WO2020007366A1 - 取代的糖或糖苷及其在钻井液组合物中的应用 - Google Patents

取代的糖或糖苷及其在钻井液组合物中的应用 Download PDF

Info

Publication number
WO2020007366A1
WO2020007366A1 PCT/CN2019/094909 CN2019094909W WO2020007366A1 WO 2020007366 A1 WO2020007366 A1 WO 2020007366A1 CN 2019094909 W CN2019094909 W CN 2019094909W WO 2020007366 A1 WO2020007366 A1 WO 2020007366A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
substituent
straight
glycoside
substituted
Prior art date
Application number
PCT/CN2019/094909
Other languages
English (en)
French (fr)
Inventor
王中华
司西强
Original Assignee
中石化石油工程技术服务有限公司
中石化中原石油工程有限公司钻井工程技术研究院
中石化中原石油工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中石化石油工程技术服务有限公司, 中石化中原石油工程有限公司钻井工程技术研究院, 中石化中原石油工程有限公司 filed Critical 中石化石油工程技术服务有限公司
Priority to US16/768,639 priority Critical patent/US11713409B2/en
Priority to CN201980005768.9A priority patent/CN111542583B/zh
Publication of WO2020007366A1 publication Critical patent/WO2020007366A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/08Clay-free compositions containing natural organic compounds, e.g. polysaccharides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/12Clay-free compositions containing synthetic organic macromolecular compounds or their precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/032Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/03Specific additives for general use in well-drilling compositions
    • C09K8/035Organic additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/08Clay-free compositions containing natural organic compounds, e.g. polysaccharides, or derivatives thereof
    • C09K8/10Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/12Swell inhibition, i.e. using additives to drilling or well treatment fluids for inhibiting clay or shale swelling or disintegrating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/34Lubricant additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a substituted sugar or glycoside, and more particularly to a substituted sugar or glycoside or a mixture of multiple substituted sugars or glycosides.
  • the present invention also relates to a drilling fluid composition made from the substituted sugar or glycoside and a method for manufacturing the drilling fluid composition.
  • oil-based drilling fluids During oil and gas drilling, when encountering easily collapsed formations such as strong water-sensitive mud shales and mudstones with high clay mineral content, conventional water-based drilling fluids cannot effectively suppress the hydration expansion and dispersion of highly water-sensitive formations; strong inhibition Although water-based drilling fluid has better anti-collapse effect, lower cost, and environmental protection, its performance has not reached the same level as oil-based drilling fluid; therefore, it is easy to collapse in high-activity mud shale, etc. At present, the traditional solution is still the preferred oil-based drilling fluid. However, oil-based drilling fluids also have many shortcomings, including high preparation costs, unfavorable logging operations, serious losses in the case of leaks, and high post-cutting cutting pressure. These shortcomings have limited the large-scale oil-based drilling fluids Applications.
  • the inventor of the present invention believes that in the current situation, it is urgently needed to find a drilling fluid composition system that completely dehydrates the formation.
  • the drilling fluid composition mainly achieves the effect of completely eliminating formation hydration by adsorbing film-forming water blocking, reverse osmosis flooding, reducing drilling fluid water activity, embedding and tightening crystal layers, etc., and its action mechanism is similar to that of oil-based drilling
  • the liquid phase is near and the performance is equivalent to that of oil-based drilling fluids.
  • the drilling fluid composition system should also have environmental protection advantages that oil-based drilling fluids do not have.
  • This drilling fluid composition can be used in the field drilling of highly active mudstones, mudstones, and other shale oil and gas horizontal wells to achieve the field application effect of oil-based drilling fluids, and to solve the wall instability of easily collapsed formations It is of great significance to alleviate the environmental pressure caused by oil-based drilling fluids and expand the scope of application of water-based drilling fluids.
  • the inventors of the present invention conducted diligent research based on this knowledge, and found one substituted sugar or glycoside or a mixture of multiple substituted sugars or glycosides, and further found that if the one substituted sugar or glycoside or A mixture of a plurality of substituted sugars or glycosides is used as a component to manufacture a drilling fluid composition, and the drilling fluid composition can exhibit good temperature resistance, filtration loss performance, anti-pollution performance, inhibition performance, lubricity performance and storage performance. Layer protection performance, and non-toxic.
  • the present invention has been completed.
  • the present invention relates to the following aspects.
  • a substituted sugar or glycoside or a mixture of multiple substituted sugars or glycosides as described in any one of the preceding or following aspects, wherein the substituent A further comprises a unit in its structure-OR 6- (preferably ——O-CH 2 CH 2- ⁇ Or any combination thereof) and / or unit (Preferred ), R 5 is a C3-6 straight or branched trivalent alkyl group (preferably trivalent propyl or trivalent butyl), and R 6 is a C2-8 straight or branched chain alkylene group (preferably ethylene or Propylene), and / or, the substituent B further comprises a unit in its structure (Preferred especially ) And / or unit (Preferred especially ), R 3 is a C2-6 straight or branched chain alkylene group (preferably ethylene or propylene), and L 1 is (preferably a carbon number of 10 or less) an arbitrary linking group (preferably a single bond, C2 -10 straight or branched alkylene, -C ( 0) -C2-10 straight
  • n is a value from 0-3 (such as 1), a is a value from 0-6 (such as 1-4), a1 is a value from 0-3 (such as 1-2), and a2 is 0-3 Value (such as 1-2),
  • the substituent B is schematically represented by the following chemical formula (B-1), chemical formula (B-2) or chemical formula (B-3),
  • p is a value of 2-30 (preferably a value of 2-20 or 4-16)
  • q is a value of 0-30 (preferably a value of 2-30, 2-15 or 4-12)
  • v is a value of 0-30 Value (preferably a value of 1-20 or 4-12)
  • the substituent C is schematically represented by the following chemical formula (C-1), chemical formula (C-2) or chemical formula (C-3),
  • n is a value from 0-3 (such as 0)
  • a is a value from 0-6 (such as 1-4)
  • a1 is a value from 0-3 (such as 1-2)
  • a2 is 0-3 Values (such as 1-2)
  • b is a value of 1-5 (such as 2-4), where a and b-1 are not 0 at the same time or a1, a2, and b-1 are not 0 at the same time.
  • Two R 1 are the same or different from each other, each independently selected from hydrogen and C1-20 straight or branched alkyl (preferably each independently selected from hydrogen and C1-10 straight or branched alkyl, more preferably each independently Is selected from hydrogen and C1-4 straight or branched alkyl), m is an integer of 1-3 or 1-2, and * represents a bond of the substituent A, the substituent B, or the substituent C A junction, provided that there is at least one of said junctions.
  • a substituted sugar or glycoside or a mixture of multiple substituted sugars or glycosides described in any one of the foregoing or the following aspects is selected from one or more compounds schematically represented by the following chemical formula (XX),
  • Rx 1 is the substituent A
  • the other Rx 1 is the substituent C
  • the remaining Rx 1 are the same or different from each other, and are each independently selected from The substituent A, the substituent C, and the hydroxyl group
  • m1 is an integer of 2-3
  • m1 Rx 2 and m1 Rx 3 are the same or different from each other, and are each independently selected from a hydrogen atom and the substituent B, provided that Is that at least one of these Rx 2 and Rx 3 is the substituent B,
  • compound P When one or more compounds selected from the group consisting of the following chemical formula (I-1), (I-2), or (I-3) is referred to as compound P, the compound selected from the following formula (II- 1) or one or more compounds schematically represented by chemical formula (II-2) is referred to as compound X, and will be selected from the group consisting of the following chemical formula (III-1), chemical formula (III-2) or chemical formula (III-3)
  • compound Y One or more compounds represented by the chemical formula
  • compound Z the mixture is a mixture of at least two (preferably at least three) of the compound P, the compound X, the compound Y, and the compound Z, provided that the mixture also contains the compound Substituent A, the substituent B, and the substituent C,
  • n 0, Rc is methyl, a1 is a value of 0-3 (such as 1-2), and a2 is a value of 0-3 (such as 1-2 Value), b is a value of 1-4 (such as 2-3), and m is 1)
  • a drilling fluid composition comprising a drilling fluid base fluid and optionally at least one treating agent, wherein the drilling fluid base fluid is replaced by a sugar or glycoside substituted by one of the foregoing or any of the aspects below, or A mixture of multiple substituted sugars or glycosides (collectively referred to as substituted sugars or glycosides) and water.
  • the mass percentage of the substituted sugar or glycoside is 60-95 wt% based on the mass of the drilling fluid base fluid being 100 wt%, And / or, with respect to 100 ml of the drilling fluid base fluid, the amount of the at least one treatment agent is 10-70 g, preferably 18.3-41.7 g, and / or, the at least one treatment agent is selected from a tackifier At least one of a flow pattern regulator, a fluid loss reducing agent, a high temperature stabilizer, a blocking agent, an inhibition enhancer, and a pH regulator.
  • a method for producing a drilling fluid composition comprising mixing a substituted sugar or glycoside or a mixture of a plurality of substituted sugars or glycosides (collectively referred to as a substituted sugar or glycoside) , Water, and optionally at least one treating agent (preferably mixing the substituted sugar or glycoside with the water first, and then mixing the obtained mixture with the optional at least one treating agent), and then The obtained mixture is optionally subjected to an aging treatment (preferably, the treatment temperature is 120-200 ° C or 140-180 ° C, preferably 155-165 ° C, and the treatment time is 10-30 hours or 15-20 hours, preferably 15-17 hours).
  • the drilling fluid composition of the present invention has good temperature resistance.
  • the drilling fluid composition of the present invention has good performance in reducing filtration loss.
  • the drilling fluid composition of the present invention has good anti-pollution performance.
  • the drilling fluid composition of the present invention has better inhibiting performance.
  • the drilling fluid composition of the present invention has better lubricating performance.
  • the drilling fluid composition of the present invention has better reservoir protection performance.
  • the drilling fluid composition of the present invention is suitable for formations with high water sensitivity such as mud shale, mudstone and other slump formations, shale gas horizontal well drilling and formations with high requirements for reservoir protection.
  • the drilling fluid composition of the present invention is non-biotoxic, has good environmental protection, and can be directly discharged, which can reduce the cost of processing drilling fluid, reduce the cost of drilling fluid, and is suitable for formations and marine drilling with high environmental protection requirements.
  • the manufacturing method provided by the present invention has simple operation and mild conditions, and the raw materials used are non-toxic, safe and environmentally friendly, and suitable for large-scale production and application.
  • FIG. 1 is an infrared spectrum of the substituted glycoside component obtained in Example 1 of the present invention.
  • FIG. 2 is an infrared spectrum of the substituted glycoside component obtained in Example 5 of the present invention.
  • FIG. 3 is an infrared spectrum of the substituted glycoside component obtained in Example 9 of the present invention.
  • FIG. 4 is an infrared spectrum of the substituted glycoside component obtained in Example 13 of the present invention.
  • a numerical value includes an integer and a decimal.
  • the measurement of cationicity includes: first diluting the test sample to a 1.0% aqueous solution. Measure 50 mL of 1.0% sample solution to be measured, place it in a dry and clean 100 mL volumetric flask, and accurately transfer 25 mL of sodium tetraphenylborate (STPB) solution with a pipette. The mixed solution was transferred into a 100 mL volumetric flask, and after adjusting the pH value to 3-5 with a hydrochloric acid solution, the volume was adjusted to 100 mL with distilled water. Let stand for 30min. Filter through a dry and clean funnel and double-layer filter paper. Filter multiple times until the filtrate is clear.
  • STPB sodium tetraphenylborate
  • V 5 the volume of STPB solution taken when measuring the total quantity, the unit is milliliter (mL);
  • V 6 the volume of QAS solution used when measuring the total amount, the unit is milliliter (mL);
  • the measurement of the amine value includes: weighing 0.5g of the sample to be measured (accurate to 0.0001g), putting it into a clean and dry 250mL Erlenmeyer flask, adding 50mL of deionized water and recording the total mass m1. Add 5 drops of bromocresol green-methyl red indicator to the above test solution, shake well, titrate with a standard solution of hydrochloric acid drop by drop, and observe the color change of the solution carefully while shaking evenly. When the color of the solution changes from green to The dark red is the end of the titration. Record the volume V of the hydrochloric acid standard solution consumed. Do a blank test at the same time. The amine value was measured by randomly selecting 3 batches of samples to be tested. Calculate the amine value according to formula (2):
  • V- the volume of the hydrochloric acid-isopropanol standard solution consumed by the sample to be measured, the unit is milliliter (mL);
  • V blank -blank test volume value of hydrochloric acid solution unit is milliliter (mL);
  • any two or more embodiments of the present invention can be arbitrarily combined, and the technical solution formed thereby belongs to a part of the original disclosure of this specification, and also falls within the protection scope of the present invention.
  • the present invention relates to one substituted sugar or glycoside or a mixture of multiple substituted sugars or glycosides.
  • the so-called “one substituted sugar or glycoside” refers to a substituted sugar or glycoside existing as a separate compound
  • the so-called “mixture of multiple substituted sugars or glycosides” refers to two or more kinds A mixture of (i.e., multiple) substituted sugars or glycosides.
  • the present invention sometimes refers to a mixture of the one substituted sugar or glycoside and the plurality of substituted sugars or glycosides as a substituted sugar or glycoside.
  • the substituted sugars or glycosides each carry a substituent A, a substituent B, and a substituent C in combination.
  • the so-called combined carrying means The substituent A, the substituent B, and the substituent C may be respectively located on different substituted sugars or glycoside molecules, or may be located in different combinations according to any combination (such as two or two combinations or three simultaneously). On the same substituted sugar or glycoside molecule.
  • the substituent A includes a group in its structure
  • the counter anion of the group can be any anion, in particular a halogen anion such as Cl ⁇ or Br ⁇ .
  • R 2 is a C1-20 straight or branched alkyl group, preferably a C1-10 straight or branched alkyl group, and more preferably a C1-4 straight or branched alkyl group.
  • the group Or, the presence of the substituent A can be confirmed by an infrared analysis method.
  • the substituent B includes a group in its structure
  • R 4 is a C2-6 straight-chain or branched alkylene group, preferably ethylene or propylene.
  • the group Or, the presence of the substituent B can be confirmed by an infrared analysis method. For example, on the infrared spectrum of the substituted sugar or glycoside (including the substituted glycoside component described later in this specification), features are shown at 1501 ⁇ 10cm -1 , 1650 ⁇ 10cm -1, and 3386 ⁇ 10cm -1 Peak, you can confirm the group Or the presence of said substituent B.
  • the substituent C includes a unit -NH-R 7 -in its structure.
  • the substituent C includes a unit -NH-CH 2 CH 2 -in its structure.
  • R 7 is a C2-6 straight-chain or branched alkylene group, preferably ethylene or propylene.
  • the presence of the unit -NH-R 7 -or the substituent C can be confirmed by an infrared analysis method.
  • the substituent A may further include a unit—OR 6— , preferably—O—CH 2 CH 2 —, Or any combination thereof.
  • R 6 is a C2-8 straight or branched alkylene group, preferably ethylene or propylene.
  • the substituent A may further include a unit in its structure.
  • R 5 is a C3-6 linear or branched trivalent alkyl group, preferably a trivalent propyl group or a trivalent butyl group.
  • the substituent B may further include a unit in its structure.
  • R 3 is a C2-6 straight or branched alkylene group, preferably ethylene or propylene.
  • the substituent B may further include a unit in its structure Preferred especially
  • R 10 is a C2-6 linear or branched alkylene group, preferably an ethylene group or a propylene group.
  • L2 is an arbitrary linking group, preferably any linking group having no more than 10 carbon atoms, more preferably a single bond or a C2-10 linear or branched alkylene group, especially a single bond.
  • R ' is a C1-4 straight or branched alkyl group, preferably methyl or ethyl.
  • the substituent C may further include a unit—OR 6— , preferably—O—CH 2 CH 2 —, Or any combination thereof.
  • R 6 is a C2-8 straight or branched alkylene group or a C2-6 straight or branched alkylene group.
  • Rc is a C1-5 straight or branched alkyl group or a C1-4 straight or branched alkyl group.
  • the substituent C may further include a unit in its structure.
  • R 5 is a C3-6 linear or branched trivalent alkyl group, preferably a trivalent propyl group or a trivalent butyl group.
  • the substituent A may be schematically represented by the following chemical formula (A-1) or chemical formula (A-2).
  • the so-called "schematic representation" taking the chemical formula (A-1) as an example, means that although the substituent A includes n units in one molecule as shown in the chemical formula a unit-OR 6 -and a group But this does not mean that the n units Must be directly bonded to each other as shown in the chemical formula to form a block structure, or the a unit-OR 6 -must be directly bonded to each other as shown in the chemical formula to form a block structure, not to mention the units -OR 6 -and the unit The bonds must be bonded in a specific order shown in the chemical formula.
  • the structures can be bonded in any order to form structures such as random, block, or alternating, and these structures belong to the intended scope of the present invention and are not particularly limited.
  • Other chemical formulas in this specification can be similarly understood.
  • n is a value of 0-3 (such as 1)
  • a is a value of 0-6 (such as 1-4)
  • a1 is a value of 0-3 (such as A value of 1-2)
  • a2 is a value of 0-3 (for example, a value of 1-2).
  • the substituent B may be schematically represented by the following chemical formula (B-1), chemical formula (B-2), or chemical formula (B-3).
  • p is a value of 2-30 (preferably a value of 2-20 or 4-16) and q is a value of 0-30 (preferably 2-30, 2-15 or 4-12), v is a value of 0-30 (preferably a value of 1-20 or 4-12).
  • substituents and values such as R3, R4, R10, L1, L2, R ', and M, etc. that are not clearly defined apply directly to the corresponding definitions in substituent B.
  • the substituent C may be schematically represented by the following chemical formula (C-1), chemical formula (C-2), or chemical formula (C-3).
  • n is a value of 0-3 (such as 0)
  • a is a value of 0-6 (such as 1-4)
  • a1 is a value of 0-3 (such as 1-2)
  • a2 is 0-3 (such as 1-2)
  • b is 1-5 (such as 2-4), where a and b-1 are not 0 or 0 at the same time a1, a2, and b-1 are not 0 at the same time.
  • substituents and values (such as R5, R6, Rc, R7, etc.) that are not clearly defined apply directly to the corresponding definitions in substituent C.
  • the sugar or glycoside is a glucose residue or a glucose glycoside residue schematically represented by the following chemical formula (1).
  • a glucose residue or a glucoside residue schematically represented by the chemical formula (1) is obtained by correspondingly removing -OH or -H from glucose or a glucoside represented schematically by the following chemical formula (1 ′).
  • the chemical formula (1 ′) may also be expressed as a chemical formula (11 ′) or a chemical formula (12 ′), but whether it is a chemical formula (1 ′), a chemical formula (11 ′), or a chemical formula (12 ′) , Are not used to define any glucose or glucosides involved in the present invention or the stereo configuration of any glucose residue or glucoside.
  • two R 1 are the same or different from each other, and are each independently selected from hydrogen and a C1-20 straight or branched alkyl group, preferably each independently selected from hydrogen and C1-10 straight or branched alkyl, more preferably each independently selected from hydrogen and C1-4 straight or branched alkyl.
  • m is an integer of 1-3 or 1-2. * Represents a bonding point of the substituent A, the substituent B, or the substituent C, provided that at least one of the bonding points exists. In other words, the glucose or glucoside must be substituted with at least one of the substituent A, the substituent B, and the substituent C.
  • the substituted sugar or glycoside is selected from one or more compounds schematically represented by the following chemical formula (XX).
  • Rx 1 is the substituent A
  • the other Rx 1 is the substituent C
  • the remaining Rx 1 are each other The same or different, each independently selected from the substituent A, the substituent C and the hydroxyl group.
  • m1 is an integer of 2-3.
  • m1 Rx 2 and m1 Rx 3 are the same or different from each other, and are each independently selected from a hydrogen atom and the substituent B, provided that at least one of these Rx 2 and Rx 3 is the substituent B.
  • all substituents and numerical values (such as R1, etc.) that are not clearly defined apply directly to the corresponding definitions in the chemical formula (1).
  • compound P when one or more compounds selected from the group consisting of the following chemical formula (I-1), chemical formula (I-2) or chemical formula (I-3) are referred to as compound P, One or more compounds selected from the following chemical formula (II-1) or chemical formula (II-2) is referred to as compound X, and will be selected from the following chemical formula (III-1), chemical formula (III-2)
  • compound Y One or more compounds schematically represented by the chemical formula (III-3) is called compound Y, and will be selected from the group consisting of the following chemical formula (IV-1), chemical formula (IV-2), or chemical formula (IV-3)
  • the mixture is a mixture of at least two of the compound P, the compound X, the compound Y, and the compound Z, provided that the mixture contains both The substituent A, the substituent B, and the substituent C.
  • the mixture is referred to as a special mixture
  • the compound P, the compound X, the compound Y, or the compound Z is sometimes also referred
  • n is preferably 0, Rc is methyl, a1 is a value of 0-3 (such as 1-2), and a2 is a value of 0-3 (Such as the value of 1-2), b is the value of 1-4 (such as the value of 2-3), and m is 1.
  • n is 0, a1 is 0, a2 is a value of 1-3 (such as 1-2), and b is a value of 1-5 ( (Such as 2-4).
  • the cationicity of the substituted sugar or glycoside is generally 0.10-0.80 mmol / g, preferably 0.25-0.50 mmol / g.
  • the amine value of the substituted sugar or glycoside (such as the special mixture) is generally 0.40-1.65 mmol / g, preferably 0.83-1.32 mmol / g.
  • One or more compounds preferably n is 0, Rc is methyl, a1 is a value of 0-3 (such as 1-2), a2 is a value of 0-3 (such as 1- 2), b is a value of 1-4 (such as 2-3), m is 1) and one or more compounds (preferably n is 0, a1 is a mixture of 0, a2 is a value of 1-3 (such as 1-2), and b is a value of 1-5 (such as 2-4).
  • the mass ratio of the compound X, the compound Y, and the compound Z may be 20-30: 30-40: 10-25.
  • the compound X can be produced by the following method.
  • the manufacturing method includes, for example, hydrolyzing epichlorohydrin, water, and a catalyst to obtain an aqueous solution of 3-chloro-1,2-propanediol; and reacting the aqueous solution of 3-chloro-1,2-propanediol with a glycoside to obtain An aqueous chloroglycoside solution; reacting the aqueous chloroglycoside solution with a tertiary amine to obtain the compound X.
  • the catalyst in the method for producing the compound X, is, for example, an inorganic acid or an organic acid.
  • the inorganic acid is, for example, sulfuric acid, nitric acid, or phosphoric acid
  • the organic acid is preferably toluenesulfonic acid, dodecylbenzenesulfonic acid, or sulfamic acid.
  • the molar ratio of the epichlorohydrin, water and catalyst is generally 1: (12-20) :( 0.02-0.12).
  • the temperature of the hydrolysis reaction is preferably 60 ° C to 100 ° C, and the time is preferably 3h to 8h.
  • the glycoside is, for example, a methyl glycoside, an ethyl glycoside, a glycol glycoside, a propyl glycoside, or a butyl glycoside.
  • the molar ratio of the 3-chloro-1,2-propanediol aqueous solution to the glycoside is preferably (0.5-5): 1.
  • the temperature at which the 3-chloro-1,2-propanediol aqueous solution and the glycoside react is preferably 80 ° C-110 ° C, and the time is preferably 0.5h- 4h.
  • the tertiary amine is preferably trimethylamine, triethylamine, tripropylamine, tributylamine, hexyldimethyl tertiary amine, octyldimethyl Tertiary amine, decyldimethyl tertiary amine or dodecyldimethyl tertiary amine.
  • the molar ratio of the chlorohydrin glycoside and the tertiary amine is preferably 1: (0.2-1.2).
  • the pH value at which the chlorohydrin glycoside aqueous solution and the tertiary amine react is preferably 6-9.
  • a neutralizing agent is preferably used to adjust the pH.
  • the neutralizing agent is preferably sodium hydroxide, potassium hydroxide or sodium carbonate.
  • the temperature at which the chlorohydrin glycoside aqueous solution and the tertiary amine react is preferably 40 ° C to 80 ° C, and the time is preferably 3h to 10h.
  • the compound Y (such as the compound represented by the chemical formula (III-3), wherein n is 0, Rc is methyl, and a1 is a value of 0-3 (such as 1- 2), a2 is 0-3 (such as 1-2), b is 1-4 (such as 2-3), and m is 1)
  • the number average molecular weight is generally 240-950 , Preferably 300-800.
  • the compound Y (such as the compound represented by the chemical formula (III-3), wherein n is 0, Rc is methyl, and a1 is a value of 0-3 (such as 1- 2), a2 is 0-3 (such as 1-2), b is 1-4 (such as 2-3), and m is 1)
  • the amine value is generally 1.20-2.60mmol / g, preferably 1.80-2.20 mmol / g.
  • the compound Y can be produced by the following method.
  • the manufacturing method includes, for example, reacting an epoxide, a glycoside, water and a catalyst to obtain an intermediate product; and reacting the intermediate product with an organic amine to obtain the compound Y.
  • the epoxide is preferably ethylene oxide or propylene oxide.
  • the glycoside is preferably a methyl glycoside, an ethyl glycoside, a propyl glycoside, or a butyl glycoside.
  • the catalyst in the method for producing the compound Y, is preferably an inorganic acid or an organic acid.
  • the inorganic acid is preferably sulfuric acid, nitric acid, sulfuric acid, or phosphotungstic acid
  • the organic acid is preferably p-toluenesulfonic acid, dodecylbenzenesulfonic acid, or aminosulfonic acid.
  • the molar ratio of the epoxide, glycoside, water, and catalyst is preferably 1: (0.5-1): (4-8): (0.01 -0.1), more preferably 1: (0.6-0.8) :( 5-6) :( 0.03-0.08).
  • the temperature at which the epoxide, glycoside, water, and the catalyst react is preferably 50 ° C to 110 ° C, and the time is preferably 0.5h to 4h.
  • the pressure Generally 3MPa-10MPa.
  • the organic amine is preferably ethylenediamine, diethylenetriamine, triethylenetetramine, or tetraethylenepentamine.
  • the molar ratio of the intermediate product and the organic amine is preferably 1: (0.8-1.2).
  • the pH value of the reaction between the intermediate product and the organic amine is preferably 6-9, the temperature is preferably 40 ° C-90 ° C, and the time is preferably 3h- 10h.
  • the compound Z (such as the compound represented by the chemical formula (IV-3) schematically, wherein n is 0, a1 is 0, and a2 is a value of 1-3 (such as 1-2).
  • the number average molecular weight of b is a value of 1-5 (such as a value of 2-4)) is generally 790-5500, and more preferably 1000-5000.
  • the compound Z (such as the compound represented by the chemical formula (IV-3) schematically, wherein n is 0, a1 is 0, and a2 is a value of 1-3 (such as 1-2).
  • the amine value of b is a value of 1-5 (such as the value of 2-4)) is generally 0.30-1.10 mmol / g, preferably 0.60-0.85 mmol / g.
  • the compound Z can be produced by the following method.
  • the manufacturing method includes, for example, reacting a glycoside, an epoxide, a chloride, and a catalyst to obtain a first intermediate product; reacting the first intermediate product, water, and an organic amine to obtain a second intermediate product;
  • the second intermediate product, acrylamide, optional 2-acrylamide-2-methylpropanesulfonic acid, and optional vinyltriethoxysilane are polymerized under the action of an initiator to obtain the compound Z.
  • the glycoside is preferably a methyl glycoside, an ethyl glycoside, a propyl glycoside, or a butyl glycoside.
  • the epoxide in the method for producing the compound Z, is preferably propylene oxide, butylene oxide, or pentylene oxide.
  • the chloride is preferably sulfoxide, sulfuryl chloride, phosphorus trichloride, or phosphorus pentachloride.
  • the catalyst in the method for producing the compound Z, is preferably hydrofluoric acid, tartaric acid, oxalic acid, or p-toluenesulfonic acid.
  • the mass ratio of the glycoside, epoxide, chloride, and catalyst is preferably (40-80): (8-12): (9- 11): (0.8-1.6), more preferably (50-70): (9-11): 10: (1-1.4).
  • the temperature at which the glycoside, epoxide, chloride, and catalyst react is preferably 40 ° C-70 ° C, and the time is preferably 0.5h-3h.
  • the pressure is preferably 1 MPa to 4 MPa.
  • the organic amine is preferably ethylenediamine, diethylenetriamine, triethylenetetramine, or tetraethylenepentamine.
  • the temperature at which the first intermediate product, water, and the organic amine react is preferably 180 ° C to 220 ° C, and the time is preferably 2h to 4h.
  • the initiator in the method for producing the compound Z, is preferably ammonium sulfate, potassium permanganate, ammonium hafnium nitrate, or tert-butyl hydrogen peroxide.
  • the pH of the polymerization reaction is preferably 8-10, the temperature is preferably 40 ° C-60 ° C, and the time is preferably 4h-6h.
  • the drilling fluid composition comprises at least a drilling fluid base fluid and optionally at least one treating agent.
  • the drilling fluid base fluid is composed of any of the substituted sugars or glycosides and water of the present invention as described above.
  • the mass percentage content of the substituted sugar or glycoside in the drilling fluid base fluid is 60-95 wt%, and the rest may be It's water.
  • n 0, Rc is methyl
  • a1 is a value of 0-3 (such as 1-2)
  • a2 is a value of 0-3 (such as 1-2)
  • b is 1-4.
  • Numerical value (such as the value of 2-3), m is 1) and the compound Z (such as the compound represented schematically by the chemical formula (IV-3)) with a mass fraction of 10-25%, wherein n is preferably 0, a1 Is 0, a2 is a value of 1-3 (such as 1-2), and b is a value of 1-5 (such as 2-4)).
  • the at least one treating agent is selected from at least one of a tackifier, a flow regulator, a fluid loss reducing agent, a high-temperature stabilizer, a blocking agent, a suppression enhancer, and a pH adjusting agent. Species.
  • the drilling fluid composition generally contains 0.5 to 1.5 parts by weight of a thickener relative to 100 ml of the drilling fluid base fluid.
  • the tackifier may be those conventionally known in the art, such as selected from xanthan gum, high viscosity polyanionic cellulose sodium salt, high viscosity carboxymethyl cellulose sodium salt, and polyacrylamide potassium salt.
  • xanthan gum high viscosity polyanionic cellulose sodium salt
  • high viscosity carboxymethyl cellulose sodium salt such as selected from xanthan gum, high viscosity carboxymethyl cellulose sodium salt, and polyacrylamide potassium salt.
  • xanthan gum high-viscosity polyanionic cellulose sodium salt
  • high-viscosity carboxymethyl cellulose sodium salt are more preferably xanthan gum, high-viscosity polyanionic cellulose sodium salt, high-viscosity carboxymethyl cellulose sodium salt, and polyacrylamide potassium salt.
  • the mass ratio of the xanthan gum, the high-viscosity polyanionic cellulose sodium salt, the high-viscosity carboxymethyl cellulose sodium salt, and the polyacrylamide potassium salt is preferably 1: (0.5-1.5): (0.5-1.5): ( 0.75-2), more preferably 1: 1: 1: 1: (0.75-2).
  • the viscosity of the xanthan gum is preferably 1200 cps to 1600 cps
  • the pH value is preferably 6.5-8
  • the moisture content is preferably ⁇ 13%
  • the ash content is preferably ⁇ 13%
  • the particle size is preferably 180 ⁇ m to 355 ⁇ m.
  • the high-viscosity polyanionic cellulose sodium salt is a cellulose ether derivative made from natural cotton short fibers through a series of complex chemical reactions, and is an important water-soluble anionic cellulose ether.
  • the water content of the high viscosity polyanionic cellulose sodium salt is preferably ⁇ 10%, the purity is preferably ⁇ 95%, the degree of substitution is preferably ⁇ 0.8%, the pH value is preferably 6.5-8, and the sodium chloride content is preferably ⁇ 5%.
  • the viscosity of the% aqueous solution is preferably ⁇ 1000 mPa.s.
  • the high-viscosity carboxymethyl cellulose sodium salt is formed by reacting cotton fiber and chloroacetic acid; the high-viscosity carboxymethyl cellulose sodium salt preferably has a water content of ⁇ 10% and a purity of ⁇ 95%, The degree of substitution is preferably ⁇ 0.8%, the pH value is preferably 6.5-8, the sodium chloride content is preferably ⁇ 5%, and the viscosity of the 2% aqueous solution is preferably ⁇ 1000 mPa.s.
  • the water content of the potassium salt of polyacrylamide is preferably ⁇ 10%, the sieve residue is preferably ⁇ 10%, the purity is preferably ⁇ 80%, the potassium content is preferably 11% -16%, and the degree of hydrolysis is preferably 27%- 35%, the chloride ion content is preferably ⁇ 1%, and the intrinsic viscosity is preferably ⁇ 6100 mL / g.
  • the source of the tackifier is not particularly limited, and commercial products well known to those skilled in the art may be used.
  • the treatment agent includes 0.5 to 1.5 parts by weight of a tackifier.
  • the drilling fluid composition generally contains 1 to 3 parts by weight of a flow pattern regulator relative to 100 ml of the drilling fluid base fluid.
  • the flow pattern modifier may be those conventionally known in the art, such as selected from sodium bentonite and / or dextrin, and more preferably sodium bentonite or dextrin.
  • the water content of the sodium bentonite is preferably ⁇ 10%, the purity is preferably ⁇ 80%, the degree of substitution is preferably ⁇ 0.8%, the pH value is preferably 7-9, the content of chloride is preferably ⁇ 20%, and the content of the 2% aqueous solution
  • the viscosity is preferably ⁇ 200 mPa.s; the moisture content in the dextrin is preferably ⁇ 10%, the purity is preferably ⁇ 80%, the degree of substitution is preferably ⁇ 0.8%, the pH value is preferably 7-9, and the content of chloride is preferably ⁇ 20%,
  • the viscosity of the 2% aqueous solution is preferably ⁇ 400 mPa.s.
  • the source of the flow pattern regulator is not particularly limited, and a commercially available product well known to those skilled in the art may be used.
  • the treatment agent includes 1 to 3 parts by weight of a flow pattern modifier.
  • the drilling fluid composition generally comprises 0.8 to 1.2 parts by weight of a fluid loss reducing agent relative to 100 ml of the drilling fluid base fluid.
  • the fluid loss reducing agent may be those conventionally known in the art, such as selected from low viscosity carboxymethyl cellulose sodium salt and / or sodium carboxymethyl starch sodium, and more preferably low viscosity carboxymethyl cellulose Sodium or sodium carboxymethyl starch.
  • the water content in the low-viscosity carboxymethyl cellulose sodium salt is preferably ⁇ 10%, the purity is preferably ⁇ 80%, the degree of substitution is preferably ⁇ 0.8%, the pH value is preferably 7-9, and the content of chloride is preferably ⁇ 20%, viscosity of 2% aqueous solution is preferably ⁇ 200mPa.s; particle size of the sodium carboxymethyl starch is preferably 90 mesh to 110 mesh, sodium chloride content is preferably ⁇ 7%, degree of substitution is preferably> 0.2%, pH value It is preferably 8-9, the moisture content is preferably ⁇ 10%, and the viscosity of the 2% aqueous solution is preferably 80mpa.s-120mpa.s.
  • the source of the fluid loss reducing agent is not particularly limited, and commercially available products well known to those skilled in the art may be used.
  • the treatment agent includes 0.8 to 1.2 parts by weight of a fluid loss reducing agent.
  • the drilling fluid composition generally contains 2 parts by weight to 4 parts by weight of a high temperature stabilizer relative to 100 ml of the drilling fluid base fluid.
  • the high-temperature stabilizer may use those conventionally known in the art, such as selected from sulfonated phenolic resin and / or sulfonated lignite, and more preferably sulfonated phenolic resin or sulfonated lignite.
  • the water content in the sulfonated phenolic resin is preferably ⁇ 10%, the purity is preferably ⁇ 80%, the degree of substitution is preferably ⁇ 0.8%, the pH value is preferably 7-9, and the content of chloride is preferably ⁇ 20%, 2
  • the viscosity of the% aqueous solution is preferably ⁇ 300mPa.s; the moisture content in the sulfonated lignite is preferably ⁇ 10%, the purity is preferably ⁇ 80%, the degree of substitution is preferably ⁇ 0.8%, the pH is preferably 7-9, and the content of chloride is ⁇ 20%, the viscosity of 2% aqueous solution is preferably ⁇ 200mPa.s.
  • the source of the high-temperature stabilizer is not particularly limited, and commercially available products that are well known to those skilled in the art may be used.
  • the treatment agent includes 2 parts by weight to 4 parts by weight of a high-temperature stabilizer.
  • the drilling fluid composition generally contains 2 to 4 parts by weight of a blocking agent relative to 100 ml of the drilling fluid base fluid.
  • the occlusive agent may use those conventionally known in the art, such as one or more selected from the group consisting of calcium carbonate, oil-soluble resin, impervious occlusive agent, and sulfonated asphalt, more preferably calcium carbonate. , Oil-soluble resin, non-penetrating plugging agent or sulfonated asphalt.
  • the particle size of the calcium carbonate is preferably 800 mesh to 1200 mesh, the moisture content is preferably ⁇ 10%, and the acid insoluble content is preferably ⁇ 1%; the pH value of the sulfonated asphalt is preferably 8-9, and the water content It is preferably ⁇ 8%, the content of sodium sulfonate group is preferably ⁇ 10%, the water-soluble matter is preferably ⁇ 70%, the oil-soluble matter is preferably ⁇ 25%, and the HTHP filtration loss is preferably ⁇ 25mL / 30min.
  • the source of the plugging agent is not particularly limited, and commercially available products well known to those skilled in the art may be used.
  • the treatment agent includes 2 to 4 parts by weight of a blocking agent.
  • the drilling fluid composition generally contains 10 parts by weight to 24 parts by weight of the inhibitor enhancer relative to 100 ml of the drilling fluid base fluid.
  • the inhibitory enhancer may use those conventionally known in the art, such as one or more selected from sodium chloride, potassium chloride, calcium chloride, and potassium formate, and more preferably sodium chloride, Potassium chloride, calcium chloride or potassium formate.
  • the source of the inhibitor-enhancing agent is not particularly limited, and commercial products well known to those skilled in the art may be used.
  • the treatment agent includes 10 parts by weight to 24 parts by weight of an inhibitor enhancer.
  • the drilling fluid composition generally contains 2 to 4 parts by weight of a pH adjuster relative to 100 ml of the drilling fluid base fluid.
  • the pH adjusting agent may use those conventionally known in the art, such as one or more selected from sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate, and more preferably sodium hydroxide, hydrogen Potassium oxide, sodium carbonate or potassium carbonate.
  • the source of the pH adjusting agent is not particularly limited, and commercial products well known to those skilled in the art may be used.
  • the treatment agent includes 2 parts by weight to 4 parts by weight of a pH adjuster.
  • the amount of the at least one treating agent is generally 10-70 g, preferably 18.3-41.7 g, relative to 100 ml of the drilling fluid base fluid.
  • the drilling fluid composition 0.5-1.5 g of the thickener, 1-3 g of the flow pattern modifier, and 0.8-1.2 g are added per 100 mL of the drilling fluid base fluid.
  • the manufacturing method of the drilling fluid composition includes a step (referred to as a mixing step) of mixing any of the substituted sugars or glycosides of the present invention, water, and optionally at least one treating agent.
  • the substituted sugar or glycoside and water are mixed first, and then the obtained mixture is mixed with the optional at least one treating agent.
  • the compound X, the compound Y, and the compound Z are first mixed with water, and then the obtained mixture (corresponding to the drilling fluid base fluid) and the optional at least one treating agent are mixed. mixing.
  • the thickener, the flow pattern modifier, and the fluid loss reducing agent are added to the drilling fluid base fluid to perform a first Mix again, and then add the high temperature stabilizer, the blocking agent, the suppression enhancer, and the pH adjuster for a second mixing.
  • the mixing is performed under high-speed stirring, for example, the rotation speed of the high-speed stirring is preferably 5000r / min-10000r / min, and the time is preferably 10min-30min.
  • the method for manufacturing a drilling fluid composition optionally further includes a step (referred to as an aging step) of subjecting the mixture obtained in the mixing step to an aging treatment.
  • the processing temperature is generally 120-200 ° C or 140-180 ° C, preferably 155-165 ° C, and the processing time is generally 10-30 hours or 15-20 hours, It is preferably 15-17 hours.
  • the high-viscosity polyanionic cellulose sodium salt used is the high-viscosity polyanionic cellulose sodium salt HV-PAC provided by Liyang Zhongyuan Sanli Industrial Co., Ltd .
  • the high-viscosity carboxymethyl cellulose sodium salt used is Liyang Zhongyuan High viscosity carboxymethyl cellulose sodium salt HV-CMC provided by Sanli Industrial Co., Ltd .
  • xanthan gum used is Xanthan gum XC provided by Liyang Zhongyuan Sanli Industrial Co., Ltd .
  • the salt is low-viscosity carboxymethyl cellulose sodium salt LV-CMC provided by Liyang Zhongyuan Sanli Industrial Co., Ltd .
  • the sodium carboxymethyl starch used is sodium carboxymethyl starch CMS-Na provided by Liyang Zhongyuan Sanli Industrial Co., Ltd .
  • Salt KPAM sodium bentonite used is sodium bentonite provided by Weifang Longfeng Bentonite Co., Ltd .
  • the dextrin used is dextrin provided by Gongyi Yonghong Dextrin Factory
  • the sulfonated phenolic resin used is provided by Liyang Lizhong Chemical Co., Ltd.
  • the sulfonated phenolic resin; the sulfonated lignite used is the sulfonated lignite provided by Liyang Huangzhong Chemical Co., Ltd .;
  • the sulfonated asphalt used is the sulfonated asphalt provided by Xinxiang No. 7 Chemical Co., Ltd.
  • the substituted glycoside component produced in Example 1 of the present invention was subjected to infrared detection. The detection result is shown in FIG. 1, and characteristic peaks were displayed at 1034, 1300, and 2400 cm -1 to confirm the existence of the substituent A.
  • the substituted glycoside component manufactured in Example 1 of the present invention has a schematic structure represented by Formula 1:
  • R 1 is -CH 3
  • R 2 is -CH 3
  • m is 1.4.
  • the chlorohydrin glycoside solution was neutralized with saturated potassium hydroxide aqueous solution to a pH value of 7, and 0.2 moL of trimethylamine aqueous solution was added to the bottom of the chlorohydrin glycoside solution. The addition was controlled within 1 hour, and the reaction was performed at 60 ° C. 7h, the substituted glycoside component was obtained; the yield of the product was 93.57%.
  • the cationicity of the product of Example 2 was 1.10 mmol / g.
  • the substituted glycoside component produced in Example 2 of the present invention was subjected to infrared detection.
  • the detection result was that characteristic peaks were shown at 1035, 1301, and 2403 cm -1 , and the existence of the substituent A was confirmed.
  • the substituted glycoside component manufactured in Example 2 of the present invention has a schematic structure shown in Formula 2:
  • R 1 is -C 2 H 5
  • R 2 is -CH 3
  • m is 1.4.
  • the chlorohydrin glycoside solution was neutralized with saturated sodium carbonate to a pH value of 8, and 0.2 moL of tripropylamine was added to the bottom of the chlorohydrin glycoside solution. The addition was controlled within 1 hour, and the reaction was performed at 50 ° C for 4 hours to obtain The glycoside component is replaced; the yield of the product is 94.03%.
  • the cation degree of the product of Example 3 was 1.35 mmol / g.
  • the substituted glycoside component produced in Example 3 of the present invention was subjected to infrared detection, and the detection results showed characteristic peaks at 1036, 1305, and 2405 cm -1 to confirm the existence of the substituent A.
  • the substituted glycoside component manufactured in Example 3 of the present invention has a schematic structure shown in Formula 3:
  • R 1 is -C 3 H 7
  • R 2 is -C 3 H 7
  • m is 1.4.
  • the chlorohydrin glycoside solution was neutralized with saturated sodium hydroxide to a pH value of 9, and 0.2 moL of tributylamine was added to the bottom of the chlorohydrin glycoside solution. The addition was controlled within 1 hour, and the reaction was performed at 80 ° C for 8 hours. To obtain a substituted glycoside component; the yield of the product is 94.4%.
  • the cation degree of the product of Example 4 was 1.70 mmol / g.
  • the substituted glycoside component produced in Example 4 of the present invention was subjected to infrared detection.
  • the detection result was that characteristic peaks were displayed at 1032, 1301, and 2409 cm -1 , and the existence of the substituent A was confirmed.
  • the substituted glycoside component manufactured in Example 4 of the present invention has a schematic structure shown in Formula 4:
  • R 1 is -C 4 H 9
  • R 2 is -C 4 H 9
  • m is 1.4.
  • the intermediate product was neutralized with a neutralizing agent NaOH to a pH value of 6, and 24 g of ethylenediamine was added, and the reaction was performed at a temperature of 40 ° C and normal pressure for 3 hours.
  • the obtained reaction product was dehydrated to obtain a substituted glycoside component. .
  • the amine value of the product of Example 5 was 1.20 mmol / g.
  • the substituted glycoside component produced in Example 5 of the present invention was subjected to infrared detection.
  • the detection result is shown in FIG. 2, and characteristic peaks were shown at 1501, 1650, and 3386 cm ⁇ 1 to confirm the existence of the substituent C.
  • the substituted glycoside component manufactured in Example 5 of the present invention has a schematic structure shown in Formula 5:
  • the intermediate product was neutralized with a neutralizing agent NaOH to pH 6, and 51.59 g of diethylenetriamine was added, and the reaction was performed at 50 ° C and normal pressure for 4 hours.
  • the obtained reaction product was water-removed to obtain a substituted glycoside. Components.
  • the amine value of the product of Example 6 was 1.76 mmol / g.
  • the substituted glycoside component produced in Example 6 of the present invention was subjected to infrared detection.
  • the detection results showed characteristic peaks at 901, 1623, and 3349 cm -1 to confirm the existence of the substituent C.
  • the substituted glycoside component manufactured in Example 6 of the present invention has a schematic structure shown in Formula 6:
  • m is 1.4
  • R 1 is -C 2 H 5
  • n is 1, and o is 1.
  • the intermediate product was neutralized with a neutralizing agent KOH to a pH value of 7, and 87.74 g of triethylenetetramine was added.
  • the reaction was performed at a temperature of 60 ° C and a normal pressure for 5 hours. Components.
  • the amine value of the product of Example 7 was 1.95 mmol / g.
  • the substituted glycoside component produced in Example 7 of the present invention was subjected to infrared detection, and the detection results showed characteristic peaks at 905, 1627, and 3338 cm -1 to confirm the existence of the substituent C.
  • the substituted glycoside component manufactured in Example 7 of the present invention has a schematic structure shown in Formula 7:
  • m 1.4
  • R 1 is -C 3 H 7
  • n 1, and o is 2.
  • the intermediate product was neutralized with a neutralizing agent sodium carbonate to a pH of 8, 132.52 g of tetraethylenepentamine was added, and the reaction was carried out at a temperature of 70 ° C. and normal pressure for 7 hours.
  • the obtained reaction product was removed by water to obtain a substitution. Glycoside component.
  • the amine value of the product of Example 8 was 2.59 mmol / g.
  • the substituted glycoside component produced in Example 8 of the present invention was subjected to infrared detection.
  • the detection result was that characteristic peaks were shown at 901, 1622, 3349 cm -1 , and the existence of the substituent C was confirmed.
  • the substituted glycoside component prepared in Example 8 of the present invention has a schematic structure shown in Formula 8:
  • m 1.4
  • R 1 is -C 4 H 9
  • n 1, and o is 3.
  • the crude product of the substituted glycoside component was washed and filtered with 30 parts of acetic acid, then filtered with 40 parts of acetone, and filtered with 500 parts of water, and then dried and crushed to obtain the substituted glycoside component.
  • the amine value of the product of Example 9 was 0.32 mmol / g.
  • the substituted glycoside component produced in Example 9 of the present invention was subjected to infrared detection. The detection result is shown in FIG. 3. Characteristic peaks were shown at 1501, 1650, and 3386cm -1 . Characteristic peaks were shown at 1623 and 3346 cm -1 , confirming the existence of the substituent C.
  • the substituted glycoside component prepared in Example 9 of the present invention has a schematic structure shown in Formula 9:
  • m is 1.4
  • R 1 is -CH 3
  • n is 1
  • o is 1
  • p is 18.2
  • q is 14.6.
  • the crude product of the substituted glycoside component was washed and filtered with 40 g of acetic acid, then filtered with 50 g of acetone, and finally filtered with 600 g of water; and then dried and crushed to obtain the substituted glycoside component.
  • the amine value of the product of Example 10 was 0.66 mmol / g.
  • Substituted glycoside component obtained in Production Example 10 The embodiment of the present invention is an infrared detector, the detection result is displayed at 1502,1651,3387cm -1 characteristic peaks, confirmed the presence of the substituent group B in 902,1624,3344cm - A characteristic peak is shown at 1 to confirm the presence of the substituent C.
  • the substituted glycoside component manufactured in Example 10 of the present invention has a schematic structure shown in Formula 10:
  • m is 1.4
  • R 1 is -C 2 H 5
  • n is 1
  • o is 2
  • p is 17.8
  • q is 14.4.
  • the crude product of the substituted glycoside component was washed in 50 g of acetic acid, and then filtered, and then washed with 60 g of acetone, and then filtered, and finally washed with 700 g of water, and then filtered, and then dried and crushed to obtain a substituted glycoside component.
  • the amine value of the product of Example 11 was 0.79 mmol / g.
  • Substituted glycoside component obtained in Example 11 for manufacturing the embodiment of the present invention is an infrared detector, the detection result is displayed at 1505,1653,3382cm -1 characteristic peaks, confirmed the presence of the substituent group B in 903,1626,3345cm - A characteristic peak is shown at 1 to confirm the presence of the substituent C.
  • the substituted glycoside component prepared in Example 11 of the present invention has a schematic structure shown in Formula 11:
  • m is 1.4
  • R 1 is -C 3 H 7
  • n is 1
  • o is 3
  • p is 18.3
  • q is 14.7.
  • the crude substituted glycoside component was washed and filtered with 60 g of acetic acid, and then filtered with 70 g of acetone, and finally filtered with 800 g of water, and then dried and crushed to obtain the substituted glycoside component.
  • the amine value of the product of Example 12 was 1.05 mmol / g.
  • Substituted glycoside component obtained in Production Example 12 The embodiment of the present invention is an infrared detector, the detection result is displayed at 1507,1658,3389cm -1 characteristic peaks, confirmed the presence of the substituent group B in 905,1625,3347cm - A characteristic peak is shown at 1 to confirm the presence of the substituent C.
  • the substituted glycoside component prepared in Example 12 of the present invention has a schematic structure shown in Formula 12:
  • m is 1.4
  • R 1 is -C 4 H 9
  • n is 1
  • o is 4
  • p is 17.9
  • q is 14.1.
  • the crude product of the substituted glycoside component was washed and filtered with 40 parts of acetic acid, and then filtered with 50 parts of acetone, and finally filtered with 800 parts of water, and then dried and crushed to obtain the substituted glycoside component.
  • the cation degree of the product of Example 13 was 0.24 mmol / g.
  • the substituted glycoside component produced in Example 13 of the present invention was subjected to infrared detection. The detection result is shown in FIG. 4. Characteristic peaks were displayed at 1039, 1304, and 2406 cm -1 . Characteristic peaks were shown at 1655 and 3384 cm -1 , confirming the presence of the substituent B.
  • the substituted glycoside component prepared in Example 13 of the present invention has a schematic structure shown in Formula 13:
  • R 1 is -CH 3
  • R 2 is -CH 3
  • R 3 is C 2 H 5
  • m is 1.4
  • p is 18.1
  • q is 14.2
  • v is 9.5.
  • the crude product of the substituted glycoside component was washed with suction and filtered with 40 parts of acetic acid, and then filtered with 50 parts of acetone, and finally filtered with 600 parts of water, and then dried and crushed to obtain the substituted glycoside component.
  • the cation degree of the product of Example 14 was 0.39 mmol / g.
  • Substituted glycoside component obtained in Production Example 14 The embodiment of the present invention is an infrared detector, the detection result is displayed at characteristic peaks 1036,1305,2405cm -1, confirming that the presence of substituent group A in 1504,1657,3385cm - A characteristic peak is shown at 1 and the presence of the substituent B is confirmed.
  • the substituted glycoside component manufactured in Example 14 of the present invention has a schematic structure shown in Formula 14:
  • R 1 is -C 2 H 5
  • R 2 is -CH 3
  • R 3 is C 2 H 5
  • m is 1.4
  • p is 18.9
  • q is 14.7
  • v is 9.3.
  • the substituted glycoside component produced in Example 15 of the present invention was subjected to infrared detection.
  • the detection result was that characteristic peaks were shown at 1036, 1301, and 2401 cm -1 , and the existence of the substituent A was confirmed.
  • the substituted glycoside component manufactured in Example 15 of the present invention has a schematic structure shown in Formula 15:
  • R 1 is -CH 3
  • R 2 is -CH 3
  • m is 1.4
  • n is 2
  • a2 is 1.
  • the chlorohydrin glycoside solution was neutralized with saturated potassium hydroxide aqueous solution to a pH value of 7, and 0.2 moL of trimethylamine aqueous solution was added to the bottom of the chlorohydrin glycoside solution. The addition was controlled within 1 hour, and the reaction was performed at 60 ° C. 7h, the substituted glycoside component was obtained; the yield of the product was 93.57%.
  • the cation degree of the product of Example 15 was 1.12 mmol / g.
  • the substituted glycoside component produced in Example 16 of the present invention was subjected to infrared detection.
  • the detection result was that characteristic peaks were displayed at 1036, 1304, and 2405 cm -1 , and the existence of the substituent A was confirmed.
  • the substituted glycoside component produced in Example 16 of the present invention has a structure represented by Formula 16:
  • R 1 is -C 2 H 5
  • R 2 is -CH 3
  • m is 3.
  • the intermediate product was neutralized with a neutralizing agent NaOH to a pH value of 6, and 24 g of ethylenediamine was added, and the reaction was performed at a temperature of 40 ° C and normal pressure for 3 hours.
  • the obtained reaction product was dehydrated to obtain a substituted glycoside component. .
  • the amine value of the product of Example 17 was 1.24 mmol / g.
  • the substituted glycoside component produced in Example 17 of the present invention was subjected to infrared detection.
  • the detection results showed characteristic peaks at 902, 1624, and 3351 cm -1 , and the existence of the substituent C was confirmed.
  • the substituted glycoside component manufactured in Example 17 of the present invention has a schematic structure shown in Formula 17:
  • m is 1.4, R 1 is -CH 3, n is 1, a1 is 1.
  • the intermediate product was neutralized with a neutralizing agent NaOH to pH 6, and 51.59 g of diethylenetriamine was added, and the reaction was performed at 80 ° C and normal pressure for 4 hours.
  • the obtained reaction product was dehydrated to obtain a substituted glycoside. Components.
  • the amine value of the product of Example 18 was 1.85 mmol / g.
  • the substituted glycoside component produced in Example 18 of the present invention was subjected to infrared detection, and the detection results showed that characteristic peaks were shown at 903, 1624, 3351 cm -1 , and the existence of the substituent C was confirmed.
  • the substituted glycoside component produced in Example 18 of the present invention has a structure represented by Formula 18:
  • Two intermediate products add 20 g of acrylamide and 10 g of vinyl triethoxysilane to the second intermediate product, stir and dissolve completely, adjust the pH value to 8, add 0.3 g of ammonium sulfate initiator, and react at 50 ° C for 5 h to obtain Substituted crude glycoside component.
  • the crude product of the substituted glycoside component was washed and filtered with 30 parts of acetic acid, then filtered with 40 parts of acetone, and filtered with 500 parts of water, and then dried and crushed to obtain the substituted glycoside component.
  • the amine value of the product of Example 19 was 0.35 mmol / g.
  • Substituted glycoside component obtained in Example 19 for manufacturing the infrared detector embodiment of the present invention the detection result is displayed at 1502,1651,3384cm -1 characteristic peaks, confirmed the presence of the substituent group B in 902,1624,3345cm - A characteristic peak is shown at 1 to confirm the presence of the substituent C.
  • the substituted glycoside component manufactured in Example 19 of the present invention has a schematic structure shown in Formula 19;
  • m is 1.4, R 1 is -CH 3, Rc is -CH 3, R 'is -C 2 H 5, n is 1, a1 is 0, a2 is 1, b is 1, p is 18, q is 0 and v is 6.
  • the crude product of the substituted glycoside component was washed and filtered with 40 g of acetic acid, then filtered with 50 g of acetone, and finally filtered with 600 g of water; and then dried and crushed to obtain the substituted glycoside component.
  • the amine value of the product of Example 20 was 0.69 mmol / g.
  • Substituted glycoside component obtained in Production Example 20 The embodiment of the present invention is an infrared detector, the detection result is displayed at 1503,1652,3384cm -1 characteristic peaks, confirmed the presence of the substituent group B in 901,1626,3345cm - A characteristic peak is shown at 1 to confirm the presence of the substituent C.
  • the substituted glycoside component manufactured in Example 20 of the present invention has a schematic structure shown in Formula 20:
  • the crude product of the substituted glycoside component was washed and filtered with 30 parts of acetic acid, then filtered with 40 parts of acetone, and filtered with 500 parts of water, and then dried and crushed to obtain the substituted glycoside component.
  • the amine value of the product of Example 21 was 0.37 mmol / g.
  • Substituted glycoside component obtained in Production Example 21 The embodiment of the present invention is an infrared detector, the detection result is displayed at 1501,1650,3385cm -1 characteristic peaks, confirmed the presence of the substituent group B in 901,1625,3346cm - A characteristic peak is shown at 1 to confirm the presence of the substituent C.
  • the substituted glycoside component manufactured in Example 21 of the present invention has a schematic structure shown in Formula 21:
  • m is 1.4, R 1 is -CH 3, Rc is -CH 3, R 'is -C 2 H 5, n is 0, a1 is 0, a2 is 1, b is 1, p 18.
  • the crude product of the substituted glycoside component was washed and filtered with 40 parts of acetic acid, and then filtered with 50 parts of acetone, and finally filtered with 800 parts of water, and then dried and crushed to obtain the substituted glycoside component.
  • the cation degree of the product of Example 22 was 0.30 mmol / g.
  • Substituted glycoside component obtained in Production Example 22 The embodiment of the present invention is an infrared detector, the detection result is displayed at characteristic peaks 1038,1304,2405cm -1, confirming that the presence of substituent group A in 1508,1654,3385cm - A characteristic peak is shown at 1 and the presence of the substituent B is confirmed.
  • the substituted glycoside component manufactured in Example 22 of the present invention has a schematic structure shown in Formula 22:
  • R 1 is -CH 3
  • R 2 is -CH 3
  • R 3 is C 2 H 5
  • m is 1.4
  • p is 19
  • q is 0, and v is 0.
  • the crude product of the substituted glycoside component was washed with suction and filtered with 40 parts of acetic acid, and then filtered with 50 parts of acetone, and finally filtered with 600 parts of water, and then dried and crushed to obtain the substituted glycoside component.
  • the cation degree of the product of Example 23 was 0.45 mmol / g.
  • Substituted glycoside component obtained in Example 23 for manufacturing the embodiment of the present invention is an infrared detector, the detection result is displayed at characteristic peaks 1035,1304,2404cm -1, confirming that the presence of substituent group A in 1502,1658,3386cm - A characteristic peak is shown at 1 and the presence of the substituent B is confirmed.
  • the substituted glycoside component manufactured in Example 23 of the present invention has a schematic structure shown in Formula 23:
  • R 1 is -C 2 H 5
  • R 2 is -CH 3
  • R 3 is C 2 H 5
  • m is 1.4
  • p is 18, q is 6, and v is 0.
  • the mixture is mixed with 320 g of water to prepare a drilling fluid base fluid with a mass fraction of 60%;
  • Amide potassium salt KPAM 4.0g sodium bentonite and 3.2g low-viscosity carboxymethyl cellulose sodium salt LV-CMC, stir at high speed for 20min at 5000r / min, then add 8.0g sulfonated phenolic resin, 8.0g calcium carbonate, 40 g of sodium chloride and 8.0 g of sodium hydroxide were stirred at high speed for 20 min at 5000 r / min.
  • the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 h to obtain a drilling fluid composition.
  • the mixture is mixed with 200 g of water to prepare a drilling fluid base fluid with a mass fraction of 75%;
  • Amide potassium salt KPAM 8.0 g of dextrin and 4.0 g of low-viscosity carboxymethyl cellulose sodium salt LV-CMC, stir at high speed for 20 min at 7000 r / min, and then add 12 g of sulfonated lignite, 12 g of oil-soluble resin, 60 g of chlorine Potassium and 12 g of potassium hydroxide were stirred at high speed for 20 min under the condition of 7000 r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 h to obtain a drilling fluid composition.
  • Example 3 240 g of the substituted glycoside component produced in Example 3, 300 g of the substituted glycoside component produced in Example 7, and 160 g of the substituted glycoside component produced in Example 11 were mixed to obtain a mixture.
  • the mixture had a cationicity of 0.46 mmol / g and an amine value of 1.02 mmol / g.
  • the mixture is mixed with 100 g of water to prepare a drilling fluid base fluid with a mass fraction of 87.5%;
  • Amide potassium salt KPAM 12g dextrin and 4.8g sodium carboxymethyl starch, stir at high speed for 20min at 8000r / min, then add 16g sulfonated lignite, 16g non-osmotic blocking agent, 80g calcium chloride and 16g sodium carbonate Under high-speed stirring conditions of 8000 r / min for 20 minutes, the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 hours to obtain a drilling fluid composition.
  • the mixture is mixed with 40 g of water to prepare a drilling fluid base fluid with a mass fraction of 95%;
  • Example 5 320 g of the substituted glycoside component produced in Example 5 and 200 g of the substituted glycoside component produced in Example 13 were mixed to obtain a mixture.
  • the mixture had a cationicity of 0.09 mmol / g and an amine value of 0.74 mmol / g.
  • the mixture is mixed with 280 g of water to prepare a drilling fluid base liquid with a mass fraction of 65%;
  • Amide potassium salt KPAM 4.0g sodium bentonite and 3.2g low-viscosity carboxymethyl cellulose sodium salt LV-CMC, stir at high speed for 20min at 10000r / min, then add 8.0g sulfonated phenolic resin, 8.0g calcium carbonate, 40g of sodium chloride and 8.0g of sodium hydroxide were stirred at high speed for 20min under the condition of 10000r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16h to obtain a drilling fluid composition.
  • the mixture is mixed with 320 g of water to prepare a drilling fluid base fluid with a mass fraction of 60%;
  • Amide potassium salt KPAM 10g dextrin and 4.2g sodium carboxymethyl starch, stirred at high speed for 20min at 10000r / min, then added 16g sulfonated lignite, 16g non-osmotic blocking agent, 40g calcium chloride and 16g sodium carbonate The mixture was stirred at high speed for 20 minutes under the condition of 10000 r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 hours to obtain a drilling fluid composition.
  • the mixture is mixed with 40 g of water to prepare a drilling fluid base fluid with a mass fraction of 95%;
  • Amide potassium salt KPAM 12g dextrin and 4.8g sodium carboxymethyl starch, stir at high speed for 20min at 10000r / min, then add 16g sulfonated lignite, 16g non-osmotic blocking agent, 80g calcium chloride and 16g sodium carbonate The mixture was stirred at high speed for 20 minutes under the condition of 10000 r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 hours to obtain a drilling fluid composition.
  • Example 15 160 g of the substituted glycoside component manufactured in Example 15, 240 g of the substituted glycoside component manufactured in Example 17, and 80 g of the substituted glycoside component manufactured in Example 19 were mixed to obtain a mixture.
  • the mixture had a cationicity of 0.09 mmol / g and an amine value of 0.43 mmol / g.
  • the mixture is mixed with 320 g of water to prepare a drilling fluid base fluid with a mass fraction of 60%;
  • Amide potassium salt KPAM 4.0g sodium bentonite and 3.2g low-viscosity carboxymethyl cellulose sodium salt LV-CMC, stir at high speed for 20min at 5000r / min, then add 8.0g sulfonated phenolic resin, 8.0g calcium carbonate, 40 g of sodium chloride and 8.0 g of sodium hydroxide were stirred at high speed for 20 min at 5000 r / min.
  • the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 h to obtain a drilling fluid composition.
  • the mixture is mixed with 200 g of water to prepare a drilling fluid base fluid with a mass fraction of 75%;
  • Amide potassium salt KPAM 8.0 g of dextrin and 4.0 g of low-viscosity carboxymethyl cellulose sodium salt LV-CMC, stir at high speed for 20 min at 7000 r / min, and add 12 g of sulfonated lignite, 12 g of oil-soluble resin, 60 g of chlorine Potassium and 12 g of potassium hydroxide were stirred at high speed for 20 min under the condition of 7000 r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 h to obtain a drilling fluid composition.
  • the mixture is mixed with 100 g of water to prepare a drilling fluid base fluid with a mass fraction of 87.5%;
  • Amide potassium salt KPAM 12g dextrin and 4.8g sodium carboxymethyl starch, stir at high speed for 20min at 8000r / min, then add 16g sulfonated lignite, 16g non-osmotic blocking agent, 80g calcium chloride and 16g sodium carbonate Under high-speed stirring conditions of 8000 r / min for 20 minutes, the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 hours to obtain a drilling fluid composition.
  • the mixture is mixed with 40 g of water to prepare a drilling fluid base fluid with a mass fraction of 95%;
  • the mixture is mixed with 280 g of water to prepare a drilling fluid base liquid with a mass fraction of 65%;
  • Amide potassium salt KPAM 4.0g sodium bentonite and 3.2g low-viscosity carboxymethyl cellulose sodium salt LV-CMC, stir at high speed for 20min at 10000r / min, then add 8.0g sulfonated phenolic resin, 8.0g calcium carbonate, 40g of sodium chloride and 8.0g of sodium hydroxide were stirred at high speed for 20min under the condition of 10000r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16h to obtain a drilling fluid composition.
  • Example 17 320 g of the substituted glycoside component produced in Example 17 and 160 g of the substituted glycoside component produced in Example 23 were mixed to obtain a mixture.
  • the mixture had a cationicity of 0.15 mmol / g and an amine value of 0.83 mmol / g.
  • the mixture is mixed with 320 g of water to prepare a drilling fluid base fluid with a mass fraction of 60%;
  • Amide potassium salt KPAM 10g dextrin and 4.2g sodium carboxymethyl starch, stirred at high speed for 20min at 10000r / min, then added 16g sulfonated lignite, 16g non-osmotic blocking agent, 40g calcium chloride and 16g sodium carbonate The mixture was stirred at high speed for 20 minutes under the condition of 10000 r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 hours to obtain a drilling fluid composition.
  • the mixture is mixed with 40 g of water to prepare a drilling fluid base fluid with a mass fraction of 95%;
  • Amide potassium salt KPAM 12g dextrin and 4.8g sodium carboxymethyl starch, stir at high speed for 20min at 10000r / min, then add 16g sulfonated lignite, 16g non-osmotic blocking agent, 80g calcium chloride and 16g sodium carbonate The mixture was stirred at high speed for 20 minutes under the condition of 10000 r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 hours to obtain a drilling fluid composition.
  • the mixture is mixed with 40 g of water to prepare a drilling fluid base fluid with a mass fraction of 95%;
  • Amide potassium salt KPAM 12g dextrin and 4.8g sodium carboxymethyl starch, stir at high speed for 20min at 10000r / min, then add 16g sulfonated lignite, 16g non-osmotic blocking agent, 80g calcium chloride and 16g sodium carbonate The mixture was stirred at high speed for 20 minutes under the condition of 10000 r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 hours to obtain a drilling fluid composition.
  • Example 1 160 g of the substituted glycoside component manufactured in Example 1, 320 g of the substituted glycoside component manufactured in Example 5, and 200 g of the substituted glycoside component manufactured in Example 9 were mixed to obtain a mixture.
  • the mixture had a cationicity of 0.09 mmol / g and an amine value of 0.66 mmol / g.
  • the mixture is mixed with 120 g of water to prepare a drilling fluid base fluid with a mass fraction of 85%;
  • Amide potassium salt KPAM 4.0g sodium bentonite and 3.2g low-viscosity carboxymethyl cellulose sodium salt LV-CMC, stir at high speed for 20min at 5000r / min, then add 8.0g sulfonated phenolic resin, 8.0g calcium carbonate, 40 g of sodium chloride and 8.0 g of sodium hydroxide were stirred at high speed for 20 min at 5000 r / min.
  • the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 h to obtain a drilling fluid composition.
  • Example 2 240 g of the substituted glycoside component produced in Example 2, 240 g of the substituted glycoside component produced in Example 6, and 160 g of the substituted glycoside component produced in Example 10 were mixed to obtain a mixture.
  • the mixture had a cationicity of 0.41 mmol / g and an amine value of 0.83 mmol / g.
  • the mixture is mixed with 160 g of water to prepare a drilling fluid base fluid with a mass fraction of 80%;
  • Amide potassium salt KPAM 8.0 g of dextrin and 4.0 g of low-viscosity carboxymethyl cellulose sodium salt LV-CMC, stir at high speed for 20 min at 7000 r / min, and add 12 g of sulfonated lignite, 12 g of oil-soluble resin, 60 g of chlorine Potassium and 12 g of potassium hydroxide were stirred at high speed for 20 min under the condition of 7000 r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 h to obtain a drilling fluid composition.
  • Example 3 240 g of the substituted glycoside component produced in Example 3, 280 g of the substituted glycoside component produced in Example 7, and 200 g of the substituted glycoside component produced in Example 11 were mixed to obtain a mixture.
  • the mixture had a cationicity of 0.45 mmol / g and an amine value of 0.98 mmol / g.
  • the mixture is mixed with 80 g of water to prepare a drilling fluid base fluid with a mass fraction of 90%;
  • Amide potassium salt KPAM 12g dextrin and 4.8g sodium carboxymethyl starch, stir at high speed for 20min at 8000r / min, then add 16g sulfonated lignite, 16g non-osmotic blocking agent, 80g calcium chloride and 16g sodium carbonate Under high-speed stirring conditions of 8000 r / min for 20 minutes, the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 hours to obtain a drilling fluid composition.
  • the mixture is mixed with 200 g of water to prepare a drilling fluid base fluid with a mass fraction of 75%;
  • the mixture is mixed with 40 g of water to prepare a drilling fluid base fluid with a mass fraction of 95%;
  • Amide potassium salt KPAM 12g dextrin and 4.8g sodium carboxymethyl starch, stir at high speed for 20min at 10000r / min, then add 16g sulfonated lignite, 16g non-osmotic blocking agent, 80g calcium chloride and 16g sodium carbonate The mixture was stirred at high speed for 20 minutes under the condition of 10000 r / min, and the obtained mixture was charged into an aging tank and rolled at 190 ° C for 16 hours to obtain a drilling fluid composition.
  • aqueous solution 1.6 g of xanthan gum XC, 1.6 g of high viscosity polyanionic cellulose sodium salt HV-PAC, 1.6 g of high viscosity carboxymethyl cellulose sodium salt HV-CMC, and 1.2 g of potassium polyacrylamide Salt KPAM, 12g dextrin and 4.8g sodium carboxymethyl starch, stir at high speed for 20min at 10000r / min, then add 16g sulfonated lignite, 16g sulfonated asphalt, 96g potassium formate and 16g potassium carbonate, at 10000r / min The mixture was stirred at high speed for 20 minutes, and the obtained mixture was charged into an aging tank and rolled at 140 ° C for 16 hours to obtain a drilling fluid composition.
  • xanthan gum XC 1.6 g of high viscosity polyanionic cellulose sodium salt HV-PAC, 1.6 g of high viscosity carboxymethyl cellulose sodium salt HV-CMC, and
  • Comparative Example 1 The manufacturing method provided in Comparative Example 1 is used, with the difference that the substituted glycoside component manufactured in Example 8 is used in place of the substituted glycoside component manufactured in Example 4; and a drilling fluid composition is obtained.
  • Comparative Example 1 The manufacturing method provided in Comparative Example 1 is used, with the difference that: the substituted glycoside component manufactured in Example 12 is used in place of the substituted glycoside component manufactured in Example 4; and a drilling fluid composition is obtained.
  • aqueous solution 1.6 g of xanthan gum XC, 1.6 g of high viscosity polyanionic cellulose sodium salt HV-PAC, 1.6 g of high viscosity carboxymethyl cellulose sodium salt HV-CMC, and 1.2 g of potassium polyacrylamide Salt KPAM, 12g dextrin and 4.8g sodium carboxymethyl starch, stir at high speed for 20min at 10000r / min, then add 16g sulfonated lignite, 16g sulfonated asphalt, 96g potassium formate and 16g potassium carbonate, at 10000r / min The mixture was stirred at high speed for 20 minutes, and the obtained mixture was charged into an aging tank and rolled at 140 ° C for 16 hours to obtain a drilling fluid composition.
  • xanthan gum XC 1.6 g of high viscosity polyanionic cellulose sodium salt HV-PAC, 1.6 g of high viscosity carboxymethyl cellulose sodium salt HV-CMC, and
  • the manufacturing method provided in Comparative Example 4 is used, the difference is that the substituted glycoside component manufactured in Example 12 is used in place of the substituted glycoside component manufactured in Example 8; a drilling fluid composition is obtained.
  • the manufacturing method provided in Comparative Example 4 is used, the difference is that the substituted glycoside component manufactured in Example 12 is used in place of the substituted glycoside component manufactured in Example 4; and a drilling fluid composition is obtained.
  • the recovered cuttings that have been weighed are placed in clean water and rolled at 190 ° C for 2h. After cooling, they are taken out and recovered with a sieve with a pore size of 0.42mm. Dry at 103 ° C for 4 hours, and cool to room temperature. The weight of the recovered cuttings is recorded as G 2.
  • the primary shale recovery rate R 1 , the secondary shale recovery rate R 2 and the relative shale recovery rate R are calculated respectively:
  • R 1 G 1 / G 0 ⁇ 100%
  • R 2 G 2 / G 0 ⁇ 100%
  • R R 2 / R 1 ⁇ 100%.
  • the slider in the instrument is immersed in the drilling fluid composition, the torque adjusting wrench value is 16.95 N / m, the instrument is operated for 5 minutes, and the value displayed on the instrument when the drilling fluid composition is soaked in the slider is read.
  • the extreme pressure lubrication coefficient is calculated as: :
  • K is the extreme pressure lubrication coefficient
  • X is the value displayed on the instrument when the drilling fluid composition soaks the slider.
  • the fann-389AP full-automatic permeability plugging device provided by Beijing Zhonghui Tiancheng Technology Co., Ltd. is adopted; the temperature of the full-automatic permeability plugging device is raised to 120 ° C, loaded into the core, and penetrated with kerosene, and the initial pressure is recorded. , The highest pressure, stable pressure, the confining pressure is 2MPa greater than the flow pressure;
  • the measuring cylinder receives the liquid and records the time and volume used;
  • the ratio of the stable pressure before pollution to the stable pressure after pollution is the permeability recovery value, which reflects the damage degree of the drilling fluid composition to the formation rocks.
  • the drilling fluid composition is added to a 3% sodium chloride solution and formulated into 0mg.dm -3 , 5000mg.dm -3 , 10000mg.dm -3 , 25000mg.dm -3 , and 50,000mg.dm -3 10mL of 100000mg.dm -3 sample solution to be tested, let stand for 60min;
  • the drilling fluid composition according to the present invention (such as Examples 24-30) generally has the following properties: apparent viscosity is 51 mpa.s-95 mPa.s, and plastic viscosity is 30 mPa.s-55 mPa.s, Dynamic shear force is 21Pa-40Pa, static shear force is 4-9 / 9-18, medium pressure filtration loss is 0mL, high temperature and high pressure filtration loss is 1.0-2.0mL, salt resistance is saturated, and calcium resistance are both 30%, bentonite resistance is 30%, water resistance is 60%, antigen oil resistance is 40%, temperature resistance is 190 ° C; primary recovery rate of core is> 99%, relative recovery rate of core is 99.9 %; Extreme pressure lubrication coefficient of 0.022-0.039; water activity ⁇ 0.50; dynamic permeability recovery value> 95%, static permeability recovery value>98%; biotoxicity EC 50 value of 739800mg / L-759800mg / L
  • the drilling fluid composition according to the present invention has good temperature resistance, excellent filtration loss reduction performance and anti-pollution performance: its temperature resistance can reach 190 ° C, medium pressure filtration loss is 0mL, high temperature and high pressure filtration loss Amount ⁇ 2.0mL, anti-saturation resistance, 30% resistance to calcium, 30% resistance to soil, 60% resistance to water invasion, 40% antigen oil; moreover, it has excellent inhibitory performance, good lubrication performance and reservoir protection performance, no Biological toxicity:
  • the primary recovery rate of the core is> 99%, the relative recovery rate of the core is> 99%, the extreme pressure lubrication coefficient is ⁇ 0.04, the dynamic permeability recovery value is> 95%, the static permeability recovery value is> 98%, and the biological toxicity EC50 value is> 730000mg / L (EC 50 value> 30,000mg / L is non-toxic).
  • the drilling fluid composition according to the present invention is used for drilling construction of highly water-sensitive mud shale, mudstone and other easily collapsed formations and shale oil and gas horizontal wells:
  • the drilling fluid composition according to the present invention was applied in the field of the second-developed slope section of the Yunyeping 6 well in the extension of the continental shale gas block in northern Shaanxi; the results show that the drilling fluid composition has achieved outstanding results :
  • the drilling fluid composition has excellent anti-collapse performance, strong solid-phase detergent accommodating capacity, excellent lubrication and anti-seizure performance, and significant environmental protection advantages;
  • the well diameter expansion rate of the application section is only 4.78% (adjacent well Yunpingping 3 well) Potassium chloride polymer drilling fluid is used in the same interval, and the well diameter expansion rate is> 20%).
  • the drilling fluid composition according to the present invention is applied on site in the Songliao oil well 2HF in the Songliao Basin in Northeast China; the results show that the drilling fluid composition has a mechanism similar to that of oil-based, performance similar to oil-based, and has oil Environmental protection advantages not provided by base drilling fluids; after the drilling fluid composition is used in this well, the drilling fluids have shown effective anti-collapse performance, efficient solid-phase accommodating and cleaning capabilities, and excellent anti-seize properties; It has been kept stable, no slumped blocks, smooth drilling and drilling, stable drilling fluid performance, good control of drilling fluid and other harmful solid phases, which is conducive to maintenance and treatment; good drilling fluid lubrication and anti-collapse effect, no support pressure, stuck Drilling and other downhole complications occurred. Specifically:
  • the soft mudstone formations of the Nenjiang Formation and Yaojia Formation of the well were soaked for 100 days (collapse period 7-10d), and the soft mudstone formations of Qingshankou Formation were soaked for 87 days (collapse period 21d).
  • the drilling fluid composition can be the same as the oil-based drilling fluid, and there is no concept of a collapse period.
  • the frictional resistance during drilling is 3-5t, and the frictional resistance during drilling is 1-3t. There is no supporting pressure in the entire orientation section, and the orientation process is very smooth.
  • the field test result of the drilling fluid composition was 6.4g / L.
  • the drilling fluid composition was reduced to 5.36g / L.
  • the test result of the drilling fluid composition was extremely low, and The decreasing trend ensures that the drilling fluid has a good flow pattern, and the external poor-quality solid phase cannot penetrate the drilling fluid system, and the drilling fluid is always kept clean.
  • the drilling fluid composition according to the present invention has excellent green environmental protection performance, anti-collapse performance, lubricity and anti-seize performance, and solid-phase cleaning ability, and can effectively guarantee highly water-sensitive mudstones, mudstones and other easily collapsed formations and sheets.
  • the green, safe, and efficient drilling of rock and gas horizontal wells proceeded smoothly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Saccharide Compounds (AREA)

Abstract

提供了一种取代的糖或糖苷及其在钻井液组合物中的应用。所述取代的糖或糖苷带有取代基A、取代基B和取代基C,其中所述取代基A在其结构中包含基团(I),所述取代基B在其结构中包含基团(II),所述取代基C在其结构中包含单元-NH-R 7-。所述钻井液组合物可以表现出较好的抗温性、降滤失性能、抗污染性能、抑制性能、润滑性能或者储层保护性能,并且无生物毒性。

Description

取代的糖或糖苷及其在钻井液组合物中的应用 技术领域
本发明涉及取代的糖或糖苷,更具体地涉及一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物。本发明还涉及由所述取代的糖或糖苷制造的钻井液组合物以及该钻井液组合物的制造方法。
背景技术
油气钻探过程中,在钻遇黏土矿物含量高的强水敏性泥页岩及含泥岩等易坍塌地层时,常规水基钻井液不能有效抑制强水敏地层的水化膨胀、分散;强抑制水基钻井液虽然抑制防塌效果较好,且成本较低,绿色环保,但其性能仍未达到与油基钻井液相当的程度;因此,在钻遇高活性的泥页岩等易坍塌地层时,传统的解决办法仍然是首选油基钻井液。但油基钻井液也有诸多不足之处,具体表现为配制成本高、不利于录井作业、井漏时损失严重、钻屑后处理压力大等问题,这些缺点限制着油基钻井液更大规模的应用。
发明内容
本发明的发明人认为,在当前的形势下,寻求一种对地层完全不水化的钻井液组合物体系成为现场亟需。该钻井液组合物主要是通过吸附成膜阻水、反渗透驱水、降低钻井液水活度、嵌入及拉紧晶层等来达到完全消除地层水化的效果,其作用机理与油基钻井液相近且性能与油基钻井液相当,除此之外,该钻井液组合物体系还应具有油基钻井液所不具备的环保优势。这种钻井液组合物在用于高活度泥岩、含泥岩等易坍塌地层及页岩油气水平井钻井时,可以达到油基钻井液的现场应用效果,对解决易坍塌地层的井壁失稳等复杂情况,缓解油基钻井液带来的环保压力,扩大水基钻井液的适用范围等具有重要意义。
本发明的发明人基于该认识进行了刻苦的研究,发现了一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,并进一步发现,如果以所述一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物作为组分来制造钻井液组合物,该钻井液组合物可以表现出较好的抗温性、降滤失性能、抗污 染性能、抑制性能、润滑性能和储层保护性能,并且无生物毒性。本发明由此而完成。
具体而言,本发明涉及以下方面的内容。
1.一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,各自或组合带有取代基A、取代基B和取代基C,其中所述取代基A在其结构中包含基团
Figure PCTCN2019094909-appb-000001
(该基团的配对阴离子可以是任意阴离子,特别是卤素阴离子比如Cl -或Br -),R 2是C1-20直链或支链烷基(优选C1-10直链或支链烷基,更优选C1-4直链或支链烷基),所述取代基B在其结构中包含基团
Figure PCTCN2019094909-appb-000002
(优选包含单元
Figure PCTCN2019094909-appb-000003
或者
Figure PCTCN2019094909-appb-000004
),R 4是C2-6直链或支链亚烷基(优选亚乙基或亚丙基),所述取代基C在其结构中包含单元-NH-R 7-(优选-NH-CH 2CH 2-),R 7是C2-6直链或支链亚烷基(优选亚乙基或亚丙基)。
2.前述或后述任一方面所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,其中所述取代基A在其结构中还包含单元——O-R 6-(优选——O-CH 2CH 2-、
Figure PCTCN2019094909-appb-000005
或其任意组合)和/或单元
Figure PCTCN2019094909-appb-000006
(优选
Figure PCTCN2019094909-appb-000007
),R 5是C3-6直链或支链三价烷基(优选三价丙基或三价丁基),R 6是C2-8直链或支链亚烷基(优选亚乙基或亚丙基),和/或,所述取代基B在其结构中还包含单元
Figure PCTCN2019094909-appb-000008
(优选
Figure PCTCN2019094909-appb-000009
特别是
Figure PCTCN2019094909-appb-000010
)和/或单元
Figure PCTCN2019094909-appb-000011
(优选
Figure PCTCN2019094909-appb-000012
特别是
Figure PCTCN2019094909-appb-000013
),R 3是C2-6直链或支链亚烷基(优选亚乙基或亚丙基),L 1是(优选碳原子数不超过10的)任意连接基团(优选单键、C2-10直链或支链亚烷基、-C(=0)-C2-10直链或支链亚烷基、-C(=0)0-C2-10直链或支链亚烷基、-C(=0)NH-C2-10直链或支链亚烷基、C2-5直链或支链亚烷基-C(=0)-C2-5直链或支链亚烷基、C2-5直链或支链亚烷基-C(=0)0-C2-5直链或支链亚烷基、C2-5直链或支链亚烷基-C(=0)NH-C2-5直链或支链亚烷基,更优选-C(=0)NH-C2-10直链或支链亚烷基),M是氢、碱金属(比如K或Na)或铵(NH 4),R 10是C2-6直链或支链亚烷基(优选亚乙基或亚丙基),L 2是(优选碳原子数不超过10的)任意连接基团(优选单键或者C2-10直链或支链亚烷基,特别是单键),R′是C1-4直链或支链烷基(优选甲基或乙基),和/或,所述取代基C在其结构中还包含单元——O-R 6-(优选——O-CH 2CH 2-、
Figure PCTCN2019094909-appb-000014
或其任意组合)和/或单元
Figure PCTCN2019094909-appb-000015
(优选
Figure PCTCN2019094909-appb-000016
),R 5是C3-6直链或支链三价烷基(优选三价丙基或三价丁基),R 6是C2-8直链或支链亚烷基或C2-6直链或支链亚烷基,Rc是C1-5直链或支链烷基或C1-4直链或支链烷基。
3.前述或后述任一方面所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,其中所述取代基A用以下化学式(A-1)或者化学式(A-2)示意性表示,
Figure PCTCN2019094909-appb-000017
n是0-3的数值(比如1),a是0-6的数值(比如1-4的数值),a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),
所述取代基B用以下化学式(B-1)、化学式(B-2)或者化学式(B-3)示意性表示,
Figure PCTCN2019094909-appb-000018
p是2-30的数值(优选2-20或4-16的数值),q是0-30的数值(优选2-30、2-15或4-12的数值),v是0-30的数值(优选1-20或4-12的数值),
所述取代基C用以下化学式(C-1)、化学式(C-2)或者化学式(C-3)示意性表示,
Figure PCTCN2019094909-appb-000019
n是0-3的数值(比如0),a是0-6的数值(比如1-4的数值),a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值),其中a和b-1不同时为0或者a1、a2和b-1不同时为0。
4.前述或后述任一方面所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,其中所述糖或糖苷是用以下化学式(1)示意性表示的葡萄糖残基或葡萄糖糖苷残基,
Figure PCTCN2019094909-appb-000020
两个R 1彼此相同或不同,各自独立地选自氢和C1-20直链或支链烷基(优选各自独立地选自氢和C1-10直链或支链烷基,更优选各自独立地选自氢和C1-4直链或支链烷基),m是1-3或1-2的整数,*代表所述取代基A、所述取代基B或所述取代基C的键合点,前提是存在至少一个所述键合点。
5.前述或后述任一方面所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,是选自用以下化学式(XX)示意性表示的一种或多种化合物,
Figure PCTCN2019094909-appb-000021
在化学式(XX)中,在m1个Rx 1中,一个Rx 1是所述取代基A,另一个Rx 1是所述取代基C,其余的Rx 1彼此相同或不同,各自独立地选自所述取代基A、所述取代基C和羟基,m1是2-3的整数,m1个Rx 2和m1个Rx 3彼此相同或不同,各自独立地选自氢原子和所述取代基B,前提是这些Rx 2和Rx 3中的至少一个是所述取代基B,
在将选自用以下化学式(I-1)、化学式(I-2)或化学式(I-3)示意性表示的一种或多种化合物称为化合物P,将选自用以下化学式(II-1)或化学式(II-2)示意性表示的一种或多种化合物称为化合物X,将选自用以下化学式(III-1)、化学式(III-2)或化学式(III-3)示意性表示的一种或多种化合物称为化合物Y,将选自用以下化学式(IV-1)、化学式(IV-2)或化学式(IV-3)示意性表示的一种或多种化合物称为化合物Z时,所述混合物是所述化合物P、所述化合物X、所述化合物Y和所述化合物Z中至少两种(优选至少三种)的混合物,前提是所述混合物同时包含所述取代基A、所述取代基B和所述取代基C,
Figure PCTCN2019094909-appb-000022
Figure PCTCN2019094909-appb-000023
Figure PCTCN2019094909-appb-000024
Figure PCTCN2019094909-appb-000025
(在优选的情况下,a1=0,a2=0,n=1)
Figure PCTCN2019094909-appb-000026
Figure PCTCN2019094909-appb-000027
(III-3)(在优选的情况下,n是0,Rc是甲基,a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-4的数值(比如2-3的数值),m是1)
Figure PCTCN2019094909-appb-000028
Figure PCTCN2019094909-appb-000029
(IV-3)(在优选的情况下,n是0,a1是0,a2是1-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值),v=0)。
6.前述或后述任一方面所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,是所述化合物X(在优选的情况下,a1=0,a2=0,n=1)、所述化合物Y(在优选的情况下,n是0,Rc是甲基,a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-4的数值(比如2-3的数值),m是1)和所述化合物Z(在优选的情况下,n是0,a1是0,a2是1-3的数值(比如1-2的数值),b是1-5的数值(比如2-4 的数值),v=0)的混合物,其中所述化合物X、所述化合物Y和所述化合物Z的质量比例为20-30∶30-40∶10-25。
7.前述或后述任一方面所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,阳离子度为0.10-0.80mmol/g,优选0.25-0.50mmol/g,和/或,胺值为0.40-1.65mmol/g,优选0.83-1.32mmol/g。
8.一种钻井液组合物,包含钻井液基液和任选的至少一种处理剂,其中所述钻井液基液由前述或后述任一方面所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物(统称为取代的糖或糖苷)和水构成。
9.前述或后述任一方面所述的钻井液组合物,其中以所述钻井液基液的质量为100wt%计,所述取代的糖或糖苷的质量百分含量为60-95wt%,和/或,相对于所述钻井液基液100ml,所述至少一种处理剂的用量为10-70g,优选18.3-41.7g,和/或,所述至少一种处理剂选自增粘剂、流型调节剂、降滤失剂、高温稳定剂、封堵剂、抑制增强剂和pH调节剂中的至少一种。
10.一种钻井液组合物的制造方法,包括混合前述或后述任一方面所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物(统称为取代的糖或糖苷)、水和任选的至少一种处理剂(优选先混合所述取代的糖或糖苷与所述水,然后再将所获得的混合物与所述任选的至少一种处理剂混合),然后任选将所获得的混合物进行老化处理(优选处理温度为120-200℃或140-180℃,优选155-165℃,处理时间为10-30小时或15-20小时,优选15-17小时)。
技术效果
根据本发明,可以实现如下技术效果中的至少一个:
(1)本发明钻井液组合物具有较好的抗温性。
(2)本发明钻井液组合物具有较好的降滤失性能。
(3)本发明钻井液组合物具有较好的抗污染性能。
(4)本发明钻井液组合物具有较好的抑制性能。
(5)本发明钻井液组合物具有较好的润滑性能。
(6)本发明钻井液组合物具有较好的储层保护性能。
(7)本发明钻井液组合物适用于强水敏性泥页岩、含泥岩等易坍塌地层、页岩气水平井钻井及储层保护性要求较高的地层。
(8)本发明钻井液组合物无生物毒性,具有较好的环保性,可直接排放,能够减少处理钻井液的费用,降低钻井液成本,适用于环保要求高的地层及海洋钻井。
(9)本发明提供的制造方法操作简单、条件温和,所用原料均无生物毒性,安全环保,适于大规模生产及应用。
附图说明
图1为本发明实施例1得到的取代糖苷组分的红外图谱。
图2为本发明实施例5得到的取代糖苷组分的红外图谱。
图3为本发明实施例9得到的取代糖苷组分的红外图谱。
图4为本发明实施例13得到的取代糖苷组分的红外图谱。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本说明书的上下文中,所谓数值,包括整数和小数。
在本说明书的上下文中,阳离子度的测量包括:先将待测样品稀释至1.0%的水溶液。量取1.0%的待测样品溶液50mL,置于干燥洁净的100mL容量瓶中,用移液管准确移入25mL的四苯硼钠(STPB)溶液。混合液转入100mL容量瓶中,用盐酸溶液调节pH值至3-5后,用蒸馏水定容至100mL。静止30min。用干燥洁净的漏斗和双层滤纸过滤,可多次过滤,直至滤液澄清。用移液管准确移取25mL澄清滤液于锥形瓶中,用氢氧化钠溶液调节pH值至7-8,加入6滴-10滴溴酚蓝指示剂,用(十六烷基三甲基溴化铵)QAS溶液 滴定,溶液颜色由紫蓝色变为淡蓝色即为滴定终点。若滴定开始前溶液颜色为淡蓝色,证明STPB溶液用量不足,需重新重复上述步骤。通过随机抽取5批次待测样品样品进行阳离子度测量。然后,按式(1)计算阳离子度。
Figure PCTCN2019094909-appb-000030
式中:
A——阳离子度,单位为毫摩尔每克(mmol/g);
V 5——测量总量时移取的STPB溶液体积,单位为毫升(mL);
V 6——测量总量时所用的QAS溶液体积,单位为毫升(mL);
c 3——STPB溶液浓度,单位为摩尔每升(mol/L);
c 2——QAS溶液浓度,单位为摩尔每升(mol/L);
W 2——固形物含量,%。
在本说明书的上下文中,胺值的测量包括:称取待测样品0.5g(精确至0.0001g),放入洁净干燥的250mL锥形瓶中,加入50mL去离子水并记录总质量m1。在上述待测液中加入溴甲酚绿-甲基红指示剂5滴,摇匀,用盐酸标准溶液逐滴匀速滴定,边均匀摇动边仔细观察溶液的颜色变化,当溶液颜色由绿色变为暗红色即为滴定终点。记录消耗盐酸标准溶液体积V。同时做空白试验。通过随机抽取3批次待测样品进行胺值测量。按式(2)计算胺值:
Figure PCTCN2019094909-appb-000031
式中:
总胺值-以H +计,单位为毫摩尔每克(mmol/g);
C HCI-所用盐酸标准溶液的浓度,单位为摩尔每升(mol/L);
V-待测样品消耗盐酸-异丙醇标准溶液的体积的数值,单位为毫升(mL);
V 空白-空白试验盐酸溶液的体积的数值,单位为毫升(mL);
m-称取待测样品质量的准确数值,单位为克(g)。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,而且压力是表压。
在本说明书的上下文中,本发明的任何两个或多个实施方式都可以任意组合,由此而形成的技术方案属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围。
根据本发明的一个实施方式,涉及一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物。在此,所谓“一种取代的糖或糖苷”,指的是以单独化合物形式存在的取代的糖或糖苷,而所谓“多种取代的糖或糖苷的混合物”,则指的是两种以上(即多种)取代的糖或糖苷混合在一起而形成的混合物。对于本发明而言,取代的糖或糖苷是以各自化合物的形式分别独立存在,还是以彼此混合物的形式存在,都能够实现本发明的预期目的,并没有特别的限定。因此,本发明有时将所述一种取代的糖或糖苷与所述多种取代的糖或糖苷的混合物统称为取代的糖或糖苷。
根据本发明的一个实施方式,所述取代的糖或糖苷各自或组合带有取代基A、取代基B和取代基C。在此,所谓各自带有,指的是所述取代基A、所述取代基B和所述取代基C分别位于不同的取代的糖或糖苷分子上,而所谓组合带有,则指的是所述取代基A、所述取代基B和所述取代基C既可以分别位于不同的取代的糖或糖苷分子上,也可以按照任意的组合(比如两两组合或者三个同时)位于不同或同一个取代的糖或糖苷分子上。
根据本发明的一个实施方式,所述取代基A在其结构中包含基团
Figure PCTCN2019094909-appb-000032
在此,该基团的配对阴离子可以是任意阴离子,特别是卤素阴离子比如Cl -或Br -。另外,R 2是C1-20直链或支链烷基,优选C1-10直链或支链烷基,更优选C1-4直链或支链烷基。在此,所述基团
Figure PCTCN2019094909-appb-000033
或所述取代基A的存在可以通过红外分析方法予以确认。比如,在所述取代的糖或糖苷(包括本说明书下文所述的取代糖苷组分)的红外谱图上,在1034±10cm -1、1300±10cm -1和2400±10cm -1处显示特征峰,就可以确认所述基团
Figure PCTCN2019094909-appb-000034
或所述取代基A的存在。
根据本发明的一个实施方式,所述取代基B在其结构中包含基团
Figure PCTCN2019094909-appb-000035
优选的是,包含所述取代基B在其结构中单元
Figure PCTCN2019094909-appb-000036
或者
Figure PCTCN2019094909-appb-000037
在此,R 4是C2-6直链或支链亚烷基,优选亚乙基或亚丙基。在此,所述基团
Figure PCTCN2019094909-appb-000038
或所述取代基B的存在可以通过红外分析方法予以确认。比如,在所述取代的糖或糖苷(包括本说明书下文所述的取代糖苷组分)的红外谱图上,在1501±10cm -1、1650±10cm -1和3386±10cm -1处显示特征峰,就可以确认所述基团
Figure PCTCN2019094909-appb-000039
或所述取代基B的存在。
根据本发明的一个实施方式,所述取代基C在其结构中包含单元-NH-R 7-。优选的是,所述取代基C在其结构中包含单元-NH-CH 2CH 2-。在此,R 7是C2-6直链或支链亚烷基,优选亚乙基或亚丙基。在此,所述单元-NH-R 7-或所述取代基C的存在可以通过红外分析方法予以确认。比如,在所述取代的糖或糖苷(包括本说明书下文所述的取代糖苷组分)的红外谱图上,在900±10cm -1、1622±10cm -1和3346±10cm -1处显示特征峰,就可以确认所述单元-NH-R 7-或所述取代基C的存在。
根据本发明的一个实施方式,所述取代基A在其结构中还可以包含单元——O-R 6-,优选——O-CH 2CH 2-、
Figure PCTCN2019094909-appb-000040
或其任意组合。在此,R 6是C2-8直链或支链亚烷基,优选亚乙基或亚丙基。
根据本发明的一个实施方式,所述取代基A在其结构中还可以包含单元
Figure PCTCN2019094909-appb-000041
优选
Figure PCTCN2019094909-appb-000042
在此,R 5是C3-6直链或支链三价烷基,优选三价丙基或三价丁基。
根据本发明的一个实施方式,所述取代基B在其结构中还可以包含单元
Figure PCTCN2019094909-appb-000043
优选
Figure PCTCN2019094909-appb-000044
特别是
Figure PCTCN2019094909-appb-000045
在此,R 3是C2-6直链或支链亚烷基,优选亚乙基或亚丙基。另外,L 1是任意连接基团,优选碳原子数不超过10的任意连接基团,更优选单键、C2-10直链或支链亚烷基、-C(=0)-C2-10直链或支链亚烷基、-C(=0)0-C2-10直链或支链亚烷基、-C(=0)NH-C2-10直链或支链亚烷基、C2-5直链或支链亚烷基-C(=0)-C2-5直链或支链亚烷基、C2-5直链或支链亚烷基-C(=0)0-C2-5直链或支链亚烷基、C2-5直链或支链亚烷基-C(=0)NH-C2-5直链或支链亚烷基,更优选-C(=0)NH-C2-10直链或支链亚烷基。M是氢、碱金属(比如K或Na)或铵(NH 4)。
根据本发明的一个实施方式,所述取代基B在其结构中还可以包含单元
Figure PCTCN2019094909-appb-000046
优选
Figure PCTCN2019094909-appb-000047
特别是
Figure PCTCN2019094909-appb-000048
在此,R 10是C2-6直链或支链亚烷基,优选亚乙基或亚丙基。L2是任意连接基团,优选碳原子数不超过10的任意连接基团,更优选单键或者C2-10直链或支链亚烷基,特别是单键。R′是C1-4直链或支链烷基,优选甲基或乙基。
根据本发明的一个实施方式,所述取代基C在其结构中还可以包含单元——O-R 6-,优选——O-CH 2CH 2-、
Figure PCTCN2019094909-appb-000049
或其任意组合。在此,R 6是C2-8直链或支链亚烷基或C2-6直链或支链亚烷基。另外,Rc是C1-5直链或支链烷基或C1-4直链或支链烷基。
根据本发明的一个实施方式,所述取代基C在其结构中还可以包含单元
Figure PCTCN2019094909-appb-000050
优选
Figure PCTCN2019094909-appb-000051
在此,R 5是C3-6直链或支链三价烷基,优选三价丙基或三价丁基。
根据本发明的一个实施方式,所述取代基A可以用以下化学式(A-1)或者化学式(A-2)示意性表示。在本说明书的上下文中,所谓“示意性表示”,以化学式(A-1)为例,意味着所述取代基A虽然如该化学式所示,在其一个分子中包含n个单元
Figure PCTCN2019094909-appb-000052
a个单元——O-R 6-和一个基团
Figure PCTCN2019094909-appb-000053
但这并不意味着所述n个单元
Figure PCTCN2019094909-appb-000054
必须如该化学式所示彼此直接键合而形成嵌段结构,或者所述a个单元——O-R 6-必须如该化学式所示彼此直接键合而形成嵌段结构,更不意味着所述单元——O-R 6-和所述单元
Figure PCTCN2019094909-appb-000055
必须按照该化学式所示的特定顺序键合。实际上,根据本发明的精神主旨,所述单元——O-R 6-和所述单元
Figure PCTCN2019094909-appb-000056
之间可以按照任何顺序键合而形成比如无规、嵌段或交替等结构,而这些结构都属于本发明的预期范围,并没有特别的限定。本说明书中的其他化学式均可以类似理解。
Figure PCTCN2019094909-appb-000057
根据本发明的一个实施方式,在这些化学式中,n是0-3的数值(比如1),a是0-6的数值(比如1-4的数值),a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值)。在这些化学式中,所有没有明确定义的取代基和数值(比如R5、R6和R2等)直接适用取代基A中的相应定义。
根据本发明的一个实施方式,所述取代基B可以用以下化学式(B-1)、化学式(B-2)或者化学式(B-3)示意性表示。
Figure PCTCN2019094909-appb-000058
根据本发明的一个实施方式,在这些化学式中,p是2-30的数值(优选2-20或4-16的数值),q是0-30的数值(优选2-30、2-15或4-12的数值),v是0-30的数值(优选1-20或4-12的数值)。在这些化学式中,所有没有明确定义的取代基和数值(比如R3、R4、R10、L1、L2、R′和M等)直接适用取代基B中的相应定义。
根据本发明的一个实施方式,所述取代基C可以用以下化学式(C-1)、化学式(C-2)或者化学式(C-3)示意性表示。
Figure PCTCN2019094909-appb-000059
Figure PCTCN2019094909-appb-000060
根据本发明的一个实施方式,在这些化学式中,n是0-3的数值(比如0),a是0-6的数值(比如1-4的数值),a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值),其中a和b-1不同时为0或者a1、a2和b-1不同时为0。在这些化学式中,所有没有明确定义的取代基和数值(比如R5、R6、Rc和R7等)直接适用取代基C中的相应定义。
根据本发明的一个实施方式,所述糖或糖苷是用以下化学式(1)示意性表示的葡萄糖残基或葡萄糖糖苷残基。
Figure PCTCN2019094909-appb-000061
根据本发明,用所述化学式(1)示意性表示的葡萄糖残基或葡萄糖糖苷残基是从用以下化学式(1′)示意性表示的葡萄糖或葡萄糖糖苷上相应除去-OH或-H而获得的基团。在本发明的上下文中,所述化学式(1′)还可以表示为化学式(11′)或者化学式(12′),但无论是化学式(1′)、化学式(11′)还是化学式(12′),都不用来限定本发明所涉及的任何葡萄糖或葡萄糖糖苷或者本发明所涉及的任何葡萄糖残基或葡萄糖糖苷残基的立体构型。
Figure PCTCN2019094909-appb-000062
Figure PCTCN2019094909-appb-000063
根据本发明的一个实施方式,在化学式(1)中,两个R 1彼此相同或不同,各自独立地选自氢和C1-20直链或支链烷基,优选各自独立地选自氢和C1-10直链或支链烷基,更优选各自独立地选自氢和C1-4直链或支链烷基。m是1-3或1-2的整数。*代表所述取代基A、所述取代基B或所述取代基C的键合点,前提是存在至少一个所述键合点。换句话说,所述葡萄糖或葡萄糖糖苷必须被所述取代基A、所述取代基B和所述取代基C中的至少一个取代基所取代。
根据本发明的一个实施方式,所述取代的糖或糖苷是选自用以下化学式(XX)示意性表示的一种或多种化合物。
Figure PCTCN2019094909-appb-000064
根据本发明的一个实施方式,在所述化学式(XX)中,在m1个Rx 1中,一个Rx 1是所述取代基A,另一个Rx 1是所述取代基C,其余的Rx 1彼此相同或不同,各自独立地选自所述取代基A、所述取代基C和羟基。m1是2-3的整数。m1个Rx 2和m1个Rx 3彼此相同或不同,各自独立地选自氢原子和 所述取代基B,前提是这些Rx 2和Rx 3中的至少一个是所述取代基B。在所述化学式(XX)中,所有没有明确定义的取代基和数值(比如R1等)直接适用所述化学式(1)中的相应定义。
根据本发明的一个实施方式,在将选自用以下化学式(I-1)、化学式(I-2)或化学式(I-3)示意性表示的一种或多种化合物称为化合物P,将选自用以下化学式(II-1)或化学式(II-2)示意性表示的一种或多种化合物称为化合物X,将选自用以下化学式(III-1)、化学式(III-2)或化学式(III-3)示意性表示的一种或多种化合物称为化合物Y,将选自用以下化学式(IV-1)、化学式(IV-2)或化学式(IV-3)示意性表示的一种或多种化合物称为化合物Z时,所述混合物是所述化合物P、所述化合物X、所述化合物Y和所述化合物Z中至少两种的混合物,前提是所述混合物同时包含所述取代基A、所述取代基B和所述取代基C。在此,所述混合物被称为特别混合物,而所述化合物P、所述化合物X、所述化合物Y或者所述化合物Z有时也称为取代糖苷组分。
Figure PCTCN2019094909-appb-000065
Figure PCTCN2019094909-appb-000066
Figure PCTCN2019094909-appb-000067
根据本发明的一个实施方式,在化学式(II-2)中,优选a1=0,a2=0,n=1。
Figure PCTCN2019094909-appb-000068
Figure PCTCN2019094909-appb-000069
根据本发明的一个实施方式,在化学式(III-3)中,优选n是0,Rc是甲基,a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-4的数值(比如2-3的数值),m是1。
Figure PCTCN2019094909-appb-000070
Figure PCTCN2019094909-appb-000071
根据本发明的一个实施方式,在化学式(IV-3)中,优选n是0,a1是0,a2是1-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值)。
根据本发明,前述所有的化学式(I-1)至化学式(IV-3)都是通过将所述取代基A、所述取代基B和所述取代基C分别或以不同的组合方式键合到所述化学式(1)示意性表示的葡萄糖残基或葡萄糖糖苷残基(简称为残基)上而获得的。因此,这些化学式中所有的取代基和数值均直接适用这些取 代基和残基中的相应定义,虽然某些化学式(比如化学式(IV-3))还明确了在优选情况下其中某些取代基或数值的定义。
根据本发明的一个实施方式,所述取代的糖或糖苷(比如所述特别混合物)的阳离子度一般为0.10-0.80mmol/g,优选0.25-0.50mmol/g。
根据本发明的一个实施方式,所述取代的糖或糖苷(比如所述特别混合物)的胺值一般为0.40-1.65mmol/g,优选0.83-1.32mmol/g。
根据本发明的一个实施方式,所述特别混合物是所述化合物P、所述化合物X、所述化合物Y和所述化合物Z中至少三种的混合物,特别是所述化合物X、所述化合物Y和所述化合物Z的混合物,更特别是所述化学式(II-2)示意性表示的一种或多种化合物(优选a1=0,a2=0,n=1)、所述化学式(III-3)示意性表示的一种或多种化合物(优选n是0,Rc是甲基,a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-4的数值(比如2-3的数值),m是1)和所述化学式(IV-3)示意性表示的一种或多种化合物(优选n是0,a1是0,a2是1-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值))的混合物。
根据本发明的一个实施方式,在所述特别混合物中,所述化合物X、所述化合物Y和所述化合物Z的质量比例可以是20-30∶30-40∶10-25。
根据本发明的一个实施方式,所述化合物X(比如所述化学式(II-2)示意性表示的化合物,其中优选a1=0,a2=0,n=1)的数均分子量一般为340-1500,优选500-1200。
根据本发明的一个实施方式,所述化合物X(比如所述化学式(II-2)示意性表示的化合物,其中优选a1=0,a2=0,n=1)的阳离子度一般为0.40-1.70mmol/g,优选1.10-1.35mmol/g。
根据本发明的一个实施方式,所述化合物X可以按照以下方法进行制造。该制造方法比如包括:将环氧氯丙烷、水和催化剂进行水解反应,得到3-氯-1,2-丙二醇水溶液;将所述3-氯-1,2-丙二醇水溶液和糖苷进行反应,得到氯代醇糖苷水溶液;将所述氯代醇糖苷水溶液和叔胺进行反应,得到所述化合物X。
根据本发明的一个实施方式,在所述化合物X的制造方法中,所述催化剂比如为无机酸或有机酸。在此,所述无机酸比如为硫酸、硝酸或磷酸,所述有机酸优选为甲苯磺酸、十二烷基苯磺酸或氨基磺酸。
根据本发明的一个实施方式,在所述化合物X的制造方法中,所述环氧氯丙烷、水和催化剂的摩尔比一般为1∶(12-20)∶(0.02-0.12)。
根据本发明的一个实施方式,在所述化合物X的制造方法中,所述水解反应的温度优选为60℃-100℃,时间优选为3h-8h。
根据本发明的一个实施方式,在所述化合物X的制造方法中,所述糖苷比如为甲基糖苷、乙基糖苷、乙二醇糖苷、丙基糖苷或丁基糖苷。
根据本发明的一个实施方式,在所述化合物X的制造方法中,所述3-氯-1,2-丙二醇水溶液和糖苷的摩尔比优选为(0.5-5)∶1。
根据本发明的一个实施方式,在所述化合物X的制造方法中,所述3-氯-1,2-丙二醇水溶液和糖苷进行反应的温度优选为80℃-110℃,时间优选为0.5h-4h。
根据本发明的一个实施方式,在所述化合物X的制造方法中,所述叔胺优选为三甲胺、三乙胺、三丙胺、三丁胺、己基二甲基叔胺、辛基二甲基叔胺、癸基二甲基叔胺或十二烷基二甲基叔胺。
根据本发明的一个实施方式,在所述化合物X的制造方法中,所述氯代醇糖苷和叔胺的摩尔比优选为1∶(0.2-1.2)。
根据本发明的一个实施方式,在所述化合物X的制造方法中,所述氯代醇糖苷水溶液和叔胺进行反应的pH值优选为6-9。为此,优选采用中和剂调节pH值。在此,所述中和剂优选为氢氧化钠、氢氧化钾或碳酸钠。
根据本发明的一个实施方式,在所述化合物X的制造方法中,所述氯代醇糖苷水溶液和叔胺进行反应的温度优选为40℃-80℃,时间优选为3h-10h。
根据本发明的一个实施方式,所述化合物Y(比如所述化学式(III-3)示意性表示的化合物,其中优选n是0,Rc是甲基,a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-4的数值(比如2-3的数值),m是1)的数均分子量一般为240-950,优选为300-800。
根据本发明的一个实施方式,所述化合物Y(比如所述化学式(III-3)示意性表示的化合物,其中优选n是0,Rc是甲基,a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-4的数值(比如2-3的数值),m是1)的胺值一般为1.20-2.60mmol/g,优选1.80-2.20mmol/g。
根据本发明的一个实施方式,所述化合物Y可以按照以下方法进行制造。该制造方法比如包括:将环氧化物、糖苷、水和催化剂进行反应,得到中间产物;将所述中间产物和有机胺进行反应,得到所述化合物Y。
根据本发明的一个实施方式,在所述化合物Y的制造方法中,所述环氧化物优选为环氧乙烷或环氧丙烷。
根据本发明的一个实施方式,在所述化合物Y的制造方法中,所述糖苷优选为甲基糖苷、乙基糖苷、丙基糖苷或丁基糖苷。
根据本发明的一个实施方式,在所述化合物Y的制造方法中,所述催化剂优选为无机酸或有机酸。在此,所述无机酸优选为硫酸、硝酸、硫酸或磷钨酸,所述有机酸优选为对甲苯磺酸、十二烷基苯磺酸或氨基磺酸。
根据本发明的一个实施方式,在所述化合物Y的制造方法中,所述环氧化物、糖苷、水和催化剂的摩尔比优选为1∶(0.5-1)∶(4-8)∶(0.01-0.1),更优选为1∶(0.6-0.8)∶(5-6)∶(0.03-0.08)。
根据本发明的一个实施方式,在所述化合物Y的制造方法中,所述环氧化物、糖苷、水和催化剂进行反应的温度优选为50℃-110℃,时间优选为0.5h-4h,压力一般为3MPa-10MPa。
根据本发明的一个实施方式,在所述化合物Y的制造方法中,所述有机胺优选为乙二胺、二乙烯三胺、三乙烯四胺或四乙烯五胺。
根据本发明的一个实施方式,在所述化合物Y的制造方法中,所述中间产物和有机胺的摩尔比优选为1∶(0.8-1.2)。
根据本发明的一个实施方式,在所述化合物Y的制造方法中,所述中间产物和有机胺进行反应的pH值优选为6-9,温度优选为40℃-90℃,时间优选为3h-10h。
根据本发明的一个实施方式,所述化合物Z(比如所述化学式(IV-3)示意性表示的化合物,其中优选n是0,a1是0,a2是1-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值))的数均分子量一般为790-5500,更优选为1000-5000。
根据本发明的一个实施方式,所述化合物Z(比如所述化学式(IV-3)示意性表示的化合物,其中优选n是0,a1是0,a2是1-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值))的胺值一般为0.30-1.10mmol/g,优选0.60-0.85mmol/g。
根据本发明的一个实施方式,所述化合物Z可以按照以下方法进行制造。该制造方法比如包括:将糖苷、环氧化物、氯化物和催化剂进行反应,得到第一中间产物;将所述第一中间产物、水和有机胺进行反应,得到第二中间产物;将所述第二中间产物、丙烯酰胺、任选的2-丙烯酰胺-2-甲基丙磺酸和任选的乙烯基三乙氧基硅烷在引发剂的作用下进行聚合反应,得到所述化合物Z。
根据本发明的一个实施方式,在所述化合物Z的制造方法中,所述糖苷优选为甲基糖苷、乙基糖苷、丙基糖苷或丁基糖苷。
根据本发明的一个实施方式,在所述化合物Z的制造方法中,所述环氧化物优选为环氧丙烷、环氧丁烷或环氧戊烷。
根据本发明的一个实施方式,在所述化合物Z的制造方法中,所述氯化物优选为氯化亚砜、硫酰氯、三氯化磷或五氯化磷。
根据本发明的一个实施方式,在所述化合物Z的制造方法中,所述催化剂优选为氢氟酸、酒石酸、草酸或对甲苯磺酸。
根据本发明的一个实施方式,在所述化合物Z的制造方法中,所述糖苷、环氧化物、氯化物和催化剂的质量比优选为(40-80)∶(8-12)∶(9-11)∶(0.8-1.6),更优选为(50-70)∶(9-11)∶10∶(1-1.4)。
根据本发明的一个实施方式,在所述化合物Z的制造方法中,所述糖苷、环氧化物、氯化物和催化剂进行反应的温度优选为40℃-70℃,时间优选为0.5h-3h,压力优选为1MPa-4MPa。
根据本发明的一个实施方式,在所述化合物Z的制造方法中,所述有机胺优选为乙二胺、二乙烯三胺、三乙烯四胺或四乙烯五胺。
根据本发明的一个实施方式,在所述化合物Z的制造方法中,所述第一中间产物、水和有机胺进行反应的温度优选为180℃-220℃,时间优选为2h-4h。
根据本发明的一个实施方式,在所述化合物Z的制造方法中,所述引发剂优选为硫酸铵、高锰酸钾、硝酸钸铵或叔丁基过氧化氢。
根据本发明的一个实施方式,在所述化合物Z的制造方法中,所述聚合反应的pH值优选为8-10,温度优选为40℃-60℃,时间优选为4h-6h。
根据本发明的一个实施方式,还涉及一种钻井液组合物。该钻井液组合物至少包含钻井液基液和任选的至少一种处理剂。在此,所述钻井液基液由本发明任意如前所述的取代的糖或糖苷和水构成。
根据本发明的一个实施方式,以所述钻井液基液的质量为100wt%计,所述取代的糖或糖苷在所述钻井液基液中的质量百分含量为60-95wt%,其余可以是水。
根据本发明的一个实施方式,以所述钻井液基液的质量为100wt%计,所述钻井液基液一般包括质量分数为20-30%的所述化合物X(比如所述化学式(II-2)示意性表示的化合物,其中优选a1=0,a2=0,n=1)、质量分数为30-40%的所述化合物Y(比如所述化学式(III-3)示意性表示的化合物,其中优选n是0,Rc是甲基,a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-4的数值(比如2-3的数值),m是1)和质量分数为10-25%的所述化合物Z(比如所述化学式(IV-3)示意性表示的化合物,其中优选n是0,a1是0,a2是1-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值))。
根据本发明的一个实施方式,所述至少一种处理剂选自增粘剂、流型调节剂、降滤失剂、高温稳定剂、封堵剂、抑制增强剂和pH调节剂中的至少一种。
根据本发明的一个实施方式,在所述钻井液组合物中,相对于所述钻井液基液100ml,一般包含增粘剂0.5重量份-1.5重量份。在此,所述增粘剂可以使用本领域常规已知的那些,比如选自黄原胶、高粘度聚阴离子纤维素钠盐、高粘度羧甲基纤维素钠盐和聚丙烯酰胺钾盐中的一种或多种,更优选为黄原胶、高粘度聚阴离子纤维素钠盐、高粘度羧甲基纤维素钠盐和聚丙烯酰胺钾盐。所述黄原胶、高粘度聚阴离子纤维素钠盐、高粘度羧甲基纤维素钠盐和聚丙烯酰胺钾盐的质量比优选为1∶(0.5-1.5)∶(0.5-1.5)∶(0.75-2),更优选为1∶1∶1∶(0.75-2)。优选的是,所述黄原胶的粘度优选为1200cps-1600cps,pH值优选为6.5-8,水分含量优选≤13%,灰分含量优选≤13%,粒度优选为180μm-355μm。优选的是,所述高粘度聚阴离子纤维素钠盐是由天然棉花短纤维经一系列复杂的化学反应而制得的纤维素醚类衍生物,是一种重要的水溶性阴离子型纤维素醚;所述高粘度聚阴离子纤维素钠盐的含水量优选≤10%,纯度优选≥95%,取代度优选≥0.8%,pH值优选为6.5-8,氯化钠含量优选≤5%,2%水溶液的粘度优选≥1000mPa.s。优选的是,所述高粘度羧甲基纤维素钠盐由棉花纤维和氯乙酸反应而成;所述高粘度羧甲基纤维素钠盐的含水量优选≤10%,纯度优选≥95%,取代度优选≥0.8%,pH值优选为6.5-8,氯化钠含量优选 ≤5%,2%水溶液的粘度优选≥1000mPa.s。优选的是,所述聚丙烯酰胺钾盐的水分含量优选≤10%,筛余物优选≤10%,纯度优选≥80%,钾含量优选为11%-16%,水解度优选为27%-35%,氯离子含量优选≤1%,特性粘度优选≥6100mL/g。本发明对所述增粘剂的来源没有特殊限制,采用本领域技术人员熟知的市售商品即可。优选的是,所述处理剂包括0.5重量份-1.5重量份的增粘剂。
根据本发明的一个实施方式,在所述钻井液组合物中,相对于所述钻井液基液100ml,一般包含流型调节剂1重量份-3重量份。在此,所述流型调节剂可以使用本领域常规已知的那些,比如选自钠膨润土和/或糊精,更优选为钠膨润土或糊精。优选的是,所述钠膨润土的水分含量优选≤10%,纯度优选≥80%,代替度优选≥0.8%,pH值优选为7-9,氯化物的含量优选≤20%,2%水溶液的粘度优选<200mPa.s;所述糊精中的水分含量优选≤10%,纯度优选≥80%,代替度优选≥0.8%,pH值优选为7-9,氯化物的含量优选≤20%,2%水溶液的粘度优选<400mPa.s。本发明对所述流型调节剂的来源没有特殊限制,采用本领域技术人员熟知的市售商品即可。优选的是,所述处理剂包括1重量份-3重量份的流型调节剂。
根据本发明的一个实施方式,在所述钻井液组合物中,相对于所述钻井液基液100ml,一般包含降滤失剂0.8重量份-1.2重量份。在此,所述降滤失剂可以使用本领域常规已知的那些,比如选自低粘度羧甲基纤维素钠盐和/或羧甲基淀粉钠,更优选为低粘度羧甲基纤维素钠盐或羧甲基淀粉钠。优选的是,所述低粘度羧甲基纤维素钠盐中的水分含量优选≤10%,纯度优选≥80%,代替度优选≥0.8%,pH值优选为7-9,氯化物的含量优选≤20%,2%水溶液的粘度优选<200mPa.s;所述羧甲基淀粉钠的粒度优选为90目-110目,氯化钠含量优选<7%,取代度优选>0.2%,pH值优选为8-9,水分含量优选<10%,2%的水溶液粘度优选为80mpa.s-120mpa.s。本发明对所述述降滤失剂的来源没有特殊限制,采用本领域技术人员熟知的市售商品即可。优选的是,所述处理剂包括0.8重量份-1.2重量份的降滤失剂。
根据本发明的一个实施方式,在所述钻井液组合物中,相对于所述钻井液基液100ml,一般包含高温稳定剂2重量份-4重量份。在此,所述高温稳定剂可以使用本领域常规已知的那些,比如选自磺化酚醛树脂和/或磺化褐煤,更优选为磺化酚醛树脂或磺化褐煤。优选的是,所述磺化酚醛树脂中的水分含量优选≤10%,纯度优选≥80%,代替度优选≥0.8%,pH值优 选为7-9,氯化物的含量优选≤20%,2%水溶液的粘度优选<300mPa.s;所述磺化褐煤中的水分含量优选≤10%,纯度优选≥80%,代替度优选≥0.8%,pH值优选为7-9,氯化物的含量优选≤20%,2%水溶液的粘度优选<200mPa.s。本发明对所述高温稳定剂的来源没有特殊的限制,采用本领域技术人员熟知的市售商品即可。优选的是,所述处理剂包括2重量份-4重量份的高温稳定剂。
根据本发明的一个实施方式,在所述钻井液组合物中,相对于所述钻井液基液100ml,一般包含封堵剂2重量份-4重量份。在此,所述封堵剂可以使用本领域常规已知的那些,比如选自碳酸钙、油溶树脂、无渗透封堵剂和磺化沥青中的一种或多种,更优选为碳酸钙、油溶树脂、无渗透封堵剂或磺化沥青。优选的是,所述碳酸钙的粒度优选为800目-1200目,水分含量优选≤10%,酸不溶物含量优选≤1%;所述磺化沥青的pH值优选为8-9,水分含量优选≤8%,磺酸钠基含量优选≥10%,水溶物优选≥70%,油溶物优选≥25%,HTHP滤失量优选≤25mL/30min。本发明对所述封堵剂的来源没有特殊的限制,采用本领域技术人员熟知的市售商品即可。优选的是,所述处理剂包括2重量份-4重量份的封堵剂。
根据本发明的一个实施方式,在所述钻井液组合物中,相对于所述钻井液基液100ml,一般包含抑制增强剂10重量份-24重量份。在此,所述抑制增强剂可以使用本领域常规已知的那些,比如选自氯化钠、氯化钾、氯化钙和甲酸钾中的一种或多种,更优选为氯化钠、氯化钾、氯化钙或甲酸钾。本发明对所述抑制增强剂的来源没有特殊的限制,采用本领域技术人员熟知的市售商品即可。优选的是,所述处理剂包括10重量份-24重量份的抑制增强剂。
根据本发明的一个实施方式,在所述钻井液组合物中,相对于所述钻井液基液100ml,一般包含pH调节剂2重量份-4重量份。在此,所述pH调节剂可以使用本领域常规已知的那些,比如选自氢氧化钠、氢氧化钾、碳酸钠和碳酸钾中的一种或多种,更优选为氢氧化钠、氢氧化钾、碳酸钠或碳酸钾。本发明对所述pH调节剂的来源没有特殊的限制,采用本领域技术人员熟知的市售商品即可。优选的是,所述处理剂包括2重量份-4重量份的pH调节剂。
根据本发明的一个实施方式,在所述钻井液组合物中,相对于所述钻井液基液100ml,所述至少一种处理剂的用量一般为10-70g,优选 18.3-41.7g。在优选的情况下,在所述钻井液组合物中,每100mL所述钻井液基液配合0.5-1.5g的所述增粘剂,1-3g的所述流型调节剂,0.8-1.2g的所述降滤失剂,2-4g的所述高温稳定剂,2-4g的所述封堵剂,10-24g的所述抑制增强剂,2-4g的所述pH调节剂。
根据本发明的一个实施方式,还涉及一种钻井液组合物的制造方法。所述钻井液组合物的制造方法包括混合本发明任意如前所述的取代的糖或糖苷、水和任选的至少一种处理剂的步骤(称为混合步骤)。
根据本发明的一个实施方式,在所述混合步骤中,优选的是,先混合所述取代的糖或糖苷与水,然后再将所获得的混合物与所述任选的至少一种处理剂混合。更优选的是,先混合所述化合物X、所述化合物Y和所述化合物Z与水,然后再将所获得的混合物(相应于钻井液基液)与所述任选的至少一种处理剂混合。
根据本发明的一个实施方式,在所述混合步骤中,优选的是,向所述钻井液基液中加入所述增粘剂、所述流型调节剂和所述降滤失剂进行第一次混合,再加入所述高温稳定剂、所述封堵剂、所述抑制增强剂和所述pH调节剂进行第二次混合。
根据本发明的一个实施方式,在所述混合步骤中,所述混合在高速搅拌下进行,比如所述高速搅拌的转速优选为5000r/min-10000r/min,时间优选为10min-30min。
根据本发明的一个实施方式,所述钻井液组合物的制造方法任选还包括将所述混合步骤获得的混合物进行老化处理的步骤(称为老化步骤)。
根据本发明的一个实施方式,在所述老化步骤中,处理温度一般为120-200℃或140-180℃,优选155-165℃,而处理时间一般为10-30小时或15-20小时,优选15-17小时。
实施例
以下将通过实施例和比较例对本发明进行进一步的详细描述,但本发明不限于以下实施例。
以下实施例所用的原料均为市售商品。具体而言,所用的高粘度聚阴离子纤维素钠盐为濮阳中原三力实业有限公司提供的高粘度聚阴离子纤维素钠盐HV-PAC;所用的高粘度羧甲基纤维素钠盐为濮阳中原三力实业有限公司提供的高粘度羧甲基纤维素钠盐HV-CMC;所用的黄原胶为濮阳中原三 力实业有限公司提供的黄原胶XC;所用的低粘度羧甲基纤维素钠盐为濮阳中原三力实业有限公司提供的低粘度羧甲基纤维素钠盐LV-CMC;所用的羧甲基淀粉钠为濮阳中原三力实业有限公司提供的羧甲基淀粉钠CMS-Na;所用的碳酸钙为濮阳三力实业有限公司提供的粒度为1000目的QS-2超细目碳酸钙;所用的油溶树脂为郑州三祥科技有限公司提供的2420型号的油溶树脂;所用的无渗透封堵剂为山东得顺源石油科技有限公司提供的WLP型号的无渗透封堵剂;所用的聚丙烯酰胺钾盐为濮阳诚信钻采助剂有限公司提供的聚丙烯酰胺钾盐KPAM;所用的钠膨润土为潍坊市龙凤膨润土有限公司提供的钠膨润土;所用的糊精为巩义永洪糊精厂提供的糊精;所用的磺化酚醛树脂为濮阳濮中化工有限公司提供的磺化酚醛树脂;所用的磺化褐煤为濮阳濮中化工有限公司提供的磺化褐煤;所用的磺化沥青为新乡市第七化工有限公司提供的磺化沥青。
实施例1
在装有温度计、冷凝管、搅拌器的高压反应釜中加入0.2moL环氧氯丙烷、2.4moL蒸馏水和0.004moL对甲苯磺酸,在常压、60℃下反应3h,得到3-氯-1,2-丙二醇水溶液;
将所述3-氯-1,2-丙二醇水溶液降温至常温,向其中加入0.4moL甲基糖苷,在常压、80℃下反应0.5h,得到氯代醇糖苷溶液;
将所述氯代醇糖苷溶液用饱和氢氧化钠水溶液中和到pH值为7,然后将0.4moL浓度为33.3%的三甲胺水溶液加入到氯代醇糖苷溶液底部,控制在1h内加料完毕,在40℃下反应3h,得到取代糖苷组分;产品的收率为95.25%。实施例1产品阳离子度为0.40mmol/g。
将本发明实施例1制造得到的取代糖苷组分进行红外检测,检测结果如图1所示,在1034、1300、2400cm -1处显示特征峰,确认所述取代基A的存在。本发明实施例1制造得到的取代糖苷组分具有式1所示的示意性结构:
Figure PCTCN2019094909-appb-000072
式1中,R 1为-CH 3,R 2为-CH 3,m为1.4。
实施例2
在装有温度计、冷凝管、搅拌器的高压反应釜中加入0.2moL环氧氯丙烷、3.2moL蒸馏水和0.014moL对氨基磺酸,在常压、80℃下反应6h,得到3-氯-1,2-丙二醇水溶液;
将所述3-氯-1,2-丙二醇水溶液降温至常温,向其中加入0.22moL乙基糖苷,在常压、90℃下反应3h,得到氯代醇糖苷溶液;
将所述氯代醇糖苷溶液用饱和氢氧化钾水溶液中和到pH值为7,然后将0.2moL三甲胺水溶液加入到氯代醇糖苷溶液底部,控制在1h内加料完毕,在60℃下反应7h,得到取代糖苷组分;产品的收率为93.57%。实施例2产品阳离子度为1.10mmol/g。
将本发明实施例2制造得到的取代糖苷组分进行红外检测,检测结果为,在1035、1301、2403cm -1处显示特征峰,确认所述取代基A的存在。本发明实施例2制造得到的取代糖苷组分具有式2所示的示意性结构:
Figure PCTCN2019094909-appb-000073
式2中,R 1为-C 2H 5,R 2为-CH 3,m为1.4。
实施例3
在装有温度计、冷凝管、搅拌器的高压反应釜中加入0.2moL环氧氯丙烷、3.2moL蒸馏水和0.014moL浓硫酸,在常压、70℃下反应4h,得到3-氯-1,2-丙二醇水溶液;
将所述3-氯-1,2-丙二醇水溶液降温至常温,向其中加入0.22moL丙基糖苷,在常压、100℃下反应4h,得到氯代醇糖苷溶液;
将所述氯代醇糖苷溶液用饱和碳酸钠中和到pH值为8,然后将0.2moL三丙胺加入到氯代醇糖苷溶液底部,控制在1h内加料完毕,在50℃下反应4h,得到取代糖苷组分;产品的收率为94.03%。实施例3产品阳离子度为1.35mmol/g。
将本发明实施例3制造得到的取代糖苷组分进行红外检测,检测结果为,在1036、1305、2405cm -1处显示特征峰,确认所述取代基A的存在。本发明实施例3制造得到的取代糖苷组分具有式3所示的示意性结构:
Figure PCTCN2019094909-appb-000074
式3中,R 1为-C 3H 7,R 2为-C 3H 7,m为1.4。
实施例4
在装有温度计、冷凝管、搅拌器的高压反应釜中加入0.2moL环氧氯丙烷、3.2moL蒸馏水和0.014moL浓磷酸,在常压、80℃下反应5h,得到3-氯-1,2-丙二醇水溶液;
将所述3-氯-1,2-丙二醇水溶液降温至常温,向其中加入0.22moL丁基糖苷,在常压、90℃下反应3h,得到氯代醇糖苷溶液;
将所述氯代醇糖苷溶液用饱和氢氧化钠中和到pH值为9,然后将0.2moL三丁胺加入到氯代醇糖苷溶液底部,控制在1h内加料完毕,在80℃ 下反应8h,得到取代糖苷组分;产品的收率为94.4%。实施例4产品阳离子度为1.70mmol/g。
将本发明实施例4制造得到的取代糖苷组分进行红外检测,检测结果为,在1032、1301、2409cm -1处显示特征峰,确认所述取代基A的存在。本发明实施例4制造得到的取代糖苷组分具有式4所示的示意性结构:
Figure PCTCN2019094909-appb-000075
式4中,R 1为-C 4H 9,R 2为-C 4H 9,m为1.4。
实施例5
在装有温度计、冷凝管、搅拌器的高压反应釜中加入44.05g的环氧乙烷、97g的甲基糖苷、72g的蒸馏水和1.72g的对甲苯磺酸,在3MPa、50℃下反应0.5h,得到中间产物;
将所述中间产物用中和剂NaOH中和到pH值为6,加入24g的乙二胺,在温度为40℃、常压下反应3h,将得到的反应产物除水后得到取代糖苷组分。实施例5产品胺值为1.20mmol/g。
将本发明实施例5制造得到的取代糖苷组分进行红外检测,检测结果如图2所示,在1501、1650、3386cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例5制造得到的取代糖苷组分具有式5所示的示意性结构:
Figure PCTCN2019094909-appb-000076
式5中,m为1.4,R 1为-CH 3,n为1,o为0。
实施例6
在装有温度计、冷凝管、搅拌器的高压反应釜中加入44.05g的环氧乙烷、104g的乙基糖苷、90g的蒸馏水和1.96g的硫酸,在4MPa、60℃下反应1h,得到中间产物;
将所述中间产物用中和剂NaOH中和到pH值为6,加入51.59g的二乙烯三胺,在温度为50℃、常压下反应4h,将得到的反应产物除水后得到取代糖苷组分。实施例6产品胺值为1.76mmol/g。
将本发明实施例6制造得到的取代糖苷组分进行红外检测,检测结果为,在901、1623、3349cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例6制造得到的取代糖苷组分具有式6所示的示意性结构:
Figure PCTCN2019094909-appb-000077
式6中,m为1.4,R 1为-C 2H 5,n为1,o为1。
实施例7
在装有温度计、冷凝管、搅拌器的高压反应釜中加入44.05g的环氧乙烷、133g的丙基糖苷、108g的蒸馏水和1.89g的硝酸,在5MPa、70℃下反应1.5h,得到中间产物;
将所述中间产物用中和剂KOH中和到pH值为7,加入87.74g的三乙烯四胺,在温度为60℃、常压下反应5h,将得到的反应产物除水后得到取代糖苷组分。实施例7产品胺值为1.95mmol/g。
将本发明实施例7制造得到的取代糖苷组分进行红外检测,检测结果为,在905、1627、3338cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例7制造得到的取代糖苷组分具有式7所示的示意性结构:
Figure PCTCN2019094909-appb-000078
式7中,m为1.4,R 1为-C 3H 7,n为1,o为2。
实施例8
在装有温度计、冷凝管、搅拌器的高压反应釜中加入58.08g的环氧乙烷、165g的丁基糖苷、126g的蒸馏水和3.92g的磷钨酸,在7MPa、80℃下反应2h,得到中间产物;
将所述中间产物用中和剂碳酸钠中和到pH值为8,加入132.52g的四乙烯五胺,在温度为70℃、常压下反应7h,将得到的反应产物除水后得到取代糖苷组分。实施例8产品胺值为2.59mmol/g。
将本发明实施例8制造得到的取代糖苷组分进行红外检测,检测结果为,在901、1622、3349cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例8制造得到的取代糖苷组分具有式8所示的示意性结构:
Figure PCTCN2019094909-appb-000079
式8中,m为1.4,R 1为-C 4H 9,n为1,o为3。
实施例9
将40g的甲基糖苷、8g的环氧丙烷、9g的氯化亚砜和0.8g的氢氟酸加入高温高压反应釜中用氮气吹扫釜内空气,并用氮气升高压力至1.0MPa,开动搅拌,升高温度至40℃反应0.5h,得到第一中间产物;在第一中间产物中加入50g水、10g乙二胺搅拌混合均匀,升温至180℃反应2h,得到第二中间产物;在第二中间产物中加入20g丙烯酰胺和10g 2-丙烯酰胺-2-甲基丙磺酸,搅拌溶解完全,调节pH值至8,加入0.3g硫酸铵引发剂,在40℃下反应4h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品用30份乙酸洗涤抽滤,再用40份丙酮洗涤抽滤,最后用500份水洗涤抽滤,然后干燥粉碎,得到取代糖苷组分。实施例9产品胺值为0.32mmol/g。
将本发明实施例9制造得到的取代糖苷组分进行红外检测,检测结果如图3所示,在1501、1650、3386cm -1处显示特征峰,确认所述取代基B的存在,在901、1623、3346cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例9制造得到的取代糖苷组分具有式9所示的示意性结构:
Figure PCTCN2019094909-appb-000080
式9中,m为1.4,R 1为-CH 3,n为1,o为1,p为18.2,q为14.6。
实施例10
将50g乙基糖苷、9g环氧丁烷、10g硫酰氯和1.0g酒石酸加入高温高压反应釜,用氮气吹扫釜内空气,并用氮气升高压力至2.0MPa,开动搅拌,升高温度至50℃反应1h,得到第一中间产物;在第一中间产物中加入60g水、11g二乙烯三胺,搅拌混合均匀,升高温度至190℃反应3h,得到第二中间产物;在第二中间产物中加入24g丙烯酰胺和12g 2-丙烯酰胺-2-甲基丙磺酸,搅拌溶解完全,调节pH值至9,加入0.4g的高锰酸钾引发剂,在50℃下反应5h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品用40g乙酸洗涤抽滤,再用50g丙酮洗涤抽滤,最后用600g水洗涤抽滤;然后干燥粉碎,得到取代糖苷组分。实施例10产品胺值为0.66mmol/g。
将本发明实施例10制造得到的取代糖苷组分进行红外检测,检测结果为,在1502、1651、3387cm -1处显示特征峰,确认所述取代基B的存在,在902、1624、3344cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例10制造得到的取代糖苷组分具有式10所示的示意性结构:
Figure PCTCN2019094909-appb-000081
式10中,m为1.4,R 1为-C 2H 5,n为1,o为2,p为17.8,q为14.4。
实施例11
将60g丙基糖苷、10g环氧戊烷、11g三氯化磷和1.1g草酸加入高温高压反应釜,用氮气吹扫釜内空气,并用氮气升高压力至3.0MPa,开动搅拌,升温至60℃反应2h,得到第一中间产物;在第一中间产物中加入70g 水和12g三乙烯四胺,搅拌混合均匀,升高温度至200℃反应4h,得到第二中间产物;在第二中间产物中加入28g丙烯酰胺和14g 2-丙烯酰胺-2-甲基丙磺酸,搅拌溶解完全,调节pH值至10,加入0.5g的硝酸铈铵引发剂,在60℃下反应6h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品在50g乙酸中洗涤后抽滤,再用60g丙酮洗涤后抽滤,最后用700g水洗涤后抽滤,然后干燥粉碎,得到取代糖苷组分。实施例11产品胺值为0.79mmol/g。
将本发明实施例11制造得到的取代糖苷组分进行红外检测,检测结果为,在1505、1653、3382cm -1处显示特征峰,确认所述取代基B的存在,在903、1626、3345cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例11制造得到的取代糖苷组分具有式11所示的示意性结构:
Figure PCTCN2019094909-appb-000082
式11中,m为1.4,R 1为-C 3H 7,n为1,o为3,p为18.3,q为14.7。
实施例12
将70g的丁基糖苷、11g的环氧丙烷、11g的五氯化磷和1.2g对甲苯磺酸加入高温高压反应釜,用氮气吹扫釜内空气,并用氮气升高压力至4.0MPa,开动搅拌,升高温度至70℃反应3h,得到第一中间产物;在第一中间产物中加入80g水和12g四乙烯五胺,搅拌混合均匀,升温至220℃反应4h,得到第二中间产物;在第二中间产物中加入32g丙烯酰胺和16g 2- 丙烯酰胺-2-甲基丙磺酸,搅拌溶解完全,调节pH值至10,加入0.6g的叔丁基过氧化氢引发剂,在60℃下反应6h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品用60g的乙酸洗涤抽滤,再用70g的丙酮洗涤抽滤,最后用800g水洗涤抽滤,然后干燥粉碎,得到取代糖苷组分。实施例12产品胺值为1.05mmol/g。
将本发明实施例12制造得到的取代糖苷组分进行红外检测,检测结果为,在1507、1658、3389cm -1处显示特征峰,确认所述取代基B的存在,在905、1625、3347cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例12制造得到的取代糖苷组分具有式12所示的示意性结构:
Figure PCTCN2019094909-appb-000083
式12中,m为1.4,R 1为-C 4H 9,n为1,o为4,p为17.9,q为14.1。
实施例13
将70g的甲基糖苷、37g环氧氯丙烷、65g蒸馏水、2.3g对甲苯磺酸加入高温高压反应釜,在常压、80℃下反应1.0h,得到氯代醇糖苷溶液;在所述氯代醇糖苷溶液中加入71g浓度为33.3%的三甲胺水溶液,在60℃下反应2h,得中间产物;在中间产物中再加入50g丙烯酰胺、20g 2-丙烯酰胺-2-甲基丙磺酸、10g乙烯基三乙氧基硅烷,搅拌溶解完全,调节pH值至8,加入0.3g硫酸铵引发剂,在50℃下反应2h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品用40份乙酸洗涤抽滤,再用50份丙酮洗涤抽滤,最后用800份水洗涤抽滤,然后干燥粉碎,得到取代糖苷组分。实施例13产品阳离子度为0.24mmol/g。
将本发明实施例13制造得到的取代糖苷组分进行红外检测,检测结果如图4所示,在1039、1304、2406cm -1处显示特征峰,确认所述取代基A的存在,在1509、1655、3384cm -1处显示特征峰,确认所述取代基B的存在。本发明实施例13制造得到的取代糖苷组分具有式13所示的示意性结构:
Figure PCTCN2019094909-appb-000084
式13中,R 1为-CH 3,R 2为-CH 3,R 3为C 2H 5,m为1.4,p为18.1,q为14.2,v为9.5。
实施例14
将80g的乙基糖苷、40g环氧氯丙烷、80g蒸馏水、3.0g对甲苯磺酸加入高温高压反应釜,在常压、70℃下反应1.0h,得到氯代醇糖苷溶液;在所述氯代醇糖苷溶液中加入90g浓度为33.3%的三甲胺水溶液,在70℃下反应2h,得中间产物;在中间产物中再加入54g丙烯酰胺、27g 2-丙烯酰胺-2-甲基丙磺酸、14g乙烯基三乙氧基硅烷,搅拌溶解完全,调节pH值至9,加入0.4g高锰酸钾引发剂,在50℃下反应5h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品用40份乙酸洗涤抽滤,再用50份丙酮洗涤抽滤,最后用600份水洗涤抽滤,然后干燥粉碎,得到取代糖苷组分。实施例14产品阳离子度为0.39mmol/g。
将本发明实施例14制造得到的取代糖苷组分进行红外检测,检测结果为,在1036、1305、2405cm -1处显示特征峰,确认所述取代基A的存在,在 1504、1657、3385cm -1处显示特征峰,确认所述取代基B的存在。本发明实施例14制造得到的取代糖苷组分具有式14所示的示意性结构:
Figure PCTCN2019094909-appb-000085
式14中,R 1为-C 2H 5,R 2为-CH 3,R 3为C 2H 5,m为1.4,p为18.9,q为14.7,v为9.3。
实施例15
在装有温度计、冷凝管、搅拌器的高压反应釜中加入0.2moL环氧氯丙烷、2.4moL蒸馏水和0.004moL对甲苯磺酸,在常压、100℃下反应3h,得到3-氯-1,2-丙二醇水溶液;
将所述3-氯-1,2-丙二醇水溶液降温至常温,向其中加入0.4moL甲基糖苷,在常压、100℃下反应3h,再加入0.1mol环氧丙烷,得到氯代醇糖苷溶液;
将所述氯代醇糖苷溶液用饱和氢氧化钠水溶液中和到pH值为7,然后将0.4moL浓度为33.3%的三甲胺水溶液加入到氯代醇糖苷溶液底部,控制在1h内加料完毕,在40℃下反应3h,得到取代糖苷组分;产品的收率为95.28%。实施例15产品阳离子度为0.44mmol/g。
将本发明实施例15制造得到的取代糖苷组分进行红外检测,检测结果为,在1036、1301、2401cm -1处显示特征峰,确认所述取代基A的存在。本发明实施例15制造得到的取代糖苷组分具有式15所示的示意性结构:
Figure PCTCN2019094909-appb-000086
式15中,R 1为-CH 3,R 2为-CH 3,m为1.4,n为2,a2为1。
实施例16
在装有温度计、冷凝管、搅拌器的高压反应釜中加入0.2moL环氧氯丙烷、3.2moL蒸馏水和0.014moL对氨基磺酸,在常压、100℃下反应6h,得到3-氯-1,2-丙二醇水溶液;
将所述3-氯-1,2-丙二醇水溶液降温至常温,向其中加入0.22moL乙基糖苷,在常压、100℃下反应3h,得到氯代醇糖苷溶液;
将所述氯代醇糖苷溶液用饱和氢氧化钾水溶液中和到pH值为7,然后将0.2moL三甲胺水溶液加入到氯代醇糖苷溶液底部,控制在1h内加料完毕,在60℃下反应7h,得到取代糖苷组分;产品的收率为93.57%。实施例15产品阳离子度为1.12mmol/g。
将本发明实施例16制造得到的取代糖苷组分进行红外检测,检测结果为,在1036、1304、2405cm -1处显示特征峰,确认所述取代基A的存在。本发明实施例16制造得到的取代糖苷组分具有式16所示的结构:
Figure PCTCN2019094909-appb-000087
式16中,R 1为-C 2H 5,R 2为-CH 3,m为3。
实施例17
在装有温度计、冷凝管、搅拌器的高压反应釜中加入44.05g的环氧乙烷、37g环氧氯丙烷、97g的甲基糖苷、72g的蒸馏水和1.72g的对甲苯磺酸,在3MPa、50℃下反应0.5h,得到中间产物;
将所述中间产物用中和剂NaOH中和到pH值为6,加入24g的乙二胺,在温度为40℃、常压下反应3h,将得到的反应产物除水后得到取代糖苷组分。实施例17产品胺值为1.24mmol/g。
将本发明实施例17制造得到的取代糖苷组分进行红外检测,检测结果为,在902、1624、3351cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例17制造得到的取代糖苷组分具有式17所示的示意性结构:
Figure PCTCN2019094909-appb-000088
式17中,m为1.4,R 1为-CH 3,n为1,a1为1。
实施例18
在装有温度计、冷凝管、搅拌器的高压反应釜中加入44.05g的环氧乙烷、58.08g环氧丙烷、104g的乙基糖苷、90g的蒸馏水和1.96g的硫酸,在5MPa、90℃下反应1h,得到中间产物;
将所述中间产物用中和剂NaOH中和到pH值为6,加入51.59g的二乙烯三胺,在温度为80℃、常压下反应4h,将得到的反应产物除水后得到取代糖苷组分。实施例18产品胺值为1.85mmol/g。
将本发明实施例18制造得到的取代糖苷组分进行红外检测,检测结果为,在903、1624、3351cm -1处显示特征峰,就可以确认所述取代基C的存在。本发明实施例18制造得到的取代糖苷组分具有式18所示的结构:
Figure PCTCN2019094909-appb-000089
式18中,m为3,R 1为-C 2H 5,a1为1,a2为2,b为2。
实施例19
将40g的甲基糖苷、18g环氧氯丙烷、8g的环氧丙烷、9g的氯化亚砜和0.8g的氢氟酸加入高温高压反应釜中用氮气吹扫釜内空气,并用氮气升高压力至2.0MPa,开动搅拌,升高温度至50℃反应1h,得到第一中间产物;在第一中间产物中加入50g水、10g乙二胺搅拌混合均匀,升温至190℃反应3h,得到第二中间产物;在第二中间产物中加入20g丙烯酰胺、10g乙烯基三乙氧基硅烷,搅拌溶解完全,调节pH值至8,加入0.3g硫酸铵引发剂,在50℃下反应5h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品用30份乙酸洗涤抽滤,再用40份丙酮洗涤抽滤,最后用500份水洗涤抽滤,然后干燥粉碎,得到取代糖苷组分。实施例19产品胺值为0.35mmol/g。
将本发明实施例19制造得到的取代糖苷组分进行红外检测,检测结果为,在1502、1651、3384cm -1处显示特征峰,确认所述取代基B的存在,在902、1624、3345cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例19制造得到的取代糖苷组分具有式19所示的示意性结构;
Figure PCTCN2019094909-appb-000090
式19中,m为1.4,R 1为-CH 3,Rc为-CH 3,R′为-C 2H 5,n为1,a1为0,a2为1,b为1,p为18,q为0,v为6。
实施例20
将50g乙基糖苷、18g环氧氯丙烷、9g环氧丁烷、10g硫酰氯和1.0g酒石酸加入高温高压反应釜,用氮气吹扫釜内空气,并用氮气升高压力至2.0MPa,开动搅拌,升高温度至60℃反应1h,得到第一中间产物;在第一 中间产物中加入60g水、11g二乙烯三胺,搅拌混合均匀,升高温度至190℃反应3h,得到第二中间产物;在第二中间产物中加入24g丙烯酰胺、12g 2-丙烯酰胺-2-甲基丙磺酸、20g乙烯基三乙氧基硅烷,搅拌溶解完全,调节pH值至9,加入0.4g的高锰酸钾引发剂,在50℃下反应5h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品用40g乙酸洗涤抽滤,再用50g丙酮洗涤抽滤,最后用600g水洗涤抽滤;然后干燥粉碎,得到取代糖苷组分。实施例20产品胺值为0.69mmol/g。
将本发明实施例20制造得到的取代糖苷组分进行红外检测,检测结果为,在1503、1652、3384cm -1处显示特征峰,确认所述取代基B的存在,在901、1626、3345cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例20制造得到的取代糖苷组分具有式20所示的示意性结构:
Figure PCTCN2019094909-appb-000091
式20中,m为3,R 1为-C 2H 5,Rc为-C 2H 5,R′为-C 2H 5,n为1,a1为0,a2为1,b为2,p为17,q为14,v为12。
实施例21
将40g的甲基糖苷、8g的环氧丙烷、9g的氯化亚砜和0.8g的氢氟酸加入高温高压反应釜中用氮气吹扫釜内空气,并用氮气升高压力至2.0MPa,开动搅拌,升高温度至50℃反应1h,得到第一中间产物;在第一中间产物中加入50g水、10g乙二胺搅拌混合均匀,升温至190℃反应3h,得到第二中间产物;在第二中间产物中加入20g丙烯酰胺,搅拌溶解完全,调节pH值至8,加入0.3g硫酸铵引发剂,在50℃下反应5h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品用30份乙酸洗涤抽滤,再用40份丙酮洗涤抽滤,最后用500份水洗涤抽滤,然后干燥粉碎,得到取代糖苷组分。实施例21产品胺值为0.37mmol/g。
将本发明实施例21制造得到的取代糖苷组分进行红外检测,检测结果为,在1501、1650、3385cm -1处显示特征峰,确认所述取代基B的存在,在901、1625、3346cm -1处显示特征峰,确认所述取代基C的存在。本发明实施例21制造得到的取代糖苷组分具有式21所示的示意性结构:
Figure PCTCN2019094909-appb-000092
式21中,m为1.4,R 1为-CH 3,Rc为-CH 3,R′为-C 2H 5,n为0,a1为0,a2为1,b为1,p为18。
实施例22
将70g的甲基糖苷、37g环氧氯丙烷、65g蒸馏水、2.3g对甲苯磺酸加入高温高压反应釜,在常压、90℃下反应1.0h,得到氯代醇糖苷溶液;在所述氯代醇糖苷溶液中加入75g浓度为33.3%的三甲胺水溶液,在60℃下反应2h,得中间产物;在中间产物中再加入55g丙烯酰胺,搅拌溶解完全,调节pH值至8,加入0.3g硫酸铵引发剂,在50℃下反应2h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品用40份乙酸洗涤抽滤,再用50份丙酮洗涤抽滤,最后用800份水洗涤抽滤,然后干燥粉碎,得到取代糖苷组分。实施例22产品阳离子度为0.30mmol/g。
将本发明实施例22制造得到的取代糖苷组分进行红外检测,检测结果为,在1038、1304、2405cm -1处显示特征峰,确认所述取代基A的存在,在 1508、1654、3385cm -1处显示特征峰,确认所述取代基B的存在。本发明实施例22制造得到的取代糖苷组分具有式22所示的示意性结构:
Figure PCTCN2019094909-appb-000093
式22中,R 1为-CH 3,R 2为-CH 3,R 3为C 2H 5,m为1.4,p为19,q为0,v为0。
实施例23
将80g的乙基糖苷、40g环氧氯丙烷、80g蒸馏水、3.0g对甲苯磺酸加入高温高压反应釜,在常压、90℃下反应1.0h,得到氯代醇糖苷溶液;在所述氯代醇糖苷溶液中加入90g浓度为33.3%的三甲胺水溶液,在70℃下反应2h,得中间产物;在中间产物中再加入54g丙烯酰胺、12g 2-丙烯酰胺-2-甲基丙磺酸,搅拌溶解完全,调节pH值至9,加入0.4g高锰酸钾引发剂,在50℃下反应5h,得到取代糖苷组分粗品。
将上述取代糖苷组分粗品用40份乙酸洗涤抽滤,再用50份丙酮洗涤抽滤,最后用600份水洗涤抽滤,然后干燥粉碎,得到取代糖苷组分。实施例23产品阳离子度为0.45mmol/g。
将本发明实施例23制造得到的取代糖苷组分进行红外检测,检测结果为,在1035、1304、2404cm -1处显示特征峰,确认所述取代基A的存在,在1502、1658、3386cm -1处显示特征峰,确认所述取代基B的存在。本发明实施例23制造得到的取代糖苷组分具有式23所示的示意性结构:
Figure PCTCN2019094909-appb-000094
式23中,R 1为-C 2H 5,R 2为-CH 3,R 3为C 2H 5,m为1.4,p为18,q为6,v为0。
实施例24
将160g实施例1制造得到的取代糖苷组分、240g实施例5制造得到的取代糖苷组分、80g实施例9制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.13mmol/g,胺值为0.65mmol/g。
然后,将该混合物和320g水混合,配制质量分数为60%的钻井液基液;
在400mL上述钻井液基液中,加入0.4g黄原胶XC、0.4g高粘度聚阴离子纤维素钠盐HV-PAC、0.4g高粘度羧甲基纤维素钠盐HV-CMC、0.8g聚丙烯酰胺钾盐KPAM、4.0g钠膨润土和3.2g低粘度羧甲基纤维素钠盐LV-CMC,在5000r/min的条件下高速搅拌20min,再加入8.0g磺化酚醛树脂、8.0g碳酸钙、40g氯化钠和8.0g氢氧化钠,在5000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例25
将200g实施例2制造得到的取代糖苷组分、280g实施例6制造得到的取代糖苷组分、120g实施例10制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.37mmol/g,胺值为0.95mmol/g。
然后,将该混合物和200g水混合,配制质量分数为75%的钻井液基液;
在400mL上述钻井液基液中,加入0.8g黄原胶XC、0.8g高粘度聚阴离子纤维素钠盐HV-PAC、0.8g高粘度羧甲基纤维素钠盐HV-CMC、1.6g聚 丙烯酰胺钾盐KPAM、8.0g糊精和4.0g低粘度羧甲基纤维素钠盐LV-CMC,在7000r/min的条件下高速搅拌20min,再加入12g磺化褐煤、12g油溶树脂、60g氯化钾和12g氢氧化钾,在7000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例26
将240g实施例3制造得到的取代糖苷组分、300g实施例7制造得到的取代糖苷组分、160g实施例11制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.46mmol/g,胺值为1.02mmol/g。
然后,将该混合物和100g水混合,配制质量分数为87.5%的钻井液基液;
在400mL上述钻井液基液中,加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在8000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g无渗透封堵剂、80g氯化钙和16g碳酸钠,在8000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例27
将240g实施例4制造得到的取代糖苷组分、320g实施例8制造得到的取代糖苷组分、200g实施例12制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.54mmol/g,胺值为1.37mmol/g。
然后,将该混合物和40g水混合,配制质量分数为95%的钻井液基液;
在400mL上述钻井液基液中加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g磺化沥青、96g甲酸钾和16g碳酸钾,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例28
将320g实施例5制造得到的取代糖苷组分、200g实施例13制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.09mmol/g,胺值为0.74mmol/g。
然后,将该混合物和280g水混合,配制质量分数为65%的钻井液基液;
在400mL上述钻井液基液中,加入0.8g黄原胶XC、0.8g高粘度聚阴离子纤维素钠盐HV-PAC、0.8g高粘度羧甲基纤维素钠盐HV-CMC、0.8g聚丙烯酰胺钾盐KPAM、4.0g钠膨润土和3.2g低粘度羧甲基纤维素钠盐LV-CMC,在10000r/min的条件下高速搅拌20min,再加入8.0g磺化酚醛树脂、8.0g碳酸钙、40g氯化钠和8.0g氢氧化钠,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例29
将320g实施例6制造得到的取代糖苷组分、160g实施例14制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.13mmol/g,胺值为1.17mmol/g。
然后,将该混合物和320g水混合,配制质量分数为60%的钻井液基液;
在400mL上述钻井液基液中,加入1.4g黄原胶XC、1.4g高粘度聚阴离子纤维素钠盐HV-PAC、1.4g高粘度羧甲基纤维素钠盐HV-CMC、1.0g聚丙烯酰胺钾盐KPAM、10g糊精和4.2g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g无渗透封堵剂、40g氯化钙和16g碳酸钠,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例30
将160g实施例1制造得到的取代糖苷组分、240g实施例5制造得到的取代糖苷组分、160g实施例9制造得到的取代糖苷组分、200g实施例13制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.15mmol/g,胺值为0.45mmol/g。
然后,将该混合物和40g水混合,配制质量分数为95%的钻井液基液;
在400mL上述钻井液基液中,加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g无渗透封堵剂、80g氯化钙和16g碳酸钠,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例31
将160g实施例15制造得到的取代糖苷组分、240g实施例17制造得到的取代糖苷组分、80g实施例19制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.09mmol/g,胺值为0.43mmol/g。
然后,将该混合物和320g水混合,配制质量分数为60%的钻井液基液;
在400mL上述钻井液基液中,加入0.4g黄原胶XC、0.4g高粘度聚阴离子纤维素钠盐HV-PAC、0.4g高粘度羧甲基纤维素钠盐HV-CMC、0.8g聚丙烯酰胺钾盐KPAM、4.0g钠膨润土和3.2g低粘度羧甲基纤维素钠盐LV-CMC,在5000r/min的条件下高速搅拌20min,再加入8.0g磺化酚醛树脂、8.0g碳酸钙、40g氯化钠和8.0g氢氧化钠,在5000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例32
将200g实施例16制造得到的取代糖苷组分、280g实施例18制造得到的取代糖苷组分、120g实施例20制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.37mmol/g,胺值为1.00mmol/g。
然后,将该混合物和200g水混合,配制质量分数为75%的钻井液基液;
在400mL上述钻井液基液中,加入0.8g黄原胶XC、0.8g高粘度聚阴离子纤维素钠盐HV-PAC、0.8g高粘度羧甲基纤维素钠盐HV-CMC、1.6g聚丙烯酰胺钾盐KPAM、8.0g糊精和4.0g低粘度羧甲基纤维素钠盐LV-CMC,在7000r/min的条件下高速搅拌20min,再加入12g磺化褐煤、12g油溶树脂、60g氯化钾和12g氢氧化钾,在7000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例33
将240g实施例16制造得到的取代糖苷组分、300g实施例18制造得到的取代糖苷组分、160g实施例21制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.38mmol/g,胺值为0.88mmol/g。
然后,将该混合物和100g水混合,配制质量分数为87.5%的钻井液基液;
在400mL上述钻井液基液中,加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在8000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g无渗透封堵剂、80g氯化钙 和16g碳酸钠,在8000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例34
将240g实施例16制造得到的取代糖苷组分、320g实施例17制造得到的取代糖苷组分、200g实施例21制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.35mmol/g,胺值为0.62mmol/g。
然后,将该混合物和40g水混合,配制质量分数为95%的钻井液基液;
在400mL上述钻井液基液中加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g磺化沥青、96g甲酸钾和16g碳酸钾,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例35
将320g实施例18制造得到的取代糖苷组分、200g实施例22制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.12mmol/g,胺值为1.14mmol/g。
然后,将该混合物和280g水混合,配制质量分数为65%的钻井液基液;
在400mL上述钻井液基液中,加入0.8g黄原胶XC、0.8g高粘度聚阴离子纤维素钠盐HV-PAC、0.8g高粘度羧甲基纤维素钠盐HV-CMC、0.8g聚丙烯酰胺钾盐KPAM、4.0g钠膨润土和3.2g低粘度羧甲基纤维素钠盐LV-CMC,在10000r/min的条件下高速搅拌20min,再加入8.0g磺化酚醛树脂、8.0g碳酸钙、40g氯化钠和8.0g氢氧化钠,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例36
将320g实施例17制造得到的取代糖苷组分、160g实施例23制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.15mmol/g,胺值为0.83mmol/g。
然后,将该混合物和320g水混合,配制质量分数为60%的钻井液基液;
在400mL上述钻井液基液中,加入1.4g黄原胶XC、1.4g高粘度聚阴离子纤维素钠盐HV-PAC、1.4g高粘度羧甲基纤维素钠盐HV-CMC、1.0g聚 丙烯酰胺钾盐KPAM、10g糊精和4.2g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g无渗透封堵剂、40g氯化钙和16g碳酸钠,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例37
将160g实施例15制造得到的取代糖苷组分、240g实施例17制造得到的取代糖苷组分、160g实施例19制造得到的取代糖苷组分、200g实施例22制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.17mmol/g,胺值为0.47mmol/g。
然后,将该混合物和40g水混合,配制质量分数为95%的钻井液基液;
在400mL上述钻井液基液中,加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g无渗透封堵剂、80g氯化钙和16g碳酸钠,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例38
将160g实施例16制造得到的取代糖苷组分、240g实施例18制造得到的取代糖苷组分、160g实施例20制造得到的取代糖苷组分、200g实施例23制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.35mmol/g,胺值为0.73mmol/g。
然后,将该混合物和40g水混合,配制质量分数为95%的钻井液基液;
在400mL上述钻井液基液中,加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g无渗透封堵剂、80g氯化钙和16g碳酸钠,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例39
将160g实施例1制造得到的取代糖苷组分、320g实施例5制造得到的取代糖苷组分、200g实施例9制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.09mmol/g,胺值为0.66mmol/g。
然后,将该混合物和120g水混合,配制质量分数为85%的钻井液基液;
在400mL上述钻井液基液中,加入0.4g黄原胶XC、0.4g高粘度聚阴离子纤维素钠盐HV-PAC、0.4g高粘度羧甲基纤维素钠盐HV-CMC、0.8g聚丙烯酰胺钾盐KPAM、4.0g钠膨润土和3.2g低粘度羧甲基纤维素钠盐LV-CMC,在5000r/min的条件下高速搅拌20min,再加入8.0g磺化酚醛树脂、8.0g碳酸钙、40g氯化钠和8.0g氢氧化钠,在5000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例40
将240g实施例2制造得到的取代糖苷组分、240g实施例6制造得到的取代糖苷组分、160g实施例10制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.41mmol/g,胺值为0.83mmol/g。
然后,将该混合物和160g水混合,配制质量分数为80%的钻井液基液;
在400mL上述钻井液基液中,加入0.8g黄原胶XC、0.8g高粘度聚阴离子纤维素钠盐HV-PAC、0.8g高粘度羧甲基纤维素钠盐HV-CMC、1.6g聚丙烯酰胺钾盐KPAM、8.0g糊精和4.0g低粘度羧甲基纤维素钠盐LV-CMC,在7000r/min的条件下高速搅拌20min,再加入12g磺化褐煤、12g油溶树脂、60g氯化钾和12g氢氧化钾,在7000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例41
将240g实施例3制造得到的取代糖苷组分、280g实施例7制造得到的取代糖苷组分、200g实施例11制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.45mmol/g,胺值为0.98mmol/g。
然后,将该混合物和80g水混合,配制质量分数为90%的钻井液基液;
在400mL上述钻井液基液中,加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在8000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g无渗透封堵剂、80g氯化钙和16g碳酸钠,在8000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例42
将200g实施例4制造得到的取代糖苷组分、320g实施例8制造得到的取代糖苷组分、80g实施例12制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.57mmol/g,胺值为1.52mmol/g。
然后,将该混合物和200g水混合,配制质量分数为75%的钻井液基液;
在400mL上述钻井液基液中加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g磺化沥青、96g甲酸钾和16g碳酸钾,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
实施例43
将160g实施例3制造得到的取代糖苷组分、320g实施例5制造得到的取代糖苷组分、80g实施例10制造得到的取代糖苷组分、200g实施例14制造得到的取代糖苷组分混合,获得混合物。该混合物的阳离子度为0.39mmol/g,胺值为0.57mmol/g。
然后,将该混合物和40g水混合,配制质量分数为95%的钻井液基液;
在400mL上述钻井液基液中,加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g无渗透封堵剂、80g氯化钙和16g碳酸钠,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经190℃滚动16h,得到钻井液组合物。
对比例1
将760g实施例4制造得到的取代糖苷组分和40g水混合,配制质量分数为95%的基液水溶液;
在400mL上述基液水溶液中加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g磺化沥青、96g甲酸钾和16g碳酸钾,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经140℃滚动16h,得到钻井液组合物。
对比例2
采用对比例1提供的制造方法,区别在于:以实施例8制造得到的取代糖苷组分代替实施例4制造得到的取代糖苷组分;得到钻井液组合物。
对比例3
采用对比例1提供的制造方法,区别在于:以实施例12制造得到的取代糖苷组分代替实施例4制造得到的取代糖苷组分;得到钻井液组合物。
对比例4
将240g实施例4制造得到的取代糖苷组分、520g实施例8制造得到的取代糖苷组分和40g水混合,配制质量分数为95%的基液水溶液;
在400mL上述基液水溶液中加入1.6g黄原胶XC、1.6g高粘度聚阴离子纤维素钠盐HV-PAC、1.6g高粘度羧甲基纤维素钠盐HV-CMC、1.2g聚丙烯酰胺钾盐KPAM、12g糊精和4.8g羧甲基淀粉钠,在10000r/min的条件下高速搅拌20min,再加入16g磺化褐煤、16g磺化沥青、96g甲酸钾和16g碳酸钾,在10000r/min的条件下高速搅拌20min,将得到的混合物装入老化罐内经140℃滚动16h,得到钻井液组合物。
对比例5
采用对比例4提供的制造方法,区别在于:以实施例12制造得到的取代糖苷组分代替实施例8制造得到的取代糖苷组分;得到钻井液组合物。
对比例6
采用对比例4提供的制造方法,区别在于:以实施例12制造得到的取代糖苷组分代替实施例4制造得到的取代糖苷组分;得到钻井液组合物。
对实施例24-30及对比例1-6提供的钻井液组合物的各项性能进行测试,结果参见表1-2所示。
具体测试方法如下:
(1)按照GB/T 16783.1-2014《石油天然气工业钻井液现场测试第1部分:水基钻井液》的标准,测试钻井液组合物的表观粘度、塑性粘度、动切力、静切力、中压滤失量、高温高压滤失量、抗盐性能、抗钙性能、抗膨润土性能、抗水侵性能、抗原油性能和抗温性能。
(2)将钻井液组合物在190℃下滚动16h后测试其抑制性能、润滑性能、储层保护性能及生物毒性EC 50值:
①按照钻井液岩心回收率测试方法,测试钻井液组合物的岩心一次回收率和相对回收率,具体操作如下:
量取350mL钻井液组合物于高搅杯中,在7000r/min的速度下搅拌5min后,将钻井液倒入老化罐中备用;取2.0mm-5.0mm的岩屑于103℃下干燥4h,降至室温,称取G 0g岩屑放入老化罐与老化罐中的钻井液于190℃下滚动16h,降温后取出,用孔径为0.42mm筛回收岩屑,于103℃下干燥4h,降至室温称量回收岩屑质量记为G 1;然后将已称过重的回收岩屑放入清水中于190℃下滚动2h,降温后取出,用孔径为0.42mm的筛回收岩屑,于103℃下干燥4h,冷却至室温称量回收岩屑质量记为G 2;分别计算一次页岩回收率R 1、二次页岩回收率R 2和相对页岩回收率R:
R 1=G 1/G 0×100%;
R 2=G 2/G 0×100%;
R=R 2/R 1×100%。
②按照下述方法测试钻井液组合物的极压润滑系数:
采用郑州南北仪器设计有限公司提供的EP型号的极压润滑仪,设定仪器在300r/min下运转15min,然后调节转速为60r/min;
将仪器中的滑块浸入钻井液组合物中,调扭力扳手值为16.95N/m,仪器运转5min,读出钻井液组合物浸泡滑块时仪器上显示的数值,极压润滑系数计算公式为:
Figure PCTCN2019094909-appb-000095
上式中,K为极压润滑系数,X为钻井液组合物浸泡滑块时仪器上显示的数值。
③按照下述方法测试钻井液组合物的储层保护性:
采用北京中慧天诚科技有限公司提供的Fann-389AP型号的全自动渗透率封堵装置;将全自动渗透率封堵装置温度升到120℃,装入岩心,用煤油进行渗透,记录初始压力、最高压力、稳定压力,围压要比流动压力大2MPa;
采用钻井液组合物进行反向动态或静态污染,用量筒接收液体并记录所用时间及体积;
再用煤油进行正向渗透,记录初始压力、最高压力、稳定压力;
污染前的稳定压力与污染后的稳定压力的比值即为渗透率恢复值,反映钻井液组合物对地层岩石的伤害程度。
④按照下述方法测试钻井液组合物的生物毒性:
将钻井液组合物加入到质量浓度为3%氯化钠溶液中,分别配制成0mg.dm -3、5000mg.dm -3、10000mg.dm -3、25000mg.dm -3、50000mg.dm -3、100000mg.dm -3的待测样品溶液各10mL,静置60min;
向上述待测样品溶液中依次加入发光细菌T3粉末10mg充分震荡混匀后,以质量浓度为3%的氯化钠溶液作为对比分别测定发光菌与待测样品溶液接触15min后的生物毒性EC 50值。
表1实施例24-30提供的钻井液组合物的各项性能数据
Figure PCTCN2019094909-appb-000096
表2对比例1-6提供的钻井液组合物的各项性能数据
Figure PCTCN2019094909-appb-000097
由表1可知,根据本发明的钻井液组合物(比如实施例24-30),一般具有如下性能:表观粘度为51mpa.s-95mPa.s,塑性粘度为30mPa.s-55mPa.s,动切力为21Pa-40Pa,静切力为4-9/9-18,中压滤失量为0mL,高温高压滤失量1.0-2.0mL,抗盐性均为饱和,抗钙性均为30%,抗膨润土性均为30%,抗水侵性均为60%,抗原油性均为40%,抗温性能均为190℃;岩心一次回收率>99%,岩心相对回收率均为99.9%;极压润滑系数为0.022-0.039;水活度<0.50;动态渗透率恢复值>95%,静态渗透率恢复值>98%;生物毒性EC 50值为739800mg/L-759800mg/L。
由这些实施例可知,根据本发明的钻井液组合物具有较好的抗温性,降滤失性能及抗污染性能优异:其抗温可达190℃,中压滤失量为0mL,高温高压滤失量≤2.0mL,抗盐达饱和,抗钙30%,抗土30%,抗水侵60%,抗原油40%;而且还具有优异的抑制性能,良好的润滑性能和储层保护性能,无生物毒性:其岩心一次回收率>99%,岩心相对回收率>99%,极压润滑 系数<0.04,动态渗透率恢复值>95%,静态渗透率恢复值>98%,生物毒性EC50值>730000mg/L(EC 50值>30000mg/L为无毒)。
采用根据本发明的钻井液组合物进行强水敏性泥页岩、含泥岩等易坍塌地层及页岩油气水平井钻井施工:
(1)将根据本发明的钻井液组合物在陕北延长陆相页岩气区块的云页平6井二开造斜段开展现场应用;结果表明,该钻井液组合物取得了突出效果:该钻井液组合物抑制防塌性能优异,固相清洁剂容纳能力强,润滑防卡性能优良,并且环保优势显著;应用井段井径扩大率仅有4.78%(邻井云页平3井同层段采用氯化钾聚合物钻井液,井径扩大率>20%)。
(2)将根据本发明的钻井液组合物在东北松辽盆地松页油2HF井开展现场应用;结果表明,该钻井液组合物作用机理与油基相近、性能与油基相近,且具有油基钻井液所不具备的环保优势;该井使用钻井液组合物后,钻井液表现出了强效的抑制防塌性能、高效的固相容纳及清洁能力、优良的润滑防卡性能;井壁一直保持稳定,无坍塌掉块,起下钻顺畅,钻井液性能稳定,钻井液坂含及其他有害固相控制较好,利于维护处理;钻井液润滑防塌效果较好,无托压、卡钻等井下复杂情况发生。具体为:
该井嫩江组、姚家组软泥岩地层裸眼浸泡100d(坍塌周期7-10d),青山口组软泥岩地层裸眼浸泡87d(坍塌周期21d),井壁保持稳定,没有出现钻井液水化泥岩地层造成的井壁坍塌,钻井液组合物可以跟油基钻井液一样,不存在坍塌周期的概念。在松页油2HF井钻井液组合物施工过程中,起钻摩阻为3-5t,下钻摩阻1-3t,润滑防卡效果较好。整个定向段无任何托压现象,定向过程非常顺利。钻井液组合物坂含现场测试结果为6.4g/L,并在经过一段时间的钻进后,钻井液组合物的坂含降至5.36g/L,钻井液坂含测试结果极低,且呈降低的趋势,保证了钻井液具有较好的流型,外界劣质固相无法侵入钻井液体系,始终保持钻井液的清洁。
综上,根据本发明的钻井液组合物具有优异的绿色环保性能、抑制防塌性能、润滑防卡性能及固相清洁能力,能够有效保证强水敏性泥岩、含泥岩等易坍塌地层及页岩油气水平井的绿色、安全、高效钻井施工的顺利进行。

Claims (10)

  1. 一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,各自或组合带有取代基A、取代基B和取代基C,其中所述取代基A在其结构中包含基团
    Figure PCTCN2019094909-appb-100001
    (该基团的配对阴离子可以是任意阴离子,特别是卤素阴离子比如Cl -或Br -),R 2是C1-20直链或支链烷基(优选C1-10直链或支链烷基,更优选C1-4直链或支链烷基),所述取代基B在其结构中包含基团
    Figure PCTCN2019094909-appb-100002
    (优选包含单元
    Figure PCTCN2019094909-appb-100003
    或者
    Figure PCTCN2019094909-appb-100004
    ),R 4是C2-6直链或支链亚烷基(优选亚乙基或亚丙基),所述取代基C在其结构中包含单元-NH-R 7——(优选-NH-CH 2CH 2-),R 7是C2-6直链或支链亚烷基(优选亚乙基或亚丙基)。
  2. 权利要求1所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,其中所述取代基A在其结构中还包含单元——O-R 6——(优选——O-CH 2CH 2-、
    Figure PCTCN2019094909-appb-100005
    或其任意组合)和/或单元
    Figure PCTCN2019094909-appb-100006
    (优选
    Figure PCTCN2019094909-appb-100007
    ),R 5是C3-6直链或支链三价烷基(优选三价丙基或三价丁基),R 6是C2-8直链或支链亚烷基(优选亚乙基或亚丙基),和/或,所述取代基B在其结构中还包含单元
    Figure PCTCN2019094909-appb-100008
    (优选
    Figure PCTCN2019094909-appb-100009
    特别是
    Figure PCTCN2019094909-appb-100010
    )和/或单元
    Figure PCTCN2019094909-appb-100011
    (优选
    Figure PCTCN2019094909-appb-100012
    特别是
    Figure PCTCN2019094909-appb-100013
    ),R 3是C2-6直链或支链亚烷基(优选亚乙基或亚丙基),L 1是(优选碳原子数不超过10的)任意连接基团(优选单键、C2-10直链或支链亚烷基、-C(=O)-C2-10直链或支链亚烷基、-C(=O)O-C2-10直链或支链亚烷基、-C(=O)NH-C2-10直链或支链亚烷基、C2-5直链或支链亚烷基-C(=O)-C2-5直链或支链亚烷基、C2-5直链或支链亚烷基-C(=O)O-C2-5直链或支链亚烷基、C2-5直链或支链亚烷基-C(=O)NH-C2-5直链或支链亚烷基,更优选-C(=O)NH-C2-10直链或支链亚烷基),M是氢、碱金属(比如K或Na)或铵(NH 4),R 10是C2-6直链或支链亚烷基(优选亚乙基或亚丙基),L 2是(优选碳原子数不超过10的)任意连接基团(优选单键或者C2-10直链或支链亚烷基,特别是单键),R′是C1-4直链或支链烷基(优选甲基或乙基),和/或,所述取代基C在其结构中还包含单元——O-R 6——(优选——O-CH 2CH 2-、
    Figure PCTCN2019094909-appb-100014
    或其任意组合)和/或单元
    Figure PCTCN2019094909-appb-100015
    (优选
    Figure PCTCN2019094909-appb-100016
    ),R 5是C3-6直链或支链三价烷基(优选三价丙基或三价丁基),R 6是C2-8直链或支链亚烷基或C2-6直链或支链亚烷基,Rc是C1-5直链或支链烷基或C1-4直链或支链烷基。
  3. 权利要求1所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,其中所述取代基A用以下化学式(A-1)或者化学式(A-2)示意性表示,
    Figure PCTCN2019094909-appb-100017
    n是0-3的数值(比如1),a是0-6的数值(比如1-4的数值),a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),
    所述取代基B用以下化学式(B-1)、化学式(B-2)或者化学式(B-3)示意性表示,
    Figure PCTCN2019094909-appb-100018
    p是2-30的数值(优选2-20或4-16的数值),q是0-30的数值(优选2-30、2-15或4-12的数值),v是0-30的数值(优选1-20或4-12的数值),
    所述取代基C用以下化学式(C-1)、化学式(C-2)或者化学式(C-3)示意性表示,
    Figure PCTCN2019094909-appb-100019
    n是0-3的数值(比如0),a是0-6的数值(比如1-4的数值),a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值),其中a和b-1不同时为0或者a1、a2和b-1不同时为0。
  4. 权利要求1所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,其中所述糖或糖苷是用以下化学式(1)示意性表示的葡萄糖残基或葡萄糖糖苷残基,
    Figure PCTCN2019094909-appb-100020
    两个R 1彼此相同或不同,各自独立地选自氢和C1-20直链或支链烷基(优选各自独立地选自氢和C1-10直链或支链烷基,更优选各自独立地选自氢和C1-4直链或支链烷基),m是1-3或1-2的整数,*代表所述取代基A、所述取代基B或所述取代基C的键合点,前提是存在至少一个所述键合点。
  5. 权利要求3所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,是选自用以下化学式(XX)示意性表示的一种或多种化合物,
    Figure PCTCN2019094909-appb-100021
    在化学式(XX)中,在m1个Rx 1中,一个Rx 1是所述取代基A,另一个Rx 1是所述取代基C,其余的Rx 1彼此相同或不同,各自独立地选自所述取 代基A、所述取代基C和羟基,m1是2-3的整数,m1个Rx 2和m1个Rx 3彼此相同或不同,各自独立地选自氢原子和所述取代基B,前提是这些Rx 2和Rx 3中的至少一个是所述取代基B,
    在将选自用以下化学式(I-1)、化学式(I-2)或化学式(I-3)示意性表示的一种或多种化合物称为化合物P,将选自用以下化学式(II-1)或化学式(II-2)示意性表示的一种或多种化合物称为化合物X,将选自用以下化学式(III-1)、化学式(III-2)或化学式(III-3)示意性表示的一种或多种化合物称为化合物Y,将选自用以下化学式(IV-1)、化学式(IV-2)或化学式(IV-3)示意性表示的一种或多种化合物称为化合物Z时,所述混合物是所述化合物P、所述化合物X、所述化合物Y和所述化合物Z中至少两种(优选至少三种)的混合物,前提是所述混合物同时包含所述取代基A、所述取代基B和所述取代基C,
    Figure PCTCN2019094909-appb-100022
    Figure PCTCN2019094909-appb-100023
    Figure PCTCN2019094909-appb-100024
    (II-2)(在优选的情况下,a1=0,a2=0,n=1)
    Figure PCTCN2019094909-appb-100025
    Figure PCTCN2019094909-appb-100026
    (III-3)(在优选的情况下,n是0,Rc是甲基,a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-4的数值(比如2-3的数值),m是1)
    Figure PCTCN2019094909-appb-100027
    Figure PCTCN2019094909-appb-100028
    (IV-3)(在优选的情况下,n是0,a1是0,a2是1-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值),v=0)。
  6. 权利要求1所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,是所述化合物X(在优选的情况下,a1=0,a2=0,n=1)、所述化合物Y(在优选的情况下,n是0,Rc是甲基,a1是0-3的数值(比如1-2的数值),a2是0-3的数值(比如1-2的数值),b是1-4的数值(比如2-3的数值),m是1)和所述化合物Z(在优选的情况下,n是0,a1是0,a2是1-3的数值(比如1-2的数值),b是1-5的数值(比如2-4的数值), v=0)的混合物,其中所述化合物X、所述化合物Y和所述化合物Z的质量比例为20-30∶30-40∶10-25。
  7. 权利要求1所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物,阳离子度为0.10-0.80mmol/g,优选0.25-0.50mmol/g,和/或,胺值为0.40-1.65mmol/g,优选0.83-1.32mmol/g。
  8. 一种钻井液组合物,包含钻井液基液和任选的至少一种处理剂,其中所述钻井液基液由权利要求1所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物(统称为取代的糖或糖苷)和水构成。
  9. 权利要求8所述的钻井液组合物,其中以所述钻井液基液的质量为100wt%计,所述取代的糖或糖苷的质量百分含量为60-95wt%,和/或,相对于所述钻井液基液100ml,所述至少一种处理剂的用量为10-70g,优选18.3-41.7g,和/或,所述至少一种处理剂选自增粘剂、流型调节剂、降滤失剂、高温稳定剂、封堵剂、抑制增强剂和pH调节剂中的至少一种。
  10. 一种钻井液组合物的制造方法,包括混合权利要求1所述的一种取代的糖或糖苷或者多种取代的糖或糖苷的混合物(统称为取代的糖或糖苷)、水和任选的至少一种处理剂(优选先混合所述取代的糖或糖苷与所述水,然后再将所获得的混合物与所述任选的至少一种处理剂混合),然后任选将所获得的混合物进行老化处理(优选处理温度为120-200℃或140-180℃,优选155-165℃,处理时间为10-30小时或15-20小时,优选15-17小时)。
PCT/CN2019/094909 2018-07-06 2019-07-05 取代的糖或糖苷及其在钻井液组合物中的应用 WO2020007366A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/768,639 US11713409B2 (en) 2018-07-06 2019-07-05 Substituted saccharides or glycosides and use thereof in a drilling fluid composition
CN201980005768.9A CN111542583B (zh) 2018-07-06 2019-07-05 取代的糖或糖苷及其在钻井液组合物中的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810734568 2018-07-06
CN201810734568.4 2018-07-06

Publications (1)

Publication Number Publication Date
WO2020007366A1 true WO2020007366A1 (zh) 2020-01-09

Family

ID=69059910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094909 WO2020007366A1 (zh) 2018-07-06 2019-07-05 取代的糖或糖苷及其在钻井液组合物中的应用

Country Status (3)

Country Link
US (1) US11713409B2 (zh)
CN (2) CN110684515B (zh)
WO (1) WO2020007366A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563981A (zh) * 2021-07-06 2021-10-29 南京仁为医药科技有限公司 新型多酶清洗用阳离子有机硅表面活性剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574972B (zh) * 2020-06-19 2021-01-26 中国石油大学(华东) 一种水基钻井液用环保型抗高温页岩抑制剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432375A (zh) * 2015-08-10 2017-02-22 中石化石油工程技术服务有限公司 一种聚醚胺基烷基糖苷及其制备方法和应用
CN106432377A (zh) * 2015-08-10 2017-02-22 中石化石油工程技术服务有限公司 一种阳离子烷基葡萄糖苷及其制备方法和应用
CN106467562A (zh) * 2015-08-14 2017-03-01 中石化石油工程技术服务有限公司 一种氨基酸糖酯、其制备方法及其应用
CN107973827A (zh) * 2016-10-25 2018-05-01 中石化石油工程技术服务有限公司 一种胺基烷基糖苷接枝共聚物及其制备方法和钻井液
CN107987808A (zh) * 2016-10-26 2018-05-04 中石化石油工程技术服务有限公司 一种钻井液

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6033884A (en) * 1992-03-20 2000-03-07 Baylor College Of Medicine Nucleic acid transporter systems and methods of use
US6627612B1 (en) * 2002-10-01 2003-09-30 Colonial Chemical Inc Surfactants based upon alkyl polyglycosides
CA2738786C (en) * 2008-09-30 2017-12-19 Mallinckrodt Inc. A version of fdg detectable by single-photon emission computed tomography
WO2010132765A2 (en) * 2009-05-15 2010-11-18 Achaogen, Inc. Antibacterial aminoglycoside analogs
GB201209268D0 (en) * 2012-05-25 2012-07-04 Rhodia Operations Surfactant composition
WO2014139027A1 (en) * 2013-03-15 2014-09-18 University Of New Brunswick Use of sequestering agents for the controlled release of a surfactant in a hydrocarbon recovery operation
CA2925005A1 (en) * 2013-09-23 2015-03-26 Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Vancomycin-sugar conjugates and uses thereof
US11419333B2 (en) * 2018-01-19 2022-08-23 Championx Usa Inc. Compositions and methods for biofilm removal
GB2597415B (en) * 2019-04-09 2023-01-18 Colonial Chemical Inc Sugar-based, environmentally-friendly surfactants for emulsion polymerization

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432375A (zh) * 2015-08-10 2017-02-22 中石化石油工程技术服务有限公司 一种聚醚胺基烷基糖苷及其制备方法和应用
CN106432377A (zh) * 2015-08-10 2017-02-22 中石化石油工程技术服务有限公司 一种阳离子烷基葡萄糖苷及其制备方法和应用
CN106467562A (zh) * 2015-08-14 2017-03-01 中石化石油工程技术服务有限公司 一种氨基酸糖酯、其制备方法及其应用
CN107973827A (zh) * 2016-10-25 2018-05-01 中石化石油工程技术服务有限公司 一种胺基烷基糖苷接枝共聚物及其制备方法和钻井液
CN107987808A (zh) * 2016-10-26 2018-05-04 中石化石油工程技术服务有限公司 一种钻井液

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563981A (zh) * 2021-07-06 2021-10-29 南京仁为医药科技有限公司 新型多酶清洗用阳离子有机硅表面活性剂及其制备方法
CN113563981B (zh) * 2021-07-06 2023-11-10 南京优洁境生物科技有限公司 新型多酶清洗用阳离子有机硅表面活性剂及其制备方法

Also Published As

Publication number Publication date
CN110684515A (zh) 2020-01-14
US11713409B2 (en) 2023-08-01
CN110684515B (zh) 2022-07-12
CN111542583B (zh) 2023-06-23
CN111542583A (zh) 2020-08-14
US20210179913A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US8522873B2 (en) Spacer fluids containing cement kiln dust and methods of use
EP1523606B1 (en) Method for completing injection wells
US4609476A (en) High temperature stable aqueous brine fluids
EP1814958B1 (en) Treatment fluids comprising vitrified shale and methods of using such fluids in subterranean formations
US7939474B2 (en) Wellbore fluids containing additives for removing a filter cake and methods of using the same
US7125825B2 (en) Amidoamine salt-based viscosifying agents and methods of use
US7147067B2 (en) Zeolite-containing drilling fluids
US6194355B1 (en) Use of alkoxylated surfactants and aluminum chlorohydrate to improve brine-based drilling fluids
US20120322698A1 (en) Treatment fluids comprising pumicite and methods of using such fluids in subterranean formations
US20040108113A1 (en) Zeolite-containing treating fluid
US10487258B2 (en) Synthetic polymer based fluid loss pill
WO2020007366A1 (zh) 取代的糖或糖苷及其在钻井液组合物中的应用
US7196039B2 (en) Methods of reducing fluid loss in a wellbore servicing fluid
US9523028B2 (en) Thermal insulating fluids
CA2271286C (en) Invert emulsion well drilling and servicing fluids
US20130233623A1 (en) Consolidation
AU733450B2 (en) Process to enhance removal of adhering solids from the surface of wellbores and sand control devices therein
EP1680477B1 (en) Phospholipid lubricating agents in aqueous based drilling fluids
CN108587582A (zh) 一种微乳液页岩抑制剂及其制备方法
CA2758602A1 (en) Method for enhancing stability of oil based drilling fluids at high temperatures
WO1998042795A1 (en) Fluids for use in drilling and completion operations comprising water insoluble colloidal complexes for improved rheology and filtration control
EP3668946B1 (en) Layered double hydroxides for oil-based drilling fluids
US20230264973A1 (en) Method for manganese oxides dissolution
US3920560A (en) Drilling fluid
EP2299053A1 (en) Gravel pack fluid composition and emulsion therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19831162

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020/0464.1

Country of ref document: KZ

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19831162

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 520412337

Country of ref document: SA