide (eg, from a DNA library) is hybridized to an immobilized oligonucleotide primer.
  • the 3 'end of the immobilized polynucleotide molecule provides the template for a template-directed elongation reaction catalyzed by polymerase (eg, primer extension) extending from the immobilized oligonucleotide primer.
  • polymerase eg, primer extension
  • the resulting double strand product "bridges" the two primers and both strands are covalently attached to the support.
  • both immobilized chains can serve as templates for the extension of a new primer. In this way, the first and second parts can be amplified to produce a plurality of clusters.
  • Groups and colonies are used interchangeably and refer to a plurality of copies of a nucleic acid sequence and / or complements thereof attached to a surface.
  • the group comprises a plurality of copies of a nucleic acid sequence and / or complements thereof, joined through their 5 'ends to the surface.
  • the methodology of amplification and grouping of exemplary bridges is described, for example, in the Patent Publication
  • Emulsion PCR methods can also be used to amplify nucleic acids before sequencing in combination with methods and compositions as described herein (technology using the Ion Torrent platform).
  • the Emulsion PCR comprises PCR amplification of a random DNA library flanked with adapter in a water-in-oil emulsion.
  • PCR is a multi-template PCR; Only one pair of primers is used.
  • One of the PCR primers is attached to the surface (joined by 5 ') of microscale beads.
  • a low template concentration results in the majority of the emulsion microvesicles containing beads having zero or one template molecules present.
  • PCR amplicons can be captured on the surface of the pearl. After breaking the emulsion, pearls that carry amplification products can be selectively enriched. Each clonally amplified bead will support on its surface PCR products corresponding to the amplification of a single molecule from the template library.
  • Various embodiments of emulsion PCR methods are established in Dressman et al., (2003). Proc. Nati Acad. Sci. USA 100: 8817-8822, PCT patent publication. No. WO 05/010145, Publ. U.S. Patent Nos. 2005/0130173, 2005/0064460, and U S2005 / 0042648.
  • the library formation procedure can take a long time, the products are often inefficiently purified and the result is that unknown reactions that create unwanted and / or unknown molecules bound to the DNA can occur.
  • incomplete purification of the library (library) may result in labels (labeling is the identification of each sample with a particular sequence in one of the adapters) that produce cross contamination during the linking stages, resulting in erroneous labeling.
  • labeling is the identification of each sample with a particular sequence in one of the adapters
  • the final result for the examination and sequencing of positive results from the library is that parallel sequencing has to be used massively due to the inherent "noise" of both the DNAs that bind to unwanted molecules (eg, products without react or secondary) as they are labeled erroneously. Therefore, the efficiency of sequencing is lost.
  • the adapters are incorporated into the 5 ’ends of large primers. It is an exclusive method of amplicon libraries. It requires knowing the sequence of the ends of the DNA to be sequenced. Handmade method difficult to tune, due to the malfunction of large primers in PCR.
  • the "strands to be elongated" are added to the oligonucleotides attached to the nanoparticle by various methods.
  • retrotranscription from the Poly (T) end of an oligonucleotide attached to the particle at its 5 ′ end is used.
  • WO2015031691 A1 performs a retrotranscription elongating the 3 ′ end of the oligonucleotides attached to the particle. So these acquire at their end 3 'sequences complementary to populations of messenger RNA (DNA copy). If a mass sequencing library is to be made later (as claimed in patent W02015031691A1) from the copy DNA attached to the particle, adapters must be added by ligation reactions, using standard procedures.
  • the ligation reaction has several drawbacks:
  • DNA ligase is labile (expires quickly, invalidating the kit).
  • the ligation reaction has several reaction products, of which only one is correct (the one that joins a different adapter to each end of the DNA to be sequenced).
  • the ligation reaction introduces biases depending on the sequence of the ends to bind. Ligation biases alter the initial frequencies of the sequences in the biological sample. Certain sequences are overvalued and others underestimated.
  • the ligation reaction has a very low efficiency, which is also drastically reduced by increasing the size of the DNA. Hence, reduced efficiency is not a problem, because after ligation it is amplified specifically the desired product. However, it is the source of an important “sampling bias”.
  • the present invention relates to methods and compositions related to the manufacture of libraries and their applications, especially in high performance nucleic acid sequencing and genetic analysis.
  • a particle covalently linked to an oligonucleotide at its 5 ′ end hereafter the particle of the invention, where the particle is characterized in that: I) it has a magnetic core,
  • IV) has a low sedimentation coefficient and reduced aggregation
  • V) has a size between 10Onm and 2000nm, preferably around 800nm
  • VI) does not inhibit Taq polymerase and can be used in PCR reactions
  • the particle is stable at temperatures up to 100 ° C.
  • the magnetic core is "soft magnetic” (ie, it only has magnetic properties in the presence of an external magnetic field) but “hard magnetic” cores (magnetic per se) could be used. Hard magnetic cores are less recommended.
  • the organic compounds with exposed acid groups are thiol or carboxyl groups, more preferably carboxyl.
  • the binding of the oligonucleotide to the particle is given by the amino group of its 5 ′ end, by means of a link with the exposed acid groups.
  • the exposed carboxyl groups are carboxyl groups and the bond is amide type.
  • the oligonucleotide must be able to function as a primer or primer in a PCR reaction or, in general, polymerization of DNA.
  • a second aspect of the invention relates to a method of joining two single chain oligonucleotides comprising: a) attaching one of the oligonucleotides to a particle as described in the first aspect of the invention, to create a template oligonucleotide, b) add the other oligonucleotide to the free end (3 ' ) of the template oligonucleotide by fusion primers, in the presence of Taq polymerase, to make an elongation (single cycle) of the oligonucleotide covalently bonded to the particle.
  • the method for joining two single chain oligonucleotides according to the third aspect additionally comprises: c) performing at least one additional elongation cycle, and d) removing the strand attached to the macroparticle.
  • the removal of the strand bound to the particle can be performed by techniques known in the state of the art, preferably by denaturation (thermal or alkaline) the strand of DNA not covalently bound to the particle is removed, while the particle retains the strand covalently bound which comes from the elongation of the oligonucleotide bound to the particle by 5 '. After denaturation, the particles can settle, using a magnet or any other known method, which allows the separation of both strands.
  • a third aspect of the invention includes a method for obtaining amplicon libraries comprising steps a), b), as indicated in the second aspect of the invention and optionally steps (c) and (d) as detailed in The above aspects, and additionally, comprise: f) attaching the other of the oligonucleotides (adapters) to a particle as described in claims 1-2, and g) elongating the strand in the presence of Taq polymerase.
  • Fig. 1 Example of oligonucleotide binding to the magnetic particle. It can be joined in the form of a single strand or double strand (in which case the strand not covalently bound by DNA denaturation and sedimentation of particles on a magnet should be removed). Double strand binding is preferable when particle bonding is performed by an amino group at the 5 ’position. In this way, the union (unwanted) is avoided by means of the amino groups of the internal nitrogen bases.
  • the figure is a scheme, it is not to scale and it must be understood that numerous oligonucleotide molecules bind to the surface of the particle.
  • the oligonucleotides are represented by an "arrow", whose tip indicates the 3 'end.
  • the linker of (CH3) n (its use is recommended) is represented by a broken line.
  • the oligonucleotide bound to the particle must be able to function in a PCR reaction or elongation of DNA, as if it were a primer or primer.
  • Fig. 2 After operating in a PCR reaction (multiplex or not) the primer must have elongated. After which the strand not bound to the particle is removed by denaturation and sedimentation of particles on magnet.
  • the figure is a scheme, it is not to scale and it must be understood that numerous oligonucleotide molecules bind to the surface of the particle. In the scheme, the DNA molecules are represented by an "arrow", whose tip indicates the 3 'end.
  • the adapter is added by elongation of the 3 'end using a fusion oligonucleotide.
  • This oligonucleotide carries at its 3 'end a sequence of attachment to the 3' end of the single stranded DNA attached to the particle and at its 5 'end carries a sequence complementary to one of the adapters of the library.
  • the fusion oligonucleotide can carry a bar code.
  • the fusion oligonucleotide is incubated in the presence of Taq polymerase at a suitable temperature (preferably around 60 ° C, although it may be between 40 and 75 ° C).
  • a suitable temperature preferably around 60 ° C, although it may be between 40 and 75 ° C.
  • the fusion primer carries a 3 'modification that prevents its elongation (although it can be used without this modification).
  • the only possible elongation is that of the single stranded DNA attached to the particle.
  • fusion oligonucleotides are not primers or PCR primers and, consequently, do not have to meet the requirements of optimal primer performance. It stands out that it is not a PCR reaction. There are no cycles (although there might be some variant), there is no elongation of the fusion oligonucleotide and the fusion oligonucleotide does not have to compete for hybridization with any strand complementary to the DNA attached to the particle.
  • the other adapter of the library can be incorporated (to the end attached to the particle), by a procedure similar to that described, working on the DNA attached to the particle or, preferably, can be initially incorporated into the sequence of the original oligonucleotide (which is covalently bound the particle by 5 ').
  • the figure is a scheme, it is not to scale and it must be understood that numerous DNA molecules bind to the surface of the particle.
  • the DNA molecules are represented by an "arrow", whose tip indicates the 3 'end.
  • Fig. 4. Amplification of a hypervariable region of a genetic material located in tissue by multiplex PCR. The random appearance of PCT artifacts is observed, and poor performance, only assumed with a large amount of initial DNA.
  • Fig. 5. Amplification of a hypervariable region of a genetic material located in tissue by the method of the invention, linking the primer covalently felt to a magnetic nanoparticle. The magnetic nanoparticle can be easily washed after multiplex PCR, separating the desired product from the sense primer polymers.
  • Fig. 6 Library of mass free sequencing of particles after the manufacture of the library, by means of a conventional PCR with primers in front of the ends of the adapters, followed by magnetic sedimentation of the particles.
  • the invention is about a new method for manufacturing libraries, with three advantages:
  • the present invention relates to methods and compositions related to the manufacture of libraries and their applications, especially in high performance nucleic acid sequencing and genetic analysis.
  • sequencing library or “genomic sequencing library”, or simply “library” or “library” refers to a collection of polynucleotide fragments with specific adapters connected.
  • the adapters are designed to interact with a specific NGS platform.
  • the genomic sequencing library will depend (1) on the sequencing platform (Life Technologies, lllumina, Roche, Pacific Biosciences), so that the adapters used will be designed to interact with a specific NGS platform; and (2) of the planned analysis (complete genome sequencing, complete exorne sequencing, sequencing of a section of directed DNA or amplicons, sequencing of the complete transcriptome, directed RNA sequencing, ChIP-seq, RIP-seq, epigenetic studies, etc. .).
  • a particle covalently linked to an oligonucleotide hereinafter referred to as a particle of the invention.
  • the oligonucleotide can act as a primer in a DNA amplification reaction.
  • the particle of the invention is characterized in that:
  • III) is stable at alkaline and acidic pH, in a wide range between pH 2 and 14, IV) has a low sedimentation coefficient and reduced aggregation,
  • V have a size between 100 nm and 2000 nm, preferably between 700 nm and 1500 nm, and more preferably about 800 nm,
  • VI) does not inhibit Taq polymerase and can be used in PCR reactions
  • the particle is stable at temperatures up to 100 ° C.
  • the magnetic core is "soft magnetic” (ie, it only has magnetic properties in the presence of an external magnetic field) but “hard magnetic” cores (magnetic per se) could be used. Hard magnetic cores are less recommended.
  • the organic compounds with exposed acidic groups are thiol or carboxyl groups, more preferably carboxyl.
  • the binding of the oligonucleotide to the particle is given by the amino group of its 5 ′ end, by means of a link with the exposed acid groups.
  • the exposed carboxyl groups are carboxyl groups and the bond is amide type.
  • a second aspect of the invention relates to a method of joining two single chain oligonucleotides comprising: a) attaching one of the oligonucleotides to a particle as described in the first aspect of the invention, to create a template oligonucleotide, b) add the other oligonucleotide to the free end (3 ' ) of the template oligonucleotide by fusion primers, in the presence of Taq polymerase, to make an elongation (single cycle).
  • the method for joining two single chain oligonucleotides according to the third aspect additionally comprises: c) Performing at least one additional elongation cycle, and d) removing the strand attached to the macroparticle.
  • the removal of the strand bound to the particle can be performed by techniques known in the state of the art, preferably by denaturation (thermal or alkaline) the strand of DNA not covalently bound to the particle is removed, while the particle retains the strand covalently bound which comes from the elongation of the oligonucleotide bound to the particle by 5 '. After denaturation, the particles can settle, using a magnet or any other known method, which allows the separation of both strands. Alkaline denaturation can be performed by adding a strong base, for example, soda.
  • a third aspect of the invention includes a method for obtaining amplicon libraries comprising steps a), b), as indicated in the second aspect of the invention and optionally steps (c) and (d) as detailed in The above aspects, and additionally, comprise: f) attaching the other of the oligonucleotides (adapters) to a particle as described in claims 1-2, and g) elongating the strand in the presence of Taq polymerase.
  • library or more exactly “massive parallel sequencing library” is understood as a collection of DNA sequences (intended to be sequenced massively) to which two different adapters have been added at each end.
  • the adapters are specific DNA sequences specific to each massive sequencing platform.
  • Ion Torrent adapters are more than 40 bp (those of lllumina are somewhat smaller).
  • the "bridge PCR” of lllumina or the emulsion PCR of Ion Torrent recognize the adapters for individualizing sequences, performing a clonal amplification and, finally, sequencing each of the clonal amplifications.
  • One of the adapters can carry a “bar code” (from English “bar code”, a process known as “labeling”).
  • the barcode is a small sequence identifying the library (9 nucleotides in Ion Torrent). In this way, libraries from different samples can be mixed (in the same sequencing), each with its own and recognizable barcode during the computer analysis. This is also called “multiplex sequencing” (not to be confused with multipex PCR).
  • Nucleic acids or polynucleotides for sequencing include, but are not limited to, nucleic acids such as DNA, RNA or PNA (peptide nucleic acid), variants or fragments thereof and / or concatamers thereof.
  • the polynucleotides can be of a known or unknown sequence, of a natural or artificial nature and can be from any source (for example, eukaryotes or prokaryotes).
  • the polynucleotides can be naturally derived, recombinantly produced or chemically synthesized.
  • Concatamerized polynucleotides may contain subunits or analogs thereof that may or may not occur in nature, or modified subunits.
  • the length of the target nucleic acid for sequencing may vary.
  • the nucleic acid for sequencing may include at least 10, at least 20, at least 30, at least 40, at least 50, at least 100, at least 200, at least 500, at least 1,000, at least 10,000 , at least 100,000, at least 1,000,000, at least 10,000,000 nucleotides.
  • the polynucleotide for sequencing may be of genomic origin or fragments or variants thereof.
  • the nucleic acid chain for sequencing may be single stranded and may or may not be derived from a double stranded nucleic acid molecule. Single chain molecules can also be produced, for example, by chemical synthesis methods and technologies or in vitro.
  • the embodiments as described herein are not limited by the preparative methods of the nucleic acid and any number of methods may be practiced by those skilled in the art to provide a composition for use in the described methods.
  • a library comprising the target nucleic acids is often generated, and then a part of the DNA library is sequenced.
  • Genomic DNA libraries are created that can be sequenced by practicing the methods described herein.
  • the described invention can replace numerous commercial kits based on adapter binding by DNA ligase, additionally providing significant technical advantages.
  • anchoring or the term “anchoring oligonucleotide” as used herein refers to an oligonucleotide that can be coupled to a solid matrix through a modification at its 5 ′ end.
  • the oligonucleotide attached to the surface of the particle has an amino group at the 5 'end.
  • sphincter or the term sphincter oligonucleotide refers to an oligonucleotide that does not have any modification or any other type of modification and therefore does not bind itself to the matrix to which the oligonucleotides of anchor dock.
  • dumbbell weight form
  • dumbbell refers to a DNA structure that is characterized by a double chain that is flanked by two loops.
  • One of the two oligonucleotides to be bound in each of the reaction steps can be coupled to a solid matrix through a modification, e.g. eg, a low molecular weight chemical compound such as biotin or digoxigenin.
  • a modification e.g. eg, a low molecular weight chemical compound such as biotin or digoxigenin.
  • these solid matrices are magnetic beads coated with streptavidin or coated with antigoxigenin.
  • the other oligonucleotide (the so-called sphincter oligonucleotide) also has a blocked end but does not carry such a modification or carry another type of modification.
  • the anchor oligonucleotides can be separated from the spinner oligonucleotides by binding to a suitable matrix.
  • a suitable matrix such as p. ex. biotin, digoxigenin, fluorescein isothiocyanate (FITC), amino compounds, succinyl esters and other compounds familiar to the expert in the art, they can be used with the proviso that they are suitable for mediating a direct or indirect binding (eg, through an antibody) to a solid phase.
  • the anchor oligonucleotides can be composed, or by a single, partially self-complementary oligonucleotide, which can be coupled to a solid phase through a modification preferably located in the loop sequence, or by two single stranded oligonucleotides that form a double strand that preferably It has a single protruding single-stranded end. Because only one of the two chains has to be coupled to the matrix, the other chain can be denatured and separated, if necessary, by treatment with alkali or heat (in order, for example, to serve as a mold for a PCR reaction). In order to be sure that also in the case of those bipartite anchor oligonucleotides only one of the ends can be linked, the ends that are not required for ligation are blocked accordingly.
  • initiiator oligonucleotide is meant the starting oligonucleotide for the synthesis of the library which also contains a covalently linked linker and a functional moiety for the addition of a diversity node or support structure.
  • the oligonucleotide can be single or double stranded.
  • the oligonucleotide may consist of natural or modified bases.
  • “functional moiety” is meant a chemical moiety comprising one or more structural elements that can be selected from any small molecule or designed and constructed based on desired characteristics, for example, of solubility, availability of donors and hydrogen bond acceptors, grades of rotational freedom of the links, positive charge, negative charge and the like.
  • the functional rest must be compatible with the chemical modification so that it reacts with the previous part.
  • the functional moiety can be further reacted as a bifunctional or trifunctional (or greater) entity.
  • Functional remains may also include structural elements that are used in any of the diversity positions or nodes.
  • linker is meant a molecule that binds the nucleic acid part of the library to the functional species presented.
  • linkers are known in the art, and those that can be used during library synthesis include, but are not limited to, 5'-0-dimethoxytrriti ', 2'-dideoxyribose-3' - [(2-cyanoethyl) - (N, N-diisopropyl)] - phosphoramidite; 1 - [(2-Cyanoethyl) - (N, N-diisopropyl)] - 9-O-dimethoxytrityl-triethylene glycol phosphoramidite; 3- (4,4'-dimethoxytrityloxy) propyl-1 - [(2-cyanoethyl) - (N, N-diisopropyl)] - phosphoramidite; and 1 - [(2-cyanoethyl) - (N, N-diiso
  • branched linker is meant a molecule that binds the nucleic acid position of the library to 2 or more identical functional species of the library.
  • Branched linkers are well known in the art and the examples may consist of symmetric or asymmetric doublets (1) and (2) or an asymmetric triplet (3). See, for example, Newcome et al., Dendritic Molecules: Concepts, Synthesis, Perspectives, VCH Publishers (1996); Boussif et al., Proc. Nati Acad. Sci. USA 92: 7297-7301 (1995); and Jansen et al., Science 266: 1226 (1994).
  • oligonucleotide refers to a nucleotide polymer.
  • the oligonucleotide can include DNA or any derivative thereof known in the art that can be synthesized and used for base pair recognition.
  • the oligonucleotide does not have to have contiguous bases, but may have intercalated linker moieties.
  • the oligonucleotide polymer may include natural nucleosides (for example, adenosine, thymidine, guanosine, cytidine, uridine, deoxydenosine, deoxythymidine, deoxyguanosine and deoxycytidine), nucleoside analogs (eg, 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrroloidine , 3- methyladenosine, C5-propynylcytidine, C5-propynyluridine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-methylcytidine, 7-desazaadenosine, 7- desazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0 methylguanine and 2-thiocytidine), chemically modified bases, biologically
  • operatively linked it is meant that two chemical structures are joined together in such a way that they remain united through the various manipulations to which they are expected to be subjected.
  • the functional moiety and the coding oligonucleotide are covalently linked through an appropriate binding group.
  • the binding group may be a bifunctional moiety with a binding site for the coding oligonucleotide and a binding site for the functional moiety.
  • the union between the 5 ’end of the oligonucleotide and the surface of the particle must be done by a covalent bond.
  • a covalent bond there are two options: an amide bond (as shown in the examples of the invention) or thiol group based bonds such as the disulfide bond.
  • the methods set forth herein may be used in a modified version of the manufacturer's protocols in a system such as those provided by lllumina®, Inc. (HiSeq 1000, HiSeq 1000, Genome Analyzers, MiSeq, HiScan, Sean, BeadExpress), Applied Biosystems Life Technologies (ABI PRISM® sequence detection systems, SOLiD System), or other fluorescence-based sequencing instruments, in addition to those described in, for example, US Pat. and patent applications 5,888,737, 6,175,002, 5,695,934, 6,140,489, 5,863,722, 2007/007991, 2009/0247414,
  • the output of a sequencing instrument can be of any type.
  • current technology typically uses a readable light-generating output, such as fluorescence or luminescence, however the present methods are not limited to the type of readable output as long as the differences in the output signal for a particular sequence of interest are potentially determinable
  • analysis software that can be used to characterize the output derived from the practice of methods as described herein include, but are not limited to, the Pipeline, CASAVA and GenomeStudio data analysis software (lllumina®, Inc.
  • Double strand binding is preferable when particle bonding is performed by an amino group at the 5 ’position. In this way, the union (unwanted) is avoided by means of the amino groups of the internal nitrogen bases.
  • an alkaline treatment and washing on a magnet removes the strand not covalently bound to the particle.
  • Magnetic particles carry on their surface all variants of the hypervariable target found in tissue cells. Working on them, the other adapter is added in 3 ’.
  • the strand not bound to the particle is removed by denaturing in alkaline solution and sedimentation of particles on magnet.
  • the figure is a scheme, it is not to scale and it should be understood that numerous oligonucleotide molecules bind to the surface of the particle.
  • the adapter is added by elongation of the 3 ′ end using a fusion oligonucleotide.
  • This oligonucleotide carries at its 3 'end a sequence of binding to the 3' end of the single stranded DNA bound to the particle (in the example it is a random sequence, although it works with a collection of primers) and at its 5 'end it carries a sequence complementary to one of the adapters of the library.
  • the fusion oligonucleotide can carry a bar code.
  • the fusion oligonucleotide is incubated in the presence of Taq polymerase at a suitable temperature (preferably around 60 ° C, although it may be between 40 and 75 ° C).
  • a suitable temperature preferably around 60 ° C, although it may be between 40 and 75 ° C.
  • fusion oligonucleotides which differ at their 3 'end and which are capable of hybridizing with the single-stranded DNA molecule bound to the particle. They will be incubated in the presence of Taq polymerase of their substrates and suitable buffer for an extended period (usually 20 minutes, although shorter or longer times may be used).
  • the fusion primer carries a 3 'modification that prevents its elongation (although it can be used without this modification).
  • the only possible elongation is that of the single stranded DNA attached to the particle.
  • fusion oligonucleotides are not primers or PCR primers and, consequently, do not have to meet the requirements of optimal primer performance. It stands out that it is not a PCR reaction. There are no cycles (although there might be some variant), there is no elongation of the fusion oligonucleotide and the fusion oligonucleotide does not have to compete for hybridization with any strand complementary to the DNA attached to the particle.
  • the other adapter of the library can be incorporated (to the end attached to the particle), by a procedure similar to that described, working on the DNA attached to the particle or, preferably, can be initially incorporated into the sequence of the original oligonucleotide (which is covalently bound the particle by 5 ').
  • Fig. 4 shows the result of the amplification of the hypervariable region using the multiplex PCR of the cDNA, in a conventional manner.
  • Fig. 5 and Flg. 6 correspond to the results obtained following the method of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Preparación de librerías de ácidos nucléicos o genotecas. La presente invención se refiere a métodos y composiciones para análisis de alto rendimiento de poblaciones de moléculas de ácidos nucléicos, y más particularmente, a métodos y composiciones relacionadas con la fabricación librerías y sus aplicaciones.

Description

PREPARACIÓN DE LIBRERÍAS DE ÁCIDOS NUCLEICOS O GENOTECAS
CAMPO DE LA TÉCNICA
La presente invención se refiere a métodos y composiciones para análisis de alto rendimiento de poblaciones de moléculas de ácidos núcléicos, y más particularmente, a métodos y composiciones relacionadas con la fabricación librerías y sus aplicaciones, especialmente en secuenciación de ácido nucleico de alto rendimiento (técnicas de secuenciación masiva o“ next-generation sequencing” - ngs-) y análisis genético.
ESTADO DE LA TÉCNICA
La detección de analitos, tales como las secuencias de ácidos nucleicos que están presentes en una muestra biológica, se ha utilizado como un método para identificar y clasificar microorganismos, diagnosticar enfermedades infecciosas, detectar y caracterizar anomalías genéticas, identificar cambios genéticos asociados al cáncer, estudiar la susceptibilidad genética frente a enfermedades, y medir la respuesta frente a diversos tipos de tratamiento. Una técnica común para detectar analitos, tales como las secuencias de ácido nucleico en una muestra biológica, es la secuenciación de ácidos nucleicos.
La metodología de la secuenciación de ácidos nucleicos ha evolucionado significativamente desde los métodos de degradación química utilizados por Maxam y Gilbert y los métodos de alargamiento de cadenas utilizados por Sanger. Hoy en día, las plataformas de secuenciación masiva de nueva generación permite procesar en paralelo millones de ácidos nucleicos, todos en una única secuencia o fragmento, obteniendo una profundidad de secuenciación significativa de los genomas o transcriptomas individuales de diferentes organismos. La instrumentación que realiza tales métodos es típicamente grande y costosa ya que los métodos actuales suelen basarse en grandes cantidades de reactivos costosos y conjuntos múltiples de filtros ópticos para registrar la incorporación de los ácidos nucleicos en las reacciones de secuenciación.
Las nuevas plataformas centran sus esfuerzos en la creación de librería de secuenciación paralela masiva, en generar tecnologías de procesado en paralelo y en el análisis de grandes cantidades de datos. Se ha puesto de manifiesto que la necesidad de tecnologías de secuenciación de ADN de alto rendimiento (técnicas de secuenciación masiva), más pequeñas y menos costosas será beneficiosa para obtener los frutos de la secuenciación del genoma. La medicina personalizada y de precisión se beneficiará de estas tecnologías; la secuenciación del genoma de un individuo o de una muestra tumoral, para identificar posibles mutaciones y anormalidades será crucial para identificar si una persona tiene una enfermedad en particular, o responde mejor o peor a un determinado tratamiento, seguido del desarrollo de terapias posteriores adaptadas a esa persona. En el ámbito de la investigación, la secuenciación masiva permite desarrollar técnicas de transcriptoma, que permiten analizar el conjunto de genes que se están expresando en un determinado momento, así como la intensidad de cada expresión. El transcriptoma acoplado a técnicas de cell sorting y/o a técnicas bioinformáticas de identificación clonal, permite analizar en profundidad la diversidad clonal de una muestra biológica.
Para acomodar un esfuerzo tan potente, la secuenciación debe avanzar y ser accesible a tecnologías de alto rendimiento no sólo por sus capacidades de alto rendimiento, sino también en términos de facilidad de uso, eficiencia de tiempo y costo, y accesibilidad de los clínicos a los instrumentos y reactivos.
La preparación de librerías (o genotecas) de alta calidad con alto rendimiento es un primer paso crítico en los flujos de trabajo y tiene un impacto directo en la calidad de los resultados de secuenciación masiva. Es importante considerar el objetivo primario de un experimento de secuenciación antes de tomar una decisión sobre el mejor protocolo de preparación de librerías.
La construcción de librerías es necesaria para la mayoría de las técnicas de secuenciación masiva, por ejemplo, pero sin limitarnos, la tecnología de secuenciación Polony (Dover Systems), secuenciación por plataformas de hibridación fluorescente (Complete Genomics), tecnología sTOP (Instituto de Investigación de Tecnología Industrial) y secuenciación por síntesis (lllumina, Life Technologies).
A día de hoy hay dos modelos principales de técnicas de secuenciación MPS: secuenciación por síntesis (SBS) que implica fragmentos cortos y Single-MoleculeReal- TimeSequencing (SMRT) que permite fragmentos de varias kilobases pero con mayor tasa de error. En el lado de los secuenciadores SBS, las dos tecnologías más asentadas son lllumina (detecta la adición de las bases una a una mediante fluoróforos) e Ion Torrent, que detecta grupos de bases iguales y que mide la señal mediante semiconductores que evalúan cambios de concentración de protones (pH). En cuanto a los secuenciadores de secuencias largas y detección en tiempo real de moléculas únicas, los dos exponentes principales son PacBio de Pacific Biosciences y Minlon de Oxford Nanopore. PacBio lee secuencias largas en tiempo real midiendo la emisión de luz del fluoró foro liberado tras la incorporación de cada nucleótido. Minlon detecta las bases de la secuencia midiendo cambios de corriente eléctrica en la membrana del poro a medida que pasa la secuencia de cadena simple del DNA.
Veamos más detalladamente en qué consiste cada técnica:
- Ion Torrent. La técnica de secuenciación de Ion Torrent inicia su procesamiento con una PCR en emulsión con microgotas (Nyrén, 1985) y usa semiconductores para detectar los H+ desprendidos en la incorporación de los dNTPs.
- Illumina. Una de las mayores aportaciones de la tecnología de secuenciación de Solexa - Illumina, es la PCR puente para la generación de clústeres, y el método de la terminación cíclica reversible para la secuenciación por síntesis. En cada ciclo, se une un dNTP marcado, se toma una fotografía y se retira para empezar de nuevo (Bentley, 2008).
Tanto Ion Torrent como Illumina, generan secuencias cortas. Illumina de 75 a 300 pares de bases; Ion Torrent hasta 400 (el modelo S5 llega a 650 pb). Si se necesitan lecturas más largas, los secuenciadores de Pacific Biosciences (Rhoads, 2015) y Oxford Nanopore Technologies (Haque, 2013) son capaces de producir lecturas que superan los 1.000 - 10.000 pares de bases. Estas tecnologías, facilitan la secuenciación de regiones del ADN que contienen alta cantidad de nucleótidos GC, y el alineamiento de secuencias que contienen repeticiones. Además, al no requerir un paso previo de amplificación por PCR, evitan los errores de la enzima polimerasa.
Todas las técnicas necesitan el paso previo de construcción de genotecas. Así, por ejemplo, los pasos básicos en la preparación de ARN o ADN para el análisis NGS en una platadorma de Illumina® son:
(i) fragmentación,
(ii) fijación de adaptadores e índices a los extremos de los fragmentos complementarios a plataformas Illumina®, y
(iii) en algunos casos, selección de fragmentos específicos para refinar el tamaño de la biblioteca, eliminando adaptadores u otros artefactos de la preparación de la biblioteca. Este es el procedimiento (fragmentación) que se emplea cuando se quiere secuenciar un genoma o transcriptoma a ciegas. La otra alternativa es la fabricación de una “librerías de amplicones” que parten de una PCR multiplex (con hasta 300 cebadores en la misma PCR). Ion Torrent ha desarrollado mucho más las librerías de amplicones y ha sacado numerosos kits al mercado. Los cebadores incorporan modificaciones químicas, de forma que tras la PCR multiplex (de pocos ciclos para minimizar sesgos de competencia entre cebadores) los cebadores y todos sus polímeros son digeridos y eliminados.
Formación de genotecas
Para la secuenciación después de MDA, se prepara, por ejemplo, una biblioteca de muestras amplificada creando una biblioteca de ADN como se describe en el kit de Mate Pair Library Prep, kits de Preparación de Muestras de ADN Genómico o kits de Preparación de Muestras TruSeq y Enriquecimiento Exorne (lllumina®, Inc. , San Diego CA). Las bibliotecas de ADN pueden inmovilizarse en una célula de flujo y una amplificación de puente realizada sobre los polinucleótidos inmovilizados antes de la secuenciación, por ejemplo secuencia por metodologías de síntesis. En la amplificación de puente, se híbrida un polinucleótido inmovilizado (por ejemplo, de una biblioteca de ADN) a un cebador de oligonucleótido inmovilizado. El extremo 3' de la molécula de polinucleótido inmovilizado proporciona la plantilla para una reacción de elongación dirigida por plantilla catalizada por polimerasa (por ejemplo, extensión de cebador) que se extiende desde el cebador oligonucleotídico inmovilizado. El producto de doble hebra resultante "puentea" los dos cebadores y ambas hebras están unidas covalentemente al soporte. En el ciclo siguiente, después de la desnaturalización que produce un par de hebras simples (la plantilla inmovilizada y el producto de cebador extendido) inmovilizadas al soporte sólido, ambas cadenas inmovilizadas pueden servir como plantillas para la extensión de un nuevo cebador. De este modo, la primera y segunda partes pueden amplificarse para producir una pluralidad de agrupaciones. Los grupos y colonias se usan indistintamente y se refieren a una pluralidad de copias de una secuencia de ácido nucleico y/o complementos de las mismas unidas a una superficie. Típicamente, el grupo comprende una pluralidad de copias de una secuencia de ácido nucleico y/o complementos de las mismas, unidas a través de sus extremos 5' a la superficie. La metodología de amplificación y agrupamiento de puentes ejemplares se describe, por ejemplo, en la Publicación de Patente
También pueden usarse métodos de PCR en emulsión para amplificar ácidos nucleicos antes de la secuenciación en combinación con métodos y composiciones como se describen en la presente memoria (tecnología que utiliza la plataforma Ion Torrent). La PCR en emulsión comprende la amplificación por PCR de una biblioteca de ADN al azar flanqueada con adaptador en una emulsión de agua en aceite. La PCR es una PCR multi-plantilla; sólo se utiliza un solo par de cebadores. Uno de los cebadores de PCR está atado a la superficie (unida por 5') de perlas de microescala. Una concentración de plantilla baja da como resultado que la mayoría de las microvesículas de emulsión que contienen perlas tengan presentes cero o una moléculas de plantilla. En las microvesículas de emulsión productiva (una microvesícula de emulsión en la que están presentes tanto una perla como una molécula plantilla), los amplicones de PCR pueden capturarse en la superficie de la perla. Después de romper la emulsión, las perlas que llevan productos de amplificación pueden enriquecerse selectivamente. Cada perla clonalmente amplificada soportará en su superficie productos de PCR correspondientes a la amplificación de una única molécula de la biblioteca de plantillas. Se establecen diversas realizaciones de métodos de PCR en emulsión en Dressman et al., (2003). Proc. Nati. Acad. Sci. USA 100: 8817-8822, Publicación de patente PCT. No. WO 05/010145, Publ. de patente de EE.UU. Nos. 2005/0130173, 2005/0064460, y U S2005/0042648.
El procedimiento de formación de genotecas puede llevar mucho tiempo, los productos a menudo se purifican de manera ineficaz y el resultado es que pueden producirse reacciones desconocidas que crean moléculas no deseadas y/o desconocidas unidas al ADN. Además, la purificación incompleta de la biblioteca (genoteca) puede dar como resultado etiquetas (el etiquetado es la identificación de cada muestra con una secuencia determinada en uno de los adaptadores) que producen contaminación cruzada durante las etapas de ligamiento, dando como resultado etiquetado erróneo. El resultado final para el examen y secuenciación de resultados positivos a partir de la biblioteca es que tiene emplearse secuenciación paralela de manera masiva debido al "ruido" inherente tanto de los ADN que se unen a moléculas que no se desean (por ejemplo, productos sin reaccionar o secundarios) como que están etiquetados de manera errónea. Por tanto, se pierde la eficacia de la secuenciación.
Actualmente, hay dos formas de fabricar librerías de secuenciación masiva:
Añadir los adaptadores mediante PCR y cebadores de fusión. Los adaptadores vienen incorporados en los extremos 5’ de cebadores de gran tamaño. Es un método exclusivo de librerías de amplicones. Exige conocer la secuencia de los extremos del DNA a secuenciar. Método artesanal difícil de poner a punto, debido al mal funcionamiento de los cebadores de gran tamaño en PCR.
Añadir los adaptadores mediante la reacción de ligación. Es el método más utilizado. Por ejemplo, es la base del Ion AmpliSeq Library Kit de la plataforma Ion Torrent, a lo que hay que sumar un kit para la PCR multiplex y el fungible de secuenciación masiva (aunque aquí se pueden juntar numerosas librerías si están correctamente“etiquetadas” o“multiplexadas”). Es un proceso costoso que lleva a cabo una reacción de ligación de extremos romos o, alternativamente, de un único nucleótido cohesivo (a partir de la adenina libre en 3’ que dejan varias DNA polimerasas, incluyendo la Taq-polimerasa). Los procedimientos basados en la digestión del cebador tras la PCR multiplex solo pueden usar ligaciones de extremos romos (la adenina libre es eliminada con la digestión del cebador incorporado en el amplicón).
Hay variantes de ligación sobre la molécula de cDNA (método SMART, por ejemplo).
Las "hebras a ser elongada" se añaden a los oligonucleótidos unidos a la nanopartícula por varios métodos. Por ejemplo, en el documento de patente W02015031691A1 se emplea la retrotranscripción a partir del extremo Poly(T) de un oligonucleótido unido a la partícula por su extremo 5’.
El método mostrado en la patente WO2015031691 A1 realiza una retrotranscripción elongando el extremo 3’ de los oligonucleótidos unidos a la partícula. De forma que estos adquieren en su extremo 3’ secuencias complementarias a las poblaciones de RNA mensajero (DNA copia). Si se quiere hacer posteriormente una librería de secuenciación masiva (como reivindica la patente W02015031691A1) a partir de los DNA copia unidos a la partícula, hay que añadirles adaptadores mediante reacciones de ligación, usando procedimientos habituales.
La reacción de ligación tiene varios inconvenientes:
• La DNA ligasa es lábil (caduca rápidamente, invalidando el kit).
• LA DNA ligasa es cara.
• La reacción de ligación tiene varios productos de reacción, de los cuales sólo uno es el correcto (el que une un adaptador diferente a cada extremo del DNA a secuenciar).
• La reacción de ligación introduce sesgos en función de la secuencia de los extremos a ligar. Los sesgos de ligación alteran las frecuencias iniciales de las secuencias en la muestra biológica. Se sobrevalorando ciertas secuencias e infravalorando otras.
• La reacción de ligación tiene una eficiencia muy baja que, además, se reduce drásticamente al incrementar el tamaño del DNA. Aparentemente, la reducida eficiencia no es un problema, porque tras la ligación se amplifica específicamente el producto deseado. Sin embargo, es la fuente de un importante“sesgo de muestreo”.
La baja eficiencia de la reacción de ligación y los sesgos en función de la secuencia son consecuencia de la estructura 3D que adopta la molécula de DNA. No hay que imaginarse el DNA como una molécula lineal, sino como una“madeja” en la que los extremos (que tienen que ligarse con los adaptadores) se“ocultan” con frecuencia en el interior del“ovillo”. Las estructuras 3D que adopta el DNA (y la probabilidad de ocultar los extremos) dependen del tamaño y de la secuencia.
Es necesario, por tanto, desarrollar un nuevo procedimiento para fabricar librerías (genotecas), útiles para las secuenciación paralela masiva, que minimicen la incorporación de sesgos.
BREVE DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a métodos y composiciones relacionadas con la fabricación librerías y sus aplicaciones, especialmente en secuenciación de ácidos nucleicos de alto rendimiento y análisis genético.
En un primer aspecto de la invención se proporciona una partícula unida covalentemente a un oligonucleótido por su extremo 5’, de ahora en adelante partícula de la invención, donde la partícula se caracteriza porque: I) tiene un núcleo magnético,
II) tiene la superficie recubierta con compuestos orgánicos con grupos de carácter acido expuestos que le aportan carga negativa,
III) es estable a pH alcalino y ácido, en un rango amplio entre pH 2 y 14,
IV) tiene un reducido coeficiente de sedimentación y una reducida agregación, V) tienen un tamaño de entre 10Onm y 2000nm, preferiblemente en torno a 800nm,
VI) no inhibe la Taq polimerasa y puede usarse en reacciones de PCR,
Vil) La partícula es estable a temperaturas de hasta 100 °C.
En una realización preferida de este aspecto de la invención, el núcleo magnético es “magnético blando” (es decir, que solo tiene propiedades magnéticas en presencia de un campo magnético externo) pero podrían usarse núcleos “magnéticos duros” (magnéticos per se). Los núcleos magnéticos duros son menos recomendables.
En otra realización preferida de este aspecto de la invención, los compuestos orgánicos con grupos de carácter acido expuestos son grupos tiol o carboxilo, más preferiblemente carboxilo
En una realización preferida de la invención, el enlace del oligonucleótido a la partícula se da por el grupo amino de su extremo 5’, mediante un enlace con los grupos ácidos expuestos. Preferiblemente los grupos carboxilos expuestos son grupos carboxilo y el enlace es tipo amida.
El oligonucleótido debe de poder funcionar como un cebador o primer en una reacción de PCR o, en general, de polimerización del DNA.
Un segundo aspecto de la invención se refiere a un método para unir dos oligonucleótidos de cadena simple que comprende: a) unir uno de los oligonucleótidos a una partícula según se describe en el primer aspecto de la invención, para crear un oligonucleótido plantilla, b) añadir el otro oligonucleótido al extremo libre (3') del oligonucleótido plantilla mediante cebadores de fusión, en presencia de Taq polimerasa, para hacer una elongación (de un solo ciclo) del oligonucleótido unido covalentemente a la partícula.
Como realización preferida, el método para unir dos oligonucleótidos de cadena simple según el tercer aspecto, adicionalmente comprende: c) realizar al menos un ciclo adicional de elongación, y d) eliminar la hebra unida a la macropartícula.
La eliminación de la hebra unida a la partícula puede realizarse mediante técnicas conocidas en el estado del arte, preferiblemente mediante desnaturalización (térmica o alcalina) se elimina la hebra de DNA no unida covalentemente a la partícula, mientras que la partícula retiene la hebra unida covalentemente que procede de la elongación del oligonucleótido unido a la partícula por 5’. Tras la desnaturalización, las partículas pueden sedimentarse, mediante un imán o cualquier otro método conocido, lo que permite la separación de ambas hebras. Un tercer aspecto de la invención recoge un método para obtener librerías de amplicones que comprende los pasos a), b), según como se indica en el segundo aspecto de la invención y opcionalmente los pasos (c) y (d) según se detalla en los aspectos anteriores, y adicionalmente, comprende: f) unir el otro de los oligonucleótidos (adaptadores) a una partícula según se describe en las reivindicaciones 1-2, y g) elongar la hebra en presencia de Taq polimerasa.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Fig. 1. Ejemplo de unión de oligonucleótido a la partícula magnética. Puede unirse en forma de de hebra simple o hebra doble (en cuyo caso habría que eliminar la hebra no unida covalentemente mediante desnaturalización de DNA y sedimentación de partículas sobre un imán). La unión de hebra doble es preferible cuando se realiza la unión a la partícula mediante un grupo amino en la posición 5’. De esta forma se evita la unión (no buscada) mediante los grupos aminos de las bases nitrogenadas internas.
La figura es un esquema, no está a escala y hay que entender que numerosas moléculas de oligonucleótido se unen a la superficie de la partícula. En el esquema, los oligonucleótidos están representados mediante una “flecha”, cuya punta indica el extremo 3’. El linker de (CH3)n (es recomendable su uso) se representa mediante una línea quebrada. El oligonucleótido unido a la partícula debe de ser capaz de funcionar en una reacción de PCR o elongación de DNA, como si fuese un cebador o primer.
Fig. 2. Tras funcionar en una reacción de PCR (multiplex o no) el cebador debe de haber elongado. Tras lo que se elimina la hebra no unida a la partícula mediante desnaturalización y sedimentación de partículas sobre imán. La figura es un esquema, no está a escala y hay que entender que numerosas moléculas de oligonucleótido se unen a la superficie de la partícula. En el esquema, las moléculas de DNA están representadas mediante una“flecha”, cuya punta indica el extremo 3’.
Fig. 3. Con el DNA de cadena simple unido a una partícula, se añade el adaptador mediante elongación del extremo 3’ usando un oligonucleótido de fusión. Este oligonucleótido porta en su extremo 3’ una secuencia de unión al extremo 3’ del DNA de cadena simple unido a la partícula y en su extremo 5’ porta una secuencia complementaria a uno de los adaptadores de la librería. El oligonucleótido de fusión puede portar un código de barrar.
Tras una pequeña incubación a 95°C (unos pocos minutos) con la intención de eliminar hibridaciones internas entre las moléculas, el oligonucleótido de fusión se incuba en presencia de Taq polimerasa a temperatura adecuada (preferiblemente en torno a 60 °C, aunque puede estar comprendida entre 40 y 75 °C). Pueden usarse simultáneamente amplias colecciones de oligonucleótidos de fusión, que difieren en su extremo 3’ y que son capaces de hibridar con la molécula de DNA de cadena simple unida a la partícula. Se incubarán en presencia de Taq polimerasa de sus sustratos y de tampón adecuado durante un periodo extendido (usualmente 20 minutos, aunque pueden usarse tiempos inferiores o superiores).
Preferiblemente, el cebador de fusión porta una modificación en 3’ que impide su elongación (aunque puede usarse sin esta modificación). De esta forma, la única elongación posible es la del DNA de cadena simple unido a la partícula. Se destaca que los oligonucleótidos de fusión no son cebadores o primers de PCR y, en consecuencia, no tienen que cumplir los requisitos de funcionamiento óptimo de cebadores. Se destaca que no es una reacción de PCR. No hay ciclos (aunque podría haberlos en alguna variante), no hay elongación del oligonucleótido de fusión y el oligonucleótido de fusión no tiene que competir por la hibridación con ninguna hebra complementaria al DNA unido a la partícula.
Tras la reacción de elongación, un paso de desnaturalización y lavado de las partículas sobre el imán permitirá la eliminación de cualquier hibridación no deseada sobre la hebra de DNA unida a la partícula. El único producto de reacción será la elongación de las hebras unidas a la partícula.
El otro adaptador de la genoteca puede incorporarse (al extremo unido a la partícula), mediante un procedimiento similar al descrito, trabajando sobre el DNA unido a la partícula o, preferiblemente, puede ir incorporado inicialmente en la secuencia del oligonucleótido originario (el que se unió covalentemente a la partícula por 5’).
La figura es un esquema, no está a escala y hay que entender que numerosas moléculas de DNA se unen a la superficie de la partícula. En el esquema, las moléculas de DNA están representadas mediante una“flecha”, cuya punta indica el extremo 3’.
Fig. 4. Amplificación de una región hipervariable de un material genético situado en tejido mediante PCR multiplex. Se observa la aparición aleatoria de artefactos de PCT, y un rendimiento escaso, solo asumióle con gran cantidad de DNA inicial. Fig. 5. Amplificación de una región hipervariable de un material genético situado en tejido mediante el método de la invención, uniendo el cebador sentido covalentemente a una nanopartícula magnética. La nanopartícula magnética puede ser fácilmente lavada tras la PCR multiplex, separando el producto deseado de los polímeros de cebadores sentido.
Fig. 6. librería de secuenciación masiva libre de partículas tras la fabricación de la librería, mediante una PCR convencional con cebadores frente a los extremos de los adaptadores, seguido de sedimentación magnética de las partículas.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
La invención trata sobre un nuevo método para fabricar librerías, con tres ventajas:
• Se basa en Taq-polimerasa, enzima robusta y barata.
• No introduce sesgos de secuencia, al menos detectables mediante PCR a tiempo real.
• Eficiencia elevada (superior al 30 % en los experimentos iniciales de puesta a punto aunque puede incrementarse). En consecuencia, no introduce sesgos de muestreo.
La presente invención se refiere a métodos y composiciones relacionadas con la fabricación librerías y sus aplicaciones, especialmente en secuenciación de ácido nucleico de alto rendimiento y análisis genético.
En esta memoria el término“genoteca de secuenciación” o“librería de secuenciación genómica”, o simplemente “genoteca” o “librería” se refiere a una colección de fragmentos polinucleotidos con adaptadores específicos conectados.
Los adaptadores están diseñados para interactuar con una plataforma de NGS específica. La librería de secuenciación genómica dependerá (1) de la plataforma de secuenciamiento (Life Technologies, lllumina, Roche, Pacific Biosciences), de manera que los adaptadores empleados estarán diseñados para interactuar con una plataforma de NGS específica; y (2) del análisis planificado (secuenciación del genoma completo, secuenciación completa de exorna, secuenciación de una sección de ADN dirigida o amplicones, secuenciación del transcriptoma completo, secuenciación de RNA dirigido, ChIP-seq, RIP-seq, estudios epigenéticos, etc.). PARTÍCULA DE LA INVENCIÓN
En un primer aspecto de la invención se proporciona una partícula unida covalentemente a un oligonucleótido, de ahora en adelante partícula de la invención. El oligonucleótido puede actuar como cebador en una reacción de amplificación de DNA. La partícula de la invención se caracteriza porque:
I) tiene un núcleo magnético,
II) tiene la superficie recubierta con compuestos orgánicos con grupos de carácter acido expuestos que le aportan carga negativa,
III) es estable a pH alcalino y ácido, en un rango amplio entre pH 2 y 14, IV) tiene un reducido coeficiente de sedimentación y una reducida agregación,
V) tienen un tamaño de entre 100 nm y 2000 nm, preferiblemente entre 700 nm y 1500 nm, y más preferiblemente de aproximadamente 800 nm,
VI) no inhibe la Taq polimerasa y puede usarse en reacciones de PCR,
Vil) La partícula es estable a temperaturas de hasta 100 °C. En una realización preferida de este aspecto de la invención, el núcleo magnético es “magnético blando” (es decir, que solo tiene propiedades magnéticas en presencia de un campo magnético externo) pero podrían usarse núcleos “magnéticos duros” (magnéticos per se). Los núcleos magnéticos duros son menos recomendables.
En otra realización preferida de este aspecto de la invención, los compuestos orgánicos con grupos de carácter acido expuestos son grupos tiol o carboxilo, más preferiblmenete carboxilo
En una realización preferida de la invención, el enlace del oligonucleótido a la partícula se da por el grupo amino de su extremo 5’, mediante un enlace con los grupos ácidos expuestos. Preferiblemente los grupos carboxilos expuestos son grupos carboxilo y el enlace es tipo amida.
El oligonucleótido debe de poder funcionar como un cebador o primer en una reacción de PCR o, en general, de polimerización del DNA. Un segundo aspecto de la invención se refiere a un método para unir dos oligonucleótidos de cadena simple que comprende: a) unir uno de los oligonucleótidos a una partícula según se describe en el primer aspecto de la invención, para crear un oligonucleótido plantilla, b) añadir el otro oligonucleótido al extremo libre (3') del oligonucleótido plantilla mediante cebadores de fusión, en presencia de Taq polimerasa, para hacer una elongación (de un solo ciclo).
Como realización preferida, el método para unir dos oligonucleótidos de cadena simple según el tercer aspecto, adicionalmente comprende: c) Realizar al menos un ciclo adicional de elongación, y d) eliminar la hebra unida a la macropartícula.
La eliminación de la hebra unida a la partícula puede realizarse mediante técnicas conocidas en el estado del arte, preferiblemente mediante desnaturalización (térmica o alcalina) se elimina la hebra de DNA no unida covalentemente a la partícula, mientras que la partícula retiene la hebra unida covalentemente que procede de la elongación del oligonucleótido unido a la partícula por 5’. Tras la desnaturalización, las partículas pueden sedimentarse, mediante un imán o cualquier otro método conocido, lo que permite la separación de ambas hebras. La desnaturalización alcalina puede realizarse mediante la adición de una base fuerte, por ejemplo sosa.
Un tercer aspecto de la invención recoge un método para obtener librerías de amplicones que comprende los pasos a), b), según como se indica en el segundo aspecto de la invención y opcionalmente los pasos (c) y (d) según se detalla en los aspectos anteriores, y adicionalmente, comprende: f) unir el otro de los oligonucleótidos (adaptadores) a una partícula según se describe en las reivindicaciones 1-2, y g) elongar la hebra en presencia de Taq polimerasa.
En esta memoria se entiende por“librería” o más exactamente“librería de secuenciación paralela masiva”, una colección de secuencias de DNA (destinadas a ser secuenciadas masivamente) a las que se les ha añadido en cada uno de los extremos dos adaptadores diferentes. Los adaptadores son secuencias concretas de DNA propias de cada plataforma de secuenciación masiva. Por ejemplo, los adaptadores de Ion Torrent son de más de 40 pb (los de lllumina son algo más pequeños). La“bridge PCR” de lllumina o la PCR en emulsión de Ion Torrent reconocen los adaptadores para individualizar secuencias, realizar una amplificación clonal y, finalmente, secuenciar cada uno de las amplificaciones clónales.
Uno de los adaptadores puede llevar un “código de barras” (del inglés “bar code”, proceso conocido como“etiquetado”). El código de barras es una pequeña secuencia identificadora de la librería (9 nucleótidos en Ion Torrent). De esta forma, pueden mezclarse (en la misma secuenciación) librerías procedentes de muestras diferentes, cada una de ellas con un código de barras propio y reconocible durante el análisis informático. A esto se le llama también“secuenciación multiplex” (no confundir con la PCR multipex).
Los ácidos nucleicos o polinucleótidos para la secuenciación incluyen, pero no se limitan a, ácidos nucleicos tales como ADN, ARN o PNA (ácido nucleico peptídico), variantes o fragmentos de los mismos y/o concatámeros de los mismos. Los polinucleótidos pueden ser de una secuencia conocida o desconocida, de naturaleza natural o artificial y pueden ser de cualquier fuente (por ejemplo, eucariotas o procariotas). Los polinucleótidos pueden derivarse naturalmente, producirse recombinantemente o sintetizarse químicamente. Los polinucleótidos concatamerizados pueden contener subunidades o análogos de los mismos que pueden o no pueden producirse en la naturaleza, o subunidades modificadas. Pueden usarse métodos como se describe en este documento para determinar una secuencia de un polinucleótido. La longitud del ácido nucleico diana para la secuenciación puede variar. Por ejemplo, el ácido nucleico para la secuenciación puede incluir al menos 10, al menos 20, al menos 30, al menos 40, al menos 50, al menos 100, al menos 200, al menos 500, al menos 1.000, al menos 10.000, al menos 100.000, al menos 1.000.000, al menos 10.000.000 nucleótidos. El polinucleótido para la secuenciación puede ser de origen genómico o fragmentos o variantes de los mismos. La cadena de ácido nucleico para la secuenciación puede ser de cadena sencilla y puede o no derivarse de una molécula de ácido nucleico bicatenario. Las moléculas de cadena sencilla también pueden producirse, por ejemplo, mediante métodos y tecnologías de síntesis química o in vitro. Las realizaciones como se describen en la presente memoria descriptiva no están limitadas por los métodos preparatorios del ácido nucleico y cualquier número de métodos puede ser practicado por los expertos en la técnica para proporcionar una composición para uso en los métodos descritos. Por ejemplo, en la secuencia mediante metodologías de síntesis a menudo se genera una biblioteca que comprende los ácidos nucleicos diana, y después se secuencia una parte de la biblioteca de ADN.
El ADN aislado de muestras, por ejemplo muestras que contienen ADN genómico, se modifica típicamente antes de la caracterización, por ejemplo mediante secuenciación utilizando métodos como los que se describen en la presente memoria. Se crean bibliotecas de ADN genómico (o librerías) que pueden secuenciarse mediante la práctica de los métodos descritos en la presente memoria.
La invención descrita puede sustituir numerosos kits comerciales basados en unión de adaptadores mediante DNA-ligasa, aportando, adicionalmente, notables ventajas técnicas.
El término anclaje o la expresión oligonucleótido de anclaje según aquí se utiliza, se refiere a un oligonucleótido que se puede acoplar a una matriz sólida a través de una modificación en su extremo 5’.
Preferiblemente, el oligonucleótido unido a la superficie de la partícula tiene un grupo amino en el extremo 5’. Alternativamente, puede tener un grupo thiol. Entre el nucleótido del extremo y el grupo amino hay preferiblemente un“linker” de hasta 50 carbonos (CH3)n. Aunque es recomendable, es posible usar oligonucleótidos sin“linker”.
El término esplínquer o la expresión oligonucleótido esplínquer, según aquí se utiliza, se refiere a un oligonucleótido que no posee ninguna modificación ni presenta ningún otro tipo de modificación y que por consiguiente no se une por sí mismo a la matriz a la que los oligonucleótidos de anclaje se acoplan.
El término dumbbell (forma de pesa), según aquí se utiliza, se refiere a una estructura de DNA que se caracteriza por una doble cadena que está flanqueada por dos bucles.
Uno de los dos oligonucleótidos que se han de ligar en cada una de las etapas de reacción (el denominado oligonucleótido de anclaje), se puede acoplar a una matriz sólida a través de una modificación, p. ej., un compuesto químico de bajo peso molecular tal como biotina o digoxigenina. En una realización preferida, estas matrices sólidas son bolitas magnéticas recubiertas con estreptavidina o recubiertas con anti- digoxigenina. El otro oligonucleótido (el denominado oligonucleótido esplínquer) tiene también un extremo bloqueado pero no lleva una modificación de ese tipo ni lleva otro tipo de modificación. El punto decisivo es que los oligonucleótidos de anclaje se puedan separar de los oligonucleótidos esplínquer mediante unión a una matriz adecuada. Así pues, compuestos como p. ej. biotina, digoxigenina, isotiocianato de fluoresceína (FITC) , compuestos amino, ésteres de succinilo y otros compuestos familiares para el experto en la técnica, se pueden usar con la condición de que sean adecuados para mediar una unión directa o indirecta (p. ej. , a través de un anticuerpo) a una fase sólida.
Los oligonucleótidos de anclaje pueden estar compuestos, o por un oligonucleótido único, parcialmente autocomplementario, que se puede acoplar a una fase sólida a través de una modificación situada preferiblemente en la secuencia del bucle, o por dos oligonucleótidos monocatenarios que forman una doble cadena que preferiblemente tiene un solo extremo protuberante monocatenario. Debido a que solamente una de las dos cadenas se ha de acoplar a la matriz, la otra cadena se puede desnaturalizar y separar, en caso necesario, mediante tratamiento con álcali o con calor (con el fin, por ejemplo, de que sirva como molde para una reacción de PCR). Con el fin de tener la seguridad de que también en el caso de esos oligonucleótidos de anclaje bipartitos sólo uno de los extremos se puede ligar, los extremos que no se requieren para la ligación se bloquean en conformidad a ello.
Por "oligonucleótido iniciador" quiere decirse el oligonucleótido de partida para la síntesis de la biblioteca que también contiene un ligador unido covalentemente y un resto funcional para la adición de un nodo de diversidad o estructura de soporte. El oligonucleótido puede ser mono o bicatenario. El oligonucleótido puede consistir en bases naturales o modificadas.
Por "resto funcional" quiere decirse un resto químico que comprende uno o más elementos estructurales que pueden seleccionarse de cualquier molécula pequeña o diseñarse y construirse basándose en características deseadas, por ejemplo, de solubilidad, disponibilidad de donadores y aceptores de enlaces de hidrógeno, grados de libertad rotacionales de los enlaces, carga positiva, carga negativa y similares. El resto funcional debe ser compatible con la modificación química de manera que reacciona con la parte anterior. En determinadas realizaciones, el resto funcional puede hacerse reaccionar adicionalmente como una entidad bifuncional o trifuncional (o mayor). Los restos funcionales también pueden incluir elementos estructurales que se usan en cualquiera de las posiciones o nodos de diversidad.
Por "ligador" quiere decirse una molécula que une la parte de ácido nucleico de la biblioteca a las especies presentadas funcionales. Tales ligadores se conocen en la técnica, y los que pueden usarse durante la síntesis de la biblioteca incluyen, pero no se limitan a, 5'-0-dimetoxitritiM',2'-didesoxirribosa-3'-[(2-cianoetil)-(N,N-diisopropil)]- fosforamidita; 1-[(2-cianoetil)-(N,N-diisopropil)]-fosforamidita de 9-O-dimetoxitritil- trietilenglicol; 3-(4,4'- dimetoxitritiloxi)propil-1 -[(2-cianoetil)-(N, N-diisopropil)]- fosforamidita; y 1-[(2-cianoetil)-(N,N-diisopropil)]-fosforamidita de 18-0- dimetoxitritilhexaetilenglicol. Tales ligadores pueden añadirse en tándem entre sí en diferentes combinaciones para generar ligadores de diferentes longitudes deseadas. Por "ligador ramificado" quiere decirse una molécula que une la posición de ácido nucleico de la biblioteca a 2 o más especies funcionales idénticas de la biblioteca. Los ligadores ramificados se conocen bien en la técnica y los ejemplos pueden consistir en dobletes simétricos o asimétricos (1) y (2) o un triplete asimétrico (3). Véanse, por ejemplo, Newcome et al., Dendritic Molecules: Concepts, Synthesis, Perspectives, VCH Publishers (1996); Boussif et al., Proc. Nati. Acad. Sci. USA 92: 7297-7301 (1995); y Jansen et al., Science 266: 1226 (1994).
Tal como se usa en el presente documento, el término "oligonucleótido" se refiere a un polímero de nucleótidos. El oligonucleótido puede incluir ADN o cualquier derivado del mismo conocido en la técnica que puede sintetizarse y usarse para el reconocimiento de pares de bases. El oligonucleótido no tiene que tener bases contiguas, sino que puede presentar restos de ligador intercalados. El polímero oligonucleotídico puede incluir nucleósidos naturales (por ejemplo, adenosina, timidina, guanosina, citidina, uridina, desoxiadenosina, desoxitimidina, desoxiguanosina y desoxicitidina), análogos de nucleósido (por ejemplo, 2-aminoadenosina, 2-tiotimidina, inosina, pirrolo-pirimidina, 3- metiladenosina, C5-propinilcitidina, C5-propiniluridina, C5-bromouridina, C5- fluorouridina, C5-yodouridina, C5- metilcitidina, 7-desazaadenosina, 7- desazaguanosina, 8-oxoadenosina, 8-oxoguanosina, 0(6)-metilguanina y 2- tiocitidina), bases modificadas químicamente, bases modificadas biológicamente (por ejemplo, bases metiladas), bases intercaladas, azúcares modificados (por ejemplo, 2'- fluororribosa, ribosa, 2'-desoxirribosa, arabinosa y hexosa) y/o grupos fosfato modificados (por ejemplo, enlaces fosforotioatos y 5'-N-fosforamidita).
Por "unido operativamente" quiere decirse que dos estructuras químicas se unen entre sí de tal manera que permanecen unidas a través de las diversas manipulaciones a las que se espera que se sometan. Normalmente, el resto funcional y el oligonucleótido codificante se unen covalentemente a través de un grupo de unión apropiado. Por ejemplo, el grupo de unión puede ser un resto bifuncional con un sitio de unión para el oligonucleótido codificante y un sitio de unión para el resto funcional.
La unión entre el extremo 5’ del oligonucleótido y la superficie de la partícula debe de realizarse mediante un enlace covalente. Prefriblemente existen dos opciones: un enlace amida (tal como se muestra en los ejemplos de la invención) o enlaces basados en grupos tiol como el enlace disulfuro.
Los métodos que se describen en la presente memoria descriptiva no están limitados por ningún método de preparación de muestras de secuenciación particular y las alternativas serán fácilmente evidentes para cualquier experto en la técnica y se consideran dentro del alcance de la presente descripción.
En algunas realizaciones, los métodos expuestos en la presente memoria pueden usarse en una versión modificada de los protocolos del fabricante en un sistema tal como los proporcionados por lllumina®, Inc. (sistemas HiSeq 1000, HiSeq 1000, Genome Analyzers, MiSeq, HiScan, ¡Sean, BeadExpress), Applied Biosystems Life Technologies (sistemas de detección de secuencias ABI PRISM®, SOLiD System), u otros instrumentos de secuenciación basados en fluorescencia, además de los descritos en, por ejemplo, las patentes de EE.UU. y las solicitudes de patentes 5.888.737, 6.175.002, 5.695.934, 6.140.489, 5.863.722, 2007/007991 , 2009/0247414,
2010/01 11768 y la solicitud de patente PCT W02007/123744, y WO2012/096703. Las modificaciones a los métodos comerciales pueden incluir, pero no se limitan a, la alteración de los marcadores utilizados y la adición de etapas para cambiar los estados del marcador como se expone en este documento.
La salida de un instrumento de secuenciación puede ser de cualquier tipo. Por ejemplo, la tecnología actual utiliza típicamente una salida legible generadora de luz, tal como fluorescencia o luminiscencia, sin embargo los presentes métodos no están limitados al tipo de salida legible mientras las diferencias en la señal de salida para una secuencia particular de interés sean potencialmente determinables. Ejemplos de software de análisis que pueden usarse para caracterizar la salida derivada de la práctica de métodos tal como se describen en este documento incluyen, pero no se limitan a, el software de análisis de datos Pipeline, CASAVA y GenomeStudio (lllumina®, Inc.), SOLiD, DNASTAR® SeqMan® NGen® y el software de análisis de datos Partek® Genomics Suite (Life Technologies), el software de análisis de datos Feature Extraction and Agilent Workbench (Agilent Technologies), Genotyping Consolé, el software de análisis de datos Chromosome Analysis Suite (Affymetrix®).
Cualquier experto en la materia conocerá otras numerosas alternativas de software comercial y académicamente disponibles para el análisis de datos para la producción generada por secuenciación. Las realizaciones descritas en la presente memoria descriptiva no están limitadas a ningún método de análisis de datos.
EJEMPLOS DE LA INVENCIÓN
Fabricación de genotecas (o librerías) de secuenciación masiva sin sesgos asociados a la ligación que contienen variantes de un gen en frecuencias idénticas a las de la muestra de origen. Se quiere obtener una librería de un material genómico hipervariable del mismo individuo que se encuentra en una célula concreta dentro de un tejido. La librería debe de partir de una amplificación con numerosos de cebadores en sentido y un único cebador antisentido. La PCR con multitud de cebadores se denomina PCR multiplex. Las PCRs multiplex tienen el inconveniente de general una amplia cantidad de polímeros decebadores. En sangre, el material genético es abundante y la PCR multiplex puede dar amplificaciones efectivas. Sin embargo, en tejido, el material genético está diluido entre el material procedente del resto de las células del tejido, por lo que no puede competir efectivamente con los polímeros de cebadores.
Siguiendo el método de la invención realizamos una PCR multiplex uniendo covalentemente el cebador común a todas las variantes mediante un enlace covalente en 5’. Este cebador porta, además, en 5’, la secuencia de uno de los adaptadores de la librería de secuenciación masiva.
La unión de hebra doble es preferible cuando se realiza la unión a la partícula mediante un grupo amino en la posición 5’. De esta forma se evita la unión (no buscada) mediante los grupos aminos de las bases nitrogenadas internas. Tras la unión, un tratamiento alcalino y lavado sobre imán, elimina la hebra no unida covalentemente a la partícula. Las partículas magnéticas portan en su superficie todas las variantes de la hipervariable diana que se encuentra en las células del tejido. Trabajando sobre ellas, se añade el otro adaptador en 3’. Tras funcionar en una reacción de PCR se elimina la hebra no unida a la partícula mediante desnaturalización en solución alcalina y sedimentación de partículas sobre imán. La figura es un esquema, no está a escala y hay que entender que numerosas moléculas de oligonucleótido se unen a la superficie de la partícula.
Con el DNA de cadena simple unido a una partícula, se añade el adaptador mediante elongación del extremo 3’ usando un oligonucleótido de fusión. Este oligonucleótido porta en su extremo 3’ una secuencia de unión al extremo 3’ del DNA de cadena simple unido a la partícula (en el ejemplo es una secuencia aleatoria, aunque funciona con una colección de cebadores) y en su extremo 5’ porta una secuencia complementaria a uno de los adaptadores de la librería. El oligonucleótido de fusión puede portar un código de barrar.
Tras una pequeña incubación a 95°C (unos pocos minutos) con la intención de eliminar hibridaciones internas entre las moléculas, el oligonucleótido de fusión se incuba en presencia de Taq polimerasa a temperatura adecuada (preferiblemente en torno a 60 °C, aunque puede estar comprendida entre 40 y 75 °C). Pueden usarse simultáneamente amplias colecciones de oligonucleótidos de fusión, que difieren en su extremo 3’ y que son capaces de hibridar con la molécula de DNA de cadena simple unida a la partícula. Se incubarán en presencia de Taq polimerasa de sus sustratos y de tampón adecuado durante un periodo extendido (usualmente 20 minutos, aunque pueden usarse tiempos inferiores o superiores).
Preferiblemente, el cebador de fusión porta una modificación en 3’ que impide su elongación (aunque puede usarse sin esta modificación). De esta forma, la única elongación posible es la del DNA de cadena simple unido a la partícula. Se destaca que los oligonucleótidos de fusión no son cebadores o primers de PCR y, en consecuencia, no tienen que cumplir los requisitos de funcionamiento óptimo de cebadores. Se destaca que no es una reacción de PCR. No hay ciclos (aunque podría haberlos en alguna variante), no hay elongación del oligonucleótido de fusión y el oligonucleótido de fusión no tiene que competir por la hibridación con ninguna hebra complementaria al DNA unido a la partícula.
Tras la reacción de elongación, un paso de desnaturalización y lavado de las partículas sobre el imán permitirá la eliminación de cualquier hibridación no deseada sobre la hebra de DNA unida a la partícula. El único producto de reacción será la elongación de las hebras unidas a la partícula.
El otro adaptador de la genoteca puede incorporarse (al extremo unido a la partícula), mediante un procedimiento similar al descrito, trabajando sobre el DNA unido a la partícula o, preferiblemente, puede ir incorporado inicialmente en la secuencia del oligonucleótido originario (el que se unió covalentemente a la partícula por 5’).
Tras la fabricación de la librería, mediante una PCR convencional con cebadores frente a los extremos de los adaptadores, seguido de sedimentación magnética de las partículas, se obtiene una librería de secuenciación masiva libre de partículas.
Se ha comprobado que no hay sesgos detectables, al menos según el umbral de detección de la técnica de PCR a tiempo real. Las frecuencias de las diferentes variantes presentes en la librería final son idénticas a la frecuencia observada en el cDNA de partida.
La Fig. 4 muestra el resultado de la amplificación de la región hipervariable empleando la PCR multiplex del cDNA, de manera convencional. La Fig. 5 y la Flg. 6 corresponden a los resultados obtenidos siguiendo el método de la invención.

Claims

REIVINDICACIONES
1.- Un método para unir dos oligonucleótidos de cadena simple que comprende: a) unir uno de los oligonucleótidos a una partícula por el grupo amino de su extremo 5' caracterizada por que
I) tiene un núcleo magnético,
II) tiene la superficie recubierta con compuestos orgánicos con grupos de carácter acido expuestos que le aportan carga negativa,
NI) es estable a PH alcalino y ácido, en un rango amplio entre pH 2 y 14, IV) tiene un reducido coeficiente de sedimentación y una reducida agregación,
V) tienen un tamaño de entre 100 nm y 2000 nm, preferiblemente entre 700 nm y 1500 nm, y más preferiblemente de aproximadamente 800 nm
VI) no inhibe la Taq polimerasa y puede usarse en reacciones de PCR, y Vil) La partícula es estable a temperaturas de hasta 100 °C, para crear un oligonucleótido plantilla, b) añadir el otro oligonucleótido ai extremo libre (3') del oligonucleótido plantilla mediante cebadores de fusión, en presencia de Taq polimerasa, para hacer una elongación (de uno o varios ciclos) 2 - El método para unir dos oligonucleótidos de cadena simple según la reivindicación anterior, donde el oligonucleótido del paso (a) funciona como un cebador o primer en una reacción de polimerización del DNA.
3.- El método para unir dos oligonucleótidos de cadena simple según cualquiera de las reivindicaciones 1-2, donde el grupo ácido expuesto es el grupo carboxilo y el enlace que se establece con el extremo 5' del oligonucleótido es un enlace amida.
4.- El método para unir dos oligonucleótidos de cadena simple según cualquiera de las reivindicaciones 1-3, donde el oligonucleótido del paso (b) es un oligonucleótido no elongable (tienen inactivado su extremo 3’).
HOJA DE REEMPLAZO (REGLA 26)
5.- E¡ método para unir dos oligonucleótidos de cadena simple según cualquiera de las reivindicaciones 1-4, donde la longitud total del oiigonucleótido del paso (b) oscila entre 30 y 100 bases
6.~ El método para unir dos oligonucleótidos de cadena simple según cualquiera de las reivindicaciones 1-5, donde el núcleo magnético es un núcleo“magnético blando”
7.~ El método para unir dos oligonucleótidos de cadena simple según cualquiera de las reivindicaciones 1-6, que adicional ente comprende: c) Realizar al menos un ciclo adicional de elongación, y d) eliminar la hebra no unida covalentemente a la macropartícula. 8.- El método para unir dos oligonucleótidos de cadena simple según cualquiera de las reivindicaciones 1-7, donde la eliminación de la hebra no unida covalentemente a la macropartícula se realiza mediante desnaturalización térmica o alcalina.
9.- El método según la reivindicación anterior, donde la eliminación de la hebra no unida covalentemente a la macropartícula se realiza mediante desnaturalización alcalina con una base fuerte, y preferiblemente la base fuerte es sosa.
10.- Un método para obtener librerías de amplicones que comprende llevar a cabo ios pasos de un método según cualquiera de las reivindicaciones 1 a 9, y adicionalmente comprende: e) unir el otro de los oligonucleótidos (adaptadores) a una partícula según se describe en la reivindicación 1 , y f) elongar la hebra en presencia de Taq polímerasa.
HOJA DE REEMPLAZO (REGLA 26)
PCT/ES2019/070494 2018-07-13 2019-07-15 Preparación de librerías de ácidos nucléicos o genotecas WO2020012057A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201830701 2018-07-13
ESP201830701 2018-07-13

Publications (1)

Publication Number Publication Date
WO2020012057A1 true WO2020012057A1 (es) 2020-01-16

Family

ID=69141629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070494 WO2020012057A1 (es) 2018-07-13 2019-07-15 Preparación de librerías de ácidos nucléicos o genotecas

Country Status (1)

Country Link
WO (1) WO2020012057A1 (es)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031691A1 (en) * 2013-08-28 2015-03-05 Cellular Research, Inc. Massively parallel single cell analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015031691A1 (en) * 2013-08-28 2015-03-05 Cellular Research, Inc. Massively parallel single cell analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KERSTIN WAGNER ET AL.: "Synthesis of oligonucleotide-functionalized magnetic nanoparticles and study on their in vitro cell uptake", APPLIED ORGANOMETALLIC CHEMISTRY, vol. 18, no. 10, 10 January 2004 (2004-01-10), pages 514 - 519, XP055108694, ISSN: 0268-2605, DOI: 10.1002/aoc.752 *

Similar Documents

Publication Publication Date Title
ES2959047T3 (es) Bibliotecas de genoma completo de célula individual para la secuenciación de metilación
US11708607B2 (en) Compositions containing identifier sequences on solid supports for nucleic acid sequence analysis
ES2562159T3 (es) Composiciones y métodos para el reordenamiento de ácido nucleico molecular
ES2764096T3 (es) Bibliotecas de secuenciación de próxima generación
ES2866896T3 (es) Procedimiento para incrementar el rendimiento de secuenciación de molécula única concatenando fragmentos de ADN cortos
ES2910099T3 (es) Secuenciación sin enzimas y sin amplificación
ES2713153T3 (es) Métodos y composiciones que utilizan la transposición unilateral
US20180334729A1 (en) High throughput nucleic acid sequencing by expansion
ES2639938T5 (es) Métodos y composiciones para la secuenciación de ácidos nucleicos
ES2818920T3 (es) Sonda de ácido nucleico para la detección de fragmentos genómicos
ES2724824T3 (es) Métodos para la secuenciación de ácidos nucleicos
ES2626058T3 (es) Cebadores y métodos de amplificación
CN103733063B (zh) 偶联方法
ES2952832T3 (es) Captura de dianas dúplex enlazadas
ES2846730T3 (es) Concatemerización en superficie de moldes
ES2533461T3 (es) Determinación de la abundancia de mensajes y el número de copias de alelos usando TIV con constructos cebador-promotor-selector monocatenarios
CN106715693A (zh) 用于制备序列文库的方法和组合物
ES2889875T3 (es) Secuenciación a partir de cebadores múltiples para incrementar la velocidad y la densidad de los datos
ES2718765T3 (es) Amplificación selectiva de amplicones solapados
TW201321518A (zh) 微量核酸樣本的庫製備方法及其應用
US20220364169A1 (en) Sequencing method for genomic rearrangement detection
ES2768762T3 (es) Reducción del daño al ADN durante la preparación de muestras y secuenciación usando agentes quelantes sideróforos
WO2020012057A1 (es) Preparación de librerías de ácidos nucléicos o genotecas
US20200208140A1 (en) Methods of making and using tandem, twin barcode molecules
CN116287167B (zh) 核酸分子的测序方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19835173

Country of ref document: EP

Kind code of ref document: A1