JP2003331889A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JP2003331889A
JP2003331889A JP2002138919A JP2002138919A JP2003331889A JP 2003331889 A JP2003331889 A JP 2003331889A JP 2002138919 A JP2002138919 A JP 2002138919A JP 2002138919 A JP2002138919 A JP 2002138919A JP 2003331889 A JP2003331889 A JP 2003331889A
Authority
JP
Japan
Prior art keywords
fuel gas
fuel
fuel cell
hydrogen
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002138919A
Other languages
Japanese (ja)
Other versions
JP4106961B2 (en
Inventor
Tetsuya Uehara
哲也 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002138919A priority Critical patent/JP4106961B2/en
Priority to KR1020047005391A priority patent/KR100599901B1/en
Priority to US10/491,589 priority patent/US7402352B2/en
Priority to CNB038013355A priority patent/CN1322621C/en
Priority to PCT/JP2003/005179 priority patent/WO2003096460A1/en
Priority to EP03719183A priority patent/EP1504485B1/en
Publication of JP2003331889A publication Critical patent/JP2003331889A/en
Application granted granted Critical
Publication of JP4106961B2 publication Critical patent/JP4106961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system capable of surely starting in a short time even after being left unattended over a long time. <P>SOLUTION: A hydrogen substitution valve 8 using a closing valve is a fuel gas discharge means or replacing a hydrogen line with hydrogen, and has an opening area set larger than that of a purge valve 7. When starting, the substitution valve 8 is opened for replacing the gases in a fuel electrode and in a fuel pipe with hydrogen to supply hydrogen to the system from a variable throttle valve 3 at a nearly constant flow rate, and thereby hydrogen substitution (fuel gas substitution) for replacing the inside of a hydrogen line comprising a hydrogen pipe 4, the inside of the fuel electrode and a hydrogen return pipe 6 with newly supplied hydrogen is carried out. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は燃料電池システムに
係り、特に、起動時間を短縮することができる燃料電池
システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system, and more particularly to a fuel cell system capable of shortening start-up time.

【0002】[0002]

【従来の技術】例えば、燃料電池システムの起動方法と
して、特許第2735396号に記載されたものがあ
る。この従来例では、起動時は、燃料と空気を供給し、
燃料電池の出力電圧を監視し、この出力電圧値が電圧許
容下限値を超えた時点で、電力負荷を取り出すようにし
ている。
2. Description of the Related Art For example, as a method for starting a fuel cell system, there is one described in Japanese Patent No. 2735396. In this conventional example, fuel and air are supplied at startup,
The output voltage of the fuel cell is monitored, and when the output voltage value exceeds the voltage allowable lower limit value, the electric power load is taken out.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、燃料電
池の出力電圧が上昇した状態であっても、電力負荷を取
り出すと問題が起こる場合がある。例えば、燃料電池シ
ステムを長時間運転せずに放置した場合を考える。放置
状態では、燃料電池の燃料極及び燃料配管内の燃料ガス
は、システム外に徐々に拡散したり、徐々に燃料電池内
で空気中の酸素と反応して失われるため、燃料極及び燃
料配管内は空気、または窒素が充満した状態となる。
However, even if the output voltage of the fuel cell is increased, a problem may occur when the power load is taken out. For example, consider a case where the fuel cell system is left without operating for a long time. When left unattended, the fuel gas in the fuel electrode and fuel pipes of the fuel cell gradually diffuses out of the system, and gradually reacts with oxygen in the air in the fuel cell and is lost. The inside is filled with air or nitrogen.

【0004】ここで、燃料電池システムを起動するため
に、燃料極、空気極にそれぞれ燃料ガス、空気を供給す
ると、燃料極または燃料通路内の空気が燃料ガスに十分
置き換わっていなくても、すぐに燃料電池の出力電圧は
立ち上がる。しかし、ここですぐに負荷を取り出すと、
燃料通路または燃料極内の燃料ガス濃度が不充分なた
め、急激な電圧降下が発生し、負荷を安定して取り出せ
ないという問題点があった。
Here, in order to start the fuel cell system, fuel gas and air are supplied to the fuel electrode and the air electrode, respectively. Even if the air in the fuel electrode or the fuel passage is not sufficiently replaced with the fuel gas, the fuel gas is immediately replaced. Then, the output voltage of the fuel cell rises. However, if you immediately remove the load here,
Since the concentration of the fuel gas in the fuel passage or the fuel electrode is insufficient, there is a problem that a sudden voltage drop occurs and the load cannot be taken out stably.

【0005】本発明は、上記のような従来技術の問題点
を解決するためになされたものであり、その目的は、長
時間放置後であっても確実にかつ短時間で起動できる燃
料電池システムを提供することである。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and an object thereof is a fuel cell system which can be started reliably and in a short time even after being left for a long time. Is to provide.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するため、燃料電池本体から排出された排燃料ガスを
外部へ排出する燃料ガス排出手段を燃料電池システムに
備え、燃料電池システムの起動時に、燃料ガス供給手段
から燃料極に燃料ガスを供給しつつ、排燃料ガスを燃料
ガス排出手段から排出することにより、燃料ガス供給通
路および燃料極内部を燃料ガスで置換することを要旨と
する。
In order to achieve the above object, the present invention provides a fuel cell system with a fuel gas discharge means for discharging exhaust fuel gas discharged from a fuel cell body to the outside, and When the fuel gas is supplied from the fuel gas supply means to the fuel electrode at the time of start-up, the exhausted fuel gas is discharged from the fuel gas discharge means, thereby replacing the fuel gas supply passage and the inside of the fuel electrode with the fuel gas. To do.

【0007】[0007]

【発明の効果】本発明によれば、燃料電池システムの起
動時に、燃料ガス通路および燃料電池の燃料極が確実に
燃料ガスで置換され、長時間放置の後であっても確実に
短時間で起動できるという効果がある。
According to the present invention, at the time of starting the fuel cell system, the fuel gas passage and the fuel electrode of the fuel cell are surely replaced by the fuel gas, and even after being left for a long time, the fuel gas passage is surely done in a short time. The effect is that it can be activated.

【0008】[0008]

【発明の実施の形態】次に図面を参照して、本発明の実
施の形態を詳細に説明する。 〔第1実施形態〕図1は、本発明に係る燃料電池システ
ムの第1実施形態の構成を説明する構成図である。同図
において、燃料電池本体である燃料電池スタック1は、
固体高分子電解質膜を挟んで酸化剤極と燃料極を対設し
た燃料電池構造体をセパレータで挟持し、複数これを積
層したものである。燃料極に供給する燃料ガスとしては
水素、酸化剤極に供給する酸化剤としては空気を用い
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will now be described in detail with reference to the drawings. [First Embodiment] FIG. 1 is a configuration diagram illustrating a configuration of a first embodiment of a fuel cell system according to the present invention. In the figure, the fuel cell stack 1, which is the fuel cell body, is
A fuel cell structure having a solid polymer electrolyte membrane sandwiched between an oxidizer electrode and a fuel electrode is sandwiched between separators, and a plurality of these are stacked. Hydrogen is used as the fuel gas supplied to the fuel electrode, and air is used as the oxidant supplied to the oxidant electrode.

【0009】水素タンク2(燃料ガス供給手段)の水素
ガスは、可変絞り弁3を介して燃料電池スタック1に供
給される。可変絞り弁3は、通常運転時は、燃料電池ス
タック1への水素供給圧が適正になるように、コントロ
ーラ15で制御される。
Hydrogen gas in the hydrogen tank 2 (fuel gas supply means) is supplied to the fuel cell stack 1 via the variable throttle valve 3. The variable throttle valve 3 is controlled by the controller 15 so that the hydrogen supply pressure to the fuel cell stack 1 becomes appropriate during normal operation.

【0010】なお、本実施形態では、水素タンク2と可
変絞り弁3との間に、圧力レギュレータ12を設け、水
素タンク2の残圧に関わらず、可変絞り弁3に一定圧力
の水素ガスを供給するように制御している。
In this embodiment, a pressure regulator 12 is provided between the hydrogen tank 2 and the variable throttle valve 3 to supply the constant pressure hydrogen gas to the variable throttle valve 3 regardless of the residual pressure of the hydrogen tank 2. It is controlled to supply.

【0011】可変絞り弁3と燃料電池スタック1の間の
水素配管4(燃料ガス供給通路)には、イジェクタ5が
設けられる。燃料電池スタック1から排出される排燃料
ガスである余剰水素は、燃料循環配管である水素戻り配
管6を介してイジェクタ5の吸入口に戻され、通常運転
時は、イジェクタ5で水素を循環させることにより、燃
料電池スタック1の反応効率を上げている。
An ejector 5 is provided in the hydrogen pipe 4 (fuel gas supply passage) between the variable throttle valve 3 and the fuel cell stack 1. Excess hydrogen, which is exhausted fuel gas discharged from the fuel cell stack 1, is returned to the intake port of the ejector 5 through a hydrogen return pipe 6 which is a fuel circulation pipe, and during normal operation, the ejector 5 circulates hydrogen. As a result, the reaction efficiency of the fuel cell stack 1 is increased.

【0012】開閉弁を用いたパージ弁7は、通常運転時
に、例えば燃料電池スタック内の水素通路が水で閉塞さ
れた場合等に、一時的に水素ラインをパージするための
パージ手段である。
The purge valve 7 using an on-off valve is a purging means for temporarily purging the hydrogen line during normal operation, for example, when the hydrogen passage in the fuel cell stack is blocked by water.

【0013】開閉弁を用いた水素置換バルブ8は、起動
時に水素ラインを水素で置換するための燃料ガス排出手
段であり、パージ弁7より大きな開口面積に設定してい
る。コンプレッサ9は、空気を圧縮して燃料電池スタッ
ク1の酸化剤極の入口に供給し、酸化剤極の出口に設け
られた空気圧調整弁11により酸化剤極の空気圧が調整
される。燃料電池スタック1への空気の供給及び空気圧
の制御は、コントローラ15がコンプレッサ9及び空気
圧調整弁11を制御することにより行われる。
The hydrogen replacement valve 8 using an on-off valve is a fuel gas discharge means for replacing the hydrogen line with hydrogen at the time of startup, and has a larger opening area than the purge valve 7. The compressor 9 compresses air and supplies the compressed air to the inlet of the oxidant electrode of the fuel cell stack 1, and the air pressure of the oxidant electrode is adjusted by an air pressure adjusting valve 11 provided at the outlet of the oxidant electrode. The supply of air to the fuel cell stack 1 and the control of the air pressure are performed by the controller 15 controlling the compressor 9 and the air pressure adjusting valve 11.

【0014】次に、上記構成による燃料電池システムの
起動手順の概要を、図2のフローチャートに基づいて説
明する。まず、ステップ(以下、ステップをSと略す)
11で起動操作を開始すると、燃料極及び燃料配管内ガ
スの置換開始の指示が出る。次いで、S12で水素置換
バルブ8を開き、続いてS13で略一定流量(例えば1
00L/分 程度)でシステムに水素を供給して、水素
配管4,燃料極内部及び水素戻り配管6からなる水素ラ
イン内を新規に供給した水素で置き換える水素置換(燃
料ガス置換)を行う。
Next, an outline of the starting procedure of the fuel cell system having the above configuration will be described with reference to the flowchart of FIG. First, step (hereinafter, step is abbreviated as S)
When the starting operation is started at 11, an instruction to start replacement of the gas in the fuel electrode and the fuel pipe is issued. Next, in S12, the hydrogen substitution valve 8 is opened, and subsequently in S13, a substantially constant flow rate (for example, 1
Hydrogen is supplied to the system at a rate of about 00 L / min), and hydrogen replacement (fuel gas replacement) is performed to replace the inside of the hydrogen line consisting of the hydrogen pipe 4, the inside of the fuel electrode and the hydrogen return pipe 6 with newly supplied hydrogen.

【0015】本実施形態では、一定流量で水素を供給す
るために、水素置換時の可変絞り弁3の開度を一定にす
るようにした。可変絞り弁3の上流/下流の圧力比が
1.9以上であれば、可変絞り弁3はチョーク状態とな
る。従って、圧力レギュレータ12の設定圧を十分高く
すれば、可変絞り弁3の下流圧に影響されず、開度が一
定なら流量が一定となるのである。
In the present embodiment, in order to supply hydrogen at a constant flow rate, the opening of the variable throttle valve 3 at the time of hydrogen replacement is made constant. When the upstream / downstream pressure ratio of the variable throttle valve 3 is 1.9 or more, the variable throttle valve 3 is in the choked state. Therefore, if the set pressure of the pressure regulator 12 is made sufficiently high, the flow rate becomes constant if the opening is constant, without being influenced by the downstream pressure of the variable throttle valve 3.

【0016】S14で、所定時間(例えば10秒程度)
が経過したことをもって水素ラインが十分置換されたこ
とを判定し、水素置換を終了、すなわち可変絞り弁3を
閉じて、水素の供給を止める。前記所定時間は、予め上
記の置換流量で十分な置換ができる必要最小限の時間を
実験的に求め、この必要最小限の時間にある程度の余裕
度を加えて、その時間だけ置換するようにするのであ
る。
In S14, a predetermined time (for example, about 10 seconds)
After the passage of time, it is determined that the hydrogen line has been sufficiently replaced, the hydrogen replacement is completed, that is, the variable throttle valve 3 is closed, and the supply of hydrogen is stopped. As the predetermined time, the minimum required time for sufficient replacement can be experimentally obtained in advance with the above-mentioned replacement flow rate, and a certain degree of margin is added to this minimum required time to replace only that time. Of.

【0017】S15で水素置換バルブ8を閉じ、S16
では、通常運転操作に基づき空気、水素を供給し、電力
負荷取り出しを開始する。
The hydrogen substitution valve 8 is closed in S15, and S16
Then, air and hydrogen are supplied based on normal operation, and power load extraction is started.

【0018】なお、本実施形態では、パージ弁7とは別
に、パージ弁7より開口面積の大きい水素置換バルブ8
を設けた。従来のパージ弁7とは別個に水素置換バルブ
8を設けた理由は、パージ弁7は燃料消費率を悪化させ
ないために、必要最小限の開口面積としたいが、そうす
ると、起動時の水素置換で、大きな流量を流そうとした
時に圧損が大きくなってしまうためである。
In the present embodiment, apart from the purge valve 7, a hydrogen replacement valve 8 having an opening area larger than that of the purge valve 7 is provided.
Was set up. The reason why the hydrogen replacement valve 8 is provided separately from the conventional purge valve 7 is that the purge valve 7 should have a minimum required opening area so as not to deteriorate the fuel consumption rate. This is because the pressure loss becomes large when trying to flow a large flow rate.

【0019】もちろん、一つの開閉弁をパージ弁7兼水
素置換バルブとして用いても構わない。この場合、バル
ブ開口面積を大きくすると、通常運転中にパージする時
のパージ流量が不必要に多くなり、燃料消費が増える。
Of course, one on-off valve may be used as the purge valve 7 and hydrogen replacement valve. In this case, if the valve opening area is increased, the purge flow rate for purging during normal operation unnecessarily increases and fuel consumption increases.

【0020】これとは逆に、バルブ開口面積を小さくす
ると、起動時に水素置換流量を大きくしようとすると、
バルブの圧損により燃料電池スタックにかかる圧力が高
くなってしまい、燃料電池スタックにダメージを与えて
しまうおそれがあり、水素置換流量を小さくせざるをえ
なくなり、必要な置換時間が長くなり、起動時間が延び
てしまう。
On the contrary, if the valve opening area is reduced and the hydrogen replacement flow rate is increased at startup,
The pressure loss of the valve increases the pressure applied to the fuel cell stack, which may damage the fuel cell stack.Therefore, the hydrogen replacement flow rate must be reduced, and the required replacement time becomes longer and the startup time becomes longer. Will be extended.

【0021】ただし、バルブ一つとすることにより、低
コスト化が可能であり、燃料消費率、起動時間、コスト
のバランスで、バルブを一つにするか二つにするか選択
すべきである。
However, the cost can be reduced by using only one valve, and one valve or two valves should be selected depending on the balance of fuel consumption rate, starting time and cost.

【0022】なお、以上イジェクタで水素を循環させる
システムについて説明してきたが、外部動力による水素
循環ポンプを用いて水素を循環させるシステム、水素を
循環させないシステムにおいても本発明を適用可能であ
ることは言うまでもない。
Although the system in which hydrogen is circulated by the ejector has been described above, the present invention can be applied to a system in which hydrogen is circulated by using a hydrogen circulation pump with external power and a system in which hydrogen is not circulated. Needless to say.

【0023】以上説明したように本実施形態によれば、
起動時に燃料ガス供給通路及び燃料極内部を確実に必要
十分な水素置換を行うため、長期間放置後であっても、
確実な起動が短時間で可能となるという効果がある。
As described above, according to this embodiment,
At the time of start-up, the fuel gas supply passage and the inside of the fuel electrode are reliably and sufficiently replaced with hydrogen.
This has the effect of enabling reliable startup in a short time.

【0024】特に、燃料ガスの供給流量を略一定とする
ことで、所定時間が経過したことをもって十分置換され
たと判定できるので、簡単な制御により上記効果を得る
ことが出来る。
In particular, by making the supply flow rate of the fuel gas substantially constant, it is possible to determine that the replacement has been sufficiently performed after a lapse of a predetermined time, so that the above effect can be obtained by simple control.

【0025】また、可変絞り弁の開度を一定とすること
で燃料ガスの供給流量が略一定となるので制御構成がよ
り簡単なものになる。
Further, by making the opening of the variable throttle valve constant, the supply flow rate of the fuel gas becomes substantially constant, so that the control structure becomes simpler.

【0026】〔第2実施形態〕図3は、本発明に係る燃
料電池システムの第2実施形態の構成を説明する構成図
である。本実施形態と第1実施形態との相違は、可変絞
り弁3とイジェクタ5との間に、イジェクタ入口圧を検
知する圧力センサ13を設けたことと、燃料電池スタッ
ク1に供給する水素圧を検知するための圧力センサ14
を設けたことである。その他の構成は、図1と同様であ
るので、同一の構成要素には同一符号を付与して重複す
る説明を省略する。
[Second Embodiment] FIG. 3 is a configuration diagram for explaining the configuration of a second embodiment of the fuel cell system according to the present invention. The difference between the present embodiment and the first embodiment is that a pressure sensor 13 that detects the ejector inlet pressure is provided between the variable throttle valve 3 and the ejector 5, and that the hydrogen pressure supplied to the fuel cell stack 1 is Pressure sensor 14 for detecting
Is provided. Since other configurations are the same as those in FIG. 1, the same components are designated by the same reference numerals and redundant description will be omitted.

【0027】本実施形態では、起動時の水素置換におい
て、圧力センサ13が検出するイジェクタ入口圧が一定
(例えば0.5バール程度)となるように、可変絞り弁
3の開度をコントローラ15が調整するようにした。
In this embodiment, the controller 15 controls the opening degree of the variable throttle valve 3 so that the ejector inlet pressure detected by the pressure sensor 13 is constant (for example, about 0.5 bar) during hydrogen replacement at the time of startup. I adjusted it.

【0028】イジェクタ5は、その入口側のノズルによ
り流路が絞られるため、水素を流すと圧損が発生する。
従って、水素置換時のイジェクタ入口圧を高く、置換時
にイジェクタ5がチョークする値に設定すれば、イジェ
クタ5の上流圧を一定にすることにより、水素置換時の
供給水素流量を一定に出来るのである。
Since the flow path of the ejector 5 is narrowed by the nozzle on the inlet side, a pressure loss occurs when hydrogen is flown.
Therefore, if the ejector inlet pressure at the time of hydrogen replacement is set high and the ejector 5 chokes at the time of replacement, the supply hydrogen flow rate at the time of hydrogen replacement can be made constant by making the upstream pressure of the ejector 5 constant. .

【0029】次に、本実施形態における水素置換手順を
図4のフローチャートで説明する。まず、S21で置換
開始の指示が出ると、S22で水素置換バルブ8を開
け、S23で圧力センサ13が検出するイジェクタ5の
入口圧が所定の値となるように可変絞り弁3の開度を調
整しながら水素を供給する。水素供給、すなわち実際の
置換時間が所定時間となったら、S24で可変絞り弁3
を閉じて水素供給を終了し、S25で水素置換バルブ8
を閉じて、一連の置換作用を終了する。
Next, the hydrogen substitution procedure in this embodiment will be described with reference to the flow chart of FIG. First, when a replacement start instruction is issued in S21, the hydrogen replacement valve 8 is opened in S22, and the opening degree of the variable throttle valve 3 is adjusted so that the inlet pressure of the ejector 5 detected by the pressure sensor 13 reaches a predetermined value in S23. Supply hydrogen while adjusting. When the hydrogen supply, that is, the actual replacement time reaches the predetermined time, the variable throttle valve 3
To close the hydrogen supply, and in S25, the hydrogen replacement valve 8
To close the series of permutation actions.

【0030】なお、イジェクタ5のノズルの大きさ、水
素置換流量等によっては、水素置換時にイジェクタ5を
チョーク状態とできない場合がある。
Depending on the size of the nozzle of the ejector 5, the hydrogen replacement flow rate, etc., the ejector 5 may not be in the choked state during hydrogen replacement.

【0031】イジェクタの大きさは、燃料電池スタック
の特性により決まる、通常運転時にイジェクタで循環さ
せたい水素量によって決められるべきである。
The size of the ejector should be determined by the amount of hydrogen desired to be circulated by the ejector during normal operation, which is determined by the characteristics of the fuel cell stack.

【0032】また、水素置換流量は、多すぎると排出さ
れる水素量が多くなり、排出水素を燃焼させる図示しな
い燃焼器が大型化したり、燃費が悪化するため、極端に
多くすることはできない。
Further, if the hydrogen replacement flow rate is too large, the amount of hydrogen discharged becomes large, the combustor (not shown) for burning the discharged hydrogen becomes large, and the fuel consumption deteriorates, so it cannot be extremely increased.

【0033】例えば、ノズル面積の大きなイジェクタを
用い、水素置換流量を少ない設定にした場合は、置換時
にイジェクタをチョーク状態で維持できなくなるのであ
る。
For example, when an ejector having a large nozzle area is used and the hydrogen replacement flow rate is set to be small, the ejector cannot be maintained in a choked state during replacement.

【0034】このような場合は、図5に示すように、燃
料電池スタック1の入口圧に応じて、水素要求流量が所
定の一定値となるイジェクタ入口圧を予めコントローラ
15に記憶させておき、その圧力となるように可変絞り
弁3を調整すれば、全く同様の効果を得ることができる
のである。
In such a case, as shown in FIG. 5, the ejector inlet pressure at which the required hydrogen flow rate becomes a predetermined constant value is stored in the controller 15 in advance according to the inlet pressure of the fuel cell stack 1, If the variable throttle valve 3 is adjusted so as to attain that pressure, the same effect can be obtained.

【0035】以上説明してきたように、本実施形態によ
れば、第1実施形態と同様に、起動時に確実に必要十分
な水素置換を行うため、長期間放置後であっても、確実
な起動が可能となったのである。
As described above, according to this embodiment, as in the first embodiment, the necessary and sufficient hydrogen substitution is surely performed at the time of startup, so that reliable startup is possible even after being left for a long time. Has become possible.

【0036】特に、既存のイジェクタを用い、イジェク
タがチョークする特性を利用して、イジェクタ上流の燃
料ガス圧力が所定値となるように、可変絞り弁開度を調
整することにより、簡単かつ確実に燃料ガスの供給流量
を略一定とすることができる。
Particularly, by using the existing ejector and utilizing the characteristic that the ejector chokes, the variable throttle valve opening is adjusted simply and surely so that the fuel gas pressure upstream of the ejector becomes a predetermined value. The supply flow rate of the fuel gas can be made substantially constant.

【0037】また、イジェクタ上流の燃料ガス圧力をイ
ジェクタ下流の燃料ガス圧力に応じて決めるので、イジ
ェクタ下流の燃料ガス圧力が変動しても簡単かつ確実に
燃料ガスの供給流量を略一定とすることができる。
Further, since the fuel gas pressure on the upstream side of the ejector is determined according to the fuel gas pressure on the downstream side of the ejector, even if the fuel gas pressure on the downstream side of the ejector fluctuates, the supply flow rate of the fuel gas can be kept substantially constant. You can

【0038】〔第3実施形態〕本実施形態の構成は、図
3に示した第2実施形態と同様である。図6には、水素
置換時の燃料電池スタック入口圧の推移を示す。図6の
実線は、起動前に燃料電池システムの水素ラインが、完
全に空気で満たされており、置換に最も時間を要する場
合である。
[Third Embodiment] The configuration of this embodiment is the same as that of the second embodiment shown in FIG. FIG. 6 shows the transition of the fuel cell stack inlet pressure during hydrogen replacement. The solid line in FIG. 6 is the case where the hydrogen line of the fuel cell system is completely filled with air before starting and the replacement takes the longest time.

【0039】水素供給を始めると、いったん燃料電池ス
タック入口圧が上昇し、置換が進むにつれて圧力は低下
し、水素ラインが完全に水素で満たされると、圧力は一
定(P0)(例えば3kPa)となる。
When the hydrogen supply is started, the fuel cell stack inlet pressure rises once, and the pressure decreases as the replacement progresses. When the hydrogen line is completely filled with hydrogen, the pressure becomes constant (P0) (for example, 3 kPa). Become.

【0040】これは、空気は水素に対して分子量が大き
く、一定流量で置換した場合、水素置換バルブを通過す
る時の圧力が水素に対して大きいためである。すなわ
ち、置換流量一定の場合、イジェクタ下流圧で、水素ラ
インにどの程度空気が残存しているかが判定できるので
ある。
This is because air has a large molecular weight with respect to hydrogen, and when it is replaced at a constant flow rate, the pressure when passing through the hydrogen replacement valve is large with respect to hydrogen. That is, when the replacement flow rate is constant, it is possible to determine how much air remains in the hydrogen line at the ejector downstream pressure.

【0041】本実施形態では、イジェクタ下流圧として
燃料電池スタック入口圧を用いたのである。
In this embodiment, the fuel cell stack inlet pressure is used as the ejector downstream pressure.

【0042】また、同図の破線は、起動前に燃料電池シ
ステムの水素ラインに、水素が残存していた場合の一例
である。水素ラインが空気で満たされている実線の場合
は、置換をt1時間行う必要があるのに対し、水素が残
存している破線の場合は、t2(t2<t1)でよいこ
とがわかる。
The broken line in the figure is an example of the case where hydrogen remains in the hydrogen line of the fuel cell system before starting. It can be seen that in the case of the solid line in which the hydrogen line is filled with air, the replacement needs to be performed for t1 hours, whereas in the case of the broken line in which hydrogen remains, t2 (t2 <t1) is sufficient.

【0043】本実施形態では、この特性を利用し、水素
置換時に燃料電池スタックの入口圧が所定値(P0)を
下回った時点で置換を終了するようにした。すなわち、
イジェクタ入口圧を検知する圧力センサ13が燃料ガス
濃度を検出する手段の役割もかねて燃料電池スタックの
入口圧が所定値(P0)を下回ったことを燃料極内、燃
料ガス通路の水素濃度が所定値以上(発電に必要な最低
限の濃度以上)となったとみなしている。
In the present embodiment, by utilizing this characteristic, the replacement is completed when the inlet pressure of the fuel cell stack becomes lower than the predetermined value (P0) during the hydrogen replacement. That is,
Since the pressure sensor 13 for detecting the ejector inlet pressure also serves as a means for detecting the fuel gas concentration, the fact that the inlet pressure of the fuel cell stack falls below the predetermined value (P0) indicates that the hydrogen concentration in the fuel gas passage is within the fuel electrode. It is considered that the value has been exceeded (above the minimum concentration required for power generation).

【0044】次に、本実施形態における起動時の水素置
換を図7のフローチャートに基づいて説明する。
Next, hydrogen replacement at the time of startup in this embodiment will be described with reference to the flowchart of FIG.

【0045】まずS31で置換開始の指示が出ると、S
32で水素置換バルブ8を開け、S33で圧力センサ1
3が検出するイジェクタ入口圧が所定値となるように可
変絞り弁3の開度を調整しながら水素を供給する。S3
4で圧力センサ14が検出する燃料電池スタック1の入
口圧が所定値以下か判定し、所定値以上の場合はそのま
ま水素供給を続けるように、所定値以下の場合はS35
で可変絞り弁3を閉じて水素供給を終了し、S36で水
素置換バルブ8を閉じて、一連の置換作業を終了する。
First, when an instruction to start replacement is issued in S31, S
At 32, the hydrogen replacement valve 8 is opened, and at S33, the pressure sensor 1
Hydrogen is supplied while adjusting the opening of the variable throttle valve 3 so that the ejector inlet pressure detected by 3 becomes a predetermined value. S3
In step 4, it is determined whether the inlet pressure of the fuel cell stack 1 detected by the pressure sensor 14 is less than or equal to a predetermined value. If it is greater than or equal to the predetermined value, hydrogen supply is continued as it is.
In step S36, the variable throttle valve 3 is closed to terminate the hydrogen supply, and in step S36, the hydrogen replacement valve 8 is closed to complete the series of replacement work.

【0046】こうすることにより、燃料電池システムの
水素ライン内の水素残存量(濃度)に応じて、必要最小
限の置換時間とすることが可能となり、置換により失わ
れる水素量を最小に抑え、起動時間を短縮しつつ、確実
な起動が可能となったのである。
By doing so, it becomes possible to set the necessary minimum replacement time in accordance with the remaining amount (concentration) of hydrogen in the hydrogen line of the fuel cell system, and to minimize the amount of hydrogen lost by replacement, It has become possible to start up reliably while shortening the startup time.

【0047】また、燃料ガス排出手段である水素置換バ
ルブ8上流のガス圧力値で水素ライン内の水素残存量
(濃度)を判別することができるようになり、水素濃度
専用のセンサを用いる必要も無い。
Further, the amount of hydrogen remaining (concentration) in the hydrogen line can be determined by the gas pressure value upstream of the hydrogen substitution valve 8 which is the fuel gas discharge means, and it is also necessary to use a sensor dedicated to hydrogen concentration. There is no.

【0048】また、燃料ガスの供給流量を略一定として
おくことで、燃料極内、または燃料ガス通路内の燃料ガ
スの増加に伴い燃料ガス排出手段上流の圧力が所定値以
下となったことが判定しやすくなる。本発明を適用しな
い場合、燃料ガスの供給流量が略一定でなくなり、燃料
ガス排出手段上流の圧力が所定値以下となっても燃料極
内、または燃料ガス通路内の燃料ガスの増加に伴うもの
か、燃料ガス供給流量の変動に伴うものか判別が困難と
なり、制御が不確実となる。
Further, by keeping the supply flow rate of the fuel gas substantially constant, the pressure upstream of the fuel gas discharge means may become less than or equal to a predetermined value as the fuel gas in the fuel electrode or in the fuel gas passage increases. It will be easier to judge. When the present invention is not applied, the supply flow rate of the fuel gas is not substantially constant, and even if the pressure upstream of the fuel gas discharge means becomes equal to or lower than a predetermined value, the fuel gas in the fuel electrode or the fuel gas passage is increased. It is difficult to determine whether the change is due to the fluctuation of the fuel gas supply flow rate, and the control becomes uncertain.

【0049】なお、本実施形態では、燃料電池スタック
入口圧を検出する圧力センサ14を用いたが、圧力セン
サの位置は、イジェクタより下流であれば、例えば燃料
電池スタック下流でもよいことは言うまでもない。
Although the pressure sensor 14 for detecting the inlet pressure of the fuel cell stack is used in this embodiment, it goes without saying that the pressure sensor may be located downstream of the ejector, for example, downstream of the fuel cell stack. .

【0050】本来は、水素置換バルブ入口圧を使うのが
理想的であるが、燃料電池スタックの圧損が十分小さけ
れば、上記のように燃料電池スタック入口圧で代用でき
るのである。
Originally, it is ideal to use the hydrogen substitution valve inlet pressure, but if the pressure loss of the fuel cell stack is sufficiently small, the fuel cell stack inlet pressure can be substituted as described above.

【0051】なお、イジェクタ入口圧を一定にすること
により置換流量を一定とするようにしたが、可変絞り弁
開度を一定にして、置換流量を一定となるようにしても
よい。
Although the replacement flow rate is made constant by making the ejector inlet pressure constant, the variable throttle valve opening may be made constant to make the replacement flow rate constant.

【0052】〔第4実施形態〕本実施形態の構成は、図
3に示した第2実施形態と同様である。上記の第3実施
形態では、水素ライン内が空気で満たされている場合
に、置換時の燃料電池スタック入口圧力が例えば最大4
0kPaまで上がる水素置換流量、水素置換バルブの設
定にした場合に、十分置換された後の状態では、圧力が
約3kPaとなる。このような最大圧力40kPaに耐
えて、かつ低圧力を精度よく検知するためには高価な圧
力センサが必要となる。
[Fourth Embodiment] The configuration of this embodiment is the same as that of the second embodiment shown in FIG. In the third embodiment described above, when the hydrogen line is filled with air, the fuel cell stack inlet pressure at the time of replacement is, for example, 4 at maximum.
When the hydrogen replacement flow rate is increased to 0 kPa and the hydrogen replacement valve is set, the pressure becomes about 3 kPa in a state after sufficient replacement. An expensive pressure sensor is required to withstand such a maximum pressure of 40 kPa and accurately detect a low pressure.

【0053】圧力センサの精度が低い場合は、十分に置
換されていないのに置換終了判定してしまったり、セン
サ指示値上は圧力がP0まで落ちずに、置換が終了しな
くなる不具合が予測される。
When the accuracy of the pressure sensor is low, it is predicted that the replacement is not completed even though it has not been sufficiently replaced, or the replacement will not end because the pressure does not drop to P0 on the sensor indication value. It

【0054】そこで、本実施形態では、判定圧力を図6
のP0よりもやや高いP1(例えば6kPa)とし、そ
のかわりに、燃料電池スタック入口圧がP1以下となっ
た後も、所定時間(例えば3秒程度)水素供給を続ける
ようにした。
Therefore, in the present embodiment, the judgment pressure is set as shown in FIG.
P1 (for example, 6 kPa), which is slightly higher than P0, was set, and instead, hydrogen supply was continued for a predetermined time (for example, about 3 seconds) even after the fuel cell stack inlet pressure became P1 or less.

【0055】図8は、本実施形態の水素置換動作を説明
するフローチャートである。図7の第3実施形態との相
違は、S45で、スタック入口圧力が所定値(P1)以
下となった後に、さらに所定時間水素を供給し続け、置
換を続けることである。
FIG. 8 is a flow chart for explaining the hydrogen replacement operation of this embodiment. The difference from the third embodiment of FIG. 7 is that in S45, after the stack inlet pressure becomes equal to or lower than a predetermined value (P1), hydrogen is further supplied for a predetermined time and replacement is continued.

【0056】こうすることにより、安価で精度の低い圧
力センサを用いつつ、確実に必要十分な置換を行ない、
安定して起動することが可能となったのである。
By doing so, necessary and sufficient replacement can be reliably performed while using an inexpensive and low-precision pressure sensor.
It became possible to start up stably.

【0057】なお、イジェクタ入口圧を一定にすること
により置換流量を一定とするようにしたが、可変絞り弁
開度を一定にして、置換流量を一定となるようにしても
よい。
The replacement flow rate is made constant by making the ejector inlet pressure constant, but the variable throttle valve opening may be made constant to make the replacement flow rate constant.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る燃料電池システムの第1実施形態
の構成を説明する構成図である。
FIG. 1 is a configuration diagram illustrating a configuration of a first embodiment of a fuel cell system according to the present invention.

【図2】第1実施形態の動作を説明するフローチャート
である。
FIG. 2 is a flowchart illustrating the operation of the first embodiment.

【図3】本発明に係る燃料電池システムの第2実施形態
の構成を説明する構成図である。
FIG. 3 is a configuration diagram illustrating a configuration of a second embodiment of a fuel cell system according to the present invention.

【図4】第2実施形態の動作を説明するフローチャート
である。
FIG. 4 is a flowchart illustrating the operation of the second embodiment.

【図5】燃料電池スタック入口圧力に対する水素流量が
所定値となるイジェクタ入口圧力を示す図である。
FIG. 5 is a diagram showing an ejector inlet pressure at which a hydrogen flow rate with respect to a fuel cell stack inlet pressure has a predetermined value.

【図6】第3実施形態における水素置換時の燃料電池ス
タック入口圧力の時間変化を示す図である。
FIG. 6 is a diagram showing a time change of a fuel cell stack inlet pressure at the time of hydrogen replacement in the third embodiment.

【図7】第3実施形態の動作を説明するフローチャート
である。
FIG. 7 is a flowchart illustrating an operation of the third embodiment.

【図8】第4実施形態の動作を説明するフローチャート
である。
FIG. 8 is a flowchart illustrating an operation of the fourth embodiment.

【符号の説明】[Explanation of symbols]

1…燃料電池スタック 2…水素タンク 3…可変絞り弁 4…水素配管 5…イジェクタ 6…水素戻り配管 7…パージ弁 8…水素置換バルブ 9…コンプレッサ 10…空気配管 11…空気圧調整弁 12…圧力レギュレータ 13…圧力センサ 14…圧力センサ 15…コントローラ 1 ... Fuel cell stack 2 ... Hydrogen tank 3 ... Variable throttle valve 4 ... Hydrogen piping 5 ... Ejector 6 ... Hydrogen return piping 7 ... Purge valve 8 ... Hydrogen replacement valve 9 ... Compressor 10 ... Air piping 11 ... Air pressure control valve 12 ... Pressure regulator 13 ... Pressure sensor 14 ... Pressure sensor 15 ... Controller

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 電解質膜を挟んで燃料極と酸化剤極が対
設された燃料電池本体と、 燃料電池本体に燃料ガス供給通路を介して燃料ガスを供
給する燃料ガス供給手段と、を備えた燃料電池システム
において、 燃料電池本体から排出された排燃料ガスを外部へ排出す
る燃料ガス排出手段を備え、 燃料電池システムの起動時に、前記燃料ガス供給手段か
ら略一定の流量で燃料極に燃料ガスを供給しつつ、排燃
料ガスを前記燃料ガス排出手段から排出することによ
り、前記燃料ガス供給通路および燃料極内部を燃料ガス
で置換する燃料ガス置換を行うことを特徴とする燃料電
池システム。
1. A fuel cell main body in which a fuel electrode and an oxidizer electrode are opposed to each other with an electrolyte membrane sandwiched between them, and a fuel gas supply means for supplying a fuel gas to the fuel cell main body through a fuel gas supply passage. In the fuel cell system, a fuel gas discharge means for discharging exhaust fuel gas discharged from the fuel cell body to the outside is provided, and when the fuel cell system is started, the fuel gas is supplied from the fuel gas supply means to the fuel electrode at a substantially constant flow rate. A fuel cell system in which exhaust gas is supplied from the fuel gas exhausting means while gas is being supplied to replace the inside of the fuel gas supply passage and the inside of the fuel electrode with the fuel gas.
【請求項2】 燃料電池運転中に、燃料電池本体から排
出された排燃料ガスの少なくとも一部を一時的に外部に
排出するパージ手段を有し、 前記燃料ガス排出手段が、前記パージ手段よりも大きな
開口面積を有することを特徴とする請求項1に記載の燃
料電池システム。
2. A purge means for temporarily discharging at least a part of the exhausted fuel gas discharged from the fuel cell main body to the outside during the operation of the fuel cell, wherein the fuel gas discharge means is provided by the purge means. The fuel cell system according to claim 1, wherein the fuel cell system also has a large opening area.
【請求項3】 前記燃料ガス供給通路に可変絞り弁を備
え、 前記燃料ガス置換時に、前記可変絞り弁の開度を一定と
することを特徴とする請求項1または請求項2に記載の
燃料電池システム。
3. The fuel according to claim 1, wherein a variable throttle valve is provided in the fuel gas supply passage, and the opening of the variable throttle valve is made constant when the fuel gas is replaced. Battery system.
【請求項4】 前記燃料ガス供給通路の流量を制御する
可変絞り弁と、 前記可変絞り弁と燃料電池本体との間に配設されたイジ
ェクタと、 燃料電池本体から排出された排燃料ガスを前記イジェク
タの吸入口に戻す燃料循環配管と、 前記イジェクタ上流の燃料ガス圧力を検出する圧力検出
手段と、を備え、 前記燃料ガス置換時に、前記イジェクタ上流の燃料ガス
圧力が所定値となるように、前記可変絞り弁開度を調整
することを特徴とする請求項1または請求項2に記載の
燃料電池システム。
4. A variable throttle valve for controlling the flow rate of the fuel gas supply passage, an ejector arranged between the variable throttle valve and the fuel cell main body, and exhaust fuel gas discharged from the fuel cell main body. A fuel circulation pipe for returning to the intake port of the ejector; and a pressure detection means for detecting the fuel gas pressure upstream of the ejector, so that the fuel gas pressure upstream of the ejector becomes a predetermined value when the fuel gas is replaced. The fuel cell system according to claim 1 or 2, wherein the opening of the variable throttle valve is adjusted.
【請求項5】 前記イジェクタ下流の燃料ガス圧力を検
出する圧力検出手段を備え、 前記燃料ガス置換時に、前記イジェクタ上流の燃料ガス
圧力の所定値をイジェクタ下流の燃料ガス圧力に応じて
決めることを特徴とする請求項4に記載の燃料電池シス
テム。
5. A pressure detecting means for detecting a fuel gas pressure downstream of the ejector is provided, and a predetermined value of the fuel gas pressure upstream of the ejector is determined according to the fuel gas pressure downstream of the ejector when the fuel gas is replaced. The fuel cell system according to claim 4, wherein the fuel cell system is a fuel cell system.
【請求項6】 前記燃料ガス置換を所定時間経過したら
終了させることを特徴とする請求項1乃至請求項5の何
れか1項に記載の燃料電池システム。
6. The fuel cell system according to claim 1, wherein the replacement of the fuel gas is terminated after a predetermined time has elapsed.
【請求項7】 燃料電池本体の燃料極内、または燃料ガ
ス通路内の燃料ガス濃度を検出する燃料ガス濃度検出手
段を備え、 該燃料ガス濃度検出手段が検出した燃料ガス濃度に基づ
いて、前記燃料ガス置換を終了させることを特徴とする
請求項1乃至請求項5の何れか1項に記載の燃料電池シ
ステム。
7. A fuel gas concentration detecting means for detecting a fuel gas concentration in a fuel electrode of a fuel cell main body or in a fuel gas passage, the fuel gas concentration detecting means detecting the fuel gas concentration based on the fuel gas concentration detected by the fuel gas concentration detecting means. The fuel cell system according to any one of claims 1 to 5, wherein the fuel gas replacement is completed.
【請求項8】 前記燃料ガス排出手段上流の燃料ガス圧
力を検出する圧力検出手段を備え、 該圧力検出手段が検出した圧力に基づいて、前記燃料ガ
ス置換を終了させることを特徴とする請求項1乃至請求
項5の何れか1項に記載の燃料電池システム。
8. The fuel gas discharge means is provided with a pressure detecting means for detecting a fuel gas pressure upstream, and the fuel gas replacement is terminated based on the pressure detected by the pressure detecting means. The fuel cell system according to any one of claims 1 to 5.
【請求項9】 前記圧力検出手段が所定の圧力低下を検
出した時から所定時間経過後に、前記燃料ガス置換を終
了させることを特徴とする請求項8に記載の燃料電池シ
ステム。
9. The fuel cell system according to claim 8, wherein the fuel gas replacement is terminated after a lapse of a predetermined time from the time when the pressure detecting means detects a predetermined pressure drop.
【請求項10】 電解質膜を挟んで燃料極と酸化剤極が
対設された燃料電池本体と、 燃料電池本体に燃料ガス供給通路を経て燃料ガスを供給
する燃料ガス供給手段と、を備えた燃料電池システムに
おいて、 燃料電池本体から排出された排燃料ガスを外部へ排出す
る燃料ガス排出手段と、 該燃料ガス排出手段上流の燃料ガス圧力を検出する圧力
検出手段と、を備え、 燃料電池システムの起動時に、前記燃料ガス供給手段か
ら燃料極に燃料ガスを供給しつつ、排燃料ガスを前記燃
料ガス排出手段から排出することにより、前記燃料ガス
供給通路および燃料電池本体の燃料極内部を燃料ガスで
置換する燃料ガス置換を行い、 前記圧力検出手段が検出した圧力に基づいて、前記燃料
ガス置換を終了させることを特徴とする燃料電池システ
ム。
10. A fuel cell main body in which a fuel electrode and an oxidizer electrode are opposed to each other with an electrolyte membrane sandwiched between them, and a fuel gas supply means for supplying fuel gas to the fuel cell main body through a fuel gas supply passage. A fuel cell system comprising: a fuel gas discharge means for discharging exhaust fuel gas discharged from the fuel cell body to the outside; and a pressure detection means for detecting a fuel gas pressure upstream of the fuel gas discharge means. When the fuel cell is started, the fuel gas is supplied from the fuel gas supply means to the fuel electrode, and the exhaust fuel gas is discharged from the fuel gas discharge means, so that the fuel gas is supplied to the fuel gas supply passage and the inside of the fuel electrode of the fuel cell body. A fuel cell system, wherein fuel gas replacement for gas replacement is performed, and the fuel gas replacement is terminated based on the pressure detected by the pressure detection means.
【請求項11】前記圧力検出手段が検出した圧力が所定
値に低下した時から、所定時間経過後に、前記燃料ガス
置換を終了させることを特徴とする請求項10に記載の
燃料電池システム。
11. The fuel cell system according to claim 10, wherein the fuel gas replacement is terminated after a lapse of a predetermined time from the time when the pressure detected by the pressure detecting means decreases to a predetermined value.
JP2002138919A 2002-05-14 2002-05-14 Fuel cell system Expired - Fee Related JP4106961B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002138919A JP4106961B2 (en) 2002-05-14 2002-05-14 Fuel cell system
KR1020047005391A KR100599901B1 (en) 2002-05-14 2003-04-23 Fuel cell system and related startup method
US10/491,589 US7402352B2 (en) 2002-05-14 2003-04-23 Fuel cell system and related startup method
CNB038013355A CN1322621C (en) 2002-05-14 2003-04-23 Fuel cell system and related startup method
PCT/JP2003/005179 WO2003096460A1 (en) 2002-05-14 2003-04-23 Fuel cell system and related startup method
EP03719183A EP1504485B1 (en) 2002-05-14 2003-04-23 Fuel cell system and related startup method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138919A JP4106961B2 (en) 2002-05-14 2002-05-14 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2003331889A true JP2003331889A (en) 2003-11-21
JP4106961B2 JP4106961B2 (en) 2008-06-25

Family

ID=29700239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138919A Expired - Fee Related JP4106961B2 (en) 2002-05-14 2002-05-14 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4106961B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139984A (en) * 2002-09-27 2004-05-13 Equos Research Co Ltd Fuel cell system
JP2004193107A (en) * 2002-11-29 2004-07-08 Honda Motor Co Ltd Starting method for fuel cell system
JP2004327397A (en) * 2003-04-28 2004-11-18 Equos Research Co Ltd Fuel cell system
JP2005235453A (en) * 2004-02-17 2005-09-02 Toyota Motor Corp Fuel cell system
JP2006164957A (en) * 2004-11-10 2006-06-22 Canon Inc Fuel cell apparatus, method for substituting gas in fuel cell apparatus, and equipment for fuel cell apparatus
US7282286B2 (en) 2002-11-28 2007-10-16 Honda Motor Co., Ltd. Start-up method for fuel cell
JPWO2006064946A1 (en) * 2004-12-15 2008-06-12 トヨタ自動車株式会社 Fuel cell system
JP2011065903A (en) * 2009-09-18 2011-03-31 Toyota Industries Corp Fuel cell system
US7981559B2 (en) 2004-03-17 2011-07-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system supply having a measuring device and a control device
US8206855B2 (en) 2004-08-20 2012-06-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system and liquid discharging method for the same
US8211581B2 (en) 2004-04-13 2012-07-03 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for fuel cell
US8557464B2 (en) 2006-06-09 2013-10-15 Toyota Jidosha Kabushiki Kaisha Fuel supply system having regulating device for supplying fuel gas to an anode

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595304B2 (en) * 2002-09-27 2010-12-08 株式会社エクォス・リサーチ Fuel cell system
JP2004139984A (en) * 2002-09-27 2004-05-13 Equos Research Co Ltd Fuel cell system
US8288044B2 (en) 2002-11-28 2012-10-16 Honda Motor Co., Ltd. Start-up method for fuel cell
US8142947B2 (en) 2002-11-28 2012-03-27 Honda Motor Co., Ltd. Start-up method for fuel cell
US7282286B2 (en) 2002-11-28 2007-10-16 Honda Motor Co., Ltd. Start-up method for fuel cell
US7910254B2 (en) 2002-11-28 2011-03-22 Honda Motor Co., Ltd. Start-up method for fuel cell
JP2004193107A (en) * 2002-11-29 2004-07-08 Honda Motor Co Ltd Starting method for fuel cell system
JP4686958B2 (en) * 2003-04-28 2011-05-25 株式会社エクォス・リサーチ Fuel cell system
JP2004327397A (en) * 2003-04-28 2004-11-18 Equos Research Co Ltd Fuel cell system
JP2005235453A (en) * 2004-02-17 2005-09-02 Toyota Motor Corp Fuel cell system
US7981559B2 (en) 2004-03-17 2011-07-19 Toyota Jidosha Kabushiki Kaisha Fuel cell system supply having a measuring device and a control device
JP4821608B2 (en) * 2004-03-17 2011-11-24 トヨタ自動車株式会社 Fuel cell system
US8211581B2 (en) 2004-04-13 2012-07-03 Toyota Jidosha Kabushiki Kaisha Control apparatus and control method for fuel cell
US8206855B2 (en) 2004-08-20 2012-06-26 Toyota Jidosha Kabushiki Kaisha Fuel cell system and liquid discharging method for the same
JP2006164957A (en) * 2004-11-10 2006-06-22 Canon Inc Fuel cell apparatus, method for substituting gas in fuel cell apparatus, and equipment for fuel cell apparatus
JPWO2006064946A1 (en) * 2004-12-15 2008-06-12 トヨタ自動車株式会社 Fuel cell system
JP4771292B2 (en) * 2004-12-15 2011-09-14 トヨタ自動車株式会社 Fuel cell system
US8557464B2 (en) 2006-06-09 2013-10-15 Toyota Jidosha Kabushiki Kaisha Fuel supply system having regulating device for supplying fuel gas to an anode
JP2011065903A (en) * 2009-09-18 2011-03-31 Toyota Industries Corp Fuel cell system
US9017887B2 (en) 2009-09-18 2015-04-28 Kabushiki Kaisha Toyota Jidoshokki Fuel cell system and method of controlling the same

Also Published As

Publication number Publication date
JP4106961B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP4852917B2 (en) Fuel cell system
US6645654B2 (en) Fuel cell system
JP4758707B2 (en) Fuel cell system
JP2004022487A (en) Fuel cell system
JP2005100827A (en) Fuel cell system
WO2007018132A1 (en) Fuel cell system and method for judging fuel gas leakage in fuel cell system
US7402352B2 (en) Fuel cell system and related startup method
JP4632055B2 (en) Fuel cell system and liquid discharge method thereof
JP4106960B2 (en) Fuel cell system
JP4106961B2 (en) Fuel cell system
JP2004319318A (en) Fuel cell system
JP3879429B2 (en) Fuel cell system
JP5735606B2 (en) Stopping storage method of fuel cell system
JP2007059348A (en) Fuel cell system and starting method of fuel cell system
JP2004185969A (en) Fuel cell system
JP2011049040A (en) Fuel cell system
JP2009123600A (en) Fuel cell system, abnormality detecting method of fuel cell system, and vehicle
JP5250294B2 (en) Method for starting fuel cell system and fuel cell system
JP2009123588A (en) Fuel cell system
JP2006079892A (en) Fuel cell system
JP2010108757A (en) Fuel cell system and method for stopping fuel cell system
JP2010080109A (en) Fuel cell system and its control method
JP2005149838A (en) Fuel cell system
JP2004362825A (en) Fuel cell system
JP2006286482A (en) Fuel cell system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080311

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees