WO2020009018A1 - Fuel cell system and fuel cell boat - Google Patents

Fuel cell system and fuel cell boat Download PDF

Info

Publication number
WO2020009018A1
WO2020009018A1 PCT/JP2019/025814 JP2019025814W WO2020009018A1 WO 2020009018 A1 WO2020009018 A1 WO 2020009018A1 JP 2019025814 W JP2019025814 W JP 2019025814W WO 2020009018 A1 WO2020009018 A1 WO 2020009018A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
fuel cell
downstream
fuel
gas
Prior art date
Application number
PCT/JP2019/025814
Other languages
French (fr)
Japanese (ja)
Inventor
照繕 灰庭
剛広 丸山
文明 行實
早紀 西松
琢也 平岩
靖雄 森岡
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2020009018A1 publication Critical patent/WO2020009018A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04302Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system that supplies fuel gas to a fuel cell device through a fuel gas supply path, and a fuel cell ship provided with the same.
  • a fuel cell system including a fuel cell device having a fuel cell stack that generates power by an electrochemical reaction of a fuel gas
  • hydrogen gas supplied to the fuel cell stack or hydrocarbon gas that becomes the hydrogen gas through reforming is used.
  • Fuel gas is supplied from a fuel gas storage unit such as a cylinder to the anode side of the fuel cell device through a fuel gas supply path.
  • the supply of the fuel gas to the fuel cell device is stopped by closing a shut-off valve provided in the fuel gas supply passage, and the operation is stopped (for example, Patent Document 1). See).
  • a double block and bleed (hereinafter, referred to as “DBB”) is used as a configuration for reliably and safely shutting off the supply of the fuel gas.
  • DBB double block and bleed
  • Such a DBB is provided with two shut-off valves in series with the fuel gas supply passage, and is connected to a space between the two shut-off valves formed between the two shut-off valves, and is provided with a bleed valve capable of opening the space to the outside. It is provided and configured.
  • the valve control means for controlling the operation of the two shut-off valves and the bleed valve closes the two shut-off valves and opens the bleed valve when the supply of fuel gas to the fuel cell device is stopped. Let it.
  • the above-described bleed valve is closed and the two shut-off valves are opened to start supplying the fuel gas to the fuel cell device.
  • Oxygen in the air existing in the space between the shut-off valves is supplied to the anode side of the fuel cell device. Then, there is a concern that the performance of the fuel cell device is reduced due to the deterioration of the reforming catalyst of the reformer, the generation of corrosion current of the fuel cell stack, and the like.
  • a first characteristic configuration of a fuel cell system includes a fuel cell device having a fuel cell stack that generates power by an electrochemical reaction of a fuel gas; A fuel gas supply path for supplying fuel gas to the fuel cell device; A shutoff valve provided in the fuel gas supply path and capable of shutting off the supply path; The operation of the shut-off valve in a form in which the shut-off valve is closed to stop supplying the fuel gas to the fuel cell device, and the shut-off valve is opened to start supplying the fuel gas to the fuel cell device.
  • a valve control means for controlling the fuel cell system, An upstream shutoff valve and a downstream shutoff valve that are provided in series with the fuel gas supply passage and that can shut off the supply passage are provided as the shutoff valve, A bleed valve that is connected to a space between the upstream and downstream shut-off valves in the fuel gas supply passage and that is formed between the downstream-side shut-off valve and that can open the space to the outside; The valve control means closes the bleed valve when fuel gas is supplied to the fuel cell device, and opens the bleed valve when supply of fuel gas to the fuel cell device is stopped.
  • a purge gas which is at least one of a fuel gas and an inert gas, to the space between the shut-off valves before starting the supply of the fuel gas to the fuel cell device to purge the space between the shut-off valves. Is to perform a purge process.
  • the characteristic configuration of the fuel cell ship according to the present invention includes a fuel cell system according to the present invention, A fuel gas storage unit for storing fuel gas supplied to the fuel cell system, The point is that the power generated by the fuel cell system is supplied to the power load in the ship.
  • the upstream shut-off valve and the downstream shut-off valve which are provided in series with the fuel gas supply path, and both the shut-off valves And a bleed valve connected to the inter-shut-off valve space formed therebetween.
  • the fuel gas supply path and the fuel gas supply source side in the fuel gas supply path are not connected.
  • the fuel cell device side can be isolated by the space between the shut-off valves opened to the outside such as the atmosphere. Therefore, it is possible to reliably prevent the leakage of the fuel gas from the fuel gas supply source to the fuel cell device due to the poor shutoff of the shutoff valve. Furthermore, the fuel gas that has flowed into the space between the shut-off valves when the supply of the fuel gas is stopped can be released to the outside via the bleed valve which is in the open state, and safety can be maintained.
  • the valve control means opens the upstream shut-off valve and the downstream shut-off valve and closes the bleed valve.
  • the supply of fuel gas to the device can be started.
  • the above-described purging process is executed by the valve control means. In this purging process, the purge gas substantially containing no air (oxygen) is supplied to the space between the shut-off valves to purge the space between the shut-off valves.
  • the air that has entered the space between the shut-off valves from the outside via the bleed valve that is open from the outside is appropriately removed by performing the above-described purge processing, and then the fuel is supplied to the fuel cell device. Gas supply is started. This can prevent performance degradation due to the supply of air to the anode side of the fuel cell device.
  • the fuel cell system in a fuel cell system for supplying a fuel gas to a fuel cell device through a fuel gas supply path, the fuel cell system can be safely and reliably stopped when the operation is stopped while the fuel cell system is started when the fuel cell device is started. It is possible to provide a technique capable of preventing performance degradation due to supply of air to the device.
  • the valve control unit performs the purge process for a predetermined set purge time, and then performs the fuel gas supply to the fuel cell device. The point is to start supplying.
  • the supply of the fuel gas to the fuel cell device is started after the purge process is executed by the valve control means for the predetermined set purge time. Therefore, with a simple configuration, the supply of the fuel gas to the fuel cell device can be started after the air staying in the space between the shut-off valves is removed. Further, the set purge time for executing the purge process can be appropriately set as a time during which air staying in the space between the shut-off valves can be almost completely removed. For example, the opening degree of each valve and the cutoff of each flow path can be set. The area, the supply pressure of the purge gas, and the like can be appropriately obtained by experiments, simulations, and the like using the parameters.
  • the valve control unit may open the bleed valve in the purge process. , And the purge gas supplied to the inter-shutoff valve space is discharged to the outside via the bleed valve.
  • the bleed valve opened when the supply of the fuel gas is stopped is maintained in the open state when the purge process is performed before the supply of the fuel gas to the fuel cell device is started. That is, in this purging process, the space between the shut-off valves can be purged by discharging the purge gas supplied to the space between the shut-off valves to the outside through the bleed valve in an open state.
  • the supply of the fuel gas to the fuel cell device can be started after the air remaining particularly in the vicinity of the bleed valve in the space between the shutoff valves is almost completely removed.
  • a fourth characteristic configuration of the fuel cell system according to the present invention in addition to the third characteristic configuration, wherein the valve control unit opens the downstream side shut-off valve when the supply of the fuel gas to the fuel cell device starts. The point is that the bleed valve is closed later.
  • the downstream shutoff valve when the bleed valve is maintained in the open state during the execution of the purge process, and after the purge process is performed, the downstream shutoff valve is opened to start supplying the fuel gas to the fuel cell device. After the downstream shut-off valve is opened, the bleed valve is closed. Then, since the downstream cutoff valve is in the open state when the bleed valve is closed, it is possible to suppress an excessive rise in the pressure of the fuel gas supply passage at the time of switching between opening and closing of the valve. Immediately after the downstream shut-off valve is opened, the purge gas supplied to the space between the shut-off valves can be passed through both the bleed valve and the downstream shut-off valve.
  • valve control means may open the upstream shutoff valve in the purge process.
  • the fuel gas is supplied as the purge gas to the space between the shut-off valves via the upstream shut-off valve.
  • the fuel gas can be used as the purge gas to be supplied to the space between the shut-off valves in the purge process performed before the supply of the fuel gas to the fuel cell device is started. That is, in the purging process, the upstream shutoff valve is opened, so that the fuel gas supplied to the fuel gas supply passage is caused to flow as a purge gas into the inter-shutoff valve space via the upstream shutoff valve. The interspace can be purged with fuel gas. With this, the supply of the fuel gas to the fuel cell device through the fuel gas supply path including the space between the shut-off valves is started in a state where the space between the shut-off valves is filled with the fuel gas by performing the purge process. It is possible to appropriately prevent performance degradation due to supply of air to the anode side of the fuel cell device.
  • a sixth characteristic configuration of the fuel cell system according to the present invention in addition to the fifth characteristic configuration, further includes a flow rate adjusting unit that can adjust a flow rate of the fuel gas in the fuel gas supply path,
  • the valve control means controls the flow rate adjusting means to change the flow rate of the fuel gas in the fuel gas supply path during the purging process to the fuel gas in the fuel gas supply path during the normal operation of the fuel cell device. The point is that it is set smaller than the gas flow rate.
  • the purge process performed before the start of the supply of the fuel gas to the fuel cell device uses the fuel gas supplied to the fuel gas supply path via the upstream-side shut-off valve as the purge gas in the space between the shut-off valves.
  • the flow rate of the fuel gas in the fuel gas supply path at the time of execution of the purging processing is controlled by the flow rate adjustment means by the valve control means, so that the fuel gas supply path during the normal operation of the fuel cell device is Is set to be smaller than the flow rate of the fuel gas at. This suppresses an increase in fuel gas consumption due to the purge process, and minimizes the amount of fuel gas released to the outside as the purge gas, thereby ensuring that the fuel gas concentration outside is kept below the explosion limit. Safety can be ensured.
  • a downstream side provided in the fuel gas supply path downstream of the downstream side shutoff valve.
  • An on-off valve A downstream relief valve that is connected to a downstream inter-valve space formed between the downstream shut-off valve and the downstream on-off valve in the fuel gas supply path and is capable of opening the space to the outside;
  • the valve control means closes the downstream open / close valve and opens the downstream shutoff valve and the downstream relief valve, thereby allowing the fuel gas supplied to the inter-shutoff valve space to be opened.
  • the present invention is characterized in that the fuel gas is supplied to the downstream inter-valve space via the downstream shut-off valve and the fuel gas supplied to the downstream inter-valve space is discharged outside through the downstream relief valve.
  • the downstream opening / closing valve is closed, and the downstream shutoff valve and the downstream relief valve are opened. Therefore, in the purging process, the fuel gas which has flowed into the inter-shut-valve space as a purge gas via the upstream-side shut-off valve flows into the downstream-side inter-valve space via the downstream-side shut-off valve, and then is externally connected via the relief valve.
  • the space between the shut-off valve and the space between the downstream valves can be purged by the fuel gas.
  • the supply of the fuel gas to the fuel cell device can be started after the air staying particularly in the vicinity of the downstream-side shutoff valve in the space between the shutoff valves is almost completely removed.
  • the valve control means opens the downstream side on-off valve when the supply of the fuel gas to the fuel cell device is started. The point is that the downstream relief valve is closed later.
  • the downstream open / close valve is opened after the execution of the purge process.
  • the downstream on-off valve is opened, and then the downstream relief valve is closed. Then, immediately after the downstream on-off valve is opened, the fuel gas as the purge gas supplied to the downstream inter-valve space can be passed through the downstream relief valve and the downstream on-off valve.
  • an inert gas is connected to the fuel gas supply path and is connected to the fuel gas supply path.
  • An inert gas supply path capable of supplying An inert gas supply valve provided in the inert gas supply path,
  • the valve control means is characterized in that in the purging process, the inert gas supply valve is opened to supply an inert gas as the purge gas from the inert gas supply passage to the inter-shutoff valve space.
  • the purge gas is supplied to the space between the shut-off valves in the purge process performed before the start of the supply of the fuel gas to the fuel cell device.
  • An inert gas such as a nitrogen gas can be used as the purge gas. That is, since the inert gas supply valve is opened in the purging process, the inert gas flows from the inert gas supply path into the fuel gas supply path as the purge gas through the inert gas supply valve, and the inert gas is supplied.
  • the active gas can be caused to flow into the space between the shut-off valves, and the space between the shut-off valves can be purged with the inert gas.
  • the supply of the fuel gas to the fuel cell device through the fuel gas supply path including the space between the shut-off valves is started in a state where the space between the shut-off valves is filled with the inert gas by performing the purge process.
  • the inert gas supply passage is formed downstream of the fuel gas supply passage on the downstream side of the downstream shutoff valve.
  • the valve control unit opens the inert gas supply valve and the downstream shutoff valve to inactivate the inert gas supply passage through the downstream space to the shutoff valve space. The point is to supply gas.
  • the inert gas supply path is connected to the downstream space formed on the fuel gas supply path on the downstream side of the downstream cutoff valve, and before the supply of the fuel gas to the fuel cell device starts.
  • the inert gas supply valve and the downstream cutoff valve provided in the inert gas supply path are opened. Therefore, in the purging process, the inert gas supplied from the inert gas supply path to the downstream space as the purge gas is caused to flow into the inter-shut-valve space via the downstream-side shut-off valve. It can be purged with an inert gas.
  • the supply of the fuel gas to the fuel cell device can be started after the air staying particularly in the vicinity of the downstream side shutoff valve in the shutoff valve space is almost completely removed.
  • the valve control means opens the upstream shut-off valve in the purging process to open the upstream shut-off valve. And supplying fuel gas as the purge gas to the space between the shut-off valves via the intermittent valve.
  • the inert gas supplied to the downstream space as the purge gas is used as the purge gas as the purge gas via the downstream-side shut-off valve and the space between the shut-off valves.
  • the fuel gas supplied to the fuel gas supply passage is caused to flow as a purge gas into the inter-shut-valve space via the upstream-side shut-off valve, and the inter-shut-valve space is purged with both the inert gas and the fuel gas. can do.
  • FIG. 2 is a block diagram illustrating a schematic configuration and an operation state of the fuel cell system according to the first embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration and an operation state of a fuel cell system according to a second embodiment.
  • FIG. 2 is a block diagram showing a schematic configuration and an operation state of a fuel cell system according to a second embodiment.
  • FIG. 4 is a block diagram showing a schematic configuration and an operating state of a fuel cell system according to a third embodiment.
  • FIG. 4 is a block diagram illustrating a schematic configuration and an operating state of a fuel cell system according to a fourth embodiment.
  • the fuel cell system 50 illustrated in FIG. 1 includes a fuel cell device 40 having a fuel cell stack 41 that generates power by an electrochemical reaction of hydrogen gas (an example of a fuel gas), and a fuel that supplies a hydrogen gas G1 to the fuel cell device 40. It is provided with a gas supply path 10, an operation control device 60 for controlling operation, and the like.
  • the fuel cell device 40 includes the fuel cell stack 41, and the hydrogen gas G1 is supplied from the fuel gas supply path 10 to the anode 41A of the fuel cell stack 41.
  • the fuel gas supply path 10 is configured as a pipe connecting the hydrogen cylinder 1 (an example of a fuel gas storage unit) that stores the hydrogen gas G1 and the anode 41A of the fuel cell stack 41 of the fuel cell device 40.
  • the fuel gas supply path 10 is provided with shutoff valves 11A and 11B, which are shutoff valves capable of shutting off the supply path 10.
  • a flow control valve 25 (an example of a flow control means) capable of controlling the flow rate of the hydrogen gas G1 in the fuel gas supply passage 10 is provided upstream of the shutoff valves 11A and 11B in the fuel gas supply passage 10. Is provided.
  • the operation control device 60 closes the shutoff valves 11A and 11B to stop the supply of the hydrogen gas G1 to the fuel cell device 40, and opens the shutoff valves 11A and 11B to supply hydrogen to the fuel cell device 40.
  • the operation control device 60 functions as a valve control unit that controls the operation of the shutoff valves 11A and 11B.
  • the shutoff valves 11A and 11B are closed by the operation control device 60, for example, as shown in FIG.
  • the supply of the hydrogen gas G1 to the anode 41A of the fuel cell stack 41 is stopped.
  • the shutoff valves 11A and 11B are opened by the operation control device 60 so that hydrogen gas is supplied to the anode 41A of the fuel cell stack 41.
  • the supply of G1 is started, and the power generation in the fuel cell stack 41 is started.
  • the operation control device 60 adjusts the opening degree of the flow rate control valve 25 so that the flow rate of the hydrogen gas G1 in the fuel gas supply passage 10, in other words, the fuel cell device
  • the supply amount of the hydrogen gas G1 to 40 is set to a desired set supply amount during normal operation.
  • the fuel cell system 50 is mounted on a fuel cell ship 100 as a power source, as shown in FIG. That is, the fuel cell ship 100 includes the fuel cell system 50 and the hydrogen cylinder 1 that stores the hydrogen gas G1 supplied to the fuel cell system 50, such as an electric motor 55 that rotationally drives a propeller 56 for propulsion.
  • the fuel cell system 50 is configured to supply power generated by the fuel cell system 50 to the power load on the ship.
  • the on-board auxiliary equipment such as lighting and a pump is used as the power load on the boat.
  • the fuel cell system 50 can be installed in the ship so as to supply generated electric power to at least a part of the electric motor 55 and the incidental facilities.
  • the electric power generated by the fuel cell system 50 can be supplied to only the electric motor 55, only the auxiliary equipment, or both the electric motor 55 and the auxiliary equipment.
  • an upstream shutoff valve 11A and a downstream shutoff valve 11B that are provided in series with the fuel gas supply passage 10 and that can shut off the supply passage 10 are provided as the shutoff valves 11A and 11B.
  • a bleed which is connected to a space 10B between the shutoff valves formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the fuel gas supply passage 10 and which can open the space 10B to the atmosphere (an example of the outside).
  • a valve 21 is provided. That is, the bleed valve 21 is configured as an on-off valve provided in the branch passage 20 that branches off from the inter-valve space 10B of the fuel gas supply passage 10 and communicates with the atmosphere.
  • the operation control device 60 supplies the hydrogen gas G1 to the fuel cell device 40 by opening the shutoff valves 11A and 11B to generate power in the fuel cell device 40, as shown in FIG.
  • the bleed valve 21 is closed.
  • the operation control device 60 closes the shutoff valves 11A and 11B to stop the supply of the hydrogen gas G1 to the fuel cell device 40 as shown in FIG.
  • the bleed valve 21 is opened.
  • the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed with the inter-cutoff valve space 10B opened to the atmosphere, and the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped. You. Thus, even if a failure in shut-off occurs in any of the upstream shut-off valve 11A and the downstream shut-off valve 11B, the hydrogen cylinder 1 side and the fuel cell device 40 side in the fuel gas supply passage 10 are connected. The space between the shutoff valves 10B opened to the atmosphere is isolated. Therefore, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 due to the poor shutoff of the shutoff valves 11A and 11B is reliably prevented. Furthermore, the hydrogen gas G1 that has flowed into the inter-shut valve space 10B when the operation is stopped is released to the atmosphere via the bleed valve 21 which is in an open state, so that safety is maintained.
  • a purge gas PG substantially free of air (oxygen) is supplied to the inter-shutoff valve space 10B before the supply of the hydrogen gas G1 to the fuel cell device 40 is started.
  • a purge process for purging the space 10B is executed by the operation control device 60. That is, if such a purge process is performed before the supply of the hydrogen gas G1 to the fuel cell device 40 is started, the air that has entered the inter-valve space 10B is appropriately removed from the fuel gas supply passage 10. Then, the supply of the hydrogen gas G1 to the fuel cell device 40 is started. This prevents performance degradation due to the supply of air to the anode 41A of the fuel cell stack 41.
  • FIG. 1A illustrates a supply stopped state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped when the operation of the fuel cell system 50 is stopped.
  • the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed, and the bleed valve 21 is opened.
  • the hydrogen gas flowing in the supply continuation state before the supply was stopped is stopped.
  • G1 is satisfied.
  • the downstream space 10C formed downstream of the downstream shutoff valve 11B in the fuel gas supply passage 10 and leading to the fuel cell device 40 also flows in the supply continuation state before the supply was stopped.
  • the gas G1 is in a state of being filled.
  • the space 10B between the shutoff valves formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the fuel gas supply passage 10 is opened to the atmosphere through the bleed valve 21 in the open state. Therefore, there is a state in which air that has entered from the atmosphere exists.
  • FIG. 1B shows a purge state, which is a state of the fuel gas supply passage 10 when the purge process is performed. That is, when the fuel cell system 50 is started, the purge process is executed, so that the state of the fuel gas supply path 10 is changed from the supply stop state to the purge state.
  • the downstream side shutoff valve 11B is kept closed, and the upstream side shutoff valve 11A is opened while the bleed valve 21 is kept open.
  • the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied as the purge gas PG to the inter-shut-valve space 10B via the opened upstream-side shut-off valve 11A.
  • the hydrogen gas G1 supplied to the inter-shut valve space 10B is discharged to the outside through the branch passage 20 via the bleed valve 21 maintained in the open state.
  • the inter-shut-valve space 10B is purged by the hydrogen gas G1. That is, in the present embodiment, the hydrogen gas G1 is used as the purge gas PG to be supplied to the inter-shut valve space 10B, and the inter-shut valve space 10B is purged by the hydrogen gas G1.
  • the operation control device 60 controls the flow control valve 25 to change the flow rate of the hydrogen gas G1 in the fuel gas supply passage 10 during the purge process to the hydrogen gas G1 in the fuel gas supply passage 10 during the normal operation of the fuel cell device 40. It is set smaller than the flow rate of the gas G1. That is, the supply amount of the hydrogen gas G1 to the inter-shut valve space 10B in the purge state and the transition state described later is set smaller than the set supply amount of the hydrogen gas G1 to the fuel cell device 40 in the supply continuation state described later. Is done. This suppresses an increase in the consumption of the hydrogen gas G1 consumed as the purge gas PG by the purge process. Further, the amount of the hydrogen gas G1 released to the atmosphere through the branch passage 20 is reduced, and the concentration of the hydrogen gas G1 in the atmosphere is reliably maintained below the explosion limit, thereby ensuring safety.
  • the operation control device 60 sets the execution time of the purge process to an appropriate set purge time as a time during which the air staying in the inter-shut valve space 10B can be almost completely removed.
  • the appropriate set purge time can be determined as appropriate by experiments, simulations, and the like using, for example, the opening degree of each valve, the cross-sectional area and flow path length of each flow path, the supply pressure of the hydrogen gas G1, and the like as parameters.
  • an oxygen concentration sensor for measuring the oxygen concentration in the inter-shut valve space 10B is provided, and the purge process is executed until the oxygen concentration measured by the oxygen concentration sensor becomes 0 or a fixed value or less. No problem.
  • the position of the downstream shutoff valve 11 ⁇ / b> B in the fuel gas supply path 10 is disposed close to the branch to the branch path 20. That is, the downstream shutoff valve 11B is arranged so that the space between the branch to the branch passage 20 and the downstream shutoff valve 11B in the inter-shutoff valve space 10B is as small as possible. Accordingly, in the purge process, when the hydrogen gas G1 as the purge gas PG flows through the inter-shut-valve space 10B in the form of flowing into the branch passage 20 from the upstream-side shut-off valve 11A side, the vicinity of the downstream-side shut-off valve 11B is reduced. Residual air is suppressed.
  • FIG. 1C shows a transition state, which is the state of the fuel gas supply path 10 at this time. That is, when the purging process is completed when the fuel cell system 50 is started, the state of the fuel gas supply path 10 transitions from the purge state to this transition state.
  • the downstream side shutoff valve 11B is opened while the upstream side shutoff valve 11A and the bleed valve 21 are maintained in the open state. Then, the hydrogen gas G1 supplied to the inter-shut-valve space 10B via the upstream-side shutoff valve 11A passes through both the bleed valve 21 and the downstream-side shutoff valve 11B immediately after the downstream-side shutoff valve 11B is opened. become.
  • the supply of the hydrogen gas G1 to the fuel cell device 40 in a state in which the air staying particularly in the vicinity of the bleed valve 21 or in the vicinity of the downstream side shutoff valve 11B in the space 10B between the shutoff valves is pushed out from the space 10B between the shutoff valves. Will be started.
  • the bleed valve 21 is closed in the subsequent supply continuation state, since the downstream side shutoff valve 11B is in the open state, the excessive pressure increase of the fuel gas supply passage 10 when the bleed valve 21 is closed. Is suppressed.
  • FIG. 1D shows a supply continuation state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is continued during the normal operation in which the fuel cell system 50 is operated. That is, when the fuel cell system 50 is started, the state of the fuel gas supply path 10 changes from the transition state to the supply continuation state.
  • the bleed valve 21 When transitioning from the transition state to the supply continuation state, the bleed valve 21 is closed while the upstream cutoff valve 11A and the downstream cutoff valve 11B are maintained in the open state. Then, the release of the hydrogen gas G1 to the atmosphere via the bleed valve 21 is stopped. In this state, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied to the fuel cell device 40 via the upstream-side shutoff valve 11A and the downstream-side shutoff valve 11B, and the fuel cell device 40 performs desired power generation. Will be Then, at the time of the transition to the supply continuation state, since the purge processing has been executed in advance, the fuel gas supply path 10 is in a state filled with hydrogen gas G1 without air. Therefore, performance degradation due to the supply of air to the fuel cell device 40 is suitably prevented.
  • the bleed valve 21 is closed after the downstream shut-off valve 11B is opened at the end of the purge process at the start of the supply of the hydrogen gas G1 to the fuel cell device 40, and the fuel gas supply path 10 Was changed from the purge state (see FIG. 1 (b)) to the supply continuation state (see FIG. 1 (d)) via the transition state (see FIG. 1 (c)).
  • the opening / closing timing of the downstream side shutoff valve 11B, the bleed valve 21, and the like can be appropriately changed. For example, by closing the bleed valve 21 at the same time as or immediately before the opening of the downstream side shutoff valve 11B, the state of the fuel gas supply passage 10 is changed from the purge state (see FIG. 1B) directly to the continuous supply state. (See FIG. 1D).
  • the fuel cell system 50 shown in FIGS. 2 and 3 includes the fuel cell device 40, the fuel gas supply path 10, the operation control device 60, and the like, as in the above-described embodiment. Hydrogen gas G1 is supplied to the anode 41A of 41. Further, the fuel cell system 50 of the present embodiment employs a DBB (double block and bleed) composed of an upstream shutoff valve 11A, a downstream shutoff valve 11B, and a bleed valve 21, similarly to the above-described embodiment. ing.
  • DBB double block and bleed
  • the fuel gas supply passage 10 is provided with a downstream opening / closing valve 13 downstream of the downstream shutoff valve 11B. Further, a downstream relief valve 23 connected to a downstream inter-valve space 10C1 formed between the downstream shut-off valve 11B and the downstream on-off valve 13 in the fuel gas supply passage 10 to open the space 10C to the outside. Is provided. That is, the downstream relief valve 23 is configured as an on-off valve provided in the branch passage 22 that branches off from the downstream inter-valve space 10C1 of the fuel gas supply passage 10 and communicates with the atmosphere.
  • the operation control device 60 supplies the hydrogen gas G1 to the fuel cell device 40 by opening the shutoff valves 11A and 11B to generate power in the fuel cell device 40, as shown in FIG.
  • the downstream on-off valve 13 is opened, and the bleed valve 21 and the downstream relief valve 23 are closed.
  • the operation control device 60 closes the shutoff valves 11A and 11B to stop the supply of the hydrogen gas G1 to the fuel cell device 40 as shown in FIG.
  • the bleed valve 21 is opened, the downstream opening / closing valve 13 is closed, and the downstream relief valve 23 is closed.
  • the downstream side on-off valve 13 may be opened when the operation is stopped.
  • the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed with the inter-cutoff valve space 10B opened to the atmosphere, and the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped. You. Thus, even if a failure in shut-off occurs in any of the upstream shut-off valve 11A and the downstream shut-off valve 11B, the hydrogen cylinder 1 side and the fuel cell device 40 side in the fuel gas supply passage 10 are connected. The space between the shutoff valves 10B opened to the atmosphere is isolated. Therefore, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 due to the poor shutoff of the shutoff valves 11A and 11B is reliably prevented. Furthermore, the hydrogen gas G1 that has flowed into the inter-shut valve space 10B when the operation is stopped is released to the atmosphere via the bleed valve 21 which is in an open state, so that safety is maintained.
  • a purge gas PG substantially free of air (oxygen) is supplied to the inter-shutoff valve space 10B before the supply of the hydrogen gas G1 to the fuel cell device 40 is started.
  • a first purge process and a second purge process as purge processes for purging the space 10B are executed by the operation control device 60. That is, if such a purge process is performed before the supply of the hydrogen gas G1 to the fuel cell device 40 is started, the air that has entered the inter-valve space 10B is appropriately removed from the fuel gas supply passage 10. Then, the supply of the hydrogen gas G1 to the fuel cell device 40 is started. This prevents performance degradation due to the supply of air to the anode 41A of the fuel cell stack 41.
  • the state of the fuel gas supply path 10 is changed to the supply stopped state (see FIG. 2A) by the valve control performed by the operation control device 60 at the time of startup.
  • Purge state see FIG. 2B
  • second purge state see FIG. 2C
  • transition state see FIG. 3D
  • supply continuation state see FIG. 3E
  • FIG. 2A shows a supply stopped state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped when the operation of the fuel cell system 50 is stopped.
  • the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed, and the bleed valve 21 is opened. Further, in this supply stopped state, the downstream opening / closing valve 13 is closed, and the downstream relief valve 23 is closed.
  • the hydrogen gas flowing in the supply continuation state before the supply was stopped is stopped.
  • G1 is satisfied.
  • the downstream spaces 10C1 and 10C2 formed downstream of the downstream shutoff valve 11B in the fuel gas supply path 10 and leading to the fuel cell device 40 also flow in the supply continuation state before the supply is stopped.
  • the hydrogen gas G1 is filled.
  • the space 10B between the shutoff valves formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the fuel gas supply passage 10 is opened to the atmosphere through the bleed valve 21 in the open state. Therefore, there is a state in which air that has entered from the atmosphere exists.
  • FIG. 2B illustrates a first purge state, which is a state of the fuel gas supply path 10 when the first purge process is performed. That is, when the fuel cell system 50 is started, the state of the fuel gas supply passage 10 is changed from the supply stop state to the first purge state by executing the first purge process.
  • the downstream shutoff valve 11B and the downstream relief valve 23 are maintained in the closed state, and the bleed valve 21 and the downstream on / off valve 13 are maintained in the open state.
  • the upstream shutoff valve 11A and the downstream shutoff valve 13 are opened.
  • the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied as the purge gas PG to the inter-shut-valve space 10B via the opened upstream-side shut-off valve 11A.
  • the hydrogen gas G1 supplied to the inter-shut valve space 10B is discharged to the outside through the branch passage 20 via the bleed valve 21 maintained in the open state.
  • the inter-shut-valve space 10B is purged by the hydrogen gas G1. That is, in the present embodiment, the hydrogen gas G1 is used as the purge gas PG to be supplied to the inter-shut valve space 10B, and the inter-shut valve space 10B and the like are purged by the hydrogen gas G1.
  • the air that has entered the inter-valve space 10 ⁇ / b> B from the atmosphere via the bleed valve 21 in the supply stopped state is released to the atmosphere via the bleed valve 21 of the branch passage 20. Then, it is removed from the inter-shut valve space 10B.
  • the operation control device 60 sets the execution time of the first purge process to a first set purge time that is appropriate as a time during which the air staying in the inter-shut valve space 10B can be almost completely removed.
  • the appropriate set first purge time can be appropriately obtained by experiments, simulations, or the like using, for example, the opening degree of each valve, the cross-sectional area and length of each flow path, the supply pressure of the hydrogen gas G1, and the like as parameters.
  • an oxygen concentration sensor for measuring the oxygen concentration in the inter-shut valve space 10B is provided, and the purge process is executed until the oxygen concentration measured by the oxygen concentration sensor becomes 0 or a fixed value or less. No problem.
  • FIG. 2C shows a purge state, which is a state of the fuel gas supply passage 10 when the second purge process is performed. That is, when the fuel cell system 50 is started, the state of the fuel gas supply path 10 is changed from the first purge state to the second purge state by executing the second purge processing.
  • the downstream relief valve 23 is maintained in the closed state, and the downstream shutoff valve 11A and the bleed valve 21 are maintained in the open state.
  • the downstream side shutoff valve 11B is opened.
  • the hydrogen gas G1 as the purge gas PG is supplied from the inter-shut-valve space 10B to the downstream inter-valve space 10C1 via the opened downstream side shut-off valve 11B.
  • the hydrogen gas G1 supplied to the downstream inter-valve space 10C1 is discharged outside through the branch passage 22 through the downstream relief valve 23 maintained in the open state. In this manner, the inter-shutoff valve space 10B and the downstream inter-valve space 10C1 are purged by the hydrogen gas G1.
  • the air remaining near the downstream-side shutoff valve 11B in the inter-shut valve space 10B even after the execution of the first purge process is reduced to the downstream inter-valve space 10C1 and the air.
  • the gas is released to the atmosphere via the downstream relief valve 23 of the branch passage 22 and is removed from the fuel gas supply passage 10.
  • the operation control device 60 sets the execution time of the second purge process to the second purge time that is appropriately set as a time period in which the air staying in the downstream inter-valve space 10C1 can be almost completely removed.
  • the appropriate setting second purge time can be determined as appropriate by experiments, simulations, and the like using, for example, the opening degree of each valve, the cross-sectional area and flow path length of each flow path, the supply pressure of the hydrogen gas G1, and the like as parameters.
  • an oxygen concentration sensor for measuring the oxygen concentration in the downstream inter-valve space 10C1 is provided, and the purge process is executed until the oxygen concentration measured by the oxygen concentration sensor becomes 0 or a predetermined value or less. It does not matter.
  • FIG. 3D shows a transition state that is the state of the fuel gas supply path 10 at this time. That is, when the purge process is completed at the time of activation of the fuel cell system 50, the state of the fuel gas supply path 10 transitions from the second purge state to this transition state.
  • the downstream shut-off valve 13 is opened while the upstream shut-off valve 11A, the downstream shut-off valve 11B, and the downstream relief valve 23 are kept open.
  • the bleed valve 21 is closed.
  • the hydrogen gas G1 supplied to the downstream inter-valve space 10C1 via the upstream cutoff valve 11A and the downstream cutoff valve 11B is supplied to the downstream relief valve 23 and the downstream cutoff valve 23 immediately after the downstream cutoff valve 11B is opened. It passes through both of the on-off valves 13.
  • FIG. 3E illustrates a supply continuation state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is continued during the normal operation in which the fuel cell system 50 is operated. That is, when the fuel cell system 50 is started, the state of the fuel gas supply path 10 changes from the transition state to the supply continuation state.
  • the downstream release valve 23 is closed while the upstream cutoff valve 11A, the downstream cutoff valve 11B, and the downstream on-off valve 13 are maintained in the open state. . Then, the release of the hydrogen gas G1 to the atmosphere via the downstream relief valve 23 is stopped. In this state, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied to the fuel cell device 40 via the upstream shut-off valve 11A, the downstream shut-off valve 11B, and the downstream on-off valve 13, and the fuel cell device 40 At 40, the desired power generation is performed. Since the first purge process and the second purge process have been performed in advance at the time of transition to the supply continuation state, the fuel gas supply path 10 is filled with the hydrogen gas G1 without air. Has become. Therefore, performance degradation due to the supply of air to the fuel cell device 40 is suitably prevented.
  • the downstream relief valve 23 is closed after the downstream on-off valve 13 is opened, and the fuel is released.
  • the state of the gas supply path 10 was changed from the second purge state (see FIG. 2C) to a supply continuation state (see FIG. 3E) through a transition state (see FIG. 3D).
  • the opening / closing timings of the downstream opening / closing valve 13 and the downstream relief valve 23 can be appropriately changed.
  • the state of the fuel gas supply passage 10 is changed from the second purge state (see FIG. 2C) by closing the downstream relief valve 23 at the same time as or immediately before the opening of the downstream on-off valve 13. It may be configured to make a transition directly to the continuous supply state (see FIG. 3E).
  • the fuel cell system 50 shown in FIG. 4 includes a fuel cell device 40, a fuel gas supply path 10, an operation control device 60, and the like, similarly to the above-described embodiment. Hydrogen gas G1 is supplied to 41A. Further, the fuel cell system 50 of the present embodiment employs a DBB (double block and bleed) composed of an upstream shutoff valve 11A, a downstream shutoff valve 11B, and a bleed valve 21, similarly to the above-described embodiment. ing. Further, the fuel gas supply path 10 is provided with a downstream opening / closing valve 13 downstream of the downstream shutoff valve 11B.
  • DBB double block and bleed
  • a nitrogen gas supply path 31 (an example of an inert gas supply path) that is connected to the fuel gas supply path 10 and is capable of supplying a nitrogen gas NG (an example of an inert gas) is provided in the fuel gas supply path 10.
  • the nitrogen gas supply passage 31 is formed in a downstream space formed downstream of the downstream cutoff valve 11B in the fuel gas supply passage 10, specifically, the downstream cutoff valve 11B in the fuel gas supply passage 10 and the downstream opening / closing. It is connected to a downstream inter-valve space 10C1 formed between the valve 13 and the valve 13.
  • the nitrogen gas supply path 31 is configured as a pipe connecting the nitrogen gas cylinder 30 that stores the nitrogen gas NG and the downstream inter-valve space 10C1 in the fuel gas supply path 10.
  • the nitrogen gas NG is used as the inert gas, but another inert gas may be used.
  • the nitrogen gas supply path 31 is provided with a nitrogen gas supply valve 32 (an example of an inert gas supply valve).
  • the operation control device 60 controls the opening and closing operation of the nitrogen gas supply valve 32 to interrupt the supply of the nitrogen gas NG from the nitrogen gas supply path 31 to the downstream inter-valve space 10C1 of the fuel gas supply path 10. Can be.
  • the operation control device 60 supplies the hydrogen gas G1 to the fuel cell device 40 by opening the shutoff valves 11A and 11B to generate power in the fuel cell device 40, as shown in FIG.
  • the downstream side on-off valve 13 is opened, and the bleed valve 21 and the nitrogen gas supply valve 32 are closed.
  • the operation control device 60 closes the shutoff valves 11A and 11B to stop the supply of the hydrogen gas G1 to the fuel cell device 40 as shown in FIG.
  • the bleed valve 21 is opened, the downstream opening / closing valve 13 is opened, and the nitrogen gas supply valve 32 is closed.
  • the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed with the inter-cutoff valve space 10B opened to the atmosphere, and the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped. You. Thus, even if a failure in shut-off occurs in any of the upstream shut-off valve 11A and the downstream shut-off valve 11B, the hydrogen cylinder 1 side and the fuel cell device 40 side in the fuel gas supply passage 10 are connected. The space between the shutoff valves 10B opened to the atmosphere is isolated. Therefore, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 due to the poor shutoff of the shutoff valves 11A and 11B is reliably prevented. Furthermore, the hydrogen gas G1 that has flowed into the inter-shut valve space 10B when the operation is stopped is released to the atmosphere via the bleed valve 21 which is in an open state, so that safety is maintained.
  • a purge gas PG substantially free of air (oxygen) is supplied to the inter-shutoff valve space 10B before the supply of the hydrogen gas G1 to the fuel cell device 40 is started.
  • a purge process for purging the space 10B is executed by the operation control device 60. That is, if such a purge process is performed before the supply of the hydrogen gas G1 to the fuel cell device 40 is started, the air that has entered the inter-valve space 10B is appropriately removed from the fuel gas supply passage 10. Then, the supply of the hydrogen gas G1 to the fuel cell device 40 is started. This prevents performance degradation due to the supply of air to the anode 41A of the fuel cell stack 41.
  • FIG. 4A illustrates a supply stop state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped when the operation of the fuel cell system 50 is stopped.
  • the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed, and the bleed valve 21 is opened. Further, in this supply stopped state, the downstream opening / closing valve 13 is opened and the nitrogen gas supply valve 32 is closed.
  • the hydrogen gas flowing in the supply continuation state before the supply was stopped is stopped.
  • G1 is satisfied.
  • the downstream spaces 10C1 and 10C2 formed downstream of the downstream shutoff valve 11B in the fuel gas supply path 10 and leading to the fuel cell device 40 also flow in the supply continuation state before the supply is stopped.
  • the hydrogen gas G1 is filled.
  • the space 10B between the shutoff valves formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the fuel gas supply passage 10 is opened to the atmosphere through the bleed valve 21 in the open state. Therefore, there is a state in which air that has entered from the atmosphere exists.
  • FIG. 4B shows a purge state, which is a state of the fuel gas supply passage 10 when the purge process is performed. That is, when the fuel cell system 50 is started, the purge process is executed, so that the state of the fuel gas supply path 10 is changed from the supply stop state to the purge state.
  • the downstream shut-off valve 13 is closed while the upstream shut-off valve 11A is kept closed, and the bleed valve 21 is kept open.
  • the downstream side shutoff valve 11B and the nitrogen gas supply valve 32 are opened.
  • the nitrogen gas NG supplied from the nitrogen gas cylinder 30 is supplied as the purge gas PG to the downstream-side inter-valve space 10C1 via the opened nitrogen gas supply valve 32, and the nitrogen gas NG is supplied to the opened downstream.
  • the purge gas PG is supplied to the inter-shut-valve space 10B via the side shut-off valve 11B.
  • the nitrogen gas NG supplied to the inter-shut valve space 10B is released to the outside through the branch passage 20 via the bleed valve 21 maintained in the open state. Then, in such a manner, the inter-shutoff valve space 10B is purged by the nitrogen gas NG. That is, in the present embodiment, the nitrogen gas NG is used as the purge gas PG to be supplied to the inter-shut valve space 10B, and the inter-shut valve space 10B and the like are purged by the nitrogen gas NG.
  • FIG. 4C shows a supply continuation state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is continued during the normal operation in which the fuel cell system 50 is operated. That is, when the fuel cell system 50 is started, the state of the fuel gas supply passage 10 changes from the purge state to the continuous supply state.
  • the nitrogen gas supply valve 32 and the bleed valve 21 are closed while the downstream side shutoff valve 11B is maintained in the open state, and the upstream side shutoff valve 11A and the downstream The side opening / closing valve 13 is opened. Then, the supply of the nitrogen gas NG to the fuel gas supply passage 10 and the release of the nitrogen gas NG to the atmosphere via the bleed valve 21 are stopped. In this state, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied to the fuel cell device 40 via the upstream shut-off valve 11A, the downstream shut-off valve 11B, and the downstream on-off valve 13, and the fuel cell device 40 At 40, the desired power generation is performed.
  • the fuel gas supply path 10 is in a state filled with the hydrogen gas G1 or the nitrogen gas NG without air. . Therefore, performance degradation due to the supply of air to the fuel cell device 40 is suitably prevented.
  • the upstream shutoff valve 11A and the downstream The on-off valve 13 is opened, but the opening and closing timing of each valve can be changed as appropriate. For example, after opening the downstream opening / closing valve 13, the closing of the nitrogen gas supply valve 32 and the bleed valve 21 and the opening of the upstream shutoff valve 11A can be performed.
  • the fuel cell system 50 illustrated in FIG. 5 includes the fuel cell device 40, the fuel gas supply path 10, the operation control device 60, and the like, similarly to the above-described embodiment. Hydrogen gas G1 is supplied to 41A. Further, the fuel cell system 50 of the present embodiment employs a DBB (double block and bleed) composed of an upstream shutoff valve 11A, a downstream shutoff valve 11B, and a bleed valve 21, similarly to the above-described embodiment. ing. Further, the fuel gas supply passage 10 is provided with a downstream opening / closing valve 13 downstream of the downstream shutoff valve 11B.
  • DBB double block and bleed
  • a nitrogen gas supply path 31 (an example of an inert gas supply path) that is connected to the fuel gas supply path 10 and is capable of supplying a nitrogen gas NG (an example of an inert gas) is provided in the fuel gas supply path 10.
  • the nitrogen gas supply passage 31 is formed in a downstream space formed downstream of the downstream cutoff valve 11B in the fuel gas supply passage 10, specifically, the downstream cutoff valve 11B in the fuel gas supply passage 10 and the downstream opening / closing. It is connected to a downstream inter-valve space 10C1 formed between the valve 13 and the valve 13.
  • the nitrogen gas supply path 31 is configured as a pipe connecting the nitrogen gas cylinder 30 that stores the nitrogen gas NG and the downstream inter-valve space 10C1 in the fuel gas supply path 10.
  • the nitrogen gas supply path 31 is provided with a nitrogen gas supply valve 32 (an example of an inert gas supply valve).
  • the operation control device 60 controls the opening and closing operation of the nitrogen gas supply valve 32 to interrupt the supply of the nitrogen gas NG from the nitrogen gas supply path 31 to the downstream inter-valve space 10C1 of the fuel gas supply path 10. Can be.
  • the operation control device 60 supplies the hydrogen gas G1 to the fuel cell device 40 by opening the shut-off valves 11A and 11B to generate power in the fuel cell device 40, as shown in FIG.
  • the downstream side on-off valve 13 is opened, and the bleed valve 21 and the nitrogen gas supply valve 32 are closed.
  • the operation control device 60 closes the shutoff valves 11A and 11B to stop the supply of the hydrogen gas G1 to the fuel cell device 40 as shown in FIG.
  • the bleed valve 21 is opened, the downstream opening / closing valve 13 is opened, and the nitrogen gas supply valve 32 is closed.
  • the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed with the inter-cutoff valve space 10B opened to the atmosphere, and the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped. You. Thus, even if a failure in shut-off occurs in any of the upstream shut-off valve 11A and the downstream shut-off valve 11B, the hydrogen cylinder 1 side and the fuel cell device 40 side in the fuel gas supply passage 10 are connected. The space between the shutoff valves 10B opened to the atmosphere is isolated. Therefore, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 due to the poor shutoff of the shutoff valves 11A and 11B is reliably prevented. Furthermore, the hydrogen gas G1 that has flowed into the inter-shut valve space 10B when the operation is stopped is released to the atmosphere via the bleed valve 21 which is in an open state, so that safety is maintained.
  • a purge gas PG substantially free of air (oxygen) is supplied to the inter-shutoff valve space 10B before the supply of the hydrogen gas G1 to the fuel cell device 40 is started.
  • a purge process for purging the space 10B is executed by the operation control device 60. That is, if such a purge process is performed before the supply of the hydrogen gas G1 to the fuel cell device 40 is started, the air that has entered the inter-valve space 10B is appropriately removed from the fuel gas supply passage 10. Then, the supply of the hydrogen gas G1 to the fuel cell device 40 is started. This prevents performance degradation due to the supply of air to the anode 41A of the fuel cell stack 41.
  • FIG. 5A shows a supply stopped state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped when the operation of the fuel cell system 50 is stopped.
  • the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed, and the bleed valve 21 is opened. Further, in this supply stopped state, the downstream opening / closing valve 13 is opened and the nitrogen gas supply valve 32 is closed.
  • the hydrogen gas flowing in the supply continuation state before the supply was stopped is stopped.
  • G1 is satisfied.
  • the downstream spaces 10C1 and 10C2 formed downstream of the downstream shutoff valve 11B in the fuel gas supply path 10 and leading to the fuel cell device 40 also flow in the supply continuation state before the supply is stopped.
  • the hydrogen gas G1 is filled.
  • the space 10B between the shutoff valves formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the fuel gas supply passage 10 is opened to the atmosphere through the bleed valve 21 in the open state. Therefore, there is a state in which air that has entered from the atmosphere exists.
  • FIG. 5B shows a purge state, which is a state of the fuel gas supply passage 10 when the purge process is performed. That is, when the fuel cell system 50 is started, the purge process is executed, so that the state of the fuel gas supply path 10 is changed from the supply stop state to the purge state.
  • the downstream open / close valve 13 is closed while the bleed valve 21 is maintained in the open state, and the upstream shutoff valve 11A, the downstream shutoff valve 11B, and The nitrogen gas supply valve 32 is opened.
  • the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied as the purge gas PG to the inter-shut-valve space 10B via the opened upstream-side shut-off valve 11A.
  • the nitrogen gas NG supplied from the nitrogen gas cylinder 30 is supplied as the purge gas PG to the downstream side inter-valve space 10C1 via the opened nitrogen gas supply valve 32, and the nitrogen gas NG is supplied to the downstream of the opened valve.
  • the purge gas PG is supplied to the inter-shut-valve space 10B via the side shut-off valve 11B.
  • the hydrogen gas G1 and the nitrogen gas NG supplied to the inter-shut valve space 10B are discharged to the outside through the branch passage 20 via the bleed valve 21 maintained in the open state.
  • the inter-shut-valve space 10B is purged by the hydrogen gas G1 and the nitrogen gas NG. That is, in the present embodiment, the hydrogen gas G1 and the nitrogen gas NG are used as the purge gas PG to be supplied to the inter-shut valve space 10B, and the inter-shut valve space 10B and the like are purged by the hydrogen gas G1 and the nitrogen gas NG.
  • the upstream shutoff valve 11A, the downstream shutoff valve 11B, and the nitrogen gas supply valve 32 are simultaneously opened, and the hydrogen gas G1 as the purge gas PG to the inter-shutoff valve space 10B is opened. And the supply of nitrogen gas NG is performed simultaneously.
  • the opening timing of the upstream shutoff valve 11A and the opening timing of the downstream shutoff valve 11B and the nitrogen gas supply valve 32 may be set to different timings.
  • the hydrogen gas G1 is supplied as the purge gas PG to the inter-shut-valve space 10B by setting the opening timing of the upstream-side shutoff valve 11A earlier than the opening timing of the downstream-side shutoff valve 11B and the nitrogen gas supply valve 32.
  • the nitrogen gas NG can be supplied to the inter-shut valve space 10B as the purge gas PG.
  • the nitrogen gas NG is supplied as the purge gas PG to the inter-shut valve space 10B.
  • the hydrogen gas G1 can be supplied as the purge gas PG to the inter-shut valve space 10B.
  • the supply of the hydrogen gas G1 as the purge gas PG to the inter-shut valve space 10B and the supply of the nitrogen gas NG as the purge gas PG to the inter-shut valve space 10B one is terminated and then the other is started.
  • the opening / closing timing of the upstream cutoff valve 11A, the downstream cutoff valve 11B, and the nitrogen gas supply valve 32 may be set.
  • FIG. 5C illustrates a supply continuation state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is continued during the normal operation in which the fuel cell system 50 is operated. That is, when the fuel cell system 50 is started, the state of the fuel gas supply passage 10 changes from the purge state to the continuous supply state.
  • the nitrogen gas supply valve 32 and the bleed valve 21 are closed while the upstream cutoff valve 11A and the downstream cutoff valve 11B are kept open, and the downstream The side opening / closing valve 13 is opened. Then, the supply of the nitrogen gas NG to the fuel gas supply path 10 and the release of the hydrogen gas G1 and the nitrogen gas NG to the atmosphere via the bleed valve 21 are stopped. In this state, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied to the fuel cell device 40 via the upstream shut-off valve 11A, the downstream shut-off valve 11B, and the downstream on-off valve 13, and the fuel cell device 40 At 40, the desired power generation is performed.
  • the fuel gas supply path 10 is in a state filled with the hydrogen gas G1 or the nitrogen gas NG without air. . Therefore, performance degradation due to the supply of air to the fuel cell device 40 is suitably prevented.
  • the downstream side on-off valve 13 is opened simultaneously with the closing of the nitrogen gas supply valve 32 and the bleed valve 21.
  • the opening / closing timing of each valve can be appropriately changed. For example, after the downstream on-off valve 13 is opened, the nitrogen gas supply valve 32 and the bleed valve 21 may be closed.
  • the fuel cell device 40 is configured to include the fuel cell stack 41 in which the hydrogen gas G1 is supplied from the fuel gas supply path 10 to the anode 41A.
  • a fuel cell device 40 is provided with a reformer 42 that reforms a hydrocarbon gas G2 such as methane gas or propane gas to generate a hydrogen-containing gas including a hydrogen gas G1, and And a fuel cell stack 41 that generates electric power by an electrochemical reaction of the hydrogen gas G1.
  • the hydrocarbon gas G2 flows through the fuel gas supply path 10, and the hydrocarbon gas G2 is supplied as a fuel gas from the fuel gas supply path 10 to the reformer 42, and The reformer of the porcelain 42 becomes a hydrogen-containing gas including the hydrogen gas G1.
  • a purge process can be performed in the fuel gas supply passage 10.
  • the hydrocarbon gas G2 can be used as the purge gas PG in the purge process.
  • the present invention is not limited to such a configuration, and other transport machines or energy may be used.
  • the present invention can also be applied to a fuel cell system mounted on a device.
  • the present invention can be suitably used mainly for a fuel cell ship equipped with a fuel cell system as a power source.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

A fuel cell system and a fuel cell boat comprising said fuel cell system, wherein while the supply of fuel gas to a fuel cell device is safely and reliably stopped during shutdown, a decrease in performance due to the supply of air to the fuel cell device during startup is prevented. The present invention comprises an upstream shutoff valve 11A and a downstream shutoff valve 11B provided in series in a supply channel 10, said valves 11A, 11B being capable of shutting off said supply channel 10. The present invention further comprises a bleed valve 21 that is connected to a space 10B formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the supply channel 10, the lead valve 21 being capable of opening said space 10B to the outside. A valve control means 60: controls the operation of the bleed valve 21 in a mode in which the bleed valve 21 is closed when a fuel gas G1 is being supplied, and in which the bleed valve 21 is opened when the supply of the fuel gas G1 is stopped; and supplies a purge gas PG into the space 10B before the fuel gas G1 starts being supplied, to execute a purge process of purging said space 10B.

Description

燃料電池システム及び燃料電池船Fuel cell system and fuel cell ship
 本発明は、燃料ガス供給路を通じて燃料電池装置に燃料ガスを供給する燃料電池システム及びそれを備えた燃料電池船に関する。 The present invention relates to a fuel cell system that supplies fuel gas to a fuel cell device through a fuel gas supply path, and a fuel cell ship provided with the same.
 燃料ガスの電気化学反応により発電を行う燃料電池スタックを有する燃料電池装置を備えた燃料電池システムでは、燃料電池スタックに供給される水素ガス又は改質を経て当該水素ガスとなる炭化水素ガス等の燃料ガスが、ボンベ等の燃料ガス貯留部から燃料ガス供給路を通じて燃料電池装置のアノード側に供給される。このような燃料電池システムでは、燃料ガス供給路に設けられた遮断弁を閉弁させることにより、燃料電池装置への燃料ガスの供給を停止して、運転が停止される(例えば、特許文献1を参照)。 In a fuel cell system including a fuel cell device having a fuel cell stack that generates power by an electrochemical reaction of a fuel gas, hydrogen gas supplied to the fuel cell stack or hydrocarbon gas that becomes the hydrogen gas through reforming is used. Fuel gas is supplied from a fuel gas storage unit such as a cylinder to the anode side of the fuel cell device through a fuel gas supply path. In such a fuel cell system, the supply of the fuel gas to the fuel cell device is stopped by closing a shut-off valve provided in the fuel gas supply passage, and the operation is stopped (for example, Patent Document 1). See).
 燃料電池システムの運転停止時には、燃料電池装置への燃料ガスの供給を確実に停止する必要がある。特に船舶では高い安全基準が要求されることから、動力源として燃料電池システムを搭載した燃料電池船では、遮断弁の遮断不良等に起因する燃料電池装置側への燃料ガスの漏洩を確実に防止することが要求される。 時 に は When the operation of the fuel cell system is stopped, it is necessary to surely stop the supply of the fuel gas to the fuel cell device. In particular, since high safety standards are required for ships, fuel cell ships equipped with a fuel cell system as a power source reliably prevent fuel gas from leaking to the fuel cell device side due to poor shut-off of shut-off valves, etc. Is required.
 燃料ガス供給源から燃料ガス供給路を通じて燃料ガス供給先へ燃料ガスを供給するシステムにおいて、燃料ガスの供給を確実且つ安全に遮断するための構成として、ダブルブロックアンドブリード(以下、「DBB」と呼ぶ。)と呼ぶものが知られている。かかるDBBは、燃料ガス供給路に直列状態で2つの遮断弁を設けると共に、これら2つの遮断弁の間に形成された遮断弁間空間に接続され、当該空間を外部に開放可能なブリード弁を設けて構成されている。そして、これら2つの遮断弁及びブリード弁の作動を制御する弁制御手段は、燃料電池装置への燃料ガスの供給を停止する供給停止時に、2つ遮断弁を閉弁させると共にブリード弁を開弁させる。 In a system for supplying a fuel gas from a fuel gas supply source to a fuel gas supply destination through a fuel gas supply path, a double block and bleed (hereinafter, referred to as “DBB”) is used as a configuration for reliably and safely shutting off the supply of the fuel gas. Is known. Such a DBB is provided with two shut-off valves in series with the fuel gas supply passage, and is connected to a space between the two shut-off valves formed between the two shut-off valves, and is provided with a bleed valve capable of opening the space to the outside. It is provided and configured. The valve control means for controlling the operation of the two shut-off valves and the bleed valve closes the two shut-off valves and opens the bleed valve when the supply of fuel gas to the fuel cell device is stopped. Let it.
特開2010-287320号公報JP 2010-287320 A
 しかしながら、上述のような燃料電池システムにDBBを採用する場合、上記ブリード弁を閉弁させると共に上記2つの遮断弁を開弁させて燃料電池装置への燃料ガスの供給を開始する起動時に、上記遮断弁間空間に存在していた空気中の酸素が燃料電池装置のアノード側に供給される。すると、改質器の改質触媒の劣化や燃料電池スタックの腐食電流の発生等により燃料電池装置の性能が低下するという問題が懸念される。 However, when the DBB is adopted in the above-described fuel cell system, the above-described bleed valve is closed and the two shut-off valves are opened to start supplying the fuel gas to the fuel cell device. Oxygen in the air existing in the space between the shut-off valves is supplied to the anode side of the fuel cell device. Then, there is a concern that the performance of the fuel cell device is reduced due to the deterioration of the reforming catalyst of the reformer, the generation of corrosion current of the fuel cell stack, and the like.
 この実情に鑑み、燃料ガス供給路を通じて燃料電池装置に燃料ガスを供給する燃料電池システム及びそれを備えた燃料電池船において、運転停止時に安全且つ確実に燃料電池装置への燃料ガスの供給を停止しながら、起動時に燃料電池装置への空気の供給に起因する性能低下を防止することができる技術を提供する点にある。 In view of this situation, in a fuel cell system that supplies fuel gas to a fuel cell device through a fuel gas supply path and a fuel cell ship equipped with the fuel cell system, the supply of fuel gas to the fuel cell device is stopped safely and reliably when operation is stopped. It is another object of the present invention to provide a technique capable of preventing performance degradation due to air supply to a fuel cell device at the time of startup.
 本発明に係る燃料電池システムの第1特徴構成は、燃料ガスの電気化学反応により発電を行う燃料電池スタックを有する燃料電池装置と、
 前記燃料電池装置に燃料ガスを供給する燃料ガス供給路と、
 前記燃料ガス供給路に設けられて当該供給路を遮断可能な遮断弁と、
 前記遮断弁を閉弁させて前記燃料電池装置への燃料ガスの供給を停止し、前記遮断弁を開弁させて前記燃料電池装置への燃料ガスの供給を開始する形態で前記遮断弁の作動を制御する弁制御手段と、を備えた燃料電池システムであって、
 前記燃料ガス供給路に直列状態で設けられて当該供給路を遮断可能な上流側遮断弁及び下流側遮断弁を、前記遮断弁として備え、
 前記燃料ガス供給路における前記上流側遮断弁と前記下流側遮断弁との間に形成される遮断弁間空間に接続されて当該空間を外部に開放可能なブリード弁を備え、
 前記弁制御手段が、前記燃料電池装置への燃料ガスの供給時に前記ブリード弁を閉弁させ、前記燃料電池装置への燃料ガスの供給停止時に前記ブリード弁を開弁させる形態で前記ブリード弁の作動を制御すると共に、前記燃料電池装置への燃料ガスの供給開始前に前記遮断弁間空間に対して燃料ガス及び不活性ガスの少なくとも一方であるパージガスを供給して当該遮断弁間空間をパージするパージ処理を実行する点にある。
A first characteristic configuration of a fuel cell system according to the present invention includes a fuel cell device having a fuel cell stack that generates power by an electrochemical reaction of a fuel gas;
A fuel gas supply path for supplying fuel gas to the fuel cell device;
A shutoff valve provided in the fuel gas supply path and capable of shutting off the supply path;
The operation of the shut-off valve in a form in which the shut-off valve is closed to stop supplying the fuel gas to the fuel cell device, and the shut-off valve is opened to start supplying the fuel gas to the fuel cell device. And a valve control means for controlling the fuel cell system,
An upstream shutoff valve and a downstream shutoff valve that are provided in series with the fuel gas supply passage and that can shut off the supply passage are provided as the shutoff valve,
A bleed valve that is connected to a space between the upstream and downstream shut-off valves in the fuel gas supply passage and that is formed between the downstream-side shut-off valve and that can open the space to the outside;
The valve control means closes the bleed valve when fuel gas is supplied to the fuel cell device, and opens the bleed valve when supply of fuel gas to the fuel cell device is stopped. Controlling the operation and supplying a purge gas, which is at least one of a fuel gas and an inert gas, to the space between the shut-off valves before starting the supply of the fuel gas to the fuel cell device to purge the space between the shut-off valves. Is to perform a purge process.
 また、本発明に係る燃料電池船の特徴構成は、本発明に係る燃料電池システムと、
 前記燃料電池システムに供給される燃料ガスを貯留する燃料ガス貯留部と、を備え、
 前記燃料電池システムの発電電力を船内の電力負荷に供給する点にある。
Further, the characteristic configuration of the fuel cell ship according to the present invention includes a fuel cell system according to the present invention,
A fuel gas storage unit for storing fuel gas supplied to the fuel cell system,
The point is that the power generated by the fuel cell system is supplied to the power load in the ship.
 本構成によれば、高い安全基準が要求される燃料電池船等に搭載される燃料電池システムにおいて、燃料ガス供給路に直列状態で設けられる上流側遮断弁及び下流側遮断弁と当該両遮断弁の間に形成される遮断弁間空間に接続されるブリード弁とを備えて構成されるDBB(ダブルブロックアンドブリード)が採用されている。
 そして、燃料電池システムの運転停止時には、上流側遮断弁及び下流側遮断弁並びにブリード弁の作動を制御する弁制御手段により、上流側遮断弁及び下流側遮断弁を閉弁させると共にブリード弁を開弁させる形態で、燃料ガス貯留部等の燃料ガス供給源から燃料電池装置への燃料ガスの供給が停止される。このように燃料ガスの供給を停止することで、上流側遮断弁及び下流側遮断弁のうちの何れかに遮断不良が生じた場合であっても、燃料ガス供給路における燃料ガス供給源側と燃料電池装置側とを大気等の外部に開放された遮断弁間空間で隔離させることができる。よって、遮断弁の遮断不良に起因する燃料ガス供給源から燃料電池装置への燃料ガスの漏洩を確実に防止することができる。更には、燃料ガスの供給停止時に遮断弁間空間に流出した燃料ガスについては、開弁状態であるブリード弁を介して外部へ放出して、安全性を保持することができる。
According to this configuration, in a fuel cell system mounted on a fuel cell ship or the like that requires a high safety standard, the upstream shut-off valve and the downstream shut-off valve, which are provided in series with the fuel gas supply path, and both the shut-off valves And a bleed valve connected to the inter-shut-off valve space formed therebetween.
When the operation of the fuel cell system is stopped, the upstream shutoff valve and the downstream shutoff valve are closed and the bleed valve is opened by valve control means for controlling the operation of the upstream shutoff valve and the downstream shutoff valve and the bleed valve. In a valved manner, the supply of the fuel gas from the fuel gas supply source such as the fuel gas storage unit to the fuel cell device is stopped. By stopping the supply of the fuel gas in this manner, even if a failure in shutting off occurs in any of the upstream shut-off valve and the downstream shut-off valve, the fuel gas supply path and the fuel gas supply source side in the fuel gas supply path are not connected. The fuel cell device side can be isolated by the space between the shut-off valves opened to the outside such as the atmosphere. Therefore, it is possible to reliably prevent the leakage of the fuel gas from the fuel gas supply source to the fuel cell device due to the poor shutoff of the shutoff valve. Furthermore, the fuel gas that has flowed into the space between the shut-off valves when the supply of the fuel gas is stopped can be released to the outside via the bleed valve which is in the open state, and safety can be maintained.
 一方、燃料電池システムの起動時には、弁制御手段により、上流側遮断弁及び下流側遮断弁を開弁させると共にブリード弁を閉弁させる形態で、燃料ガス貯留部等の燃料ガス供給源から燃料電池装置への燃料ガスの供給を開始することができる。そして、このような燃料電池装置への燃料ガスの供給開始前には、弁制御手段により、上記パージ処理が実行される。このパージ処理では、空気(酸素)を略含まない上記パージガスが遮断弁間空間に供給されて当該遮断弁間空間がパージされる。すると、燃料ガスの供給停止時に外部から開弁状態であるブリード弁を介して遮断弁間空間に侵入した空気が、上記パージ処理の実行により適切に除去された上で、燃料電池装置への燃料ガスの供給が開始される。このことで、燃料電池装置のアノード側への空気の供給に起因する性能低下を防止することができる。 On the other hand, when the fuel cell system is started, the valve control means opens the upstream shut-off valve and the downstream shut-off valve and closes the bleed valve. The supply of fuel gas to the device can be started. Before the supply of the fuel gas to such a fuel cell device is started, the above-described purging process is executed by the valve control means. In this purging process, the purge gas substantially containing no air (oxygen) is supplied to the space between the shut-off valves to purge the space between the shut-off valves. Then, when the supply of the fuel gas is stopped, the air that has entered the space between the shut-off valves from the outside via the bleed valve that is open from the outside is appropriately removed by performing the above-described purge processing, and then the fuel is supplied to the fuel cell device. Gas supply is started. This can prevent performance degradation due to the supply of air to the anode side of the fuel cell device.
 従って、本発明により、燃料ガス供給路を通じて燃料電池装置に燃料ガスを供給する燃料電池システムにおいて、運転停止時に安全且つ確実に燃料電池装置への燃料ガスの供給を停止しながら、起動時に燃料電池装置への空気の供給に起因する性能低下を防止することができる技術を提供することができる。 Therefore, according to the present invention, in a fuel cell system for supplying a fuel gas to a fuel cell device through a fuel gas supply path, the fuel cell system can be safely and reliably stopped when the operation is stopped while the fuel cell system is started when the fuel cell device is started. It is possible to provide a technique capable of preventing performance degradation due to supply of air to the device.
 本発明に係る燃料電池システムの第2特徴構成は、上記第1特徴構成に加えて、前記弁制御手段は、前記パージ処理を所定の設定パージ時間実行した後に前記燃料電池装置への燃料ガスの供給を開始する点にある。 According to a second characteristic configuration of the fuel cell system according to the present invention, in addition to the first characteristic configuration, the valve control unit performs the purge process for a predetermined set purge time, and then performs the fuel gas supply to the fuel cell device. The point is to start supplying.
 本構成によれば、弁制御手段によりパージ処理が所定の設定パージ時間実行された後に、燃料電池装置への燃料ガスの供給が開始される。よって、簡単な構成で、遮断弁間空間に滞留する空気を除去した上で燃料電池装置への燃料ガスの供給を開始することができる。また、パージ処理を実行する設定パージ時間については、遮断弁間空間に滞留する空気が略完全に除去可能な時間として適宜設定することができ、例えば、各弁の開度、各流路の断面積、パージガスの供給圧力等をパラメータとして実験やシミュレーション等により適宜求めることができる。 According to this configuration, the supply of the fuel gas to the fuel cell device is started after the purge process is executed by the valve control means for the predetermined set purge time. Therefore, with a simple configuration, the supply of the fuel gas to the fuel cell device can be started after the air staying in the space between the shut-off valves is removed. Further, the set purge time for executing the purge process can be appropriately set as a time during which air staying in the space between the shut-off valves can be almost completely removed. For example, the opening degree of each valve and the cutoff of each flow path can be set. The area, the supply pressure of the purge gas, and the like can be appropriately obtained by experiments, simulations, and the like using the parameters.
 本発明に係る燃料電池システムの第3特徴構成は、上記第1特徴構成乃至上記第2特徴構成の何れかに加えて、前記弁制御手段が、前記パージ処理において、前記ブリード弁を開弁状態に維持して、前記遮断弁間空間に供給された前記パージガスを前記ブリード弁を介して外部に放出する点にある。 In a third characteristic configuration of the fuel cell system according to the present invention, in addition to any one of the first characteristic configuration and the second characteristic configuration, the valve control unit may open the bleed valve in the purge process. , And the purge gas supplied to the inter-shutoff valve space is discharged to the outside via the bleed valve.
 本構成によれば、燃料ガスの供給停止時に開弁されたブリード弁が、燃料電池装置への燃料ガスの供給開始前におけるパージ処理の実行時に開弁状態に維持される。即ち、このパージ処理では、遮断弁間空間に供給されたパージガスを、開放状態であるブリード弁を介して外部に放出させる形態で、遮断弁間空間をパージすることができる。このことで、遮断弁間空間において特にブリード弁近傍に滞留する空気を略完全に除去した上で、燃料電池装置への燃料ガスの供給を開始することができる。 According to this configuration, the bleed valve opened when the supply of the fuel gas is stopped is maintained in the open state when the purge process is performed before the supply of the fuel gas to the fuel cell device is started. That is, in this purging process, the space between the shut-off valves can be purged by discharging the purge gas supplied to the space between the shut-off valves to the outside through the bleed valve in an open state. Thus, the supply of the fuel gas to the fuel cell device can be started after the air remaining particularly in the vicinity of the bleed valve in the space between the shutoff valves is almost completely removed.
 本発明に係る燃料電池システムの第4特徴構成は、上記第3特徴構成に加えて、前記弁制御手段が、前記燃料電池装置への燃料ガスの供給開始時に、前記下流側遮断弁の開弁後に前記ブリード弁を閉弁させる点にある。 A fourth characteristic configuration of the fuel cell system according to the present invention, in addition to the third characteristic configuration, wherein the valve control unit opens the downstream side shut-off valve when the supply of the fuel gas to the fuel cell device starts. The point is that the bleed valve is closed later.
 本構成によれば、パージ処理の実行時にブリード弁を開弁状態に維持して、パージ処理の実行後に下流側遮断弁を開弁させて燃料電池装置への燃料ガスの供給を開始するにあたり、当該下流側遮断弁が開弁された後に、ブリード弁が閉弁される。すると、ブリード弁の閉弁時に下流側遮断弁が開弁状態であることから、弁の開閉切替時における燃料ガス供給路の過剰な圧力上昇を抑制することができる。また、下流側遮断弁の開弁直後において、遮断弁間空間に供給されたパージガスを、ブリード弁及び下流側遮断弁の両方に通過させることできる。このことで、遮断弁間空間において特にブリード弁近傍や下流側遮断弁近傍に滞留する空気をパージガスで遮断弁間空間から押し出した上で、燃料電池装置への燃料ガスの供給を開始することができる。 According to this configuration, when the bleed valve is maintained in the open state during the execution of the purge process, and after the purge process is performed, the downstream shutoff valve is opened to start supplying the fuel gas to the fuel cell device. After the downstream shut-off valve is opened, the bleed valve is closed. Then, since the downstream cutoff valve is in the open state when the bleed valve is closed, it is possible to suppress an excessive rise in the pressure of the fuel gas supply passage at the time of switching between opening and closing of the valve. Immediately after the downstream shut-off valve is opened, the purge gas supplied to the space between the shut-off valves can be passed through both the bleed valve and the downstream shut-off valve. With this, it is possible to start the supply of the fuel gas to the fuel cell device after pushing out the air stagnating particularly in the vicinity of the bleed valve or the vicinity of the downstream side shut-off valve in the space between the shut-off valves with the purge gas from the space between the shut-off valves. it can.
 本発明に係る燃料電池システムの第5特徴構成は、上記第1特徴構成乃至上記第4特徴構成の何れかに加えて、前記弁制御手段が、前記パージ処理において、前記上流側遮断弁を開弁させて当該上流側遮断弁を介して前記遮断弁間空間に前記パージガスとして燃料ガスを供給する点にある。 In a fifth aspect of the fuel cell system according to the present invention, in addition to any one of the first to fourth aspects, the valve control means may open the upstream shutoff valve in the purge process. The fuel gas is supplied as the purge gas to the space between the shut-off valves via the upstream shut-off valve.
 本構成によれば、燃料電池装置への燃料ガスの供給開始前に実行されるパージ処理において、遮断弁間空間に供給するパージガスとして、燃料ガスを利用することができる。即ち、当該パージ処理において、上流側遮断弁が開弁されるので、燃料ガス供給路に供給された燃料ガスをパージガスとして上流側遮断弁を介して遮断弁間空間に流入させて、当該遮断弁間空間を燃料ガスによりパージすることができる。このことで、パージ処理を実行して遮断弁間空間を燃料ガスで満たした状態で、当該遮断弁間空間を含む燃料ガス供給路を通じて燃料電池装置への燃料ガスの供給が開始されるので、燃料電池装置のアノード側への空気の供給に起因する性能低下を適切に防止することができる。 According to this configuration, the fuel gas can be used as the purge gas to be supplied to the space between the shut-off valves in the purge process performed before the supply of the fuel gas to the fuel cell device is started. That is, in the purging process, the upstream shutoff valve is opened, so that the fuel gas supplied to the fuel gas supply passage is caused to flow as a purge gas into the inter-shutoff valve space via the upstream shutoff valve. The interspace can be purged with fuel gas. With this, the supply of the fuel gas to the fuel cell device through the fuel gas supply path including the space between the shut-off valves is started in a state where the space between the shut-off valves is filled with the fuel gas by performing the purge process. It is possible to appropriately prevent performance degradation due to supply of air to the anode side of the fuel cell device.
 本発明に係る燃料電池システムの第6特徴構成は、上記第5特徴構成に加えて、前記燃料ガス供給路での燃料ガスの流量を調整可能な流量調整手段を備え、
 前記弁制御手段が、前記流量調整手段を制御して、前記パージ処理時における前記燃料ガス供給路での燃料ガスの流量を、前記燃料電池装置の通常運転時における前記燃料ガス供給路での燃料ガスの流量よりも小さく設定する点にある。
A sixth characteristic configuration of the fuel cell system according to the present invention, in addition to the fifth characteristic configuration, further includes a flow rate adjusting unit that can adjust a flow rate of the fuel gas in the fuel gas supply path,
The valve control means controls the flow rate adjusting means to change the flow rate of the fuel gas in the fuel gas supply path during the purging process to the fuel gas in the fuel gas supply path during the normal operation of the fuel cell device. The point is that it is set smaller than the gas flow rate.
 本構成によれば、燃料電池装置への燃料ガスの供給開始前に実行されるパージ処理が、上流側遮断弁を介して燃料ガス供給路に供給された燃料ガスをパージガスとして遮断弁間空間に流入させる処理である場合に、当該パージ処理の実行時における燃料ガス供給路での燃料ガスの流量が、弁制御手段による流量調整手段の制御により、燃料電池装置の通常運転時における燃料ガス供給路での燃料ガスの流量よりも小さく設定される。このことで、パージ処理による燃料ガスの消費量の増加を抑制すると共に、当該パージガスとしての外部へ放出する燃料ガスをできるだけ少なくして、外部での燃料ガス濃度を確実に爆発限界未満に維持して、安全性を確保することができる。 According to this configuration, the purge process performed before the start of the supply of the fuel gas to the fuel cell device uses the fuel gas supplied to the fuel gas supply path via the upstream-side shut-off valve as the purge gas in the space between the shut-off valves. In the case of the inflow processing, the flow rate of the fuel gas in the fuel gas supply path at the time of execution of the purging processing is controlled by the flow rate adjustment means by the valve control means, so that the fuel gas supply path during the normal operation of the fuel cell device is Is set to be smaller than the flow rate of the fuel gas at. This suppresses an increase in fuel gas consumption due to the purge process, and minimizes the amount of fuel gas released to the outside as the purge gas, thereby ensuring that the fuel gas concentration outside is kept below the explosion limit. Safety can be ensured.
 本発明に係る燃料電池システムの第7特徴構成は、上記第5特徴構成又は上記第6特徴構成に加えて、前記燃料ガス供給路における前記下流側遮断弁よりも下流側に設けられた下流側開閉弁と、
 前記燃料ガス供給路における前記下流側遮断弁と前記下流側開閉弁との間に形成される下流側弁間空間に接続されて当該空間を外部に開放可能な下流側逃し弁と、を備え、
 前記弁制御手段が、前記パージ処理において、前記下流側開閉弁を閉弁すると共に前記下流側遮断弁及び前記下流側逃し弁を開弁させて、前記遮断弁間空間に供給された燃料ガスを前記下流側遮断弁を介して前記下流側弁間空間に供給すると共に、前記下流側弁間空間に供給された燃料ガスを前記下流側逃し弁を介して外部に放出する点にある。
According to a seventh aspect of the fuel cell system according to the present invention, in addition to the fifth aspect or the sixth aspect, a downstream side provided in the fuel gas supply path downstream of the downstream side shutoff valve. An on-off valve,
A downstream relief valve that is connected to a downstream inter-valve space formed between the downstream shut-off valve and the downstream on-off valve in the fuel gas supply path and is capable of opening the space to the outside;
In the purging process, the valve control means closes the downstream open / close valve and opens the downstream shutoff valve and the downstream relief valve, thereby allowing the fuel gas supplied to the inter-shutoff valve space to be opened. The present invention is characterized in that the fuel gas is supplied to the downstream inter-valve space via the downstream shut-off valve and the fuel gas supplied to the downstream inter-valve space is discharged outside through the downstream relief valve.
 本構成によれば、燃料電池装置への燃料ガスの供給開始前に実行されるパージ処理において、下流側開閉弁が閉弁されると共に下流側遮断弁及び下流側逃し弁が開弁される。よって、当該パージ処理において、上流側遮断弁を介してパージガスとして遮断弁間空間に流入した燃料ガスを、下流側遮断弁を介して下流側弁間空間に流入させた後に逃し弁を介して外部に放出させる形態で、遮断弁間空間及び下流側弁間空間を燃料ガスによりパージすることができる。このことで、遮断弁間空間において特に下流側遮断弁近傍に滞留する空気を略完全に除去した上で、燃料電池装置への燃料ガスの供給を開始することができる。 According to this configuration, in the purge process executed before the start of the supply of the fuel gas to the fuel cell device, the downstream opening / closing valve is closed, and the downstream shutoff valve and the downstream relief valve are opened. Therefore, in the purging process, the fuel gas which has flowed into the inter-shut-valve space as a purge gas via the upstream-side shut-off valve flows into the downstream-side inter-valve space via the downstream-side shut-off valve, and then is externally connected via the relief valve. The space between the shut-off valve and the space between the downstream valves can be purged by the fuel gas. Thus, the supply of the fuel gas to the fuel cell device can be started after the air staying particularly in the vicinity of the downstream-side shutoff valve in the space between the shutoff valves is almost completely removed.
 本発明に係る燃料電池システムの第8特徴構成は、上記第7特徴構成に加えて、前記弁制御手段が、前記燃料電池装置への燃料ガスの供給開始時に、前記下流側開閉弁の開弁後に前記下流側逃し弁を閉弁させる点にある。 According to an eighth aspect of the fuel cell system according to the present invention, in addition to the seventh aspect, the valve control means opens the downstream side on-off valve when the supply of the fuel gas to the fuel cell device is started. The point is that the downstream relief valve is closed later.
 本構成によれば、下流側開閉弁を閉弁すると共に下流側遮断弁及び下流側逃し弁を開弁させる形態でパージ処理を実行する場合において、当該パージ処理の実行後に下流側開閉弁を開弁させて燃料電池装置への燃料ガスの供給を開始するにあたり、当該下流側開閉弁が開弁された後に、下流側逃し弁が閉弁される。すると、下流側開閉弁の開弁直後において、下流側弁間空間に供給されたパージガスとしての燃料ガスを、下流側逃し弁及び下流側開閉弁に通過させることできる。このことで、下流側弁間空間において特に下流側逃し弁近傍及び下流側開閉弁近傍に滞留する空気を燃料ガスで下流側弁間空間から押し出した上で、燃料電池装置への燃料ガスの供給を開始することができる。 According to this configuration, in a case where the purge process is executed in a mode in which the downstream open / close valve is closed and the downstream shutoff valve and the downstream relief valve are opened, the downstream open / close valve is opened after the execution of the purge process. In starting the supply of the fuel gas to the fuel cell device with the valve opened, the downstream on-off valve is opened, and then the downstream relief valve is closed. Then, immediately after the downstream on-off valve is opened, the fuel gas as the purge gas supplied to the downstream inter-valve space can be passed through the downstream relief valve and the downstream on-off valve. With this, air remaining in the downstream inter-valve space, particularly in the vicinity of the downstream relief valve and the vicinity of the downstream on-off valve, is pushed out of the downstream inter-valve space by the fuel gas, and then the fuel gas is supplied to the fuel cell device. Can be started.
 本発明に係る燃料電池システムの第9特徴構成は、上記第1特徴構成乃至上記第8特徴構成の何れかに加えて、前記燃料ガス供給路に接続されて当該燃料ガス供給路に不活性ガスを供給可能な不活性ガス供給路と、
 前記不活性ガス供給路に設けられた不活性ガス供給弁と、を備え、
 前記弁制御手段が、前記パージ処理において、前記不活性ガス供給弁を開弁させて前記不活性ガス供給路から前記遮断弁間空間に前記パージガスとして不活性ガスを供給する点にある。
According to a ninth feature of the fuel cell system according to the present invention, in addition to any one of the first to eighth features, an inert gas is connected to the fuel gas supply path and is connected to the fuel gas supply path. An inert gas supply path capable of supplying
An inert gas supply valve provided in the inert gas supply path,
The valve control means is characterized in that in the purging process, the inert gas supply valve is opened to supply an inert gas as the purge gas from the inert gas supply passage to the inter-shutoff valve space.
 本構成によれば、上記不活性ガス供給路と上記不活性ガス供給弁とを備えることで、燃料電池装置への燃料ガスの供給開始前に実行されるパージ処理において、遮断弁間空間に供給するパージガスとして、窒素ガス等の不活性ガスを利用することができる。即ち、当該パージ処理において、不活性ガス供給弁が開弁されるので、当該不活性ガス供給弁を介して不活性ガス供給路から燃料ガス供給路に不活性ガスをパージガスとして流入させ、その不活性ガスを遮断弁間空間に流入させて、当該遮断弁間空間を不活性ガスによりパージすることができる。このことで、パージ処理を実行して遮断弁間空間を不活性ガスで満たした状態で、当該遮断弁間空間を含む燃料ガス供給路を通じて燃料電池装置への燃料ガスの供給が開始されるので、燃料電池装置のアノード側への空気の供給に起因する性能低下を適切に防止することができる。 According to this configuration, by providing the inert gas supply path and the inert gas supply valve, the purge gas is supplied to the space between the shut-off valves in the purge process performed before the start of the supply of the fuel gas to the fuel cell device. An inert gas such as a nitrogen gas can be used as the purge gas. That is, since the inert gas supply valve is opened in the purging process, the inert gas flows from the inert gas supply path into the fuel gas supply path as the purge gas through the inert gas supply valve, and the inert gas is supplied. The active gas can be caused to flow into the space between the shut-off valves, and the space between the shut-off valves can be purged with the inert gas. Thus, the supply of the fuel gas to the fuel cell device through the fuel gas supply path including the space between the shut-off valves is started in a state where the space between the shut-off valves is filled with the inert gas by performing the purge process. In addition, it is possible to appropriately prevent performance degradation due to supply of air to the anode side of the fuel cell device.
 本発明に係る燃料電池システムの第10特徴構成は、上記第9特徴構成に加えて、前記不活性ガス供給路が、前記燃料ガス供給路における前記下流側遮断弁の下流側に形成される下流側空間に接続されており、
 前記弁制御手段が、前記パージ処理において、前記不活性ガス供給弁及び前記下流側遮断弁を開弁させて前記不活性ガス供給路から前記下流側空間を介して前記遮断弁間空間に不活性ガスを供給する点にある。
According to a tenth feature of the fuel cell system according to the present invention, in addition to the ninth feature, the inert gas supply passage is formed downstream of the fuel gas supply passage on the downstream side of the downstream shutoff valve. Connected to the side space,
In the purging process, the valve control unit opens the inert gas supply valve and the downstream shutoff valve to inactivate the inert gas supply passage through the downstream space to the shutoff valve space. The point is to supply gas.
 本構成によれば、不活性ガス供給路が、燃料ガス供給路における下流側遮断弁の下流側に形成される下流側空間に接続されており、燃料電池装置への燃料ガスの供給開始前に実行されるパージ処理において、その不活性ガス供給路に設けられた不活性ガス供給弁及び下流側遮断弁が開弁される。よって、当該パージ処理において、不活性ガス供給路から下流側空間にパージガスとして供給された不活性ガスを、下流側遮断弁を介して遮断弁間空間に流入させる形態で、当該遮断弁間空間を不活性ガスによりパージすることができる。このことで、遮断弁空間において特に下流側遮断弁近傍に滞留する空気を略完全に除去した上で、燃料電池装置への燃料ガスの供給を開始することができる。 According to this configuration, the inert gas supply path is connected to the downstream space formed on the fuel gas supply path on the downstream side of the downstream cutoff valve, and before the supply of the fuel gas to the fuel cell device starts. In the purge process to be executed, the inert gas supply valve and the downstream cutoff valve provided in the inert gas supply path are opened. Therefore, in the purging process, the inert gas supplied from the inert gas supply path to the downstream space as the purge gas is caused to flow into the inter-shut-valve space via the downstream-side shut-off valve. It can be purged with an inert gas. Thus, the supply of the fuel gas to the fuel cell device can be started after the air staying particularly in the vicinity of the downstream side shutoff valve in the shutoff valve space is almost completely removed.
 本発明に係る燃料電池システムの第11特徴構成は、上記第10特徴構成に加えて、前記弁制御手段が、前記パージ処理において、前記上流側遮断弁を開弁させて当該上流側遮断弁を介して前記遮断弁間空間に前記パージガスとして燃料ガスを供給する点にある。 According to an eleventh feature of the fuel cell system according to the present invention, in addition to the tenth feature, the valve control means opens the upstream shut-off valve in the purging process to open the upstream shut-off valve. And supplying fuel gas as the purge gas to the space between the shut-off valves via the intermittent valve.
 本構成によれば燃料電池装置への燃料ガスの供給開始前に実行されるパージ処理において、下流側空間にパージガスとして供給された不活性ガスをパージガスとして下流側遮断弁を介して遮断弁間空間に流入させると共に、燃料ガス供給路に供給された燃料ガスをパージガスとして上流側遮断弁を介して遮断弁間空間に流入させて、当該遮断弁間空間を不活性ガス及び燃料ガスの両方によりパージすることができる。このことで、遮断弁間空間において上流側遮断弁近傍及び下流側遮断弁近傍に滞留する空気を燃料ガス及び不活性ガスで略完全に除去した上で、燃料電池装置への燃料ガスの供給を開始することができる。 According to this configuration, in the purge process performed before the start of the supply of the fuel gas to the fuel cell device, the inert gas supplied to the downstream space as the purge gas is used as the purge gas as the purge gas via the downstream-side shut-off valve and the space between the shut-off valves. At the same time, the fuel gas supplied to the fuel gas supply passage is caused to flow as a purge gas into the inter-shut-valve space via the upstream-side shut-off valve, and the inter-shut-valve space is purged with both the inert gas and the fuel gas. can do. With this, the air remaining in the vicinity of the upstream side shutoff valve and the vicinity of the downstream side shutoff valve in the space between the shutoff valves is almost completely removed with the fuel gas and the inert gas, and then the supply of the fuel gas to the fuel cell device is performed. You can start.
第1実施形態の燃料電池システムの概略構成及び作動状態を示すブロック図FIG. 2 is a block diagram illustrating a schematic configuration and an operation state of the fuel cell system according to the first embodiment. 第2実施形態の燃料電池システムの概略構成及び作動状態を示すブロック図FIG. 2 is a block diagram showing a schematic configuration and an operation state of a fuel cell system according to a second embodiment. 第2実施形態の燃料電池システムの概略構成及び作動状態を示すブロック図FIG. 2 is a block diagram showing a schematic configuration and an operation state of a fuel cell system according to a second embodiment. 第3実施形態の燃料電池システムの概略構成及び作動状態を示すブロック図FIG. 4 is a block diagram showing a schematic configuration and an operating state of a fuel cell system according to a third embodiment. 第4実施形態の燃料電池システムの概略構成及び作動状態を示すブロック図FIG. 4 is a block diagram illustrating a schematic configuration and an operating state of a fuel cell system according to a fourth embodiment. 別実施形態における燃料電池システムの概略構成を示すブロック図Block diagram showing a schematic configuration of a fuel cell system according to another embodiment. 燃料電池船の概略構成を示す図Diagram showing a schematic configuration of a fuel cell ship
〔第1実施形態〕
 本発明の第1実施形態について、図1等に基づいて説明する。
 図1に示す燃料電池システム50は、水素ガス(燃料ガスの一例)の電気化学反応により発電を行う燃料電池スタック41を有する燃料電池装置40と、燃料電池装置40に水素ガスG1を供給する燃料ガス供給路10と、運転を制御する運転制御装置60等とを備えて構成されている。
 また、本実施形態において、燃料電池装置40は、上記燃料電池スタック41を備えて構成されており、上記燃料ガス供給路10から燃料電池スタック41のアノード41Aに水素ガスG1が供給される。
[First Embodiment]
A first embodiment of the present invention will be described with reference to FIG.
The fuel cell system 50 illustrated in FIG. 1 includes a fuel cell device 40 having a fuel cell stack 41 that generates power by an electrochemical reaction of hydrogen gas (an example of a fuel gas), and a fuel that supplies a hydrogen gas G1 to the fuel cell device 40. It is provided with a gas supply path 10, an operation control device 60 for controlling operation, and the like.
In the present embodiment, the fuel cell device 40 includes the fuel cell stack 41, and the hydrogen gas G1 is supplied from the fuel gas supply path 10 to the anode 41A of the fuel cell stack 41.
 燃料ガス供給路10は、水素ガスG1を貯留する水素ボンベ1(燃料ガス貯留部の一例)と、燃料電池装置40の燃料電池スタック41のアノード41Aとを接続する管路として構成されている。この燃料ガス供給路10には、当該供給路10を遮断可能な開閉弁である遮断弁11A,11Bが設けられている。また、この燃料ガス供給路10における上記遮断弁11A,11Bよりも上流側には、燃料ガス供給路10での水素ガスG1の流量を調整可能な流量調整弁25(流量調整手段の一例)が設けられている。 The fuel gas supply path 10 is configured as a pipe connecting the hydrogen cylinder 1 (an example of a fuel gas storage unit) that stores the hydrogen gas G1 and the anode 41A of the fuel cell stack 41 of the fuel cell device 40. The fuel gas supply path 10 is provided with shutoff valves 11A and 11B, which are shutoff valves capable of shutting off the supply path 10. A flow control valve 25 (an example of a flow control means) capable of controlling the flow rate of the hydrogen gas G1 in the fuel gas supply passage 10 is provided upstream of the shutoff valves 11A and 11B in the fuel gas supply passage 10. Is provided.
 そして、運転制御装置60は、遮断弁11A,11Bを閉弁させて燃料電池装置40への水素ガスG1の供給を停止し、遮断弁11A,11Bを開弁させて燃料電池装置40への水素ガスG1の供給を開始する形態で、遮断弁11A,11Bの作動を制御する弁制御手段として機能する。 Then, the operation control device 60 closes the shutoff valves 11A and 11B to stop the supply of the hydrogen gas G1 to the fuel cell device 40, and opens the shutoff valves 11A and 11B to supply hydrogen to the fuel cell device 40. In a mode in which the supply of the gas G1 is started, it functions as a valve control unit that controls the operation of the shutoff valves 11A and 11B.
 即ち、燃料電池システム50の運転停止時には、燃料電池スタック41での発電が停止されて、例えば図1(a)に示すように、運転制御装置60により遮断弁11A,11Bが閉弁されて、燃料電池スタック41のアノード41Aへの水素ガスG1の供給が停止される。一方、燃料電池システム50の起動時には、例えば図1(d)に示すように、運転制御装置60により遮断弁11A,11Bが開弁されることで、燃料電池スタック41のアノード41Aへの水素ガスG1の供給が開始されて、当該燃料電池スタック41での発電が開始される。また、燃料電池装置40への水素ガスG1の供給時に、運転制御装置60は、流量調整弁25の開度を調整して、燃料ガス供給路10における水素ガスG1の流量、言い換えれば燃料電池装置40への水素ガスG1の供給量を、通常運転時における所望の設定供給量に設定する。 That is, when the operation of the fuel cell system 50 is stopped, the power generation in the fuel cell stack 41 is stopped, and the shutoff valves 11A and 11B are closed by the operation control device 60, for example, as shown in FIG. The supply of the hydrogen gas G1 to the anode 41A of the fuel cell stack 41 is stopped. On the other hand, when the fuel cell system 50 is started, for example, as shown in FIG. 1D, the shutoff valves 11A and 11B are opened by the operation control device 60 so that hydrogen gas is supplied to the anode 41A of the fuel cell stack 41. The supply of G1 is started, and the power generation in the fuel cell stack 41 is started. Further, when the hydrogen gas G1 is supplied to the fuel cell device 40, the operation control device 60 adjusts the opening degree of the flow rate control valve 25 so that the flow rate of the hydrogen gas G1 in the fuel gas supply passage 10, in other words, the fuel cell device The supply amount of the hydrogen gas G1 to 40 is set to a desired set supply amount during normal operation.
 本実施形態における燃料電池システム50は、図7に示すように、燃料電池船100に動力源として搭載されている。即ち、かかる燃料電池船100は、燃料電池システム50と、燃料電池システム50に供給される水素ガスG1を貯留する水素ボンベ1と、を備え、推進用プロペラ56を回転駆動する電動モータ55等の船内の電力負荷に対して燃料電池システム50の発電電力を供給するように構成されている。尚、船内の電力負荷としては、駆動用の電動モータ55以外に、照明やポンプ等の船内の付帯設備(図示省略)がある。そして、燃料電池システム50は、電動モータ55や付帯設備の少なくとも一部に対して発電電力を供給するものとして船内に設置することができる。例えば、電動モータ55のみ、又は付帯設備のみ、或いは電動モータ55と付帯設備の両方に対して、燃料電池システム50の発電電力を供給することができる。 燃料 The fuel cell system 50 according to the present embodiment is mounted on a fuel cell ship 100 as a power source, as shown in FIG. That is, the fuel cell ship 100 includes the fuel cell system 50 and the hydrogen cylinder 1 that stores the hydrogen gas G1 supplied to the fuel cell system 50, such as an electric motor 55 that rotationally drives a propeller 56 for propulsion. The fuel cell system 50 is configured to supply power generated by the fuel cell system 50 to the power load on the ship. In addition to the electric motor 55 for driving, the on-board auxiliary equipment (illustration omitted) such as lighting and a pump is used as the power load on the boat. Then, the fuel cell system 50 can be installed in the ship so as to supply generated electric power to at least a part of the electric motor 55 and the incidental facilities. For example, the electric power generated by the fuel cell system 50 can be supplied to only the electric motor 55, only the auxiliary equipment, or both the electric motor 55 and the auxiliary equipment.
 このように燃料電池船100に搭載される燃料電池システム50では、遮断弁11A,11Bの遮断不良等に起因する燃料電池装置40側への水素ガスG1の漏洩を確実に防止することが要求される。
 そこで、本実施形態の燃料電池システム50では、水素ボンベ1から燃料ガス供給路10を通じて燃料電池装置40へ水素ガスG1を供給するにあたり、水素ガスG1の供給を確実且つ安全に遮断するための構成としてDBB(ダブルブロックアンドブリード)が採用されている。
As described above, in the fuel cell system 50 mounted on the fuel cell ship 100, it is required to surely prevent the leakage of the hydrogen gas G1 to the fuel cell device 40 side due to a failure in shutoff of the shutoff valves 11A and 11B. You.
Therefore, in the fuel cell system 50 of the present embodiment, when supplying the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 through the fuel gas supply path 10, a configuration for reliably and safely shutting off the supply of the hydrogen gas G1. DBB (Double Block and Bleed) is adopted as such.
 上記DBBでは、燃料ガス供給路10に直列状態で設けられて当該供給路10を遮断可能な上流側遮断弁11A及び下流側遮断弁11Bが、上記遮断弁11A,11Bとして設けられている。更に、燃料ガス供給路10における上流側遮断弁11Aと下流側遮断弁11Bとの間に形成される遮断弁間空間10Bに接続されて当該空間10Bを大気(外部の一例)に開放可能なブリード弁21が設けられている。即ち、ブリード弁21は、燃料ガス供給路10の遮断弁間空間10Bから分岐して大気に通じる分岐路20に設けられた開閉弁として構成されている。 In the DBB, an upstream shutoff valve 11A and a downstream shutoff valve 11B that are provided in series with the fuel gas supply passage 10 and that can shut off the supply passage 10 are provided as the shutoff valves 11A and 11B. Further, a bleed which is connected to a space 10B between the shutoff valves formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the fuel gas supply passage 10 and which can open the space 10B to the atmosphere (an example of the outside). A valve 21 is provided. That is, the bleed valve 21 is configured as an on-off valve provided in the branch passage 20 that branches off from the inter-valve space 10B of the fuel gas supply passage 10 and communicates with the atmosphere.
 そして、運転制御装置60は、図1(d)に示すように、遮断弁11A,11Bを開弁させて燃料電池装置40へ水素ガスG1を供給して当該燃料電池装置40での発電を行う通常運転時には、ブリード弁21を閉弁させた状態とする。一方、運転制御装置60は、図1(a)に示すように、遮断弁11A,11Bを閉弁させて燃料電池装置40への水素ガスG1の供給を停止して当該燃料電池装置40での発電を停止する運転停止時には、ブリード弁21を開弁させた状態とする。 Then, the operation control device 60 supplies the hydrogen gas G1 to the fuel cell device 40 by opening the shutoff valves 11A and 11B to generate power in the fuel cell device 40, as shown in FIG. During normal operation, the bleed valve 21 is closed. On the other hand, the operation control device 60 closes the shutoff valves 11A and 11B to stop the supply of the hydrogen gas G1 to the fuel cell device 40 as shown in FIG. When the operation is stopped to stop the power generation, the bleed valve 21 is opened.
 即ち、運転停止時には、遮断弁間空間10Bが大気に開放された状態で上流側遮断弁11Aと下流側遮断弁11Bとが閉弁されて燃料電池装置40への水素ガスG1の供給が停止される。このことで、上流側遮断弁11A及び下流側遮断弁11Bのうちの何れかに遮断不良が生じた場合であっても、燃料ガス供給路10における水素ボンベ1側と燃料電池装置40側とが大気に開放された遮断弁間空間10Bで隔離されることになる。よって、これら遮断弁11A,11Bの遮断不良に起因する水素ボンベ1から燃料電池装置40への水素ガスG1の漏洩が確実に防止される。更に、運転停止時に遮断弁間空間10Bに流出した水素ガスG1については、開弁状態であるブリード弁21を介して大気へ放出されるので、安全性が保持される。 That is, when the operation is stopped, the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed with the inter-cutoff valve space 10B opened to the atmosphere, and the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped. You. Thus, even if a failure in shut-off occurs in any of the upstream shut-off valve 11A and the downstream shut-off valve 11B, the hydrogen cylinder 1 side and the fuel cell device 40 side in the fuel gas supply passage 10 are connected. The space between the shutoff valves 10B opened to the atmosphere is isolated. Therefore, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 due to the poor shutoff of the shutoff valves 11A and 11B is reliably prevented. Furthermore, the hydrogen gas G1 that has flowed into the inter-shut valve space 10B when the operation is stopped is released to the atmosphere via the bleed valve 21 which is in an open state, so that safety is maintained.
 上記DBBを採用した燃料電池システム50において、図1(a)に示すように、運転停止時には、分岐路20を通じて遮断弁間空間10Bに空気が侵入した状態となっている。そして、燃料電池装置40への水素ガスG1の供給が開始する燃料電池システム50の起動時に、遮断弁間空間10Bに存在する空気中の酸素が燃料電池装置40のアノード41A側に供給されると、燃料電池スタック41の腐食電流の発生等により燃料電池装置40の性能が低下するという問題が生じる。 (1) In the fuel cell system 50 employing the DBB, as shown in FIG. 1A, when the operation is stopped, air enters the inter-valve space 10B through the branch passage 20. Then, when the fuel cell system 50 starts to supply the hydrogen gas G1 to the fuel cell device 40, when oxygen in the air present in the inter-shut valve space 10B is supplied to the anode 41A side of the fuel cell device 40. In addition, there is a problem that the performance of the fuel cell device 40 is deteriorated due to the occurrence of corrosion current of the fuel cell stack 41 and the like.
 そこで、本実施形態の燃料電池システム50では、運転停止状態から通常運転に移行する起動時において、燃料電池装置40への空気の供給に起因する性能低下を防止する。そのために、詳細については後述するが、燃料電池装置40への水素ガスG1の供給開始前に遮断弁間空間10Bに対して空気(酸素)を略含まないパージガスPGを供給して当該遮断弁間空間10Bをパージするパージ処理が、運転制御装置60により実行される。即ち、このようなパージ処理が、燃料電池装置40への水素ガスG1の供給開始前に実行されると、遮断弁間空間10Bに侵入した空気が適切に燃料ガス供給路10から除去された上で、燃料電池装置40への水素ガスG1の供給が開始される。このことで、燃料電池スタック41のアノード41Aへの空気の供給に起因する性能低下が防止される。 Therefore, in the fuel cell system 50 of the present embodiment, at the time of start-up in which the operation shifts from the operation stop state to the normal operation, the performance deterioration due to the supply of air to the fuel cell device 40 is prevented. For this purpose, a purge gas PG substantially free of air (oxygen) is supplied to the inter-shutoff valve space 10B before the supply of the hydrogen gas G1 to the fuel cell device 40 is started. A purge process for purging the space 10B is executed by the operation control device 60. That is, if such a purge process is performed before the supply of the hydrogen gas G1 to the fuel cell device 40 is started, the air that has entered the inter-valve space 10B is appropriately removed from the fuel gas supply passage 10. Then, the supply of the hydrogen gas G1 to the fuel cell device 40 is started. This prevents performance degradation due to the supply of air to the anode 41A of the fuel cell stack 41.
 本実施形態における上記パージ処理の詳細構成について、本実施形態の燃料電池システム50の運転を開始する起動時における燃料ガス供給路10における状態変化の詳細と共に、以下に説明を加える。
 尚、本実施形態の燃料電池システム50では、起動時に、運転制御装置60により行われる弁制御により、燃料ガス供給路10の状態が、供給停止状態(図1(a)を参照)、パージ状態(図1(b)を参照)、移行状態(図1(c)を参照)、供給継続状態(図1(d)を参照)の順に変化する。以下では、夫々の状態について詳細を説明する。
The detailed configuration of the purging process in the present embodiment will be described below together with the details of the state change in the fuel gas supply path 10 at the time of starting the operation of the fuel cell system 50 of the present embodiment.
In the fuel cell system 50 according to the present embodiment, when the fuel cell system 50 is started, the state of the fuel gas supply path 10 is changed to a supply stopped state (see FIG. 1A) and a purge state by valve control performed by the operation control device 60. (See FIG. 1B), a transition state (see FIG. 1C), and a supply continuation state (see FIG. 1D). Hereinafter, each state will be described in detail.
(供給停止状態)
 図1(a)は、燃料電池システム50の運転を停止している運転停止時に、燃料電池装置40への水素ガスG1の供給を停止している供給停止状態を示す。
 この供給停止状態では、上流側遮断弁11A及び下流側遮断弁11Bが閉弁され、ブリード弁21が開弁される。
(Supply stopped)
FIG. 1A illustrates a supply stopped state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped when the operation of the fuel cell system 50 is stopped.
In this supply stop state, the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed, and the bleed valve 21 is opened.
 すると、燃料ガス供給路10における上流側遮断弁11Aよりも上流側に形成されて水素ボンベ1に通じる上流側空間10Aについては、供給停止状態となる前の供給継続状態において通流していた水素ガスG1が満たされた状態となる。また、燃料ガス供給路10における下流側遮断弁11Bよりも下流側に形成されて燃料電池装置40に通じる下流側空間10Cについても、供給停止状態となる前の供給継続状態において通流していた水素ガスG1が満たされた状態となる。一方、燃料ガス供給路10における上流側遮断弁11Aと下流側遮断弁11Bとの間に形成される遮断弁間空間10Bについては、開弁状態のブリード弁21を通じて大気に開放された状態となるため、大気から侵入した空気が存在する状態となる。
 そして、このように燃料電池装置40への水素ガスG1の供給が停止されることで、上述したように、水素ボンベ1から燃料電池装置40への水素ガスG1の漏洩が確実に防止され、安全性が保持される。
Then, in the upstream space 10A formed upstream of the upstream shutoff valve 11A in the fuel gas supply path 10 and leading to the hydrogen cylinder 1, the hydrogen gas flowing in the supply continuation state before the supply was stopped is stopped. G1 is satisfied. Further, the downstream space 10C formed downstream of the downstream shutoff valve 11B in the fuel gas supply passage 10 and leading to the fuel cell device 40 also flows in the supply continuation state before the supply was stopped. The gas G1 is in a state of being filled. On the other hand, the space 10B between the shutoff valves formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the fuel gas supply passage 10 is opened to the atmosphere through the bleed valve 21 in the open state. Therefore, there is a state in which air that has entered from the atmosphere exists.
By stopping the supply of the hydrogen gas G1 to the fuel cell device 40 in this manner, as described above, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 is reliably prevented, and the safety is improved. Nature is maintained.
(パージ状態)
 運転制御装置60は、燃料電池装置40への水素ガスG1の供給を開始する前にパージ処理を実行する。そして、図1(b)は、パージ処理が実行された際の燃料ガス供給路10の状態であるパージ状態を示す。即ち、燃料電池システム50の起動時に、パージ処理が実行されることで、燃料ガス供給路10の状態は上記供給停止状態からこのパージ状態に遷移する。
(Purge state)
The operation control device 60 performs a purge process before starting supply of the hydrogen gas G1 to the fuel cell device 40. FIG. 1B shows a purge state, which is a state of the fuel gas supply passage 10 when the purge process is performed. That is, when the fuel cell system 50 is started, the purge process is executed, so that the state of the fuel gas supply path 10 is changed from the supply stop state to the purge state.
 供給停止状態からパージ状態に遷移するにあたっては、下流側遮断弁11Bが閉弁状態に維持され、且つ、ブリード弁21が開弁状態に維持されたままで、上流側遮断弁11Aが開弁される。すると、水素ボンベ1から供給された水素ガスG1が、開弁された上流側遮断弁11Aを介して遮断弁間空間10BにパージガスPGとして供給される。同時に、当該遮断弁間空間10Bに供給された水素ガスG1が、開弁状態に維持されたブリード弁21を介して分岐路20を通じて外部に放出される。そして、このような形態で、遮断弁間空間10Bが水素ガスG1によりパージされることになる。即ち、本実施形態では、遮断弁間空間10Bに供給するパージガスPGとして水素ガスG1が利用され、この水素ガスG1により遮断弁間空間10Bがパージされる。 In transition from the supply stop state to the purge state, the downstream side shutoff valve 11B is kept closed, and the upstream side shutoff valve 11A is opened while the bleed valve 21 is kept open. . Then, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied as the purge gas PG to the inter-shut-valve space 10B via the opened upstream-side shut-off valve 11A. At the same time, the hydrogen gas G1 supplied to the inter-shut valve space 10B is discharged to the outside through the branch passage 20 via the bleed valve 21 maintained in the open state. Then, in this manner, the inter-shut-valve space 10B is purged by the hydrogen gas G1. That is, in the present embodiment, the hydrogen gas G1 is used as the purge gas PG to be supplied to the inter-shut valve space 10B, and the inter-shut valve space 10B is purged by the hydrogen gas G1.
 このようなパージ処理が実行されると、上記供給停止状態において大気からブリード弁21を介して遮断弁間空間10Bに侵入した空気は、分岐路20のブリード弁21を介して大気に放出されて、燃料ガス供給路10から除去されることになる。そして、この状態に続いて燃料電池装置40への水素ガスG1の供給を開始することで、燃料電池スタック41のアノード41Aへの空気の供給に起因する性能低下が防止される。 When such a purging process is performed, the air that has entered the inter-shut valve space 10B from the atmosphere through the bleed valve 21 in the supply stopped state is released to the atmosphere through the bleed valve 21 of the branch passage 20. , From the fuel gas supply path 10. By starting supply of the hydrogen gas G1 to the fuel cell device 40 following this state, performance degradation due to supply of air to the anode 41A of the fuel cell stack 41 is prevented.
 運転制御装置60は、流量調整弁25を制御して、パージ処理時における燃料ガス供給路10での水素ガスG1の流量を、燃料電池装置40の通常運転時における燃料ガス供給路10での水素ガスG1の流量よりも小さく設定する。即ち、このパージ状態及び後述する移行状態における遮断弁間空間10Bへの水素ガスG1の供給量が、後述する供給継続状態での燃料電池装置40への水素ガスG1の設定供給量よりも小さく設定される。このことで、パージ処理によりパージガスPGとして消費される水素ガスG1の消費量の増加が抑制される。更に、分岐路20を通じて大気に放出される水素ガスG1が少なくなって、当該大気での水素ガスG1の濃度が確実に爆発限界未満に維持されて、安全性が確保されている。 The operation control device 60 controls the flow control valve 25 to change the flow rate of the hydrogen gas G1 in the fuel gas supply passage 10 during the purge process to the hydrogen gas G1 in the fuel gas supply passage 10 during the normal operation of the fuel cell device 40. It is set smaller than the flow rate of the gas G1. That is, the supply amount of the hydrogen gas G1 to the inter-shut valve space 10B in the purge state and the transition state described later is set smaller than the set supply amount of the hydrogen gas G1 to the fuel cell device 40 in the supply continuation state described later. Is done. This suppresses an increase in the consumption of the hydrogen gas G1 consumed as the purge gas PG by the purge process. Further, the amount of the hydrogen gas G1 released to the atmosphere through the branch passage 20 is reduced, and the concentration of the hydrogen gas G1 in the atmosphere is reliably maintained below the explosion limit, thereby ensuring safety.
 また、運転制御装置60は、パージ処理の実行時間を、遮断弁間空間10Bに滞留する空気を略完全に除去可能な時間として適切な設定パージ時間に設定する。この適切な設定パージ時間は、例えば各弁の開度、各流路の断面積や流路長、水素ガスG1の供給圧力等をパラメータとして実験やシミュレーション等により適宜求めることができる。また、遮断弁間空間10Bの酸素濃度を計測する酸素濃度センサを設け、酸素濃度センサで計測された酸素濃度が0又は一定値以下となるまでの間、パージ処理を実行するように構成しても構わない。 {Circle around (4)} The operation control device 60 sets the execution time of the purge process to an appropriate set purge time as a time during which the air staying in the inter-shut valve space 10B can be almost completely removed. The appropriate set purge time can be determined as appropriate by experiments, simulations, and the like using, for example, the opening degree of each valve, the cross-sectional area and flow path length of each flow path, the supply pressure of the hydrogen gas G1, and the like as parameters. Further, an oxygen concentration sensor for measuring the oxygen concentration in the inter-shut valve space 10B is provided, and the purge process is executed until the oxygen concentration measured by the oxygen concentration sensor becomes 0 or a fixed value or less. No problem.
 本実施形態の燃料電池システム50では、燃料ガス供給路10における下流側遮断弁11Bの配置位置が、分岐路20への分岐部と近接して配置されている。即ち、遮断弁間空間10Bにおいて分岐路20への分岐部から下流側遮断弁11Bに至る空間ができるだけ小さくなるように、下流側遮断弁11Bが配置されている。このことで、パージ処理において、上流側遮断弁11A側から分岐路20に流入する形態でパージガスPGとしての水素ガスG1が遮断弁間空間10Bを通流する際に、下流側遮断弁11B近傍に空気が残留することが抑制されている。 In the fuel cell system 50 of the present embodiment, the position of the downstream shutoff valve 11 </ b> B in the fuel gas supply path 10 is disposed close to the branch to the branch path 20. That is, the downstream shutoff valve 11B is arranged so that the space between the branch to the branch passage 20 and the downstream shutoff valve 11B in the inter-shutoff valve space 10B is as small as possible. Accordingly, in the purge process, when the hydrogen gas G1 as the purge gas PG flows through the inter-shut-valve space 10B in the form of flowing into the branch passage 20 from the upstream-side shut-off valve 11A side, the vicinity of the downstream-side shut-off valve 11B is reduced. Residual air is suppressed.
(移行状態)
 運転制御装置60は、パージ処理の終了時における燃料電池装置40への水素ガスG1の供給開始時には、下流側遮断弁11Bの開弁後にブリード弁21を閉弁させる。そして、図1(c)は、このときの燃料ガス供給路10の状態である移行状態を示す。即ち、燃料電池システム50の起動時において上記パージ処理が終了される際に、燃料ガス供給路10の状態は、上記パージ状態からこの移行状態に遷移する。
(Transition state)
At the start of the supply of the hydrogen gas G1 to the fuel cell device 40 at the end of the purge process, the operation control device 60 closes the bleed valve 21 after opening the downstream cutoff valve 11B. FIG. 1C shows a transition state, which is the state of the fuel gas supply path 10 at this time. That is, when the purging process is completed when the fuel cell system 50 is started, the state of the fuel gas supply path 10 transitions from the purge state to this transition state.
 パージ状態から移行状態に遷移するにあたっては、上流側遮断弁11A及びブリード弁21が開弁状態に維持されたままで、下流側遮断弁11Bが開弁される。すると、上流側遮断弁11Aを介して遮断弁間空間10Bに供給された水素ガスG1は、下流側遮断弁11Bの開弁直後において、ブリード弁21及び下流側遮断弁11Bの両方を通過することになる。このことで、遮断弁間空間10Bにおいて特にブリード弁21近傍や下流側遮断弁11B近傍に滞留する空気を、遮断弁間空間10Bから押し出した状態で、燃料電池装置40への水素ガスG1の供給が開始されることになる。また、後の供給継続状態においてブリード弁21を閉弁する際に、下流側遮断弁11Bが開弁状態であることから、ブリード弁21の閉弁時における燃料ガス供給路10の過剰な圧力上昇が抑制される。 In transition from the purge state to the transition state, the downstream side shutoff valve 11B is opened while the upstream side shutoff valve 11A and the bleed valve 21 are maintained in the open state. Then, the hydrogen gas G1 supplied to the inter-shut-valve space 10B via the upstream-side shutoff valve 11A passes through both the bleed valve 21 and the downstream-side shutoff valve 11B immediately after the downstream-side shutoff valve 11B is opened. become. Thus, the supply of the hydrogen gas G1 to the fuel cell device 40 in a state in which the air staying particularly in the vicinity of the bleed valve 21 or in the vicinity of the downstream side shutoff valve 11B in the space 10B between the shutoff valves is pushed out from the space 10B between the shutoff valves. Will be started. In addition, when the bleed valve 21 is closed in the subsequent supply continuation state, since the downstream side shutoff valve 11B is in the open state, the excessive pressure increase of the fuel gas supply passage 10 when the bleed valve 21 is closed. Is suppressed.
(供給継続状態)
 図1(d)は、燃料電池システム50の運転を行っている通常運転時に、燃料電池装置40への水素ガスG1の供給を継続している供給継続状態を示す。即ち、燃料電池システム50の起動時に、燃料ガス供給路10の状態は、上記移行状態からこの供給継続状態に遷移する。
(Continuation of supply)
FIG. 1D shows a supply continuation state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is continued during the normal operation in which the fuel cell system 50 is operated. That is, when the fuel cell system 50 is started, the state of the fuel gas supply path 10 changes from the transition state to the supply continuation state.
 移行状態から供給継続状態に遷移するにあたっては、上流側遮断弁11A及び下流側遮断弁11Bが開弁状態に維持されたままで、ブリード弁21が閉弁される。すると、ブリード弁21を介した大気への水素ガスG1の放出が停止される。その状態で、水素ボンベ1から供給された水素ガスG1が、上流側遮断弁11A及び下流側遮断弁11Bを介して燃料電池装置40に供給されて、当該燃料電池装置40において所望の発電が行われることになる。そして、この供給継続状態への遷移時に、事前にパージ処理が実行されているので、燃料ガス供給路10は空気が存在せずに水素ガスG1で満たされた状態となっている。よって、燃料電池装置40への空気の供給に起因する性能低下が好適に防止されることになる。 When transitioning from the transition state to the supply continuation state, the bleed valve 21 is closed while the upstream cutoff valve 11A and the downstream cutoff valve 11B are maintained in the open state. Then, the release of the hydrogen gas G1 to the atmosphere via the bleed valve 21 is stopped. In this state, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied to the fuel cell device 40 via the upstream-side shutoff valve 11A and the downstream-side shutoff valve 11B, and the fuel cell device 40 performs desired power generation. Will be Then, at the time of the transition to the supply continuation state, since the purge processing has been executed in advance, the fuel gas supply path 10 is in a state filled with hydrogen gas G1 without air. Therefore, performance degradation due to the supply of air to the fuel cell device 40 is suitably prevented.
 尚、本実施形態では、燃料電池装置40への水素ガスG1の供給開始時のパージ処理の終了時に、下流側遮断弁11Bの開弁後にブリード弁21を閉弁させて、燃料ガス供給路10の状態をパージ状態(図1(b)を参照)から移行状態(図1(c)を参照)を経て供給継続状態(図1(d)を参照)に遷移させた。しかし、これら下流側遮断弁11B及びブリード弁21等の開閉タイミングについては適宜変更することができる。例えば、下流側遮断弁11Bの開弁と同時又はその直前にブリード弁21を閉弁させることで、燃料ガス供給路10の状態をパージ状態(図1(b)を参照)から直接供給継続状態(図1(d)を参照)に遷移させるように構成しても構わない。 In the present embodiment, the bleed valve 21 is closed after the downstream shut-off valve 11B is opened at the end of the purge process at the start of the supply of the hydrogen gas G1 to the fuel cell device 40, and the fuel gas supply path 10 Was changed from the purge state (see FIG. 1 (b)) to the supply continuation state (see FIG. 1 (d)) via the transition state (see FIG. 1 (c)). However, the opening / closing timing of the downstream side shutoff valve 11B, the bleed valve 21, and the like can be appropriately changed. For example, by closing the bleed valve 21 at the same time as or immediately before the opening of the downstream side shutoff valve 11B, the state of the fuel gas supply passage 10 is changed from the purge state (see FIG. 1B) directly to the continuous supply state. (See FIG. 1D).
〔第2実施形態〕
 本発明の第2実施形態について、図2及び図3等に基づいて説明する。
 尚、上述の実施形態と同様の構成については、詳細な説明を割愛する場合がある。
 図2及び図3に示す燃料電池システム50は、上述の実施形態と同様に、燃料電池装置40と燃料ガス供給路10と運転制御装置60等とを備え、燃料ガス供給路10から燃料電池スタック41のアノード41Aに水素ガスG1が供給される。
 また、本実施形態の燃料電池システム50は、上述の実施形態と同様に、上流側遮断弁11A、下流側遮断弁11B、及びブリード弁21で構成されたDBB(ダブルブロックアンドブリード)が採用されている。
[Second embodiment]
A second embodiment of the present invention will be described with reference to FIGS.
Note that a detailed description of a configuration similar to that of the above-described embodiment may be omitted.
The fuel cell system 50 shown in FIGS. 2 and 3 includes the fuel cell device 40, the fuel gas supply path 10, the operation control device 60, and the like, as in the above-described embodiment. Hydrogen gas G1 is supplied to the anode 41A of 41.
Further, the fuel cell system 50 of the present embodiment employs a DBB (double block and bleed) composed of an upstream shutoff valve 11A, a downstream shutoff valve 11B, and a bleed valve 21, similarly to the above-described embodiment. ing.
 更に、燃料ガス供給路10には、下流側遮断弁11Bよりも下流側に下流側開閉弁13が設けられている。また、燃料ガス供給路10における下流側遮断弁11Bと下流側開閉弁13との間に形成される下流側弁間空間10C1に接続されて当該空間10Cを外部に開放可能な下流側逃し弁23が設けられている。即ち、下流側逃し弁23は、燃料ガス供給路10の下流側弁間空間10C1から分岐して大気に通じる分岐路22に設けられた開閉弁として構成されている。 Furthermore, the fuel gas supply passage 10 is provided with a downstream opening / closing valve 13 downstream of the downstream shutoff valve 11B. Further, a downstream relief valve 23 connected to a downstream inter-valve space 10C1 formed between the downstream shut-off valve 11B and the downstream on-off valve 13 in the fuel gas supply passage 10 to open the space 10C to the outside. Is provided. That is, the downstream relief valve 23 is configured as an on-off valve provided in the branch passage 22 that branches off from the downstream inter-valve space 10C1 of the fuel gas supply passage 10 and communicates with the atmosphere.
 そして、運転制御装置60は、図3(e)に示すように、遮断弁11A,11Bを開弁させて燃料電池装置40へ水素ガスG1を供給して当該燃料電池装置40での発電を行う通常運転時には、下流側開閉弁13を開弁させると共に、ブリード弁21及び下流側逃し弁23を閉弁させた状態とする。一方、運転制御装置60は、図2(a)に示すように、遮断弁11A,11Bを閉弁させて燃料電池装置40への水素ガスG1の供給を停止して当該燃料電池装置40での発電を停止する運転停止時には、ブリード弁21を開弁させると共に、下流側開閉弁13を閉弁させ、下流側逃し弁23を閉弁させた状態とする。このとき、遮断弁11Bが故障して遮断弁間空間10Bの空気が遮断弁11Bの下流側に漏れた場合でも、下流側開閉弁13が閉状態であれば、燃料電池装置40への空気流入が防止される。また、ブリード弁23が故障して、下流側弁間空間10C1に大気側から空気が流入した場合でも、下流側開閉弁13が閉状態であれば、燃料電池装置40への空気流入が防止される。尚、運転停止時において下流側開閉弁13は開弁させても構わない。 Then, the operation control device 60 supplies the hydrogen gas G1 to the fuel cell device 40 by opening the shutoff valves 11A and 11B to generate power in the fuel cell device 40, as shown in FIG. During the normal operation, the downstream on-off valve 13 is opened, and the bleed valve 21 and the downstream relief valve 23 are closed. On the other hand, the operation control device 60 closes the shutoff valves 11A and 11B to stop the supply of the hydrogen gas G1 to the fuel cell device 40 as shown in FIG. When the operation for stopping power generation is stopped, the bleed valve 21 is opened, the downstream opening / closing valve 13 is closed, and the downstream relief valve 23 is closed. At this time, even if the shutoff valve 11B fails and air in the inter-shutoff valve space 10B leaks to the downstream side of the shutoff valve 11B, if the downstream on-off valve 13 is in the closed state, air flows into the fuel cell device 40. Is prevented. Further, even when the bleed valve 23 fails and air flows into the downstream inter-valve space 10C1 from the atmosphere side, if the downstream on-off valve 13 is in the closed state, air is prevented from flowing into the fuel cell device 40. You. Incidentally, the downstream side on-off valve 13 may be opened when the operation is stopped.
 即ち、運転停止時には、遮断弁間空間10Bが大気に開放された状態で上流側遮断弁11Aと下流側遮断弁11Bとが閉弁されて燃料電池装置40への水素ガスG1の供給が停止される。このことで、上流側遮断弁11A及び下流側遮断弁11Bのうちの何れかに遮断不良が生じた場合であっても、燃料ガス供給路10における水素ボンベ1側と燃料電池装置40側とが大気に開放された遮断弁間空間10Bで隔離されることになる。よって、これら遮断弁11A,11Bの遮断不良に起因する水素ボンベ1から燃料電池装置40への水素ガスG1の漏洩が確実に防止される。更に、運転停止時に遮断弁間空間10Bに流出した水素ガスG1については、開弁状態であるブリード弁21を介して大気へ放出されるので、安全性が保持される。 That is, when the operation is stopped, the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed with the inter-cutoff valve space 10B opened to the atmosphere, and the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped. You. Thus, even if a failure in shut-off occurs in any of the upstream shut-off valve 11A and the downstream shut-off valve 11B, the hydrogen cylinder 1 side and the fuel cell device 40 side in the fuel gas supply passage 10 are connected. The space between the shutoff valves 10B opened to the atmosphere is isolated. Therefore, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 due to the poor shutoff of the shutoff valves 11A and 11B is reliably prevented. Furthermore, the hydrogen gas G1 that has flowed into the inter-shut valve space 10B when the operation is stopped is released to the atmosphere via the bleed valve 21 which is in an open state, so that safety is maintained.
 更に、本実施形態の燃料電池システム50では、運転停止状態から通常運転に移行する起動時において、燃料電池装置40への空気の供給に起因する性能低下を防止する。そのために、詳細については後述するが、燃料電池装置40への水素ガスG1の供給開始前に遮断弁間空間10Bに対して空気(酸素)を略含まないパージガスPGを供給して当該遮断弁間空間10Bをパージするパージ処理としての第1パージ処理及び第2パージ処理が、運転制御装置60により実行される。即ち、このようなパージ処理が、燃料電池装置40への水素ガスG1の供給開始前に実行されると、遮断弁間空間10Bに侵入した空気が適切に燃料ガス供給路10から除去された上で、燃料電池装置40への水素ガスG1の供給が開始される。このことで、燃料電池スタック41のアノード41Aへの空気の供給に起因する性能低下が防止される。 Further, in the fuel cell system 50 of the present embodiment, at the time of start-up in which the operation shifts from the operation stop state to the normal operation, performance deterioration due to the supply of air to the fuel cell device 40 is prevented. For this purpose, a purge gas PG substantially free of air (oxygen) is supplied to the inter-shutoff valve space 10B before the supply of the hydrogen gas G1 to the fuel cell device 40 is started. A first purge process and a second purge process as purge processes for purging the space 10B are executed by the operation control device 60. That is, if such a purge process is performed before the supply of the hydrogen gas G1 to the fuel cell device 40 is started, the air that has entered the inter-valve space 10B is appropriately removed from the fuel gas supply passage 10. Then, the supply of the hydrogen gas G1 to the fuel cell device 40 is started. This prevents performance degradation due to the supply of air to the anode 41A of the fuel cell stack 41.
 本実施形態における上記パージ処理の詳細構成について、本実施形態の燃料電池システム50の運転を開始する起動時における燃料ガス供給路10における状態変化の詳細と共に、以下に説明を加える。
 尚、本実施形態の燃料電池システム50では、起動時に、運転制御装置60により行われる弁制御により、燃料ガス供給路10の状態が、供給停止状態(図2(a)を参照)、第1パージ状態(図2(b)を参照)、第2パージ状態(図2(c)を参照)、移行状態(図3(d)を参照)、供給継続状態(図3(e)を参照)の順に変化する。以下では、夫々の状態について詳細を説明する。
The detailed configuration of the purging process in the present embodiment will be described below together with the details of the state change in the fuel gas supply path 10 at the time of starting the operation of the fuel cell system 50 of the present embodiment.
In the fuel cell system 50 according to the present embodiment, the state of the fuel gas supply path 10 is changed to the supply stopped state (see FIG. 2A) by the valve control performed by the operation control device 60 at the time of startup. Purge state (see FIG. 2B), second purge state (see FIG. 2C), transition state (see FIG. 3D), supply continuation state (see FIG. 3E) It changes in order. Hereinafter, each state will be described in detail.
(供給停止状態)
 図2(a)は、燃料電池システム50の運転を停止している運転停止時に、燃料電池装置40への水素ガスG1の供給を停止している供給停止状態を示す。
 この供給停止状態では、上流側遮断弁11A及び下流側遮断弁11Bが閉弁され、ブリード弁21が開弁される。更に、この供給停止状態では、下流側開閉弁13は閉弁され、下流側逃し弁23は閉弁される。
(Supply stopped state)
FIG. 2A shows a supply stopped state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped when the operation of the fuel cell system 50 is stopped.
In this supply stop state, the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed, and the bleed valve 21 is opened. Further, in this supply stopped state, the downstream opening / closing valve 13 is closed, and the downstream relief valve 23 is closed.
 すると、燃料ガス供給路10における上流側遮断弁11Aよりも上流側に形成されて水素ボンベ1に通じる上流側空間10Aについては、供給停止状態となる前の供給継続状態において通流していた水素ガスG1が満たされた状態となる。また、燃料ガス供給路10における下流側遮断弁11Bよりも下流側に形成されて燃料電池装置40に通じる下流側空間10C1,10C2についても、供給停止状態となる前の供給継続状態において通流していた水素ガスG1が満たされた状態となる。一方、燃料ガス供給路10における上流側遮断弁11Aと下流側遮断弁11Bとの間に形成される遮断弁間空間10Bについては、開弁状態のブリード弁21を通じて大気に開放された状態となるため、大気から侵入した空気が存在する状態となる。
 そして、このように燃料電池装置40への水素ガスG1の供給が停止されることで、上述したように、水素ボンベ1から燃料電池装置40への水素ガスG1の漏洩が確実に防止され、安全性が保持される。
Then, in the upstream space 10A formed upstream of the upstream shutoff valve 11A in the fuel gas supply path 10 and leading to the hydrogen cylinder 1, the hydrogen gas flowing in the supply continuation state before the supply was stopped is stopped. G1 is satisfied. The downstream spaces 10C1 and 10C2 formed downstream of the downstream shutoff valve 11B in the fuel gas supply path 10 and leading to the fuel cell device 40 also flow in the supply continuation state before the supply is stopped. The hydrogen gas G1 is filled. On the other hand, the space 10B between the shutoff valves formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the fuel gas supply passage 10 is opened to the atmosphere through the bleed valve 21 in the open state. Therefore, there is a state in which air that has entered from the atmosphere exists.
By stopping the supply of the hydrogen gas G1 to the fuel cell device 40 in this manner, as described above, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 is reliably prevented, and the safety is improved. Nature is maintained.
(第1パージ状態)
 運転制御装置60は、燃料電池装置40への水素ガスG1の供給を開始する前にパージ処理として第1パージ処理と第2パージ処理とを順に実行する。そして、図2(b)は、第1パージ処理が実行された際に燃料ガス供給路10の状態である第1パージ状態を示す。即ち、燃料電池システム50の起動時に、第1パージ処理が実行されることで、燃料ガス供給路10の状態は上記供給停止状態からこの第1パージ状態に遷移する。
(First purge state)
The operation control device 60 executes a first purge process and a second purge process in order as a purge process before starting supply of the hydrogen gas G1 to the fuel cell device 40. FIG. 2B illustrates a first purge state, which is a state of the fuel gas supply path 10 when the first purge process is performed. That is, when the fuel cell system 50 is started, the state of the fuel gas supply passage 10 is changed from the supply stop state to the first purge state by executing the first purge process.
 供給停止状態から第1パージ状態に遷移するにあたっては、下流側遮断弁11B及び下流側逃し弁23が閉弁状態に維持され、且つ、ブリード弁21及び下流側開閉弁13が開弁状態に維持されたままで、上流側遮断弁11A及び下流側開閉弁13が開弁される。すると、水素ボンベ1から供給された水素ガスG1が、開弁された上流側遮断弁11Aを介して遮断弁間空間10BにパージガスPGとして供給される。同時に、当該遮断弁間空間10Bに供給された水素ガスG1が、開弁状態に維持されたブリード弁21を介して分岐路20を通じて外部に放出される。そして、このような形態で、遮断弁間空間10Bが水素ガスG1によりパージされることになる。即ち、本実施形態では、遮断弁間空間10Bに供給するパージガスPGとして水素ガスG1が利用され、この水素ガスG1により遮断弁間空間10B等がパージされる。 In the transition from the supply stop state to the first purge state, the downstream shutoff valve 11B and the downstream relief valve 23 are maintained in the closed state, and the bleed valve 21 and the downstream on / off valve 13 are maintained in the open state. As it is, the upstream shutoff valve 11A and the downstream shutoff valve 13 are opened. Then, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied as the purge gas PG to the inter-shut-valve space 10B via the opened upstream-side shut-off valve 11A. At the same time, the hydrogen gas G1 supplied to the inter-shut valve space 10B is discharged to the outside through the branch passage 20 via the bleed valve 21 maintained in the open state. Then, in this manner, the inter-shut-valve space 10B is purged by the hydrogen gas G1. That is, in the present embodiment, the hydrogen gas G1 is used as the purge gas PG to be supplied to the inter-shut valve space 10B, and the inter-shut valve space 10B and the like are purged by the hydrogen gas G1.
 このような第1パージ処理が実行されると、上記供給停止状態において大気からブリード弁21を介して遮断弁間空間10Bに侵入した空気は、分岐路20のブリード弁21を介して大気に放出されて、遮断弁間空間10Bから除去されることになる。 When the first purge process is performed, the air that has entered the inter-valve space 10 </ b> B from the atmosphere via the bleed valve 21 in the supply stopped state is released to the atmosphere via the bleed valve 21 of the branch passage 20. Then, it is removed from the inter-shut valve space 10B.
 また、運転制御装置60は、第1パージ処理の実行時間を、遮断弁間空間10Bに滞留する空気を略完全に除去可能な時間として適切な設定第1パージ時間に設定する。この適切な設定第1パージ時間は、例えば各弁の開度、各流路の断面積や流路長、水素ガスG1の供給圧力等をパラメータとして実験やシミュレーション等により適宜求めることができる。また、遮断弁間空間10Bの酸素濃度を計測する酸素濃度センサを設け、酸素濃度センサで計測された酸素濃度が0又は一定値以下となるまでの間、パージ処理を実行するように構成しても構わない。 {Circle around (4)} The operation control device 60 sets the execution time of the first purge process to a first set purge time that is appropriate as a time during which the air staying in the inter-shut valve space 10B can be almost completely removed. The appropriate set first purge time can be appropriately obtained by experiments, simulations, or the like using, for example, the opening degree of each valve, the cross-sectional area and length of each flow path, the supply pressure of the hydrogen gas G1, and the like as parameters. Further, an oxygen concentration sensor for measuring the oxygen concentration in the inter-shut valve space 10B is provided, and the purge process is executed until the oxygen concentration measured by the oxygen concentration sensor becomes 0 or a fixed value or less. No problem.
(第2パージ状態)
 図2(c)は、第2パージ処理が実行された際に燃料ガス供給路10の状態であるパージ状態を示す。即ち、燃料電池システム50の起動時に、第2パージ処理が実行されることで、燃料ガス供給路10の状態は上記第1パージ状態からこの第2パージ状態に遷移する。
(Second purge state)
FIG. 2C shows a purge state, which is a state of the fuel gas supply passage 10 when the second purge process is performed. That is, when the fuel cell system 50 is started, the state of the fuel gas supply path 10 is changed from the first purge state to the second purge state by executing the second purge processing.
 第1パージ状態から第2パージ状態に遷移するにあたっては、下流側逃し弁23が閉弁状態に維持され、且つ、上流側遮断弁11A及びブリード弁21が開弁状態に維持されたままで、下流側開閉弁13が閉弁され、下流側逃し弁23が開弁された上で、下流側遮断弁11Bが開弁される。すると、開弁された下流側遮断弁11Bを介して遮断弁間空間10Bから下流側弁間空間10C1に、パージガスPGとしての水素ガスG1が供給される。同時に、当該下流側弁間空間10C1に供給された水素ガスG1が、開弁状態に維持された下流側逃し弁23を介して分岐路22を通じて外部に放出される。このような形態で、遮断弁間空間10B並びに下流側弁間空間10C1が水素ガスG1によりパージされることになる。 In the transition from the first purge state to the second purge state, the downstream relief valve 23 is maintained in the closed state, and the downstream shutoff valve 11A and the bleed valve 21 are maintained in the open state. After the side opening / closing valve 13 is closed and the downstream side relief valve 23 is opened, the downstream side shutoff valve 11B is opened. Then, the hydrogen gas G1 as the purge gas PG is supplied from the inter-shut-valve space 10B to the downstream inter-valve space 10C1 via the opened downstream side shut-off valve 11B. At the same time, the hydrogen gas G1 supplied to the downstream inter-valve space 10C1 is discharged outside through the branch passage 22 through the downstream relief valve 23 maintained in the open state. In this manner, the inter-shutoff valve space 10B and the downstream inter-valve space 10C1 are purged by the hydrogen gas G1.
 そして、このような第2パージ処理が実行されると、上記第1パージ処理の実行後においても遮断弁間空間10Bにおける下流側遮断弁11B近傍に滞留する空気は、下流側弁間空間10C1及び分岐路22の下流側逃し弁23を介して大気に放出されて、燃料ガス供給路10から除去されることになる。そして、この状態に続いて燃料電池装置40への水素ガスG1の供給を開始することで、燃料電池スタック41のアノード41Aへの空気の供給に起因する性能低下が防止される。 When the second purge process is performed, the air remaining near the downstream-side shutoff valve 11B in the inter-shut valve space 10B even after the execution of the first purge process is reduced to the downstream inter-valve space 10C1 and the air. The gas is released to the atmosphere via the downstream relief valve 23 of the branch passage 22 and is removed from the fuel gas supply passage 10. By starting supply of the hydrogen gas G1 to the fuel cell device 40 following this state, performance degradation due to supply of air to the anode 41A of the fuel cell stack 41 is prevented.
 また、運転制御装置60は、第2パージ処理の実行時間を、下流側弁間空間10C1に滞留する空気を略完全に除去可能な時間として適切な設定第2パージ時間に設定する。この適切な設定第2パージ時間は、例えば各弁の開度、各流路の断面積や流路長、水素ガスG1の供給圧力等をパラメータとして実験やシミュレーション等により適宜求めることができる。また、下流側弁間空間10C1の酸素濃度を計測する酸素濃度センサを設け、酸素濃度センサで計測された酸素濃度が0又は一定値以下となるまでの間、パージ処理を実行するように構成しても構わない。 {Circle around (2)} The operation control device 60 sets the execution time of the second purge process to the second purge time that is appropriately set as a time period in which the air staying in the downstream inter-valve space 10C1 can be almost completely removed. The appropriate setting second purge time can be determined as appropriate by experiments, simulations, and the like using, for example, the opening degree of each valve, the cross-sectional area and flow path length of each flow path, the supply pressure of the hydrogen gas G1, and the like as parameters. Further, an oxygen concentration sensor for measuring the oxygen concentration in the downstream inter-valve space 10C1 is provided, and the purge process is executed until the oxygen concentration measured by the oxygen concentration sensor becomes 0 or a predetermined value or less. It does not matter.
(移行状態)
 運転制御装置60は、第2パージ処理の終了時における燃料電池装置40への水素ガスG1の供給開始時には、下流側開閉弁13の開弁後に下流側逃し弁23を閉弁させる。そして、図3(d)は、このときの燃料ガス供給路10の状態である移行状態を示す。即ち、燃料電池システム50の起動時において上記パージ処理が終了される際に、燃料ガス供給路10の状態は、上記第2パージ状態からこの移行状態に遷移する。
(Transition state)
At the start of the supply of the hydrogen gas G1 to the fuel cell device 40 at the end of the second purge process, the operation control device 60 closes the downstream relief valve 23 after the downstream on-off valve 13 is opened. FIG. 3D shows a transition state that is the state of the fuel gas supply path 10 at this time. That is, when the purge process is completed at the time of activation of the fuel cell system 50, the state of the fuel gas supply path 10 transitions from the second purge state to this transition state.
 第2パージ状態から移行状態に遷移するにあたっては、上流側遮断弁11A、下流側遮断弁11B、及び下流側逃し弁23が開弁状態に維持されたままで、下流側開閉弁13が開弁されると共に、ブリード弁21が閉弁される。すると、上流側遮断弁11A及び下流側遮断弁11Bを介して下流側弁間空間10C1に供給された水素ガスG1は、下流側遮断弁11Bの開弁直後において、下流側逃し弁23及び下流側開閉弁13の両方を通過することになる。このことで、下流側弁間空間10C1において特に下流側逃し弁23近傍や下流側開閉弁13近傍に滞留する空気を、下流側弁間空間10C1から押し出した状態で、燃料電池装置40への水素ガスG1の供給が開始されることになる。また、後の供給継続状態において下流側逃し弁23を閉弁する際に、下流側開閉弁13が開弁状態であることから、下流側逃し弁23の閉弁時における燃料ガス供給路10の過剰な圧力上昇が抑制される。 In the transition from the second purge state to the transition state, the downstream shut-off valve 13 is opened while the upstream shut-off valve 11A, the downstream shut-off valve 11B, and the downstream relief valve 23 are kept open. At the same time, the bleed valve 21 is closed. Then, the hydrogen gas G1 supplied to the downstream inter-valve space 10C1 via the upstream cutoff valve 11A and the downstream cutoff valve 11B is supplied to the downstream relief valve 23 and the downstream cutoff valve 23 immediately after the downstream cutoff valve 11B is opened. It passes through both of the on-off valves 13. As a result, the air remaining in the downstream inter-valve space 10C1, particularly in the vicinity of the downstream relief valve 23 and the downstream on-off valve 13, is pushed out of the downstream inter-valve space 10C1 and the hydrogen is transferred to the fuel cell device 40. The supply of the gas G1 is started. Further, when the downstream side relief valve 23 is closed in the subsequent supply continuation state, since the downstream side on-off valve 13 is in the open state, the fuel gas supply passage 10 when the downstream side relief valve 23 is closed is closed. Excessive pressure rise is suppressed.
(供給継続状態)
 図3(e)は、燃料電池システム50の運転を行っている通常運転時に、燃料電池装置40への水素ガスG1の供給を継続している供給継続状態を示す。即ち、燃料電池システム50の起動時に、燃料ガス供給路10の状態は、上記移行状態からこの供給継続状態に遷移する。
(Continuation of supply)
FIG. 3E illustrates a supply continuation state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is continued during the normal operation in which the fuel cell system 50 is operated. That is, when the fuel cell system 50 is started, the state of the fuel gas supply path 10 changes from the transition state to the supply continuation state.
 移行状態から供給継続状態に遷移するにあたっては、上流側遮断弁11A、下流側遮断弁11B、及び下流側開閉弁13が開弁状態に維持されたままで、下流側逃し弁23が閉弁される。すると、下流側逃し弁23を介した大気への水素ガスG1の放出が停止される。その状態で、水素ボンベ1から供給された水素ガスG1が、上流側遮断弁11A、下流側遮断弁11B、及び下流側開閉弁13を介して燃料電池装置40に供給されて、当該燃料電池装置40において所望の発電が行われることになる。そして、この供給継続状態への遷移時に、事前に第1パージ処理及び第2パージ処理が実行されているので、燃料ガス供給路10は空気が存在せずに水素ガスG1で満たされた状態となっている。よって、燃料電池装置40への空気の供給に起因する性能低下が好適に防止されることになる。 In the transition from the transition state to the supply continuation state, the downstream release valve 23 is closed while the upstream cutoff valve 11A, the downstream cutoff valve 11B, and the downstream on-off valve 13 are maintained in the open state. . Then, the release of the hydrogen gas G1 to the atmosphere via the downstream relief valve 23 is stopped. In this state, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied to the fuel cell device 40 via the upstream shut-off valve 11A, the downstream shut-off valve 11B, and the downstream on-off valve 13, and the fuel cell device 40 At 40, the desired power generation is performed. Since the first purge process and the second purge process have been performed in advance at the time of transition to the supply continuation state, the fuel gas supply path 10 is filled with the hydrogen gas G1 without air. Has become. Therefore, performance degradation due to the supply of air to the fuel cell device 40 is suitably prevented.
 尚、本実施形態では、第2燃料電池装置40への水素ガスG1の供給開始時のパージ処理を終了時に、下流側開閉弁13の開弁後に下流側逃し弁23を閉弁させて、燃料ガス供給路10の状態を第2パージ状態(図2(c)を参照)から移行状態(図3(d)を参照)を経て供給継続状態(図3(e)を参照)に遷移させた。しかし、これら下流側開閉弁13及び下流側逃し弁23等の開閉タイミングについては適宜変更することができる。例えば、下流側開閉弁13の開弁と同時又はその直前に下流側逃し弁23を閉弁させることで、燃料ガス供給路10の状態を第2パージ状態(図2(c)を参照)から直接供給継続状態(図3(e)を参照)に遷移させるように構成しても構わない。 In the present embodiment, when the purge process at the start of the supply of the hydrogen gas G1 to the second fuel cell device 40 is completed, the downstream relief valve 23 is closed after the downstream on-off valve 13 is opened, and the fuel is released. The state of the gas supply path 10 was changed from the second purge state (see FIG. 2C) to a supply continuation state (see FIG. 3E) through a transition state (see FIG. 3D). . However, the opening / closing timings of the downstream opening / closing valve 13 and the downstream relief valve 23 can be appropriately changed. For example, the state of the fuel gas supply passage 10 is changed from the second purge state (see FIG. 2C) by closing the downstream relief valve 23 at the same time as or immediately before the opening of the downstream on-off valve 13. It may be configured to make a transition directly to the continuous supply state (see FIG. 3E).
〔第3実施形態〕
 本発明の第3実施形態について、図4等に基づいて説明する。
 尚、上述の実施形態と同様の構成については、詳細な説明を割愛する場合がある。
 図4に示す燃料電池システム50は、上述の実施形態と同様に、燃料電池装置40と燃料ガス供給路10と運転制御装置60等とを備え、燃料ガス供給路10から燃料電池スタック41のアノード41Aに水素ガスG1が供給される。
 また、本実施形態の燃料電池システム50は、上述の実施形態と同様に、上流側遮断弁11A、下流側遮断弁11B、及びブリード弁21で構成されたDBB(ダブルブロックアンドブリード)が採用されている。
 更に、燃料ガス供給路10には、下流側遮断弁11Bよりも下流側に下流側開閉弁13が設けられている。
[Third embodiment]
A third embodiment of the present invention will be described with reference to FIG.
Note that a detailed description of a configuration similar to that of the above-described embodiment may be omitted.
The fuel cell system 50 shown in FIG. 4 includes a fuel cell device 40, a fuel gas supply path 10, an operation control device 60, and the like, similarly to the above-described embodiment. Hydrogen gas G1 is supplied to 41A.
Further, the fuel cell system 50 of the present embodiment employs a DBB (double block and bleed) composed of an upstream shutoff valve 11A, a downstream shutoff valve 11B, and a bleed valve 21, similarly to the above-described embodiment. ing.
Further, the fuel gas supply path 10 is provided with a downstream opening / closing valve 13 downstream of the downstream shutoff valve 11B.
 燃料ガス供給路10に接続されて当該燃料ガス供給路10に窒素ガスNG(不活性ガスの一例)を供給可能な窒素ガス供給路31(不活性ガス供給路の一例)が設けられている。当該窒素ガス供給路31は、燃料ガス供給路10における下流側遮断弁11Bよりも下流側に形成される下流側空間、具体的には燃料ガス供給路10における下流側遮断弁11Bと下流側開閉弁13との間に形成される下流側弁間空間10C1に接続されている。即ち、この窒素ガス供給路31は、窒素ガスNGを貯留する窒素ガスボンベ30と、燃料ガス供給路10における下流側弁間空間10C1とを接続する管路として構成されている。尚、本実施形態では、不活性ガスとして窒素ガスNGを利用するが、別の不活性ガスを利用しても構わない。 A nitrogen gas supply path 31 (an example of an inert gas supply path) that is connected to the fuel gas supply path 10 and is capable of supplying a nitrogen gas NG (an example of an inert gas) is provided in the fuel gas supply path 10. The nitrogen gas supply passage 31 is formed in a downstream space formed downstream of the downstream cutoff valve 11B in the fuel gas supply passage 10, specifically, the downstream cutoff valve 11B in the fuel gas supply passage 10 and the downstream opening / closing. It is connected to a downstream inter-valve space 10C1 formed between the valve 13 and the valve 13. In other words, the nitrogen gas supply path 31 is configured as a pipe connecting the nitrogen gas cylinder 30 that stores the nitrogen gas NG and the downstream inter-valve space 10C1 in the fuel gas supply path 10. In the present embodiment, the nitrogen gas NG is used as the inert gas, but another inert gas may be used.
 窒素ガス供給路31には、窒素ガス供給弁32(不活性ガス供給弁の一例)が設けられている。運転制御装置60は、この窒素ガス供給弁32の開閉作動を制御することにより、窒素ガス供給路31から燃料ガス供給路10の下流側弁間空間10C1への窒素ガスNGの供給を断続させることができる。 The nitrogen gas supply path 31 is provided with a nitrogen gas supply valve 32 (an example of an inert gas supply valve). The operation control device 60 controls the opening and closing operation of the nitrogen gas supply valve 32 to interrupt the supply of the nitrogen gas NG from the nitrogen gas supply path 31 to the downstream inter-valve space 10C1 of the fuel gas supply path 10. Can be.
 そして、運転制御装置60は、図4(c)に示すように、遮断弁11A,11Bを開弁させて燃料電池装置40へ水素ガスG1を供給して当該燃料電池装置40での発電を行う通常運転時には、下流側開閉弁13を開弁させると共に、ブリード弁21及び窒素ガス供給弁32を閉弁させた状態とする。一方、運転制御装置60は、図4(a)に示すように、遮断弁11A,11Bを閉弁させて燃料電池装置40への水素ガスG1の供給を停止して当該燃料電池装置40での発電を停止する運転停止時には、ブリード弁21を開弁させると共に、下流側開閉弁13を開弁させ、窒素ガス供給弁32を閉弁させた状態とする。 Then, the operation control device 60 supplies the hydrogen gas G1 to the fuel cell device 40 by opening the shutoff valves 11A and 11B to generate power in the fuel cell device 40, as shown in FIG. During normal operation, the downstream side on-off valve 13 is opened, and the bleed valve 21 and the nitrogen gas supply valve 32 are closed. On the other hand, the operation control device 60 closes the shutoff valves 11A and 11B to stop the supply of the hydrogen gas G1 to the fuel cell device 40 as shown in FIG. When the operation for stopping power generation is stopped, the bleed valve 21 is opened, the downstream opening / closing valve 13 is opened, and the nitrogen gas supply valve 32 is closed.
 即ち、運転停止時には、遮断弁間空間10Bが大気に開放された状態で上流側遮断弁11Aと下流側遮断弁11Bとが閉弁されて燃料電池装置40への水素ガスG1の供給が停止される。このことで、上流側遮断弁11A及び下流側遮断弁11Bのうちの何れかに遮断不良が生じた場合であっても、燃料ガス供給路10における水素ボンベ1側と燃料電池装置40側とが大気に開放された遮断弁間空間10Bで隔離されることになる。よって、これら遮断弁11A,11Bの遮断不良に起因する水素ボンベ1から燃料電池装置40への水素ガスG1の漏洩が確実に防止される。更に、運転停止時に遮断弁間空間10Bに流出した水素ガスG1については、開弁状態であるブリード弁21を介して大気へ放出されるので、安全性が保持される。 That is, when the operation is stopped, the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed with the inter-cutoff valve space 10B opened to the atmosphere, and the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped. You. Thus, even if a failure in shut-off occurs in any of the upstream shut-off valve 11A and the downstream shut-off valve 11B, the hydrogen cylinder 1 side and the fuel cell device 40 side in the fuel gas supply passage 10 are connected. The space between the shutoff valves 10B opened to the atmosphere is isolated. Therefore, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 due to the poor shutoff of the shutoff valves 11A and 11B is reliably prevented. Furthermore, the hydrogen gas G1 that has flowed into the inter-shut valve space 10B when the operation is stopped is released to the atmosphere via the bleed valve 21 which is in an open state, so that safety is maintained.
 更に、本実施形態の燃料電池システム50では、運転停止状態から通常運転に移行する起動時において、燃料電池装置40への空気の供給に起因する性能低下を防止する。そのために、詳細については後述するが、燃料電池装置40への水素ガスG1の供給開始前に遮断弁間空間10Bに対して空気(酸素)を略含まないパージガスPGを供給して当該遮断弁間空間10Bをパージするパージ処理が、運転制御装置60により実行される。即ち、このようなパージ処理が、燃料電池装置40への水素ガスG1の供給開始前に実行されると、遮断弁間空間10Bに侵入した空気が適切に燃料ガス供給路10から除去された上で、燃料電池装置40への水素ガスG1の供給が開始される。このことで、燃料電池スタック41のアノード41Aへの空気の供給に起因する性能低下が防止される。 Further, in the fuel cell system 50 of the present embodiment, at the time of start-up in which the operation shifts from the operation stop state to the normal operation, performance deterioration due to the supply of air to the fuel cell device 40 is prevented. For this purpose, a purge gas PG substantially free of air (oxygen) is supplied to the inter-shutoff valve space 10B before the supply of the hydrogen gas G1 to the fuel cell device 40 is started. A purge process for purging the space 10B is executed by the operation control device 60. That is, if such a purge process is performed before the supply of the hydrogen gas G1 to the fuel cell device 40 is started, the air that has entered the inter-valve space 10B is appropriately removed from the fuel gas supply passage 10. Then, the supply of the hydrogen gas G1 to the fuel cell device 40 is started. This prevents performance degradation due to the supply of air to the anode 41A of the fuel cell stack 41.
 本実施形態における上記パージ処理の詳細構成について、本実施形態の燃料電池システム50の運転を開始する起動時における燃料ガス供給路10における状態変化の詳細と共に、以下に説明を加える。
 尚、本実施形態の燃料電池システム50では、起動時に、運転制御装置60により行われる弁制御により、燃料ガス供給路10の状態が、供給停止状態(図4(a)を参照)、パージ状態(図4(b)を参照)、供給継続状態(図4(c)を参照)の順に変化する。
以下では、夫々の状態について詳細を説明する。
The detailed configuration of the purging process in the present embodiment will be described below together with the details of the state change in the fuel gas supply path 10 at the time of starting the operation of the fuel cell system 50 of the present embodiment.
In the fuel cell system 50 according to the present embodiment, at the time of startup, the state of the fuel gas supply path 10 is changed to a supply stopped state (see FIG. 4A) and a purge state by valve control performed by the operation control device 60. (See FIG. 4B) and the supply continuation state (see FIG. 4C).
Hereinafter, each state will be described in detail.
(供給停止状態)
 図4(a)は、燃料電池システム50の運転を停止している運転停止時に、燃料電池装置40への水素ガスG1の供給を停止している供給停止状態を示す。
 この供給停止状態では、上流側遮断弁11A及び下流側遮断弁11Bが閉弁され、ブリード弁21が開弁される。更に、この供給停止状態では、下流側開閉弁13は開弁され、窒素ガス供給弁32は閉弁される。
(Supply stopped)
FIG. 4A illustrates a supply stop state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped when the operation of the fuel cell system 50 is stopped.
In this supply stop state, the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed, and the bleed valve 21 is opened. Further, in this supply stopped state, the downstream opening / closing valve 13 is opened and the nitrogen gas supply valve 32 is closed.
 すると、燃料ガス供給路10における上流側遮断弁11Aよりも上流側に形成されて水素ボンベ1に通じる上流側空間10Aについては、供給停止状態となる前の供給継続状態において通流していた水素ガスG1が満たされた状態となる。また、燃料ガス供給路10における下流側遮断弁11Bよりも下流側に形成されて燃料電池装置40に通じる下流側空間10C1,10C2についても、供給停止状態となる前の供給継続状態において通流していた水素ガスG1が満たされた状態となる。一方、燃料ガス供給路10における上流側遮断弁11Aと下流側遮断弁11Bとの間に形成される遮断弁間空間10Bについては、開弁状態のブリード弁21を通じて大気に開放された状態となるため、大気から侵入した空気が存在する状態となる。
 そして、このように燃料電池装置40への水素ガスG1の供給が停止されることで、上述したように、水素ボンベ1から燃料電池装置40への水素ガスG1の漏洩が確実に防止され、安全性が保持される。
Then, in the upstream space 10A formed upstream of the upstream shutoff valve 11A in the fuel gas supply path 10 and leading to the hydrogen cylinder 1, the hydrogen gas flowing in the supply continuation state before the supply was stopped is stopped. G1 is satisfied. The downstream spaces 10C1 and 10C2 formed downstream of the downstream shutoff valve 11B in the fuel gas supply path 10 and leading to the fuel cell device 40 also flow in the supply continuation state before the supply is stopped. The hydrogen gas G1 is filled. On the other hand, the space 10B between the shutoff valves formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the fuel gas supply passage 10 is opened to the atmosphere through the bleed valve 21 in the open state. Therefore, there is a state in which air that has entered from the atmosphere exists.
By stopping the supply of the hydrogen gas G1 to the fuel cell device 40 in this manner, as described above, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 is reliably prevented, and the safety is improved. Nature is maintained.
(パージ状態)
 運転制御装置60は、燃料電池装置40への水素ガスG1の供給を開始する前にパージ処理を実行する。そして、図4(b)は、パージ処理が実行された際に燃料ガス供給路10の状態であるパージ状態を示す。即ち、燃料電池システム50の起動時に、パージ処理が実行されることで、燃料ガス供給路10の状態は上記供給停止状態からこのパージ状態に遷移する。
(Purge state)
The operation control device 60 performs a purge process before starting supply of the hydrogen gas G1 to the fuel cell device 40. FIG. 4B shows a purge state, which is a state of the fuel gas supply passage 10 when the purge process is performed. That is, when the fuel cell system 50 is started, the purge process is executed, so that the state of the fuel gas supply path 10 is changed from the supply stop state to the purge state.
 供給停止状態からパージ状態に遷移するにあたっては、上流側遮断弁11Aが閉弁状態に維持され、且つ、ブリード弁21が開弁状態に維持されたままで、下流側開閉弁13が閉弁され、且つ、下流側遮断弁11B及び窒素ガス供給弁32が開弁される。すると、窒素ガスボンベ30から供給された窒素ガスNGが、開弁された窒素ガス供給弁32を介して下流側弁間空間10C1にパージガスPGとして供給され、その窒素ガスNGが、開弁された下流側遮断弁11Bを介して遮断弁間空間10BにパージガスPGとして供給される。同時に、当該遮断弁間空間10Bに供給された窒素ガスNGが、開弁状態に維持されたブリード弁21を介して分岐路20を通じて外部に放出される。そして、このような形態で、遮断弁間空間10Bが窒素ガスNGによりパージされることになる。即ち、本実施形態では、遮断弁間空間10Bに供給するパージガスPGとして窒素ガスNGが利用され、この窒素ガスNGにより遮断弁間空間10B等がパージされる。 In the transition from the supply stop state to the purge state, the downstream shut-off valve 13 is closed while the upstream shut-off valve 11A is kept closed, and the bleed valve 21 is kept open. In addition, the downstream side shutoff valve 11B and the nitrogen gas supply valve 32 are opened. Then, the nitrogen gas NG supplied from the nitrogen gas cylinder 30 is supplied as the purge gas PG to the downstream-side inter-valve space 10C1 via the opened nitrogen gas supply valve 32, and the nitrogen gas NG is supplied to the opened downstream. The purge gas PG is supplied to the inter-shut-valve space 10B via the side shut-off valve 11B. At the same time, the nitrogen gas NG supplied to the inter-shut valve space 10B is released to the outside through the branch passage 20 via the bleed valve 21 maintained in the open state. Then, in such a manner, the inter-shutoff valve space 10B is purged by the nitrogen gas NG. That is, in the present embodiment, the nitrogen gas NG is used as the purge gas PG to be supplied to the inter-shut valve space 10B, and the inter-shut valve space 10B and the like are purged by the nitrogen gas NG.
 このようなパージ処理が実行されると、上記供給停止状態において大気からブリード弁21を介して遮断弁間空間10Bに侵入した空気は、分岐路20のブリード弁21を介して大気に放出されて、遮断弁間空間10Bから除去されることになる。そして、この状態に続いて燃料電池装置40への水素ガスG1の供給を開始することで、燃料電池スタック41のアノード41Aへの空気の供給に起因する性能低下が防止される。 When such a purging process is performed, the air that has entered the inter-shut valve space 10B from the atmosphere through the bleed valve 21 in the supply stopped state is released to the atmosphere through the bleed valve 21 of the branch passage 20. , From the inter-shutoff valve space 10B. By starting supply of the hydrogen gas G1 to the fuel cell device 40 following this state, performance degradation due to supply of air to the anode 41A of the fuel cell stack 41 is prevented.
(供給継続状態)
 図4(c)は、燃料電池システム50の運転を行っている通常運転時に、燃料電池装置40への水素ガスG1の供給を継続している供給継続状態を示す。即ち、燃料電池システム50の起動時に、燃料ガス供給路10の状態は、上記パージ状態からこの供給継続状態に遷移する。
(Continuation of supply)
FIG. 4C shows a supply continuation state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is continued during the normal operation in which the fuel cell system 50 is operated. That is, when the fuel cell system 50 is started, the state of the fuel gas supply passage 10 changes from the purge state to the continuous supply state.
 パージ状態から供給継続状態に遷移するにあたっては、下流側遮断弁11Bが開弁状態に維持されたままで、窒素ガス供給弁32及びブリード弁21が閉弁され、且つ、上流側遮断弁11A及び下流側開閉弁13が開弁される。すると、燃料ガス供給路10への窒素ガスNGの供給とブリード弁21を介した大気への窒素ガスNGの放出とが停止される。その状態で、水素ボンベ1から供給された水素ガスG1が、上流側遮断弁11A、下流側遮断弁11B、及び下流側開閉弁13を介して燃料電池装置40に供給されて、当該燃料電池装置40において所望の発電が行われることになる。そして、この供給継続状態への遷移時に、事前にパージ処理が実行されているので、燃料ガス供給路10は空気が存在せずに水素ガスG1又は窒素ガスNGで満たされた状態となっている。よって、燃料電池装置40への空気の供給に起因する性能低下が好適に防止されることになる。 In transition from the purge state to the supply continuation state, the nitrogen gas supply valve 32 and the bleed valve 21 are closed while the downstream side shutoff valve 11B is maintained in the open state, and the upstream side shutoff valve 11A and the downstream The side opening / closing valve 13 is opened. Then, the supply of the nitrogen gas NG to the fuel gas supply passage 10 and the release of the nitrogen gas NG to the atmosphere via the bleed valve 21 are stopped. In this state, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied to the fuel cell device 40 via the upstream shut-off valve 11A, the downstream shut-off valve 11B, and the downstream on-off valve 13, and the fuel cell device 40 At 40, the desired power generation is performed. Then, at the time of transition to the supply continuation state, since the purge processing has been performed in advance, the fuel gas supply path 10 is in a state filled with the hydrogen gas G1 or the nitrogen gas NG without air. . Therefore, performance degradation due to the supply of air to the fuel cell device 40 is suitably prevented.
 尚、本実施形態では、燃料電池装置40への水素ガスG1の供給開始時のパージ処理の終了時に、窒素ガス供給弁32及びブリード弁21の閉弁と同時に、上流側遮断弁11A及び下流側開閉弁13を開弁させるが、各弁の開閉タイミングについては適宜変更することができる。例えば、下流側開閉弁13を開弁させた後に、窒素ガス供給弁32及びブリード弁21の閉弁と上流側遮断弁11Aの開弁を行うこともできる。 In the present embodiment, at the end of the purge process at the start of the supply of the hydrogen gas G1 to the fuel cell device 40, at the same time as the closing of the nitrogen gas supply valve 32 and the bleed valve 21, the upstream shutoff valve 11A and the downstream The on-off valve 13 is opened, but the opening and closing timing of each valve can be changed as appropriate. For example, after opening the downstream opening / closing valve 13, the closing of the nitrogen gas supply valve 32 and the bleed valve 21 and the opening of the upstream shutoff valve 11A can be performed.
〔第4実施形態〕
 本発明の第4実施形態について、図5等に基づいて説明する。
 尚、上述の実施形態と同様の構成については、詳細な説明を割愛する場合がある。
 図5に示す燃料電池システム50は、上述の実施形態と同様に、燃料電池装置40と燃料ガス供給路10と運転制御装置60等とを備え、燃料ガス供給路10から燃料電池スタック41のアノード41Aに水素ガスG1が供給される。
 また、本実施形態の燃料電池システム50は、上述の実施形態と同様に、上流側遮断弁11A、下流側遮断弁11B、及びブリード弁21で構成されたDBB(ダブルブロックアンドブリード)が採用されている。
 更に、燃料ガス供給路10には、下流側遮断弁11Bよりも下流側に下流側開閉弁13が設けられている。
[Fourth embodiment]
A fourth embodiment of the present invention will be described with reference to FIG.
Note that a detailed description of a configuration similar to that of the above-described embodiment may be omitted.
The fuel cell system 50 illustrated in FIG. 5 includes the fuel cell device 40, the fuel gas supply path 10, the operation control device 60, and the like, similarly to the above-described embodiment. Hydrogen gas G1 is supplied to 41A.
Further, the fuel cell system 50 of the present embodiment employs a DBB (double block and bleed) composed of an upstream shutoff valve 11A, a downstream shutoff valve 11B, and a bleed valve 21, similarly to the above-described embodiment. ing.
Further, the fuel gas supply passage 10 is provided with a downstream opening / closing valve 13 downstream of the downstream shutoff valve 11B.
 燃料ガス供給路10に接続されて当該燃料ガス供給路10に窒素ガスNG(不活性ガスの一例)を供給可能な窒素ガス供給路31(不活性ガス供給路の一例)が設けられている。当該窒素ガス供給路31は、燃料ガス供給路10における下流側遮断弁11Bよりも下流側に形成される下流側空間、具体的には燃料ガス供給路10における下流側遮断弁11Bと下流側開閉弁13との間に形成される下流側弁間空間10C1に接続されている。即ち、この窒素ガス供給路31は、窒素ガスNGを貯留する窒素ガスボンベ30と、燃料ガス供給路10における下流側弁間空間10C1とを接続する管路として構成されている。 A nitrogen gas supply path 31 (an example of an inert gas supply path) that is connected to the fuel gas supply path 10 and is capable of supplying a nitrogen gas NG (an example of an inert gas) is provided in the fuel gas supply path 10. The nitrogen gas supply passage 31 is formed in a downstream space formed downstream of the downstream cutoff valve 11B in the fuel gas supply passage 10, specifically, the downstream cutoff valve 11B in the fuel gas supply passage 10 and the downstream opening / closing. It is connected to a downstream inter-valve space 10C1 formed between the valve 13 and the valve 13. In other words, the nitrogen gas supply path 31 is configured as a pipe connecting the nitrogen gas cylinder 30 that stores the nitrogen gas NG and the downstream inter-valve space 10C1 in the fuel gas supply path 10.
 窒素ガス供給路31には、窒素ガス供給弁32(不活性ガス供給弁の一例)が設けられている。運転制御装置60は、この窒素ガス供給弁32の開閉作動を制御することにより、窒素ガス供給路31から燃料ガス供給路10の下流側弁間空間10C1への窒素ガスNGの供給を断続させることができる。 The nitrogen gas supply path 31 is provided with a nitrogen gas supply valve 32 (an example of an inert gas supply valve). The operation control device 60 controls the opening and closing operation of the nitrogen gas supply valve 32 to interrupt the supply of the nitrogen gas NG from the nitrogen gas supply path 31 to the downstream inter-valve space 10C1 of the fuel gas supply path 10. Can be.
 そして、運転制御装置60は、図5(c)に示すように、遮断弁11A,11Bを開弁させて燃料電池装置40へ水素ガスG1を供給して当該燃料電池装置40での発電を行う通常運転時には、下流側開閉弁13を開弁させると共に、ブリード弁21及び窒素ガス供給弁32を閉弁させた状態とする。一方、運転制御装置60は、図5(a)に示すように、遮断弁11A,11Bを閉弁させて燃料電池装置40への水素ガスG1の供給を停止して当該燃料電池装置40での発電を停止する運転停止時には、ブリード弁21を開弁させると共に、下流側開閉弁13を開弁させ、窒素ガス供給弁32を閉弁させた状態とする。 Then, the operation control device 60 supplies the hydrogen gas G1 to the fuel cell device 40 by opening the shut-off valves 11A and 11B to generate power in the fuel cell device 40, as shown in FIG. During normal operation, the downstream side on-off valve 13 is opened, and the bleed valve 21 and the nitrogen gas supply valve 32 are closed. On the other hand, the operation control device 60 closes the shutoff valves 11A and 11B to stop the supply of the hydrogen gas G1 to the fuel cell device 40 as shown in FIG. When the operation for stopping power generation is stopped, the bleed valve 21 is opened, the downstream opening / closing valve 13 is opened, and the nitrogen gas supply valve 32 is closed.
 即ち、運転停止時には、遮断弁間空間10Bが大気に開放された状態で上流側遮断弁11Aと下流側遮断弁11Bとが閉弁されて燃料電池装置40への水素ガスG1の供給が停止される。このことで、上流側遮断弁11A及び下流側遮断弁11Bのうちの何れかに遮断不良が生じた場合であっても、燃料ガス供給路10における水素ボンベ1側と燃料電池装置40側とが大気に開放された遮断弁間空間10Bで隔離されることになる。よって、これら遮断弁11A,11Bの遮断不良に起因する水素ボンベ1から燃料電池装置40への水素ガスG1の漏洩が確実に防止される。更に、運転停止時に遮断弁間空間10Bに流出した水素ガスG1については、開弁状態であるブリード弁21を介して大気へ放出されるので、安全性が保持される。 That is, when the operation is stopped, the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed with the inter-cutoff valve space 10B opened to the atmosphere, and the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped. You. Thus, even if a failure in shut-off occurs in any of the upstream shut-off valve 11A and the downstream shut-off valve 11B, the hydrogen cylinder 1 side and the fuel cell device 40 side in the fuel gas supply passage 10 are connected. The space between the shutoff valves 10B opened to the atmosphere is isolated. Therefore, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 due to the poor shutoff of the shutoff valves 11A and 11B is reliably prevented. Furthermore, the hydrogen gas G1 that has flowed into the inter-shut valve space 10B when the operation is stopped is released to the atmosphere via the bleed valve 21 which is in an open state, so that safety is maintained.
 更に、本実施形態の燃料電池システム50では、運転停止状態から通常運転に移行する起動時において、燃料電池装置40への空気の供給に起因する性能低下を防止する。そのために、詳細については後述するが、燃料電池装置40への水素ガスG1の供給開始前に遮断弁間空間10Bに対して空気(酸素)を略含まないパージガスPGを供給して当該遮断弁間空間10Bをパージするパージ処理が、運転制御装置60により実行される。即ち、このようなパージ処理が、燃料電池装置40への水素ガスG1の供給開始前に実行されると、遮断弁間空間10Bに侵入した空気が適切に燃料ガス供給路10から除去された上で、燃料電池装置40への水素ガスG1の供給が開始される。このことで、燃料電池スタック41のアノード41Aへの空気の供給に起因する性能低下が防止される。 Further, in the fuel cell system 50 of the present embodiment, at the time of start-up in which the operation shifts from the operation stop state to the normal operation, performance deterioration due to the supply of air to the fuel cell device 40 is prevented. For this purpose, a purge gas PG substantially free of air (oxygen) is supplied to the inter-shutoff valve space 10B before the supply of the hydrogen gas G1 to the fuel cell device 40 is started. A purge process for purging the space 10B is executed by the operation control device 60. That is, if such a purge process is performed before the supply of the hydrogen gas G1 to the fuel cell device 40 is started, the air that has entered the inter-valve space 10B is appropriately removed from the fuel gas supply passage 10. Then, the supply of the hydrogen gas G1 to the fuel cell device 40 is started. This prevents performance degradation due to the supply of air to the anode 41A of the fuel cell stack 41.
 本実施形態における上記パージ処理の詳細構成について、本実施形態の燃料電池システム50の運転を開始する起動時における燃料ガス供給路10における状態変化の詳細と共に、以下に説明を加える。
 尚、本実施形態の燃料電池システム50では、起動時に、運転制御装置60により行われる弁制御により、燃料ガス供給路10の状態が、供給停止状態(図5(a)を参照)、パージ状態(図5(b)を参照)、供給継続状態(図5(c)を参照)の順に変化する。以下では、夫々の状態について詳細を説明する。
The detailed configuration of the purging process in the present embodiment will be described below together with the details of the state change in the fuel gas supply path 10 at the time of starting the operation of the fuel cell system 50 of the present embodiment.
In the fuel cell system 50 according to the present embodiment, at the time of startup, the state of the fuel gas supply path 10 is changed to a supply stopped state (see FIG. 5A) and a purge state by valve control performed by the operation control device 60. (See FIG. 5B) and the supply continuation state (see FIG. 5C). Hereinafter, each state will be described in detail.
(供給停止状態)
 図5(a)は、燃料電池システム50の運転を停止している運転停止時に、燃料電池装置40への水素ガスG1の供給を停止している供給停止状態を示す。
 この供給停止状態では、上流側遮断弁11A及び下流側遮断弁11Bが閉弁され、ブリード弁21が開弁される。更に、この供給停止状態では、下流側開閉弁13は開弁され、窒素ガス供給弁32は閉弁される。
(Supply stopped)
FIG. 5A shows a supply stopped state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is stopped when the operation of the fuel cell system 50 is stopped.
In this supply stop state, the upstream cutoff valve 11A and the downstream cutoff valve 11B are closed, and the bleed valve 21 is opened. Further, in this supply stopped state, the downstream opening / closing valve 13 is opened and the nitrogen gas supply valve 32 is closed.
 すると、燃料ガス供給路10における上流側遮断弁11Aよりも上流側に形成されて水素ボンベ1に通じる上流側空間10Aについては、供給停止状態となる前の供給継続状態において通流していた水素ガスG1が満たされた状態となる。また、燃料ガス供給路10における下流側遮断弁11Bよりも下流側に形成されて燃料電池装置40に通じる下流側空間10C1,10C2についても、供給停止状態となる前の供給継続状態において通流していた水素ガスG1が満たされた状態となる。一方、燃料ガス供給路10における上流側遮断弁11Aと下流側遮断弁11Bとの間に形成される遮断弁間空間10Bについては、開弁状態のブリード弁21を通じて大気に開放された状態となるため、大気から侵入した空気が存在する状態となる。
 そして、このように燃料電池装置40への水素ガスG1の供給が停止されることで、上述したように、水素ボンベ1から燃料電池装置40への水素ガスG1の漏洩が確実に防止され、安全性が保持される。
Then, in the upstream space 10A formed upstream of the upstream shutoff valve 11A in the fuel gas supply path 10 and leading to the hydrogen cylinder 1, the hydrogen gas flowing in the supply continuation state before the supply was stopped is stopped. G1 is satisfied. The downstream spaces 10C1 and 10C2 formed downstream of the downstream shutoff valve 11B in the fuel gas supply path 10 and leading to the fuel cell device 40 also flow in the supply continuation state before the supply is stopped. The hydrogen gas G1 is filled. On the other hand, the space 10B between the shutoff valves formed between the upstream shutoff valve 11A and the downstream shutoff valve 11B in the fuel gas supply passage 10 is opened to the atmosphere through the bleed valve 21 in the open state. Therefore, there is a state in which air that has entered from the atmosphere exists.
By stopping the supply of the hydrogen gas G1 to the fuel cell device 40 in this manner, as described above, the leakage of the hydrogen gas G1 from the hydrogen cylinder 1 to the fuel cell device 40 is reliably prevented, and the safety is improved. Nature is maintained.
(パージ状態)
 運転制御装置60は、燃料電池装置40への水素ガスG1の供給を開始する前にパージ処理を実行する。そして、図5(b)は、パージ処理が実行された際に燃料ガス供給路10の状態であるパージ状態を示す。即ち、燃料電池システム50の起動時に、パージ処理が実行されることで、燃料ガス供給路10の状態は上記供給停止状態からこのパージ状態に遷移する。
(Purge state)
The operation control device 60 performs a purge process before starting supply of the hydrogen gas G1 to the fuel cell device 40. FIG. 5B shows a purge state, which is a state of the fuel gas supply passage 10 when the purge process is performed. That is, when the fuel cell system 50 is started, the purge process is executed, so that the state of the fuel gas supply path 10 is changed from the supply stop state to the purge state.
 供給停止状態からパージ状態に遷移するにあたっては、ブリード弁21が開弁状態に維持されたままで、下流側開閉弁13が閉弁され、且つ、上流側遮断弁11A、下流側遮断弁11B、及び窒素ガス供給弁32が開弁される。すると、水素ボンベ1から供給された水素ガスG1が、開弁された上流側遮断弁11Aを介して遮断弁間空間10BにパージガスPGとして供給される。更に、窒素ガスボンベ30から供給された窒素ガスNGが、開弁された窒素ガス供給弁32を介して下流側弁間空間10C1にパージガスPGとして供給され、その窒素ガスNGが、開弁された下流側遮断弁11Bを介して遮断弁間空間10BにパージガスPGとして供給される。同時に、当該遮断弁間空間10Bに供給された水素ガスG1及び窒素ガスNGが、開弁状態に維持されたブリード弁21を介して分岐路20を通じて外部に放出される。そして、このような形態で、遮断弁間空間10Bが水素ガスG1及び窒素ガスNGによりパージされることになる。即ち、本実施形態では、遮断弁間空間10Bに供給するパージガスPGとして水素ガスG1及び窒素ガスNGが利用され、この水素ガスG1及び窒素ガスNGにより遮断弁間空間10B等がパージされる。 In the transition from the supply stop state to the purge state, the downstream open / close valve 13 is closed while the bleed valve 21 is maintained in the open state, and the upstream shutoff valve 11A, the downstream shutoff valve 11B, and The nitrogen gas supply valve 32 is opened. Then, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied as the purge gas PG to the inter-shut-valve space 10B via the opened upstream-side shut-off valve 11A. Further, the nitrogen gas NG supplied from the nitrogen gas cylinder 30 is supplied as the purge gas PG to the downstream side inter-valve space 10C1 via the opened nitrogen gas supply valve 32, and the nitrogen gas NG is supplied to the downstream of the opened valve. The purge gas PG is supplied to the inter-shut-valve space 10B via the side shut-off valve 11B. At the same time, the hydrogen gas G1 and the nitrogen gas NG supplied to the inter-shut valve space 10B are discharged to the outside through the branch passage 20 via the bleed valve 21 maintained in the open state. Then, in this manner, the inter-shut-valve space 10B is purged by the hydrogen gas G1 and the nitrogen gas NG. That is, in the present embodiment, the hydrogen gas G1 and the nitrogen gas NG are used as the purge gas PG to be supplied to the inter-shut valve space 10B, and the inter-shut valve space 10B and the like are purged by the hydrogen gas G1 and the nitrogen gas NG.
 このようなパージ処理が実行されると、上記供給停止状態において大気からブリード弁21を介して遮断弁間空間10Bに侵入した空気は、分岐路20のブリード弁21を介して大気に放出されて、遮断弁間空間10Bから除去されることになる。そして、この状態に続いて燃料電池装置40への水素ガスG1の供給を開始することで、燃料電池スタック41のアノード41Aへの空気の供給に起因する性能低下が防止される。 When such a purging process is performed, the air that has entered the inter-shut valve space 10B from the atmosphere through the bleed valve 21 in the supply stopped state is released to the atmosphere through the bleed valve 21 of the branch passage 20. , From the inter-shutoff valve space 10B. By starting supply of the hydrogen gas G1 to the fuel cell device 40 following this state, performance degradation due to supply of air to the anode 41A of the fuel cell stack 41 is prevented.
 尚、本実施形態では、パージ処理において、上流側遮断弁11A、下流側遮断弁11B、及び窒素ガス供給弁32を同時に開弁させて、遮断弁間空間10BへのパージガスPGとしての水素ガスG1及び窒素ガスNGの供給を同時に行うように構成した。しかし、上流側遮断弁11Aの開弁タイミングと、下流側遮断弁11B及び窒素ガス供給弁32の開弁タイミングとを、異なるタイミングに設定しても構わない。例えば、上流側遮断弁11Aの開弁タイミングを、下流側遮断弁11B及び窒素ガス供給弁32の開弁タイミングよりも早くすることで、遮断弁間空間10Bに水素ガスG1をパージガスPGとして供給した後に、その遮断弁間空間10Bに窒素ガスNGをパージガスPGとして供給することができる。逆に、下流側遮断弁11B及び窒素ガス供給弁32の開弁タイミングを、上流側遮断弁11Aの開弁タイミングよりも早くすることで、遮断弁間空間10Bに窒素ガスNGをパージガスPGとして供給した後に、その遮断弁間空間10Bに水素ガスG1をパージガスPGとして供給することができる。また、遮断弁間空間10Bに対するパージガスPGとしての水素ガスG1の供給と、遮断弁間空間10Bに対するパージガスPGとしての窒素ガスNGの供給とについて、一方を終了させた後に他方を開始するように、上流側遮断弁11A、下流側遮断弁11B、及び窒素ガス供給弁32の開閉タイミングを設定しても構わない。 In the present embodiment, in the purge process, the upstream shutoff valve 11A, the downstream shutoff valve 11B, and the nitrogen gas supply valve 32 are simultaneously opened, and the hydrogen gas G1 as the purge gas PG to the inter-shutoff valve space 10B is opened. And the supply of nitrogen gas NG is performed simultaneously. However, the opening timing of the upstream shutoff valve 11A and the opening timing of the downstream shutoff valve 11B and the nitrogen gas supply valve 32 may be set to different timings. For example, the hydrogen gas G1 is supplied as the purge gas PG to the inter-shut-valve space 10B by setting the opening timing of the upstream-side shutoff valve 11A earlier than the opening timing of the downstream-side shutoff valve 11B and the nitrogen gas supply valve 32. Later, the nitrogen gas NG can be supplied to the inter-shut valve space 10B as the purge gas PG. Conversely, by setting the opening timing of the downstream side shutoff valve 11B and the nitrogen gas supply valve 32 earlier than the opening timing of the upstream side shutoff valve 11A, the nitrogen gas NG is supplied as the purge gas PG to the inter-shut valve space 10B. After that, the hydrogen gas G1 can be supplied as the purge gas PG to the inter-shut valve space 10B. In addition, regarding the supply of the hydrogen gas G1 as the purge gas PG to the inter-shut valve space 10B and the supply of the nitrogen gas NG as the purge gas PG to the inter-shut valve space 10B, one is terminated and then the other is started. The opening / closing timing of the upstream cutoff valve 11A, the downstream cutoff valve 11B, and the nitrogen gas supply valve 32 may be set.
(供給継続状態)
 図5(c)は、燃料電池システム50の運転を行っている通常運転時に、燃料電池装置40への水素ガスG1の供給を継続している供給継続状態を示す。即ち、燃料電池システム50の起動時に、燃料ガス供給路10の状態は、上記パージ状態からこの供給継続状態に遷移する。
(Continuation of supply)
FIG. 5C illustrates a supply continuation state in which the supply of the hydrogen gas G1 to the fuel cell device 40 is continued during the normal operation in which the fuel cell system 50 is operated. That is, when the fuel cell system 50 is started, the state of the fuel gas supply passage 10 changes from the purge state to the continuous supply state.
 パージ状態から供給継続状態に遷移するにあたっては、上流側遮断弁11A及び下流側遮断弁11Bが開弁状態に維持されたままで、窒素ガス供給弁32及びブリード弁21が閉弁され、且つ、下流側開閉弁13が開弁される。すると、燃料ガス供給路10への窒素ガスNGの供給とブリード弁21を介した大気への水素ガスG1及び窒素ガスNGの放出とが停止される。その状態で、水素ボンベ1から供給された水素ガスG1が、上流側遮断弁11A、下流側遮断弁11B、及び下流側開閉弁13を介して燃料電池装置40に供給されて、当該燃料電池装置40において所望の発電が行われることになる。そして、この供給継続状態への遷移時に、事前にパージ処理が実行されているので、燃料ガス供給路10は空気が存在せずに水素ガスG1又は窒素ガスNGで満たされた状態となっている。よって、燃料電池装置40への空気の供給に起因する性能低下が好適に防止されることになる。 In transition from the purge state to the supply continuation state, the nitrogen gas supply valve 32 and the bleed valve 21 are closed while the upstream cutoff valve 11A and the downstream cutoff valve 11B are kept open, and the downstream The side opening / closing valve 13 is opened. Then, the supply of the nitrogen gas NG to the fuel gas supply path 10 and the release of the hydrogen gas G1 and the nitrogen gas NG to the atmosphere via the bleed valve 21 are stopped. In this state, the hydrogen gas G1 supplied from the hydrogen cylinder 1 is supplied to the fuel cell device 40 via the upstream shut-off valve 11A, the downstream shut-off valve 11B, and the downstream on-off valve 13, and the fuel cell device 40 At 40, the desired power generation is performed. Then, at the time of transition to the supply continuation state, since the purge processing has been performed in advance, the fuel gas supply path 10 is in a state filled with the hydrogen gas G1 or the nitrogen gas NG without air. . Therefore, performance degradation due to the supply of air to the fuel cell device 40 is suitably prevented.
 尚、本実施形態では、燃料電池装置40への水素ガスG1の供給開始時のパージ処理の終了時に、窒素ガス供給弁32及びブリード弁21の閉弁と同時に、下流側開閉弁13を開弁させるが、各弁の開閉タイミングについては適宜変更することができる。例えば、下流側開閉弁13を開弁させた後に、窒素ガス供給弁32及びブリード弁21の閉弁を行うこともできる。 In the present embodiment, at the end of the purge process at the start of the supply of the hydrogen gas G1 to the fuel cell device 40, the downstream side on-off valve 13 is opened simultaneously with the closing of the nitrogen gas supply valve 32 and the bleed valve 21. However, the opening / closing timing of each valve can be appropriately changed. For example, after the downstream on-off valve 13 is opened, the nitrogen gas supply valve 32 and the bleed valve 21 may be closed.
〔別実施形態〕
 本発明の他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用することに限らず、他の実施形態の構成と組み合わせて適用することも可能である。
[Another embodiment]
Another embodiment of the present invention will be described. In addition, the configuration of each embodiment described below is not limited to being applied independently, and can be applied in combination with the configuration of another embodiment.
(1)上記実施形態では、燃料電池装置40を、燃料ガス供給路10からアノード41Aに水素ガスG1が供給される燃料電池スタック41を備えたものとして構成した。しかし、図6に示すように、燃料電池装置40を、メタンガスやプロパンガスなどの炭化水素ガスG2を改質して水素ガスG1を含む水素含有ガスを生成する改質器42と、当該生成された水素ガスG1の電気化学反応により発電を行う燃料電池スタック41とを備えて構成しても構わない。この場合、燃料ガス供給路10には、炭化水素ガスG2が通流することになり、その炭化水素ガスG2が、燃料ガスとして、燃料ガス供給路10から改質器42に供給され、当該改質器42の改質により水素ガスG1を含む水素含有ガスとなる。そして、このような燃料電池装置40への炭化水素ガスG2の供給開始前において、燃料ガス供給路10においてパージ処理を実行することができる。この場合、パージ処理において炭化水素ガスG2をパージガスPGとして利用することができる。 (1) In the above embodiment, the fuel cell device 40 is configured to include the fuel cell stack 41 in which the hydrogen gas G1 is supplied from the fuel gas supply path 10 to the anode 41A. However, as shown in FIG. 6, a fuel cell device 40 is provided with a reformer 42 that reforms a hydrocarbon gas G2 such as methane gas or propane gas to generate a hydrogen-containing gas including a hydrogen gas G1, and And a fuel cell stack 41 that generates electric power by an electrochemical reaction of the hydrogen gas G1. In this case, the hydrocarbon gas G2 flows through the fuel gas supply path 10, and the hydrocarbon gas G2 is supplied as a fuel gas from the fuel gas supply path 10 to the reformer 42, and The reformer of the porcelain 42 becomes a hydrogen-containing gas including the hydrogen gas G1. Then, before the supply of the hydrocarbon gas G2 to the fuel cell device 40 is started, a purge process can be performed in the fuel gas supply passage 10. In this case, the hydrocarbon gas G2 can be used as the purge gas PG in the purge process.
(2)上記実施形態では、燃料電池システム50を燃料電池船100の動力源として搭載した例を説明したが、本発明はそのような構成に限定されるものではなく、他の輸送機械又はエネルギー機器に搭載された燃料電池システムにおいて本発明を適用することもできる。 (2) In the above embodiment, the example in which the fuel cell system 50 is mounted as a power source of the fuel cell ship 100 has been described. However, the present invention is not limited to such a configuration, and other transport machines or energy may be used. The present invention can also be applied to a fuel cell system mounted on a device.
 本発明は、主に動力源として燃料電池システムを搭載した燃料電池船に好適に利用できる。 The present invention can be suitably used mainly for a fuel cell ship equipped with a fuel cell system as a power source.
1    水素ボンベ(燃料ガス貯留部)
10   燃料ガス供給路
10B  遮断弁間空間
10C  下流側空間
10C1 下流側弁間空間(下流側空間)
11A  上流側遮断弁
11B  下流側遮断弁
13   下流側開閉弁
21   ブリード弁
23   下流側逃し弁
25   流量調整弁(流量調整手段)
31   窒素ガス供給路(不活性ガス供給路)
32   窒素ガス供給弁(不活性ガス供給弁)
40   燃料電池装置
41   燃料電池スタック
50   燃料電池システム
55   電動モータ(船内の電力負荷)
60   運転制御装置(弁制御手段)
100  燃料電池船
G1   水素ガス(燃料ガス)
G2   炭化水素ガス(燃料ガス)
NG   窒素ガス(不活性ガス)
PG   パージガス

 
1 hydrogen cylinder (fuel gas storage section)
10 Fuel gas supply path 10B Shut-off valve space 10C Downstream space 10C1 Downstream valve space (downstream space)
11A Upstream side shutoff valve 11B Downstream side shutoff valve 13 Downstream side on-off valve 21 Bleed valve 23 Downstream side relief valve 25 Flow rate regulating valve (flow rate regulating means)
31 Nitrogen gas supply path (inert gas supply path)
32 Nitrogen gas supply valve (inert gas supply valve)
40 fuel cell device 41 fuel cell stack 50 fuel cell system 55 electric motor (electric load on board)
60 Operation control device (valve control means)
100 Fuel cell ship G1 Hydrogen gas (fuel gas)
G2 Hydrocarbon gas (fuel gas)
NG Nitrogen gas (inert gas)
PG purge gas

Claims (12)

  1.  燃料ガスの電気化学反応により発電を行う燃料電池スタックを有する燃料電池装置と、
     前記燃料電池装置に燃料ガスを供給する燃料ガス供給路と、
     前記燃料ガス供給路に設けられて当該供給路を遮断可能な遮断弁と、
     前記遮断弁を閉弁させて前記燃料電池装置への燃料ガスの供給を停止し、前記遮断弁を開弁させて前記燃料電池装置への燃料ガスの供給を開始する形態で前記遮断弁の作動を制御する弁制御手段と、を備えた燃料電池システムであって、
     前記燃料ガス供給路に直列状態で設けられて当該供給路を遮断可能な上流側遮断弁及び下流側遮断弁を、前記遮断弁として備え、
     前記燃料ガス供給路における前記上流側遮断弁と前記下流側遮断弁との間に形成される遮断弁間空間に接続されて当該空間を外部に開放可能なブリード弁を備え、
     前記弁制御手段が、前記燃料電池装置への燃料ガスの供給時に前記ブリード弁を閉弁させ、前記燃料電池装置への燃料ガスの供給停止時に前記ブリード弁を開弁させる形態で前記ブリード弁の作動を制御すると共に、前記燃料電池装置への燃料ガスの供給開始前に前記遮断弁間空間に対して燃料ガス及び不活性ガスの少なくとも一方であるパージガスを供給して当該遮断弁間空間をパージするパージ処理を実行する燃料電池システム。
    A fuel cell device having a fuel cell stack that generates power by an electrochemical reaction of fuel gas,
    A fuel gas supply path for supplying fuel gas to the fuel cell device;
    A shutoff valve provided in the fuel gas supply path and capable of shutting off the supply path;
    The operation of the shut-off valve in a form in which the shut-off valve is closed to stop supplying the fuel gas to the fuel cell device, and the shut-off valve is opened to start supplying the fuel gas to the fuel cell device. And a valve control means for controlling the fuel cell system,
    An upstream shutoff valve and a downstream shutoff valve that are provided in series with the fuel gas supply passage and that can shut off the supply passage are provided as the shutoff valve,
    A bleed valve that is connected to a space between the upstream and downstream shut-off valves in the fuel gas supply passage and that is formed between the downstream-side shut-off valve and that can open the space to the outside;
    The valve control means closes the bleed valve when fuel gas is supplied to the fuel cell device, and opens the bleed valve when supply of fuel gas to the fuel cell device is stopped. Controlling the operation and supplying a purge gas, which is at least one of a fuel gas and an inert gas, to the space between the shut-off valves before starting the supply of the fuel gas to the fuel cell device to purge the space between the shut-off valves. A fuel cell system that performs a purging process.
  2.  前記弁制御手段は、前記パージ処理を所定の設定パージ時間実行した後に前記燃料電池装置への燃料ガスの供給を開始する請求項1に記載の燃料電池システム。 2. The fuel cell system according to claim 1, wherein the valve control means starts supplying fuel gas to the fuel cell device after executing the purge process for a predetermined set purge time.
  3.  前記弁制御手段が、前記パージ処理において、前記ブリード弁を開弁状態に維持して、前記遮断弁間空間に供給された前記パージガスを前記ブリード弁を介して外部に放出する請求項1又は2に記載の燃料電池システム。 3. The valve control unit according to claim 1, wherein, in the purging process, the bleed valve is maintained in an open state, and the purge gas supplied to the inter-shut-off valve space is discharged to the outside via the bleed valve. The fuel cell system according to item 1.
  4.  前記弁制御手段が、前記燃料電池装置への燃料ガスの供給開始時に、前記下流側遮断弁の開弁後に前記ブリード弁を閉弁させる請求項3に記載の燃料電池システム。 4. The fuel cell system according to claim 3, wherein the valve control means closes the bleed valve after opening the downstream cutoff valve at the time of starting supply of fuel gas to the fuel cell device.
  5.  前記弁制御手段が、前記パージ処理において、前記上流側遮断弁を開弁させて当該上流側遮断弁を介して前記遮断弁間空間に前記パージガスとして燃料ガスを供給する請求項1~4の何れか1項に記載の燃料電池システム。 5. The fuel cell system according to claim 1, wherein the valve control unit opens the upstream shut-off valve in the purge process and supplies fuel gas as the purge gas to the space between the shut-off valves via the upstream shut-off valve. The fuel cell system according to claim 1.
  6.  前記燃料ガス供給路での燃料ガスの流量を調整可能な流量調整手段を備え、
     前記弁制御手段が、前記流量調整手段を制御して、前記パージ処理時における前記燃料ガス供給路での燃料ガスの流量を、前記燃料電池装置の通常運転時における前記燃料ガス供給路での燃料ガスの流量よりも小さく設定する請求項5に記載の燃料電池システム。
    The fuel gas supply path has a flow rate adjusting means capable of adjusting the flow rate of the fuel gas,
    The valve control means controls the flow rate adjusting means to change the flow rate of the fuel gas in the fuel gas supply path during the purging process to the fuel gas in the fuel gas supply path during the normal operation of the fuel cell device. The fuel cell system according to claim 5, wherein the fuel cell system is set to be smaller than a gas flow rate.
  7.  前記燃料ガス供給路における前記下流側遮断弁よりも下流側に設けられた下流側開閉弁と、
     前記燃料ガス供給路における前記下流側遮断弁と前記下流側開閉弁との間に形成される下流側弁間空間に接続されて当該空間を外部に開放可能な下流側逃し弁と、を備え、
     前記弁制御手段が、前記パージ処理において、前記下流側開閉弁を閉弁すると共に前記下流側遮断弁及び前記下流側逃し弁を開弁させて、前記遮断弁間空間に供給された燃料ガスを前記下流側遮断弁を介して前記下流側弁間空間に供給すると共に、前記下流側弁間空間に供給された燃料ガスを前記下流側逃し弁を介して外部に放出する請求項5又は6に記載の燃料電池システム。
    A downstream open / close valve provided on the fuel gas supply path downstream of the downstream cutoff valve;
    A downstream relief valve that is connected to a downstream inter-valve space formed between the downstream shut-off valve and the downstream on-off valve in the fuel gas supply path and is capable of opening the space to the outside;
    In the purging process, the valve control means closes the downstream open / close valve and opens the downstream shutoff valve and the downstream relief valve, thereby allowing the fuel gas supplied to the inter-shutoff valve space to be opened. 7. The fuel supply system according to claim 5, wherein the fuel gas supplied to the downstream inter-valve space is supplied to the downstream inter-valve space via the downstream shut-off valve, and the fuel gas supplied to the downstream inter-valve space is discharged to the outside via the downstream relief valve. 8. A fuel cell system as described.
  8.  前記弁制御手段が、前記燃料電池装置への燃料ガスの供給開始時に、前記下流側開閉弁の開弁後に前記下流側逃し弁を閉弁させる請求項7に記載の燃料電池システム。 8. The fuel cell system according to claim 7, wherein the valve control means closes the downstream relief valve after opening the downstream on-off valve at the time of starting supply of fuel gas to the fuel cell device.
  9.  前記燃料ガス供給路に接続されて当該燃料ガス供給路に不活性ガスを供給可能な不活性ガス供給路と、
     前記不活性ガス供給路に設けられた不活性ガス供給弁と、を備え、
     前記弁制御手段が、前記パージ処理において、前記不活性ガス供給弁を開弁させて前記不活性ガス供給路から前記遮断弁間空間に前記パージガスとして不活性ガスを供給する請求項1~8の何れか1項に記載の燃料電池システム。
    An inert gas supply path connected to the fuel gas supply path and capable of supplying an inert gas to the fuel gas supply path;
    An inert gas supply valve provided in the inert gas supply path,
    9. The method according to claim 1, wherein the valve control unit opens the inert gas supply valve and supplies an inert gas as the purge gas from the inert gas supply path to the inter-shutoff valve space in the purge process. The fuel cell system according to claim 1.
  10.  前記不活性ガス供給路が、前記燃料ガス供給路における前記下流側遮断弁の下流側に形成される下流側空間に接続されており、
     前記弁制御手段が、前記パージ処理において、前記不活性ガス供給弁及び前記下流側遮断弁を開弁させて前記不活性ガス供給路から前記下流側空間を介して前記遮断弁間空間に不活性ガスを供給する請求項9に記載の燃料電池システム。
    The inert gas supply path is connected to a downstream space formed on the fuel gas supply path downstream of the downstream cutoff valve,
    In the purging process, the valve control unit opens the inert gas supply valve and the downstream shutoff valve to inactivate the inert gas supply passage through the downstream space to the shutoff valve space. The fuel cell system according to claim 9, which supplies gas.
  11.  前記弁制御手段が、前記パージ処理において、前記上流側遮断弁を開弁させて当該上流側遮断弁を介して前記遮断弁間空間に前記パージガスとして燃料ガスを供給する請求項10に記載の燃料電池システム。 11. The fuel according to claim 10, wherein the valve control unit opens the upstream shutoff valve in the purge process and supplies fuel gas as the purge gas to the space between the shutoff valves via the upstream shutoff valve. 12. Battery system.
  12.  請求項1~11の何れか1項に記載の燃料電池システムと、
     前記燃料電池システムに供給される燃料ガスを貯留する燃料ガス貯留部と、を備え、
     前記燃料電池システムの発電電力を船内の電力負荷に供給する燃料電池船。

     
    A fuel cell system according to any one of claims 1 to 11,
    A fuel gas storage unit for storing fuel gas supplied to the fuel cell system,
    A fuel cell ship for supplying electric power generated by the fuel cell system to an electric load in the ship.

PCT/JP2019/025814 2018-07-03 2019-06-28 Fuel cell system and fuel cell boat WO2020009018A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-126812 2018-07-03
JP2018126812A JP7046741B2 (en) 2018-07-03 2018-07-03 Fuel cell system and fuel cell ship

Publications (1)

Publication Number Publication Date
WO2020009018A1 true WO2020009018A1 (en) 2020-01-09

Family

ID=69060851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/025814 WO2020009018A1 (en) 2018-07-03 2019-06-28 Fuel cell system and fuel cell boat

Country Status (2)

Country Link
JP (1) JP7046741B2 (en)
WO (1) WO2020009018A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523064A (en) * 2000-12-20 2004-07-29 ユーティーシー フューエル セルズ,エルエルシー Starting method of fuel cell device using fuel purge
JP2006120532A (en) * 2004-10-22 2006-05-11 Nissan Motor Co Ltd Fuel cell system
JP2006172889A (en) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd Fuel cell system
JP2009164136A (en) * 2009-04-20 2009-07-23 Toyota Motor Corp Fuel cell system for vehicle and method of controlling the same
JP2016225140A (en) * 2015-05-29 2016-12-28 株式会社フクハラ Explosion-proof purge gas supply system for ship

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004523064A (en) * 2000-12-20 2004-07-29 ユーティーシー フューエル セルズ,エルエルシー Starting method of fuel cell device using fuel purge
JP2006120532A (en) * 2004-10-22 2006-05-11 Nissan Motor Co Ltd Fuel cell system
JP2006172889A (en) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd Fuel cell system
JP2009164136A (en) * 2009-04-20 2009-07-23 Toyota Motor Corp Fuel cell system for vehicle and method of controlling the same
JP2016225140A (en) * 2015-05-29 2016-12-28 株式会社フクハラ Explosion-proof purge gas supply system for ship

Also Published As

Publication number Publication date
JP7046741B2 (en) 2022-04-04
JP2020009544A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6432745B2 (en) Power supply system
US8728675B2 (en) Fuel cell system
WO2006112427A1 (en) Fuel cell system, operation method thereof, and fuel cell vehicle
WO2008053727A1 (en) Fuel cell system
JP2009146618A (en) Fuel cell system and movable body
JP5152616B2 (en) Fuel cell system and method for stopping operation
US8691460B2 (en) Method of stopping operation of fuel cell system
JP5236966B2 (en) Fuel cell and operation method thereof
JP4130909B2 (en) Double fuel-fired gas turbine fuel supply system
WO2020009018A1 (en) Fuel cell system and fuel cell boat
JP2007149563A (en) Fuel cell system, valve system of fuel cell and fuel gas supply device
JP2003331889A (en) Fuel cell system
US8241804B1 (en) Method for controlling fuel cell system
CN113748548A (en) Fuel cell system and fuel cell system dehydration method
JP5239376B2 (en) Fuel cell system
JP5735606B2 (en) Stopping storage method of fuel cell system
JP2019133806A (en) Fuel cell system
JP2009076247A (en) Fuel cell system and its control method
JP5115685B2 (en) Fuel cell system and method for stopping operation
JP2008112702A (en) Fuel cell system
JP4728567B2 (en) Fuel cell system and its start / stop storage method
JP5380760B2 (en) Fuel cell control device
JP3605236B2 (en) Fuel cell module
JP6637870B2 (en) Fuel cell system
US11605826B2 (en) Fuel cell valve configuration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831577

Country of ref document: EP

Kind code of ref document: A1