WO2020010829A1 - 激光投射器的检测方法、检测装置及检测系统 - Google Patents

激光投射器的检测方法、检测装置及检测系统 Download PDF

Info

Publication number
WO2020010829A1
WO2020010829A1 PCT/CN2019/070680 CN2019070680W WO2020010829A1 WO 2020010829 A1 WO2020010829 A1 WO 2020010829A1 CN 2019070680 W CN2019070680 W CN 2019070680W WO 2020010829 A1 WO2020010829 A1 WO 2020010829A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
laser
detection
laser projector
predetermined plane
Prior art date
Application number
PCT/CN2019/070680
Other languages
English (en)
French (fr)
Inventor
杨鑫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2020010829A1 publication Critical patent/WO2020010829A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains

Definitions

  • the present application relates to the technical field of production line testing, and in particular, to a detection method for a laser projector, a detection device for a laser projector, and a detection system for a laser projector.
  • the energy of the laser light projected by the laser projector is too high, it is easy to hurt the user. Therefore, it is necessary to detect whether the laser energy projected by the laser projector meets safety standards. During the detection process, the energy of the laser projector through the energy detection device All areas in the projection range are detected, and the detection efficiency is low.
  • Embodiments of the present application provide a detection method for a laser projector, a detection device for a laser projector, and a detection system for a laser projector.
  • a method for detecting a laser projector includes: controlling the laser projector to project laser light onto a predetermined plane; obtaining a laser pattern modulated by the predetermined plane; and selecting the laser pattern according to grayscale information of the laser pattern A high-light region; obtaining energy of laser light projected by the laser projector to a high-energy region as detection energy, the high-energy region being an area corresponding to the high-light region on the predetermined plane; and according to the detection energy To determine whether the projection energy of the laser projector meets a safety standard.
  • the detection device of the laser projector is used to: control the laser projector to project laser light onto a predetermined plane; acquire a laser pattern modulated by the predetermined plane; and select the laser according to grayscale information of the laser pattern Highlighting a region in a pattern; acquiring, as detection energy, the energy of the laser light projected by the laser projector toward a high-energy region, the high-energy region being an area corresponding to the highlight region on the predetermined plane; and according to the detection Energy to determine whether the projection energy of the laser projector meets a safety standard.
  • the detection system of the laser projector includes an infrared camera and a detection device, where the infrared camera is used to collect a laser pattern modulated by the predetermined plane; the detection device is connected to the infrared camera, and the detection device Used to: control the laser projector to project laser light onto a predetermined plane; acquire a laser pattern modulated by the predetermined plane; select a highlight region in the laser pattern according to grayscale information of the laser pattern; acquire the laser The energy of the laser light projected by the projector on the high-energy area is used as the detection energy, and the high-energy area is an area corresponding to the highlighted area on the predetermined plane; and it is determined whether the projection energy of the laser projector is based on the detection energy. Meet safety standards.
  • FIG. 1 is a schematic flowchart of a laser projector detection method according to some embodiments of the present application
  • FIG. 2 is a schematic structural diagram of a laser projector detection system and a laser projector according to some embodiments of the present application;
  • FIG. 3 is a schematic diagram of a laser pattern in some embodiments of the present application.
  • FIG. 4 is a schematic structural diagram of a projection board and an energy detector according to some embodiments of the present application.
  • FIG. 5 is a schematic flowchart of a laser projector detection method according to some embodiments of the present application.
  • the detection method of the laser projector includes: 01: controlling the laser projector 20 to project laser light onto a predetermined plane 131; 02: obtaining a laser pattern 30 modulated by the predetermined plane 131; 03: grayscale information according to the laser pattern 30 Select the highlight area 31 in the laser pattern 30; 04: Obtain the energy of the laser light projected by the laser projector 20 to the high energy area 50 as the detection energy, and the high energy area 50 is the area corresponding to the highlight area 31 on the predetermined plane 131; and 05 : Judging whether the projection energy of the laser projector 20 meets the safety standard based on the detection energy.
  • the predetermined plane 131 is perpendicular to the optical axis of the laser projector 20, and the distance between the predetermined plane 131 and the projection of the laser projector 20 is [100, 2000] millimeters.
  • 03 selecting the highlight area 31 in the laser pattern 30 according to the grayscale information of the laser pattern 30, including step 031: selecting the highlight area 31 in the laser pattern 30 with a predetermined graphic frame 40, and The sum of gray values of all pixels in the graphics frame 40 is maximized.
  • the graphic frame 40 is circular, and the diameter of the graphic frame 40 is 7 mm.
  • the highlight area 31 is a continuous area; or the highlight area 31 includes a plurality of spaced-apart areas.
  • 05 determining whether the projection energy of the laser projector 20 meets a safety standard according to the detection energy, including determining whether the detection energy is less than or equal to a first energy threshold; and if yes, confirming the laser projection The projected energy of the device meets safety standards.
  • the detection device 12 of the laser projector 20 is used to control the laser projector 20 to project laser light onto a predetermined plane 131; obtain a laser pattern 30 modulated by the predetermined plane 131; and select a laser pattern according to the grayscale information of the laser pattern 30 Highlighted area 31 in 30; obtaining the energy of the laser light projected by laser projector 20 to high-energy area 50 as detection energy, and high-energy area 50 is an area corresponding to highlighted area 31 on a predetermined plane 131; and judging the laser based on the detected energy Whether the projection energy of the projector 20 satisfies a safety standard.
  • the predetermined plane 131 is perpendicular to the optical axis of the laser projector 20, and the distance between the predetermined plane 131 and the projection of the laser projector 20 is [100, 2000] millimeters.
  • the detection device 12 is further configured to: select a highlighted area 31 in the laser pattern 30 with a predetermined graphic frame 40 so that the sum of the gray values of all pixels in the graphic frame 40 reaches the maximum.
  • the graphic frame 40 is circular, and the diameter of the graphic frame 40 is 7 mm.
  • the highlight area 31 is a continuous area; or the highlight area 31 includes a plurality of spaced-apart areas.
  • the detection device 12 is further configured to: determine whether the detection energy is less than or equal to a first energy threshold; and if so, confirm that the projection energy of the laser projector meets a safety standard.
  • the detection system 10 of the laser projector 20 includes an infrared camera 11 and the detection device 12 of any one of the foregoing embodiments.
  • the infrared camera 11 is used to collect a laser pattern 30 modulated by a predetermined plane 131; the detection device 12 and an infrared camera 11 ⁇ 11 connections.
  • the detection system 10 further includes an energy detector 14.
  • the energy detector 14 is configured to detect detection energy
  • the detection device 12 is further configured to acquire detection energy detected by the energy detector 14.
  • the detection system 10 further includes a projection plate 13 on which a predetermined plane 131 is formed.
  • the detection method of the laser projector 20 according to the embodiment of the present application includes steps:
  • the high-energy region 50 is a region corresponding to the highlighted region 31 on the predetermined plane 131;
  • the detection system 10 of the laser projector 20 includes an infrared camera 11 and a detection device 12.
  • the infrared camera 11 can be used to collect a laser pattern 30 modulated by a predetermined plane 131.
  • the detection device 12 is connected to the infrared camera 11.
  • the detection device 12 can be used to implement steps 01, 02, 03, 04, and 05.
  • the detection device 12 can be used to control the laser projector 20 to project laser light onto a predetermined plane 131; obtain a laser pattern 30 modulated by the predetermined plane 131; and select a highlight region 31 in the laser pattern 30 according to the grayscale information of the laser pattern 30 ; Obtaining the energy of the laser light projected by the laser projector 20 to the high-energy region 50 as the detection energy, and the high-energy region 50 is a region corresponding to the highlighted region 31 on the predetermined plane 131; and determining whether the projection energy of the laser projector 20 is based on the detection energy Meet safety standards.
  • the detection method of the laser projector 20 and the detection system 10 of the laser projector 20 by selecting the highlight area 31 in the laser pattern 30 to accurately locate the high energy area 50 where the laser projector 20 projects laser light, Furthermore, it is possible to determine whether the safety standard is satisfied by detecting the detection energy projected by the laser projector 20 onto the high-energy area 50 without detecting the energy in all regions within the projection range of the laser projector 20, and the detection efficiency is high.
  • the detection device 12 may be a terminal such as a computer.
  • the detection device 12 is connected to a laser projector 20.
  • the detection device 12 controls the laser projector 20 to project laser light onto a predetermined plane 131.
  • the laser light may be infrared light.
  • the laser light projected by the laser projector 20 may have a beam of a specific pattern such as speckles or stripes.
  • the laser with a specific pattern is reflected (ie, modulated) by the predetermined plane 131 to deform the specific pattern.
  • the energy of the projected laser at different locations in the S1 area may be inconsistent. There are regions with relatively high and low laser energy. It is understandable that if the energy of the region with relatively high laser energy meets safety standards, the laser can be determined. Relatively low energy areas also meet safety standards.
  • the detection device 12 is connected to the infrared camera 11.
  • the detection device 12 can acquire the laser pattern 30 collected by the infrared camera 11, and the photosensitive surface of the infrared camera 11 can be on the same plane as the light emitting surface of the laser projector 20.
  • the laser pattern 30 obtained by the detection device 12 includes a plurality of spot patterns (such as black dots in FIG. 3), and each spot pattern corresponds to a spot projected onto a predetermined plane 131.
  • the gray level information of the light spot pattern is also related to the energy of the corresponding light spot.
  • the gray level information can be obtained by reading the gray value of the light spot pattern.
  • the gray value in a region without a spot pattern is low, indicating that a spot is not projected at a corresponding position on the predetermined plane 131;
  • a region with a higher gray value indicates that a light spot is projected at a corresponding position on the predetermined plane 131, and a higher gray value indicates that the energy of the light spot projected at the corresponding position is stronger.
  • the detection device 12 selects the highlight area 31 in the laser pattern 30 according to the grayscale information of the laser pattern 30.
  • the highlight area 31 in the laser pattern 30 is the laser pattern 30. It is understood that the sum of the grayscale values of a plurality of pixels is the largest, and the highlight area 31 may be a continuous area or may be composed of a plurality of spaced-apart areas.
  • the highlight region 31 may also include a partial region without a spot pattern, and only the sum of the grayscale values of a plurality of pixels in the entire highlight region 31 is required to be the largest.
  • the detection device 12 can locate the high-energy region 50 corresponding to the highlighted region 31 in the predetermined plane 131 according to the distance between the infrared camera 11 and the predetermined plane 131, the internal parameters and external parameters of the infrared camera 11, and the like.
  • the bright area 31 is the laser pattern 30 of the high-energy area 50 collected by the infrared camera 11. Since the sum of the grayscale values of multiple pixels in the highlight region 31 is the largest, the sum of the energies of multiple light spots in the high-energy region 50 is also the largest, and the energy of the laser light in the high-energy region 50 is obtained as the detection energy.
  • the intensity of the detected energy meets the safety standards, and the energy in the remaining areas will also meet the safety standards.
  • the detection device 12 will use the detection energy to determine whether the projection energy of the laser projector 20 meets the safety standard. Specifically, in one example, the detection device 12 can determine whether the detection energy is less than or equal to the first energy threshold. When it is less than or equal to, the projection energy of the laser projector 20 is considered to meet the safety standard. In another example, the detection device 12 may substitute the detection energy into a predetermined detection formula and calculate a value for detection. Whether the value falls within a predetermined range to determine whether the projection energy of the laser projector 20 meets the requirements.
  • the detection device 12 may further determine whether the detection energy is greater than or equal to the second energy threshold, and when the detection energy is greater than or equal to the second energy threshold, it may be judged that the projection energy of the laser projector 20 is sufficient for An accurate depth image is generated. When the detection energy is less than the second energy threshold, it can be determined that the projection energy of the laser projector 20 is too small to generate an accurate depth image.
  • the detection system 10 further includes a projection plate 13, and a predetermined plane 131 is formed on the projection plate 13.
  • the laser projector 20 projects the laser light on the S1 area of the predetermined plane 131, and the infrared camera 11 obtains an infrared image of the S2 area of the predetermined plane 131, where the S1 area is located in the S2 area.
  • the laser projector 20 may be a separate laser projection module or a terminal including a laser projection module, such as a terminal such as a mobile phone, a tablet computer, a game console, a smart watch, or a headset device.
  • the laser projector 20 and the detection device 12 may be communicatively connected in a wireless or wired manner.
  • the detection system 10 may further include a fixing device (not shown).
  • the laser projector 20 is fixed by the fixing device. After the detection device 12 obtains the detection energy, the laser projector 20 may be removed from the fixing device to remove a new one. The laser projector 20 to be inspected is re-fixed in the fixing device for inspection.
  • the detection system 10 further includes an energy detector 14.
  • the energy detector 14 is configured to detect detection energy
  • the detection device 12 is further configured to acquire detection energy detected by the energy detector 14.
  • the energy detector 14 may be a photoelectric converter, and the energy detector 14 may be communicatively connected with the detection device 12. In the embodiment of the present application, the energy detector 14 is disposed on a predetermined plane 131.
  • the detection device 12 When the detection device 12 has not been positioned in the high-energy area 50, the energy detector 14 can be set outside the S1 area to avoid being projected to the laser; when the detection device 12 is positioned in the high-energy area 50, the detection device 12 can be directed toward the energy detector 14 sends an instruction, and the energy detector 14 moves to the high energy area 50 according to the instruction, and makes the laser originally projected on the high energy area 50 to the energy detector 14, the energy detector 14 detects the value of the detected energy, and The value of the detection energy is transmitted to the detection device 12. After receiving the value of the detection energy, the detection device 12 may send an instruction to the energy detector 14, and after receiving the instruction, the energy detector 14 moves outside the S1 area again and waits for the next detection.
  • the energy detector 14 may also be manually moved by the user to the high-energy area 50.
  • the energy detector 14 may also be set at the remaining position, and the energy detector 14 may be moved to a predetermined plane 131 when necessary.
  • the predetermined plane 131 is perpendicular to the optical axis of the laser projector 20, and the projection plane of the predetermined plane 131 and the laser projector 20 is in a range of [100, 2000] millimeters.
  • the range of [100, 2000] millimeters is a common range.
  • step 03 includes step 031: selecting a highlighted area 31 in the laser pattern 30 with a predetermined graphic frame 40 to make all pixels in the graphic frame 40 grayscale. The sum of the values reaches the maximum.
  • the detection device 12 can also be used to implement step 031, that is, the detection device 12 can be used to select a highlighted area 31 within the laser pattern 30 with a predetermined graphic frame 40 so that The sum of the grayscale values of all pixels in the graphics frame 40 reaches a maximum.
  • the graphic frame 40 may be a virtual tool used by the detection device 12 when positioning the highlight area 31, and may not actually appear in the laser pattern 30.
  • a certain area is selected with a predetermined graphic frame 40 (predetermined size and shape) at any position of the laser pattern 30, the gray values of all pixels in the area can be added to obtain the total gray value.
  • the value is maximized, the area selected by the graphic frame 40 at this time is the highlighted area 31.
  • the maximum total gray value means that the energy of the light spot of the high-energy area 50 corresponding to the highlight area 31 is the strongest, and the part of the user in the high-energy area 50 is most vulnerable to laser damage, as long as the energy of the high-energy area 50 is guaranteed Meet safety standards, the rest of the area is meeting safety standards.
  • the graphic frame 40 is circular, and the area selected by the graphic frame 40 is a continuous area. It can be understood that, in other embodiments, the shape of the graphic frame 40 may have other options according to the actual detection requirements. For example, the graphic frame 40 may be square, oval, etc.
  • the graphic frame 40 may also be composed of multiple sub-graphics distributed at intervals.
  • the frame structure, for example, the graphic frame 40 is composed of a plurality of spaced circular sub-graphic frames.
  • the graphic frame 40 is circular, and the diameter of the graphic frame 40 is 7 mm.
  • the graphic frame 40 is circular, and the diameter of the graphic frame 40 is 7 millimeters.
  • the corresponding high-energy area 50 can be used to simulate the shape and size of the pupil of a human eye when the user uses the laser projector 20. Therefore, it can be targeted to detect whether the laser light projected by the laser projector 20 will hurt human eyes.
  • the diameter of the graphic frame 40 may also be selected to other values, such as 3.5 mm and 14 mm.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • Any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for implementing a particular logical function or step of a process
  • the scope of the preferred embodiments of the present application includes additional implementations, in which the functions may be performed out of the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application pertain.
  • a sequenced list of executable instructions that can be considered to implement a logical function can be embodied in any computer-readable medium, For instruction execution systems, devices, or devices (such as computer-based systems, systems including processors, or other systems that can fetch instructions from and execute instructions) Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the application may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it may be implemented using any one or a combination of the following techniques known in the art: Discrete logic circuits, application specific integrated circuits with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried by the methods in the foregoing embodiments may be implemented by a program instructing related hardware.
  • the program may be stored in a computer-readable storage medium.
  • the program is When executed, one or a combination of the steps of the method embodiment is included.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种激光投射器(20)的检测方法包括:(01)控制激光投射器(20)向预定平面(131)投射激光;(02)获取由预定平面(131)调制的激光图案(30);(03)依据激光图案(30)的灰度信息选取激光图案(30)中的高亮区域(31);(04)获取激光投射器(20)投向高能区域(50)的激光的能量以作为检测能量,高能区域(50)为预定平面(131)上与高亮区域(31)对应的区域;及(05)依据检测能量,判断激光投射器(20)的投射能量是否满足安全标准。

Description

激光投射器的检测方法、检测装置及检测系统
优先权信息
本申请请求2018年07月09日向中国国家知识产权局提交的、专利申请号为201810745982.5的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及产线测试技术领域,特别涉及一种激光投射器的检测方法、激光投射器的检测装置及激光投射器的检测系统。
背景技术
激光投射器投射的激光的能量如果过高,很容易伤害到用户,因此需要检测激光投射器投射的激光能量是否满足安全标准,而在检测的过程中,需要通过能量检测装置对激光投射器的投射范围内的所有区域均进行检测,检测的效率较低。
发明内容
本申请的实施例提供了一种激光投射器的检测方法、激光投射器的检测装置及激光投射器的检测系统。
本申请实施方式的激光投射器的检测方法包括:控制所述激光投射器向预定平面投射激光;获取由所述预定平面调制的激光图案;依据所述激光图案的灰度信息选取所述激光图案中的高亮区域;获取所述激光投射器投向高能区域的激光的能量以作为检测能量,所述高能区域为所述预定平面上与所述高亮区域对应的区域;及依据所述检测能量,判断所述激光投射器的投射能量是否满足安全标准。
本申请实施方式的激光投射器的检测装置用于:控制所述激光投射器向预定平面投射激光;获取由所述预定平面调制的激光图案;依据所述激光图案的灰度信息选取所述激光图案中的高亮区域;获取所述激光投射器投向高能区域的激光的能量以作为检测能量,所述高能区域为所述预定平面上与所述高亮区域对应的区域;及依据所述检测能量,判断所述激光投射器的投射能量是否满足安全标准。
本申请实施方式的激光投射器的检测系统包括红外摄像头及检测装置,所述红外摄像头用于采集由所述预定平面调制的激光图案;所述检测装置与所述红外摄像头连接,所述检测装置用于:控制所述激光投射器向预定平面投射激光;获取由所述预定平面调制的激光图案;依据所述激光图案的灰度信息选取所述激光图案中的高亮区域;获取所述激光投 射器投向高能区域的激光的能量以作为检测能量,所述高能区域为所述预定平面上与所述高亮区域对应的区域;依据所述检测能量,判断所述激光投射器的投射能量是否满足安全标准。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的激光投射器的检测方法的流程示意图;
图2是本申请某些实施方式的激光投射器的检测系统及激光投射器的结构示意图;
图3是本申请某些实施方式的激光图案示意图;
图4是本申请某些实施方式的投影板及能量探测器的结构示意图;
图5是本申请某些实施方式的激光投射器的检测方法的流程示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
本申请实施方式的激光投射器的检测方法包括:01:控制激光投射器20向预定平面131投射激光;02:获取由预定平面131调制的激光图案30;03:依据激光图案30的灰度信息选取激光图案30中的高亮区域31;04:获取激光投射器20投向高能区域50的激光的能量以作为检测能量,高能区域50为预定平面131上与高亮区域31对应的区域;及05:依据检测能量,判断激光投射器20的投射能量是否满足安全标准。
在某些实施方式中,预定平面131与激光投射器20的光轴垂直,预定平面131与激光投射器20的投射在的距离范围为[100,2000]毫米。
在某些实施方式中,03:依据激光图案30的灰度信息选取激光图案30中的高亮区域31,包括步骤031:以预定的图形框40选取激光图案30内的高亮区域31,以使图形框40内的所有像素的灰度值的和达到最大。
在某些实施方式中,图形框40呈圆形,图形框40的直径为7毫米。
在某些实施方式中,高亮区域31为一连续的区域;或高亮区域31包括多个间隔的区域。
在某些实施方式中,05:依据检测能量,判断激光投射器20的投射能量是否满足安全标准,包括判断所述检测能量是否小于或等于第一能量阈值;及若是,则确认所述激光投射器的投射能量是满足安全标准。
本申请实施方式的激光投射器20的检测装置12用于:控制激光投射器20向预定平面131投射激光;获取由预定平面131调制的激光图案30;依据激光图案30的灰度信息选取激光图案30中的高亮区域31;获取激光投射器20投向高能区域50的激光的能量以作为检测能量,高能区域50为预定平面131上与高亮区域31对应的区域;及依据检测能量,判断激光投射器20的投射能量是否满足安全标准。
在某些实施方式中,预定平面131与激光投射器20的光轴垂直,预定平面131与激光投射器20的投射在的距离范围为[100,2000]毫米。
在某些实施方式中,检测装置12还用于:以预定的图形框40选取激光图案30内的高亮区域31,以使图形框40内的所有像素的灰度值的和达到最大。
在某些实施方式中,图形框40呈圆形,图形框40的直径为7毫米。
在某些实施方式中,高亮区域31为一连续的区域;或高亮区域31包括多个间隔的区域。
在某些实施方式中,检测装置12还用于:判断所述检测能量是否小于或等于第一能量阈值;及若是,则确认所述激光投射器的投射能量是满足安全标准。
本申请实施方式的激光投射器20的检测系统10包括红外摄像头11及上述任一实施方式的检测装置12,红外摄像头11用于采集由预定平面131调制的激光图案30;检测装置12与红外摄像头11连接。
在某些实施方式中,检测系统10还包括能量探测器14,能量探测器14用于检测检测能量,检测装置12还用于获取由能量探测器14检测得到的检测能量。
在某些实施方式中,检测系统10还包括投影板13,预定平面131形成在投影板13上。
请参阅图1至图4,本申请实施方式的激光投射器20的检测方法包括步骤:
01:控制激光投射器20向预定平面131投射激光;
02:获取由预定平面131调制的激光图案30;
03:依据激光图案30的灰度信息选取激光图案30中的高亮区域31;
04:获取激光投射器20投向高能区域50的激光的能量以作为检测能量,高能区域50为预定平面131上与高亮区域31对应的区域;及
05:依据检测能量,判断激光投射器20的投射能量是否满足安全标准。
本申请实施方式的激光投射器20的检测系统10包括红外摄像头11及检测装置12。红外摄像头11可用于采集由预定平面131调制的激光图案30。检测装置12与红外摄像头 11连接。检测装置12可用于实施步骤01、02、03、04及05。也就是说,检测装置12可用于控制激光投射器20向预定平面131投射激光;获取由预定平面131调制的激光图案30;依据激光图案30的灰度信息选取激光图案30中的高亮区域31;获取激光投射器20投向高能区域50的激光的能量以作为检测能量,高能区域50为预定平面131上与高亮区域31对应的区域;及依据检测能量,判断激光投射器20的投射能量是否满足安全标准。
本申请实施方式的激光投射器20的检测方法及激光投射器20的检测系统10中,通过选取激光图案30中的高亮区域31,以准确定位到激光投射器20投射激光的高能区域50,进而可以通过检测激光投射器20投射到高能区域50的检测能量来判断是否满足安全标准,而不需要对激光投射器20的投射范围内的所有区域的能量进行检测,检测的效率较高。
具体地,检测装置12可以是电脑等终端。检测装置12与激光投射器20连接。实施步骤01时,检测装置12控制激光投射器20向预定平面131投射激光,激光可以是红外光,激光投射器20投射的激光可以带有散斑或条纹等特定图案的光束,激光投射到预定平面131的S1区域,带有特定图案的激光经预定平面131反射(即,调制)后使该特定图案发生形变。S1区域的不同位置被投射的激光的能量可能不一致,存在激光能量相对较高及相对较低的区域,可以理解,如果通过检测激光能量相对较高的区域的能量满足安全标准,则可以确定激光能量相对较低的区域的能量也满足安全标准。
检测装置12与红外摄像头11连接,实施步骤02时,检测装置12可以获取由红外摄像头11采集的激光图案30,红外摄像头11的感光面可以与激光投射器20的出光面处于同一平面。以激光投射器20投射激光光斑为例,检测装置12获取的激光图案30中包括多个光斑图案(如图3中的黑点),每一个光斑图案对应投射到预定平面131上的一个光斑,其中,光斑图案的灰度信息还与对应的光斑的能量有关,灰度信息可以通过读取光斑图案的灰度值得到。具体地,由于通过红外摄像头11采集的激光图案30为黑白的图案,在没有光斑图案的区域的灰度值较低,表示在预定平面131的对应位置未被投射有光斑;在有光斑图案的区域的灰度值较高,表示在预定平面131的对应位置被投射有光斑,且灰度值越高,表示对应位置被投射的光斑的能量越强。
实施步骤03时,检测装置12依据激光图案30的灰度信息选取激光图案30中的高亮区域31,在本申请实施例中,激光图案30中的高亮区域31,即是激光图案30中多个像素的灰度值的和最大的区域,可以理解,该高亮区域31可以是一个连续的区域,也可以由多个间隔的区域构成。高亮区域31内也可以包括没有光斑图案的部分区域,只要求整个高亮区域31内的多个像素的灰度值的和最大。
实施步骤04时,检测装置12可以依据红外摄像头11与预定平面131的距离,红外摄像头11的内参和外参等参数,在预定平面131内定位与高亮区域31对应的高能区域50, 其中高亮区域31即为红外摄像头11采集的高能区域50的激光图案30。由于高亮区域31内的多个像素的灰度值的和最大,因此,高能区域50的多个光斑的能量的和也为最大,获取高能区域50的激光的能量以作为检测能量,如果该检测能量的强度满足安全标准,则其余区域的能量也将满足安全标准。
实施步骤05时,检测装置12将利用检测能量判断激光投射器20的投射能量是否满足安全标准,具体地,在一个例子中,检测装置12可以判断检测能量是否小于或等于第一能量阈值,当是小于或等于时,则认为激光投射器20的投射能量满足安全标准;在另一个例子中,检测装置12可以将检测能量代入预定的检测公式中并计算得到用于检测的数值,通过判断该数值是否落入预定范围内,以判断激光投射器20的投射能量是否满足要求。
进一步地,在又一个例子中,检测装置12还可以判断检测能量是否大于或等于第二能量阈值,当检测能量大于或等于第二能量阈值时,可以判断激光投射器20的投射能量足以用于生成准确的深度图像,当检测能量小于第二能量阈值时,可以判断激光投射器20的投射能量太小,而不足以生成准确的深度图像。
请再参阅图2,在本申请实施例中,检测系统10还包括投影板13,预定平面131形成在投影板13上。激光投射器20将激光投射在预定平面131的S1区域,红外摄像头11获取预定平面131的S2区域的红外图像,其中,S1区域位于S2区域内。激光投射器20可以是单独的激光投射模组,也可以是包括激光投射模组的终端,例如手机、平板电脑、游戏机、智能手表、头显设备等终端。激光投射器20与检测装置12可以通过无线或有线的方式进行通信连接。检测系统10还可包括固定装置(图未示),激光投射器20由固定装置固定,在检测装置12获取到检测能量后,可以将激光投射器20从固定装置上取下,以将新的待检测的激光投射器20重新固定在固定装置中进行检测。
请参阅图2及图4,在某些实施方式中,检测系统10还包括能量探测器14。能量探测器14用于检测检测能量,检测装置12还用于获取由能量探测器14检测得到的检测能量。
能量探测器14可以是光电转换器,能量探测器14可以与检测装置12通信连接,在本申请实施例中,能量探测器14设置在预定平面131上。当检测装置12还未定位到高能区域50时,能量探测器14可以设置在S1区域外,以避免被投射到激光;当检测装置12定位到高能区域50后,检测装置12可以向能量探测器14发送指令,能量探测器14依据该指令运动到高能区域50上,并使原本投射到高能区域50的激光投射到能量探测器14上,能量探测器14检测到检测能量的值,并将该检测能量的值发送给检测装置12。检测装置12接收到检测能量的值后,可以向能量探测器14发送指令,能量探测器14接收到指令后,再次移动到S1区域外,等待下一次检测。
当然,能量探测器14也可以是由用户通过手动的方式将其移动到高能区域50,能量 探测器14也可以设置在其余位置,在需要时再将能量探测器14移动到预定平面131上。
请参阅图2,在某些实施方式中,预定平面131与激光投射器20的光轴垂直,预定平面131与激光投射器20的投射在的距离范围为[100,2000]毫米。对于用于识别人体的某些部位的激光投射器20,例如用于人脸识别、人体三维建模等,[100,2000]毫米的范围为常用范围,通过检测当激光投射器20与预定平面131的距离为上述范围内时是否满足安全标准,也就可以模拟检测用户在实际使用时会不会被激光投射器20投射的激光伤害。实际检测时的距离可以是100毫米、150毫米、500毫米、570毫米、1200毫米、1500毫米、1800毫米、2000毫米等任意在上述区间内距离。
请参阅图3及图5,在某些实施方式中,步骤03包括步骤031:以预定的图形框40选取激光图案30内的高亮区域31,以使图形框40内的所有像素的灰度值的和达到最大。
请结合图2,在某些实施方式中,检测装置12还可用于实施步骤031,也就是说,检测装置12可用于以预定的图形框40选取激光图案30内的高亮区域31,以使图形框40内的所有像素的灰度值的和达到最大。
具体的,图形框40可以是检测装置12在定位高亮区域31时使用的虚拟的工具,可以并不实际出现在激光图案30中。当以预定的图形框40(预定大小和形状)在激光图案30的任意位置框选某个区域时,该区域内所有像素的灰度值相加可以得到灰度总值,而当灰度总值取得最大时,图形框40此时框选的区域则为高亮区域31。可以理解,灰度总值取得最大,也就意思着高亮区域31对应的高能区域50的光斑的能量最强,用户处于高能区域50的部分最容易被激光伤害,只要保证高能区域50的能量满足安全标准,其余区域均是满足安全标准的。
在如图3所示的实施例中,图形框40呈圆形,且图形框40框选的区域为连续的一个区域。可以理解,在其他实施方式中,依据实际的检测需求,图形框40的形状可以有其他选择,例如图形框40可以呈方形、椭圆形等,图形框40也可以由多个间隔分布的子图形框构成,例如图形框40由多个间隔分布的圆形子图形框构成。
请参阅图3,在某些实施方式中,图形框40呈圆形,图形框40的直径为7毫米。对于需要将激光投射到人脸的激光投射器20,尤其需要控制投射到人眼瞳孔的激光能量的大小,以保证不会伤害到人眼。图形框40呈圆形,且图形框40的直径为7毫米,对应的高能区域50可以用于模拟用户使用激光投射器20时的人眼瞳孔形状和大小。因此,可以有针对性地检测激光投射器20投射的激光会不会伤害到人眼。当然,在其他实施方式中,针对不同的测试需求,也可以将图形框40的直径选取为其他值,例如可以是3.5毫米、14毫米等值。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示 例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路 的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种激光投射器的检测方法,其特征在于,所述检测方法包括:
    控制所述激光投射器向预定平面投射激光;
    获取由所述预定平面调制的激光图案;
    依据所述激光图案的灰度信息选取所述激光图案中的高亮区域;
    获取所述激光投射器投向高能区域的激光的能量以作为检测能量,所述高能区域为所述预定平面上与所述高亮区域对应的区域;及
    依据所述检测能量,判断所述激光投射器的投射能量是否满足安全标准。
  2. 根据权利要求1所述的检测方法,其特征在于,所述预定平面与所述激光投射器的光轴垂直,所述预定平面与所述激光投射器的投射面的距离范围为[100,2000]毫米。
  3. 根据权利要求1所述的检测方法,其特征在于,所述依据所述激光图案的灰度信息定位所述激光图案中的高亮区域,包括:
    以预定的图形框选取所述激光图案内的高亮区域,以使所述图形框内的所有像素的灰度值的和达到最大。
  4. 根据权利要求3所述的检测方法,其特征在于,所述图形框呈圆形,所述图形框的直径为7毫米。
  5. 根据权利要求1所述的检测方法,其特征在于,所述高亮区域为一连续的区域;或
    所述高亮区域包括多个间隔的区域。
  6. 根据权利要求1所述的检测方法,其特征在于,所述依据所述检测能量,判断所述激光投射器的投射能量是否满足安全标准,包括:
    判断所述检测能量是否小于或等于第一能量阈值;及
    若是,则确认所述激光投射器的投射能量是满足安全标准。
  7. 一种激光投射器的检测装置,其特征在于,所述检测装置用于:
    控制所述激光投射器向预定平面投射激光;
    获取由所述预定平面调制的激光图案;
    依据所述激光图案的灰度信息选取所述激光图案中的高亮区域;
    获取所述激光投射器投向高能区域的激光的能量以作为检测能量,所述高能区域为所述预定平面上与所述高亮区域对应的区域;及
    依据所述检测能量,判断所述激光投射器的投射能量是否满足安全标准。
  8. 根据权利要求7所述的检测装置,其特征在于,所述预定平面与所述激光投射器的光轴垂直,所述预定平面与所述激光投射器的投射面的距离范围为[100,2000]毫米。
  9. 根据权利要求7所述的检测装置,其特征在于,所述检测装置还用于:
    以预定的图形框选取所述激光图案内的高亮区域,以使所述图形框内的所有像素的灰度值的和达到最大。
  10. 根据权利要求7所述的检测装置,其特征在于,所述图形框呈圆形,所述图形框的直径为7毫米。
  11. 根据权利要求7所述的检测装置,其特征在于,所述高亮区域为一连续的区域;或
    所述高亮区域包括多个间隔的区域。
  12. 根据权利要求7所述的检测装置,其特征在于,所述检测装置还用于:
    判断所述检测能量是否小于或等于第一能量阈值;及
    若是,则确认所述激光投射器的投射能量是满足安全标准。
  13. 一种激光投射器的检测系统,其特征在于,所述检测系统包括:
    红外摄像头,所述红外摄像头用于采集由所述预定平面调制的激光图案;及
    检测装置,所述检测装置与所述红外摄像头连接,所述检测装置用于:
    控制所述激光投射器向预定平面投射激光;
    获取由所述预定平面调制的激光图案;
    依据所述激光图案的灰度信息选取所述激光图案中的高亮区域;
    获取所述激光投射器投向高能区域的激光的能量以作为检测能量,所述高能区域为所述预定平面上与所述高亮区域对应的区域;及
    依据所述检测能量,判断所述激光投射器的投射能量是否满足安全标准。
  14. 根据权利要求13所述的检测系统,其特征在于,所述预定平面与所述激光投射器的光轴垂直,所述预定平面与所述激光投射器的投射面的距离范围为[100,2000]毫米。
  15. 根据权利要求13所述的检测系统,其特征在于,所述检测装置还用于:
    以预定的图形框选取所述激光图案内的高亮区域,以使所述图形框内的所有像素的灰度值的和达到最大。
  16. 根据权利要求13所述的检测系统,其特征在于,所述图形框呈圆形,所述图形框的直径为7毫米。
  17. 根据权利要求13所述的检测系统,其特征在于,所述高亮区域为一连续的区域;或
    所述高亮区域包括多个间隔的区域。
  18. 根据权利要求13所述的检测系统,其特征在于,所述检测装置还用于:
    判断所述检测能量是否小于或等于第一能量阈值;及
    若是,则确认所述激光投射器的投射能量是满足安全标准。
  19. 根据权利要求13至18任意一项所述的检测系统,其特征在于,所述检测系统还包括能量探测器,所述能量探测器用于检测所述检测能量,所述检测装置还用于获取由所述能量探测器检测得到的所述检测能量。
  20. 根据权利要求13至18任意一项所述的检测系统,其特征在于,所述检测系统还包括投影板,所述预定平面形成在所述投影板上。
PCT/CN2019/070680 2018-07-09 2019-01-07 激光投射器的检测方法、检测装置及检测系统 WO2020010829A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810745982.5A CN108760059B (zh) 2018-07-09 2018-07-09 激光投射器的检测方法、检测装置及检测系统
CN201810745982.5 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020010829A1 true WO2020010829A1 (zh) 2020-01-16

Family

ID=63972914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070680 WO2020010829A1 (zh) 2018-07-09 2019-01-07 激光投射器的检测方法、检测装置及检测系统

Country Status (2)

Country Link
CN (1) CN108760059B (zh)
WO (1) WO2020010829A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11508275B1 (en) 2022-01-18 2022-11-22 Google Llc Laser energy integrator for display waveguide breakage safety system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760059B (zh) * 2018-07-09 2021-06-04 Oppo广东移动通信有限公司 激光投射器的检测方法、检测装置及检测系统
CN109115333A (zh) * 2018-08-06 2019-01-01 Oppo广东移动通信有限公司 激光投射器的检测方法及检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7574046B2 (en) * 2004-12-15 2009-08-11 Hitachi Global Storage Technologies Netherlands B.V. Optimized lighting method for slider serial reading using class variance
CN101907490A (zh) * 2010-08-24 2010-12-08 哈尔滨工业大学 基于二维细分法的微小光斑强度分布测量方法
CN102486402A (zh) * 2010-12-01 2012-06-06 中国科学院西安光学精密机械研究所 一种测量脉冲激光能量的方法及系统
CN103499912A (zh) * 2013-10-14 2014-01-08 天津芯硕精密机械有限公司 一种利用灰度测试曝光能量的方法及系统
CN104596638A (zh) * 2015-02-05 2015-05-06 中国工程物理研究院应用电子学研究所 一种高分辨率多波长激光强度分布探测器及其测量方法
CN108760059A (zh) * 2018-07-09 2018-11-06 Oppo广东移动通信有限公司 激光投射器的检测方法、检测装置及检测系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100460809C (zh) * 2006-12-29 2009-02-11 中国人民解放军总参谋部第五十四研究所 激光参数测量装置
CN101922913B (zh) * 2010-07-27 2012-03-21 西安工业大学 单线阵相机弹丸着靶坐标测量装置与测试方法
CN102519585A (zh) * 2011-12-12 2012-06-27 长春理工大学 探测强激光远距离面强度的装置
FR3010785B1 (fr) * 2013-09-18 2015-08-21 Snecma Procede de controle de la densite d'energie d'un faisceau laser par analyse d'image et dispositif correspondant
EP3120189A4 (en) * 2014-03-21 2018-01-24 Lightwave International, Inc. Laser projection system
CN204594577U8 (zh) * 2015-03-24 2017-03-15 珠海出入境检验检疫局 一种激光辐射测试装置
CN106296716A (zh) * 2016-08-24 2017-01-04 深圳奥比中光科技有限公司 光源的功率调整方法、深度测量方法及装置
CN106331453A (zh) * 2016-08-24 2017-01-11 深圳奥比中光科技有限公司 多图像采集系统及图像采集方法
CN107167996A (zh) * 2017-06-05 2017-09-15 深圳奥比中光科技有限公司 自适应调整的激光投影模组及深度相机
CN207197790U (zh) * 2017-09-29 2018-04-06 福州腾景光电科技有限公司 一种鲍威尔棱镜非球面加工在线测试装置
WO2019090490A1 (zh) * 2017-11-07 2019-05-16 深圳达闼科技控股有限公司 发射功率控制方法、装置、存储介质及电子设备
CN107756814A (zh) * 2017-11-28 2018-03-06 上海联泰科技股份有限公司 检测系统、方法及所适用的3d打印设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7574046B2 (en) * 2004-12-15 2009-08-11 Hitachi Global Storage Technologies Netherlands B.V. Optimized lighting method for slider serial reading using class variance
CN101907490A (zh) * 2010-08-24 2010-12-08 哈尔滨工业大学 基于二维细分法的微小光斑强度分布测量方法
CN102486402A (zh) * 2010-12-01 2012-06-06 中国科学院西安光学精密机械研究所 一种测量脉冲激光能量的方法及系统
CN103499912A (zh) * 2013-10-14 2014-01-08 天津芯硕精密机械有限公司 一种利用灰度测试曝光能量的方法及系统
CN104596638A (zh) * 2015-02-05 2015-05-06 中国工程物理研究院应用电子学研究所 一种高分辨率多波长激光强度分布探测器及其测量方法
CN108760059A (zh) * 2018-07-09 2018-11-06 Oppo广东移动通信有限公司 激光投射器的检测方法、检测装置及检测系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11508275B1 (en) 2022-01-18 2022-11-22 Google Llc Laser energy integrator for display waveguide breakage safety system

Also Published As

Publication number Publication date
CN108760059A (zh) 2018-11-06
CN108760059B (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
WO2020010829A1 (zh) 激光投射器的检测方法、检测装置及检测系统
EP3620812A1 (en) Method and device for filtering out non-ground points from point cloud, and storage medium
WO2020010848A1 (zh) 控制方法、微处理器、计算机可读存储介质及计算机设备
CN111788883B (zh) 部件贴装状态的检查方法、印刷电路板检查装置及计算机可读记录介质
US20200380100A1 (en) Method and apparatus for turning on screen, mobile terminal and storage medium
JP2005004278A (ja) 座標入力装置
KR20190033462A (ko) 전력 제어 방법, 거리 측정 모듈 및 전자 장치
CN115376000A (zh) 一种水下测量方法、设备及计算机可读存储介质
BR112017022247B1 (pt) Método de inspeção de formato e aparelho de inspeção de formato
CN106303205A (zh) 对焦区域调整方法和装置
JP6904624B1 (ja) クラブヘッド計測用マークおよび画像処理装置
CN108844627B (zh) 用于人眼安全的激光测试方法及电子设备
US10091404B2 (en) Illumination apparatus, imaging system, and illumination method
CN114511489B (zh) Vcsel芯片的束散角检测方法、系统和电子设备
CN109115333A (zh) 激光投射器的检测方法及检测系统
JP2007192755A (ja) 測距装置
CN108833884B (zh) 深度校准方法及装置、终端、可读存储介质及计算机设备
JP2009059165A (ja) 輪郭検出装置、それを用いた視線検出装置、偽の輪郭データの除去をコンピュータに実行させるためのプログラム、視線方向の検出をコンピュータに実行させるためのプログラムおよびそのプログラムを記録したコンピュータ読み取り可能な記録媒体
KR20140139699A (ko) 옵티컬 트랙킹 시스템 및 이를 이용한 트랙킹 방법
CN110072431A (zh) 使用多焦点角膜曲率测量法确定眼睛表面轮廓
CN111912784A (zh) 一种红外反射杂光的检测方法及系统
KR101718452B1 (ko) 동물 발정 감지 시스템 및 이를 수행하기 위한 장치
JP4683465B2 (ja) レンズメータ
WO2017024808A1 (zh) 一种控制光标的方法、装置及输入设备
CN116447978B (zh) 孔位信息检测方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19834903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19834903

Country of ref document: EP

Kind code of ref document: A1