WO2020009245A1 - 温度検知材料およびそれを用いた温度検知インク - Google Patents

温度検知材料およびそれを用いた温度検知インク Download PDF

Info

Publication number
WO2020009245A1
WO2020009245A1 PCT/JP2019/026957 JP2019026957W WO2020009245A1 WO 2020009245 A1 WO2020009245 A1 WO 2020009245A1 JP 2019026957 W JP2019026957 W JP 2019026957W WO 2020009245 A1 WO2020009245 A1 WO 2020009245A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
resin
methyl
ink
ethyl
Prior art date
Application number
PCT/JP2019/026957
Other languages
English (en)
French (fr)
Inventor
暢一郎 岡崎
航平 會田
森 俊介
昌宏 川崎
憲一 相馬
雅彦 荻野
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2020009245A1 publication Critical patent/WO2020009245A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B9/00Esters or ester-salts of leuco compounds of vat dyestuffs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/328Inkjet printing inks characterised by colouring agents characterised by dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/50Sympathetic, colour changing or similar inks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/12Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance
    • G01K11/16Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in colour, translucency or reflectance of organic materials

Definitions

  • the present invention relates to a temperature detection material for confirming the temperature of a temperature detection target and the like and an ink using the same.
  • Cold storage medicines such as fresh foods, frozen foods, vaccines, and biopharmaceuticals need a cold chain that keeps them at a constant low temperature during the production, transportation, and consumption distribution processes.
  • shipping containers are usually equipped with a data logger that can continuously record time and temperature, and if there is damage to the product, the responsibility is assumed. It is possible to clarify the location.
  • the temperature indicator is not as accurate as a data logger, it can be attached to individual products and the surface is dyed when the temperature rises above or falls below a preset temperature. It is possible. A temperature detecting material is used for the temperature indicator.
  • the temperature sensing material itself has a low resistance to an organic solvent, so that when it comes into contact with the organic solvent, the color changes, or the color change due to the original temperature change is hindered. Also. A similar effect may occur in a mixture with a binder resin from which protons can be eliminated. Therefore, encapsulation of the temperature detecting material in microcapsules has been studied.
  • Patent Literatures 1 and 2 disclose a reversible composition comprising an electron-donating color-forming organic compound, an electron-accepting compound, and a compound that is a reaction medium that causes an electron transfer reaction between the electron-donating color-forming organic compound and the electron-accepting compound.
  • a microcapsule pigment containing a discoloring composition is disclosed. It is disclosed that a urethane-based or melamine-based material is used as a wall film material of the microcapsule.
  • an object of the present invention is to provide a temperature detecting material that changes color stably with respect to temperature change even in an organic solvent.
  • the temperature detection material according to the present invention includes a temperature indicator containing a leuco dye, a developer and a decolorant, and a resin film containing the temperature indicator, wherein the resin film is formed of silicone. It is a resin or an epoxy resin.
  • the present invention it is possible to provide a temperature detecting material that changes color stably with respect to temperature change even in an organic solvent.
  • FIG. 3 is a diagram showing a temperature change of a color density of a temperature indicating material A.
  • FIG. 5 is a diagram showing a temperature change of a color density of a temperature indicating material B. It is a figure showing the manufacturing method of the temperature sensing material concerning an embodiment. It is a figure showing the manufacturing method of the temperature sensing material concerning an embodiment.
  • FIG. 4 is a diagram showing a color change according to the temperature of a printed matter using the temperature detecting material of Example 1.
  • FIG. 9 is a diagram showing a color change depending on the temperature of a printed matter using the temperature detecting material of Example 2.
  • the temperature detection material 10 a includes a temperature indicating material 6 and a resin coating 4 that contains the temperature indicating material 6.
  • the temperature indicating material 6 includes a leuco dye 1, a developer 2, and a decolorant 3.
  • the temperature detecting material 10b according to one embodiment may have a structure in which the resin 13 is present inside the resin film 4 and the temperature indicating material 6 is dispersed in the resin.
  • each configuration of the temperature detecting materials 10a and 10b will be described in detail.
  • the temperature-indicating material 6 is a material whose color density is reversibly changed by a temperature change (heating / cooling), and includes a leuco dye 1 which is an electron-donating compound, a developer 2 which is an electron-accepting compound, and a color changing agent. Includes decolorizer 3 for controlling the temperature range.
  • FIG. 3 is a diagram illustrating a temperature change of the color density of the temperature indicating material A according to the embodiment.
  • the vertical axis represents color density
  • the horizontal axis is the temperature
  • T a is developer starting temperature
  • T d is the decolorization initiation temperature.
  • the temperature indicating material A has a hysteresis characteristic with respect to the temperature change of the color density.
  • the temperature indicating material A is a material that has been melted and rapidly cooled to be solidified in an amorphous state without being crystallized.
  • FIG. 4 is a diagram illustrating a temperature change of the color density of the temperature indicating material B according to the embodiment.
  • the horizontal axis in FIG. 4 is a temperature
  • T a is developer starting temperature
  • T d is decoloring starting temperature.
  • the temperature indicating material B has a hysteresis characteristic in a change in color density.
  • the temperature indicating material B is a material that becomes a supercooled liquid when cooled after being melted.
  • the leuco dye 1 is an electron-donating compound, and conventionally known dyes for pressure-sensitive copying paper and thermosensitive recording paper can be used.
  • conventionally known dyes for pressure-sensitive copying paper and thermosensitive recording paper can be used.
  • An azomethine type is exemplified.
  • leuco dyes include 9- (N-ethyl-N-isopentylamino) spiro [benzo [a] xanthene-12,3′-phthalide], 2-methyl-6- (Np-tolyl-N- Ethylamino) -fluoran 6- (diethylamino) -2-[(3-trifluoromethyl) anilino] xanthen-9-spiro-3′-phthalide, 3,3-bis (p-diethylaminophenyl) -6-dimethylamino Phthalide, 2'-anilino-6 '-(dibutylamino) -3'-methylspiro [phthalide-3,9'-xanthene], 3- (4-diethylamino-2-methylphenyl) -3- (1-ethyl -2-methylindol-3-yl) -4-azaphthalide, 1-ethyl-8- [N-ethyl-N- (4-[N
  • 2Two or more leuco dyes individually listed may be used in combination.
  • the developer 2 changes the structure of the leuco dye 1 by contact with the electron-donating leuco dye 1 to give a color.
  • a known color developer used for thermosensitive recording paper, pressure-sensitive copying paper, or the like can be used.
  • Specific examples of such a developer include benzyl 4-hydroxybenzoate, 2,2'-biphenol, 1,1-bis (3-cyclohexyl-4-hydroxyphenyl) cyclohexane, 2,2-bis (3 Examples thereof include phenols such as -cyclohexyl-4-hydroxyphenyl) propane, bisphenol A, bisphenol F, bis (4-hydroxyphenyl) sulfide, paraoxybenzoate, and gallic ester.
  • the developer 2 is not limited to these, but may be any compound as long as it is an electron acceptor and can change the color of the leuco dye 1.
  • metal salts of carboxylic acid derivatives, salicylic acid and salicylic acid metal salts, sulfonic acids, sulfonates, phosphoric acids, metal phosphates, acid phosphates, acid phosphate metal salts, phosphorous acid, phosphorous acid Metal salts or the like may be used.
  • those having high compatibility with Leuco Dye 1 and a decoloring agent described later are preferable, and organic developers such as benzyl 4-hydroxybenzoate, 2,2'-bisphenol, bisphenol A, and gallic esters are preferable. .
  • the temperature indicating material 6 may use one type of these color developers 2 or a combination of two or more types. By combining the color developer 2, the color density of the leuco dye 1 at the time of coloring can be adjusted. The amount of the developer 2 is selected according to the desired color density. For example, usually, the above leuco dye 1 may be selected within a range of about 0.1 to 100 parts by mass with respect to 1 part by mass.
  • the decoloring agent 3 is a compound capable of dissociating the bond between the leuco dye 1 and the developer 2, and a compound capable of controlling the coloration temperature of the leuco dye 1 and the developer 2.
  • the decolorizing agent 3 is solidified in a state of phase separation.
  • the decoloring agent 3 is melted, and the function of dissociating the bond between the leuco dye 1 and the developer 2 is exhibited. Therefore, the state change temperature of the decoloring agent 3 is important for controlling the temperature of the temperature indicating material 6.
  • the material of the decoloring agent 3 a material capable of dissociating the bond between the leuco dye 1 and the color developing agent 2 can be widely used. As long as the polarity is low and does not show color development with respect to the leuco dye 1 and the polarity is high enough to dissolve the leuco dye 1 and the color developing agent 2, various materials can be used as the decoloring agent.
  • organic compounds such as compounds, azimuth compounds, ether compounds, fat compounds, sugar compounds, peptide compounds, nucleic acid compounds, alkaloid compounds, and steroid compounds can be used.
  • tricaprin isopropyl myristate, m-tolyl acetate, diethyl sebacate, dimethyl adipate, 1,4-diacetoxybutane, decyl decanoate, diethyl phenylmalonate, diisobutyl phthalate, triethyl citrate, phthalate Benzyl butylate, butylphthalylbutyl glycolate, methyl N-methylanthranilate, ethyl anthranilate, 2-hydroxyethyl salicylate, methyl nicotinate, butyl 4-aminobenzoate, methyl p-toluate, 4-nitrobenzoic acid Ethyl, 2-phenylethyl phenylacetate, benzyl cinnamate, methyl acetoacetate, geranyl acetate, dimethyl succinate, dimethyl sebacate, diethyl oxalate, monoolein, butyl
  • the compounds are not limited to these compounds, and any material can be used as long as the bond between the leuco dye 1 and the developer 2 can be dissociated.
  • decolorizing agents 3 may be used alone or in combination of two or more.
  • the discoloring temperature can be adjusted by changing the discoloring time by combining the decoloring agent.
  • the temperature indicating material 6 can be produced by mixing the leuco dye 1, the developer 2, and the decolorant 3. It is also possible to use a material obtained by heating the temperature indicating material 6 to a liquid state by heating it to a temperature equal to or higher than the melting point thereof, and then cooling the temperature indicating material 6 to a temperature below the freezing point and solidifying the material.
  • the resin film 4 used for the microcapsules it is possible to use a photo-curing or thermosetting resin that is cured by ultraviolet rays, and use a silicone resin or an epoxy resin as a material having high water resistance and high light transmittance. be able to. From the viewpoint of heat resistance, a silicone resin is particularly preferable.
  • the silicone resin and the epoxy resin specifically, methyl silicone resin, methylphenyl silicone resin, bisphenol A epoxy resin, bisphenol F epoxy resin, novolak epoxy resin, and aliphatic epoxy resin can be used. .
  • the film thickness is large.
  • the thickness of the resin film is preferably 5 to 30% of the microcapsule diameter.
  • the printing ink must have a viscosity suitable for the printing apparatus, and the concentration of the temperature detecting materials 10a and 10b included in the printing ink is preferably 5 to 20% by mass. Further, the concentration of the binder resin is preferably 1 to 30% by mass.
  • a method using a device such as gravure printing, screen printing, a dispenser, or an ink jet printer. It is preferable to adjust the diameter of the microcapsules in consideration of device compatibility, storage stability, and the like by a marking method.
  • the distribution (particle size distribution) of the particle diameter of the microcapsules can be measured by, for example, a Coulter counter, and as the index of the particle diameter, an average diameter, a median diameter, and a mode diameter are used. .
  • the particle size of the temperature sensing material is defined as a median size.
  • the particle diameter (median diameter) of the microcapsules is preferably from 0.1 ⁇ m to 100 ⁇ m, more preferably from 0.1 ⁇ m to 10 ⁇ m.
  • the thickness is preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • microencapsulation examples include, but are not limited to, emulsion polymerization, suspension polymerization, coacervation, interfacial polymerization, and spray drying. Further, two or more different methods may be combined. When an aqueous reaction solvent is used, the pH is preferably adjusted to around 7.0.
  • FIG. 5A An example of a method for manufacturing a temperature detecting material will be described with reference to FIG.
  • a reaction medium 5 adjusted to pH 7.0 is prepared (FIG. 5A).
  • the temperature indicating material 6 is dropped to form temperature indicating material particles (particle-shaped temperature indicating material) 7 in the reaction medium 5 (FIG. 5B).
  • a mixture 8 of the resin composition and the surfactant constituting the resin film is further dropped to coat the temperature indicating material with the resin (FIG. 5C).
  • a temperature detecting material 10 having the structure shown in FIG. 1 can be obtained (FIG. 5D).
  • FIG. 6 shows another method of manufacturing the temperature detecting material.
  • a reaction medium 5 whose pH has been adjusted is prepared (FIG. 6A).
  • a temperature indicating material, and a surfactant constituting a resin film onto the reaction medium 5, the temperature indicating material is coated with the resin (FIG. 6B).
  • the temperature detecting material 10 having the structure shown in FIG. 2 can be obtained.
  • a temperature detection ink or paint By mixing the above-mentioned temperature detection material, a solvent, and a binder resin, a temperature detection ink or paint can be produced. By dispersing the temperature detecting material in a solvent, it becomes possible to apply the ink to inks such as pens, stamps, crayons, and ink jets, and to paints for printing.
  • a solvent a volatile organic solvent other than water can be used.
  • the organic solvent it is preferable to use a highly polar organic solvent from the viewpoint of improving the dispersibility of the temperature detecting material.
  • a highly polar organic solvent for example, in addition to water, glycerin, methanol, ethanol, alcohols such as propanol are most preferable, in addition, acetone, methyl ethyl ketone, ketones such as cyclohexanone, ethyl acetate, methyl acetate, Esters such as ethyl propionate and methyl propionate; and ethers such as dimethyl ether and tetrahydrofuran.
  • methyl ethyl ketone and ethanol which are generally used as printing inks, have high resistance to water, it is particularly preferable to use them.
  • the binder resin is preferably a polyvinyl alcohol resin for an aqueous solvent, an acrylic resin or a polyamide resin for an ethanol solvent, or an acrylic resin or a polyester resin for methyl ethyl ketone.
  • the concentration of the temperature detecting agent contained in the printing ink is preferably about 5 to 20% by mass. Further, the concentration of the binder resin is preferably 1 to 30% by mass. It can be appropriately adjusted according to the viscosity at the time of printing.
  • These temperature detecting inks have a temperature detecting function even in a liquid state, and the solvent is volatilized by printing, writing, stamping, etc. on an object to be printed, so that only the temperature detecting material constitutes a printed matter.
  • An additive may be further added to the temperature detection ink to a solution such as an organic solvent or water as long as it does not affect the temperature detection function.
  • the temperature detection ink according to the embodiment can be applied to ink for an inkjet printer.
  • the ink for an ink jet printer includes a temperature detection material, a solvent (a volatile organic solvent), and a resin (a binder resin).
  • the ink jet printer ink of the charge control system includes a temperature detecting material, a volatile organic solvent, a resin, and a conductive agent.
  • a temperature detecting material When the resistance of the ink solution is high, the ink particles in the ink discharge section of the charge control type ink jet printer do not fly straight but tend to bend. Therefore, the resistance of the ink solution needs to be approximately 2000 ⁇ cm or less.
  • Resins, pigments, and organic solvents (especially 2-butanone and ethanol, which are often used as organic solvents for ink-jet printer inks) contained in the ink have low conductivity, so that the resistance of the ink solution is as large as about 5,000 to tens of thousands ⁇ cm. . If the resistance is high, it is difficult to perform desired printing with a charge control type ink jet printer. Therefore, it is necessary to add a conductive agent to the ink in order to reduce the resistance of the ink solution.
  • the conductive agent must be dissolved in the solvent used, and it is important that the conductive agent does not affect the color tone.
  • the conductive agent generally has a salt structure. It is presumed that this has a bias of electric charge in the molecule, so that high conductivity can be exhibited.
  • the conductive agent has a salt structure and the cation has a tetraalkylammonium ion structure.
  • the alkyl chain may be linear or branched, and the larger the carbon number, the higher the solubility in a solvent. However, the smaller the number of carbon atoms, the lower the resistance with a small addition rate. The practical number of carbon atoms when used for ink is about 2 to 8.
  • Anions are preferred because hexafluorophosphate ion, tetrafluoroborate ion and the like have high solubility in a solvent.
  • perchlorate ions also have high solubility, they are explosive, so it is not practical to use them for ink.
  • chlorine, bromine, and iodine ions are also included, but these are not preferable because they tend to corrode metals such as iron and stainless steel when they come into contact with them.
  • preferred conductive agents include tetraethylammonium hexafluorophosphate, tetrapropylammonium hexafluorophosphate, tetrabutylammonium hexafluorophosphate, tetrapentylammonium hexafluorophosphate, tetrahexylammonium hexafluorophosphate, and tetraoctyl Ammonium hexafluorophosphate, tetraethylammonium tetrafluoroborate, tetrapropylammonium tetrafluoroborate, tetrabutylammonium tetrafluoroborate, tetrapentylammonium tetrafluoroborate, tetrahexylammonium tetrafluoroborate, tetraoctylammonium tetrafluoroborate, etc. It
  • a leuco dye a color developer: a color eraser is mixed at a ratio of 3: 3: 100 (mass ratio), and the mixture is stirred at 40 ° C. to prepare a temperature indicating material (mixed liquid of a leuco dye, a color developer, and a color eraser) 6. did.
  • the prepared temperature indicating material is in a decolored state at room temperature (25 ° C.), but develops black when cooled to 4 ° C. or lower.
  • a surfactant polymeric carboxylic acid-based aqueous dispersant
  • a photo-curable silicone resin Shin-Etsu Chemical: KER4000-UV
  • the material 6 was dropped one by one (FIG. 5B). Since the materials constituting the temperature indicating material are all hydrophobic, they tend to be spherical in the reaction solvent solution (aqueous solution). As a result, the temperature indicating material becomes spherical in the phosphate buffer and becomes temperature indicating material particles 7. In this state, the silicone resin mixture 8 was further dropped one by one (FIG. 5C).
  • the temperature indicating material particles are coated with the silicone resin, resulting in temperature indicating material particles 9 coated with the silicone resin.
  • the temperature indicating material, surfactant (polymeric carboxylic acid-based aqueous dispersant), and photocurable silicone resin were used in a mass ratio of 10: 100: 5.
  • the temperature detecting material 10 was produced by irradiating the temperature indicating material particles 9 coated with the silicone resin with ultraviolet rays from an ultraviolet lamp (high-pressure mercury lamp) to cure the photocurable silicone resin (FIG. 5D). .
  • the particle size (median size) of the produced temperature detecting material was 2.0 ⁇ m according to the Coulter counter measurement. Further, the thickness of the silicone resin was about 20% of the particle diameter of the temperature detection material.
  • the prepared temperature detecting material was mixed with a binder resin and a solvent to prepare an ink for an inkjet printer.
  • An acrylic binder resin manufactured by Joncryl, J682
  • an ethanol-based solvent AP7, manufactured by Japan Ethanol Sales Co., Ltd.
  • the temperature detection material and the binder resin concentration of the ink for an ink jet printer were all 5% by mass.
  • FIG. 7 shows a color change depending on the temperature of a printed matter printed with the ink of the first embodiment.
  • room temperature 25 ° C.
  • the color was erased and printing could not be confirmed, but it was found that the color was developed by cooling to 4 ° C., and printing could be confirmed. From this result, it was found that a temperature detecting material that stably changes color with respect to temperature change can be obtained even in an ethanol-based solvent.
  • Example 2 An ink was prepared in the same manner as in Example 1 except that lithium nitrate as a conductive agent was added in an amount of 5% by mass. As in Example 1, printing was performed on a printing substrate using a CIJ (Continuous Injection) type, which is a charge control type ink jet printer, as a printing device.
  • CIJ Continuous Injection
  • FIG. 8 shows the color change of the printed matter of the ink of Example 2 depending on the temperature.
  • room temperature 25 ° C.
  • the color of the temperature detecting material was erased and printing could not be confirmed.
  • the temperature detecting material developed color and printing could be confirmed. It has been found that a temperature detecting material that changes color stably with respect to temperature change can be obtained even in an ethanol-based solvent.
  • Example 3 a temperature detecting material was manufactured by a method of simultaneously mixing a temperature indicating material, a silicone resin, and a surfactant.
  • a leuco dye As a leuco dye, 2'-anilino-6 '-(N-ethyl-N-isopentylamino) -3'-methylspiro [phthalide-3,9'-[9H] xanthene] (manufactured by Yamada Chemical Industry Co., Ltd .; 205), octyl gallate as a color developer, and a mixture of methyl p-toluate and 2-phenylethyl phenylacetate at a mass ratio of 9: 1 were used as a decolorizer.
  • a leuco dye: a developer: a decoloring agent was mixed at a mass ratio of 3: 3: 100, and the mixture was stirred at 40 ° C. to prepare a temperature indicating material.
  • a temperature indicating material, a surfactant (polymeric carboxylic acid-based aqueous dispersant), and a photocurable silicone resin are mixed at a mass ratio of 10: 100: 5, and the mixture is stirred at 40 ° C. to obtain a temperature indicating material, A mixture 11 of a surfactant and a silicone resin was prepared.
  • the temperature detection material 10 was produced by irradiating ultraviolet rays to the state (FIG. 6C).
  • the produced temperature detecting material had the structure shown in FIG. 2, and had a structure in which the temperature detecting material was included in the silicone resin particles.
  • the particle diameter (median diameter) of the temperature detection material particles was 1.9 ⁇ m according to the Coulter counter measurement.
  • Example 1 Using this temperature detecting material, an ink was prepared in the same manner as in Example 1, and printing was performed with an ink jet printer. As a result, characters having a temperature detecting function could be printed in the same manner as in Example 1. It has been found that a temperature detecting material that changes color stably with respect to temperature change can be obtained even in an ethanol-based solvent. Further, the coloring property was slightly improved as compared with Example 1.
  • 0.5 g of the present core material and 2.5 g of an anionic surfactant are mixed with 20 cc of a phosphate buffer solution (pH 7.0), and heated at 140 ° C. for 1 hour in an autoclave container to obtain phosphoric acid.
  • a dispersion was prepared in which the core material was uniformly dispersed in the buffer.
  • the dispersion liquid and the photocurable silicone resin are mixed such that the core material, the surfactant (polymeric carboxylic acid-based aqueous dispersant), and the photocurable silicone resin have a mass ratio of 10: 100: 5. Stirred at ° C.
  • the particle size (median size) of the produced temperature detecting material was 1.8 ⁇ m according to the Coulter counter measurement. Further, the thickness of the silicone resin was about 20% of the particle diameter of the temperature detecting material.
  • Example 2 An ink was prepared using this temperature detecting material in the same manner as in Example 1, and was printed by an inkjet printer.
  • the printed characters were colorless at room temperature, but were confirmed to develop a blue color when heated to 50 ° C. It has been found that a temperature detecting material that changes color stably with respect to temperature change can be obtained even in an ethanol-based solvent.
  • Example 5 A temperature indicating material, a temperature detecting material, and an ink were produced in the same manner as in Example 4, except that a mixture of vitamin K4 and propyl gallate at a mass ratio of 1: 1 was used as a decolorizing agent.
  • the temperature indicating material of Example 5 is a material that is in a decolored state at room temperature but becomes colored (blue) when heated to 50 ° C.
  • Example 2 The prepared ink was printed by an ink jet printer in the same manner as in Example 1.
  • the printed characters were colorless at room temperature, but it was confirmed that heating to 25 ° C developed a blue color. It has been found that a temperature detecting material that changes color stably with respect to temperature change can be obtained even in an ethanol-based solvent.
  • thermosetting silicone resin in place of the photocurable silicone resin, heating at 90 ° C. for 5 hours to cure and encapsulate the silicone resin to produce a temperature detecting material and ink in the same manner as in Example 1. Then, printing was performed using an inkjet printer.
  • the print was erased at room temperature (25 ° C.) and could not be confirmed, but it was confirmed that the color developed when cooled to 4 ° C. It has been found that a temperature detecting material that changes color stably with respect to temperature change can be obtained even in an ethanol-based solvent.
  • thermosetting epoxy resin instead of a photocurable silicone resin, heating the epoxy resin at 90 ° C. for 5 hours to cure the epoxy resin and produce a temperature detecting material and ink in the same manner as in Example 1 except that the epoxy resin was encapsulated. Then, printing was performed using an inkjet printer.
  • the print was erased at room temperature (25 ° C.) and could not be confirmed, but it was confirmed that the color developed when cooled to 4 ° C. It has been found that a temperature detecting material that changes color stably with respect to temperature change can be obtained even in an ethanol-based solvent.
  • thermoelectric material was prepared in the same manner as in Example 1, and the thermoelectric material was coated with cross-linked melamine using a general known method (Source: Application development of micro / nano-based capsules and fine particles, CMC Publishing, p. 59). The prepared temperature detecting material was manufactured.
  • thermoelectric material dispersion solution An aqueous solution in which poly (ethylene-alt-maleic anhydride) was dissolved as a surfactant was heated to 40 ° C. and stirred at 600 rpm.
  • the temperature indicating material prepared in Example 1 was dropped and dispersed in this aqueous solution to prepare a temperature indicating material dispersion solution. At this time, the temperature indicating material was heated to 40 ° C.
  • an aqueous solution of melamine and formalin was prepared, the pH was appropriately adjusted with sodium hydroxide, and the resulting solution was added dropwise to the dispersion of the thermoelectric material to produce microcapsules in which the surface of the thermoelectric material particles was coated with crosslinked melamine.
  • Example 2 An ink was prepared in the same manner as in Example 1 except that the temperature detecting material of Comparative Example 1 was used, and the ink was printed on a PET film by an inkjet printer.
  • Comparative Example 2 A temperature detecting material and ink were prepared in the same manner as in Comparative Example 1 except that a urethane-based resin was used instead of the melamine-based resin, and printing was performed on a PET film by an inkjet printer.
  • the print was erased and could not be confirmed. In addition, it was confirmed that printing did not appear even when the temperature was changed from room temperature to 4 ° C. or lower. It is considered that the temperature detection material was affected by the ethanol used as the solvent, and the temperature detection function was lost. As described above, according to the present invention, it has been shown that a temperature detecting material that can stably change color with respect to a temperature change even in an organic solvent can be provided. Note that the present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, for a part of the configuration of each embodiment, it is possible to add / delete / replace another configuration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

本発明は、有機溶剤中でも温度変化に対して安定に色変化する温度検知材料を提供することを目的とする。 上記目的を達成するために、本発明に係る温度検知材料は、ロイコ染料(1)、顕色剤(2)及び消色剤(3)を含む示温材料と、前記示温材料を内包する樹脂被膜(4)とを含み、前記樹脂被膜(4)はシリコーン樹脂又はエポキシ樹脂であることを特徴とする。

Description

温度検知材料およびそれを用いた温度検知インク
 本発明は、温度検知対象の温度の確認等を行うための温度検知材料およびそれを用いたインクに関する。
 生鮮食品、冷凍食品や、ワクチン、バイオ医薬品等の低温保存医薬品は、生産、輸送、消費の流通過程の中で、途切れることなく低温に保つコールドチェーンが必要である。実際には、流通時の温度を絶えず測定・記録するため、通常、運送コンテナには時間と温度を連続的に記録可能なデータロガーを搭載した場合が多く、製品にダメージがあればその責任の所在を明らかにすることが可能である。
 製品個別の品質を管理する場合は、データロガーではなく、ラベルやシール型の温度インジケータを利用する方法がある。温度インジケータはデータロガーほどの記録精度はないものの、製品個別に貼付け可能であり、あらかじめ設定された温度を上回るか、下回るかした場合に表面が染色されるため、温度環境の変化を知ることが可能である。温度インジケータには、温度検知材料が用いられている。
 温度検知材料を用いて個別製品に文字、記号、バーコードおよび2次元コードのようなマーキングをするためには、グラビア印刷、スクリーン印刷、ディスペンサ、インクジェットプリンタ等の装置を用いた方法を用いることが可能である。この際、温度検知材料と溶剤およびバインダ樹脂を主成分とするインクを作製してマーキングに用いる。
 温度検知材料そのものは、有機溶剤に対する耐性が弱いために有機溶剤に接触すると変色したり、本来の温度変化による色変化が阻害される。また。プロトンを脱離しうるバインダ樹脂との混合物においても同様の影響がおきることがある。そのため、温度検知材料をマイクロカプセルで内包することが検討されている。
 特許文献1及び2には、電子供与性呈色性有機化合物、電子受容性化合物、電子供与性呈色性有機化合物と電子受容性化合物による電子授受反応を生起させる反応媒体である化合物からなる可逆変色性組成物を内包したマイクロカプセル顔料が開示されている。マイクロカプセルの壁膜材料としては、ウレタン系、メラミン系材料を用いることが開示されている。
特開2005-320485号公報 特開2006-057031号公報
 温度検知材料を、溶剤やバインダ樹脂と混合し、インク化して使用する場合、特許文献1及び2で開示された温度検知材料は、有機溶剤に耐性がないため、インクの溶剤として有機溶剤を用いることができない。
 そこで、本発明は、有機溶剤中でも温度変化に対して安定に色変化する温度検知材料を提供することを目的とする。
 上記目的を達成するために、本発明に係る温度検知材料は、ロイコ染料、顕色剤及び消色剤を含む示温材料と、前記示温材料を内包する樹脂被膜とを含み、前記樹脂被膜はシリコーン樹脂又はエポキシ樹脂であることを特徴とする。
 本発明によれば、有機溶剤中でも温度変化に対して安定に色変化する温度検知材料を提供することができる。
実施形態に係る温度検知材料の模式的に示す断面図である。 実施形態に係る温度検知材料の模式的に示す断面図である。 示温材料Aの色濃度の温度変化を示す図である。 示温材料Bの色濃度の温度変化を示す図である。 実施形態に係る温度検知材料の製造方法を示す図である。 実施形態に係る温度検知材料の製造方法を示す図である。 実施例1の温度検知材料を用いた印字物の温度による色変化を示す図である。 実施例2の温度検知材料を用いた印字物の温度による色変化を示す図である。
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
 <温度検知材料>
 実施形態に係る温度検知材料について、図1及び図2を用いて説明する。図1および図2に示すように、温度検知材料10aは、示温材料6と、示温材料6を内包する樹脂被膜4とを含む。示温材料6は、ロイコ染料1、顕色剤2、消色剤3を含む。図2に示すように、一実施形態に係る温度検知材料10bは、樹脂被膜4の内側に樹脂13が存在し、示温材料6が樹脂中に分散している構造であってもよい。以下、温度検知材料10a,10bの各構成について詳述する。
 (示温材料)
 示温材料6は、温度変化(昇温/降温)により色濃度が可逆的に変化する材料であり、電子供与性化合物であるロイコ染料1、電子受容性化合物である顕色剤2、および変色の温度範囲を制御するための消色剤3を含む。
 示温材料6の色変化を示温材料A、Bを例に図3、4を用いて説明する。
 図3は、一実施形態に係る示温材料Aの色濃度の温度変化を示す図である。図3において、縦軸は色濃度、横軸は温度であり、Tは顕色開始温度、Tは消色開始温度である。図3に示すように、示温材料Aは色濃度の温度変化にヒステリシス特性を有する。示温材料Aは、融解させた後に急冷することにより、結晶化させずに非晶状態のまま凝固させた材料である。
 消色剤に結晶化しにくい材料を用いると、示温材料Aの消色開始温度T以上の溶融状態であるPから顕色開始温度T以下に急冷させた際、消色剤が顕色剤を取りこんだまま非晶状態を形成して消色状態を保持する。この状態から、昇温過程で、顕色開始温度T以上に温度を上げると、消色剤が結晶化して顕色する。したがって、示温材料Aを含む温度検知材料を用いれば、顕色開始温度T未満で温度管理するときに、管理範囲を逸脱し、T以上の温度に達したか否かを検知することができる。
 図4は、一実施形態に係る示温材料Bの色濃度の温度変化を示す図である。図4において縦軸は色濃度、横軸は温度であり、Tは顕色開始温度、Tは消色開始温度である。図4示すように、示温材料Bは色濃度変化にヒステリシス特性を有する。示温材料Bは、融解させた後に冷却すると過冷却状態の液体となる材料である。
 示温材料Bは消色温度T以上の溶融状態であるPの状態から温度が低下していくと、顕色温度Tまでは消色状態を維持している。顕色温度T以下になると、消色剤が凝固点以下で結晶状態になり、ロイコ染料と顕色剤と分離されることで、ロイコ染料と顕色剤が結合し顕色する。したがって、示温材Bを含む温度検知材料を用いれば、顕色開始温度Tより高い温度に温度管理するときに、管理範囲を逸脱し、T以下の温度に達したか否かを検知することができる。
 (ロイコ染料)
 ロイコ染料1は、電子供与性化合物であって、従来、感圧複写紙用の染料や、感熱記録紙用染料として公知のものを利用できる。例えば、トリフェニルメタンフタリド系、フルオラン系、フェノチアジン系、インドリルフタリド系、ロイコオーラミン系、スピロピラン系、ローダミンラクタム系、トリフェニルメタン系、トリアゼン系、スピロフタランキサンテン系、ナフトラクタム系、アゾメチン系等が挙げられる。ロイコ染料の具体例としては、9-(N-エチル-N-イソペンチルアミノ)スピロ[ベンゾ[a]キサンテン-12,3’-フタリド]、2-メチル-6-(Np-トリル-N-エチルアミノ)-フルオラン6-(ジエチルアミノ)-2-[(3-トリフルオロメチル)アニリノ]キサンテン-9-スピロ-3’-フタリド、3,3-ビス(p-ジエチルアミノフェニル)-6-ジメチルアミノフタリド、2’-アニリノ-6’-(ジブチルアミノ)-3’-メチルスピロ[フタリド-3,9’-キサンテン]、3-(4-ジエチルアミノ-2-メチルフェニル)-3-(1-エチル-2-メチルインドール-3-イル)-4-アザフタリド、1-エチル-8-[N-エチル-N-(4-メチルフェニル)アミノ]-2,2,4-トリメチル-1,2-ジヒドロスピロ[11H-クロメノ[2,3-g]キノリン-11,3’-フタリド]が挙げられる。
 個々に挙げた2種以上のロイコ染料を組合せて用いてもよい。
 (顕色剤)
 顕色剤2は、電子供与性のロイコ染料1と接触することで、ロイコ染料1の構造を変化させて呈色させるものである。顕色剤2としては、感熱記録紙や感圧複写紙等に用いられる顕色剤として公知のものを利用できる。このような顕色剤の具体例としては、4-ヒドロキシ安息香酸ベンジル、2,2′-ビフェノール、1,1-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)シクロヘキサン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、ビスフェノールA、ビスフェノールF、ビス(4-ヒドロキシフェニル)スルフィド、パラオキシ安息香酸エステル、没食子酸エステル等のフェノール類等を挙げることができる。顕色剤2は、これらに限定されるものではなく、電子受容体でありロイコ染料1を変色させることができる化合物であればよい。また、カルボン酸誘導体の金属塩、サリチル酸およびサリチル酸金属塩、スルホン酸類、スルホン酸塩類、リン酸類、リン酸金属塩類、酸性リン酸エステル類、酸性リン酸エステル金属塩類、亜リン酸類、亜リン酸金属塩類等を用いてもよい。特に、ロイコ染料1や後述する消色剤に対する相溶性が高いものが好ましく、4-ヒドロキシ安息香酸ベンジル、2,2′-ビスフェノール、ビスフェノールA、没食子酸エステル類等の有機系顕色剤が好ましい。
 示温材料6は、これらの顕色剤2を1種、または、2種類以上組合せてもよい。顕色剤2を組合せることによりロイコ染料1の呈色時の色濃度を調整可能である。本顕色剤2の使用量は所望される色濃度に応じて選択する。例えば、通常、上述したロイコ染料1を1質量部に対して、0.1~100質量部程度の範囲内で選択すればよい。
 (消色剤)
 消色剤3は、ロイコ染料1と顕色剤2との結合を解離させることが可能な化合物であり、ロイコ染料1と顕色剤2との呈色温度を制御できる化合物である。一般的に、ロイコ染料1が呈色した状態の温度では、消色剤3が相分離した状態で固化している。また、ロイコ染料1が消色状態となる温度では、消色剤3は融解しており、ロイコ染料1と顕色剤2との結合を解離させる機能が発揮された状態である。そのため、消色剤3の状態変化温度が示温材料6の温度制御に対して重要になる。
 消色剤3の材料としては、ロイコ染料1と顕色剤2との結合を解離させることが可能である材料を幅広く用いることができる。極性が低くロイコ染料1に対して顕色性を示さず、ロイコ染料1と顕色剤2を溶解させる程度に極性が高ければ、様々な材料が消色剤になり得る。代表的には、ヒドロキシ化合物、エステル化合物、ペルオキシ化合物、カルボニル化合物、芳香族化合物、脂肪族化合物、ハロゲン化合物、アミノ化合物、イミノ化合物、N-オキシド化合物、ヒドロキシアミン化合物、ニトロ化合物、アゾ化合物、ジアゾ化合物、アジ化合物、エ-テル化合物、油脂化合物、糖化合物、ペプチド化合物、核酸化合物、アルカロイド化合物、ステロイド化合物など、多様な有機化合物を用いることができる。具体的には、トリカプリン、ミリスチン酸イソプロピル、酢酸m-トリル、セバシン酸ジエチル、アジピン酸ジメチル、1、4-ジアセトキシブタン、デカン酸デシル、フェニルマロン酸ジエチル、フタル酸ジイソブチル、クエン酸トリエチル、フタル酸ベンジルブチル、ブチルフタリルブチルグリコラート、N-メチルアントラニル酸メチル、アントラニル酸エチル、サリチル酸2-ヒドロキシエチル、ニコチン酸メチル、4-アミノ安息香酸ブチル、p-トルイル酸メチル、4-ニトロ安息香酸エチル、フェニル酢酸2-フェニルエチル、けい皮酸ベンジル、アセト酢酸メチル、酢酸ゲラニル、こはく酸ジメチル、セバシン酸ジメチル、オキサル酢酸ジエチル、モノオレイン、パルミチン酸ブチル、ステアリン酸エチル、パルミチン酸メチル、ステアリン酸メチル、酢酸リナリル、フタル酸ジ-n-オクチル、安息香酸ベンジル、ジエチレングリコールジベンゾアート、p-アニス酸メチル、酢酸m-トリル、けい皮酸シンナミル、プロピオン酸2-フェニルエチル、ステアリン酸ブチル、ミリスチン酸エチル、ミリスチン酸メチル、アントラニル酸メチル、酢酸ネリル、パルミチン酸イソプロピル、4-フルオロ安息香酸エチル、シクランデラート(異性体混合物)、ブトピロノキシル、2-ブロモプロピオン酸エチル、トリカプリリン、レブリン酸エチル、パルミチン酸ヘキサデシル、酢酸tert-ブチル、1、1-エタンジオールジアセタート、しゅう酸ジメチル、トリステアリン、アセチルサリチル酸メチル、ベンザルジアセタート、2-ベンゾイル安息香酸メチル、2、3-ジブロモ酪酸エチル、2-フランカルボン酸エチル、アセトピルビン酸エチル、バニリン酸エチル、イタコン酸ジメチル、3-ブロモ安息香酸メチル、アジピン酸モノエチル、アジピン酸ジメチル、1、4-ジアセトキシブタン、ジエチレングリコールジアセタート、パルミチン酸エチル、テレフタル酸ジエチル、プロピオン酸フェニル、ステアリン酸フェニル、酢酸1-ナフチル、ベヘン酸メチル、アラキジン酸メチル、4-クロロ安息香酸メチル、ソルビン酸メチル、イソニコチン酸エチル、ドデカン二酸ジメチル、ヘプタデカン酸メチル、α-シアノけい皮酸エチル、N-フェニルグリシンエチル、イタコン酸ジエチル、ピコリン酸メチル、イソニコチン酸メチル、DL-マンデル酸メチル、3-アミノ安息香酸メチル、4-メチルサリチル酸メチル、ベンジリデンマロン酸ジエチル、DL-マンデル酸イソアミル、メタントリカルボン酸トリエチル、ホルムアミノマロン酸ジエチル、1、2-ビス(クロロアセトキシ)エタン、ペンタデカン酸メチル、アラキジン酸エチル、6-ブロモヘキサン酸エチル、ピメリン酸モノエチル、乳酸ヘキサデシル、ベンジル酸エチル、メフェンピル-ジエチル、プロカイン、フタル酸ジシクロヘキシル、サリチル酸4-tert-ブチルフェニル、4-アミノ安息香酸イソブチル、4-ヒドロキシ安息香酸ブチル、トリパルミチン、1、2-ジアセトキシベンゼン、イソフタル酸ジメチル、フマル酸モノエチル、バニリン酸メチル、3-アミノ-2-チオフェンカルボン酸メチル、エトミデート、クロキントセット-メキシル、ベンジル酸メチル、フタル酸ジフェニル、安息香酸フェニル、4-アミノ安息香酸プロピル、エチレングリコールジベンゾアート、トリアセチン、ペンタフルオロプロピオン酸エチル、3-ニトロ安息香酸メチル、酢酸4-ニトロフェニル、3-ヒドロキシ-2-ナフトエ酸メチル、くえん酸トリメチル、3-ヒドロキシ安息香酸エチル、3-ヒドロキシ安息香酸メチル、トリメブチン、酢酸4-メトキシベンジル、ペンタエリトリトールテトラアセタート、4-ブロモ安息香酸メチル、1-ナフタレン酢酸エチル、5-ニトロ-2-フルアルデヒドジアセタート、4-アミノ安息香酸エチル、プロピルパラベン、1、2、4-トリアセトキシベンゼン、4-ニトロ安息香酸メチル、アセトアミドマロン酸ジエチル、バレタマートブロミド、安息香酸2-ナフチル、フマル酸ジメチル、アジフェニン塩酸塩、4-ヒドロキシ安息香酸ベンジル、4-ヒドロキシ安息香酸エチル、酪酸ビニル、ビタミンK4、4-ヨード安息香酸メチル、3、3-ジメチルアクリル酸メチル、没食子酸プロピル、1、4-ジアセトキシベンゼン、メソしゅう酸ジエチル、1、4-シクロヘキサンジカルボン酸ジメチル(cis-、trans-混合物)、1、1、2-エタントリカルボン酸トリエチル、ヘキサフルオログルタル酸ジメチル、安息香酸アミル、3-ブロモ安息香酸エチル、5-ブロモ-2-クロロ安息香酸エチル、フタル酸ビス(2-エチルヘキシル)、アリルマロン酸ジエチル、ブロモマロン酸ジエチル、エトキシメチレンマロン酸ジエチル、エチルマロン酸ジエチル、フマル酸ジエチル、マレイン酸ジエチル、マロン酸ジエチル、フタル酸ジエチル、1、3-アセトンジカルボン酸ジメチル、フタル酸ジメチル、3-アミノ安息香酸エチル、安息香酸エチル、4-(ジメチルアミノ)安息香酸エチル、ニコチン酸エチル、フェニルプロピオル酸エチル、ピリジン-2-カルボン酸エチル、2-ピリジル酢酸エチル、3-ピリジル酢酸エチル、安息香酸メチル、フェニル酢酸エチル、4-ヒドロキシ安息香酸アミル、2、5-ジアセトキシトルエン、4-オキサゾールカルボン酸エチル、1、3、5-シクロヘキサントリカルボン酸トリメチル(cis-、trans-混合物)、3-(クロロスルホニル)-2-チオフェンカルボン酸メチル、ペンタエリトリトールジステアラート、ラウリン酸ベンジル、アセチレンジカルボン酸ジエチル、メタクリル酸フェニル、酢酸ベンジル、グルタル酸ジメチル、2-オキソシクロヘキサンカルボン酸エチル、フェニルシアノ酢酸エチル、1-ピペラジンカルボン酸エチル、ベンゾイルぎ酸メチル、フェニル酢酸メチル、酢酸フェニル、こはく酸ジエチル、トリブチリン、メチルマロン酸ジエチル、しゅう酸ジメチル、1、1-シクロプロパンジカルボン酸ジエチル、マロン酸ジベンジル、4-tert-ブチル安息香酸メチル、2-オキソシクロペンタンカルボン酸エチル、シクロヘキサンカルボン酸メチル、4-メトキシフェニル酢酸エチル、4-フルオロベンゾイル酢酸メチル、マレイン酸ジメチル、テレフタルアルデヒド酸メチル、4-ブロモ安息香酸エチル、2-ブロモ安息香酸メチル、2-ヨード安息香酸メチル、3-ヨード安息香酸エチル、3-フランカルボン酸エチル、フタル酸ジアリル、ブロモ酢酸ベンジル、ブロモマロン酸ジメチル、m-トルイル酸メチル、1、3-アセトンジカルボン酸ジエチル、フェニルプロピオル酸メチル、酪酸1-ナフチル、o-トルイル酸エチル、2-オキソシクロペンタンカルボン酸メチル、安息香酸イソブチル、3-フェニルプロピオン酸エチル、マロン酸ジ-tert-ブチル、セバシン酸ジブチル、アジピン酸ジエチル、テレフタル酸ジエチル、フタル酸ジプロピル、1、1-エタンジオールジアセタート、アジピン酸ジイソプロピル 、フマル酸ジイソプロピル、けい皮酸エチル、2-シアノ-3、3-ジフェニルアクリル酸2-エチルヘキシル、ネオペンチルグリコールジアクリラート、トリオレイン 、ベンゾイル酢酸エチル、p-アニス酸エチル、スベリン酸ジエチル、ソルビタントリステアレート、ソルビタンモノステアレート、ステアリン酸アミド、モノステアリン酸グリセロール、ジステアリン酸グリセロール、3-(tert-ブトキシカルボニル)フェニルボロン酸、ラセカドトリル、4-[(6-アクリロイルオキシ)ヘキシルオキシ]-4′-シアノビフェニル、2-(ジメチルアミノ)ビニル3-ピリジルケトン、アクリル酸ステアリル、4-ブロモフェニル酢酸エチル、フタル酸ジベンジル、3、5-ジメトキシ安息香酸メチル、酢酸オイゲノール、3、3′-チオジプロピオン酸ジドデシル、酢酸バニリン、炭酸ジフェニル、オキサニル酸エチル、テレフタルアルデヒド酸メチル、4-ニトロフタル酸ジメチル、(4-ニトロベンゾイル)酢酸エチル、ニトロテレフタル酸ジメチル、2-メトキシ-5-(メチルスルホニル)安息香酸メチル、3-メチル-4-ニトロ安息香酸メチル、2、3-ナフタレンジカルボン酸ジメチル、アジピン酸ビス(2-エチルヘキシル)、4′-アセトキシアセトフェノン、trans-3-ベンゾイルアクリル酸エチル、クマリン-3-カルボン酸エチル、BAPTAテトラエチルエステル、2、6-ジメトキシ安息香酸メチル、イミノジカルボン酸ジ-tert-ブチル、p-ベンジルオキシ安息香酸ベンジル、3、4、5-トリメトキシ安息香酸メチル、3-アミノ-4-メトキシ安息香酸メチル、ジステアリン酸ジエチレングリコール、3、3′-チオジプロピオン酸ジテトラデシル、4-ニトロフェニル酢酸エチル、4-クロロ-3-ニトロ安息香酸メチル、1、4-ジプロピオニルオキシベンゼン、テレフタル酸ジメチル、4-ニトロけい皮酸エチル、5-ニトロイソフタル酸ジメチル、1、3、5-ベンゼントリカルボン酸トリエチル、N-(4-アミノベンゾイル)-L-グルタミン酸ジエチル、酢酸2-メチル-1-ナフチル、7-アセトキシ-4-メチルクマリン、4-アミノ-2-メトキシ安息香酸メチル、4、4′-ジアセトキシビフェニル、5-アミノイソフタル酸ジメチル、1、4-ジヒドロ-2、6-ジメチル-3、5-ピリジンジカルボン酸ジエチル、4、4′-ビフェニルジカルボン酸ジメチルなどのエステル化合物や、コレステロール、コレステリルブロミド、β-エストラジオール、メチルアンドロステンジオール、プレグネノロン、安息香酸コレステロール、酢酸コレステロール、リノール酸コレステロール、パルミチン酸コレステロール、ステアリン酸コレステロール、n-オクタン酸コレステロール、オレイン酸コレステロール、3-クロロコレステン、trans-けい皮酸コレステロール、デカン酸コレステロール、ヒドロけい皮酸コレステロール、ラウリン酸コレステロール、酪酸コレステロール、ぎ酸コレステロール、ヘプタン酸コレステロール、ヘキサン酸コレステロール、こはく酸水素コレステロール、ミリスチン酸コレステロール、プロピオン酸コレステロール、吉草酸コレステロール、フタル酸水素コレステロール、フェニル酢酸コレステロール、クロロぎ酸コレステロール、2、4-ジクロロ安息香酸コレステロール、ペラルゴン酸コレステロール、コレステロールノニルカルボナート、コレステロールヘプチルカルボナート、コレステロールオレイルカルボナート、コレステロールメチルカルボナート、コレステロールエチルカルボナート、コレステロールイソプロピルカルボナート、コレステロールブチルカルボナート、コレステロールイソブチルカルボナート、コレステロールアミルカルボナート、コレステロール n-オクチルカルボナート、コレステロールヘキシルカルボナート、アリルエストレノール、アルトレノゲスト、9(10)-デヒドロナンドロロン、エストロン、エチニルエストラジオール、エストリオール、安息香酸エストラジオール、β-エストラジオール17-シピオナート、17-吉草酸β-エストラジオール、α-エストラジオール、17-ヘプタン酸β-エストラジオール、ゲストリノン、メストラノール、2-メトキシ-β-エストラジオール、ナンドロロン、(-)-ノルゲストレル、キネストロール、トレンボロン、チボロン、スタノロン、アンドロステロン、アビラテロン、酢酸アビラテロン、デヒドロエピアンドロステロ
ン、デヒドロエピアンドロステロンアセタート、エチステロン、エピアンドロステロン、17β-ヒドロキシ-17-メチルアンドロスタ-1、4-ジエン-3-オン、メチルアンドロステンジオール、メチルテストステロン、Δ9(11)-メチルテストステロン、1α-メチルアンドロスタン-17β-オール-3-オン、17α-メチルアンドロスタン-17β-オール-3-オン、スタノゾロール、テストステロン、プロピオン酸テストステロン、アルトレノゲスト、16-デヒドロプレグネノロンアセタート、酢酸16、17-エポキシプレグネノロン、11α-ヒドロキシプロゲステロン、17α-ヒドロキシプロゲステロンカプロアート、17α-ヒドロキシプロゲステロン、酢酸プレグネノロン、17α-ヒドロキシプロゲステロンアセタート、酢酸メゲストロール、酢酸メドロキシプロゲステロン、酢酸プレグネノロン、5β-プレグナン-3α、20α-ジオール、ブデソニド、コルチコステロン、酢酸コルチゾン、コルチゾン、コルテキソロン、デオキシコルチコステロンアセタート、デフラザコート、酢酸ヒドロコルチゾン、ヒドロコルチゾン、17-酪酸ヒドロコルチゾン、6α-メチルプレドニゾロン、プレドニゾロン、プレドニゾン、酢酸プレドニゾロン、デオキシコール酸ナトリウム、コール酸ナトリウム、コール酸メチル、ヒオデオキシコール酸メチル、β-コレスタノール、コレステロール-5α、6α-エポキシド、ジオスゲニン、エルゴステロール、β-シトステロール、スチグマステロール、β-シトステロールアセタートなどのステロイド化合物などが挙げられる。ロイコ染料1および顕色剤2との相溶性の観点から、これらの化合物を含むことが好ましい。勿論、これらの化合物に限定されるものではなく、ロイコ染料1と顕色剤2との結合を解離させることが可能である材料であれば何でもよい。
 また、これらの消色剤3を1種、または2種類以上組合せてもよい。消色剤を組合せることにより、変色温度は変色時間の調整が可能である。
 示温材料6は、ロイコ染料1と顕色剤2と消色剤3を混合することにより製造することができる。示温材料6の融点以上に加温することにより液体状態とした後、示温材料6の凝固点以下に冷却することにより固化したものを粉砕したものを用いても良い。
 (樹脂被膜)
 マイクロカプセルに用いる樹脂被膜4としては、紫外線で硬化する光硬化性や熱硬化性の樹脂を用いることが可能であり、耐水性、光透過性が高い材料としてシリコーン系樹脂、エポキシ系樹脂を用いることができる。耐熱性の観点では、特にシリコーン樹脂が好ましい。シリコーン系樹脂、エポキシ系樹脂として、具体的には、メチルシリコーン樹脂、メチルフェニルシリコーン樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂肪族型エポキシ樹脂を用いることができる。
 インクに含まれる有機溶剤に対する耐性を高めるために、皮膜厚さは厚い方が好ましい。しかし厚さが増すと、マイクロカプセル中に含まれる温度検知材料の含有率が減少するために同一量のマイクロカプセルを含むインクで比較すると発色性が低下してしまう。そのため、樹脂皮膜の厚さとしては、マイクロカプセル直径の5~30%であることが好ましい。
 さらに、形成した樹脂被膜4の表面処理を行い、インクや塗料化する際の表面エネルギーを調整することで、マイクロカプセルの分散安定性を向上させる等、追加の処理をすることもできる。
 印字用インクは、印字装置に適した粘度を有する必要があり、印字用インクに包含される温度検知材料10a,10bの濃度は、5~20質量%であることが好ましい。またバインダ樹脂の濃度は1~30質量%が好ましい。
 マーキングをするためには、グラビア印刷、スクリーン印刷、ディスペンサ、インクジェットプリンタ等の装置を用いた方法を用いることが可能である。マーキングの方法により装置適合性、保存安定性等を考慮し、マイクロカプセルの直径を調整することが好ましい。
 マイクロカプセル(温度検知材料)の粒子径の分布(粒度分布)は、例えばコールターカウンターにより測定することが可能であり、粒子径の指標としては、平均径、中位径、最頻径が用いられる。本発明においては、温度検知材料の粒子径は中位径で定義する。具体的には、マイクロカプセルの粒子径(中位径)は、0.1μm以上100μm以下であることが好ましく、0.1μm以上10μm以下であることがさらに好ましい。特にインクジェトプリンタを用いる場合には特に0.1μm以上2μm以下であることが好ましい。
 (温度検知材料の製造方法)
 図1や図2の構造に示したように、示温材料6を小粒子化し、被膜等で覆ったマイクロカプセル構造とすることにより、薬品や光、湿度等に対する耐環境性が向上し、保存安定性、変色特性の安定化等が可能となる。また、マイクロカプセル化により、インク、塗料などに調製した際に、ロイコ染料1、顕色剤2、消色剤3が他の樹脂剤、添加剤等の化合物から受ける影響を抑制することが可能である。
 マイクロカプセル化には、公知の各種手法を適用することが可能である。例えば、乳化重合法、懸濁重合法、コアセルベーション法、界面重合法、スプレードライング法等を挙げることができるが、これらに限定されるものではない。また、2種以上異なる方法を組合せてもよい。水系の反応溶媒を用いる場合には、pHを7.0前後に調整することが好ましい。
 温度検知材料の製造方法の一例を図5を用いて説明する。まず、pH7.0に調整した反応媒体5を用意する(図5(a))。つぎに、反応媒体5を撹拌しながら、示温材料6を滴下することで、反応媒体5中に示温材料粒子(粒子形状の示温材料)7を形成させる(図5(b))。この状態でさらに樹脂被膜を構成する樹脂組成物と界面活性剤の混合物8を滴下することにより、示温材料を樹脂で被覆する(図5(c))。これを紫外線ランプや熱により樹脂被膜を硬化させることにより、図1に示した構造の温度検知材料10を得ることができる(図5(d))。
 温度検知材料の他の製造方法を図6に示す。まず、pHが調整された反応媒体5を用意する(図6(a))。反応媒体5に、樹脂被膜を構成する樹脂組成物、示温材料、界面活性剤の混合物11を滴下することで、示温材料を樹脂で被覆する(図6(b))。これを紫外線ランプ等により樹脂を硬化させることにより図2に示した構造の温度検知材料10を得ることができる。
 <インク・塗料化>
 上記温度検知材料と、溶媒と、バインダ樹脂と、を混合することにより、温度検知インク又は塗料を作製することができる。温度検知材料を、溶媒に分散させることにより、ペン、スタンプ、クレヨン、インクジェットなどのインクや印刷用の塗料に適用することが可能となる。溶媒としては、水以外にも揮発性のある有機溶媒を用いることができる。
 有機溶媒としては、温度検知材料の分散性向上の観点から極性の高い有機溶媒を用いることが好ましい。極性の高い有機溶媒としては、例えば、水のほかに、グリセリン、メタノール、エタノール、プロパノールなどのアルコール類が最も好ましく、他には、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン類、酢酸エチル、酢酸メチル、プロピオン酸エチル、プロピオン酸メチルなどのエステル類、ジメチルエーテル、テトラヒドロフランなどのエーテル類等があげられる。
 印字用インクとして一般的に用いられる、メチルエチルケトン、エタノールは、水に対する耐性が強いため、これらを使用することが特に好ましい。
 また、バインダ樹脂としては、水溶媒に対してはポリビニルアルコール系樹脂、エタノール溶媒に対してはアクリル系樹脂、ポリアミド系樹脂、メチルエチルケトンに対してはアクリル系樹脂、ポリエステル系樹脂がそれぞれ好ましい。
 印字用インクに包含される温度検知剤量の濃度は5~20質量%程度が好ましい。またバインダ樹脂の濃度は1~30質量%が好ましい。印字する際の粘度に応じて適宜調整可能である。
 これらの温度検知インクは液体状態においても温度検知機能を有し、さらに被印字対象等に印字、筆記、押印等することにより溶媒が揮発することで、温度検知材料のみが印字物を構成する。
 温度検知インクには、温度検知機能に影響しない程度であれば、有機溶媒や水などの溶液に添加物をさらに添加してもよい。
 <インクジェット用インク>
 実施例に係る温度検知インクは、インクジェットプリンタ用インクに適用することができる。インクジェットプリンタ用インクは、温度検知材料と、溶媒(揮発性の有機溶媒)と、樹脂(バインダ樹脂)と、を含む。
 以下、帯電制御方式のインクジェットプリンタ用インクを例に説明する。帯電制御方式のインクジェットプリンタ用インクは、温度検知材料と、揮発性の有機溶媒と、樹脂と、導電剤と、を含む。インク溶液の抵抗が高い場合、帯電制御式インクジェットプリンタにおけるインクの吐出部において、インク粒子がまっすぐ飛ばず、曲がる傾向がある。そのため、インク溶液の抵抗は概ね2000Ωcm以下にする必要がある。
 インクに含まれる樹脂、顔料、有機溶媒(特に、インクジェットプリンタ用インクの有機溶媒としてよく用いられる2-ブタノン、エタノール)は導電性が低いので、インク溶液の抵抗は5000~数万Ωcm程度と大きい。抵抗が高いと、帯電制御式インクジェットプリンタでは所望の印字が困難となる。そこで、インク溶液の抵抗を下げるために、インクに導電剤を添加する必要がある。
 導電剤としては、錯体を用いることが好ましい。導電剤は用いる溶剤に溶解することが必要で、色調に影響を与えないことも重要である。また導電剤は一般には塩構造のものが用いられる。これは分子内に電荷の偏りを有するので、高い導電性が発揮できるものと推定される。
 以上のような観点で検討した結果、導電剤は塩構造で、陽イオンはテトラアルキルアンモニウムイオン構造が好適である。アルキル鎖は直鎖、分岐どちらでもよく、炭素数が大きいほど溶媒に対する溶解性は向上する。しかし炭素数が小さいほど、僅かの添加率で抵抗を下げることが可能となる。インクに使う際の現実的な炭素数は2~8程度である。
 陰イオンはヘキサフルオロフォスフェートイオン、テトラフルオロボレートイオン等が溶剤に対する溶解性が高い点で好ましい。
 なお、過塩素酸イオンも溶解性は高いが、爆発性があるので、インクに用いるのは現実的ではない。それ以外に、塩素、臭素、ヨウ素イオンも挙げられるが、これらは鉄やステンレス等の金属に接触するとそれらを腐食させる傾向があるので好ましくない。
 以上より、好ましい導電剤としては、テトラエチルアンモニウムヘキサフルオロフォスフェート、テトラプロピルアンモニウムヘキサフルオロフォスフェート、テトラブチルアンモニウムヘキサフルオロフォスフェート、テトラペンチルアンモニウムヘキサフルオロフォスフェート、テトラヘキシルアンモニウムヘキサフルオロフォスフェート、テトラオクチルアンモニウムヘキサフルオロフォスフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラプロピルアンモニウムテトラフルオロボレート、テトラブチルアンモニウムテトラフルオロボレート、テトラペンチルアンモニウムテトラフルオロボレート、テトラヘキシルアンモニウムテトラフルオロボレート、テトラオクチルアンモニウムテトラフルオロボレート等が挙げられる。
 次に、実施例および比較例を示しながら本発明を更に具体的に説明する。なお、本発明はこれらの実施例に限定されるものではない。
 <マイクロカプセルの作製>
 ロイコ染料として2´-アニリノ-6´-(N-エチル-N-イソペンチルアミノ)-3´-メチルスピロ[フタリド-3,9´-[9H]キサンテン](山田化学工業株式会社製、S-205)、顕色剤として没食子酸オクチル、消色剤としてp-トルイル酸メチルとフェニル酢酸2-フェニルエチルを質量比9:1で混合したものを用いた。ロイコ染料:顕色剤:消色剤を3:3:100(質量比率)で混合し、40℃で攪拌して示温材料(ロイコ染料、顕色剤、消色剤の混合液)6を作製した。作製した示温材料は、室温(25℃)では消色状態であるが、4℃以下に冷却することにより黒色に顕色する材料である。
 界面活性剤(高分子カルボン酸系水系分散剤)、光硬化型シリコーン樹脂(信越化学:KER4000-UV)を質量比100:5で秤量し、マグネチックスターラを用いて40℃、600rpmで10分間攪拌することによりシリコーン樹脂混合物を得た。
 次にビーカに反応溶媒5として0.1mol/lリン酸緩衝液(pH=7.0)を満たし(図5(a))、マグネチックスターラを用いて40℃、600rpmで攪拌しながら、示温材料6を一滴ずつたらした(図5(b))。示温材料を構成する材料はすべて疎水性のために、反応溶媒液(水溶液)中では球状になろうとする。その結果、リン酸緩衝液中で示温材料は粒子球状となり、示温材料粒子7となる。この状態でさらシリコーン樹脂混合物8を一滴ずつ滴下した(図5(c))。リン酸緩衝液中でシリコーン樹脂混合物8も球状になろうとするため、示温材料粒子がシリコーン樹脂に被覆され、シリコーン樹脂で被覆された示温材料粒子9となる。なお、示温材料、界面活性剤(高分子カルボン酸系水系分散剤)、光硬化型シリコーン樹脂は質量比で10:100:5となるように用いた。
 シリコーン樹脂で被覆された示温材料粒子9を紫外線ランプ(高圧水銀ランプ)にて紫外線を照射することで光硬化型シリコーン樹脂を硬化させることで温度検知材料10を作製した(図5(d))。
 作製した温度検知材料の粒子径(中位径)は、コールターカウンタ測定によると2.0μmであった。また、シリコーン樹脂の厚さは、温度検知材料粒子径の20%程度の厚さであった。
 <インクの作製>
 作製された温度検知材料を、バインダ樹脂および溶剤と混合し、インクジェットプリンタ用インクを作製した。バインダ樹脂としてアクリル系バインダ樹脂(joncryl社製、J682)を、溶剤としてエタノール系溶剤(日本エタノール販売株式会社製、AP7)を用いた。インクジェットプリンタ用インクの温度検知材料、バインダ樹脂濃度はいずれも5質量%とした。
 <インクジェットプリンタによる印字>
 前述のインクを用いて、インクジェットプリンタにて印字の検討を行った。印字装置としてはDOD(Dot On Demand)型装置を用い、印字基板としてはPET(Poly Ethylene Terephthalate)フィルムを用いた。
 図7に実施例1のインクで印字した印字物の温度による色変化を示す。室温(25℃)では消色しており印字は確認できないが、4℃に冷却することで顕色し、印字が確認できることが分かった。この結果より、エタノール系の溶剤中であっても、温度変化に対して安定に色変化する温度検知材料を得ることができることが分かった。
 導電剤である硝酸リチウムを5質量%となるようにインク加えたこと以外実施例1と同様にインクを作製した。印字装置としては帯電制御式インクジェットプリンタであるCIJ(Continuous injection)型を用いて、実施例1と同様に印字基板に印字した。
 図8に実施例2のインクの印字物の温度による色変化を示した。室温(25℃)では温度検知材料が消色しており印字が確認できないが、4℃に冷却することにより温度検知材料が顕色し、印字を確認することができた。エタノール系の溶剤中であっても、温度変化に対して安定に色変化する温度検知材料を得ることができることが分かった。
 実施例3では、示温材料、シリコーン樹脂、界面活性剤を同時に混合する方法で温度検知材料を作製した。
 ロイコ染料として2´-アニリノ-6´-(N-エチル-N-イソペンチルアミノ)-3´-メチルスピロ[フタリド-3,9´-[9H]キサンテン](山田化学工業株式会社製、S-205)、顕色剤として没食子酸オクチル、消色剤としてp-トルイル酸メチルとフェニル酢酸2-フェニルエチルを質量比9:1で混合したものを用いた。ロイコ染料:顕色剤:消色剤を3:3:100の質量比で混合し、40℃で攪拌して示温材料を作製した。
 示温材料、界面活性剤(高分子カルボン酸系水系分散剤)、光硬化型シリコーン樹脂を、質量比で10:100:5となるように混合し、40℃で攪拌することにより、示温材料、界面活性剤、シリコーン樹脂の混合物11を準備した。混合物11を反応溶媒5であるリン酸緩衝液(pH=7.0)(図6(a))に滴下して((図6(b))、シリコーン樹脂で被覆された示温材料粒子12の状態とし、紫外線を照射することにより、温度検知材料10を作製した(図6(c))。
 作製した温度検知材料は、図2に示した構造を有し、シリコーン樹脂粒子内に温度検知材料が包含された構造となった。温度検知材料粒子の粒子径(中位径)は、コールターカウンタ測定によると1.9μmであった。
 この温度検知材料を用いて、実施例1と同様にインクを作製し、インクジェットプリンタで印字した。その結果、実施例1と同様に温度検知機能のある文字が印字できた。エタノール系の溶剤中であっても、温度変化に対して安定に色変化する温度検知材料を得ることができることが分かった。また、実施例1に比べて発色性がやや向上した。
 ロイコ染料として3,3-ビス(p-ジメチルアミノフェニル)-6-ジメチルアミノフタリド(山田化学工業株式会社製、CVL)を2質量部、顕色剤として東京化成工業製没食子酸オクチルを2質量部、消色剤として東京化成工業製ビタミンK4を100質量部で混合した混合物を準備した。この混合物を180℃で1時間加熱混合した後、急冷、固化したものを粉砕することにより、コア材料(示温材料)を得た。このコア材料は室温で消色状態であるが、20℃に加熱することで発色(青色)となる材料である。
 本コア材料0.5g及び陰イオン性界面活性剤2.5gをリン酸緩衝液(pH 7.0)20ccと混合し、オートクレーブ容器内にて、140℃、1時間加熱することで、リン酸緩衝液内にコア材料が均一に分散した分散液を作製した。
 コア材料、界面活性剤(高分子カルボン酸系水系分散剤)、光硬化型シリコーン樹脂が質量比で10:100:5となるように、分散液と光硬化型シリコーン樹脂とを混合し、40℃で攪拌した。
 得られた混合物をリン酸緩衝液(pH=7.0)(図6(a))に滴下し(図6(b))、紫外線を照射することにより温度検知材料を作製した(図6(c))。
 作製した温度検知材料の粒子径(中位径)は、コールターカウンタ測定によると1.8μmであった。また、シリコーン樹脂の厚さは、温度検知材料の粒子径の20%程度の厚さであった。
 この温度検知材料を用いて、実施例1と同様にインクを作製し、インクジェットプリンタにて印字した。印字した文字は、室温では無色であったが、50℃に加熱することで青色に発色することが確認できた。エタノール系の溶剤中であっても、温度変化に対して安定に色変化する温度検知材料を得ることができることが分かった。
 消色剤としてビタミンK4と没食子酸プロピルを質量比1:1で混合したものを用いたこと以外実施例4と同様に示温材料、温度検知材料、インクを作製した。実施例5の示温材料は、室温で消色状態であるが、50℃に加熱することで発色(青色)となる材料である。
 作製したインクを実施例1と同様にインクジェットプリンタで印字した。印字した文字は室温では無色であったが、25℃に加熱することが青色に顕色することが確認できた。エタノール系の溶剤中であっても、温度変化に対して安定に色変化する温度検知材料を得ることができることが分かった。
 光硬化性シリコーン樹脂の代わりに熱硬化性シリコーン樹脂を用い、90℃で5時間加熱することでシリコーン樹脂を硬化させカプセル化したこと以外実施例1と同様の方法で温度検知材料、インクを作製し、インクジェットプリンタで印字した。
 印字は、室温(25℃)では消色しており確認できないが、4℃に冷却することで顕色することが確認できた。エタノール系の溶剤中であっても、温度変化に対して安定に色変化する温度検知材料を得ることができることが分かった。
 光硬化性シリコーン樹脂の代わりに熱硬化性エポキシ樹脂を用い、90℃で5時間加熱することでエポキシ樹脂を硬化させ、カプセル化したこと以外実施例1と同様に、温度検知材料、インクを作製し、インクジェットプリンタで印字した。
 印字は、室温(25℃)では消色しており確認できないが、4℃に冷却することで顕色することが確認できた。エタノール系の溶剤中であっても、温度変化に対して安定に色変化する温度検知材料を得ることができることが分かった。
 (比較例1)
 実施例1と同様に示温材料を作製し、一般的な公知の方法(出典:マイクロ/ナノ系カプセル・微粒子の応用展開、シーエムシー出版、p.59)を用いて示温材料が架橋メラミンで被覆された温度検知材料を作製した。
 界面活性剤としてpoly(ethylene-alt-maleic anhydride)を溶解した水溶液を40℃に加熱し、600rpmで攪拌した。本水溶液に実施例1で作成した示温材料を滴下して分散させ示温材料分散溶液を調製した。このとき、示温材料は40℃に加熱しておいた。次にメラミン、ホルマリン水溶液を作製し、水酸化ナトリウムによりpHを適宜調整し、これを示温材料分散溶液に滴下し、示温材料粒子表面が架橋メラミンで被覆されたマイクロカプセルを作製した。
 比較例1の温度検知材料を用いたこと以外は、実施例1と同様にインクを作製し、インクジェットプリンタにPETフィルムに印字した。
 室温では印字は消色しており確認できなかった。また、室温から4℃以下に変化させても印字が顕色しないことが確認できた。溶剤に用いたエタノールに、温度検知材料が影響を受けて、温度検知機能が失われたためであると考えられる。
 (比較例2)
 メラミン系の樹脂の代わりにウレタン系の樹脂を用いたこと以外は、比較例1と同様に温度検知材料、インクを作製し、インクジェットプリンタでPETフィルムに印字した。
 室温では印字は消色しており確認できなかった。また、室温から4℃以下に変化させても印字が顕色しないことが確認できた。溶剤に用いたエタノールに、温度検知材料が影響を受けて、温度検知機能が失われたためであると考えられる。
 以上、説明したように、本発明によれば、有機溶剤中でも温度変化に対して安定に色変化する温度検知材料を提供できることが示された。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…ロイコ染料、2…顕色剤、3…消色剤、4…樹脂被膜、5…反応溶媒、6…示温材料、7…示温材料粒子、8…樹脂組成物と界面活性剤の混合物(シリコーン樹脂混合物)、9…シリコーン樹脂で被覆された示温材料粒子、10a,10b…温度検知材料、11…樹脂組成物、示温材料、界面活性剤の混合物、12…シリコーン樹脂で被覆された示温材料粒子、13…樹脂。

Claims (6)

  1.  ロイコ染料、顕色剤及び消色剤を含む示温材料と、前記示温材料を内包する樹脂被膜と、を含み、
     前記樹脂被膜は、シリコーン樹脂又はエポキシ樹脂を含むことを特徴とする温度検知材料。
  2.  請求項1に記載の温度検知材料であって、
     前記樹脂被膜の内側に樹脂を含み、前記示温材料は前記樹脂中に分散していることを特徴とする温度検知材料。
  3.  請求項1又は2に記載の温度検知材料であって、
     前記温度検知材料の粒子の中位径は0.1μm以上2μm以下であることを特徴とする温度検知材料。
  4.  請求項1乃至3のいずれか一項に記載の温度検知材料であって、
     前記樹脂被膜は、光硬化性のシリコーン樹脂から構成されることを特徴とする温度検知材料。
  5.  請求項1乃至4のいずれか一項に記載の温度検知材料と、溶媒と、樹脂と、を含むことを特徴とする温度検知インク。
  6.  請求項5に記載の温度検知インクであって、
     前記溶媒は、エタノール、水、又はこれらの混合物であることを特徴とする温度検知インク。
PCT/JP2019/026957 2018-07-06 2019-07-08 温度検知材料およびそれを用いた温度検知インク WO2020009245A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-128720 2018-07-06
JP2018128720A JP7220528B2 (ja) 2018-07-06 2018-07-06 温度検知インク

Publications (1)

Publication Number Publication Date
WO2020009245A1 true WO2020009245A1 (ja) 2020-01-09

Family

ID=69060890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026957 WO2020009245A1 (ja) 2018-07-06 2019-07-08 温度検知材料およびそれを用いた温度検知インク

Country Status (2)

Country Link
JP (1) JP7220528B2 (ja)
WO (1) WO2020009245A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102423464B1 (ko) * 2020-07-28 2022-07-20 이장희 시온 안료를 이용한 체온 체크 키트

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555787A (en) * 1978-06-27 1980-01-16 Dow Corning Method of preparing corpuscular matter containing solid organopolysiloxane
JP2006095795A (ja) * 2004-09-29 2006-04-13 Sato Corp 転写箔
JP2008239810A (ja) * 2007-03-27 2008-10-09 Nichiyu Giken Kogyo Co Ltd 耐光性温度管理インジケーター

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001031884A (ja) 1999-07-22 2001-02-06 Pilot Ink Co Ltd 可逆熱変色性顔料
JP2012213738A (ja) 2011-04-01 2012-11-08 Seiko Epson Corp マイクロカプセルの製造方法、マイクロカプセル塗布膜の形成方法及びマイクロカプセルの製造装置
JP6294173B2 (ja) 2014-06-30 2018-03-14 株式会社パイロットコーポレーション 固形筆記体及びそれを用いた固形筆記体セット

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS555787A (en) * 1978-06-27 1980-01-16 Dow Corning Method of preparing corpuscular matter containing solid organopolysiloxane
JP2006095795A (ja) * 2004-09-29 2006-04-13 Sato Corp 転写箔
JP2008239810A (ja) * 2007-03-27 2008-10-09 Nichiyu Giken Kogyo Co Ltd 耐光性温度管理インジケーター

Also Published As

Publication number Publication date
JP7220528B2 (ja) 2023-02-10
JP2020008384A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
EP3730911B1 (en) Temperature sensing material, and temperature deviation time estimating system employing same
CN110603431B (zh) 温度检测材料、使用其的温度检测油墨、温度指示器和物品管理系统
US11572486B2 (en) Temperature detection material, temperature detection ink using same, temperature indicator, method for manufacturing temperature detection material, and product management system
EP3745106B1 (en) Temperature detection ink, temperature detection ink initialization method, temperature indicator, and article management system
CN111433577B (zh) 温度检测标签和使用该温度检测标签的物品管理装置
CN108139279B (zh) 温度检测体
WO2020009245A1 (ja) 温度検知材料およびそれを用いた温度検知インク
WO2018193680A1 (ja) レーザーマーキング用塗料及びそれを用いたレーザーマーキング方法
JP2020008384A5 (ja)
WO2020080313A1 (ja) 温度検知材料、それを用いた温度検知インク、温度インジケータ、及び物品管理システム
JP7297624B2 (ja) インク、該インクの製造方法、および該インクを用いた温度インジケータ
JP7017996B2 (ja) 感熱塗料及びそれを用いたレーザーマーキング方法
WO2023079780A1 (ja) 温度インジケータ製造システムおよび温度インジケータ製造方法
JP2022052104A (ja) インク、該インクの製造方法、および該インクを用いた温度インジケータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830658

Country of ref document: EP

Kind code of ref document: A1