WO2020011032A1 - 光模块 - Google Patents

光模块 Download PDF

Info

Publication number
WO2020011032A1
WO2020011032A1 PCT/CN2019/093773 CN2019093773W WO2020011032A1 WO 2020011032 A1 WO2020011032 A1 WO 2020011032A1 CN 2019093773 W CN2019093773 W CN 2019093773W WO 2020011032 A1 WO2020011032 A1 WO 2020011032A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
interface
chip
lens assembly
lens
Prior art date
Application number
PCT/CN2019/093773
Other languages
English (en)
French (fr)
Inventor
刘旭霞
钟岩
Original Assignee
青岛海信宽带多媒体技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信宽带多媒体技术有限公司 filed Critical 青岛海信宽带多媒体技术有限公司
Priority to US16/539,285 priority Critical patent/US11025030B2/en
Publication of WO2020011032A1 publication Critical patent/WO2020011032A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms

Definitions

  • the present application relates to the field of optical communications, and in particular, to an optical module.
  • the optical power of the laser chip in the optical module is an important monitoring index.
  • a vertical cavity surface laser chip it emits a beam of light in a direction perpendicular to the surface. Dividing a part of the light from a beam of light to monitor the optical power is a technical problem that an optical module using a vertical cavity surface laser chip needs to solve.
  • An embodiment of the present application relates to an optical module including a circuit board, an optical fiber, a laser chip, a laser driving chip, a light monitoring chip, and a lens assembly disposed on a surface of the circuit board.
  • a laser chip is located between the optical fiber and the light monitoring chip.
  • the laser driving chip is located between the light monitoring chip and the laser chip.
  • the bottom cover of the lens assembly is disposed above the laser chip and the light monitoring chip.
  • the top surface of the lens assembly is provided with a groove, and the bottom of the groove is convex to form a first interface and a second interface. The light emitted by the laser chip obtains the first reflected light through the first interface, and the first reflected light is directed toward the second interface.
  • the second interface reflects a part of the light of the first reflected light to obtain a second reflected light, and a part of the light of the first reflected light is refracted to obtain a first refracted light.
  • the second reflected light is directed toward the light monitoring chip, and the first refracted light is directed toward the optical fiber.
  • FIG. 1 is a structural diagram of an optical module according to an embodiment of the present application.
  • FIG. 2 shows a schematic structural diagram of a lens assembly
  • FIG. 3 is a schematic diagram showing a partial structure of an optical module according to an embodiment of the present application.
  • FIG. 4 (a) shows a schematic diagram of an optical path of an optical module according to an embodiment of the present application
  • FIG. 4 (b) shows a schematic diagram of an optical path of an optical module according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of an optical path of another optical module according to an embodiment of the present application.
  • FIG. 1 is a structural diagram of an optical module according to an embodiment of the present application.
  • the optical module includes an upper case 101, a lower case 102, a circuit board 103, a lens assembly 104, an optical fiber 105, and an optical fiber connector 106.
  • the upper case 101 and the lower case 102 form a first cavity that encapsulates devices such as a circuit board, a lens assembly, and an optical fiber.
  • the lens assembly 104 is located on the surface of the circuit board 103.
  • a laser chip is enclosed between the lens assembly 104 and the circuit board 103. Light monitoring chip and laser driving chip.
  • a second cavity is formed between the lower surface of the lens assembly 104 and the circuit board 103, and a laser chip, a light monitoring chip, and a laser driving chip are located in the second cavity; a groove is formed on the upper surface of the lens assembly 104, A protrusion at the bottom of the groove forms a structure that changes the direction of light propagation.
  • An embodiment of the present application provides an optical module including a circuit board, a laser chip, a light monitoring chip, a laser driving chip, and a lens assembly.
  • the laser chip, laser driving chip and light monitoring chip are mounted on the surface of the circuit board.
  • the laser driving chip is located between the light monitoring chip and the laser chip.
  • the bottom cover of the lens assembly is disposed above the laser chip and the light monitoring chip.
  • the top surface of the lens assembly has a groove, and the bottom of the groove is convex to form a first interface and a second interface.
  • the light emitted by the laser chip is reflected toward the second interface through the first interface.
  • the light reflected and refracted at the second interface is transmitted to the light monitoring chip through the light reflected at the second interface, and the light refracted through the second interface exits the lens assembly.
  • the first interface and the second interface of the lens assembly realize the separation of the light beams.
  • Two beams of different directions are formed by reflection and refraction, and the light beams reflected to the light monitoring chip realize the monitoring of the optical power.
  • FIG. 2 provides a schematic structural diagram of a lens assembly.
  • the lower surface of the lens assembly 104 is recessed to form a semi-open space.
  • the lower surface of the lens assembly 104 may form a closed second cavity together with the circuit board, and the second cavity is used to receive the laser chip and the laser.
  • the lower surface of the lens assembly 104 has a collimating lens (ie, a first lens) 20 in the second cavity.
  • the collimating lens is used to focus and collimate the divergent light emitted by the laser chip into parallel light. , And then the parallel light is incident into the lens assembly.
  • the upper surface of the lens assembly has a groove.
  • the protrusion at the bottom of the groove forms a first interface 117 and a second interface 116.
  • the light collimated by the collimating lens is reflected at the first interface and then propagates toward the second interface.
  • the reflection and refraction of light occurs at the second interface, and the reflected light and the refracted light are generated.
  • the refracted light is converged into the optical fiber through a converging lens (ie, the second lens) 30, and the reflected light passes through the lens assembly 104. Shot out, and finally hit the surface of the light monitoring chip.
  • a protrusion is formed in a groove on the upper surface of the lens assembly, and the outer surface of the protrusion has two inclined surfaces, that is, a first interface and a second interface.
  • the direction of the light reflected from the first interface is toward the second interface, and light is reflected and refracted at the second interface.
  • the first interface and the second interface belong to the interface between the light-sparse medium and the light-dense medium, which can meet the basic requirements for reflection and refraction. Coating on the surface to meet the needs of light reflection and refraction. In some embodiments, total reflection occurs at the first interface, and reflection and refraction occurs at the second interface.
  • the lens assembly 104 of the present application may be made of a polymer material through an injection molding process.
  • the lens component 104 is made of a material including a light-transmitting material such as PEI (Polyetherimide) plastic (Ultem series). Since all the beam propagation elements in the lens assembly 104 are formed using the same single piece of polymer material, the molding mold can be greatly reduced, and the manufacturing cost and complexity are reduced.
  • the embodiment of the present application only needs to adjust the position of the incident light beam and the optical fiber based on the structure of the lens assembly 104 provided above, and the installation and debugging are simple.
  • the VCSEL Very Cavity Surface Emitting Laser
  • the light beam emitted by the laser chip is a laser beam.
  • the distance between the collimating lens 20 and the light emitting point of the laser chip is set to the focal length of the collimating lens 20, so that the divergent light beam emitted by the laser chip passes through the collimating lens after reaching the collimating lens 20
  • the collimated light beam of the lens 20 becomes a parallel / convergent light beam and propagates.
  • FIG. 3 is a schematic partial structural diagram of an optical module according to an embodiment of the present application.
  • the laser chip 115, the laser driving chip 114 and the light monitoring chip 112 are mounted on a surface of a printed circuit board (PCB) 103 and are located in a cavity formed by the circuit board 103 and the lens assembly 104.
  • PCB printed circuit board
  • the laser driving chip 114 and the laser chip 115 are electrically connected through a wire 118.
  • the size of the laser driving chip 114 is much larger than the size of the laser chip 115 and is also much larger than the size of the light monitoring chip 112.
  • the distance between the laser chip 115 and the first interface 117 is measured according to the traveling path of the optical path, that is, the distance D1 shown in FIG. 3 ;
  • the purpose of this arrangement is to allow the light reflected from the second interface 116 to be directed toward the light detection chip 112 on the laser chip 115 side.
  • the optical fiber and the light detection chip are located on opposite sides of the laser chip, and the first interface causes light to be directed toward the optical fiber; and the second interface reflects a boundary toward the light detection chip, and the boundary is emitted from the lower surface of the lens assembly.
  • the light emitting position on the lower surface of the lens assembly is located between the laser chip and the light detection chip.
  • the main design requirements of the lens assembly are: the distance between the laser chip and the first interface, and the first interface and the second interface The distance between these two distances.
  • the distance between the first interface and the second interface is too large, the light emitted from the lower surface of the lens component is incident on the circuit board surface, that is, the light emission position on the lower surface of the lens component is not located between the laser chip and the light detection chip. In the meantime, it cannot be shot onto the light monitoring chip located on the other side of the laser chip.
  • this distance relationship is also related to the reflection angle of the second interface.
  • an included angle between the second interface 116 and the surface of the circuit board 103 is between 45 ° and 90 °.
  • FIG. 4 (a) is a schematic diagram of an optical path of an optical module according to an embodiment of the present application.
  • a light monitoring chip 112 such as MPD (Monitor Photo-Diode)
  • a laser driving chip 114 such as an IC (Integrated Circuit) chip
  • a laser chip 115 such as VCSEL, VCSEL 115 emits light perpendicular to the surface of the circuit board 103, which is a characteristic of VCSEL.
  • the light emitted by the laser chip is divergent.
  • the divergent light emitted by the laser chip is collected by the collimator lens 20 to form a collimated optical path.
  • the collimator lens is a part of the lens assembly and is manufactured by an integral molding process.
  • the light After the light is emitted from the laser chip 115, it passes through the air and enters the collimator lens 20.
  • the collimator lens 20 converges and enters the lens assembly 104. Reflection occurs at the first interface 117, and the reflection direction of the reflected light is directed toward the second interface 116.
  • the direction of propagation of the reflected light is not parallel to the surface of the circuit board. In some embodiments, total reflection occurs at the first interface to reduce loss of optical power.
  • Light is reflected and refracted at the second interface 116.
  • the reflected light is directed to the light monitoring chip 112, and the light monitoring chip 112 and the laser chip 115 are located on opposite sides of the laser driving chip 114, respectively.
  • the distance between the light monitoring chip 112 and the laser chip 115 is adjusted according to the size of the laser driving chip 114. As the size of the laser driving chip becomes larger, the distance between the light monitoring chip and the laser chip becomes larger.
  • the light monitoring chip is arranged on the side of the circuit board close to the gold finger on the circuit board; the laser chip is arranged on the side of the circuit board near the optical fiber. In this way, the light monitoring chip and the electrical interface of the circuit board are realized. Shorter electrical connection, and shorter optical connection between the laser chip and the optical interface of the lens assembly.
  • reflection and refraction occur at the second interface.
  • the light monitoring chip 112 can obtain the intensity of the transmitted light output through the optical fiber 105 by analyzing the intensity of the received reflected light beam and based on the distribution ratio of the reflected light beam and the refracted light beam. It can be understood that the ratio between the intensity of the back light (that is, the reflected beam) and the intensity of the front light (that is, the beam that has not been reflected and refracted before entering the second interface) is known, in other words, the first The ratio of the intensity of the reflected light beam to the intensity of the refracted light beam at the second interface is also determined, so that the intensity of the refracted light beam can be determined based on the intensity of the reflected light beam.
  • the refracted light 110 exits the lens assembly 104. Specifically, the refracted light enters the recessed portion 113 on the side wall of the lens component, and enters from the recessed portion 113 of the lens component toward the focusing lens 30 located at the lens component 104, and then enters the optical fiber 105.
  • the light passes through the recessed portion 113, it is refracted, so that the light propagates in a direction parallel to the surface of the circuit board 103.
  • the purpose is to be the same as the direction of the optical fiber, so as to facilitate coupling into the optical fiber with high efficiency.
  • the angle of the recessed portion 113 ⁇ 3, ⁇ 1 is the angle of the first interface and the second interface angle ⁇ 2 with each other, the light at the first interface 117 sequentially, and a second interface 116 A change in the propagation direction occurs at the recessed portion 113, so that light originally propagating perpendicularly to the surface of the circuit board 103 is transformed into parallel to the surface of the circuit board 103.
  • the specific angle can be set within the corresponding range according to the actual situation.
  • the first interface needs to undergo total reflection.
  • the angle of the first interface can be determined according to the specific optical dense medium, light sparse medium, and light wavelength. Based on this, the second interface and the recessed portion can be sequentially set according to the purpose. Angle.
  • the second interface must also take into account the reflection of light towards the light monitoring chip and refracting towards the optical fiber.
  • the light beam when the light beam propagates from the laser chip into the lens assembly, the light beam propagates from the optically sparse medium to the light dense medium; after the light beam propagates from the first interface to the second interface, the light beam is directed toward the light through the second interface.
  • the reflected light of the monitoring chip When the reflected light of the monitoring chip has not yet exited the lens component, the reflected light propagates in the optically dense medium; when the reflected light is emitted from the lens component and refracted toward the light monitoring chip, the reflected light propagates in the optical sparse medium; from the second The refracted light from the interface toward the recessed portion 113 propagates in the optically sparse medium; the light 110 directed to the focusing lens 30 through the recessed portion 113 propagates in the optically dense medium.
  • the embodiment of the present application provides an optical module. Since the lens assembly is integrally formed by using the same polymer material, a molding die can be greatly reduced, and manufacturing cost and manufacturing complexity are effectively reduced. Further, by adjusting the first interface and the first interface, The angle of the two interfaces can effectively reduce the diameter of the beam spot propagating to the optical fiber, and the focusing efficiency is good, thereby improving the optical alignment accuracy and improving the optical fiber transmission efficiency.
  • the lens assembly 104 further includes a third interface 119 and a fourth interface 120.
  • the third interface 119 and the fourth interface 120 are set based on the distance D3 between the optical fiber 105 and the circuit board 103.
  • the refracted light emitted from the lower surface of the lens assembly 104 can be directed toward the light monitoring chip 112.
  • the reflected light beam obtained through the second interface 116 is directed toward the lower surface of the lens assembly 104, and the reflected light beam is reflected again at the lower surface of the lens assembly 104, and is directed toward the third interface 119 of the lens assembly 104, and then at the third interface
  • the interface 119 reflects and shoots toward the fourth interface 120, and is refracted to the light monitoring chip 112 by refracting at the fourth interface 120.
  • the third interface 119 is totally reflected.
  • the optical path in the lens assembly can be extended by setting the third interface and the fourth interface in the lens assembly, so that the refracted light emitted from the lens assembly is directed to the light monitoring chip.
  • the third interface 119 and the fourth interface can also be set or adjusted according to the distance D4 between the light monitoring chip and the laser chip.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种光模块,光模块包括电路板(103)、设置在电路板(103)表面的激光芯片(115)、激光驱动芯片(114)及光监控芯片(112),以及透镜组件(104);激光驱动芯片(114)位于光监控芯片(112)及激光芯片(115)之间;透镜组件(104)的底面罩设在激光芯片(115)及光监控芯片(112)的上方;透镜组件(104)的顶面设有凹槽,凹槽的底部凸起以形成第一界面(117)及第二界面(116);激光芯片(115)发射的光通过第一界面(117)得到第一反射光,第一反射光射向第二界面(116);第二界面(116)反射第一反射光的部分光得到第二反射光,且折射第一反射光的部分光得到第一折射光,第二反射光射向光监控芯片(112),第一折射光射向光纤(105)。

Description

光模块
相关申请的交叉引用
本专利申请要求于2018年7月12日提交的、申请号为2018107660886的中国专利申请的优先权,该申请的全文以引用的方式并入本文中。
技术领域
本申请涉及光通信领域,尤其涉及一种光模块。
背景技术
光模块中激光芯片的光功率是一项重要的监控指标,对于垂直腔表面激光芯片,其沿垂直于表面的方向向上发出一束光。从一束光中分出部分光进行光功率监控,是使用垂直腔表面激光芯片的光模块需要解决的技术问题。
发明内容
本申请的实施方式涉及一种光模块包括电路板,光纤,设置在电路板表面的激光芯片、激光驱动芯片及光监控芯片,以及透镜组件。激光芯片位于所述光纤与所述光监控芯片之间。激光驱动芯片位于光监控芯片及激光芯片之间。透镜组件的底面罩设在激光芯片及光监控芯片的上方。透镜组件的顶面设有凹槽,凹槽的底部凸起以形成第一界面及第二界面。激光芯片发射的光通过第一界面得到第一反射光,第一反射光射向第二界面。第二界面反射第一反射光的部分光得到第二反射光,且折射第一反射光的部分光得到第一折射光。所述第二反射光射向所述光监控芯片,所述第一折射光射向所述光纤。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请实施例提供的光模块结构图;
图2示出了一种透镜组件的结构示意图;
图3示出了本申请实施例提供的光模块局部结构示意图;
图4(a)示出了本申请实施例提供的光模块光路的示意图;
图4(b)示出了本申请实施例提供的光模块光路的示意图;
图5示出了本申请实施例提供的另一光模块光路的示意图。
具体实施方式
以下将结合附图所示的具体实施方式对本申请进行详细描述。但这些实施方式并不限制本申请,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本申请的保护范围内。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
下面结合附图,对本申请的一些实施方式作详细说明,在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图1为本申请实施例提供的光模块结构图。如图1所示,光模块包括上壳体101、下壳体102、电路板103、透镜组件104、光纤105及光纤接头106。上壳体101及下壳体102形成包裹器件诸如电路板、透镜组件、光纤的第一腔体,透镜组件104位于电路板103表面,在透镜组件104与电路板103之间封装有激光芯片、光监控芯片及激光驱动芯片。具体地,透镜组件104的下表面与电路板103之间围成第二腔体,激光芯片、光监控芯片及激光驱动芯片位于该第二腔体中;透镜组件104的上表面形成凹槽,凹槽的底部凸起形成改变光传播方向的结构。
本申请实施例提供一种光模块,包括电路板、激光芯片、光监控芯片、激光驱动芯片及透镜组件。激光芯片、激光驱动芯片及光监控芯片贴装在电路板表面。激光驱动芯片位于光监控芯片及激光芯片之间。透镜组件的底面罩设在激光芯片及光监控芯片的上方。透镜组件的顶面具有凹槽,凹槽的底部凸起以形成第一界面及第二界面。激光芯片 发射的光通过第一界面反射向第二界面。第二界面反射、折射光,经第二界面反射的光射向光监控芯片,经第二界面折射的光射出透镜组件。
由上述技术方案可见,透镜组件的第一界面及第二界面实现了对光束的分离,通过反射、折射形成两束不同方向的光束,反射向光监控芯片的光束实现了对光功率的监控。
图2提供了一种透镜组件的结构示意图。如图2所示,透镜组件104的下表面凹陷形成半开放的空间,透镜组件104的下表面可与电路板一起形成闭合的第二腔体,该第二腔体用于容纳激光芯片、激光驱动芯片及光监控芯片,透镜组件104的下表面在该第二腔体中具有准直透镜(即第一透镜)20,准直透镜用于将激光芯片发出的发散光汇聚准直为平行光,进而将该平行光射入透镜组件中。透镜组件的上表面具有凹槽,凹槽底部的凸起形成第一界面117及第二界面116,经准直透镜准直后的光在第一界面处发生反射,进而朝向第二界面传播。在第二界面处发生光的反射及折射产生反射后的光和折射后的光,折射后的光经汇聚透镜(即第二透镜)30汇聚后进入光纤中,反射后的光从透镜组件104中射出,并最终射向光监控芯片表面。
透镜组件上表面的凹槽中形成凸起,凸起的外表面具有两个斜面,即第一界面和第二界面。第一界面反射光的方向朝向第二界面,光在第二界面处发生反射和折射。通过这种透镜组件上的结构设计,实现了光分束以及传播方向改变的效果,从透镜组件中射出两束光,一束射向光监控芯片,一束射入光纤中。凹槽的形成主要为了生成满足反射、折射条件的界面,第一界面及第二界面均属于光疏介质与光密介质的分界面,可以满足对反射及折射的基本要求,此外,还可以在面上镀膜,以满足对光反射及折射的需要。在一些实施例中,在第一界面发生全反射,在第二界面发生反射和折射。
本申请的透镜组件104可以采用聚合物材料经注塑工艺一体成型制成。具体地,该透镜组件104的制成材料包括PEI(Polyetherimide,聚醚酰亚胺)塑料(Ultem系列)等透光性好的材料。由于透镜组件104中的所有光束传播元件均采用相同的聚合物材料单片形成,从而可以大大减少成型模具,降低了制造成本和复杂度。同时,本申请实施例基于上述所设置的透镜组件104结构只需调节入射光束以及光纤的位置,安装调试简单。
本实施例中,激光芯片可以采用VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔表面发射激光器),激光芯片所发射的光束为激光束。
在一些实施例中,该准直透镜20与激光芯片的发光点之间的距离设置为准直透镜20的焦距,如此以使激光芯片发出的发散光束在到达准直透镜20后,经过准直透镜20 准直的光束变为平行/汇聚光束进行传播。
图3为本申请实施例提供的光模块局部结构示意图。如图3所示,激光芯片115、激光驱动芯片114及光监控芯片112贴装在电路板(Printed Circuit Board,PCB)103表面,并位于电路板103与透镜组件104形成的腔体中。
激光驱动芯片114与激光芯片115之间通过打线118实现电连接。实际应用中,激光驱动芯片114的尺寸远大于激光芯片115的尺寸,也远大于光监控芯片112的尺寸。
激光芯片115发出的光射入透镜组件104后,在第一界面117发生反射,按照光路的行进路径来衡量激光芯片115与第一界面117之间的距离,即图3中所示的距离D1;光在第一界面117与第二界面116的行进路径来衡量第一界面与第二界面的距离,即图3中所示的D2;激光芯片与第一界面之间的距离D1大于第一界面与第二界面之间的距离D2。
如此设置的目的,是让从第二界面116反射的光射向位于激光芯片115一侧的光检测芯片112。具体地,光纤与光检测芯片位于激光芯片相对的两侧,第一界面使得光射向光纤;而第二界面将一部界反射向光检测芯片,该部界从透镜组件的下表面射出,光在透镜组件下表面的射出位置位于激光芯片与光检测芯片之间。
为了实现上述光路,特别是让光经第二界面反射后射入光监控芯片,透镜组件的主要设计要求是:要衡量激光芯片与第一界面之间的距离,与第一界面与第二界面之间的距离,这两个距离的关系。
当第一界面与第二界面之间的距离太大,会导致从透镜组件下表面射出的光射至电路板表面,即光在透镜组件下表面的射出位置并非位于激光芯片与光检测芯片之间,无法射至位于激光芯片另一侧的光监控芯片上。当然,这个距离关系还与第二界面的反射角度有关。
具体地,为了实现上述光路,第二界面116与电路板103表面之间的夹角处于45°与90°之间。
图4(a)为本申请实施例提供的光模块光路示意图。如图4(a)所示,光模块的电路板上设置有光监控芯片112如MPD(Monitor Photo-Diode)、激光驱动芯片114如IC(Integrated Circuit,集成电路)芯片,及激光芯片115如VCSEL,VCSEL115发出垂直于电路板103表面的光,这是VCSEL的特性。
激光芯片发出的光是发散的,在一些实施例中,激光芯片发出的发散光经准直透镜 20汇聚后形成准直光路,准直透镜是透镜组件的一部分,采用一体成型工艺制作。
光从激光芯片115发出后,经过空气传播进入准直透镜20,由准直透镜20汇聚准直进入透镜组件104,在第一界面117发生反射,反射光的反射方向朝向第二界面116,该反射光的传播方向不与电路板表面平行。在一些实施例中,在第一界面发生全反射,以减少光功率的损耗。
光在第二界面116发生反射以及折射。反射的光射向光监控芯片112,光监控芯片112和激光芯片115分别位于激光驱动芯片114的相对两侧。在一个示例中,根据激光驱动芯片114的尺寸调整光监控芯片112和激光芯片115之间的距离。随着激光驱动芯片的尺寸变大,光监控芯片和激光芯片之间的距离变大。此外,光监控芯片设置成位于电路板的靠近电路板上金手指的一侧;激光芯片设置成位于电路板的靠近光纤的一侧,这样设置,实现光监控芯片与电路板电接口之间的较短电连接,和实现激光芯片与透镜组件的光接口之间的较短光学连接。
在一些实施例中,在第二界面发生反射和折射。光监控芯片112通过分析所接收的反射光束的强度,基于该反射光束与折射光束的分配比例,即可获知通过光纤105所输出的传输光的强度。可理解的是,第二界面的后光(即反射光束)强度与前光(即在射入第二界面前未发生反射和折射的光束)强度之间的比例是已知的,换言之,第二界面的反射光束强度与折射光束强度的比例也是确定的,由此可基于反射光束强度确定折射光束强度。
光在第二界面发生折射时,折射的光110射出透镜组件104。具体地,折射的光射入透镜组件的侧壁上的凹陷部113中,从透镜组件的凹陷部113朝向位于透镜组件104的聚焦透镜30射入,进而进入光纤105。
光通过凹陷部113时,发生折射,使光的传播方向与电路板103表面平行,其目的是与光纤方向相同,以便于高效率地耦合进光纤。
如图4(b)所示,凹陷部113的角度φ 3,第一界面的角度φ 1及第二界面的角度φ 2是相互配合的,光依次在第一界面117、第二界面116及凹陷部113处发生传播方向的改变,使得最初与电路板103表面垂直传播的光转变为与电路板103表面平行。具体的角度可以根据实际情况在相应范围内设置。
具体地,第一界面需要发生全反射,根据具体的光密介质、光疏介质及光的波长,可以确定第一界面的角度,在此基础上,可以根据目的依次设置第二界面、凹陷部的角 度。第二界面还要兼顾将光反射向光监控芯片和折射向光纤。
本申请一些实施例中,在光束从激光芯片传播入透镜组件中,光束从光疏介质传播至光密介质;在光束从第一界面传播向第二界面后,当经第二界面射向光监控芯片的反射光尚未射出透镜组件时,该反射光在光密介质内传播;当该反射光从透镜组件射出并折射向光监控芯片时,该反射光在光疏介质中传播;从第二界面射向凹陷部113的折射光在光疏介质内传播;经凹陷部113射向聚焦透镜30的光110在光密介质内传播。
本申请实施例提供了一种光模块,由于透镜组件采用相同的聚合物材料一体形成,从而可以大大减少成型模具,有效降低了制造成本和制造复杂度;进一步地,通过调节第一界面与第二界面的角度,可以有效缩小传播至光纤的光束光斑直径,聚焦效率好,从而提升光学对准精度,使得光纤传播效率得到提升。
在一些情形下,光纤到电路板的距离较短,这意味着从第二界面产生的反射光在第二界面和透镜组件的下表面之间的光路较短,由此导致在透镜组件的下表面生成的折射光可能不能射向光监控芯片。在本申请一些实施例中,如图5所示,透镜组件104还包括第三界面119和第四界面120,基于光纤105到电路板103的距离D3设置第三界面119和第四界面120,使从透镜组件104下表面射出的折射光能够射向光监控芯片112。具体地,经过第二界面116得到的反射光束射向透镜组件104的下表面,该反射光束在透镜组件104的下表面处再次反射,射向透镜组件104的第三界面119,然后在第三界面119反射并射向第四界面120,通过在第四界面120折射射向光监控芯片112。在一个示例中,在透镜组件104的下表面处、第三界面119发生全反射。这样,即使光纤到电路板的距离较短,也可以通过在透镜组件中设置第三界面和第四界面来延长透镜组件内的光路,从而实现从透镜组件射出的折射光射向光监控芯片。
第三界面119和第四界面除了基于光纤到电路板的距离进行设置外,在一些实施方式中,还可以根据光监控芯片与激光芯片之间的距离D4设置或调整。
本领域技术人员在考虑说明书及实践这里公开的申请后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由本申请的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且 可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (10)

  1. 一种光模块,包括:
    电路板;
    光纤;
    光监控芯片,所述光监控芯片设置在所述电路板的表面;
    激光芯片,所述激光芯片设置在所述电路板的表面,所述激光芯片位于所述光纤与所述光监控芯片之间;
    激光驱动芯片,所述激光驱动芯片设置在所述电路板的表面,所述激光驱动芯片位于所述光监控芯片及所述激光芯片之间;以及
    透镜组件,所述透镜组件的底面罩设在所述激光芯片及所述光监控芯片的上方;所述透镜组件的顶面设有凹槽,所述凹槽的底部凸起以形成第一界面及第二界面;
    其中,所述激光芯片发射的光通过所述第一界面反射得到第一反射光,所述第一反射光射向所述第二界面;所述第二界面反射所述第一反射光的部分光得到第二反射光、且折射所述第一反射光的部分光得到第一折射光,所述第二反射光射向所述光监控芯片,所述第一折射光射向所述光纤。
  2. 如权利要求1所述的光模块,其中,所述第一界面与所述第二界面之间的距离,小于所述激光芯片与所述第一界面之间的距离。
  3. 如权利要求1所述的光模块,其中,所述透镜组件的底面包括光出射位置,所述第二反射光在所述透镜组件下表面的光出射位置,位于所述激光芯片与所述光监控芯片之间。
  4. 如权利要求1所述的光模块,其中,所述第二界面与所述电路板表面之间的夹角的范围为45°到90°。
  5. 如权利要求1所述的光模块,其中,所述透镜组件的侧壁还包括凹陷部,所述第一折射光射向所述凹陷部,所述凹陷部折射所述第一折射光得到第二折射光,所述第二折射光的传播方向与所述电路板表面平行。
  6. 如权利要求1所述的光模块,其中,所述激光芯片发射的光在所述第一界面处发生全反射。
  7. 如权利要求1所述的光模块,其中,包括所述凹槽、所述第一界面、所述第二界面的透镜组件一体化形成。
  8. 如权利要求1所述的光模块,其中,所述透镜组件包括第一透镜和第二透镜,
    所述第一透镜设置在所述透镜组件的底面,用于准直所述激光芯片发射的光;
    所述第二透镜设置在所述透镜组件的靠近所述光纤的侧面,用于汇聚在所述第二界面产生的折射光。
  9. 如权利要求8所述的光模块,其中,包括所述凹槽、所述第一界面、所述第二界面、所述第一透镜和所述第二透镜的透镜组件一体化形成。
  10. 如权利要求1所述的光模块,其中,所述透光组件还包括第三界面和第四界面,基于所述光纤到所述电路板的距离设置所述第三界面和所述第四界面,使从所述透镜组件的底面射出的折射光能够射向所述光监控芯片。
PCT/CN2019/093773 2018-07-12 2019-06-28 光模块 WO2020011032A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/539,285 US11025030B2 (en) 2018-07-12 2019-08-13 Optical module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810766088.6 2018-07-12
CN201810766088.6A CN108919433B (zh) 2018-07-12 2018-07-12 一种光模块

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/539,285 Continuation US11025030B2 (en) 2018-07-12 2019-08-13 Optical module

Publications (1)

Publication Number Publication Date
WO2020011032A1 true WO2020011032A1 (zh) 2020-01-16

Family

ID=64410697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093773 WO2020011032A1 (zh) 2018-07-12 2019-06-28 光模块

Country Status (2)

Country Link
CN (1) CN108919433B (zh)
WO (1) WO2020011032A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11025030B2 (en) 2018-07-12 2021-06-01 Hisense Broadband Multimedia Technologies Co., Ltd. Optical module
CN108919433B (zh) * 2018-07-12 2020-01-17 青岛海信宽带多媒体技术有限公司 一种光模块
CN111007601A (zh) * 2019-12-10 2020-04-14 青岛海信宽带多媒体技术有限公司 光模块
CN114384647A (zh) * 2020-10-19 2022-04-22 青岛海信宽带多媒体技术有限公司 一种光模块
CN113131330B (zh) * 2021-03-31 2022-10-21 杭州耀芯科技有限公司 一种激光器发光功率监测系统、监测方法及其准直透镜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103293649A (zh) * 2013-05-06 2013-09-11 青岛海信宽带多媒体技术有限公司 透镜光学设备及基于透镜光学设备的光路传播方法
US20140294400A1 (en) * 2013-04-01 2014-10-02 Delta Electronics, Inc. Optical module and optical transceiver module
CN106324771A (zh) * 2015-06-26 2017-01-11 华为技术有限公司 光学组件和光模块
CN206057645U (zh) * 2016-09-08 2017-03-29 东莞市蓝光塑胶模具有限公司 一种25g cob光学装置
CN107121737A (zh) * 2017-05-17 2017-09-01 青岛海信宽带多媒体技术有限公司 一种光模块
CN206725818U (zh) * 2017-04-28 2017-12-08 武汉华工正源光子技术有限公司 用于cxp光模块的光学组件
CN107957610A (zh) * 2017-12-08 2018-04-24 深圳市华宜达通信设备有限公司 一种透镜及其光路反射透射式光引擎模块
CN108919433A (zh) * 2018-07-12 2018-11-30 青岛海信宽带多媒体技术有限公司 一种光模块

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130094807A1 (en) * 2011-10-12 2013-04-18 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Optical coupling system for use in an optical communications module, an optical communications module that incorporates the optical coupling system, and a method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140294400A1 (en) * 2013-04-01 2014-10-02 Delta Electronics, Inc. Optical module and optical transceiver module
CN103293649A (zh) * 2013-05-06 2013-09-11 青岛海信宽带多媒体技术有限公司 透镜光学设备及基于透镜光学设备的光路传播方法
CN106324771A (zh) * 2015-06-26 2017-01-11 华为技术有限公司 光学组件和光模块
CN206057645U (zh) * 2016-09-08 2017-03-29 东莞市蓝光塑胶模具有限公司 一种25g cob光学装置
CN206725818U (zh) * 2017-04-28 2017-12-08 武汉华工正源光子技术有限公司 用于cxp光模块的光学组件
CN107121737A (zh) * 2017-05-17 2017-09-01 青岛海信宽带多媒体技术有限公司 一种光模块
CN107957610A (zh) * 2017-12-08 2018-04-24 深圳市华宜达通信设备有限公司 一种透镜及其光路反射透射式光引擎模块
CN108919433A (zh) * 2018-07-12 2018-11-30 青岛海信宽带多媒体技术有限公司 一种光模块

Also Published As

Publication number Publication date
CN108919433B (zh) 2020-01-17
CN108919433A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
WO2020011032A1 (zh) 光模块
JP6205194B2 (ja) 光レセプタクルおよび光モジュール
JP5025695B2 (ja) 光モジュール
TWI612353B (zh) 光插座及具備它之光模組
JP6289830B2 (ja) 光レセプタクルおよび光モジュール
CN103293649B (zh) 透镜光学设备及基于透镜光学设备的光路传播方法
US10416397B2 (en) Optical receptacle, optical module, and method for manufacturing optical module
US9195017B2 (en) Optical module and optical transceiver module
US9488792B2 (en) Optical receptacle, and optical module provided with same
US9971106B2 (en) Optical receptacle and optical module
TWI609205B (zh) Optical socket and light module with it
JP2013024918A (ja) 光レセプタクルおよびこれを備えた光モジュール
US11025030B2 (en) Optical module
CN111007601A (zh) 光模块
US10048458B2 (en) Optical module
US9341796B2 (en) Optical coupler and photoelectric conversion device having same
CN108490556B (zh) 光模块
US20120314996A1 (en) Optical fiber communication apparatus
US9448372B2 (en) Optical coupling element and optical module having the same
US10591686B2 (en) Optical receptacle and optical module
JP6011908B2 (ja) 光レセプタクルおよびこれを備えた光モジュール
US11921332B2 (en) Optical receptacle and optical module
JP6494711B2 (ja) 光モジュール
CN106855658B (zh) 分光装置
TW202215087A (zh) 光學傳輸構件的端部結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19835102

Country of ref document: EP

Kind code of ref document: A1