WO2020010521A1 - 一种定位方法、定位装置、定位系统及可读存储介质 - Google Patents

一种定位方法、定位装置、定位系统及可读存储介质 Download PDF

Info

Publication number
WO2020010521A1
WO2020010521A1 PCT/CN2018/095158 CN2018095158W WO2020010521A1 WO 2020010521 A1 WO2020010521 A1 WO 2020010521A1 CN 2018095158 W CN2018095158 W CN 2018095158W WO 2020010521 A1 WO2020010521 A1 WO 2020010521A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
feedback information
working state
processing device
processing devices
Prior art date
Application number
PCT/CN2018/095158
Other languages
English (en)
French (fr)
Inventor
易万鑫
廉士国
林义闽
Original Assignee
深圳前海达闼云端智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳前海达闼云端智能科技有限公司 filed Critical 深圳前海达闼云端智能科技有限公司
Priority to CN201880001108.9A priority Critical patent/CN108885110B/zh
Priority to PCT/CN2018/095158 priority patent/WO2020010521A1/zh
Publication of WO2020010521A1 publication Critical patent/WO2020010521A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Definitions

  • the present application relates to the field of computer vision, and in particular, to a positioning method, a positioning device, a positioning system, and a readable storage medium.
  • Intelligent robots or unmanned vehicles want to complete some simple or complex functions in an unknown environment, they need to know the map information of the entire unknown environment. By acquiring the information of the unknown environment, a map of the unknown environment is established so that the intelligent robot or the unmanned vehicle can be located. Only successful mapping and positioning can guarantee the navigation and other functions of the robot.
  • VSLAM Visual Simultaneous localization and mapping
  • a technical problem to be solved in some embodiments of the present application is how to improve the positioning efficiency by using multiple maps for positioning.
  • An embodiment of the present application provides a positioning method, including: acquiring first image data; transmitting the first image data to N processing devices in a working state, where N is a positive integer; wherein each of the The processing device determines the first feedback information according to the map and the first image data stored therein, wherein each map stored in the processing device in a working state is different, and the first feedback information is used to indicate positioning success or positioning failure; receiving each First feedback information transmitted by each processing device in a working state; and a positioning result is determined according to the first feedback information transmitted by each processing device in a working state.
  • An embodiment of the present application further provides a positioning device, including: an acquisition module, a first transmission module, a second transmission module, and a first determination module; the acquisition module is used to acquire the first image data; the first transmission module is used to Transmitting the first image data to N processing devices in working state, where N is a positive integer; wherein each processing device in working state determines the first feedback information according to the map and the first image data stored therein; wherein, The map stored in each processing device in working state is different.
  • the first feedback information is used to indicate that the positioning is successful or the positioning fails;
  • the second transmission module is used to receive the first feedback information transmitted by each processing device in the working state;
  • the first determining module is configured to determine a positioning result according to the first feedback information transmitted by each processing device in a working state.
  • An embodiment of the present application further provides a positioning device including at least one processor; and a memory communicatively connected to the at least one processor; and a communication component communicatively connected to the processing device, and the communication component is under the control of the processor Receive and send data; the memory stores instructions executable by at least one processor, and the instructions are executed by at least one processor, so that the at least one processor can execute the positioning method mentioned in the foregoing embodiment.
  • An embodiment of the present application further provides a positioning system including a positioning device and a processing device; the positioning device is configured to obtain first image data; and the first image data is transmitted to N processing devices in a working state, where N is positive An integer; receiving the first feedback information transmitted by each processing device in the working state; determining the positioning result according to the first feedback information transmitted by each processing device in the working state; each processing device in the working state is used for The first feedback information is determined according to the stored map and the first image data, wherein the map stored in each processing device in a working state is different, and the first feedback information is used to indicate positioning success or positioning failure.
  • An embodiment of the present application further provides a computer-readable storage medium storing a computer program.
  • the computer program is executed by a processor, the positioning method mentioned in the foregoing embodiment is implemented.
  • the embodiments of the present application store multiple maps on different processing devices, reducing the data storage amount of the positioning device, and avoiding the situation that the data storage amount is too large and loading is difficult.
  • the positioning device transmits the received first image data to each processing device in working state, and each processing device in working state performs positioning according to the stored map and first image information, thereby reducing positioning. Data processing capacity of the device.
  • the N processing devices work independently and find the current positioning point in parallel, the positioning efficiency using multiple maps for positioning is improved.
  • FIG. 1 is a flowchart of a positioning method according to a first embodiment of the present application
  • FIG. 2 is a flowchart of a positioning method according to a second embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a positioning device according to a third embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a positioning device according to a fourth embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a positioning device according to a fifth embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a positioning system according to a sixth embodiment of the present application.
  • the first embodiment of the present application relates to a positioning method, which is applied to a positioning device, such as an intelligent robot, an unmanned vehicle, a blind navigation device, and the like.
  • a positioning device such as an intelligent robot, an unmanned vehicle, a blind navigation device, and the like.
  • the positioning method includes:
  • Step 101 Obtain first image data.
  • the positioning device acquires first image data for positioning through a vision sensor.
  • the first image data may be an image captured by a vision sensor, or may be data obtained after parsing the image, for example, corner information in the image.
  • Step 102 transmitting the first image data to the N processing devices in a working state.
  • N is a positive integer.
  • each processing device in the working state determines the first feedback information according to the stored map and the first image data, and transmits the first feedback information to the positioning device.
  • the map stored in each processing device in a working state is different, and the first feedback information is used to indicate that the positioning is successful or the positioning fails.
  • the number of processing devices can be determined according to the number of maps.
  • the processing device in the working state may be one processing device or multiple processing devices.
  • the working state of the processing device is determined according to the first feedback information determined by the processing device during the last positioning process.
  • each processing device may be one of a plurality of maps describing the same space, or may be a part of a map.
  • the map may be created by a positioning device and may be created by a processing device. This embodiment does not limit the way of creating the map.
  • the positioning device uses VSLAM technology to establish multiple maps of a certain space. Among them, the shooting conditions corresponding to each map are different, and the stored information is also different.
  • the positioning device transmits multiple maps to different processing devices, so that each processing device stores a different map, and reduces the data storage amount of the positioning device.
  • Step 103 Receive first feedback information transmitted by each processing device in a working state.
  • Step 104 Determine a positioning result according to the first feedback information transmitted by each processing device in the working state.
  • the method for determining the first feedback information by the processing device and the method for determining the positioning result according to the first feedback information will be described below in combination with actual scenarios.
  • the processing device A and the processing device B are in a working state.
  • Map C is stored in processing device A
  • map D is stored in processing device B.
  • the positioning device acquires first image data for positioning, and transmits the first image data to the processing device A and the processing device B.
  • the processing device A determines information corresponding to the first image data in the map C according to the first image data and the map C, and uses a pose measurement algorithm, for example, using a perspective n (PnP) pose measurement algorithm to determine Position information of the positioning device.
  • PnP perspective n pose measurement algorithm
  • the processing device A determines that the first feedback information of the processing device A includes posture information of the processing positioning device, and the first feedback information indicates that the processing device A has successfully positioned.
  • the processing device A transmits the first feedback information of the processing device A to the positioning device.
  • the processing device B determines that there is no information corresponding to the first image data in the map D based on the first image data and the map D, and transmits the first feedback information indicating that the positioning has failed to the positioning device.
  • the positioning device determines that the positioning of the processing device A is successful according to the first feedback information of the processing device A and the first feedback information of the processing device B, and uses the pose information determined by the processing device A as a positioning result.
  • N processing devices work independently and find the current positioning point in parallel, which improves the positioning efficiency.
  • the positioning method provided in this embodiment stores multiple maps on different processing devices, reduces the data storage amount of the positioning device, and avoids the situation that the data storage amount is too large and loading is difficult.
  • the positioning device transmits the received first image data to each processing device in working state, and each processing device in working state performs positioning according to the stored map and first image information, thereby reducing positioning. Data processing capacity of the device.
  • the N processing devices work independently and find the current positioning point in parallel, the positioning efficiency using multiple maps for positioning is improved.
  • the second embodiment of the present application relates to a positioning method. This embodiment is a further refinement of the first embodiment. After step 103, other related steps are added, and step 104 is specifically described.
  • this embodiment includes steps 201 to 208.
  • step 201, step 202, and step 203 are substantially the same as step 101, step 102, and step 103 in the first embodiment, respectively, and will not be described in detail here. The following mainly describes the differences:
  • step 201 Go to step 201 to step 203.
  • Step 204 Determine whether there is first feedback information indicating that the positioning is successful in the first feedback information transmitted by each processing device in the working state.
  • step 205 is performed, and if it is determined that it does not exist, step 206 is performed.
  • the first feedback information includes pose information. If the positioning device determines that there is only one piece of first feedback information indicating that the positioning is successful, use the pose information in the first feedback information as a positioning result. If the positioning device determines that the number of the first feedback information indicating that the positioning is successful is greater than 1, calculate an average value of the pose information in the first feedback information indicating that the positioning is successful, and use the average value as the positioning result.
  • the first feedback information of a processing device indicates that the positioning has failed, indicating that the processing device cannot find information matching the first image data in a map stored in the processing device.
  • the stored map in the processing device is currently It cannot be used for positioning in the environment.
  • the positioning device may send a sleep instruction to the processing device corresponding to the first feedback information indicating that the positioning fails. After receiving the sleep instruction, the processing device corresponding to the first feedback information indicating the positioning failure switches from the working state to the sleep state to reduce the power consumption of the positioning system.
  • a status information table is stored in the positioning device.
  • the status information table is shown in Table 1. Among them, 1 indicates that the processing device has successfully positioned during the last positioning process, and 0 indicates that the processing device has failed to position during the last positioning process.
  • the positioning device After determining that the first feedback information transmitted by each processing device in the working state includes the first feedback information indicating that the positioning fails, the positioning device changes the state of the processing device that indicates the first feedback information that failed to the positioning to 0.
  • the positioning device receives the image data for positioning, the positioning device transmits the image data for positioning to a processing device with a status of 1 according to the stored state information table.
  • Processing device name Processing device status A 1 B 0 ... ...
  • the processing device that currently fails to locate is switched from the working state to the dormant state, thereby avoiding the waste of resources caused by the positioning device transmitting the first image data to the processing device that fails to locate, and also prevents the processing device that fails to locate the Wasted resources caused by continuous positioning if the positioning is successful.
  • Step 206 Send the wake-up instruction to the processing device in the sleep state.
  • the positioning device sends a wake-up instruction to the processing device in the sleep state after the first feedback information transmitted by the processing device currently in the working state indicates that the positioning has failed.
  • the device in the sleep state switches from the sleep state to the working state. If the processing devices currently in the working state all fail to locate, it indicates that the map corresponding to the current environment is stored in the processing device in the dormant state, or the map corresponding to the current environment is not established. By awakening the processing device in the dormant state and using the processing device in the dormant state to relocate, it is possible to determine the specific reason for the failure of the positioning of the processing devices currently in the working state.
  • Step 207 Acquire the second image data, transmit the second image data to all processing devices in the working state, and receive the second feedback information transmitted by each processing device in the working state.
  • Step 208 Determine the positioning result according to the second feedback information transmitted by each processing device in each working state.
  • VSLAM technology can be used to establish a map of the environment.
  • the positioning method provided in this embodiment switches a processing device that fails positioning from a working state to a sleep state, reduces the power consumption of the processing device, and further reduces the data processing amount of the positioning device.
  • the current processing device in the working state fails to locate, wake up the processing device in the dormant state and use all resources of the positioning system for positioning, thereby improving the positioning efficiency of the positioning system.
  • the third embodiment of the present application relates to a positioning device.
  • the positioning device includes an acquisition module 301, a first transmission module 302, a second transmission module 303, and a first determination module 304.
  • the obtaining module 301 is configured to obtain first image data.
  • the first transmission module 302 is configured to transmit the first image data to N processing devices in a working state, where N is a positive integer. Wherein, each processing device in the working state determines the first feedback information according to the stored map and the first image data. The map stored in each processing device in a working state is different, and the first feedback information is used to indicate that the positioning is successful or the positioning fails.
  • the second transmission module 303 is configured to receive first feedback information transmitted by each processing device in a working state.
  • the first determining module 304 is configured to determine a positioning result according to the first feedback information transmitted by each processing device in the working state.
  • this embodiment is a device embodiment corresponding to the first embodiment, and this embodiment can be implemented in cooperation with the first embodiment.
  • the related technical details mentioned in the first embodiment are still valid in this embodiment. To reduce repetition, details are not described here. Accordingly, the related technical details mentioned in this embodiment can also be applied in the first embodiment.
  • the fourth embodiment of the present application relates to a positioning device.
  • This embodiment is a further improvement to the third embodiment, a second determination module 305 is added, and the function of the first determination module 304 is specifically described.
  • the second determination module 305 is configured to send a sleep instruction to the positioning failure indication after determining that the first feedback information indicating the positioning failure exists in the first feedback information transmitted by each processing device in the working state.
  • a processing device corresponding to the first feedback information wherein, the processing device corresponding to the first feedback information indicating the positioning failure switches from the working state to the sleeping state after receiving the sleeping instruction.
  • the first determining module 304 is specifically configured to determine the positioning according to the first feedback information indicating that the positioning is successful in the first feedback information that is transmitted by each processing device that is in an operating state, and that indicates that the positioning is successful. result. If the first determining module 304 determines that there is no first feedback information indicating that the positioning is successful in the first feedback information transmitted by each processing device in the working state, a wake-up instruction is sent to the processing device in the sleep state; After receiving the wake-up instruction, the processing device switches from the sleep state to the working state; acquires the second image data; transmits the second image data to all processing devices in the working state; wherein each processing device in the working state is stored according to its own storage Map and second image data to determine the second feedback information; wherein the second feedback information is used to indicate the success or failure of positioning; receiving the second feedback information transmitted by each processing device in the working state; and according to the second Feedback information to determine positioning results.
  • this embodiment is a device embodiment corresponding to the second embodiment, and this embodiment can be implemented in cooperation with the second embodiment.
  • the related technical details mentioned in the second embodiment are still valid in this embodiment. To reduce repetition, details are not described here. Accordingly, the related technical details mentioned in this embodiment can also be applied in the second embodiment.
  • a fifth embodiment of the present application relates to a positioning device, as shown in FIG. 5, including at least one processor 401; and a memory 402 communicatively connected to the at least one processor 401; and a communication component communicatively connected to the processing device 403.
  • the communication component receives and sends data under the control of the processor 401.
  • the memory 402 stores instructions executable by the at least one processor 401, and the instructions are executed by the at least one processor 401, so that the at least one processor 401 can execute the positioning method.
  • the processor 401 is a central processing unit (Central Processing Unit (CPU) as an example
  • the memory 402 is a readable and writable memory (Random Access Memory, RAM) as an example.
  • the processor 401 and the memory 402 may be connected through a bus or other methods. In FIG. 5, the connection through the bus is taken as an example.
  • the memory 402 is a non-volatile computer-readable storage medium and can be used to store non-volatile software programs, non-volatile computer executable programs, and modules.
  • the processor 401 executes various functional applications and data processing of the device by running non-volatile software programs, instructions, and modules stored in the memory 402, that is, the above positioning method is implemented.
  • the memory 402 may include a storage program area and a storage data area, where the storage program area may store an operating system and an application program required for at least one function; the storage data area may store a list of options and the like.
  • the memory 402 may include a high-speed random access memory, and may further include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage device.
  • the memory 402 may optionally include a memory remotely set relative to the processor, and these remote memories may be connected to an external device through a network. Examples of the above network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • One or more modules are stored in the memory, and when executed by one or more processors, perform the positioning method in any of the above method embodiments.
  • the above product can execute the method provided in the embodiment of the present application, and has the corresponding functional modules and beneficial effects of the execution method.
  • the above product can execute the method provided in the embodiment of the present application, and has the corresponding functional modules and beneficial effects of the execution method.
  • the sixth embodiment of the present application relates to a positioning system.
  • the positioning system includes a positioning device 501 and a processing device 502.
  • the positioning device 501 is configured to obtain first image data; transmit the first image data to N processing devices 502 in a working state, where N is a positive integer; and receive first feedback information transmitted by each processing device 502 in a working state. Determine the positioning result according to the first feedback information transmitted by each processing device 502 in the working state.
  • Each processing device 502 in a working state is configured to determine the first feedback information according to the stored map and the first image data. Wherein, the map stored in each processing device in a working state is different, and the first feedback information is used to indicate that the positioning is successful or the positioning fails.
  • this embodiment is a system embodiment corresponding to the first embodiment, and this embodiment can be implemented in cooperation with the first embodiment.
  • the related technical details mentioned in the first embodiment are still valid in this embodiment. To reduce repetition, details are not described here. Accordingly, the related technical details mentioned in this embodiment can also be applied in the first embodiment.
  • the seventh embodiment of the present application relates to a positioning system.
  • This embodiment is a further refinement of the sixth embodiment, and specifically describes the function of the positioning device.
  • the positioning device 501 is further configured to: after it is determined that the first feedback information transmitted by each processing device that is in the working state includes the first feedback information indicating that the positioning has failed, send a sleep instruction to the first A processing device corresponding to the feedback information. Wherein, the processing device corresponding to the first feedback information indicating the positioning failure switches from the working state to the sleeping state after receiving the sleeping instruction.
  • the positioning device 501 determines the positioning result according to the first feedback information indicating that the positioning is successful in determining the first feedback information transmitted by each processing device in the working state, according to the first feedback information indicating that the positioning is successful.
  • the positioning device 501 determines that the first feedback information transmitted by each processing device in the working state does not exist in the first feedback information indicating that the positioning is successful, it sends a wake-up instruction to the processing device in the sleep state; the processing device in the sleep state After receiving the wake-up instruction, it switches from the sleep state to the working state; acquires the second image data; transmits the second image data to all processing devices in the working state; wherein each processing device in the working state is based on its own stored map And the second image data, determine the second feedback information; wherein the second feedback information is used to indicate that the positioning is successful or the positioning fails; and determine the positioning result according to the second feedback information.
  • this embodiment is a system embodiment corresponding to the second embodiment, and this embodiment can be implemented in cooperation with the second embodiment.
  • the related technical details mentioned in the second embodiment are still valid in this embodiment. To reduce repetition, details are not described here. Accordingly, the related technical details mentioned in this embodiment can also be applied in the second embodiment.
  • An eighth embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the computer program is executed by the processor, the positioning method described in any of the above method embodiments is implemented.
  • the program is stored in a storage medium and includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, or the like) or a processor that executes all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Navigation (AREA)

Abstract

一种定位方法、定位装置、定位系统及可读存储介质。该定位方法包括:获取第一图像数据(101);将第一图像数据传输至处于工作状态的N个处理装置(102),N为正整数;其中,每个处于工作状态的处理装置根据各自存储的地图和第一图像数据,确定第一反馈信息;其中,每个处于工作状态的处理装置中存储的地图不同,第一反馈信息用于指示定位成功或定位失败;接收每个处于工作状态的处理装置各自传输的第一反馈信息(103);根据每个处于工作状态的处理装置各自传输的第一反馈信息,确定定位结果(104)。

Description

一种定位方法、定位装置、定位系统及可读存储介质 技术领域
本申请涉及计算机视觉领域,尤其涉及一种定位方法、定位装置、定位系统及可读存储介质。
背景技术
智能机器人或无人驾驶车辆想要在未知环境中完成一些简单或者复杂功能,就需要知道整个未知环境的地图信息。通过获取未知环境的信息,建立该未知环境的地图,以便智能机器人或者无人驾驶车辆定位。只有成功建图、定位才能为机器人的导航以及其他的功能提供保障。
技术问题
发明人在研究现有技术过程中发现,传统的地图加载方案在使用多个定位地图同时定位的时候,需要同时加载大量的地图数据,串行的去寻找当前的定位点。然而,在利用视觉即时定位和建图(Visual Simultaneous localization and mapping,VSLAM)技术建立地图,尤其是建立多个地图的情况下,地图中包含物理空间的复杂信息,使得地图数据很大。同时加载多个地图数据,会导致定位系统加载地图数据困难或者无法加载地图数据,影响定位系统的定位效率,甚至导致定位失败。
可见,如何提高采用多个地图进行定位的定位效率,是需要解决的问题。
技术解决方案
本申请部分实施例所要解决的一个技术问题在于如何提高采用多个地图进行定位的定位效率。
本申请的一个实施例提供了一种定位方法,包括:获取第一图像数据;将第一图像数据传输至处于工作状态的N个处理装置,N为正整数;其中,每个处于工作状态的处理装置根据各自存储的地图和第一图像数据,确定第一反馈信息;其中,每个处于工作状态的处理装置中存储的地图不同,第一反馈信息用于指示定位成功或定位失败;接收每个处于工作状态的处理装置各自传输的第一反馈信息;根据每个处于工作状态的处理装置各自传输的第一反馈信息,确定定位结果。
本申请的一个实施例还提供了一种定位装置,包括:获取模块、第一传输模块、第二传输模块和第一确定模块;获取模块用于获取第一图像数据;第一传输模块用于将第一图像数据传输至处于工作状态的N个处理装置,N为正整数;其中,每个处于工作状态的处理装置根据各自存储的地图和第一图像数据,确定第一反馈信息;其中,每个处于工作状态的处理装置中存储的地图不同,第一反馈信息用于指示定位成功或定位失败;第二传输模块用于接收每个处于工作状态的处理装置各自传输的第一反馈信息;第一确定模块用于根据每个处于工作状态的处理装置各自传输的第一反馈信息,确定定位结果。
本申请的一个实施例还提供了一种定位装置,包括至少一个处理器;以及,与至少一个处理器通信连接的存储器;以及与处理装置通信连接的通信组件,通信组件在处理器的控制下接收和发送数据;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述实施例提及的定位方法。
本申请的一个实施例还提供了一种定位系统,包括定位装置和处理装置;定位装置用于获取第一图像数据;将第一图像数据传输至处于工作状态的N个处理装置,N为正整数;接收每个处于工作状态的处理装置各自传输的第一反馈信息;根据每个处于工作状态的处理装置各自传输的第一反馈信息,确定定位结果;每个处于工作状态的处理装置用于根据各自存储的地图和第一图像数据,确定第一反馈信息;其中,每个处于工作状态的处理装置中存储的地图不同,第一反馈信息用于指示定位成功或定位失败。
本申请的一个实施例还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述实施例提及的定位方法。
有益效果
本申请的实施例相对于现有技术而言,将多个地图存储于不同的处理装置,减少了定位装置的数据存储量,避免了数据存储量过大导致加载困难的情况。定位装置在进行定位时,将接收的第一图像数据传输至每个处于工作状态的处理装置,由每个处于工作状态的处理装置根据各自存储的地图和第一图像信息进行定位,减少了定位装置的数据处理量。并且,由于N个处理装置独立工作,并行地寻找当前的定位点,提高了采用多个地图进行定位的定位效率。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请第一实施例的定位方法的流程图;
图2是本申请第二实施例的定位方法的流程图;
图3是本申请第三实施例的定位装置的结构示意图;
图4是本申请第四实施例的定位装置的结构示意图;
图5是本申请第五实施例的定位装置的结构示意图;
图6是本申请第六实施例的定位系统的结构示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
本申请的第一实施例涉及一种定位方法,应用于定位装置,例如,智能机器人、无人驾驶车辆、盲人导航装置等。如图1所示,定位方法包括:
步骤101:获取第一图像数据。
具体地说,定位装置通过视觉传感器,获取用于定位的第一图像数据。第一图像数据可以是视觉传感器拍摄的图像,也可以是解析图像后得到的数据,例如,图像中的角点信息。
步骤102:将第一图像数据传输至处于工作状态的N个处理装置。其中,N为正整数。
具体地说,每个处于工作状态的处理装置根据各自存储的地图和第一图像数据,确定第一反馈信息,并将第一反馈信息传输至定位装置。其中,每个处于工作状态的处理装置中存储的地图不同,第一反馈信息用于指示定位成功或定位失败。
需要说明的是,处理装置的个数可以根据地图的个数确定。定位过程中,处于工作状态的处理装置可以是一个处理装置,也可以是多个处理装置。处理装置的工作状态根据上一次定位过程中,处理装置确定的第一反馈信息确定。
需要说明的是,每个处理装置中存储的地图可以是描述同一空间的多幅地图中的一幅地图,也可以是一幅地图中的某一部分。该地图可以由定位装置创建,可以由处理装置创建,本实施例不限制地图的创建方式。
具体实现中,定位装置使用VSLAM技术,建立某一空间的多幅地图。其中,每幅地图各自对应的拍摄条件不同,存储的信息也不同。定位装置将多幅地图分别传输至不同的处理装置,以使每个处理装置中存储有不同的地图,减小定位装置的数据存储量。
步骤103:接收每个处于工作状态的处理装置各自传输的第一反馈信息。
步骤104:根据每个处于工作状态的处理装置各自传输的第一反馈信息,确定定位结果。
以下结合实际场景举例说明处理装置确定第一反馈信息的方法和定位装置根据第一反馈信息确定定位结果的方法。
例如,在一次定位过程中,处理装置A和处理装置B处于工作状态。处理装置A中存储有地图C,处理装置B中存储有地图D。定位装置获取用于定位的第一图像数据,将该第一图像数据传输至处理装置A和处理装置B。处理装置A根据第一图像数据和地图C,确定地图C中与第一图像数据相对应的信息,利用位姿测量算法,例如,采用点透视(Perspective n Points,PnP)位姿测量算法,确定定位装置的位姿信息。处理装置A确定处理装置A的第一反馈信息中包括处理定位装置的位姿信息,该第一反馈信息指示处理装置A定位成功。处理装置A将处理装置A的第一反馈信息传输至定位装置。处理装置B根据第一图像数据和地图D,确定地图D中不存在与第一图像数据相对应的信息,传输指示定位失败的第一反馈信息至定位装置。定位装置根据处理装置A的第一反馈信息和处理装置B的第一反馈信息,确定处理装置A定位成功,将处理装置A确定的位姿信息作为定位结果。
值得一提的是,N个处理装置独立工作,并行地寻找当前的定位点,提高了定位效率。
与现有技术相比,本实施例中提供的定位方法,将多个地图存储于不同的处理装置,减少了定位装置的数据存储量,避免了数据存储量过大导致加载困难的情况。定位装置在进行定位时,将接收的第一图像数据传输至每个处于工作状态的处理装置,由每个处于工作状态的处理装置根据各自存储的地图和第一图像信息进行定位,减少了定位装置的数据处理量。并且,由于N个处理装置独立工作,并行地寻找当前的定位点,提高了采用多个地图进行定位的定位效率。
本申请的第二实施例涉及一种定位方法,本实施例是对第一实施例的进一步细化,在步骤103后增加了其他相关步骤,并具体说明了步骤104。
如图2所示,本实施例包括步骤201至步骤208。其中,步骤201、步骤202和步骤203分别与第一实施例中的步骤101、步骤102和步骤103大致相同,此处不再详述,下面主要介绍不同之处:
执行步骤201至步骤203。
步骤204:判断每个处于工作状态的处理装置各自传输的第一反馈信息中,是否存在指示定位成功的第一反馈信息。
具体地说,定位装置若确定每个处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位成功的第一反馈信息,执行步骤205,若确定不存在,执行步骤206。
步骤205:根据指示定位成功的第一反馈信息,确定定位结果。之后结束流程。
具体地说,第一反馈信息中包括位姿信息。若定位装置确定只有一个指示定位成功的第一反馈信息,将该第一反馈信息中的位姿信息作为定位结果。若定位装置确定指示定位成功的第一反馈信息的个数大于1,计算指示定位成功的第一反馈信息中的位姿信息的平均值,将平均值作为定位结果。
值得一提的是,根据多个第一反馈信息中的位姿信息的平均值确定定位结果,提高了定位精度。
具体实现中,某一处理装置的第一反馈信息指示定位失败,说明该处理装置无法在自身存储的地图中寻找到与第一图像数据相匹配的信息,该处理装置中的存储的地图在当前环境下无法用于定位。定位装置在确定每个处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位失败的第一反馈信息后,可以发送休眠指令至指示定位失败的第一反馈信息对应的处理装置。指示定位失败的第一反馈信息对应的处理装置在接收到休眠指令后,从工作状态切换至休眠状态,以减小定位系统的功耗。
另一具体实现中,定位装置中存储有状态信息表。状态信息表如表1所示,其中,1表示在上一次定位过程中,该处理装置定位成功,0表示在上一次过程中,该处理装置定位失败。定位装置在确定每个处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位失败的第一反馈信息后,将指示定位失败的第一反馈信息的处理装置的状态更改为0。定位装置在接收到用于定位的图像数据时,根据存储的状态信息表,将该用于定位的图像数据传输至状态为1的处理装置。
表1
处理装置名称 处理装置的状态
A 1
B 0
…… ……
值得一提的是,将当前定位失败的处理装置从工作状态切换至休眠状态,避免定位装置传输第一图像数据至定位失败的处理装置造成的资源浪费,也避免了定位失败的处理装置在无法定位成功的情况下持续定位造成的资源浪费。
步骤206:发送唤醒指令至处于休眠状态的处理装置。
具体地说,定位装置在当前处于工作状态的处理装置各自传输的第一反馈信息均指示定位失败后,发送唤醒指令至处于休眠状态的处理装置。处于休眠状态的在接收到唤醒指令后,从休眠状态切换至工作状态。若当前处于工作状态的处理装置均定位失败,表明与当前环境相对应的地图存储于处于休眠状态的处理装置中,或,未建立与当前环境相对应的地图。通过唤醒处于休眠状态的处理装置,使用处于休眠状态的处理装置重新定位,可以确定本当前处于工作状态的处理装置均定位失败的具体原因。
步骤207:获取第二图像数据,将第二图像数据传输至所有处于工作状态的处理装置,接收每个处于工作状态的处理装置各自传输的第二反馈信息。
具体地说,将处于休眠状态的处理装置从休眠状态切换至工作状态,当前处于工作状态的处理装置根据各自存储的地图,以及第二图像数据,确定第二反馈信息,第二反馈信息用于指示定位成功或定位失败。
步骤208:根据每个处于工作状态的每个处理装置各自传输的第二反馈信息,确定定位结果。
具体地说,若每个处于工作状态的每个处理装置各自传输的第二反馈信息中,存在指示定位成功的第二反馈信息,根据指示定位成功的第二反馈信息中的位姿信息,确定定位结果;若不存在指示定位成功的第二反馈信息,确定定位失败。
需要说明的是,本领域技术人员可以理解,若确定定位失败,可以利用VSLAM技术,建立该环境的地图。
与现有技术相比,本实施例中提供的定位方法,将定位失败的处理装置从工作状态切换至休眠状态,降低了处理装置的功耗,进一步减少了定位装置的数据处理量。在当前的处于工作状态的处理装置定位失败时,唤醒处于休眠状态的处理装置,利用定位系统的所有资源进行定位,提高了定位系统的定位效率。
本申请的第三实施例涉及一种定位装置,如图3所示,包括获取模块301、第一传输模块302、第二传输模块303和第一确定模块304。
获取模块301用于获取第一图像数据。第一传输模块302用于将第一图像数据传输至处于工作状态的N个处理装置,N为正整数。其中,每个处于工作状态的处理装置根据各自存储的地图和第一图像数据,确定第一反馈信息。每个处于工作状态的处理装置中存储的地图不同,第一反馈信息用于指示定位成功或定位失败。第二传输模块303用于接收每个处于工作状态的处理装置各自传输的第一反馈信息。第一确定模块304用于根据每个处于工作状态的处理装置各自传输的第一反馈信息,确定定位结果。
不难发现,本实施例为与第一实施例相对应的装置实施例,本实施例可与第一实施例互相配合实施。第一实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第一实施例中。
本申请的第四实施例涉及一种定位装置,本实施例是对第三实施例的进一步改进,增加了第二确定模块305,并具体说明了第一确定模块304的功能。
如图4所示,第二确定模块305用于在确定每个处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位失败的第一反馈信息后,发送休眠指令至指示定位失败的第一反馈信息对应的处理装置。其中,指示定位失败的第一反馈信息对应的处理装置在接收到休眠指令后,从工作状态切换至休眠状态。
第一确定模块304具体用于在确定每个处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位成功的第一反馈信息后,根据指示定位成功的第一反馈信息,确定定位结果。若第一确定模块304确定每个处于工作状态的处理装置各自传输的第一反馈信息中,不存在指示定位成功的第一反馈信息,发送唤醒指令至处于休眠状态的处理装置;处于休眠状态的处理装置接收到唤醒指令后,从休眠状态切换至工作状态;获取第二图像数据;将第二图像数据传输至所有处于工作状态的处理装置;其中,处于工作状态的每个处理装置根据各自存储的地图,以及第二图像数据,确定第二反馈信息;其中,第二反馈信息用于指示定位成功或定位失败;接收每个处于工作状态的处理装置各自传输的第二反馈信息;根据第二反馈信息,确定定位结果。
不难发现,本实施例为与第二实施例相对应的装置实施例,本实施例可与第二实施例互相配合实施。第二实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第二实施例中。
本申请的第五实施例涉及一种定位装置,如图5所示,包括至少一个处理器401;以及,与至少一个处理器401通信连接的存储器402;以及,与处理装置通信连接的通信组件403,通信组件在处理器401的控制下接收和发送数据。其中,存储器402存储有可被至少一个处理器401执行的指令,指令被至少一个处理器401执行,以使至少一个处理器401能够执行上述定位方法。
本实施例中,处理器401以中央处理器(Central Processing Unit,CPU)为例,存储器402以可读写存储器(Random Access Memory,RAM)为例。处理器401、存储器402可以通过总线或者其他方式连接,图5中以通过总线连接为例。存储器402作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块。处理器401通过运行存储在存储器402中的非易失性软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述定位方法。
存储器402可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储选项列表等。此外,存储器402可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器402可选包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至外接设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
一个或者多个模块存储在存储器中,当被一个或者多个处理器执行时,执行上述任意方法实施例中的定位方法。
上述产品可执行本申请实施例所提供的方法,具备执行方法相应的功能模块和有益效果,未在本实施例中详尽描述的技术细节,可参见本申请实施例所提供的方法。
本申请的第六实施例涉及一种定位系统,如图6所示,包括定位装置501和处理装置502。定位装置501用于获取第一图像数据;将第一图像数据传输至处于工作状态的N个处理装置502,N为正整数;接收每个处于工作状态的处理装置502各自传输的第一反馈信息;根据每个处于工作状态的处理装置502各自传输的第一反馈信息,确定定位结果。每个处于工作状态的处理装置502用于根据各自存储的地图和第一图像数据,确定第一反馈信息。其中,每个处于工作状态的处理装置中存储的地图不同,第一反馈信息用于指示定位成功或定位失败。
不难发现,本实施例为与第一实施例相对应的系统实施例,本实施例可与第一实施例互相配合实施。第一实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第一实施例中。
本申请的第七实施例涉及一种定位系统,本实施例是对第六实施例的进一步细化,具体说明了定位装置的功能。
具体地说,定位装置501还用于:在确定每个处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位失败的第一反馈信息后,发送休眠指令至指示定位失败的第一反馈信息对应的处理装置。其中,指示定位失败的第一反馈信息对应的处理装置在接收到休眠指令后,从工作状态切换至休眠状态。定位装置501在确定每个处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位成功的第一反馈信息后,根据指示定位成功的第一反馈信息,确定定位结果。定位装置501若确定每个处于工作状态的处理装置各自传输的第一反馈信息中,不存在指示定位成功的第一反馈信息,发送唤醒指令至处于休眠状态的处理装置;处于休眠状态的处理装置接收到唤醒指令后,从休眠状态切换至工作状态;获取第二图像数据;将第二图像数据传输至所有处于工作状态的处理装置;其中,处于工作状态的每个处理装置根据各自存储的地图,以及第二图像数据,确定第二反馈信息;其中,第二反馈信息用于指示定位成功或定位失败;根据第二反馈信息,确定定位结果。
不难发现,本实施例为与第二实施例相对应的系统实施例,本实施例可与第二实施例互相配合实施。第二实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第二实施例中。
本申请的第八实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现以上任意方法实施例所描述的定位方法。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (13)

  1. 一种定位方法,其中,包括:
    获取第一图像数据;
    将所述第一图像数据传输至处于工作状态的N个处理装置,N为正整数;其中,每个处于工作状态的处理装置根据各自存储的地图和所述第一图像数据,确定第一反馈信息;其中,每个所述处于工作状态的处理装置中存储的地图不同,所述第一反馈信息用于指示定位成功或定位失败;
    接收每个所述处于工作状态的处理装置各自传输的所述第一反馈信息;
    根据每个所述处于工作状态的处理装置各自传输的所述第一反馈信息,确定定位结果。
  2. 根据权利要求1所述的定位方法,其中,在所述接收每个所述处于工作状态的处理装置各自传输的第一反馈信息之后,所述定位方法还包括:
    在确定每个所述处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位失败的第一反馈信息后,发送休眠指令至所述指示定位失败的第一反馈信息对应的处理装置;其中,所述指示定位失败的第一反馈信息对应的处理装置在接收到所述休眠指令后,从工作状态切换至休眠状态。
  3. 根据权利要求1或2所述的定位方法,其中,所述根据每个所述处于工作状态的处理装置各自传输的所述第一反馈信息,确定定位结果,具体包括:
    在确定每个所述处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位成功的第一反馈信息后,根据所述指示定位成功的第一反馈信息,确定定位结果。
  4. 根据权利要求3所述的定位方法,其中,所述第一反馈信息中包括位姿信息;
    所述根据所述指示定位成功的第一反馈信息,确定定位结果,具体包括:
    若确定所述指示定位成功的第一反馈信息的个数大于1,计算所述指示定位成功的第一反馈信息中的位姿信息的平均值,将所述平均值作为所述定位结果。
  5. 根据权利要求1或2所述的定位方法,其中,所述根据每个所述处于工作状态的处理装置各自传输的所述第一反馈信息,确定定位结果,具体包括:
    若确定每个所述处于工作状态的处理装置各自传输的第一反馈信息中,不存在指示定位成功的第一反馈信息,发送唤醒指令至处于休眠状态的处理装置;所述处于休眠状态的处理装置接收到所述唤醒指令后,从休眠状态切换至工作状态;
    获取第二图像数据;
    将所述第二图像数据传输至所有处于工作状态的处理装置;其中,处于工作状态的每个处理装置根据各自存储的地图,以及所述第二图像数据,确定第二反馈信息;其中,所述第二反馈信息用于指示定位成功或定位失败;
    接收每个所述处于工作状态的处理装置各自传输的所述第二反馈信息;
    根据所述第二反馈信息,确定定位结果。
  6. 一种定位装置,其中,包括:获取模块、第一传输模块、第二传输模块和第一确定模块;
    所述获取模块用于获取第一图像数据;
    所述第一传输模块用于将所述第一图像数据传输至处于工作状态的N个处理装置,N为正整数;其中,每个处于工作状态的处理装置根据各自存储的地图和所述第一图像数据,确定第一反馈信息;其中,每个所述处于工作状态的处理装置中存储的地图不同,所述第一反馈信息用于指示定位成功或定位失败;
    所述第二传输模块用于接收每个所述处于工作状态的处理装置各自传输的所述第一反馈信息;
    所述第一确定模块用于根据每个所述处于工作状态的处理装置各自传输的所述第一反馈信息,确定定位结果。
  7. 根据权利要求6所述的定位装置,其中,所述定位装置还包括第二确定模块;
    所述第二确定模块用于在确定每个所述处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位失败的第一反馈信息后,发送休眠指令至所述指示定位失败的第一反馈信息对应的处理装置;其中,所述指示定位失败的第一反馈信息对应的处理装置在接收到所述休眠指令后,从工作状态切换至休眠状态。
  8. 一种定位装置,其中,包括至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;以及
    与处理装置通信连接的通信组件,所述通信组件在所述处理器的控制下接收和发送数据;
    其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1至5任一项所述的定位方法。
  9. 一种定位系统,其中,包括定位装置和处理装置;
    所述定位装置用于获取第一图像数据;将所述第一图像数据传输至处于工作状态的N个处理装置,N为正整数;接收每个所述处于工作状态的处理装置各自传输的第一反馈信息;根据每个所述处于工作状态的处理装置各自传输的所述第一反馈信息,确定定位结果;
    每个处于工作状态的处理装置用于根据各自存储的地图和所述第一图像数据,确定第一反馈信息;
    其中,所述每个处于工作状态的处理装置中存储的地图不同,所述第一反馈信息用于指示定位成功或定位失败。
  10. 根据权利要求9所述的定位系统,其中,所述定位装置还用于:
    在确定每个所述处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位失败的第一反馈信息后,发送休眠指令至所述指示定位失败的第一反馈信息对应的处理装置;其中,所述指示定位失败的第一反馈信息对应的处理装置在接收到所述休眠指令后,从工作状态切换至休眠状态。
  11. 根据权利要求9或10所述的定位系统,其中,所述定位装置具体用于:
    在确定每个所述处于工作状态的处理装置各自传输的第一反馈信息中,存在指示定位成功的第一反馈信息后,根据所述指示定位成功的第一反馈信息,确定定位结果。
  12. 根据权利要求9或10所述的定位系统,其中,所述定位装置具体用于:
    若确定每个所述处于工作状态的处理装置各自传输的第一反馈信息中,不存在指示定位成功的第一反馈信息,发送唤醒指令至处于休眠状态的处理装置;所述处于休眠状态的处理装置接收到所述唤醒指令后,从休眠状态切换至工作状态;
    获取第二图像数据;
    将所述第二图像数据传输至所有处于工作状态的处理装置;其中,处于工作状态的每个处理装置根据各自存储的地图,以及所述第二图像数据,确定第二反馈信息;其中,所述第二反馈信息用于指示定位成功或定位失败;
    根据每个所述处于工作状态的每个处理装置各自传输的第二反馈信息,确定定位结果。
  13. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1至5任一项所述的定位方法。
PCT/CN2018/095158 2018-07-10 2018-07-10 一种定位方法、定位装置、定位系统及可读存储介质 WO2020010521A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880001108.9A CN108885110B (zh) 2018-07-10 2018-07-10 一种定位方法、定位装置、定位系统及可读存储介质
PCT/CN2018/095158 WO2020010521A1 (zh) 2018-07-10 2018-07-10 一种定位方法、定位装置、定位系统及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/095158 WO2020010521A1 (zh) 2018-07-10 2018-07-10 一种定位方法、定位装置、定位系统及可读存储介质

Publications (1)

Publication Number Publication Date
WO2020010521A1 true WO2020010521A1 (zh) 2020-01-16

Family

ID=64325016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095158 WO2020010521A1 (zh) 2018-07-10 2018-07-10 一种定位方法、定位装置、定位系统及可读存储介质

Country Status (2)

Country Link
CN (1) CN108885110B (zh)
WO (1) WO2020010521A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148872A (zh) * 2021-03-24 2021-07-23 上海宏英智能科技股份有限公司 一种起重机臂架组装顺序识别装置和识别方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114096463A (zh) * 2020-04-28 2022-02-25 深圳市大疆创新科技有限公司 可移动平台的控制方法、装置、可移动平台及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513660A (zh) * 2012-06-29 2014-01-15 联想(北京)有限公司 一种终端定位方法及系统、移动终端
CN106772338A (zh) * 2016-11-25 2017-05-31 杭州捍鹰科技有限公司 无人机定位装置、方法及系统
CN107223244A (zh) * 2016-12-02 2017-09-29 深圳前海达闼云端智能科技有限公司 定位方法和装置
CN107389086A (zh) * 2017-07-17 2017-11-24 惠州Tcl移动通信有限公司 一种全视觉导航定位方法、智能终端及存储装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8453147B2 (en) * 2006-06-05 2013-05-28 Cisco Technology, Inc. Techniques for reducing thread overhead for systems with multiple multi-threaded processors
GB201202344D0 (en) * 2012-02-10 2012-03-28 Isis Innovation Method of locating a sensor and related apparatus
CN106936622B (zh) * 2015-12-31 2020-01-31 阿里巴巴集团控股有限公司 一种分布式存储系统升级方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103513660A (zh) * 2012-06-29 2014-01-15 联想(北京)有限公司 一种终端定位方法及系统、移动终端
CN106772338A (zh) * 2016-11-25 2017-05-31 杭州捍鹰科技有限公司 无人机定位装置、方法及系统
CN107223244A (zh) * 2016-12-02 2017-09-29 深圳前海达闼云端智能科技有限公司 定位方法和装置
CN107389086A (zh) * 2017-07-17 2017-11-24 惠州Tcl移动通信有限公司 一种全视觉导航定位方法、智能终端及存储装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113148872A (zh) * 2021-03-24 2021-07-23 上海宏英智能科技股份有限公司 一种起重机臂架组装顺序识别装置和识别方法

Also Published As

Publication number Publication date
CN108885110A (zh) 2018-11-23
CN108885110B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
KR102235167B1 (ko) 스텝 기반 실시간 디바이스 시스템 제어 방법, 디바이스 시스템 제어 장치 및 스텝 기반 디바이스 제어 시스템
JP2018092577A (ja) 並行処理装置及び並行処理プログラム
WO2019104638A1 (zh) 神经网络处理的方法、装置、加速器、系统和可移动设备
CN110716793B (zh) 一种分布式事务的执行方法、装置、设备及存储介质
WO2020000700A1 (zh) 一种无人机系统中的模块升级方法和无人机系统
JP2012529706A5 (zh)
WO2020010521A1 (zh) 一种定位方法、定位装置、定位系统及可读存储介质
CN105527881A (zh) 一种指令处理方法及装置
US10949274B2 (en) Inter-core communication method, processor and multi-processor communication system
JP7345921B2 (ja) マスタースレーブアーキテクチャのota差分更新方法とシステム
US10193886B2 (en) Hostless mDNS-SD responder with authenticated host wake service
WO2020019117A1 (zh) 一种定位方法及装置、电子设备和可读存储介质
US11020853B2 (en) Robot, method for controlling motion of a robot and non-transitory readable medium
JP4151198B2 (ja) 割込コントローラ及びマイクロコンピュータ
WO2020014941A1 (zh) 一种建立地图的方法、定位方法、装置、终端及存储介质
CN109726800B (zh) 运算方法、装置及相关产品
US9332064B2 (en) Computer system and remote control method thereof
CN110609555B (zh) 用于信号控制的方法、装置、电子设备和计算机可读存储介质
US9811149B2 (en) Information processing apparatus, non-transitory computer readable medium, and information processing method
WO2020232717A1 (zh) 边缘侧模型处理的方法、边缘计算设备和计算机可读介质
WO2022110604A1 (zh) 一种电池监控平台的控制方法及控制系统
CN111464395B (zh) 一种创建区块链的方法、装置及可读存储介质
US10313217B2 (en) System on chip (SoC) capable of sharing resources with network device and devices having the SoC
CN114227699A (zh) 机器人动作调整方法、设备以及存储介质
WO2020200246A1 (zh) 数据处理装置及相关产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18926359

Country of ref document: EP

Kind code of ref document: A1