WO2020009306A1 - Electric field cancer treatment device and method using optimization algorithm - Google Patents

Electric field cancer treatment device and method using optimization algorithm Download PDF

Info

Publication number
WO2020009306A1
WO2020009306A1 PCT/KR2019/002009 KR2019002009W WO2020009306A1 WO 2020009306 A1 WO2020009306 A1 WO 2020009306A1 KR 2019002009 W KR2019002009 W KR 2019002009W WO 2020009306 A1 WO2020009306 A1 WO 2020009306A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric field
tumor
electrodes
cancer treatment
electrode
Prior art date
Application number
PCT/KR2019/002009
Other languages
French (fr)
Korean (ko)
Inventor
윤명근
성지원
서재현
Original Assignee
고려대학교 산학협력단
주식회사 필드큐어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180097291A external-priority patent/KR102104961B1/en
Application filed by 고려대학교 산학협력단, 주식회사 필드큐어 filed Critical 고려대학교 산학협력단
Priority to US17/257,252 priority Critical patent/US11833351B2/en
Priority to EP19831280.3A priority patent/EP3819005A4/en
Publication of WO2020009306A1 publication Critical patent/WO2020009306A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36002Cancer treatment, e.g. tumour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/08Arrangements or circuits for monitoring, protecting, controlling or indicating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0492Patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals

Definitions

  • the present invention relates to an electric field cancer treatment apparatus and method using an optimization algorithm, and more specifically, to the electric field strength applied to the patient's body tumor prescribed or more, the electric field strength to be delivered to normal tissues to minimize the It relates to an electric field cancer treatment apparatus and method using an optimization algorithm that can optimize the size.
  • Cancer treatment techniques using electromagnetic waves are treated by removing tumors on different principles according to treatment frequency bands.
  • the area around 10 10 MHz is a frequency band where X-rays appear and is treated with the principle of breaking and destroying DNA double helix of cancer cells.
  • the electromagnetic wave near 10 MHz is treated with the principle of generating heat in human tumor and removing it.
  • TFields Tumor Treating Fields
  • TFields is a technology that treats tumors by delaying cell division and kills them. It is a cancer treatment technique that is receiving great attention as it is being treated at 1000 treatment centers around the world.
  • the treatment is performed by selecting the position of the electrode that is capable of delivering the maximum electric field to the tumor and delivering the minimum to the normal tissue, but unnecessarily normal because the same voltage is applied to the electrodes.
  • An electric field can be transmitted to the tissue.
  • the present invention relates to a method and apparatus for treating an electric field by further reducing an electric field unnecessarily transmitted to normal tissue by adjusting not only the position of the electrode but also the voltage applied to each electrode through an optimization algorithm.
  • the electric field cancer treatment apparatus for treating a tumor by applying an electric field to a tumor and normal tissue of the patient using a pair of electrode pads having a plurality of electrodes
  • An image classification unit classifying at least one or more organs in the captured image of each patient for each organ;
  • an electric field optimizer configured to calculate the number and positions of electrodes applied based on the classified tumors and the normal tissues and arrange them on electrode pads having a predetermined size, and determine voltage magnitudes of different magnitudes on the calculated electrodes.
  • the electric field optimizer may calculate the voltage to be applied to the plurality of electrodes in consideration of at least one or more of the type of tumor, the location of the tumor, and the boundary state with normal tissue.
  • the electric field optimizer may calculate the voltage level of the electrode to be applied to the tumor with a prescribed electric field strength or more, and to be delivered to the normal organs at a minimum.
  • the electric field optimizer may set the limit electric field value according to the importance of the long term, so that the electrode may be transmitted below the preset limit electric field value.
  • the electric field optimizer may include an objective function selected using at least one or more of the electric field strength delivered to the tumor or the normal organ, the weight for each normal organ, and the limit electric field value.
  • the pair of electrode pads may be formed with one surface ground of the pair.
  • Electric field cancer treatment method for treating a tumor by applying an electric field to the tumor and normal tissue of the patient using a pair of electrode pads having a plurality of electrodes according to an embodiment of the present invention based on the image image of the patient Calling the image to classify the video image for each organ;
  • the electric field optimizer Through the electric field optimizer, the number and positions of electrodes are arranged on electrode pads of a predetermined size based on the patient's tumor and the boundary state between the tumor and normal tissues, and the magnitude of voltage applied to the plurality of electrodes is calculated to calculate at least one or more treatments.
  • the electric field optimizer may calculate the magnitude of the electrode voltage that can be delivered to the tumor at the same time as the prescription electric field or more.
  • the voltage and frequency applied to the electrodes are each within 0V to 150V, and may be formed with a value between 100 and 300kHz.
  • the magnitude of the voltage applied to the electrode may be determined using at least one of the magnitude of the prescription electric field applied to the tumor, the weight for each organ, and a predetermined limit electric field value.
  • the electric field cancer treatment apparatus and method using the optimization algorithm according to the present invention by adjusting the voltage applied to each electrode by using an optimization algorithm to transmit a different electric field in the body, by applying a different electric field to the tumor and normal tissue, By reducing the size of the electric field delivered to normal tissues relative to the tumor, the risk of treatment side effects can be reduced, thereby increasing the probability of treatment success.
  • FIG. 1 is a conceptual diagram of an electric field cancer treatment apparatus using an optimization algorithm according to an embodiment of the present invention.
  • Figure 2 is a conceptual diagram showing the arrangement of the electric field cancer treatment device electrode according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of the electric field cancer treatment method using an optimization algorithm according to an embodiment of the present invention.
  • 4 and 5 are simulation comparison diagrams comparing the conventional technology with the electric field cancer treatment apparatus using an optimization algorithm according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram of an electric field cancer treatment apparatus using an optimization algorithm according to an embodiment of the present invention
  • Figure 2 is a conceptual diagram showing the arrangement of the electric field cancer treatment device electrode according to an embodiment of the present invention.
  • an electric field cancer treatment apparatus using an optimization algorithm is to treat a tumor by applying a voltage to form an electric field in a tumor and normal tissue of a patient.
  • the electrode pad 110, the image classifying unit 120 and the electric field optimizer 130 is configured.
  • the pair of electrode pads 110 includes a plurality of electrodes 111, and the electrodes 111 may be arranged in various ways according to the shape of the electrode pad 110.
  • the electrode 111 has been described as being arranged in a square matrix of 3 ⁇ 3 as shown in FIG. 2 as an example, the number and spacing, etc. can be variously modified through the electric field optimizer 130 to be described later, its shape and arrangement The form is not limited to FIG. 2.
  • the electrode pad 110 is illustrated as having two pairs, the electrode pad 110 may be added or reduced depending on the treatment condition of the patient.
  • the pair of electrode pads 110 may be formed with one surface of the pair as the ground (G).
  • the image classification unit 120 serves to classify at least one or more organs in each image of the captured patient.
  • the image image may be an MRI or CT image. MRI or CT is taken with various organs, including tumors.
  • the image classification unit 120 classifies the plurality of organs photographed by each organ, and determines the separation distance and the positional relationship between the normal tissue and the tumor.
  • the image classifier 120 automatically classifies the organs according to organs or sets a boundary part for each organ according to a user definition, and reconstructs each image into three-dimensional images for each organ to clearly distinguish the positional relationship of each organ.
  • the data may be applied to adjust the size of the pair of electrode pads 110 or the arrangement of the electrodes.
  • the electric field optimizer 130 calculates the number and positions of electrodes applied based on the classified tumor and normal tissue, arranges them on the electrode pad 110 of a predetermined size, and determines voltages of different sizes on the calculated electrodes. do. That is, the electric field optimizer 130 calculates the magnitude of the voltage applied to the electrode in consideration of the classified tumor, normal tissue, and the state of the tumor.
  • the electric field optimizer 130 may calculate the magnitude of the voltage applied to the electrode in consideration of at least one or more of the type of tumor to be treated, the location of the tumor, and the boundary state between the tumor and normal tissue.
  • the electric field optimizer 130 sets the electrode weight as a variable, and separates the electrode to be applied to the voltage and the electrode to be formed of the ground among the plurality of electrodes, the plurality of electrodes can be set differently according to the type of tumor have. For example, in the case of gyomo-sejong, 200kHz, and in the case of lung cancer, it is set to 150kHz to calculate the final electrode weight and voltage of each electrode.
  • the electric field optimizer 130 may include an objective function selected using at least one or more of electric field strength, normal organ weights, and limit electric field values transmitted to a tumor or normal organ.
  • the electric field optimizer 130 may set the limit electric field value according to the importance of the long-term, so that the electrode is delivered to the preset limit electric field value or less.
  • the limit electric field means the range of the electric field is set so that more than the predetermined electric field strength is transmitted to the normal organ.
  • the objective function is to adjust the intensity of the electric field so that the minimum electric field is applied to the main organs of normal tissues when an electric field of more than the prescribed electric field is applied to the tumor.
  • the prescription electric field is the size of the electric field to be delivered over a certain intensity to the total volume of the patient tumor during the treatment of the electric field
  • the limit electric field is the size of the electric field to be delivered below a certain field strength to the total volume of normal organs.
  • the doctor applies the strength of the prescribed electric field to the tumor at 1.5 V / cm, and delivers less than the 0.5 V / cm limit electric field to the total volume in important organs.
  • a treatment plan can be developed.
  • the average electric field strength is the average electric field strength delivered to one organ, and the same electric field is not transmitted to all parts of one organ. Since the electric field strengths are different for each microvolume, the average electric field strength is determined for one organ.
  • the intensity of the electric field can be calculated from the conditions of Equations 2 to 4.
  • Is the electric field strength at point i Is the weight of the j th electrode, Is the strength of the electric field transmitted to point i due to the j th electrode.
  • Equation 2 is calculated based on the strength of the prescription electric field as follows.
  • Equation 3 is to calculate the electric field based on the weight of the importance of the long term and the objective function (f) considering the limit electric field strength of the normal organ.
  • the strength of the marginal electric field is a constant that depends on the importance of the organ.
  • Equation 4 is calculated by considering the weight of each organ and the average electric field strength of the N-th normal organ.
  • the objective function for calculating the electric field acting in the normal organ is not limited to the above equation, and may be used in various ways in consideration of the type and location of the tumor.
  • the present invention is a voltage applied to the electrode is within 0V ⁇ 150V, the frequency is formed to a value between 100 ⁇ 300kHz to calculate the electric field value, is applied to the body in consideration of the location of the tumor and the importance of each organ, etc.
  • the electric field is calculated.
  • the intensity of the electric field calculated through the above-described method is converted into a voltage applied to the electrode.
  • the range of the voltage set as described above may belong to the same range as the conventional treatment device, the present invention, in consideration of the position and the relationship between the tumor and normal organs, and differently set the arrangement and position of the electrode, a plurality of electrodes
  • the therapeutic magnetic field and the general magnetic field of different sizes can be applied to prevent normal tissue from being damaged.
  • FIG. 3 is a flow chart of the electric field cancer treatment method using an optimization algorithm according to an embodiment of the present invention.
  • an electric field cancer treatment method using an optimization algorithm is to treat a tumor by transmitting an electric field to a patient's tumor and normal tissue using a pair of electrode pads having a plurality of electrodes.
  • the number and positions of the electrodes are arranged on the electrode pad having a predetermined size based on the patient's tumor and the boundary state between the tumor and the normal tissue through the electric field optimizer, and the magnitude of the voltage applied to the plurality of electrodes is calculated.
  • the method of arranging the electrodes may be arranged in the form of a square matrix as shown in FIG. 2, but alternatively, asymmetry or spacing may be variously set. However, it is preferable that the pair of electrodes facing each other be formed at the same position with each other.
  • the voltage and frequency applied are set differently between the tumor and normal tissue, the voltage is within 0V ⁇ 150V, the frequency can be formed with a value between 100 ⁇ 300kHz.
  • the treatment is performed by applying the calculated voltages to the plurality of electrodes under optimal conditions of the analyzed treatment plan (S400).
  • 4 and 5 are simulation comparison diagrams comparing the conventional technology with the electric field cancer treatment apparatus using an optimization algorithm according to an embodiment of the present invention.
  • FIG. 4 shows an electric field when a different voltage value is applied to each electrode by applying an electric field distribution and an electric field optimizer which are obtained when the same voltage value is applied to all electrodes in the conventional manner. It shows the distribution (after).
  • Figure 5 shows the electric field distribution (after) when the different voltage values are applied to each electrode by applying the electric field distribution (before) and the optimization algorithm obtained when the same voltage value is applied to all electrodes in the conventional manner.
  • Table 2 shows a quantitative analysis of FIG. 5, and all indicator values after applying the electric field optimizer are reduced. That is, it can be seen that the electric field strength delivered to the normal organ is greatly reduced after applying the electric field optimizer.

Abstract

The present invention relates to an electric field cancer treatment device and method using an optimization algorithm, the electric field cancer-treating treatment device enabling the treatment of a tumor by applying electric fields to the tumor and normal tissues of a patient by using at least one pair of electrode pads having a plurality of electrodes. The electric field cancer-treating treatment device comprises: an image classification unit for classifying, by organ, at least one organ in a captured image of a patient; and an electric field optimization unit for, on the basis of a classified tumor and normal tissues, calculating the number and positions of electrodes being applied and arranging same on electrode pads having a predetermined size, and determining mutually different voltage levels for the calculated electrodes. According to the present invention, when electric fields applied to the respective electrodes are adjusted by using an optimization algorithm, and the electric fields are transferred to the inside of a human body, mutually different electric fields may be applied to the tumor and the normal tissues, and thus the level of the electric field transferred to the normal tissues may be relatively lower than the level of the electric field transferred to the tumor, and thus a risk of treatment side effects may be reduced, and thus the treatment success rate may be increased.

Description

최적화 알고리즘을 이용한 전기장 암치료장치 및 방법Electric cancer treatment device and method using optimization algorithm
본 발명은 최적화 알고리즘을 이용한 전기장 암치료장치 및 방법에 관한 것으로서, 보다 구체적으로는 환자의 체내 종양에 처방한 전기장의 세기 이상으로 인가하고, 정상조직에 전달되는 전기장 세기는 최소화할 수 있도록 전기장의 크기를 최적화할 수 있는 최적화 알고리즘을 이용한 전기장 암치료장치 및 방법에 관한 것이다.The present invention relates to an electric field cancer treatment apparatus and method using an optimization algorithm, and more specifically, to the electric field strength applied to the patient's body tumor prescribed or more, the electric field strength to be delivered to normal tissues to minimize the It relates to an electric field cancer treatment apparatus and method using an optimization algorithm that can optimize the size.
전자기파를 이용한 암치료기법은 치료주파수대역에 따라 각각 다른 원리로 종양을 제거하여 치료하고 있다. 1010MHz 근방 영역은 X선이 나타나는 주파수 대역으로서, 암세포의 DNA 이중나선을 끊어 사멸시키는 원리로 치료하며, 10MHz 근방 영역의 전자기파는 인체 종양 내에 열을 발생시켜 제거하는 원리로 치료한다.Cancer treatment techniques using electromagnetic waves are treated by removing tumors on different principles according to treatment frequency bands. The area around 10 10 MHz is a frequency band where X-rays appear and is treated with the principle of breaking and destroying DNA double helix of cancer cells. The electromagnetic wave near 10 MHz is treated with the principle of generating heat in human tumor and removing it.
100~300kHz 영역의 전자기파를 이용하여 종양을 치료하는 기술(Tumor Treating Fields ,TTFields)은 세포분열을 지연시켜 사멸시키는 원리로 치료하는 기술로써, 실제 암 치료에 도입된 지 10년도 되지 않는 신기술임에도 불구하고 세계적으로 1000여개의 치료센터에서 치료를 진행하고 있을 정도로 큰 관심을 받고 있는 암치료기법이다.Tumor Treating Fields (TTFields) is a technology that treats tumors by delaying cell division and kills them. It is a cancer treatment technique that is receiving great attention as it is being treated at 1000 treatment centers around the world.
위 기법은 분열하는 세포에 큰 영향을 미치기 때문에 종양에 비해 분열속도가 매우 느리거나 거의 하지 않는 정상세포에는 영향이 미미하다고 알려져 있지만 지금까지 발표된 연구결과를 확인해보면 정상세포에 대한 연구 결과는 매우 미미하며 전기장이 체내 각각의 주요장기에 미치는 영향에 대한 구체적인 연구결과는 거의 없는 실정이다. 또한 실제 치료에 도입한지 10년이 되지 않았기 때문에 아직 나타나지 않은 부작용에 대한 잠재적 위험성을 가지고 있다.Since the above technique has a great effect on dividing cells, it is known that the effects on normal cells, which are very slow or rarely divide compared to tumors, are insignificant. It is insignificant and there are few specific studies on the effect of electric fields on each major organ in the body. It also has a potential risk for side effects that have not yet emerged since they were less than 10 years old in practice.
현재 치료에서도 상기 언급된 문제점을 고려하여 종양에는 최대의 전기장을 가하는 동시에 정상조직에는 최소로 전달할 수 있는 전극의 위치를 선정하여 치료를 진행하고 있지만 전극들에게 모두 동일한 전압을 걸어주기 때문에 불필요하게 정상조직에 전기장이 전달될 수 있다. In the current treatment, considering the above-mentioned problems, the treatment is performed by selecting the position of the electrode that is capable of delivering the maximum electric field to the tumor and delivering the minimum to the normal tissue, but unnecessarily normal because the same voltage is applied to the electrodes. An electric field can be transmitted to the tissue.
따라서 본 발명은 전극의 위치뿐만 아니라 각각의 전극에 걸어주는 전압도 최적화 알고리즘을 통해 조절하여 불필요하게 정상조직으로 전달되는 전기장을 더욱 줄여서 전기장 치료 하는 방법과 장치에 관한 것이다.Therefore, the present invention relates to a method and apparatus for treating an electric field by further reducing an electric field unnecessarily transmitted to normal tissue by adjusting not only the position of the electrode but also the voltage applied to each electrode through an optimization algorithm.
본 발명의 목적은 환자의 체내 종양에 처방한 전기장의 세기 이상으로 인가하고, 정상조직에 전달되는 전기장 세기는 최소화할 수 있도록 전기장의 크기를 최적화할 수 있는 최적화 알고리즘을 이용한 전기장 암치료장치 및 방법을 제공하는 것이다.It is an object of the present invention to apply to more than the intensity of the electric field prescribed to the patient's body tumor, electric field cancer treatment apparatus and method using an optimization algorithm that can optimize the size of the electric field to minimize the electric field strength delivered to normal tissue To provide.
본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.The object of the present invention is not limited to the above-mentioned object, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
위와 같은 목적을 달성하기 위하여, 본 발명의 실시예에 따른 복수의 전극을 구비하는 한 쌍 이상의 전극패드를 이용하여 환자의 종양 및 정상조직에 전기장을 인가하여 종양을 치료하는 전기장 암치료 치료 장치는 촬영된 환자의 영상 이미지에 있는 적어도 하나 이상의 장기를 각 장기별로 분류하는 영상분류부; 및 분류된 종양과 정상조직을 바탕으로 인가되는 전극의 개수와 위치를 산정하여 기설정된 크기의 전극패드에 배열하고, 산정된 전극에 서로 다른 크기의 전압 크기를 결정하는 전기장 최적화부;를 포함한다.In order to achieve the above object, the electric field cancer treatment apparatus for treating a tumor by applying an electric field to a tumor and normal tissue of the patient using a pair of electrode pads having a plurality of electrodes according to an embodiment of the present invention An image classification unit classifying at least one or more organs in the captured image of each patient for each organ; And an electric field optimizer configured to calculate the number and positions of electrodes applied based on the classified tumors and the normal tissues and arrange them on electrode pads having a predetermined size, and determine voltage magnitudes of different magnitudes on the calculated electrodes. .
여기서, 전기장 최적화부는 상기 복수의 전극에 걸어줄 전압 크기를 치료 대상이 되는 종양의 종류, 종양의 위치, 정상조직과의 경계상태 중 적어도 하나 이상을 고려하여 산정할 수 있다.Here, the electric field optimizer may calculate the voltage to be applied to the plurality of electrodes in consideration of at least one or more of the type of tumor, the location of the tumor, and the boundary state with normal tissue.
여기서, 전기장 최적화부는 종양에는 처방 전기장세기 이상을 가하는 동시에 정상 장기에는 최소로 전달될 수 있게 전극의 전압 크기를 산출할 수 있다.Here, the electric field optimizer may calculate the voltage level of the electrode to be applied to the tumor with a prescribed electric field strength or more, and to be delivered to the normal organs at a minimum.
여기서, 전기장 최적화부는 장기의 중요도에 따라 한계전기장 값을 설정하여, 전극이 기 설정된 한계전기장 값 이하로 전달되도록 할 수 있다.Here, the electric field optimizer may set the limit electric field value according to the importance of the long term, so that the electrode may be transmitted below the preset limit electric field value.
여기서, 전기장 최적화부는 종양 또는 정상장기에 전달되는 전기장 세기, 정상 장기별 가중치 및 한계전기장 값 중 적어도 하나 이상을 이용하여 선정하는 목적함수를 구비할 수 있다.Here, the electric field optimizer may include an objective function selected using at least one or more of the electric field strength delivered to the tumor or the normal organ, the weight for each normal organ, and the limit electric field value.
여기서, 한 쌍의 전극패드는 한 쌍 중 한면 접지로 형성될 수 있다.Here, the pair of electrode pads may be formed with one surface ground of the pair.
본 발명의 실시예에 따른 복수의 전극을 구비하는 한 쌍 이상의 전극패드를 이용하여 환자의 종양 및 정상조직에 전기장을 인가하여 종양을 치료하는 전기장 암치료 치료 방법은 환자의 영상 이미지를 기반으로 영상 이미지를 호출하여 영상 이미지를 각 장기별로 분류하는 단계; 전기장 최적화부를 통해 환자의 종양 및 종양과 정상조직의 경계상태를 바탕으로 기설정된 크기의 전극패드에 전극의 개수와 위치를 배열하고, 복수의 전극에 인가하는 전압의 크기를 산정하여 적어도 하나 이상의 치료계획을 수립하는 단계; 수립된 치료계획을 분석 및 평가하는 단계; 및 분석된 치료계획 중 최적의 조건으로 복수의 전극에 전압을 인가하여 치료하는 단계;를 포함한다.Electric field cancer treatment method for treating a tumor by applying an electric field to the tumor and normal tissue of the patient using a pair of electrode pads having a plurality of electrodes according to an embodiment of the present invention based on the image image of the patient Calling the image to classify the video image for each organ; Through the electric field optimizer, the number and positions of electrodes are arranged on electrode pads of a predetermined size based on the patient's tumor and the boundary state between the tumor and normal tissues, and the magnitude of voltage applied to the plurality of electrodes is calculated to calculate at least one or more treatments. Developing a plan; Analyzing and evaluating the established treatment plan; And applying a voltage to the plurality of electrodes under optimal conditions of the analyzed treatment plan to treat the treatment.
여기서, 전기장 최적화부를 통해 종양에는 처방전기장 이상 가하는 동시에 정상조직에는 최소로 전달될 수 있는 전극전압의 크기를 산출할 수 있다.Here, the electric field optimizer may calculate the magnitude of the electrode voltage that can be delivered to the tumor at the same time as the prescription electric field or more.
여기서, 전극에 인가되는 전압 및 주파수는 각각, 0V ~ 150V 이내이고, 100 ~ 300kHz 사이 값으로 형성될 수 있다.Here, the voltage and frequency applied to the electrodes are each within 0V to 150V, and may be formed with a value between 100 and 300kHz.
여기서, 전극에 걸어줄 전압의 크기는 종양에 인가되는 상기 처방 전기장의 크기, 장기별 가중치 및 기설정된 한계전기장 값 중 적어도 하나 이상을 이용하여 결정될 수 있다.Here, the magnitude of the voltage applied to the electrode may be determined using at least one of the magnitude of the prescription electric field applied to the tumor, the weight for each organ, and a predetermined limit electric field value.
본 발명에 의한 최적화 알고리즘을 이용한 전기장 암치료장치 및 방법은 최적화 알고리즘을 이용하여 각각의 전극에 걸어주는 전압을 조절하여 체내의 전기장을 전달할 때, 종양과 정상 조직에 서로 다른 전기장이 인가되도록 함으로써, 정상조직에 전달되었던 전기장의 크기를 종양에 비해서 상대적으로 작게 함으로써 치료 부작용에 대한 위험성을 감소시켜 치료 성공 확률을 높일 수 있다.The electric field cancer treatment apparatus and method using the optimization algorithm according to the present invention by adjusting the voltage applied to each electrode by using an optimization algorithm to transmit a different electric field in the body, by applying a different electric field to the tumor and normal tissue, By reducing the size of the electric field delivered to normal tissues relative to the tumor, the risk of treatment side effects can be reduced, thereby increasing the probability of treatment success.
본 발명의 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.The effects of the present invention are not limited to the above-mentioned effects, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 실시예에 따른 최적화 알고리즘을 이용한 전기장 암치료 장치의 개념도이다.1 is a conceptual diagram of an electric field cancer treatment apparatus using an optimization algorithm according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 전기장 암치료 장치 전극의 배열상태를 나타내는 개념도이다.Figure 2 is a conceptual diagram showing the arrangement of the electric field cancer treatment device electrode according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 최적화 알고리즘을 이용한 전기장 암치료방법의 순서도이다. 3 is a flow chart of the electric field cancer treatment method using an optimization algorithm according to an embodiment of the present invention.
도 4 및 도 5는 본 발명의 실시예에 따른 최적화 알고리즘을 이용한 전기장 암치료 장치와 종래의 기술을 비교하는 시뮬레이션 비교도이다.4 and 5 are simulation comparison diagrams comparing the conventional technology with the electric field cancer treatment apparatus using an optimization algorithm according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 이때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this case, the same components in the accompanying drawings are to be noted with the same reference numerals as possible. In addition, detailed descriptions of well-known functions and configurations that may blur the gist of the present invention will be omitted. For the same reason, in the accompanying drawings, some components are exaggerated, omitted or schematically illustrated.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, “~상에”라 함은 대상 부분의 위 또는 아래에 위치함을 의미하는 것이며, 반드시 중력 방향을 기준으로 상측에 위치하는 것을 의미하는 것은 아니다.In addition, throughout the specification, when a part is said to "include" a certain component, it means that it may further include other components, except to exclude other components unless specifically stated otherwise. In addition, throughout the specification, "on" means to be located above or below the target portion, and does not necessarily mean to be located above the gravity direction.
도 1은 본 발명의 실시예에 따른 최적화 알고리즘을 이용한 전기장 암치료 장치의 개념도이며, 도 2는 본 발명의 실시예에 따른 전기장 암치료 장치 전극의 배열상태를 나타내는 개념도이다.1 is a conceptual diagram of an electric field cancer treatment apparatus using an optimization algorithm according to an embodiment of the present invention, Figure 2 is a conceptual diagram showing the arrangement of the electric field cancer treatment device electrode according to an embodiment of the present invention.
도 1 내지 도 2를 참조하여 설명하면, 본 발명의 실시예에 따른 최적화 알고리즘을 이용한 전기장 암치료 장치는 환자의 종양 및 정상조직에 전기장이 형성되도록 전압을 인가하여 종양을 치료하는 것으로서, 한 쌍의 전극패드(110), 영상분류부(120) 및 전기장 최적화부(130)를 포함하여 구성된다.1 to 2, an electric field cancer treatment apparatus using an optimization algorithm according to an embodiment of the present invention is to treat a tumor by applying a voltage to form an electric field in a tumor and normal tissue of a patient. The electrode pad 110, the image classifying unit 120 and the electric field optimizer 130 is configured.
한 쌍의 전극패드(110)는 복수의 전극(111)을 구비하고, 전극(111)은 전극패드(110)의 형상에 따라 다양하게 배열될 수 있다. 전극(111)은 도 2와 같이 3 × 3의 정방행렬로 배열된 것을 예로 설명하였으나, 후술하는 전기장 최적화부(130)를 통하여 개수 및 간격 등이 다양하게 변형될 수 있는 것으로서, 그 형상 및 배열형태가 도 2로 제한되는 것은 아니다. 또한, 전극패드(110)는 두 쌍이 구비된 것을 예시하였으나, 전극패드(110)를 환자의 치료 조건에 따라 추가되거나 감소될 수 있다.The pair of electrode pads 110 includes a plurality of electrodes 111, and the electrodes 111 may be arranged in various ways according to the shape of the electrode pad 110. Although the electrode 111 has been described as being arranged in a square matrix of 3 × 3 as shown in FIG. 2 as an example, the number and spacing, etc. can be variously modified through the electric field optimizer 130 to be described later, its shape and arrangement The form is not limited to FIG. 2. In addition, although the electrode pad 110 is illustrated as having two pairs, the electrode pad 110 may be added or reduced depending on the treatment condition of the patient.
이와 같이, 전극(111)의 배열 형상을 다양하게 형성함으로써 인가되는 주파수 및 전압의 크기를 다양하게 조정하여 종양 및 정상조직에 전달되는 전기장의 크기를 변경할 수 있기 때문에 환자의 종양 및 정상조직과의 경계 조건 등을 고려하여 효과적인 치료를 제공할 수 있다. 이때, 한 쌍의 전극패드(110)는 한 쌍 중 한면이 접지(G)로 형성될 수 있다.In this way, by varying the size of the frequency and voltage applied by variously forming the array shape of the electrode 111 can change the size of the electric field delivered to the tumor and normal tissue and the patient with the tumor and normal tissue Effective treatment can be provided in consideration of boundary conditions and the like. In this case, the pair of electrode pads 110 may be formed with one surface of the pair as the ground (G).
영상분류부(120)는 촬영된 환자의 영상 이미지에 있는 적어도 하나 이상의 장기를 각 장기별로 분류하는 역할을 한다. 영상 이미지는 MRI 또는 CT 영상일 수 있다. MRI 또는 CT는 종양을 포함한 다양한 장기가 함께 촬영된다. 이때, 영상분류부(120)는 촬영된 복수의 장기를 각 장기별로 분류하고, 정상조직과 종양간의 이격거리 및 위치관계 등을 결정짓는다. 영상분류부(120)는 장기에 따라 자동으로 분류하거나, 사용자 정의에 따라 각 장기별로 경계부분을 설정하며, 각 이미지를 장기별로 3차원 영상으로 재구성함으로써 각 장기별 위치관계를 명확하게 구분함으로써 한 쌍의 전극패드(110)의 크기나 전극의 배열상태를 조정하는데 그 데이터가 적용될 수 있다.The image classification unit 120 serves to classify at least one or more organs in each image of the captured patient. The image image may be an MRI or CT image. MRI or CT is taken with various organs, including tumors. At this time, the image classification unit 120 classifies the plurality of organs photographed by each organ, and determines the separation distance and the positional relationship between the normal tissue and the tumor. The image classifier 120 automatically classifies the organs according to organs or sets a boundary part for each organ according to a user definition, and reconstructs each image into three-dimensional images for each organ to clearly distinguish the positional relationship of each organ. The data may be applied to adjust the size of the pair of electrode pads 110 or the arrangement of the electrodes.
전기장 최적화부(130)는 분류된 종양과 정상조직을 바탕으로 인가되는 전극의 개수와 위치를 산정하여 기설정된 크기의 전극패드(110)에 배열하고, 산정된 전극에 서로 다른 크기의 전압을 결정한다. 즉, 전기장 최적화부(130)는 분류된 종양, 정상조직 및 종양의 상태 등을 고려하여 전극에 인가되는 전압의 크기를 산정하게 된다.The electric field optimizer 130 calculates the number and positions of electrodes applied based on the classified tumor and normal tissue, arranges them on the electrode pad 110 of a predetermined size, and determines voltages of different sizes on the calculated electrodes. do. That is, the electric field optimizer 130 calculates the magnitude of the voltage applied to the electrode in consideration of the classified tumor, normal tissue, and the state of the tumor.
따라서, 전기장 최적화부(130)는 전극에 인가하는 전압의 크기를 치료 대상이 되는 종양의 종류, 종양의 위치, 종양과 정상조직과의 경계상태 중 적어도 하나 이상을 고려하여 산정할 수 있다. 이때, 전기장 최적화부(130)는 전극 가중치를 변수로 설정하며, 복수의 전극 중에서 전압을 인가하는 전극과 접지로 형성할 전극을 분리하고, 복수의 전극들은 종양의 종류에 따라 주파수를 다르게 설정할 수 있다. 예를 들어, 교모세종일 경우, 200kHz이며, 폐암일 경우, 150kHz로 설정하여 각각의 전극 가중치와 전압을 최종 산출한다.Therefore, the electric field optimizer 130 may calculate the magnitude of the voltage applied to the electrode in consideration of at least one or more of the type of tumor to be treated, the location of the tumor, and the boundary state between the tumor and normal tissue. At this time, the electric field optimizer 130 sets the electrode weight as a variable, and separates the electrode to be applied to the voltage and the electrode to be formed of the ground among the plurality of electrodes, the plurality of electrodes can be set differently according to the type of tumor have. For example, in the case of gyomo-sejong, 200kHz, and in the case of lung cancer, it is set to 150kHz to calculate the final electrode weight and voltage of each electrode.
따라서, 전기장을 조절하여 체내의 전기장을 전달할 때, 종양과 정상 조직에 서로 다른 전기장이 인가되도록 함으로써, 정상조직에 전달되었던 전기장의 크기를 종양에 비해서 상대적으로 작게 함으로써 치료 부작용에 대한 위험성을 감소시켜 치료 성공 확률을 높일 수 있다.Therefore, when the electric field in the body is controlled to transmit the electric field, different electric fields are applied to the tumor and the normal tissue, thereby reducing the risk of treatment side effects by making the size of the electric field delivered to the normal tissue relatively smaller than the tumor. It can increase the probability of treatment success.
전기장 최적화부(130)는 종양 또는 정상장기에 전달되는 전기장 세기, 정상 장기별 가중치 및 한계전기장 값 중 적어도 하나 이상을 이용하여 선정하는 목적함수를 구비할 수 있다. 또한, 전기장 최적화부(130)는 장기의 중요도에 따라 한계전기장 값을 설정하여, 전극이 기 설정된 한계전기장 값 이하로 전달되도록 할 수 있다. 여기서, 한계전기장은 정상장기에 기 설정된 전기장 세기 이상이 전달되지 않도록 설정된 전기장의 범위를 의미한다.The electric field optimizer 130 may include an objective function selected using at least one or more of electric field strength, normal organ weights, and limit electric field values transmitted to a tumor or normal organ. In addition, the electric field optimizer 130 may set the limit electric field value according to the importance of the long-term, so that the electrode is delivered to the preset limit electric field value or less. Here, the limit electric field means the range of the electric field is set so that more than the predetermined electric field strength is transmitted to the normal organ.
목적함수는 종양에 처방 전기장 이상의 전기장이 인가될 때에, 정상조직의 주요장기에는 최소의 전기장이 인가되도록 전기장의 세기 값을 조정하는 역할을 하는 것이다. 여기서, 처방 전기장은 전기장 치료 할 때에 환자 종양 전체 부피에 일정 세기 이상 전달하고자 하는 전기장 크기이며, 한계 전기장은 정상 장기 전체 부피에 일정 전기장 세기 이하로 전달하고자 하는 전기장의 크기이다.The objective function is to adjust the intensity of the electric field so that the minimum electric field is applied to the main organs of normal tissues when an electric field of more than the prescribed electric field is applied to the tumor. Here, the prescription electric field is the size of the electric field to be delivered over a certain intensity to the total volume of the patient tumor during the treatment of the electric field, the limit electric field is the size of the electric field to be delivered below a certain field strength to the total volume of normal organs.
예로 설명하면, 전기장 치료를 할 때, 의사는 종양에 처방전기장의 세기를 1.5V/cm로 인가하고, 중요장기에는 전체 부피에 0.5V/cm 한계전기장 이하로 전달하는 것을 목표로 하여 최적화를 통한 치료계획을 수립할 수 있다. 한편, 평균 전기장 세기는 하나의 장기에 전달되는 평균 전기장 세기이며, 하나의 장기 모든 부분에 동일한 전기장이 전달되는 것이 아니다. 미세부피마다 전달되는 전기장 세기가 다르기 때문에 하나의 장기에 평균 전기장 세기를 결정한다.For example, during the electric field treatment, the doctor applies the strength of the prescribed electric field to the tumor at 1.5 V / cm, and delivers less than the 0.5 V / cm limit electric field to the total volume in important organs. A treatment plan can be developed. On the other hand, the average electric field strength is the average electric field strength delivered to one organ, and the same electric field is not transmitted to all parts of one organ. Since the electric field strengths are different for each microvolume, the average electric field strength is determined for one organ.
먼저, 종양으로부터 소정거리 이격된 위치의
Figure PCTKR2019002009-appb-I000001
에서의 전기장의 값을 수학식 1과 같이 산정한 후에, 수학식 2 내지 4의 조건으로부터 전기장의 세기를 산출할 수 있다.
First, at a position spaced a predetermined distance from the tumor
Figure PCTKR2019002009-appb-I000001
After calculating the value of the electric field in Equation 1, the intensity of the electric field can be calculated from the conditions of Equations 2 to 4.
[수학식 1][Equation 1]
Figure PCTKR2019002009-appb-I000002
Figure PCTKR2019002009-appb-I000002
여기서,
Figure PCTKR2019002009-appb-I000003
는 i 지점에서의 전기장세기값,
Figure PCTKR2019002009-appb-I000004
는 j번째의 전극의 가중치,
Figure PCTKR2019002009-appb-I000005
는 j번째의 전극으로 인해 i지점에 전달된 전기장의 세기이다.
here,
Figure PCTKR2019002009-appb-I000003
Is the electric field strength at point i,
Figure PCTKR2019002009-appb-I000004
Is the weight of the j th electrode,
Figure PCTKR2019002009-appb-I000005
Is the strength of the electric field transmitted to point i due to the j th electrode.
수학식 2는 처방 전기장의 세기를 바탕으로 다음과 같이 산출하는 것이다. Equation 2 is calculated based on the strength of the prescription electric field as follows.
[수학식 2][Equation 2]
Figure PCTKR2019002009-appb-I000006
Figure PCTKR2019002009-appb-I000006
여기서,
Figure PCTKR2019002009-appb-I000007
는 처방 전기장의 세기이다.
here,
Figure PCTKR2019002009-appb-I000007
Is the strength of the prescription electric field.
수학식 3은 장기의 중요도에 따른 가중치와, 정상장기의 한계전기장 세기를 고려한 목적함수(f)를 바탕으로 전기장을 산출하는 것이다. 한계전기장의 세기는 장기의 중요도에 따라 다른 게 설정되는 상수이다. Equation 3 is to calculate the electric field based on the weight of the importance of the long term and the objective function (f) considering the limit electric field strength of the normal organ. The strength of the marginal electric field is a constant that depends on the importance of the organ.
[수학식 3][Equation 3]
Figure PCTKR2019002009-appb-I000008
Figure PCTKR2019002009-appb-I000008
여기서,
Figure PCTKR2019002009-appb-I000009
은 장기별 가중치이고,
Figure PCTKR2019002009-appb-I000010
N 번째 정상장기의 한계 전기장 세기 값이다.
here,
Figure PCTKR2019002009-appb-I000009
Is the weight for each organ,
Figure PCTKR2019002009-appb-I000010
Is the limit electric field strength value of the Nth normal organ.
수학식 4는 장기별 가중치와 N번째 정상장기의 평균 전기장 세기를 고려하여 산정하는 것이다. Equation 4 is calculated by considering the weight of each organ and the average electric field strength of the N-th normal organ.
[수학식 4][Equation 4]
Figure PCTKR2019002009-appb-I000011
Figure PCTKR2019002009-appb-I000011
Figure PCTKR2019002009-appb-I000012
은 장기별 가중치이고,
Figure PCTKR2019002009-appb-I000013
은 N번째 정상장기의 평균 전기장 세기 값이다.
Figure PCTKR2019002009-appb-I000012
Is the weight for each organ,
Figure PCTKR2019002009-appb-I000013
Is the average electric field strength value of the Nth normal organ.
상기와 같이, 정상장기에 작용되는 전기장을 산출하는 목적함수는 상기의 수학식으로 한정되지 않으며, 종양의 종류 및 위치 등을 고려하여 다양하게 사용될 수 있다.As described above, the objective function for calculating the electric field acting in the normal organ is not limited to the above equation, and may be used in various ways in consideration of the type and location of the tumor.
이와 같이, 본 발명은 전극에 인가되는 전압이 0V ~ 150V 이내이며, 주파수는 100 ~ 300kHz 사이 값으로 형성하여 전기장 값을 산정하며, 종양의 위치와 각 장기의 중요도 등을 고려하여 신체에 인가되는 전기장을 산정하게 된다. 그리고, 전술한 방법을 통해 산정된 전기장의 세기는 전극에 인가되는 전압으로 환산된다.In this way, the present invention is a voltage applied to the electrode is within 0V ~ 150V, the frequency is formed to a value between 100 ~ 300kHz to calculate the electric field value, is applied to the body in consideration of the location of the tumor and the importance of each organ, etc. The electric field is calculated. In addition, the intensity of the electric field calculated through the above-described method is converted into a voltage applied to the electrode.
상기와 같이 설정된 전압의 범위는 기존 치료 장치와 동일한 범위에 속할 수 있지만, 본 발명은 종양 및 정상장기의 위치 및 관계를 고려하여 전극의 배열상태와 위치 등을 다르게 설정함과 동시에, 복수의 전극에 서로 다른 크기의 치료 자기장과 일반 자기장이 작용하도록 함으로써 정상조직이 손상되는 것을 방지할 수 있는 특징이 있다. The range of the voltage set as described above may belong to the same range as the conventional treatment device, the present invention, in consideration of the position and the relationship between the tumor and normal organs, and differently set the arrangement and position of the electrode, a plurality of electrodes The therapeutic magnetic field and the general magnetic field of different sizes can be applied to prevent normal tissue from being damaged.
도 3은 본 발명의 실시예에 따른 최적화 알고리즘을 이용한 전기장 암치료방법의 순서도이다.3 is a flow chart of the electric field cancer treatment method using an optimization algorithm according to an embodiment of the present invention.
도 3을 참조하여 설명한다. 먼저, 본 발명의 실시예에 따른 최적화 알고리즘을 이용한 전기장 암치료방법은 복수의 전극을 구비하는 한 쌍 이상의 전극패드를 이용하여 환자의 종양 및 정상조직에 전기장을 전달하여 종양을 치료하는 것이다.It demonstrates with reference to FIG. First, an electric field cancer treatment method using an optimization algorithm according to an embodiment of the present invention is to treat a tumor by transmitting an electric field to a patient's tumor and normal tissue using a pair of electrode pads having a plurality of electrodes.
먼저, 환자의 영상 이미지를 기반으로 영상 이미지를 호출하여 호출된 영상 이미지를 각 장기별로 분류한다(S100). 각 장기별로 해상도 범위를 다르게 지정함으로써, 중요도에 따라 보다 효과적으로 장기를 분류할 수 있다.First, classify the called image image for each organ by calling the image image based on the image image of the patient (S100). By specifying different resolution ranges for each organ, organs can be classified more effectively according to their importance.
그 다음으로, 전기장 최적화부를 통해 환자의 종양 및 종양과 정상조직의 경계상태를 바탕으로 기설정된 크기의 전극패드에 전극의 개수와 위치를 배열하고, 복수의 전극에 인가하는 전압의 크기를 산정하여 적어도 하나 이상의 치료계획을 수립한다(S200). 이때, 바람직하게는 3개 이상의 치료계획을 수립할 수 있으며, 수립되는 치료계획은 서로 다른 전극의 크기 및 개수가 다양하게 가변적으로 변경되도록 설정된다. Next, the number and positions of the electrodes are arranged on the electrode pad having a predetermined size based on the patient's tumor and the boundary state between the tumor and the normal tissue through the electric field optimizer, and the magnitude of the voltage applied to the plurality of electrodes is calculated. Establish at least one treatment plan (S200). In this case, preferably, three or more treatment plans may be established, and the treatment plans to be established are set to vary in size and number of different electrodes.
전극의 배열방법은 전술한 도 2와 같이 정방행렬 형태로 배열될 수 있으나, 이와 다르게 비대칭 또는 간격도 상이하게 다양하게 설정될 수 있다. 다만, 서로 마주보는 한 쌍의 전극은 서로 동일한 위치에 형성되는 것이 바람직하다. 또한, 인가되는 전압 및 주파수는 종양과 정상 조직간에 서로 다르게 설정되고, 전압은 0V ~ 150 V 이내이며, 주파수는 100 ~ 300kHz 사이 값으로 형성될 수 있다.The method of arranging the electrodes may be arranged in the form of a square matrix as shown in FIG. 2, but alternatively, asymmetry or spacing may be variously set. However, it is preferable that the pair of electrodes facing each other be formed at the same position with each other. In addition, the voltage and frequency applied are set differently between the tumor and normal tissue, the voltage is within 0V ~ 150V, the frequency can be formed with a value between 100 ~ 300kHz.
수립된 상기의 치료계획을 분석 및 평가한다(S300). 복수의 치료계획을 개별적으로 각각 분석 및 평가함으로써 최적의 결과를 도출하는 조건을 추출할 수 있다.Analyze and evaluate the established treatment plan (S300). By analyzing and evaluating a plurality of treatment plans individually, one can extract conditions that yield optimal results.
마지막으로, 분석된 치료계획 중 최적의 조건으로 복수의 전극에 산정된 전압을 인가하여 치료를 진행한다(S400).Finally, the treatment is performed by applying the calculated voltages to the plurality of electrodes under optimal conditions of the analyzed treatment plan (S400).
도 4 및 도 5는 본 발명의 실시예에 따른 최적화 알고리즘을 이용한 전기장 암치료 장치와 종래의 기술을 비교하는 시뮬레이션 비교도이다.4 and 5 are simulation comparison diagrams comparing the conventional technology with the electric field cancer treatment apparatus using an optimization algorithm according to an embodiment of the present invention.
먼저, 도 4를 참조하여 설명하면, 도 4는 기존방식대로 동일한 전압값을 모든 전극에 적용하였을 때에 나온 전기장 분포(before)와 전기장 최적화부를 적용하여 전극마다 각각 다른 전압값을 적용했을 때의 전기장 분포(after)를 보여주고 있다.First, referring to FIG. 4, FIG. 4 shows an electric field when a different voltage value is applied to each electrode by applying an electric field distribution and an electric field optimizer which are obtained when the same voltage value is applied to all electrodes in the conventional manner. It shows the distribution (after).
도 4의 화살표 아래의 두 그림은 식도부분을 확대한 시뮬레이션으로서, 높은 전기장세기를 나타내는 붉은색이 전기장 최적화부를 적용하여 서로 다른 크기의 전압값을 적용하였을 때, 전기장의 세기가 줄어들었든 것을 확인할 수 있었다.The two figures below the arrow of FIG. 4 are enlarged simulations of the esophagus. When the red color indicating the high electric field strength is applied to the electric field optimizer and the voltage values of different sizes are applied, the electric field strength decreases. Could.
표 1은 도 4를 정량적으로 분석한 것으로서, V30 지표는 처방 전기장세기의 30%(1.5V/cm × 0.3 = 0.45V/cm)가 전달되는 상대적 부피, V60, V90 은 각각 처방 전기장세기의 60%, 90%가 전달된 상대적 부피를 의미하며, Eave는 장기에 전달된 평균 전기장 세기를 의미한다. 전기장 최적화부의 적용 전과 후를 비교했을 때 주요 장기의 전기장 세기가 줄어든 것을 확인할 수 있다.Table 1 is a quantitative analysis of Figure 4, the V 30 indicator is the relative volume delivered 30% (1.5V / cm × 0.3 = 0.45V / cm) of the electric field strength, V 60 , V 90 represents the relative volume delivered 60% and 90% of the prescription field strength, respectively, and Eave represents the average field strength delivered to the organ. Comparing the before and after application of the field optimizer, the field strength of major organs is reduced.
[표 1]TABLE 1
Figure PCTKR2019002009-appb-I000014
Figure PCTKR2019002009-appb-I000014
도 5는 기존방식대로 동일한 전압값을 모든 전극에 걸어주었을 때에 나온 전기장 분포(before)와 최적화 알고리즘을 적용하여 전극마다 각각 다른 전압값을 적용했을 때의 전기장 분포(after)를 보여주고 있다.Figure 5 shows the electric field distribution (after) when the different voltage values are applied to each electrode by applying the electric field distribution (before) and the optimization algorithm obtained when the same voltage value is applied to all electrodes in the conventional manner.
신장의 경우에 최적화 알고리즘을 적용하기 전에 비해 적용한 후에 높은 전기장 세기를 나타내는 붉은색의 비중이 적은 것을 정성적으로 확인할 수 있다. In the case of elongation, it can be confirmed qualitatively that the red color which shows high electric field strength after application is less than before application of optimization algorithm.
표 2는 도 5를 정량적으로 분석한 표로서 전기장 최적화부를 적용한 후의 지표 값들이 모두 줄어든 것을 확인할 수 있다. 즉 정상장기에 전달되는 전기장세기가 전기장 최적화부를 적용한 후에 크게 줄어든 것을 확인할 수 있다.Table 2 shows a quantitative analysis of FIG. 5, and all indicator values after applying the electric field optimizer are reduced. That is, it can be seen that the electric field strength delivered to the normal organ is greatly reduced after applying the electric field optimizer.
[표 2]TABLE 2
Figure PCTKR2019002009-appb-I000015
Figure PCTKR2019002009-appb-I000015
한편, 본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명이 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.On the other hand, the embodiments of the present invention disclosed in the specification and drawings are merely presented specific examples to easily explain the technical contents and help the understanding of the present invention, and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.

Claims (10)

  1. 복수의 전극을 구비하는 한 쌍 이상의 전극패드를 이용하여 환자의 종양 및 정상조직에 전기장을 인가하여 종양을 치료하는 전기장 암치료 치료 장치에 있어서,In the electric field cancer treatment treatment device for treating a tumor by applying an electric field to the tumor and normal tissue of the patient using a pair of electrode pads having a plurality of electrodes,
    상기 촬영된 환자의 영상 이미지에 있는 적어도 하나 이상의 장기를 각 장기별로 분류하는 영상분류부; 및An image classification unit classifying at least one or more organs in the captured image of each patient for each organ; And
    상기 분류된 종양과 정상조직을 바탕으로 인가되는 전극의 개수와 위치를 산정하여 기설정된 크기의 전극패드에 상기 전극을 배열하고, 상기 전극에 서로 다른 크기의 전압의 크기를 결정하는 전기장 최적화부; 포함하는 최적화 알고리즘을 이용한 전기장 암치료 장치.An electric field optimizer for arranging the electrodes on a predetermined size electrode pad by calculating the number and positions of electrodes applied based on the classified tumor and normal tissue, and determining the magnitudes of voltages having different sizes to the electrodes; Electric cancer treatment device using an optimization algorithm comprising.
  2. 제1항에 있어서,The method of claim 1,
    상기 전기장 최적화부는,The electric field optimizer,
    상기 복수의 전극에 걸어줄 전압 크기를 치료 대상이 되는 종양의 종류, 종양의 위치 및 종양과 정상조직과의 경계상태 중 적어도 하나 이상을 고려하여 산정하는 것을 특징으로 하는 최적화 알고리즘을 이용한 전기장 암치료 장치.The electric field cancer treatment using the optimization algorithm, the voltage magnitude to be applied to the plurality of electrodes is calculated in consideration of at least one or more of the type of tumor, the location of the tumor and the boundary state between the tumor and normal tissue. Device.
  3. 제2항에 있어서,The method of claim 2,
    상기 전기장 최적화부는,The electric field optimizer,
    종양에는 처방 전기장세기 이상을 가하는 동시에 정상 장기에는 최소로 전달될 수 있게 전극의 전압 크기를 산출하는 것을 특징으로 하는 전기장 암치료 장치. An electric field cancer treatment apparatus comprising applying a prescribed electric field strength to a tumor and calculating a voltage level of an electrode so that the tumor can be delivered to a minimum in a normal organ.
  4. 제2항에 있어서,The method of claim 2,
    상기 전기장 최적화부는,The electric field optimizer,
    상기 장기의 중요도에 따라 한계전기장 값을 설정하여, 상기 전극이 기 설정된 한계전기장 값 이하로 전달되도록 하는 것을 특징으로 하는 최적화 알고리즘을 이용한 전기장 암치료 장치.The electric field cancer treatment apparatus using the optimization algorithm, characterized in that for setting the threshold electric field value according to the importance of the organ, so that the electrode is delivered to below the preset limit electric field value.
  5. 제3항에 있어서,The method of claim 3,
    상기 전기장 최적화부는,The electric field optimizer,
    상기 종양 또는 정상장기에 전달되는 전기장 세기, 정상 장기별 가중치 및 한계전기장 값 중 적어도 하나 이상을 이용하여 선정하는 목적함수를 구비하는 것을 특징으로 하는 최적화 알고리즘을 이용한 전기장 암치료 장치.Electric field cancer treatment apparatus using an optimization algorithm characterized in that it comprises an objective function selected by using at least one or more of the electric field strength, normal organ weights and threshold electric field value delivered to the tumor or normal organs.
  6. 제1항에 있어서,The method of claim 1,
    상기 한 쌍의 전극패드는,The pair of electrode pads,
    한 쌍 중 한면 접지(G)로 형성되는 것을 특징으로 하는 최적화 알고리즘을 이용한 전기장 암치료 장치.An electric field cancer treatment apparatus using an optimization algorithm, characterized in that formed on one side of the pair ground (G).
  7. 복수의 전극을 구비하는 한 쌍 이상의 전극패드를 이용하여 환자의 종양 및 정상조직에 전기장을 인가하여 종양을 치료하는 전기장 암치료 치료 방법에 있어서,In the electric field cancer treatment treatment method of treating a tumor by applying an electric field to the tumor and normal tissue of the patient using a pair of electrode pads having a plurality of electrodes,
    환자의 영상 이미지를 기반으로 상기 영상 이미지를 호출하여 상기 영상 이미지를 각 장기별로 분류하는 단계;Classifying the image by each organ by calling the image based on the image of the patient;
    전기장 최적화부를 통해 상기 환자의 종양 및 종양과 정상조직의 경계상태를 바탕으로 기설정된 크기의 전극패드에 전극의 개수와 위치를 배열하고, 상기 복수의 전극에 인가하는 전압의 크기를 산정하여 적어도 하나 이상의 치료계획을 수립하는 단계;The number and positions of electrodes are arranged on electrode pads having a predetermined size based on the tumor of the patient and the boundary state between the tumor and the normal tissue, and the magnitude of the voltage applied to the plurality of electrodes is calculated by the electric field optimizer. Establishing a treatment plan;
    상기 수립된 치료계획을 분석 및 평가하는 단계; 및Analyzing and evaluating the established treatment plan; And
    상기 분석된 치료계획 중 최적의 조건으로 상기 복수의 전극에 전압을 인가하여 치료하는 단계;를 포함하는 전기장을 인가하는 전기장 암치료 방법.And applying an electric field to the plurality of electrodes under optimal conditions of the analyzed treatment plan.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 전기장 최적화부를 통해 종양에는 처방전기장 이상 가하는 동시에 정상조직에는 최소로 전달될 수 있는 전극전압의 크기를 산출하여 전기장을 전달하는 전기장 암치료 방법.An electric field cancer treatment method of applying an electric field to a tumor through the electric field optimizer and calculating an magnitude of electrode voltage that can be delivered to a normal tissue to a minimum.
  9. 제7항에 있어서,The method of claim 7, wherein
    상기 전극에 인가되는 전압 및 주파수는 각각,Voltage and frequency applied to the electrode, respectively,
    0V ~ 150V 이내이고, 100 ~ 300kHz 사이 값인 것을 특징으로 하는 전기장을 인가하는 전기장 암치료 방법.An electric field cancer treatment method for applying an electric field, which is within 0 V to 150 V and a value between 100 and 300 kHz.
  10. 제7항에 있어서,The method of claim 7, wherein
    상기 전극에 인가되는 전압의 크기는,The magnitude of the voltage applied to the electrode,
    종양에 인가되는 상기 처방전기장의 크기와 장기별 가중치 및 기설정된 한계전기장 값 중 적어도 하나 이상을 이용하여 결정되는 것을 특징으로 하는 전기장 암치료 방법.An electric field cancer treatment method, characterized in that determined using at least one or more of the size of the prescribed electric field and the weight for each organ and a predetermined limit electric field value applied to the tumor.
PCT/KR2019/002009 2018-07-03 2019-02-20 Electric field cancer treatment device and method using optimization algorithm WO2020009306A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/257,252 US11833351B2 (en) 2018-07-03 2019-02-20 Apparatus and method for alternating electric fields therapy using an optimization algorithm
EP19831280.3A EP3819005A4 (en) 2018-07-03 2019-02-20 Electric field cancer treatment device and method using optimization algorithm

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0077093 2018-07-03
KR20180077093 2018-07-03
KR1020180097291A KR102104961B1 (en) 2018-07-03 2018-08-21 Apparatus for alternating electric fields therapy using optimized algorithm
KR10-2018-0097291 2018-08-21

Publications (1)

Publication Number Publication Date
WO2020009306A1 true WO2020009306A1 (en) 2020-01-09

Family

ID=69059709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002009 WO2020009306A1 (en) 2018-07-03 2019-02-20 Electric field cancer treatment device and method using optimization algorithm

Country Status (1)

Country Link
WO (1) WO2020009306A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171555A (en) * 2021-04-23 2021-07-27 济南显微智能科技有限公司 Device for treating cancer by electric field and device using method
CN114099962A (en) * 2021-12-22 2022-03-01 江苏海莱新创医疗科技有限公司 Tumor electric field treatment system and electrode plate assembly thereof
CN117204943A (en) * 2023-11-07 2023-12-12 南京康友医疗科技有限公司 Power control method and system of radio frequency ablation catheter
CN117563139A (en) * 2024-01-12 2024-02-20 湖南安泰康成生物科技有限公司 Device and processor for inhibiting tumor proliferation by using electric field

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7146210B2 (en) * 2000-02-17 2006-12-05 Standen Ltd. Apparatus and method for optimizing tumor treatment efficiency by electric fields
US20100250209A1 (en) * 2009-03-31 2010-09-30 Pearson Robert M System and method for estimating a treatment region for a medical treatment device
WO2015111091A1 (en) * 2014-01-21 2015-07-30 新エネルギー産業株式会社 Electric potential variation-type medical device
US20170161454A1 (en) * 2014-07-03 2017-06-08 Bryan Howell Systems and methods for model-based optimization of spinal cord stimulation electrodes and devices
WO2018106843A1 (en) * 2016-12-06 2018-06-14 The Regents Of The University Of California Optimal multi-electrode transcutaneous stimulation with high focality and intensity
KR20180072811A (en) * 2015-10-28 2018-06-29 지브 봄존 Optimized TTField treatment of overhead electrodes based on MRI-based conductivity measurements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7146210B2 (en) * 2000-02-17 2006-12-05 Standen Ltd. Apparatus and method for optimizing tumor treatment efficiency by electric fields
US20100250209A1 (en) * 2009-03-31 2010-09-30 Pearson Robert M System and method for estimating a treatment region for a medical treatment device
WO2015111091A1 (en) * 2014-01-21 2015-07-30 新エネルギー産業株式会社 Electric potential variation-type medical device
US20170161454A1 (en) * 2014-07-03 2017-06-08 Bryan Howell Systems and methods for model-based optimization of spinal cord stimulation electrodes and devices
KR20180072811A (en) * 2015-10-28 2018-06-29 지브 봄존 Optimized TTField treatment of overhead electrodes based on MRI-based conductivity measurements
WO2018106843A1 (en) * 2016-12-06 2018-06-14 The Regents Of The University Of California Optimal multi-electrode transcutaneous stimulation with high focality and intensity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171555A (en) * 2021-04-23 2021-07-27 济南显微智能科技有限公司 Device for treating cancer by electric field and device using method
CN114099962A (en) * 2021-12-22 2022-03-01 江苏海莱新创医疗科技有限公司 Tumor electric field treatment system and electrode plate assembly thereof
CN117204943A (en) * 2023-11-07 2023-12-12 南京康友医疗科技有限公司 Power control method and system of radio frequency ablation catheter
CN117204943B (en) * 2023-11-07 2024-02-09 南京康友医疗科技有限公司 Power control method and system of radio frequency ablation catheter
CN117563139A (en) * 2024-01-12 2024-02-20 湖南安泰康成生物科技有限公司 Device and processor for inhibiting tumor proliferation by using electric field
CN117563139B (en) * 2024-01-12 2024-04-09 湖南安泰康成生物科技有限公司 Device and processor for inhibiting tumor proliferation by using electric field

Similar Documents

Publication Publication Date Title
WO2020009306A1 (en) Electric field cancer treatment device and method using optimization algorithm
KR20200004228A (en) Apparatus and method for alternating electric fields therapy using optimized algorithm
WO2019142995A1 (en) Nerve stimulator
CN109069824B (en) Treatment of autoimmune diseases using deep brain stimulation
Kerschensteiner et al. Organization of the dorsal lateral geniculate nucleus in the mouse
Lecas et al. Changes in neuronal activity of the monkey precentral cortex during preparation for movement
US8620442B2 (en) Multi-electrode integration in a visual prosthesis
WO2015076444A1 (en) Brain wave measurement and brain stimulation system
WO2012124893A2 (en) Method for tracking eye position and medical headlamp using same
WO2022014761A1 (en) Absorption-energy-based electric field cancer treatment planning system and method
WO2020235824A2 (en) Radiotherapy system for treating abnormal brain proteins, and treatment method therefor
WO2015093864A1 (en) Radiation therapy planning recommendation method and system
WO2019146901A1 (en) Non-invasive neural electrode assembly and neural electrode control system using same
WO2022071623A1 (en) Method and system for optimizing electric field for tumor treatment on basis of body temperature control and absorbed energy, and electric field treatment method and system including same
Basu et al. A comparison of dose distribution from Manchester-style and Fletcher-style intracavitary brachytherapy applicator systems in cervical cancer
WO2022114383A1 (en) Electric field cancer treatment apparatus and method using rotating alternating current electric field
WO2021085905A1 (en) Radiation therapy apparatus capable of inducing magnetic resonance imaging and controlling in-vivo dose
WO2021235592A1 (en) Quality assurance device and method for cancer treatment system using electric field
EP3752059A1 (en) Methods, computer-readable media, mri-compatible tongue measurement devices, and methods for treating dysarthria, swallowing, and mastication disorders associated with cns or pns lesions
WO2021002631A2 (en) Electric field-based cancer treatment apparatus using distributed current applied to skin
WO2017188786A1 (en) Respiratory gating system
WO2023140453A1 (en) Method for providing dyskinesia-related information and device used therefor
WO2020060046A1 (en) Convolutional neural network-based mammogram image analysis method using four-channel input, and system therefor
CN113056303A (en) Tool for programming neuromodulation using images
WO2023096065A1 (en) Method for diagnosing radiation sensitivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019831280

Country of ref document: EP

Effective date: 20210203