WO2020009026A1 - 投射光学系およびプロジェクタ - Google Patents
投射光学系およびプロジェクタ Download PDFInfo
- Publication number
- WO2020009026A1 WO2020009026A1 PCT/JP2019/025847 JP2019025847W WO2020009026A1 WO 2020009026 A1 WO2020009026 A1 WO 2020009026A1 JP 2019025847 W JP2019025847 W JP 2019025847W WO 2020009026 A1 WO2020009026 A1 WO 2020009026A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical system
- zooming
- lens group
- lens
- intermediate image
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/08—Catadioptric systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B21/00—Projectors or projection-type viewers; Accessories therefor
- G03B21/14—Details
Definitions
- the present invention relates to a projection optical system of a projector.
- Japanese Patent Application Laid-Open No. 2012-108267 discloses a projection optical system for an ultra-short focus image projecting device, in which an image formed by an image display element is scaled to form a first intermediate image.
- a first optical system comprising: a first optical system; a second optical system that magnifies the first intermediate image to form a second intermediate image; and a concave mirror that reflects light that forms the second intermediate image.
- the projection optical system is characterized in that the optical axis of (1) moves parallel to the optical axis of the second optical system in a direction perpendicular to the optical axis of the first optical system.
- the projection optical system is a first optical system including a plurality of lenses, and a first image formed on a first side of an optical axis inside the first optical system by light incident from a reduction side.
- a first optical system that forms an intermediate image as a second intermediate image on a second side of the optical axis on the magnification side of the first optical system, and is located on an enlargement side of the second intermediate image;
- a second optical system including a first reflecting surface having a positive refractive power.
- the first optical system includes a first zooming unit that is arranged on the enlargement side of the first intermediate image and moves during zooming.
- the first variable power unit on the enlargement side of the first intermediate image, the first intermediate image formed on the first side of the optical axis is shifted from the first intermediate image to the optical axis.
- a light flux that reaches a second intermediate image formed on the second side, where paraxial light and peripheral light intersect at or near the optical axis and converge in the vicinity of the optical axis is converted into a first light beam.
- peripheral light also passes near the optical axis of the lens of the first variable power unit, it is easy to suppress the occurrence of aberration of the peripheral light due to zooming, and it is easy to control the paraxial light and the peripheral light equally. Therefore, it is possible to provide a compact projection optical system capable of zooming and projecting a high-quality image.
- the shape or position of the first intermediate image may be changed during zooming, but basically, the shape or position of the first intermediate image is hardly changed.
- Zooming can be performed by moving the first zooming group arranged near the second intermediate image. Therefore, the effect of zooming on the performance of a plurality of lenses through which the light flux from the first image plane to the first intermediate image passes is small, and the performance of these lenses is maximized for aberration correction and focusing. It is easy to reduce the number of lenses. Therefore, also in this respect, by performing zooming with a lens group close to the second intermediate image, it is possible to provide a compact projection optical system capable of correcting aberrations more favorably and performing zooming.
- One of the different aspects of the present invention is a projector including the above-described projection optical system and a light modulator that forms an image on a first image plane.
- the projector may include an illumination optical system that illuminates the first image plane.
- FIG. 2 is a diagram illustrating an example of a configuration of a projector and a projection optical system.
- FIG. 9 is a diagram illustrating distortion at a wide-angle end (wide), a standard state (normal), and a telephoto end (telephoto).
- FIG. 6 is a lateral aberration diagram at each image height at the wide-angle end (wide).
- FIG. 9 is a lateral aberration diagram at each image height in a standard state (normal).
- FIG. 4 is a lateral aberration diagram at each image height at the telephoto end (tele).
- FIG. 3 is a diagram illustrating an example of a configuration of a different projector and a projection optical system.
- FIG. 11 is a view showing lens data of the projection optical system shown in FIG. 10. The figure which shows aspherical surface data. The figure which shows the space
- FIG. 9 is a diagram illustrating distortion at a wide-angle end (wide), a standard state (normal), and a telephoto end (telephoto).
- FIG. 6 is a lateral aberration diagram at each image height at the wide-angle end (wide).
- FIG. 9 is a lateral aberration diagram at each image height in a standard state (normal).
- FIG. 9 is a diagram illustrating an example of a configuration of still another projector and a projection optical system.
- FIG. 20 is a diagram showing lens data of the projection optical system shown in FIG. 19. The figure which shows aspherical surface data. The figure which shows the space
- FIG. 9 is a diagram illustrating distortion at a wide-angle end (wide), a standard state (normal), and a telephoto end (telephoto).
- FIG. 6 is a lateral aberration diagram at each image height at the wide-angle end (wide).
- FIG. 9 is a lateral aberration diagram at each image height in a standard state (normal).
- FIG. 4 is a lateral aberration diagram at each image height at the telephoto end (tele).
- a projection optical system including a first optical system including a plurality of lenses and a second optical system including a first reflecting surface having a positive power (refractive power).
- first optical system including a plurality of lenses and a second optical system including a first reflecting surface having a positive power (refractive power).
- light from the first optical system reaches the first reflecting surface without passing through a refractive optical system including another lens, but one or more light beams are provided before and after the first optical system.
- An optical element such as a prism, a glass block, or a mirror may be included.
- the first reflection surface of the second optical system reflects the light output from the first optical system and projects the light on the screen as projection light.
- the first optical system forms a first intermediate image formed inside the first optical system by light incident from the reduction side as a second intermediate image on the enlargement side of the first optical system.
- Optical system (lens system).
- the first optical system is arranged on the enlargement side of the first intermediate image, and includes a first zooming unit that moves during zooming.
- magnification is performed by a lens system on the enlargement side of the in-lens intermediate image (first intermediate image), thereby moving the lens system on the reduction side of the in-lens intermediate image. Or movement can be minimized.
- the position and shape of the intermediate image in the lens before and after zooming do not basically change. Therefore, it is possible to suppress fluctuation of aberration due to zooming in the lens system on the reduction side with respect to the in-lens intermediate image. For this reason, it is basically unnecessary to consider the fluctuation of aberration in the lens system on the reduction side from the in-lens intermediate image due to zooming.
- the combined focal length fw at the wide-angle end of the projection optical system and the focal length fz1 of the first zooming unit may satisfy the following condition (1). 0.015 ⁇ fw / fz1 ⁇ 0.125 (1)
- the value goes below (below) the lower limit of the condition (1), the power of the first zooming unit is too small, the moving distance for zooming becomes too long, and aberration correction becomes difficult.
- the value exceeds (exceeds) the upper limit of the condition (1) the power of the first variable power unit is too large, and it becomes difficult to correct aberration by other lens units.
- the lower limit of condition (1) may be 0.03 or 0.04.
- the upper limit of condition (2) may be 0.1 or 0.07.
- the distance Dz1 that the first zooming unit moves when zooming from the wide-angle end to the telephoto end and the focal length fz1 of the first zooming unit may satisfy the following condition (2). 0.02 ⁇ Dz1 / fz1 ⁇ 0.15 (2)
- the power of the first variable power unit is too small with respect to the moving distance, and it is difficult to secure a zooming magnification.
- the value exceeds the upper limit of the condition (2) the power of the first zooming unit is too strong with respect to the moving distance, the moving amount for zooming is too effective, and aberration correction becomes difficult, and individual differences due to assembly and the like are large. This makes it difficult to ensure the quality of the projection optical system.
- the upper limit of condition (2) may be 0.10 or 0.05.
- the first optical system may include a first adjacent lens group having a positive refractive power and disposed adjacent to the first variable power unit on the magnification side.
- the first adjacent lens group is a first lens group having a positive refractive power and located at the most enlarged side of the first optical system.
- the lens group having a positive refractive power outputs the light condensed toward the optical axis so as to form the second intermediate image on the opposite side of the optical axis with respect to the first intermediate image.
- the first optical system is arranged on the enlargement side, typically the most enlargement side, and is projected on the effective display surface (first image plane) of the light valve (light modulator) on the reduction side of the first adjacent lens group.
- the first optical system can be configured so that the peripheral light, which is a light ray emitted from a position farthest from the optical axis of the optical system, crosses the optical axis.
- the ambient light is a light ray having a large projection distance from the second optical system to the screen (second image plane), and is also reflected by the steepest surface of the first reflecting surface of the second optical system. Therefore, the optical performance is likely to be affected by a change in the light incident on the first reflecting surface. Therefore, by arranging the first zooming group adjacent to the reduction side of the first adjacent lens group, the height of the principal ray of the peripheral light is reduced, and the influence of the zooming on the light rays is suppressed.
- the paraxial light which is the light emitted from the position closest to the optical axis of the projection optical system on the effective display surface of the ambient light and the light valve, and reduce the paraxial light and the paraxial light by the compact first variable power group. Zooming can be performed by appropriately operating the ambient light.
- the first adjacent lens group may include a biconvex positive lens having positive refractive power on both surfaces, and refracts peripheral light on the reduction-side convex surface so as to reduce the angle formed by the optical axis with the optical axis. It is possible to make the image forming position of the light ray closer to the reduction side by the convex surface on the side and make the image forming position as the second intermediate image closer to the optical axis, so that the effective diameter of the first reflecting surface can be reduced. Become. Further, the biconvex positive lens may be a cemented lens, and it is easy to satisfactorily correct aberrations generated by the first zooming unit that moves for zooming.
- the first variable power unit has a positive refractive power, and when zooming from the wide-angle end to the telephoto end, the first variable power unit moves so that the distance between the first variable power unit and the first adjacent lens unit is reduced. Is also good.
- the first adjacent lens group may be a second variable power group that moves during zooming, and together with the first variable power group, controls the size and / or position of the second intermediate image. May be moved to correct the aberration caused by the movement of the first zooming unit.
- the second zooming unit may move so that the distance from the second optical system is reduced.
- the first optical system is disposed on the enlargement side of the first intermediate image and adjacent to the reduction side of the first variable power unit, and moves in the opposite direction to the first variable power unit during zooming.
- a third zooming group may be included.
- the first zooming unit can be moved so as to correct aberration due to the movement.
- the first optical system may further include a fourth variable power unit disposed on the reduction side of the first intermediate image and moving in a direction opposite to the first variable power unit during zooming. The position or shape of the first intermediate image may be adjusted during zooming.
- the distance Dz1 that the first zooming unit moves and the distance Dz4 that the fourth zooming unit moves may satisfy the following condition (3).
- an effective correction by the fourth variable power unit cannot be obtained for the movement of the first variable power unit.
- the value exceeds the upper limit of the condition (3) the moving amount of the fourth zooming unit located on the reduction side of the first intermediate image becomes too large, and the influence on the shape and position of the first intermediate image becomes large. And aberration correction becomes difficult.
- the lower limit of condition (3) may be 0.07, and the upper limit may be 0.15.
- the first optical system may include a first focusing group that is arranged on the enlargement side with respect to the first intermediate image and moves during focusing.
- the first focus group may be arranged to be adjacent to the first intermediate image.
- the first optical system may include a second focusing group which is arranged on the reduction side with respect to the first intermediate image and moves at the time of focusing.
- the second focusing group moves in the opposite direction to the first focusing group, for example, when the focal length is adjusted from a short distance to a long distance, the first focusing group moves to the reduction side, and the second focusing group moves to the reduction side.
- the focusing group may move to the magnification side. 0.1 ⁇
- the value goes below the lower limit of the condition (4), effective correction by the second focusing group with respect to the movement of the first focusing group cannot be obtained.
- the value exceeds the upper limit of the condition (4) the movement amount of the second focusing group located on the reduction side of the first intermediate image becomes too large, and the influence on the shape and position of the first intermediate image increases. And aberration correction becomes difficult.
- the lower limit of condition (4) may be 0.2, and the upper limit may be 0.3.
- the first optical system may include a second terminal lens group disposed closest to the reduction side, and the second terminal lens group may include a positive refractive power meniscus lens having a concave reduction side.
- FIG. 1 shows an example of a projector.
- the projector 1 includes a projection optical system 10 for projecting from an image plane (first image plane) 5a of a light modulator (light valve) 5 on a reduction side 2 to a screen or wall surface (second image plane) 6 on an enlargement side 3. including.
- the light valve 5 only needs to be able to form an image, such as an LCD, a digital mirror device (DMD), or an organic EL, and may be a single-plate type or a type that forms an image of each color.
- the light valve 5 may be a light emitting type or a lighting type.
- the projector 1 further includes an illumination optical system (not shown).
- the screen 6 may be a wall surface or a white board, and the projector 1 may be a front projector or a rear projector including a screen.
- the projection optical system 10 includes a first optical system 11 including a plurality of lenses, and a second optical system 12 including a first reflecting surface M1 having a positive power (refractive power).
- the reflection surface M1 of the second optical system 12 reflects the light output from the first optical system 11 and projects it as projection light 19 on the screen 6.
- the first optical system 11 converts a first intermediate image (an in-lens intermediate image) IM ⁇ b> 1 formed inside the first optical system 11 by light incident from the reduction side 2 from the first optical system 11.
- the first intermediate image IM1 is formed on the optical axis 7 on the upper side (first side) of the drawing, and the second intermediate image IM2 is formed with respect to the first intermediate image IM1.
- An image is formed on the opposite side of the axis 7 (lower side of the drawing, second side).
- the first optical system 11 is an optical system that forms a second intermediate image IM2 without passing through another lens
- the second intermediate image IM2 is an optical system such as a prism, a glass block, or a mirror. It may be formed via elements or across (or across) optical elements such as prisms, glass blocks or mirrors.
- the first optical system 11 includes a reduction-side lens group (first refractive optical system) RG having a positive power as a whole and an enlargement of the reduction-side lens group RG disposed on the reduction side (input side) 2. And a lens group (second refractive optical system) MG disposed on the side (output side) 3 on the magnification side having a positive power as a whole.
- the first intermediate image IM1 is formed as a second intermediate image IM2 on the reduction side 2 of the first reflection surface (mirror) M1 by the lens group MG on the enlargement side, and the mirror M1 having positive power is Is projected on the screen 6 in an enlarged manner.
- the projection optical system 10 of this example is a variable magnification optical system that can change the size of an image projected on the screen 6.
- the reduction-side lens group RG is composed of four groups, a first lens group (second end lens group) G1 arranged in order from the reduction side 2 and having a fixed position with a positive refractive power (power).
- a second lens group (second focusing group) G2 that moves during focusing with a positive refractive power and does not move during zooming, and a third lens group that moves during focusing with a positive refractive power.
- the zoom lens includes a lens group (fourth magnification group) G3 and a fourth lens group G4 whose position is fixed by negative refractive power.
- the enlargement-side lens group MG is composed of four groups, and is arranged in order from the reduction side 2, and moves during focusing with a positive refractive power and does not move during zooming.
- FIG. 2 to 5 show data of each element of the projection optical system 10.
- S is the surface number in the case of a lens
- Ri is the radius of curvature (mm) of each element (each lens surface in the case of a lens) arranged in order from the reduction side 2
- di is each of the elements arranged in order from the reduction side 2.
- the distance (interval, mm) between the surfaces of the elements, Di is the effective radius (mm) of each element, the refractive index Nd (d-line), the Abbe number ⁇ d (d-line), and the combined focal point of each lens group G1 to G8.
- FIG. 3 shows the aspheric surface number and the aspheric surface data among the surfaces of each element.
- FIG. 4 shows the movement of the third lens group G3, the sixth lens group G6, the seventh lens group G7, and the eighth lens group G8 that move during zooming, when the focal length is short.
- FIG. 5 shows the movement of the second lens group G2 and the fifth lens group that move during focusing when the focal length (the distance d39 from the mirror M1 to the screen 6) to the screen 6 at the wide-angle end is short. (655.8 mm), medium distance (966.0 mm), and long distance (1666.0 mm).
- the first optical system (lens system, refractive optical system) 11 of the projection optical system 10 includes, from the reduction side 2, a glass block CG on the incidence side, a lens group RG on the reduction side, and a lens group MG on the enlargement side.
- the reduction lens group RG includes first to fourth lens groups G1 to G4.
- the first lens group G1 is a lens group at the end (second end) located closest to the reduction side 2 and is a lens group having a positive power as a whole. , Ie, a single lens having a positive power.
- the second lens group G2 is a lens group having a positive power.
- the second lens group G2 includes eight lenses, and is a biconvex positive lens L2 arranged from the reduction side (light valve side) 2.
- a positive meniscus lens L3 convex to the reduction side 2 a negative meniscus lens L4 convex to the reduction side 2
- a biconvex positive lens L5 a negative meniscus lens L6 convex to the enlargement side 3
- a biconcave A biconvex positive lens L8, an aperture stop St, and a positive meniscus lens L9 convex on the enlargement side 3.
- the fourth, fifth, and sixth lenses L4 to L6 constitute a first cemented lens (balsam lens) B1, and the seventh and eighth lenses L7 and L8 constitute a second cemented lens B2.
- the cemented lens B1 is suitable for correcting axial chromatic aberration
- the cemented lens B2 is suitable for correcting lateral chromatic aberration.
- the second lens group G2 including these cemented lenses B1 and B2 moves to the enlargement side 3 when focusing from a short distance to a long distance, and can satisfactorily correct various aberrations including chromatic aberration.
- the second lens group G2 has a positive-positive- (negative-positive-negative)-(negative-positive)-(aperture) -positive power arrangement from the reduction side 2 and is joined by the power arrangement in parentheses. A lens is formed. Therefore, in consideration of the cemented lens, a positive-positive-positive-negative- (aperture) -positive power arrangement is provided.
- the second lens group G2 is a correction focusing group (second focusing group) in which a fifth lens group G5 described later is set as a main focusing group (first focusing group), and is used for focusing. At this time, the lens unit moves to the opposite side to the fifth lens group G5 so as to satisfy the condition (4).
- the third lens group G3 is a lens group having a positive power, and in this example, has a single positive meniscus lens L10 convex on the reduction side 2. That is, in this example, the third lens group G3 is a single lens having a positive power.
- the third lens group G3 is a correction (compensation) zooming group (fourth zooming group) in which a seventh lens group G7 described later is used as a main zooming group (first zooming group). When zooming from the wide-angle end to the telephoto end, the lens is moved to the reduction side 2 by a small distance so as to satisfy the condition (3).
- the fourth lens group G4 is a lens group having a negative power.
- the fourth lens group G4 includes three lenses, and is arranged in order from the reduction side 2 and is a negative meniscus lens L11 convex to the enlargement side 3. And a negative meniscus lens L12 convex on the reduction side 2 and a biconvex positive lens L13. That is, the fourth lens group G4 has a negative-negative-positive power arrangement from the reduction side 2.
- the fourth lens group G4 is a lens group disposed adjacent to the reduction side 2 of the first intermediate image IM1 and fixed in position with respect to the image plane 5a, and does not move during zooming and focusing. It is a lens group.
- the enlargement-side lens group MG disposed on the enlargement side 3 with the reduction-side lens group RG and the first intermediate image IM1 interposed therebetween includes fifth to eighth lens groups G5 to G8.
- the fifth lens group G5 is a lens group having a positive power, and in this example, has a single positive meniscus lens L14 convex on the reduction side 2. That is, in this example, the fifth lens group G5 has a single positive power configuration.
- the fifth lens group G5 is a first focusing group that moves to the reduction side 2 when focusing from a short distance to a long distance.
- the sixth lens group G6 is a lens group having a positive power.
- the sixth lens group G6 includes three lenses, and includes a negative meniscus lens L15 convex from the reduction side 2 toward the reduction side 2 and a biconvex lens. , And a positive meniscus lens L17 convex on the magnifying side 3. That is, the sixth lens group G6 includes a negative-positive-positive power arrangement from the reduction side 2.
- the sixth lens group G6 is a correction (compensation) zooming group (third zooming group) with the seventh lens group G7 as a main zooming group (first zooming group), and has a wide angle. When zooming from the end to the telephoto end, the zoom lens moves to the reduction side 2 on the opposite side by a small distance with respect to the movement amount of the seventh lens group G7.
- the seventh lens group G7 is a lens group having a positive power, and in this example, has a single positive meniscus lens L18 convex on the reduction side 2. That is, in this example, the seventh lens group G7 has a single positive power configuration.
- the seventh lens group G7 When zooming from the wide-angle end to the telephoto end, the seventh lens group G7 mainly moves to the enlargement side 3 so that the distance (interval) to the eighth lens group G8 adjacent to the enlargement side 3 is reduced. This is a zooming group (first zooming group).
- the eighth lens group G8 is a lens group at the end (first end) located closest to the magnifying side 3 and is a lens group having a positive power as a whole.
- the eighth lens group G8 is configured by three lenses. And a negative meniscus lens L19 convex from the reduction side 2 to the reduction side 2, a biconvex positive lens L20, and a negative meniscus lens L21 convex to the enlargement side 3.
- These lenses L19, L20 and L21 are cemented to form a biconvex cemented lens B3 having a positive refractive power as a whole.
- the cemented lens B3 is suitable for correcting axial chromatic aberration and lateral chromatic aberration.
- the eighth lens group G8 includes, from the reduction side 2, a negative-positive-negative power arrangement, which constitutes a cemented lens. This is a single lens configuration.
- the eighth lens group G8 is a correction (compensation) zooming group (second zooming group) with the seventh lens group G7 as a main zooming group (first zooming group), and has a wide angle. When zooming from the end to the telephoto end, the zoom lens moves to the enlargement side 3 by a small distance with respect to the amount of movement of the seventh lens group G7.
- the projection optical system 10 is an optical system (lens system) composed of a total of 21 lenses and configured from the reduction side 2 into eight groups of positive-positive-positive-positive-negative-positive-positive-positive-positive. . Further, the projection optical system 10 is an inner focus type zoom lens, and a seventh lens group G7 disposed on the lens group MG on the enlargement side 3 with respect to the first intermediate image IM1 is mainly a zooming group (first lens unit). Move as a zooming group (variator 1) and perform zooming.
- the lens group RG on the reduction side includes a third lens group G3 functioning as a compensator during zooming and a second lens group G2 functioning as a compensator during focusing.
- any of the lens groups can have a very small moving distance, for example, within the range of conditions (3) and (4).
- the lens group (lens system) RG it is possible to suppress fluctuation of aberration due to zooming in the lens group (lens system) RG on the reduction side. For this reason, it is not necessary to basically consider the fluctuation of the aberration in the reduction-side lens group RG, and a part of the aberration generated by the concave mirror M1 of the second optical system 12 is corrected in the reduction-side lens group RG. It is possible to form the first intermediate image IM1 that is distorted so as to generate aberration for performing the operation in advance. That is, for the aberration generated by the concave mirror M1 of the second optical system 12, the enlargement-side lens system MG and the reduction-side lens system RG can share the aberration correction. For this reason, the number of lenses constituting the projection optical system 10 can be reduced, and the compact projection optical system 10 capable of projecting high-quality images can be provided.
- the first optical system 11 mainly includes a zooming function, and includes a first variable power unit serving as a variator having a large moving distance and a seventh lens unit disposed on the enlargement side 3 with respect to the first intermediate image IM1.
- a first intermediate image IM ⁇ b> 1 as an intermediate image inside the lens and a second intermediate image IM ⁇ b> 2 as an intermediate image outside the lens are formed on the opposite side to the optical axis 7.
- the light flux from the first intermediate image IM1 to the second intermediate image IM2 intersects the optical axis 7 on the enlarged side 3 of the first intermediate image IM1.
- the seventh lens group G7 which is the first zooming group, can operate the light flux collected around the optical axis 7 in the vicinity of the intersection with the optical axis 7, and is small, lightweight, and accurate.
- Zooming can be performed with a lens group that easily moves. Not only the paraxial light reaching the second intermediate image but also the peripheral light passing through the vicinity of the optical axis 7 can be manipulated not by the peripheral part of the seventh lens group G7 but by the part near the optical axis 7. It becomes. For this reason, it is easy to suppress the generation of the aberration of the peripheral light due to zooming, and it is easy to control the paraxial light and the peripheral light equally. For this reason, it is possible to provide a compact projection optical system 10 capable of zooming and projecting a high-quality image.
- the first optical system 11 is further adjacent to the seventh lens group G7, which is the first zooming group, on the enlargement side 3 (with only an air gap), and the first optical system 11
- the eighth lens group G8 having a positive power is arranged as the first terminal lens group on the most enlarged side 3.
- An eighth lens group G8 having a positive power and disposed adjacent to the enlargement side 3 of the seventh lens group G7 functions as an imaging group for the second intermediate image IM2, and the second intermediate image IM2 is At least the principal ray of the peripheral light to be formed passes through the lens surface on the side where the second intermediate image IM2 is formed with respect to the optical axis 7, so that final aberration correction and the like are often performed.
- the ambient light is designed to intersect with the optical axis 7 on the reduction side 2 of the eighth lens group G8, and by arranging the seventh lens group G7 as the first zooming group in the vicinity thereof. Zooming can be performed by the seventh lens group G7 having a compact design.
- an eighth lens group G8 having a positive power functioning as an imaging lens on the most enlarged side 3 of the first optical system 11
- a relatively small second lens group G1 is provided near the first optical system 11. 2 intermediate images IM2 can be formed. Therefore, the concave mirror M1 that reflects and enlarges the second intermediate image IM2 can be made compact, and the compact and high-magnification projection optical system 10 can be provided.
- the eighth lens group G8 is composed of a cemented lens B3 of three lenses L19, L20 and L21, and the cemented lens B3 functions as a biconvex positive lens having positive refractive power on both surfaces. Therefore, a lens group suitable for imaging with a simple configuration can be arranged adjacent to the seventh lens group G7, which is the first zooming group. Further, since the biconvex positive lens B3 is a junction of the three negative-positive-negative lenses L19 to L21, various aberrations including chromatic aberration can be corrected at the time of image formation with a simple configuration.
- the seventh lens group G7 which is the first variable power group, has a positive refractive power, and when zooming from the wide-angle end to the telephoto end, a distance d34 between the adjacent eighth lens group G8 having a positive refractive power. Move to the enlargement side 3 so that is smaller. As a result, the position of the second intermediate image IM2 on the optical axis 7 moves toward (approaches) the mirror M1. In particular, the imaging position around the second intermediate image IM2 can be made closer to the direction of the mirror M1.
- the adjacent eighth lens group G8 also moves to the enlargement side 3 so that the distance d38 from the mirror M1 decreases, and functions as a second zooming group.
- the distance Dz2 that the eighth lens group G8 moves when zooming from the wide-angle end to the telephoto end may be smaller than the movement amount Dz1 of the seventh lens group G7.
- the focal length f7 (fz1) of the seventh lens group G7 which is the first variable power group having a large moving amount
- the eighth lens group G8 which is the second variable power group having a small moving amount. Is larger than the focal length f8 (fz2), the power is set small, and the projection optical system 10 with good aberration correction can be provided.
- the moving amount Dz2 of the eighth lens group G8, which is the second variable power unit, and the moving amount Dz1 of the seventh lens group G7, which is the first variable power unit satisfy the following condition (5).
- the focal length f7 (fz1) of the seventh lens group G7, which is the first zooming group, and the focal length f8 (fz2) of the eighth lens group G8, which is the second zooming group are as follows.
- Condition (6) may be satisfied.
- the lower limit of condition (5) may be 0.2, and the upper limit may be 0.4.
- the lower limit of condition (6) may be 0.6, and the upper limit may be 0.8.
- the first optical system 11 is disposed on the enlargement side 3 of the first intermediate image IM1 and adjacent to the reduction side 2 of the seventh lens group G7, which is the first variable power unit.
- the lens unit G6 moves in the opposite direction to the seventh lens unit G7 during zooming as a third zooming unit.
- the first optical system 11 further moves on the reduction side 2 from the first intermediate image IM1 in the opposite direction to the seventh lens group G7, which is the main zooming group, during zooming.
- the lens group G3 is included as a fourth zooming group.
- the moving amount Dz4 of the third lens group G3 is set to be smaller than the moving amount Dz1 of the seventh lens group G7 within a range satisfying the condition (3).
- the aberration generated by the movement of the seventh lens group G7 which is the main zooming group, is more favorably corrected by the movement of the third lens group G3, and the first intermediate image IM1 on the reduction side 2 is
- the performance of the reduction-side lens group RG is hardly affected, and the entire projection optical system 10 is cooperated with the enlargement-side lens group MG, which is a main function of the reduction-side lens group RG, in the entire zooming region.
- the function to correct the aberration of the system can be exhibited.
- the focal length frw of the entire system (the system including the first optical system 11 and the second optical system 12) at the wide-angle end of the lens group RG on the reduction side at a short distance, and the focal length at the telephoto end.
- the following condition (7) is satisfied with almost no change from frt. 0.95 ⁇ frw / frt ⁇ 1.0 (7)
- the lower limit of condition (7) may be 0.97.
- the first optical system 11 includes a fifth lens group G5 that functions as a main focusing group (first focusing group) during focusing on the enlargement side 3 with respect to the first intermediate image IM1.
- the focusing lens group G5 having a large moving amount during focusing is arranged on the enlargement side 3 of the first intermediate image IM1, so that the lens on the reduction side 2 of the first intermediate image IM1.
- the group RG mainly performs the function of correcting the aberration of the entire projection optical system 10 in cooperation with the lens group MG on the enlargement side, rather than the function of correcting the position and shape of the first intermediate image IM1 by focusing. Can be done.
- the lenses that move during zooming and focusing are concentrated on the lens group MG on the enlargement side 3 with respect to the first intermediate image IM1, but the load of aberration correction can be reduced, and the overall configuration of the lens group MG can be simplified.
- An optical system 10 can be provided.
- the first optical system 11 moves toward the reduction side 2 from the first intermediate image IM1 during focusing, and moves in the opposite direction to the fifth lens group G5, which is the main focusing group, during focusing.
- the group G2 is included as a second focusing group.
- the movement amount Df2 of the second lens group G2 is set to be small as long as the movement amount Df1 of the fifth lens group G5 satisfies the condition (4). For this reason, the aberration generated by the movement of the fifth lens group G5, which is the main focusing group, is more favorably corrected by the movement of the second lens group G2, and the lens on the reduction side 2 from the first intermediate image IM1.
- the negative side which is adjacent to the most enlarged side 3 of the lens group RG on the reduction side 2 from the first intermediate image IM1, that is, adjacent to the reduction side 2 of the first intermediate image IM1.
- the fourth lens group G4 having the refractive power of? Can be arranged as a fixed lens group that does not move during zooming and focusing. Therefore, it is easy for the fourth lens group G4 to have a function including correction of various aberrations such as trapezoidal aberration (actually including generation of various aberrations that cancel various aberrations occurring on the magnification side).
- a second terminal lens group (first lens group) G ⁇ b> 1 disposed on the most reduction side 2 of the first optical system 11 has a concave positive side having a concave surface facing the light valve 5. It is composed of a meniscus lens L1. By arranging the lens L1 with the negative power surface facing the light valve 5 on the most reduction side 2, it is easy to collimate the light beam from the light valve 5 with respect to the optical axis 7 and insert a glass block CG or the like. For this purpose, a sufficient length of back focus BF can be secured.
- FIG. 6 shows distortion at the wide-angle end (wide), in a standard state (normal), and at the telephoto end (telephoto).
- FIGS. 7, 8, and 9 show lateral aberration diagrams at respective image heights at the wide-angle end (wide), the standard state (normal), and the telephoto end (telephoto). These figures show a wavelength of 650 nm (short broken line), a wavelength of 550 nm (solid line), and a wavelength of 460 nm (long broken line). The same applies to the following embodiments.
- FIG. 2 shows the focal lengths fg1 to fg8 of the lens groups G1 to G8 of the projection optical system 10 and the focal length of the mirror M1, and other main parameters are as follows.
- Magnification magnification at wide-angle end, short distance
- F value 2.5 Maximum angle of view (half angle of view): 71.3 °
- Zoom ratio 1.05
- Synthetic focal length of entire system wide-angle end, fw): 5.361 mm
- Composite focal length of lens group MG on the magnification side (wide-angle end, fmw) 89.161 mm
- the projection optical system 10 it is possible to satisfy all of the above-described conditions (1) to (7) and mainly perform zooming and focusing by the lens group arranged on the enlargement side 3 of the first intermediate image IM1. it can. Therefore, in the lens group RG arranged on the reduction side 2 of the first intermediate image IM1, the position and shape of the first intermediate image IM1 are mainly changed to the first intermediate image IM1 rather than being changed for zooming and focusing. In cooperation with the lens group MG on the enlargement side of the intermediate image IM1, it is possible to concentrate on forming a clearer image projected on the screen 6, which is the final second screen. For this reason, it is possible to provide a projection optical system 10 capable of projecting an image with good aberration correction, and a projector 1 including the projection optical system 10, which can be zoomed and compact.
- FIG. 10 shows another example of the projector.
- This projector 1 is also a projection optical system for projecting from the image plane (first image plane) 5a of the light modulator (light valve) 5 on the reduction side 2 to the screen 6 or wall surface (second image plane) on the enlargement side 3. 10 inclusive.
- the projection optical system 10 includes a first optical system 11 including a plurality of lenses and a second optical system 12 including a first reflective surface M1 having a positive power.
- a first intermediate image IM1 formed inside the first optical system 11 by light incident from the side 2 is formed as a second intermediate image IM2 on the enlargement side 3 of the first optical system 11,
- the first reflection surface M1 projects the second intermediate image IM2 on the second image surface as a video (final image).
- the first optical system 11 includes, similarly to the above example, 21 lenses, a lens group RG arranged on the reduction side (input side) 2 with respect to the first intermediate image IM1, and an enlargement side. (Output side) 3 and a lens group MG arranged at 3.
- the reduction lens group RG includes first to fourth lens groups G1 to G4 of positive-positive-positive-negative arranged from the reduction side 2.
- the enlargement-side lens group MG includes fifth-eighth lens groups G5 to G8 of positive-positive-positive-positive arranged from the reduction side 2.
- FIG. 11 shows data of each element of the projection optical system 10
- FIG. 12 shows data of an aspheric surface
- FIG. 13 shows an interval before and after a lens group that moves during zooming
- FIG. The front and rear intervals of the moving lens group are shown.
- the basic lens configuration of each of the first to ninth lens groups G1 to G9 of the first optical system 11 is a fixed lens group in which the sixth lens group G6 does not move during zooming and focusing. Except for these points, the projection optical system 10 is common to the first optical system 11 shown in FIG. Therefore, the first optical system 11 includes a first variable power unit (seventh lens unit) G7 that moves mainly during zooming on the enlarged side 3 of the first intermediate image IM1, and a first power unit that performs focusing.
- a first focusing group (fifth lens group) G5 that mainly moves.
- FIG. 15 shows distortion at the wide-angle end (wide), the standard state (normal), and the telephoto end (telephoto).
- FIGS. 16, 17, and 18 show lateral aberration diagrams at respective image heights at the wide-angle end (wide), the standard state (normal), and the telephoto end (telephoto).
- FIG. 11 shows the focal lengths fg1 to fg8 of the lens groups G1 to G8 of the projection optical system 10 and the focal length of the mirror M1, and the other main parameters are as follows.
- Magnification magnification at wide-angle end, short distance
- F value 2.5 Maximum angle of view (half angle of view): 71.3 °
- Zoom ratio 1.05
- Synthetic focal length of entire system wide-angle end, fw): 5.358 mm
- Composite focal length of lens group MG on the magnification side (wide-angle end, fmw) 89.275 mm
- the projection optical system 10 it is possible to satisfy all of the above-described conditions (1) to (7) and mainly perform zooming and focusing by the lens group arranged on the enlargement side 3 of the first intermediate image IM1. it can. Therefore, in the lens group RG arranged on the reduction side 2 of the first intermediate image IM1, the position and shape of the first intermediate image IM1 are mainly changed to the first intermediate image IM1 rather than being changed for zooming and focusing. In cooperation with the lens group MG on the enlargement side of the intermediate image IM1, it is possible to concentrate on forming a clearer image projected on the screen 6, which is the final second screen. For this reason, it is possible to provide a projection optical system 10 capable of projecting an image with good aberration correction, and a projector 1 including the projection optical system 10, which can be zoomed and compact.
- FIG. 19 shows another example of the projector.
- This projector 1 is also a projection optical system for projecting from the image plane (first image plane) 5a of the light modulator (light valve) 5 on the reduction side 2 to the screen 6 or wall surface (second image plane) on the enlargement side 3. 10 inclusive.
- the projection optical system 10 includes a first optical system 11 including a plurality of lenses, and a second optical system 12 including a first reflecting surface M1 having a positive refractive power.
- the first optical system 11 includes: A first intermediate image IM1 formed inside the first optical system 11 by light incident from the reduction side 2 is formed as a second intermediate image IM2 on the enlargement side 3 with respect to the first optical system 11. ,
- the first reflection surface M1 projects the second intermediate image IM2 on the second image surface as a video (final image).
- the first optical system 11 includes, similarly to the above example, 21 lenses, a lens group RG arranged on the reduction side (input side) 2 with respect to the first intermediate image IM1, and an enlargement side. (Output side) 3 and a lens group MG arranged at 3.
- the reduction lens group RG includes first to fourth lens groups G1 to G4 of positive-positive-positive-negative arranged from the reduction side 2.
- the enlargement-side lens group MG includes fifth-eighth lens groups G5 to G8 of positive-positive-positive-positive arranged from the reduction side 2.
- FIG. 20 shows data of each element of the projection optical system 10
- FIG. 21 shows data of an aspheric surface
- FIG. 22 shows an interval before and after a lens group moving during zooming
- FIG. The front and rear intervals of the moving lens group are shown.
- the basic lens configuration of each of the first to ninth lens groups G1 to G9 of the first optical system 11 is such that the seventh lens group G7, which is the main zooming group, is a biconvex positive lens L18.
- the first optical system 11 includes a first variable power unit (seventh lens unit) G7 that moves mainly during zooming on the enlarged side 3 of the first intermediate image IM1, and a first power unit that performs focusing.
- a first focusing group (fifth lens group) G5 that mainly moves.
- FIG. 24 shows distortion at the wide-angle end (wide), in a standard state (normal), and at the telephoto end (telephoto).
- FIGS. 25, 26 and 27 show lateral aberration diagrams at respective image heights at the wide-angle end (wide), the standard state (normal) and the telephoto end (telephoto).
- FIG. 20 shows the focal lengths fg1 to fg8 of the lens groups G1 to G8 of the projection optical system 10 and the focal length of the mirror M1, and other main parameters are as follows.
- Magnification magnification at wide-angle end, short distance
- F value 2.5 Maximum angle of view (half angle of view): 71.3 °
- Zoom ratio 1.03
- Synthetic focal length of entire system wide-angle end, fw): 5.358 mm
- the above conditions (1) to (4) and (7) are satisfied, and zooming and focusing are mainly performed by the lens group arranged on the enlargement side 3 of the first intermediate image IM1. be able to.
- the eighth lens group G8 is fixed at the time of zooming, the power of the seventh lens group G7 of the main zooming group becomes stronger, and the moving distance at the time of zooming becomes shorter.
- the lens group RG arranged on the reduction side 2 of the first intermediate image IM1 and the lens group MG on the enlargement side of the first intermediate image IM1 cooperate to form the final second image.
- An image projected on the screen 6, which is a screen, can be formed more clearly. For this reason, it is possible to provide a projection optical system 10 capable of projecting an image with good aberration correction, and a projector 1 including the projection optical system 10, which can be zoomed and compact.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
- Projection Apparatus (AREA)
Abstract
縮小側(2)の第1の像面(5a)から拡大側(3)の第2の像面(6)へ投射する投射光学系(10)を提供する。この投射光学系は、複数のレンズを含む第1の光学系(11)であって、縮小側から入射した光により当該第1の光学系の内部の光軸(7)の第1の側に結像される第1の中間像(IM1)を当該第1の光学系よりも拡大側の光軸の第2の側に第2の中間像(IM2)として結像する第1の光学系(11)と、第2の中間像(IM2)よりも拡大側に位置する正のパワーの第1の反射面(M1)を含む第2の光学系(12)とを有する。この投射光学系の第1の光学系は、第1の中間像(IM1)よりも拡大側に配置され、ズーミングの際に移動する第1の変倍群となる第7のレンズ群(G7)を含む。
Description
本発明は、プロジェクタの投射光学系に関するものである。
日本国特開2012-108267号には、超短焦点画像投射装置用の投射光学系であって、画像表示素子により形成された画像を変倍して第1中間像を結像する第1光学系と、前記第1中間像を拡大して第2中間像を結像する第2光学系と、前記第2中間像を結像した光を反射する凹面鏡とを有し、前記第1光学系の光軸が前記第2光学系の光軸に対して前記第1光学系の光軸と垂直な方向に平行移動していることを特徴とする投射光学系が開示されている。
ズーミングが可能であるとともに、高画質の画像を投影できる、よりコンパクトな投射光学系が要望されている。
本発明の態様の1つは、縮小側の第1の像面から拡大側の第2の像面へ投射する投射光学系である。投射光学系は、複数のレンズを含む第1の光学系であって、縮小側から入射した光により当該第1の光学系の内部の光軸の第1の側に結像される第1の中間像を当該第1の光学系よりも拡大側の光軸の第2の側に第2の中間像として結像する第1の光学系と、第2の中間像よりも拡大側に位置する正の屈折力の第1の反射面を含む第2の光学系とを有する。さらに、第1の光学系は、第1の中間像よりも拡大側に配置され、ズーミングの際に移動する第1の変倍群を含む。この投射光学系においては、第1の中間像よりも拡大側に第1の変倍群を配置することにより、光軸の第1の側に結像される第1の中間像から光軸の第2の側に結像される第2の中間像に至る光束であって、近軸光と周辺光とが光軸またはその付近で交差し、光軸の近傍に集まる光束を第1の変倍群で操作できる。したがって、小口径のレンズでズーミングの操作が可能となり、簡易な機構でズーミングの精度を向上しやすい。さらに、周辺光も第1の変倍群のレンズの光軸の近傍を通過するので、ズーミングによる周辺光の収差の発生を抑制しやすく、近軸光と周辺光とを同等に制御しやすい。このため、ズーミングが可能で、高画質の画像を投影できるコンパクトな投射光学系を提供できる。
また、この投射光学系においては、ズーミングの際に、第1の中間像の形状あるいは位置を変えてもよいが、基本的には第1の中間像の形状あるいは位置をほとんど変えずに、第2の中間像の近傍に配置される第1の変倍群を移動することによりズーミングを行うことができる。したがって、第1の像面から第1の中間像に至る光束が通過する複数のレンズの性能にズーミングが与える影響は小さく、それらのレンズの性能を、収差補正やフォーカシングのために最大限に活かすことができ、レンズ枚数も削減しやすい。したがって、この点でも、ズーミングを第2の中間像に近いレンズ群で行うことにより、収差をさらに良好に補正でき、ズーミングが可能な、コンパクトな投射光学系を提供できる。
本発明の異なる態様の1つは、上記の投射光学系と、第1の像面に画像を形成する光変調器とを有するプロジェクタである。プロジェクタは、第1の像面を照明する照明光学系を含んでいてもよい。
以下においては、複数のレンズを含む第1の光学系と、正のパワー(屈折力)の第1の反射面を含む第2の光学系とを含む投射光学系を参照して本発明を説明する。この投射光学系では、第1の光学系からの光が、他のレンズを含む屈折光学系を介さずに第1の反射面に到達するが、第1の光学系の前後に1または複数のプリズム、ガラスブロックあるいはミラーなどの光学素子を含んでもよい。この投射光学系では、第2の光学系の第1の反射面が、第1の光学系から出力された光を反射して投影光としてスクリーンに投射する。第1の光学系は、縮小側から入射した光により第1の光学系の内部に結像される第1の中間像を第1の光学系よりも拡大側に第2の中間像として結像する屈折光学系(レンズシステム)である。第1の光学系は、第1の中間像よりも拡大側に配置され、ズーミングの際に移動する第1の変倍群を含む。
この投射光学系においては、レンズ内中間像(第1の中間像)よりも拡大側のレンズ系で変倍(ズーミング)を行うことで、レンズ内中間像よりも縮小側のレンズ系の移動をする必要が無くなり、または、移動を最小限にすることができる。このため、変倍の前後でのレンズ内中間像の位置および形状が基本的には変化しない。したがって、レンズ内中間像よりも縮小側のレンズ系における、変倍による収差の変動を抑制することが可能となる。このため、変倍によるレンズ内中間像よりも縮小側のレンズ系における収差の変動を基本的には考慮する必要が無くなる。したがって、レンズ内中間像よりも縮小側のレンズ群に、凹面鏡で発生する収差の一部を補正するための収差を予め発生させるように歪んだレンズ内中間像を形成させることが可能となる。すなわち、第2の光学系である凹面鏡により発生する収差に対して、レンズ内中間像よりも拡大側のレンズ系と縮小側のレンズ系とで上記収差の補正を分担することが可能となる。このため、レンズ内中間像(第1の中間像)の拡大側と縮小側とのレンズ系によって変倍と収差補正との役割を完全に分断しなくてもよく、レンズ系全体の構成枚数を少なくすることができる。また、変倍系の構成群を簡素化することが可能となる。
この投射光学系の広角端における合成焦点距離fwと、第1の変倍群の焦点距離fz1とが以下の条件(1)を満たしてもよい。
0.015<fw/fz1<0.125・・・(1)
条件(1)の下限を超える(下回る)と、第1の変倍群のパワーが小さすぎてズーミングのための移動距離が長くなりすぎ、収差補正が難しくなる。条件(1)の上限を超える(上回る)と、第1の変倍群のパワーが大きすぎて、他のレンズ群による収差補正が難しくなる。条件(1)の下限は0.03であってもよく、0.04であってもよい。条件(2)の上限は、0.1であってもよく、0.07であってもよい。
0.015<fw/fz1<0.125・・・(1)
条件(1)の下限を超える(下回る)と、第1の変倍群のパワーが小さすぎてズーミングのための移動距離が長くなりすぎ、収差補正が難しくなる。条件(1)の上限を超える(上回る)と、第1の変倍群のパワーが大きすぎて、他のレンズ群による収差補正が難しくなる。条件(1)の下限は0.03であってもよく、0.04であってもよい。条件(2)の上限は、0.1であってもよく、0.07であってもよい。
また、広角端から望遠端にズーミングする際に第1の変倍群が移動する距離Dz1と、第1の変倍群の焦点距離fz1とが以下の条件(2)を満たしてもよい。
0.02<Dz1/fz1<0.15・・・(2)
条件(2)の下限を超えると、移動距離に対して第1の変倍群のパワーが小さすぎてズーミングの倍率を確保することが難しくなる。条件(2)の上限を超えると、移動距離に対して第1の変倍群のパワーが強すぎて、ズーミングに対する移動量が効きすぎ、収差補正が難しくなるとともに、組み立てなどによる個体差が大きくなり、投射光学系の品質の確保が難しくなる。条件(2)の上限は0.10であってもよく、0.05であってもよい。
0.02<Dz1/fz1<0.15・・・(2)
条件(2)の下限を超えると、移動距離に対して第1の変倍群のパワーが小さすぎてズーミングの倍率を確保することが難しくなる。条件(2)の上限を超えると、移動距離に対して第1の変倍群のパワーが強すぎて、ズーミングに対する移動量が効きすぎ、収差補正が難しくなるとともに、組み立てなどによる個体差が大きくなり、投射光学系の品質の確保が難しくなる。条件(2)の上限は0.10であってもよく、0.05であってもよい。
第1の光学系は、第1の変倍群の拡大側に隣接して配置された正の屈折力の第1の隣接レンズ群を含んでいてもよい。典型的には第1の隣接レンズ群は、第1の光学系の最も拡大側に配置された正の屈折力の第1の末端のレンズ群である。この正の屈折力のレンズ群は、第2の中間像を第1の中間像とは光軸を挟んだ反対側に形成するように光軸に向かって集光する光を出力するように第1の光学系の拡大側、典型的には最も拡大側に配置され、第1の隣接レンズ群の縮小側で、ライトバルブ(光変調器)の有効表示面(第1の像面)において投射光学系の光軸から最も離間した位置から出射した光線である周辺光が光軸を横切るように第1の光学系を構成することが可能となる。周辺光は、第2の光学系からスクリーン(第2の像面)までの投射距離の大きい光線であり、同時に、第2の光学系の第1の反射面の最も曲率の急な面で反射される光線であるため、第1の反射面に入射する光線の変化によって光学性能に影響が発生しやすい光線である。したがって、第1の変倍群は、第1の隣接レンズ群の縮小側に隣接して配置することにより、周辺光の主光線高を低くして変倍による光線への影響を抑制することで、周辺光やライトバルブの有効表示面において投射光学系の光軸から最も近接した位置から出射した光線である近軸光とのバランスをとり、コンパクトな第1の変倍群により近軸光および周辺光を適切に操作してズーミングすることができる。
第1の隣接レンズ群は、両面が正の屈折力を備えた両凸の正レンズを含んでもよく、縮小側の凸面で周辺光を光軸との成す角が小さくなるように屈折させ、拡大側の凸面で光線の結像位置を縮小側に近づけて、第2の中間像としての結像位置を光軸に近づけ、結果として第1の反射面の有効径を小型化することが可能となる。また、両凸の正レンズは接合レンズであってもよく、ズーミングのために移動する第1の変倍群により発生する収差を良好に補正しやすい。第1の変倍群は正の屈折力を備え、広角端から望遠端にズーミングする際に、第1の変倍群は、第1の隣接レンズ群との間隔が狭くなるように移動してもよい。また、第1の隣接レンズ群は、ズーミングの際に移動する第2の変倍群であってもよく、第1の変倍群とともに第2の中間像のサイズおよび/または位置を操作するために移動してもよく、第1の変倍群の移動による収差を補正するように移動してもよい。広角端から望遠端にズーミングする際に、第2の変倍群は、第2の光学系との間隔が狭くなるように移動してもよい。
第1の光学系は、第1の中間像よりも拡大側で、第1の変倍群の縮小側に隣接して配置され、ズーミングの際に、第1の変倍群と逆方向に移動する第3の変倍群を含んでもよい。第1の変倍群の移動による収差を補正するように移動できる。第1の光学系は、さらに、第1の中間像よりも縮小側に配置され、ズーミングの際に、第1の変倍群と逆方向に移動する第4の変倍群を含んでもよい。第1の中間像の位置あるいは形状をズーミングの際に調整してもよい。
広角端から望遠端にズーミングする際に第1の変倍群が移動する距離Dz1と、第4の変倍群が移動する距離Dz4とが以下の条件(3)を満たしてもよい。
0.05<|Dz4/Dz1|<0.20・・・(3)
条件(3)の下限を超えると、第1の変倍群の移動に対する第4の変倍群による有効な補正が得られなくなる。条件(3)の上限を超えると、第1の中間像の縮小側に位置する第4の変倍群の移動量が大きくなり過ぎて、第1の中間像の形状および位置に対する影響が大きくなり、収差補正が難しくなる。条件(3)の下限は0.07であってもよく、上限は0.15であってもよい。
0.05<|Dz4/Dz1|<0.20・・・(3)
条件(3)の下限を超えると、第1の変倍群の移動に対する第4の変倍群による有効な補正が得られなくなる。条件(3)の上限を超えると、第1の中間像の縮小側に位置する第4の変倍群の移動量が大きくなり過ぎて、第1の中間像の形状および位置に対する影響が大きくなり、収差補正が難しくなる。条件(3)の下限は0.07であってもよく、上限は0.15であってもよい。
第1の光学系は、第1の中間像よりも拡大側に配置され、フォーカシングの際に移動する第1の合焦群を含んでもよい。第1の合焦群は、第1の中間像に隣接するように配置されてもよい。また、第1の光学系は、第1の中間像よりも縮小側に配置され、フォーカシングの際に移動する第2の合焦群を含んでもよい。広角端において当該投射光学系の焦点距離を近距離から遠距離に調整する際に、第1の合焦群が移動する距離Df1と、第2の合焦群が移動する距離Df2とが以下の条件(4)を満たしてもよい。第2の合焦群は、第1の合焦群と逆方向、例えば、焦点距離を近距離から遠距離に調整する際に、第1の合焦群は縮小側に移動し、第2の合焦群は拡大側に移動してもよい。
0.1<|Df2/Df1|<0.4・・・(4)
条件(4)の下限を超えると、第1の合焦群の移動に対する第2の合焦群による有効な補正が得られなくなる。条件(4)の上限を超えると、第1の中間像の縮小側に位置する第2の合焦群の移動量が大きくなり過ぎて、第1の中間像の形状および位置に対する影響が大きくなり、収差補正が難しくなる。条件(4)の下限は0.2であってもよく、上限は0.3であってもよい。
0.1<|Df2/Df1|<0.4・・・(4)
条件(4)の下限を超えると、第1の合焦群の移動に対する第2の合焦群による有効な補正が得られなくなる。条件(4)の上限を超えると、第1の中間像の縮小側に位置する第2の合焦群の移動量が大きくなり過ぎて、第1の中間像の形状および位置に対する影響が大きくなり、収差補正が難しくなる。条件(4)の下限は0.2であってもよく、上限は0.3であってもよい。
第1の光学系は、最も縮小側に配置された第2の末端のレンズ群を含み、第2の末端のレンズ群は、縮小側が凹面の正の屈折力のメニスカスレンズを含んでもよい。第2の末端のレンズ群を設けることにより、第1の像面との間の距離(バックフォーカス)を調整しやすい。
図1に、プロジェクタの一例を示している。プロジェクタ1は、縮小側2の光変調器(ライトバルブ)5の像面(第1の像面)5aから拡大側3のスクリーンまたは壁面(第2の像面)6へ投射する投射光学系10を含む。ライトバルブ5は、LCD、デジタルミラーデバイス(DMD)あるいは有機ELなどの画像を形成できるものであればよく、単板式であっても、各色の画像をそれぞれ形成する方式であってもよい。ライトバルブ5は発光タイプであってもよく、照明タイプであってもよい。照明タイプの場合は、プロジェクタ1はさらに照明光学系(不図示)を含む。スクリーン6は、壁面やホワイトボードなどであってもよく、プロジェクタ1はフロントプロジェクタであっても、スクリーンを含むリアプロジェクタであってもよい。
投射光学系10は、複数のレンズを含む第1の光学系11と、正のパワー(屈折力)の第1の反射面M1を含む第2の光学系12とを含む。第2の光学系12の反射面M1は、第1の光学系11から出力された光を反射して投影光19としてスクリーン6に投射する。第1の光学系11は、縮小側2から入射した光により第1の光学系11の内部に結像される第1の中間像(レンズ内中間像)IM1を、第1の光学系11よりも拡大側3に第2の中間像(レンズ外中間像)IM2として結像する屈折光学系(レンズシステム)である。本例においては、第1の中間像IM1は、光軸7の、図面の上側(第1の側)に結像され、第2の中間像IM2は、第1の中間像IM1に対して光軸7の反対側(図面の下側、第2の側)に結像される。本例において、第1の光学系11は、他のレンズを介さずに第2の中間像IM2を結像する光学系であり、第2の中間像IM2はプリズム、ガラスブロックあるいはミラーなどの光学素子を介して、または、プリズム、ガラスブロックあるいはミラーなどの光学素子を跨いで(横切って)形成されてもよい。
第1の光学系11は、縮小側(入力側)2に配置された、全体として正のパワーの縮小側のレンズ群(第1の屈折光学系)RGと、縮小側のレンズ群RGの拡大側(出力側)3に配置された、全体として正のパワーの拡大側のレンズ群(第2の屈折光学系)MGとを含む。拡大側のレンズ群MGにより、第1の中間像IM1が第1の反射面(ミラー)M1の縮小側2に第2の中間像IM2として結像され、正のパワーのミラーM1は、第2の中間像IM2をスクリーン6に拡大投影する。
本例の投射光学系10は、スクリーン6に投影される画像のサイズを可変できる変倍光学系である。縮小側のレンズ群RGは4群構成で、縮小側2から順に配置された、正の屈折力(パワー)で位置が固定された第1のレンズ群(第2の末端のレンズ群)G1と、正の屈折力でフォーカシングの際に移動し、ズーミングの際には移動しない第2のレンズ群(第2の合焦群)G2と、正の屈折力でフォーカシングの際に移動する第3のレンズ群(第4の変倍群)G3と、負の屈折力で位置が固定された第4のレンズ群G4とを含む。拡大側のレンズ群MGは、4群構成で、縮小側2から順番に配置された、正の屈折力でフォーカシングの際に移動し、ズーミングの際は移動しない第5のレンズ群(第1の合焦群)G5と、正の屈折力でズーミングの際に移動する第6のレンズ群(第3の変倍群)G6と、正の屈折力でズーミングの際に移動する第7のレンズ群(第1の変倍群)G7と、正の屈折力で最も拡大側3に配置され、ズーミングの際に移動する第8のレンズ群(第2の変倍群、第1の末端のレンズ群)G8とを含む。
図2~図5に、投射光学系10の各エレメントのデータを示している。図2において、Sはレンズの場合の面番号、Riは縮小側2から順に並んだ各エレメント(レンズの場合は各レンズ面)の曲率半径(mm)、diは縮小側2から順に並んだ各エレメントの面の間の距離(間隔、mm)、Diは各エレメントの有効半径(mm)、屈折率Nd(d線)、アッベ数νd(d線)と、各レンズ群G1~G8の合成焦点距離(mm)とを示している。図3は、各エレメントの面の中の、非球面の面番号と、非球面データを示している。非球面は、Xを光軸方向の座標、Yを光軸と垂直方向の座標、光の進行方向を正、Rを近軸曲率半径とすると、図2に示した係数Riと図3に示した係数K、A、B、C、D、およびEを用いて次式で表わされる。なお、「En」は、「10のn乗」を意味する。以下の各実施例においても同様である。
X=(1/Ri)Y2/[1+{1-(1+K)(1/Ri)2Y2}1/2]
+A3Y3+A4Y4+A6Y6+A8Y8+A10Y10+A12Y12
X=(1/Ri)Y2/[1+{1-(1+K)(1/Ri)2Y2}1/2]
+A3Y3+A4Y4+A6Y6+A8Y8+A10Y10+A12Y12
図4は、ズーミングの際に移動する第3のレンズ群G3、第6のレンズ群G6,第7のレンズ群G7、および第8のレンズ群G8の動きを、焦点距離が近距離の際の、広角端(ワイド)、望遠端(テレ)および中間(標準)の各位置における各レンズ群の前後の間隔により示している。図5は、フォーカシングの際に移動する第2のレンズ群G2、および第5のレンズ群の動きを、広角端におけるスクリーン6までの焦点距離(ミラーM1からスクリーン6までの距離d39)が近距離(655.8mm)、中距離(966.0mm)および遠距離(1666.0mm)の各位置における各レンズ群の前後の間隔により示している。
投射光学系10の第1の光学系(レンズシステム、屈折光学系)11は、縮小側2から、入射側のガラスブロックCGと、縮小側のレンズ群RGと、拡大側のレンズ群MGとを含む。縮小側のレンズ群RGは、第1~第4のレンズ群G1~G4を含む。第1のレンズ群G1は、最も縮小側2に位置する末端(第2の末端)のレンズ群であり、全体として正のパワーのレンズ群であり、本例においては拡大側3に凸の正のメニスカスレンズL1、すなわち、正のパワーのレンズの1枚構成である。
第2のレンズ群G2は、正のパワーのレンズ群であり、本例においては、8枚のレンズで構成され、縮小側(ライトバルブ側)2より配置された、両凸の正レンズL2と、縮小側2に凸の正のメニスカスレンズL3と、縮小側2に凸の負のメニスカスレンズL4と、両凸の正レンズL5と、拡大側3に凸の負のメニスカスレンズL6と、両凹の負レンズL7と、両凸の正レンズL8と、開口絞りStと、拡大側3に凸の正のメニスカスレンズL9とを含む。第4、第5および第6のレンズL4~L6は、第1の接合レンズ(バルサムレンズ)B1を構成し、第7のレンズおよび第8のレンズL7およびl8は、第2の接合レンズB2を構成している。接合レンズB1は、軸上色収差の補正に好適であり、接合レンズB2は、倍率色収差の補正に好適である。これらの接合レンズB1およびB2を含む第2のレンズ群G2は、近距離から遠距離にフォーカシングする際に拡大側3に移動し、色収差を含めた諸収差を良好に補正できる。すなわち、第2のレンズ群G2は、縮小側2から正-正-(負-正-負)-(負-正)-(絞り)-正のパワー配置を備え、カッコ内のパワー配置により接合レンズが形成されている。このため、接合レンズを考慮すると、正-正-正-負-(絞り)-正のパワー配置を備えている。第2のレンズ群G2は、後述する第5のレンズ群G5を主たる合焦群(第1の合焦群)とした、補正の合焦群(第2の合焦群)であり、フォーカシングの際に条件(4)を満足するように、第5のレンズ群G5と反対側に移動する。
第3のレンズ群G3は、正のパワーのレンズ群であり、本例においては、縮小側2に凸の正のメニスカスレンズL10の1枚構成である。すなわち、この例では、第3のレンズ群G3は、正のパワーのレンズの1枚構成である。第3のレンズ群G3は、後述する第7のレンズ群G7を主たる変倍群(第1の変倍群)とした、補正(補償)の変倍群(第4の変倍群)であり、広角端から望遠端にズーミングする際に条件(3)を満足するように、微小な距離だけ縮小側2に移動する。
第4のレンズ群G4は、負のパワーのレンズ群であり、本例においては、3枚のレンズで構成され、縮小側2から順に配置された、拡大側3に凸の負のメニスカスレンズL11と、縮小側2に凸の負のメニスカスレンズL12と、両凸の正レンズL13とを含む。すなわち、第4のレンズ群G4は、縮小側2から、負―負―正のパワー配置を備えている。第4のレンズ群G4は、第1の中間像IM1の縮小側2に隣接して配置された、像面5aに対して位置が固定されたレンズ群であり、ズーミングおよびフォーカシングの際に移動しないレンズ群である。
縮小側のレンズ群RGと第1の中間像IM1を挟んで拡大側3に配置された拡大側のレンズ群MGは、第5~第8のレンズ群G5~G8を含む。第5のレンズ群G5は、正のパワーのレンズ群であり、本例においては、縮小側2に凸の正のメニスカスレンズL14の1枚構成である。すなわち、この例では、第5のレンズ群G5は、正のパワーの1枚構成である。第5のレンズ群G5は、近距離から遠距離にフォーカシングする際に縮小側2に移動する第1の合焦群である。
第6のレンズ群G6は、正のパワーのレンズ群であり、本例においては、3枚のレンズで構成され、縮小側2より、縮小側2に凸の負のメニスカスレンズL15と、両凸の正レンズL16と、拡大側3に凸の正のメニスカスレンズL17とを含む。すなわち、第6のレンズ群G6は、縮小側2より、負-正-正のパワー配置を含む。第6のレンズ群G6は、第7のレンズ群G7を主たる変倍群(第1の変倍群)とした、補正(補償)の変倍群(第3の変倍群)であり、広角端から望遠端にズーミングする際に、第7のレンズ群G7の移動量に対して微小な距離だけ反対側の縮小側2に移動する。
第7のレンズ群G7は、正のパワーのレンズ群であり、本例においては、縮小側2に凸の正のメニスカスレンズL18の1枚構成である。すなわち、この例では、第7のレンズ群G7は、正のパワーの1枚構成である。第7のレンズ群G7は、広角端から望遠端にズーミングする際に、拡大側3に隣接する第8のレンズ群G8との距離(間隔)が短くなるように、拡大側3に移動する主たる変倍群(第1の変倍群)である。
第8のレンズ群G8は、最も拡大側3に位置する末端(第1の末端)のレンズ群で、全体として正のパワーのレンズ群であり、本例においては、3枚のレンズで構成され、縮小側2から、縮小側2に凸の負のメニスカスレンズL19と、両凸の正レンズL20と、拡大側3に凸の負のメニスカスレンズL21とを含む。これらのレンズL19、L20およびL21は接合され、全体として両凸の正の屈折力の接合レンズB3を構成している。接合レンズB3は、軸上色収差および倍率色収差の補正に好適である。すなわち、この例では、第8のレンズ群G8は、縮小側2から、負-正-負のパワー配置を含み、これらが接合レンズを構成しており、接合レンズを考慮すると、正のパワーのレンズの1枚構成である。第8のレンズ群G8は、第7のレンズ群G7を主たる変倍群(第1の変倍群)とした、補正(補償)の変倍群(第2の変倍群)であり、広角端から望遠端にズーミングする際に、第7のレンズ群G7の移動量に対して少ない距離だけ拡大側3に移動する。
このように投射光学系10は合計21枚のレンズで構成された、縮小側2から正-正-正-負-正-正-正-正の8群構成の光学系(レンズシステム)である。また、この投射光学系10は、インナーフォーカスタイプのズームレンズであり、第1の中間像IM1よりも拡大側3のレンズ群MGに配置された第7のレンズ群G7が主たる変倍群(第1の変倍群、バリエータ)として移動してズーミングを行う。したがって、レンズ内中間像である第1の中間像IM1の位置あるいは形状(大きさ)をズーミングのために積極的に変化させることはなく、第1の中間像IM1より縮小側2のレンズ群RGを構成するレンズの移動を最小限にすることができる。本例の投射光学系10においては、縮小側のレンズ群RGに、ズーミングの際のコンペンセータとして機能する第3のレンズ群G3と、フォーカシングの際のコンペンセータとして機能する第2のレンズ群G2とが含まれているが、いずれのレンズ群も移動距離を非常に小さく、例えば、条件(3)および(4)の範囲にすることができる。
したがって、縮小側のレンズ群(レンズシステム)RGにおける、変倍による収差の変動を抑制することが可能となる。このため、縮小側のレンズ群RGにおける収差の変動を基本的には考慮する必要が無くなり、縮小側のレンズ群RGに、第2の光学系12の凹面鏡M1で発生する収差の一部を補正するための収差を予め発生させるように歪んだ第1の中間像IM1を形成させることが可能となる。すなわち、第2の光学系12の凹面鏡M1により発生する収差に対して、拡大側のレンズ系MGと、縮小側のレンズ系RGとで、その収差補正を分担することが可能となる。このため、投射光学系10を構成するレンズ枚数を低減でき、コンパクトで、高画質の画像を投影できる投射光学系10を提供できる。
第1の光学系11は、ズーミングの機能を主として担う、移動距離の大きなバリエータとなる第1の変倍群を、第1の中間像IM1よりも拡大側3に配置された第7のレンズ群G7としてアレンジしている。第1の光学系11においては、レンズ内中間像である第1の中間像IM1と、レンズ外中間像である第2の中間像IM2とが光軸7に対して反対側に結像されるように設計されており、第1の中間像IM1から第2の中間像IM2に至る光束が、第1の中間像IM1の拡大側3で光軸7と交差する。したがって、第1の変倍群である第7のレンズ群G7は、光軸7と交差する近傍の、光軸7の周囲に集められた光束を操作することが可能となり、小型・軽量で精度よく移動しやすいレンズ群でズーミングを行うことが可能となる。第2の中間像に至る近軸光のみならず、第7のレンズ群G7の周辺部分ではなく光軸7に近い部分により、特に光軸7の近傍を通過する周辺光を操作することが可能となる。このため、ズーミングによる周辺光の収差の発生を抑制しやすく、近軸光と周辺光とを同等に制御しやすい。このため、ズーミングが可能で、高画質の画像を投影できるコンパクトな投射光学系10を提供できる。
第1の光学系11は、さらに、第1の変倍群である第7のレンズ群G7に対して拡大側3に隣接して(空気間隔のみを開けて)、第1の光学系11の最も拡大側3に正のパワーの第8のレンズ群G8を第1の末端のレンズ群として配置している。第7のレンズ群G7の拡大側3に隣接して配置された正のパワーの第8のレンズ群G8は、第2の中間像IM2の結像群として機能し、第2の中間像IM2を形成する周辺光の少なくとも主光線は光軸7に対して第2の中間像IM2を形成する側のレンズ面を通過することで最終の収差補正などが行われることが多い。したがって、周辺光は、第8のレンズ群G8の縮小側2で光軸7と交差するように設計され、その近傍に第1の変倍群である第7のレンズ群G7を配置することで、コンパクトな設計の第7のレンズ群G7によりズーミングを行うことができる。
また、第1の光学系11の最も拡大側3に結像レンズとして機能する正のパワーの第8のレンズ群G8を配置することにより、第1の光学系11の近傍に、比較的小さな第2の中間像IM2を形成できる。このため、第2の中間像IM2を反射して拡大する凹面鏡M1をコンパクトにすることが可能となり、コンパクトで拡大率の大きな投射光学系10を提供できる。
さらに、第8のレンズ群G8は、3枚のレンズL19、L20およびL21の接合レンズB3で構成され、接合レンズB3は、両面が正の屈折力を備えた両凸の正レンズとして機能する。したがって、簡易な構成で結像に適したレンズ群を第1の変倍群である第7のレンズ群G7に隣接して配置できる。また、両凸の正レンズB3が負-正-負の3枚のレンズL19~21の接合なので、簡易な構成で結像の際に色収差を含めて諸収差を補正できる。
第1の変倍群である第7のレンズ群G7は正の屈折力を備え、広角端から望遠端にズーミングする際に、隣接する正の屈折力の第8のレンズ群G8との間隔d34が狭くなるように拡大側3へ移動する。これにより、第2の中間像IM2の光軸7上の位置がミラーM1の方向に移動する(近づく)。特に、第2の中間像IM2の周辺の結像位置をミラーM1の方向に近づけることができる。
さらに、本例の投射光学系10においては、隣接する第8のレンズ群G8もミラーM1との距離d38が小さくなるように拡大側3へ移動し、第2の変倍群として機能する。第8のレンズ群G8が広角端から望遠端にズーミングする際に移動する距離Dz2は、第7のレンズ群G7の移動量Dz1よりも小さくてよい。第7のレンズ群G7および第8のレンズ群G8をズーミングの際の拡大側3に移動することにより、第7のレンズ群G7の変倍負荷を低減でき、第7のレンズ群G7の正のパワーを小さくできる。このため、ズーミングにより発生する収差を抑制でき、全体としてズーミングによる収差を補正しやすい投射光学系10を提供できる。典型的には、移動量の大きな第1の変倍群である第7のレンズ群G7の焦点距離f7(fz1)を、移動量の小さい第2の変倍群である第8のレンズ群G8の焦点距離f8(fz2)よりも大きくして、パワーを小さく設定し、収差補正が良好な投射光学系10を提供できる。
例えば、第2の変倍群である第8のレンズ群G8の移動量Dz2と、第1の変倍群である第7のレンズ群G7の移動量Dz1とは以下の条件(5)を満足してもよい。また、第1の変倍群である第7のレンズ群G7の焦点距離f7(fz1)と、第2の変倍群である第8のレンズ群G8の焦点距離f8(fz2)とは以下の条件(6)を満足してもよい。
0.1<Dz2/Dz1<0.5・・・(5)
0.5<fz1/fz2<0.9・・・(6)
条件(5)の下限は0.2であってもよく、上限は0.4であってもよい。条件(6)の下限は0.6であってもよく、上限は0.8であってもよい。
0.1<Dz2/Dz1<0.5・・・(5)
0.5<fz1/fz2<0.9・・・(6)
条件(5)の下限は0.2であってもよく、上限は0.4であってもよい。条件(6)の下限は0.6であってもよく、上限は0.8であってもよい。
この第1の光学系11は、第1の中間像IM1よりも拡大側3で、第1の変倍群である第7のレンズ群G7の縮小側2に隣接して配置された第6のレンズ群G6が第3の変倍群として、ズーミングの際に、第7のレンズ群G7と逆方向に移動する。ズーミングの際に、第6のレンズ群G6を、主たる変倍群である第7のレンズ群G7と逆方向に移動することにより、第7のレンズ群G7の移動により発生する収差をさらに良好に補正できる。
この第1の光学系11は、さらに、第1の中間像IM1よりも縮小側2に、ズーミングの際に、主たる変倍群である第7のレンズ群G7と逆方向に移動する第3のレンズ群G3を第4の変倍群として含む。ただし、第3のレンズ群G3の移動量Dz4は、第7のレンズ群G7の移動量Dz1に対して条件(3)を満足する範囲で小さく設定されている。このため、主たる変倍群である第7のレンズ群G7の移動により発生する収差を第3のレンズ群G3の移動によりさらに良好に補正するとともに、第1の中間像IM1から縮小側2の、縮小側のレンズ群RGの性能にはほとんど影響を与えず、ズーミングの全領域において、縮小側のレンズ群RGの主たる機能である、拡大側のレンズ群MGと協働して投射光学系10全系の収差を補正する機能が発揮できるようにしている。
すなわち、全系(第1の光学系11および第2の光学系12を含めた系)の焦点距離が近距離における縮小側のレンズ群RGの広角端における焦点距離frwと、望遠端における焦点距離frtとはほとんど変化せずに、以下の条件(7)を満たす。
0.95<frw/frt<1.0・・・(7)
条件(7)の下限は0.97であってもよい。
0.95<frw/frt<1.0・・・(7)
条件(7)の下限は0.97であってもよい。
第1の光学系11は、第1の中間像IM1よりも拡大側3にフォーカシングの際に主たる合焦群(第1の合焦群)として機能する第5のレンズ群G5を含む。ズーミングと同様に、フォーカシングの際の移動量の大きな合焦用のレンズ群G5を第1の中間像IM1より拡大側3に配置することにより、第1の中間像IM1よりも縮小側2のレンズ群RGに、フォーカシングにより第1の中間像IM1の位置や形状を補正する機能よりも、拡大側のレンズ群MGと協働して投射光学系10全系の収差を補正する機能を主に発揮させることができる。このため、第1の中間像IM1よりも拡大側3のレンズ群MGに、ズーミングおよびフォーカシングの際に移動するレンズが集中するが、収差補正の負荷は低減でき、レンズ群MG全体の構成を簡易にすることができる。拡大側のレンズ群MGの構成を簡易でコンパクトにすることにより、ミラーM1で反射して出力される投影光19と第1の光学系11との干渉を抑制でき、コンパクトで拡大率の大きな投射光学系10を提供できる。
また、第1の光学系11は、第1の中間像IM1よりも縮小側2に、フォーカシングの際に、主たる合焦群である第5のレンズ群G5と逆方向に移動する第2のレンズ群G2を第2の合焦群として含む。ただし、第2のレンズ群G2の移動量Df2は、第5のレンズ群G5の移動量Df1に対して条件(4)を満足する範囲で小さく設定されている。このため、主たる合焦群である第5のレンズ群G5の移動により発生する収差を第2のレンズ群G2の移動によりさらに良好に補正するとともに、第1の中間像IM1から縮小側2のレンズ群RGの性能にはほとんど影響を与えず、ズーミングの全領域において、縮小側のレンズ群RGの主たる機能である、拡大側のレンズ群MGと協働して投射光学系10全系の収差を補正する機能が発揮できるようにしている。
特に、第1の光学系11においては、第1の中間像IM1より縮小側2のレンズ群RGの中の最も拡大側3、すなわち、第1の中間像IM1の縮小側2に隣接する、負の屈折力の第4のレンズ群G4を、ズーミングおよびフォーカシングの際に移動しない、固定されたレンズ群として配置できる。したがって、第4のレンズ群G4に、台形収差などの諸収差の補正(実際には拡大側で発生する諸収差をキャンセルする諸収差の発生を含む)を含めた機能を負担させやすい。
また、第1の光学系11の最も縮小側2に配置された第2の末端のレンズ群(第1のレンズ群)G1は、ライトバルブ5に面した縮小側2の面が凹の正のメニスカスレンズL1で構成されている。最も縮小側2に、負のパワーの面をライトバルブ5に向けたレンズL1を配置することにより、ライトバルブ5からの光束を光軸7に対して平行化しやすく、ガラスブロックCGなどを挿入するために要する十分な長さのバックフォーカスBFを確保できる。
図6に、広角端(ワイド)、標準状態(ノーマル)および望遠端(テレ)における歪曲収差を示している。図7、図8および図9に、広角端(ワイド)、標準状態(ノーマル)および望遠端(テレ)の各像高における横収差図を示している。なお、これらの図には、波長650nm(短破線)と、波長550nm(実線)と、波長460nm(長破線)とを示している。以下の各実施例においても同様である。
投射光学系10のレンズ群G1~G8の焦点距離fg1~fg8およびミラーM1の焦点距離は図2に示し、その他の主なパラメータは以下の通りである。
倍率(広角端、近距離における倍率):119.5
F値:2.5
最大画角(半画角):71.3°
変倍比:1.05
全系の合成焦点距離(広角端、fw):5.361mm
全系の合成焦点距離(望遠端、ft):5.629mm
縮小側のレンズ群RGの合成焦点距離(広角端、frw): 30.102mm
縮小側のレンズ群RGの合成焦点距離(望遠端、frt): 30.847mm
拡大側のレンズ群MGの合成焦点距離(広角端、fmw): 89.161mm
拡大側のレンズ群MGの合成焦点距離(望遠端、fmt): 88.865mm
第7のレンズ群G7のズーミングの際の移動量(Dz1): 3.366mm
第8のレンズ群G8のズーミングの際の移動量(Dz2): 0.817mm
第6のレンズ群G6のズーミングの際の移動量(Dz3): -0.221mm
第3のレンズ群G3のズーミングの際の移動量(Dz4): -0.462mm
第5のレンズ群G5のフォーカシングの際の移動量(Df1): -0.604mm
第2のレンズ群G2のフォーカシングの際の移動量(Df2): 0.167mm
条件(1)(fw/fz1(fw/fg7)):0.048
条件(2)(Dz1/fz1(Dz1/fg7)):0.030
条件(3)(|Dz4/Dz1|):0.14
条件(4)(|Df2/Df1|):0.28
条件(5)(Dz2/Dz1):0.24
条件(6)(fz1/fz2):0.67
条件(7)(frw/frt):0.976
倍率(広角端、近距離における倍率):119.5
F値:2.5
最大画角(半画角):71.3°
変倍比:1.05
全系の合成焦点距離(広角端、fw):5.361mm
全系の合成焦点距離(望遠端、ft):5.629mm
縮小側のレンズ群RGの合成焦点距離(広角端、frw): 30.102mm
縮小側のレンズ群RGの合成焦点距離(望遠端、frt): 30.847mm
拡大側のレンズ群MGの合成焦点距離(広角端、fmw): 89.161mm
拡大側のレンズ群MGの合成焦点距離(望遠端、fmt): 88.865mm
第7のレンズ群G7のズーミングの際の移動量(Dz1): 3.366mm
第8のレンズ群G8のズーミングの際の移動量(Dz2): 0.817mm
第6のレンズ群G6のズーミングの際の移動量(Dz3): -0.221mm
第3のレンズ群G3のズーミングの際の移動量(Dz4): -0.462mm
第5のレンズ群G5のフォーカシングの際の移動量(Df1): -0.604mm
第2のレンズ群G2のフォーカシングの際の移動量(Df2): 0.167mm
条件(1)(fw/fz1(fw/fg7)):0.048
条件(2)(Dz1/fz1(Dz1/fg7)):0.030
条件(3)(|Dz4/Dz1|):0.14
条件(4)(|Df2/Df1|):0.28
条件(5)(Dz2/Dz1):0.24
条件(6)(fz1/fz2):0.67
条件(7)(frw/frt):0.976
この投射光学系10においては、上述した条件(1)~(7)のすべてを満たし、第1の中間像IM1の拡大側3に配置されたレンズ群により、ズーミングおよびフォーカシングを主に行うことができる。したがって、第1の中間像IM1の縮小側2に配置されたレンズ群RGでは、第1の中間像IM1の位置や形状をズーミングおよびフォーカシングのために変更することよりも、主に、第1の中間像IM1の拡大側のレンズ群MGと協調して、最終の第2の画面であるスクリーン6に投射される像を、より鮮明に形成することに集中することができる。このため、ズーミングが可能で、コンパクトでありながら、収差補正が良好にされた像を投影できる投射光学系10、および投射光学系10を備えたプロジェクタ1を提供できる。
図10に、プロジェクタの他の例を示している。このプロジェクタ1も、縮小側2の光変調器(ライトバルブ)5の像面(第1の像面)5aから拡大側3のスクリーン6または壁面(第2の像面)へ投射する投射光学系10を含む。投射光学系10は、複数のレンズを含む第1の光学系11と、正のパワーの第1の反射面M1を含む第2の光学系12とを含み、第1の光学系11は、縮小側2から入射した光により第1の光学系11の内部に結像される第1の中間像IM1を第1の光学系11よりも拡大側3に第2の中間像IM2として結像し、第1の反射面M1が第2の中間像IM2を第2の像面へ映像(最終的な画像)として投影する。
第1の光学系11は、上記の例と同様に、21枚のレンズで構成され、第1の中間像IM1に対して縮小側(入力側)2に配置されたレンズ群RGと、拡大側(出力側)3に配置されたレンズ群MGとを含む。縮小側のレンズ群RGは、縮小側2から配置された正-正-正-負の第1~第4のレンズ群G1~G4を含む。拡大側のレンズ群MGは、縮小側2から配置された正-正-正-正の第5~第8のレンズ群G5~G8を含む。
図11に、投射光学系10の各エレメントのデータを示し、図12に非球面のデータを示し、図13にズーミングの際に移動するレンズ群の前後の間隔を示し、図14に、フォーカシングの際に移動するレンズ群の前後の間隔を示している。第1の光学系11の第1~第9のレンズ群G1~G9の各群の基本的なレンズ構成は、第6のレンズ群G6がズーミングおよびフォーカシングにおいて動かない、固定されたレンズ群であること以外は、図1に示した投射光学系10の第1の光学系11と共通する。したがって、この第1の光学系11は、第1の中間像IM1の拡大側3に、ズーミングの際に主として移動する第1の変倍群(第7のレンズ群)G7と、フォーカシングの際に主として移動する第1の合焦群(第5のレンズ群)G5とを含む。
図15に、広角端(ワイド)、標準状態(ノーマル)および望遠端(テレ)における歪曲収差を示している。図16、図17および図18に、広角端(ワイド)、標準状態(ノーマル)および望遠端(テレ)の各像高における横収差図を示している。
投射光学系10のレンズ群G1~G8の焦点距離fg1~fg8およびミラーM1の焦点距離は図11に示し、その他の主なパラメータは以下の通りである。
倍率(広角端、近距離における倍率):119.5
F値:2.5
最大画角(半画角):71.3°
変倍比:1.05
全系の合成焦点距離(広角端、fw):5.358mm
全系の合成焦点距離(望遠端、ft):5.626mm
縮小側のレンズ群RGの合成焦点距離(広角端、frw): 30.084mm
縮小側のレンズ群RGの合成焦点距離(望遠端、frt): 30.793mm
拡大側のレンズ群MGの合成焦点距離(広角端、fmw): 89.275mm
拡大側のレンズ群MGの合成焦点距離(望遠端、fmt): 88.999mm
第7のレンズ群G7のズーミングの際の移動量(Dz1): 3.164mm
第8のレンズ群G8のズーミングの際の移動量(Dz2): 1.019mm
第3のレンズ群G3のズーミングの際の移動量(Dz4): -0.428mm
第5のレンズ群G5のフォーカシングの際の移動量(Df1): -0.591mm
第2のレンズ群G2のフォーカシングの際の移動量(Df2): 0.157mm
条件(1)(fw/fz1(fw/fg7)):0.045
条件(2)(Dz1/fz1(Dz1/fg7)):0.026
条件(3)(|Dz4/Dz1|):0.135
条件(4)(|Df2/Df1|):0.27
条件(5)(Dz2/Dz1):0.32
条件(6)(fz1/fz2):0.70
条件(7)(frw/frt):0.977
倍率(広角端、近距離における倍率):119.5
F値:2.5
最大画角(半画角):71.3°
変倍比:1.05
全系の合成焦点距離(広角端、fw):5.358mm
全系の合成焦点距離(望遠端、ft):5.626mm
縮小側のレンズ群RGの合成焦点距離(広角端、frw): 30.084mm
縮小側のレンズ群RGの合成焦点距離(望遠端、frt): 30.793mm
拡大側のレンズ群MGの合成焦点距離(広角端、fmw): 89.275mm
拡大側のレンズ群MGの合成焦点距離(望遠端、fmt): 88.999mm
第7のレンズ群G7のズーミングの際の移動量(Dz1): 3.164mm
第8のレンズ群G8のズーミングの際の移動量(Dz2): 1.019mm
第3のレンズ群G3のズーミングの際の移動量(Dz4): -0.428mm
第5のレンズ群G5のフォーカシングの際の移動量(Df1): -0.591mm
第2のレンズ群G2のフォーカシングの際の移動量(Df2): 0.157mm
条件(1)(fw/fz1(fw/fg7)):0.045
条件(2)(Dz1/fz1(Dz1/fg7)):0.026
条件(3)(|Dz4/Dz1|):0.135
条件(4)(|Df2/Df1|):0.27
条件(5)(Dz2/Dz1):0.32
条件(6)(fz1/fz2):0.70
条件(7)(frw/frt):0.977
この投射光学系10においては、上述した条件(1)~(7)のすべてを満たし、第1の中間像IM1の拡大側3に配置されたレンズ群により、ズーミングおよびフォーカシングを主に行うことができる。したがって、第1の中間像IM1の縮小側2に配置されたレンズ群RGでは、第1の中間像IM1の位置や形状をズーミングおよびフォーカシングのために変更することよりも、主に、第1の中間像IM1の拡大側のレンズ群MGと協調して、最終の第2の画面であるスクリーン6に投射される像を、より鮮明に形成することに集中することができる。このため、ズーミングが可能で、コンパクトでありながら、収差補正が良好にされた像を投影できる投射光学系10、および投射光学系10を備えたプロジェクタ1を提供できる。
図19に、プロジェクタの他の例を示している。このプロジェクタ1も、縮小側2の光変調器(ライトバルブ)5の像面(第1の像面)5aから拡大側3のスクリーン6または壁面(第2の像面)へ投射する投射光学系10を含む。投射光学系10は、複数のレンズを含む第1の光学系11と、正の屈折力の第1の反射面M1を含む第2の光学系12とを含み、第1の光学系11は、縮小側2から入射した光により第1の光学系11の内部に結像される第1の中間像IM1を第1の光学系11よりも拡大側3に第2の中間像IM2として結像し、第1の反射面M1が第2の中間像IM2を第2の像面へ映像(最終的な画像)として投影する。
第1の光学系11は、上記の例と同様に、21枚のレンズで構成され、第1の中間像IM1に対して縮小側(入力側)2に配置されたレンズ群RGと、拡大側(出力側)3に配置されたレンズ群MGとを含む。縮小側のレンズ群RGは、縮小側2から配置された正-正-正-負の第1~第4のレンズ群G1~G4を含む。拡大側のレンズ群MGは、縮小側2から配置された正-正-正-正の第5~第8のレンズ群G5~G8を含む。
図20に、投射光学系10の各エレメントのデータを示し、図21に非球面のデータを示し、図22にズーミングの際に移動するレンズ群の前後の間隔を示し、図23に、フォーカシングの際に移動するレンズ群の前後の間隔を示している。第1の光学系11の第1~第9のレンズ群G1~G9の各群の基本的なレンズ構成は、主たる変倍群である第7のレンズ群G7が両凸の正レンズL18の1枚構成となり、第8のレンズ群G8および第6のレンズ群G6がズーミングおよびフォーカシングにおいて動かない、固定されたレンズ群であること以外は、図1に示した投射光学系10の第1の光学系11と共通する。したがって、この第1の光学系11は、第1の中間像IM1の拡大側3に、ズーミングの際に主として移動する第1の変倍群(第7のレンズ群)G7と、フォーカシングの際に主として移動する第1の合焦群(第5のレンズ群)G5とを含む。
図24に、広角端(ワイド)、標準状態(ノーマル)および望遠端(テレ)における歪曲収差を示している。図25、図26および図27に、広角端(ワイド)、標準状態(ノーマル)および望遠端(テレ)の各像高における横収差図を示している。
投射光学系10のレンズ群G1~G8の焦点距離fg1~fg8およびミラーM1の焦点距離は図20に示し、その他の主なパラメータは以下の通りである。
倍率(広角端、近距離における倍率):119.4
F値:2.5
最大画角(半画角):71.3°
変倍比:1.03
全系の合成焦点距離(広角端、fw):5.358mm
全系の合成焦点距離(望遠端、ft):5.518mm
縮小側のレンズ群RGの合成焦点距離(広角端、frw): 32.624mm
縮小側のレンズ群RGの合成焦点距離(望遠端、frt): 33.190mm
拡大側のレンズ群MGの合成焦点距離(広角端、fmw): 92.834mm
拡大側のレンズ群MGの合成焦点距離(望遠端、fmt): 92.702mm
第7のレンズ群G7のズーミングの際の移動量(Dz1): 2.161mm
第3のレンズ群G3のズーミングの際の移動量(Dz4): -0.171mm
第5のレンズ群G5のフォーカシングの際の移動量(Df1): -0.601mm
第2のレンズ群G2のフォーカシングの際の移動量(Df2): 0.145mm
条件(1)(fw/fz1(fw/fg7)):0.061
条件(2)(Dz1/fz1(Dz1/fg7)):0.025
条件(3)(|Dz4/Dz1|):0.079
条件(4)(|Df2/Df1|):0.24
条件(7)(frw/frt):0.983
倍率(広角端、近距離における倍率):119.4
F値:2.5
最大画角(半画角):71.3°
変倍比:1.03
全系の合成焦点距離(広角端、fw):5.358mm
全系の合成焦点距離(望遠端、ft):5.518mm
縮小側のレンズ群RGの合成焦点距離(広角端、frw): 32.624mm
縮小側のレンズ群RGの合成焦点距離(望遠端、frt): 33.190mm
拡大側のレンズ群MGの合成焦点距離(広角端、fmw): 92.834mm
拡大側のレンズ群MGの合成焦点距離(望遠端、fmt): 92.702mm
第7のレンズ群G7のズーミングの際の移動量(Dz1): 2.161mm
第3のレンズ群G3のズーミングの際の移動量(Dz4): -0.171mm
第5のレンズ群G5のフォーカシングの際の移動量(Df1): -0.601mm
第2のレンズ群G2のフォーカシングの際の移動量(Df2): 0.145mm
条件(1)(fw/fz1(fw/fg7)):0.061
条件(2)(Dz1/fz1(Dz1/fg7)):0.025
条件(3)(|Dz4/Dz1|):0.079
条件(4)(|Df2/Df1|):0.24
条件(7)(frw/frt):0.983
この投射光学系10においては、上述した条件(1)~(4)および(7)を満たし、第1の中間像IM1の拡大側3に配置されたレンズ群により、ズーミングおよびフォーカシングを主に行うことができる。一方、第8のレンズ群G8がズーミングの際に固定されているので、主たる変倍群の第7のレンズ群G7のパワーが強くなり、ズーミングの際の移動距離が小さくなる。いずれの実施例においても、第1の中間像IM1の縮小側2に配置されたレンズ群RGと、第1の中間像IM1の拡大側のレンズ群MGとが協調して、最終の第2の画面であるスクリーン6に投射される像を、より鮮明に形成することが可能となる。このため、ズーミングが可能で、コンパクトでありながら、収差補正が良好にされた像を投影できる投射光学系10、および投射光学系10を備えたプロジェクタ1を提供できる。
以上では、本発明を、幾つか実施形態に基づき説明してきたが、これらは本発明の範囲を限定するものではなく、当業者が想到する様々な他の実施形態および改変された形態を含め、本発明の範囲は、以下の特許請求の範囲を含むものである。
Claims (19)
- 縮小側の第1の像面から拡大側の第2の像面へ投射する投射光学系であって、
複数のレンズを含む第1の光学系であって、縮小側から入射した光により当該第1の光学系の内部の光軸の第1の側に結像される第1の中間像を当該第1の光学系よりも拡大側の前記光軸の第2の側に第2の中間像として結像する第1の光学系と、
前記第2の中間像よりも拡大側に位置する正の屈折力の第1の反射面を含む第2の光学系とを有し、
前記第1の光学系は、前記第1の中間像よりも拡大側に配置され、ズーミングの際に移動する第1の変倍群を含む、投射光学系。 - 請求項1において、
当該投射光学系の広角端における合成焦点距離fwと、前記第1の変倍群の焦点距離fz1とが以下の条件を満たす、投射光学系。
0.015<fw/fz1<0.125 - 請求項1または2において、
広角端から望遠端にズーミングする際に前記第1の変倍群が移動する距離Dz1と、前記第1の変倍群の焦点距離fz1とが以下の条件を満たす、投射光学系。
0.02<Dz1/fz1<0.15 - 請求項1ないし3のいずれかにおいて、
前記第1の光学系は、前記第1の変倍群の拡大側に隣接して配置された正の屈折力の第1の隣接レンズ群を含む、投射光学系。 - 請求項4において、
前記第1の隣接レンズ群は、前記第1の光学系の最も拡大側に配置された第1の末端のレンズ群である、投射光学系。 - 請求項4または5において、
前記第1の隣接のレンズ群は、両凸の正レンズを含む、投射光学系。 - 請求項6において、
前記両凸の正レンズは接合レンズである、投射光学系。 - 請求項4ないし7のいずれかにおいて、
前記第1の変倍群は正の屈折力を備え、広角端から望遠端にズーミングする際に、前記第1の変倍群は、前記第1の隣接レンズ群との間隔が狭くなるように移動する、投射光学系。 - 請求項4ないし8のいずれかにおいて、
前記第1の隣接レンズ群は、ズーミングの際に移動する第2の変倍群である、投射光学系。 - 請求項9において、
広角端から望遠端にズーミングする際に、前記第2の変倍群は、前記第2の光学系との間隔が狭くなるように移動する、投射光学系。 - 請求項1ないし10のいずれかにおいて、
前記第1の光学系は、前記第1の中間像よりも拡大側で、前記第1の変倍群の縮小側に隣接して配置され、ズーミングの際に、前記第1の変倍群と逆方向に移動する第3の変倍群を含む、投射光学系。 - 請求項1ないし11のいずれかにおいて、
前記第1の光学系は、前記第1の中間像よりも縮小側に配置され、ズーミングの際に、前記第1の変倍群と逆方向に移動する第4の変倍群を含む、投射光学系。 - 請求項12において、
広角端から望遠端にズーミングする際に前記第1の変倍群が移動する距離Dz1と、前記第4の変倍群が移動する距離Dz4とが以下の条件を満たす、投射光学系。
0.05<|Dz4/Dz1|<0.2 - 請求項1ないし13のいずれかにおいて、
前記第1の光学系は、前記第1の中間像よりも拡大側に配置され、フォーカシングの際に移動する第1の合焦群を含む、投射光学系。 - 請求項14において、
前記第1の合焦群は、前記第1の中間像に隣接して配置されている、投射光学系。 - 請求項1ないし15のいずれかにおいて、
前記第1の光学系は、前記第1の中間像よりも縮小側に配置され、フォーカシングの際に移動する第2の合焦群を含む、投射光学系。 - 請求項1ないし14のいずれかにおいて、
前記第1の光学系は、前記第1の中間像よりも拡大側に配置され、フォーカシングの際に移動する第1の合焦群と、前記第1の中間像よりも縮小側に配置され、フォーカシングの際に移動する第2の合焦群とを含み、
広角端において当該投射光学系の焦点距離を近距離から遠距離に調整する際に、前記第1の合焦群が移動する距離Df1と、前記第2の合焦群が移動する距離Df2とが以下の条件を満たす、投射光学系。
0.1<|Df2/Df1|<0.4 - 請求項1ないし17のいずれかにおいて、
前記第1の光学系は、最も縮小側に配置された第2の末端のレンズ群を含み、前記第2の末端のレンズ群は、縮小側が凹面の正の屈折力のメニスカスレンズを含む、投射光学系。 - 請求項1ないし18のいずれかに記載の投射光学系と、
前記第1の像面に画像を形成する光変調器とを有する、プロジェクタ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-126753 | 2018-07-03 | ||
JP2018126753A JP2021167848A (ja) | 2018-07-03 | 2018-07-03 | 投射光学系およびプロジェクタ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020009026A1 true WO2020009026A1 (ja) | 2020-01-09 |
Family
ID=69060882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025847 WO2020009026A1 (ja) | 2018-07-03 | 2019-06-28 | 投射光学系およびプロジェクタ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021167848A (ja) |
WO (1) | WO2020009026A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114355713A (zh) * | 2020-10-12 | 2022-04-15 | 理光工业解决方案有限公司 | 投影光学系统以及图像投影装置 |
EP4141506A1 (en) * | 2021-08-31 | 2023-03-01 | Coretronic Corporation | Projection lens and projection apparatus |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110267687A1 (en) * | 2010-04-29 | 2011-11-03 | Samsung Electronics Co., Ltd. | Optical system and image projecting apparatus using the same |
WO2018066675A1 (ja) * | 2016-10-06 | 2018-04-12 | コニカミノルタ株式会社 | 変倍投影光学系及び画像表示装置 |
-
2018
- 2018-07-03 JP JP2018126753A patent/JP2021167848A/ja active Pending
-
2019
- 2019-06-28 WO PCT/JP2019/025847 patent/WO2020009026A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110267687A1 (en) * | 2010-04-29 | 2011-11-03 | Samsung Electronics Co., Ltd. | Optical system and image projecting apparatus using the same |
WO2018066675A1 (ja) * | 2016-10-06 | 2018-04-12 | コニカミノルタ株式会社 | 変倍投影光学系及び画像表示装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114355713A (zh) * | 2020-10-12 | 2022-04-15 | 理光工业解决方案有限公司 | 投影光学系统以及图像投影装置 |
EP4141506A1 (en) * | 2021-08-31 | 2023-03-01 | Coretronic Corporation | Projection lens and projection apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP2021167848A (ja) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6698140B2 (ja) | 投射光学系およびプロジェクタ装置 | |
US10241308B2 (en) | Projection optical system including movable lens groups and image display apparatus | |
JP5152833B2 (ja) | 投影用ズームレンズおよび投写型表示装置 | |
JP5069146B2 (ja) | 投写用ズームレンズおよび投写型表示装置 | |
US7529036B2 (en) | Projection zoom lens and projection display device | |
US7564632B2 (en) | Projection zoom lens | |
CN201666968U (zh) | 投影用变焦透镜及投影型显示装置 | |
US7489449B2 (en) | Zoom lens for projection and projection display device | |
WO2013061535A1 (ja) | 投写用ズームレンズおよび投写型表示装置 | |
JP2019035873A (ja) | 投写用光学系及び投写型表示装置 | |
WO2018117209A1 (ja) | 投射光学系およびプロジェクタ | |
WO2018117210A1 (ja) | 投射光学系およびプロジェクタ | |
WO2020045559A1 (ja) | 中間像が内部に形成される光学系 | |
WO2013061536A1 (ja) | 投写用ズームレンズおよび投写型表示装置 | |
WO2012114755A1 (ja) | 投写用ズームレンズおよび投写型表示装置 | |
US6542311B2 (en) | Zoom lens and projection type display apparatus using the same | |
WO2020009026A1 (ja) | 投射光学系およびプロジェクタ | |
JP6469284B1 (ja) | 投射レンズ及びこれを用いた投射型表示装置 | |
US10168602B2 (en) | Projection optical system and projector | |
JP2012088518A (ja) | 光学補正型ズームレンズ及びそれを用いた投射型表示装置 | |
WO2020137884A1 (ja) | 投射光学系およびプロジェクタ | |
JP4340432B2 (ja) | 投射用ズームレンズ | |
JP2022036667A (ja) | 投写用光学系および投写型表示装置 | |
WO2018117208A1 (ja) | 投射光学系およびプロジェクタ | |
CN104423024A (zh) | 变焦透镜及包括该变焦透镜的图像投影装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19829861 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19829861 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |